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(57)【特許請求の範囲】
【請求項１】
　人工ニューロンの状態を更新するための方法であって、
　前記人工ニューロンの第１の状態が第１の領域内にあると決定することと、
　１次方程式の第１のセットに少なくとも部分的に基づいて前記人工ニューロンの第２の
状態を決定することと、ここにおいて、前記１次方程式の第１のセットは、前記第１の領
域に対応するパラメータの第１のセットに少なくとも部分的に基づく、
　前記人工ニューロンの前記第２の状態が第２の領域内にあると決定することと、
　１次方程式の第２のセットに少なくとも部分的に基づいて前記人工ニューロンの第３の
状態を決定することと
　を備え、前記１次方程式の第２のセットは、前記第２の領域に対応するパラメータの第
２のセットに少なくとも部分的に基づく、
方法。
【請求項２】
　前記１次方程式の第１のセットおよび第２のセットは、線形時間不変（ＬＴＩ）状態空
間方程式の離散時間解を備える、
請求項１に記載の方法。
【請求項３】
　メモリから前記パラメータの第１セットまたは第２のセットのうちの少なくとも１つを
取り出すことをさらに備える、
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請求項１に記載の方法。
【請求項４】
　前記取り出すことは、前記人工ニューロンの局所にあるメモリから前記パラメータの第
１のセットまたは第２のセットのうちの前記少なくとも１つを取り出すことを備える、
請求項３に記載の方法。
【請求項５】
　前記パラメータの第１のセットまたは第２のセットのうちの少なくとも１つの少なくと
も一部分を計算することをさらに備える、
請求項１に記載の方法。
【請求項６】
　前記パラメータの第１のセットまたは第２のセットのうちの前記少なくとも１つの前記
少なくとも前記一部分は、メモリから取り出された１つまたは複数の値を使用して計算さ
れる、
請求項５に記載の方法。
【請求項７】
　前記パラメータの第１のセットまたは第２のセットのうちの少なくとも１つは、前記人
工ニューロンに関連するニューロンモデルにおける非線形関数の少なくとも一部分を区分
的線形関数により近似することによって取得される、
請求項１に記載の方法。
【請求項８】
　前記非線形関数は、電圧依存型伝導性（ｇ（ｖ））により増大する膜電位（ｖ）を備え
る、
請求項７に記載の方法。
【請求項９】
　前記電圧依存型伝導性は、区分的定数関数により近似される、請求項８に記載の方法。
【請求項１０】
　前記非線形関数は電圧依存型関数（Ｆ（ｖ））を備え、ｖは前記人工ニューロンの膜電
位である、
請求項７に記載の方法。
【請求項１１】
　前記第１の領域は、前記区分的線形関数において前記第２の領域とは異なる幅を有する
、
請求項７に記載の方法。
【請求項１２】
　前記区分的線形関数における前記第１の領域または前記第２の領域の幅は、前記非線形
関数に依存する、
請求項７に記載の方法。
【請求項１３】
　前記区分的線形関数近似は、テイラー展開方法、１次線形補間方法、最適線形補間方法
、または平均傾斜方法のうちの少なくとも１つに少なくとも部分的に基づく、
請求項７に記載の方法。
【請求項１４】
　前記パラメータの第１のセットまたは第２のセットのうちの少なくとも１つは、少なく
とも部分的に前記人工ニューロンにおける特定の挙動を実現するように設計される、
請求項１に記載の方法。
【請求項１５】
　前記人工ニューロンの前記第１の状態、第２の状態、および第３の状態は、膜電位（ｖ
）および復元電流（ｕ）によって定義される、
請求項１に記載の方法。
【請求項１６】
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　スパイク事象が生じているか、または生じることになるとの決定に少なくとも部分的に
基づいて、前記人工ニューロンの前記膜電位または前記復元電流のうちの少なくとも１つ
をリセットすることをさらに備える、
請求項１５に記載の方法。
【請求項１７】
　前記膜電位は、静止電位にリセットされ、前記復元電流は、前記復元電流の現在値とオ
フセットとの合計にリセットされる、
請求項１６に記載の方法。
【請求項１８】
　前記１次方程式の第１のセットまたは第２のセットのうちの少なくとも１つは、前記人
工ニューロンのためのニューロンモデルに少なくとも部分的に基づく、
請求項１に記載の方法。
【請求項１９】
　前記ニューロンモデルは、Ｉｚｈｉｋｅｖｉｃｈの単純モデル、指数関数積分発火（Ｅ
ＩＦ）モデル、ＦｉｔｚＨｕｇｈ－Ｎａｇｕｍｏモデル、クォートモデル、または真性伝
導性モデルのうちの少なくとも１つに少なくとも部分的に基づく、
請求項１８に記載の方法。
【請求項２０】
　前記真性伝導性モデルは、電圧依存型伝導性（ｇ（ｖ））により増大する膜電位（ｖ）
として表される前記ニューロンモデルを備える、
請求項１９に記載の方法。
【請求項２１】
　前記ニューロンモデルは少なくとも２つの次元を備える、
請求項１８に記載の方法。
【請求項２２】
　前記ニューロンモデルの時間のステップサイズは、モデル化されている前記人工ニュー
ロンのタイプに少なくとも部分的に基づく、
請求項１８に記載の方法。
【請求項２３】
　前記ニューロンモデルの時間のステップサイズは不均一である、
請求項１８に記載の方法。
【請求項２４】
　特定の時間ステップの時間の前記ステップサイズは、前記人工ニューロンの現在の状態
もしくは過去の状態のうちの少なくとも１つに、またはパラメータの特定のセットに少な
くとも部分的に基づいて決定される、
請求項２３に記載の方法。
【請求項２５】
　前記ニューロンモデルは、１つまたは複数の１次常微分方程式（ＯＤＥ）に少なくとも
部分的に基づく、
請求項１８に記載の方法。
【請求項２６】
　前記人工ニューロンの前記第２の状態または第３の状態のうちの少なくとも１つを決定
することは、前記人工ニューロンに入力された電流に少なくとも部分的に基づく、
請求項１に記載の方法。
【請求項２７】
　前記入力電流は、１つまたは複数のチャネルの各々に関する時間依存型伝導性および前
記１つまたは複数のチャネルの各々に関する逆転電位に少なくとも部分的に基づくシナプ
ス電流を備える、
請求項２６に記載の方法。
【請求項２８】
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　前記シナプス電流は、Ｎ－メチル－Ｄ－アスパラギン酸（ＮＭＤＡ）チャネルに関する
前記人工ニューロンのシナプス後膜電圧に少なくとも部分的に基づく、
請求項２７に記載の方法。
【請求項２９】
　前記時間依存型伝導性は、指数関数、アルファ関数、または指数差関数によってモデル
化される、
請求項２７に記載の方法。
【請求項３０】
　前記第１の状態を決定することと前記第２の状態を決定することとの間の時間の第１の
ステップサイズは、前記第２の状態を決定することと前記第３の状態を決定することとの
間の時間の第２のステップサイズとは異なる、
請求項１に記載の方法。
【請求項３１】
　前記人工ニューロンの前記第２の状態を決定することは、第１の時間ステップで実行さ
れ、前記人工ニューロンの前記第３の状態を決定することは、前記第１の時間ステップに
続く第２の時間ステップで実行される、
請求項１に記載の方法。
【請求項３２】
　人工ニューロンを動作させるための装置であって、
　前記人工ニューロンの第１の状態が第１の領域内にあると決定することと、
　１次方程式の第１のセットに少なくとも部分的に基づいて前記人工ニューロンの第２の
状態を決定することと、ここにおいて、前記１次方程式の第１のセットは、前記第１の領
域に対応するパラメータの第１のセットに少なくとも部分的に基づく、
　前記人工ニューロンの前記第２の状態が第２の領域内にあると決定することと、
　１次方程式の第２のセットに少なくとも部分的に基づいて前記人工ニューロンの第３の
状態を決定することと、ここにおいて、前記１次方程式の第２のセットは、前記第２の領
域に対応するパラメータの第２のセットに少なくとも部分的に基づく、を行うように構成
された処理システムと、
　前記処理システムに結合されたメモリと
を備える装置。
【請求項３３】
　前記１次方程式の第１のセットおよび第２のセットは、線形時間不変（ＬＴＩ）状態空
間方程式の離散時間解を備える、
請求項３２に記載の装置。
【請求項３４】
　前記処理システムは、前記メモリから前記パラメータの第１のセットまたは第２のセッ
トのうちの少なくとも１つを取り出すことを行うようにさらに構成される、
請求項３２に記載の装置。
【請求項３５】
　メモリは、前記人工ニューロンの局所にある、
請求項３４に記載の装置。
【請求項３６】
　前記処理システムは、前記パラメータの第１のセットまたは第２のセットのうちの少な
くとも１つの少なくとも一部分を計算することを行うようにさらに構成される、
請求項３２に記載の装置。
【請求項３７】
　前記パラメータの第１のセットまたは第２のセットのうちの前記少なくとも１つの前記
少なくとも一部分は、前記メモリから取り出された１つまたは複数の値を使用して計算さ
れる、
請求項３６に記載の装置。
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【請求項３８】
　前記パラメータの第１のセットまたは第２のセットのうちの少なくとも１つは、前記人
工ニューロンに関連するニューロンモデルにおける非線形関数の少なくとも一部分を区分
的線形関数により近似することによって取得される、
請求項３２に記載の装置。
【請求項３９】
　前記非線形関数は、電圧依存型伝導性（ｇ（ｖ））により増大する膜電位（ｖ）を備え
る、
請求項３８に記載の装置。
【請求項４０】
　前記電圧依存型伝導性は区分的定数関数により近似される、
請求項３９に記載の装置。
【請求項４１】
　前記非線形関数は電圧依存型関数（Ｆ（ｖ））を備え、ｖは前記人工ニューロンの膜電
位である、
請求項３８に記載の装置。
【請求項４２】
　前記第１の領域は、前記区分的線形関数において前記第２の領域とは異なる幅を有する
、
請求項３８に記載の装置。
【請求項４３】
　前記区分的線形関数における前記第１の領域または前記第２の領域の幅は、前記非線形
関数に依存する、
請求項３８に記載の装置。
【請求項４４】
　前記区分的線形関数近似は、テイラー展開方法、１次線形補間方法、最適線形補間方法
、または平均傾斜方法のうちの少なくとも１つに少なくとも部分的に基づく、
請求項３８に記載の装置。
【請求項４５】
　前記パラメータの第１のセットまたは第２のセットのうちの少なくとも１つは、少なく
とも部分的に前記人工ニューロンにおける特定の挙動を実現するように設計される、
請求項３２に記載の装置。
【請求項４６】
　前記人工ニューロンの前記第１の状態、第２の状態、および第３の状態は、膜電位（ｖ
）および復元電流（ｕ）によって定義される、
請求項３２に記載の装置。
【請求項４７】
　前記処理システムは、スパイク事象が生じているか、または生じることになるとの決定
に少なくとも部分的に基づいて、前記人工ニューロンの前記膜電位または前記復元電流の
うちの少なくとも１つをリセットすることを行うようにさらに構成される、
請求項４６に記載の装置。
【請求項４８】
　前記膜電位は、静止電位にリセットされ、前記復元電流は定数にリセットされる、
請求項４７に記載の装置。
【請求項４９】
　前記１次方程式の第１のセットまたは第２のセットのうちの少なくとも１つは、前記人
工ニューロンのためのニューロンモデルに少なくとも部分的に基づく、
請求項３２に記載の装置。
【請求項５０】
　前記ニューロンモデルは、Ｉｚｈｉｋｅｖｉｃｈの単純モデル、指数関数積分発火（Ｅ
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ＩＦ）モデル、ＦｉｔｚＨｕｇｈ－Ｎａｇｕｍｏモデル、クォートモデル、または真性伝
導性モデルのうちの少なくとも１つに少なくとも部分的に基づく、
請求項４９に記載の装置。
【請求項５１】
　前記真性伝導性モデルは、電圧依存型伝導性（ｇ（ｖ））により増大する膜電位（ｖ）
として表される前記ニューロンモデルを備える、
請求項５０に記載の装置。
【請求項５２】
　前記ニューロンモデルは少なくとも２つの次元を備える、
請求項４９に記載の装置。
【請求項５３】
　前記ニューロンモデルの時間のステップサイズは、モデル化されている前記人工ニュー
ロンのタイプに少なくとも部分的に基づく、
請求項４９に記載の装置。
【請求項５４】
　前記ニューロンモデルの時間のステップサイズは、不均一である、
請求項４９に記載の装置。
【請求項５５】
　特定の時間ステップの時間の前記ステップサイズは、前記人工ニューロンの現在の状態
もしくは過去の状態のうちの少なくとも１つに、またはパラメータの特定のセットに少な
くとも部分的に基づいて決定される、
請求項５４に記載の装置。
【請求項５６】
　前記ニューロンモデルは、１つまたは複数の１次常微分方程式（ＯＤＥ）に少なくとも
部分的に基づく、
請求項４９に記載の装置。
【請求項５７】
　前記処理システムは、前記人工ニューロンに入力された電流に少なくとも部分的に基づ
いて、前記人工ニューロンの前記第２の状態または第３の状態のうちの少なくとも１つを
決定することを行うように構成される、
請求項３２に記載の装置。
【請求項５８】
　前記入力電流は、１つまたは複数のチャネルの各々に関する時間依存型伝導性および前
記１つまたは複数のチャネルの各々に関する逆転電位に少なくとも部分的に基づくシナプ
ス電流を備える、
請求項５７に記載の装置。
【請求項５９】
　前記シナプス電流は、Ｎ－メチル－Ｄ－アスパラギン酸（ＮＭＤＡ）チャネルに関する
前記人工ニューロンのシナプス後膜電圧に少なくとも部分的に基づく、
請求項５８に記載の装置。
【請求項６０】
　前記時間依存型伝導性は、指数関数、アルファ関数、または指数差関数によってモデル
化される、
請求項５８に記載の装置。
【請求項６１】
　前記第１の状態を決定することと前記第２の状態を決定することとの間の時間の第１の
ステップサイズは、前記第２の状態を決定することと前記第３の状態を決定することとの
間の時間の第２のステップサイズとは異なる、
請求項３２に記載の装置。
【請求項６２】
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　前記処理システムは、
　第１の時間ステップで前記人工ニューロンの前記第２の状態を決定することと、
　前記第１の時間ステップに続く第２の時間ステップで前記人工ニューロンの前記第３の
状態を決定することと
を行うように構成される、請求項３２に記載の装置。
【請求項６３】
　人工ニューロンを動作させるための装置であって、
　前記人工ニューロンの第１の状態が第１の領域内にあると決定するための手段と、
　１次方程式の第１のセットに少なくとも部分的に基づいて前記人工ニューロンの第２の
状態を決定するための手段と、ここにおいて、前記１次方程式の第１のセットは、前記第
１の領域に対応するパラメータの第１のセットに少なくとも部分的に基づく、
　前記人工ニューロンの前記第２の状態が第２の領域内にあると決定するための手段と、
　１次方程式の第２のセットに少なくとも部分的に基づいて前記人工ニューロンの第３の
状態を決定するための手段と
　を備え、前記１次方程式の第２のセットは、前記第２の領域に対応するパラメータの第
２のセットに少なくとも部分的に基づく、
装置。
【請求項６４】
　人工ニューロンを動作させるための非一時的コンピュータ可読記憶デバイスであって、
前記記憶デバイスは、
　前記人工ニューロンの第１の状態が第１の領域内にあると決定することと、
　１次方程式の第１のセットに少なくとも部分的に基づいて前記人工ニューロンの第２の
状態を決定することと、ここにおいて、前記１次方程式の第１のセットは、前記第１の領
域に対応するパラメータの第１のセットに少なくとも部分的に基づく、
　前記人工ニューロンの前記第２の状態が第２の領域内にあると決定することと、
　１次方程式の第２のセットに少なくとも部分的に基づいて前記人工ニューロンの第３の
状態を決定することと
　を行うように実行可能な命令を用いて符号化され、ここにおいて、前記１次方程式の第
２のセットは、前記第２の領域に対応するパラメータの第２のセットに少なくとも部分的
に基づく、
非一時的コンピュータ可読記憶デバイス。
【発明の詳細な説明】
【関連出願】
【０００１】
　米国特許法第１１９条による優先権の主張　
　[0001]本出願は、２０１２年１１月２０日に出願された「Ｐｉｅｃｅｗｉｓｅ　Ｌｉｎ
ｅａｒ　Ｎｅｕｒｏｎ　Ｍｏｄｅｌｉｎｇ」と題する米国仮特許出願第６１／７２８，３
６０号、２０１２年１２月７日に出願された「Ｐｉｅｃｅｗｉｓｅ　Ｌｉｎｅａｒ　Ｎｅ
ｕｒｏｎ　Ｍｏｄｅｌｉｎｇ」と題する米国仮特許出願第６１／７３４，７１６号、２０
１２年１２月２１日に出願された「Ｐｉｅｃｅｗｉｓｅ　Ｌｉｎｅａｒ　Ｎｅｕｒｏｎ　
Ｍｏｄｅｌｉｎｇ」と題する米国仮特許出願第６１／７４０，６３３号、２０１３年１月
２５日に出願された「Ｐｉｅｃｅｗｉｓｅ　Ｌｉｎｅａｒ　Ｎｅｕｒｏｎ　Ｍｏｄｅｌｉ
ｎｇ」と題する米国仮特許出願第６１／７５６，８８９号の利益を主張し、これらのすべ
ては、参照により全体が本明細書に組み込まれる。
【技術分野】
【０００２】
　[0002]本開示のいくつかの態様は、一般に人工神経系に関し、より詳細には、ニューロ
ンモデルの非線形関数の少なくとも一部分を区分的線形関数として近似し、得られた線形
化ニューロンモデルを１つまたは複数の人工ニューロンにおいて使用することに関する。
【背景技術】
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【０００３】
　[0003]人工ニューロン（すなわち、ニューロンモデル）の相互結合されたグループを備
え得る人工ニューラルネットワークは、計算デバイスであるか、または計算デバイスによ
って実行される方法を表す。人工ニューラルネットワークは、生物学的ニューラルネット
ワークにおける対応する構造および／または機能を有し得る。しかしながら、人工ニュー
ラルネットワークは、従来の計算技法が厄介、実行不可能または不適切であるいくつかの
適用例に革新的で有用な計算技法を提供することができる。人工ニューラルネットワーク
が観測から機能を推論することができるので、そのようなネットワークは、タスクまたは
データの複雑さが従来の技法による機能の設計を面倒にする適用例において、特に有用で
ある。
【０００４】
　[0004]１つのタイプの人工ニューラルネットワークはスパイキングニューラルネットワ
ークであり、これは、それの動作モデルならびにニューロンおよびシナプスの状態に時間
の概念を組み込み、それによって、ニューラルネットワークにおける計算機能の発生元と
なり得る挙動の豊かなセットを提供する。スパイキングニューラルネットワークは、ニュ
ーロンがニューロンの状態に基づいて特定の（１つまたは複数の）時間に発火する、また
は「スパイクする」という概念、および時間がニューロン機能にとって重要であるという
概念に基づく。ニューロンが発火するとき、そのニューロンは、他のニューロンに進むス
パイクを生成し、他のニューロンは、今度は、このスパイクが受信された時間に基づいて
それらの状態を調整することができる。言い換えれば、ニューラルネットワークにおける
スパイクの相対的タイミングまたは絶対的タイミングで情報が符号化され得る。
【発明の概要】
【０００５】
　[0005]本開示のいくつかの態様は一般に、ニューロンモデルの非線形関数の少なくとも
一部分を区分的線形関数として近似することに関する。たとえば、得られた線形化ニュー
ロンモデルを１つまたは複数の人工ニューロンにおいて実施するための方法および装置も
提供される。本開示のいくつかの態様は一般に、ニューロンモデルのダイナミクスを実現
するための共通のフレキシブルなアーキテクチャに関する。設計目標は、低複雑度と、ダ
イナミクスの正確なモデル化と、（１次元、２次元、またはそれよりも多くの次元の）任
意のニューロンモデルを実施する能力とを含む。区分的線形近似は、そのようなアーキテ
クチャ内のニューロンモデルを、様々なニューロンモデルに関連する異なるパラメータを
置換するだけで変更する単純な方法を提供する。
【０００６】
　[0006]本開示のいくつかの態様は、人工ニューロンを動作させるための方法を提供する
。本方法は一般に、人工ニューロンの第１の状態が第１の領域内にあると決定することと
、１次方程式の第１のセットに少なくとも部分的に基づいて人工ニューロンの第２の状態
を決定することと、ここにおいて、１次方程式の第１のセットは、第１の領域に対応する
パラメータの第１のセットに少なくとも部分的に基づく、人工ニューロンの第２の状態が
第２の領域内にあると決定することと、１次方程式の第２のセットに少なくとも部分的に
基づいて人工ニューロンの第３の状態を決定することと、ここにおいて、１次方程式の第
２のセットは、第２の領域に対応するパラメータの第２のセットに少なくとも部分的に基
づく、を含む。
【０００７】
　[0007]本開示のいくつかの態様は、人工ニューロンを動作させるための装置を提供する
。本装置は一般に、処理システムと処理システムに結合されたメモリとを含む。処理シス
テムは一般に、人工ニューロンの第１の状態が第１の領域内にあると決定することと、１
次方程式の第１のセットに少なくとも部分的に基づいて人工ニューロンの第２の状態を決
定することと、ここにおいて、１次方程式の第１のセットは、第１の領域に対応するパラ
メータの第１のセットに少なくとも部分的に基づく、人工ニューロンの第２の状態が第２
の領域内にあると決定することと、１次方程式の第２のセットに少なくとも部分的に基づ
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いて人工ニューロンの第３の状態を決定することと、ここにおいて、１次方程式の第２の
セットは、第２の領域に対応するパラメータの第２のセットに少なくとも部分的に基づく
、を行うように構成される。
【０００８】
　[0008]本開示のいくつかの態様は、人工ニューロンを動作させるための装置を提供する
。本装置は一般に、人工ニューロンの第１の状態が第１の領域内にあると決定するための
手段と、１次方程式の第１のセットに少なくとも部分的に基づいて人工ニューロンの第２
の状態を決定するための手段と、ここにおいて、１次方程式の第１のセットは、第１の領
域に対応するパラメータの第１のセットに少なくとも部分的に基づく、人工ニューロンの
第２の状態が第２の領域内にあると決定するための手段と、１次方程式の第２のセットに
少なくとも部分的に基づいて人工ニューロンの第３の状態を決定するための手段と、ここ
において、１次方程式の第２のセットは、第２の領域に対応するパラメータの第２のセッ
トに少なくとも部分的に基づく、を含む。
【０００９】
　[0009]本開示のいくつかの態様は、人工ニューロンを動作させるためのコンピュータプ
ログラム製品を提供する。本コンピュータプログラム製品は一般に、人工ニューロンの第
１の状態が第１の領域内にあると決定することと、１次方程式の第１のセットに少なくと
も部分的に基づいて人工ニューロンの第２の状態を決定することと、ここにおいて、１次
方程式の第１のセットは、第１の領域に対応するパラメータの第１のセットに少なくとも
部分的に基づく、人工ニューロンの第２の状態が第２の領域内にあると決定することと、
１次方程式の第２のセットに少なくとも部分的に基づいて人工ニューロンの第３の状態を
決定することと、ここにおいて、１次方程式の第２のセットは、第２の領域に対応するパ
ラメータの第２のセットに少なくとも部分的に基づく、を行うように実行可能な命令を有
するコンピュータ可読媒体（たとえば、記憶デバイス）を含む。
【００１０】
　[0010]本開示のいくつかの態様は、ニューラル処理ユニットのシステムにおいて複数の
ニューロンモデルの組合せを実施するための方法を提供する。本方法は一般に、複数のニ
ューロンモデルから選択された第１のニューロンモデルのためのパラメータを第１のニュ
ーラル処理ユニットにロードすることと、第１のニューロンモデルのためのパラメータに
少なくとも部分的に基づいて第１のニューラル処理ユニットの第１の状態を決定すること
と、第１のニューロンモデルのためのパラメータおよび第１の状態に少なくとも部分的に
基づいて第１のニューラル処理ユニットの第２の状態を決定することとを含む。
【００１１】
　[0011]本開示のいくつかの態様は、ニューラル処理ユニットのシステムにおいて複数の
ニューロンモデルの組合せを実施するための装置を提供する。本装置は一般に、処理シス
テムと処理システムに結合されたメモリとを含む。処理システムは通常、複数のニューロ
ンモデルから選択された第１のニューロンモデルのためのパラメータを第１のニューラル
処理ユニットにロードすることと、第１のニューロンモデルのためのパラメータに少なく
とも部分的に基づいて第１のニューラル処理ユニットの第１の状態を決定することと、第
１のニューロンモデルのためのパラメータおよび第１の状態に少なくとも部分的に基づい
て第１のニューラル処理ユニットの第２の状態を決定することとを行うように構成される
。
【００１２】
　[0012]本開示のいくつかの態様は、ニューラル処理ユニットのシステムにおいて複数の
ニューロンモデルの組合せを実施するための装置を提供する。本装置は一般に、複数のニ
ューロンモデルから選択された第１のニューロンモデルのためのパラメータを第１のニュ
ーラル処理ユニットにロードするための手段と、第１のニューロンモデルのためのパラメ
ータに少なくとも部分的に基づいて第１のニューラル処理ユニットの第１の状態を決定す
るための手段と、第１のニューロンモデルのためのパラメータおよび第１の状態に少なく
とも部分的に基づいて第１のニューラル処理ユニットの第２の状態を決定するための手段
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とを含む。
【００１３】
　[0013]本開示のいくつかの態様は、ニューラル処理ユニットのシステムにおいて複数の
ニューロンモデルの組合せを実施するためのコンピュータプログラム製品を提供する。本
コンピュータプログラム製品は一般に、複数のニューロンモデルから選択された第１のニ
ューロンモデルのためのパラメータを第１のニューラル処理ユニットにロードすることと
、第１のニューロンモデルのためのパラメータに少なくとも部分的に基づいて第１のニュ
ーラル処理ユニットの第１の状態を決定することと、第１のニューロンモデルのためのパ
ラメータおよび第１の状態に少なくとも部分的に基づいて第１のニューラル処理ユニット
の第２の状態を決定することとを行うように実行可能な命令を有する（非一時的）コンピ
ュータ可読媒体を含む。
【００１４】
　[0014]本開示のいくつかの態様は、人工ニューロンを動作させるための方法を提供する
。本方法は一般に、人工ニューロンの第１の状態が第１の領域内にあると決定することと
、１次方程式の第１のセットに少なくとも部分的に基づいて人工ニューロンの第２の状態
を決定することと、ここにおいて、１次方程式の第１のセットは、第１の領域に対応する
パラメータの第１のセットに少なくとも部分的に基づく、人工ニューロンの第２の状態が
第２の領域内にあると決定することと、ここにおいて、第１の領域または第２の領域のう
ちの少なくとも１つは、２つ以上の次元によって定義される、１次方程式の第２のセット
に少なくとも部分的に基づいて人工ニューロンの第３の状態を決定することと、ここにお
いて、１次方程式の第２のセットは、第２の領域に対応するパラメータの第２のセットに
少なくとも部分的に基づく、を含む。
【００１５】
　[0015]本開示のいくつかの態様は、人工ニューロンを動作させるための装置を提供する
。本装置は一般に、処理システムと処理システムに結合されたメモリとを含む。処理シス
テムは一般に、人工ニューロンの第１の状態が第１の領域内にあると決定することと、１
次方程式の第１のセットに少なくとも部分的に基づいて人工ニューロンの第２の状態を決
定することと、ここにおいて、１次方程式の第１のセットは、第１の領域に対応するパラ
メータの第１のセットに少なくとも部分的に基づく、人工ニューロンの第２の状態が第２
の領域内にあると決定することと、ここにおいて、第１の領域または第２の領域のうちの
少なくとも１つは、２つ以上の次元によって定義される、１次方程式の第２のセットに少
なくとも部分的に基づいて人工ニューロンの第３の状態を決定することと、ここにおいて
、１次方程式の第２のセットは、第２の領域に対応するパラメータの第２のセットに少な
くとも部分的に基づく、を行うように構成される。
【００１６】
　[0016]本開示のいくつかの態様は、人工ニューロンを動作させるための装置を提供する
。本装置は一般に、人工ニューロンの第１の状態が第１の領域内にあると決定するための
手段と、１次方程式の第１のセットに少なくとも部分的に基づいて人工ニューロンの第２
の状態を決定するための手段と、ここにおいて、１次方程式の第１のセットは、第１の領
域に対応するパラメータの第１のセットに少なくとも部分的に基づく、人工ニューロンの
第２の状態が第２の領域内にあると決定するための手段と、ここにおいて、第１の領域ま
たは第２の領域のうちの少なくとも１つは、２つ以上の次元によって定義される、１次方
程式の第２のセットに少なくとも部分的に基づいて人工ニューロンの第３の状態を決定す
るための手段と、ここにおいて、１次方程式の第２のセットは、第２の領域に対応するパ
ラメータの第２のセットに少なくとも部分的に基づく、を含む。
【００１７】
　[0017]本開示のいくつかの態様は、人工ニューロンを動作させるためのコンピュータプ
ログラム製品を提供する。本コンピュータプログラム製品は一般に、人工ニューロンの第
１の状態が第１の領域内にあると決定することと、１次方程式の第１のセットに少なくと
も部分的に基づいて人工ニューロンの第２の状態を決定することと、ここにおいて、１次
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方程式の第１のセットは、第１の領域に対応するパラメータの第１のセットに少なくとも
部分的に基づく、人工ニューロンの第２の状態が第２の領域内にあると決定することと、
ここにおいて、第１の領域または第２の領域のうちの少なくとも１つは、２つ以上の次元
によって定義される、１次方程式の第２のセットに少なくとも部分的に基づいて人工ニュ
ーロンの第３の状態を決定することと、ここにおいて、１次方程式の第２のセットは、第
２の領域に対応するパラメータの第２のセットに少なくとも部分的に基づく、を行うよう
に実行可能な命令を有するコンピュータ可読媒体（たとえば、記憶デバイスまたは他の非
一時的媒体）を含む。
【図面の簡単な説明】
【００１８】
　[0018]本開示の上述の特徴が詳細に理解され得るように、添付の図面にその一部が示さ
れる態様を参照することによって、上記で簡単に要約された内容のより具体的な説明が得
られ得る。ただし、その説明は他の等しく有効な態様に通じ得るので、添付の図面は、本
開示のいくつかの典型的な態様のみを示し、したがって、本開示の範囲を限定するものと
見なされるべきではないことに留意されたい。
【図１】本開示のいくつかの態様によるニューロンの例示的なネットワークを示す図。
【図２】本開示のいくつかの態様による、計算ネットワーク（ニューラルシステムまたは
ニューラルネットワーク）の例示的な処理ユニット（ニューロン）を示す図。
【図３】本開示のいくつかの態様による例示的なスパイクタイミング依存可塑性（ＳＴＤ
Ｐ）曲線を示す図。
【図４】本開示のいくつかの態様による、ニューロンの挙動を定義するための正レジーム
と負レジームとを示す、人工ニューロンに関する状態の例示的なグラフ。
【図５Ａ】本開示のいくつかの態様による、テイラー展開方法に基づく例示的な線形化と
非線形時間変動単純モデルを比較するための、時間に対する膜電圧ｖの例示的なグラフ。
【図５Ｂ】本開示のいくつかの態様による、テイラー展開方法に基づく例示的な線形化と
非線形時間変動単純モデルを比較するための、時間に対する復元電流ｕの例示的なグラフ
。
【図６Ａ】本開示のいくつかの態様による、Ｈｕｎｚｉｎｇｅｒ　Ｃｏｌｄモデルのしき
い値下ダイナミクスのための、時間に対する膜電圧ｖの例示的なグラフ。
【図６Ｂ】本開示のいくつかの態様による、Ｈｕｎｚｉｎｇｅｒ　Ｃｏｌｄモデルのしき
い値下ダイナミクスのための、時間に対する復元電流ｕの例示的なグラフ。
【図７】本開示のいくつかの態様による区分的線形ニューロンモデル化の様々な手法の概
要を示す図。
【図８】本開示のいくつかの態様による、単一の次元の観点から区分することによる区分
的線形ニューロンモデル化の一例を示す図。
【図９】本開示のいくつかの態様による、２次元によって定義された３つの方形領域によ
る一般化された線形ニューロンモデル化の一例を示す図。
【図１０】本開示のいくつかの態様による、減衰しきい値下振動挙動と、持続しきい値下
振動挙動と、成長しきい値下振動挙動とを示すために使用され得る、２次元によって定義
された４つの領域による一般化された線形ニューロンモデル化の一例を示す図。
【図１１】本開示のいくつかの態様による、様々な形状を有する５つの領域による一般化
された線形ニューロンモデル化の一例を示す図。
【図１２Ａ】本開示のいくつかの態様による、減衰しきい値下振動の例示的なプロットを
示す図。
【図１２Ｂ】本開示のいくつかの態様による、持続しきい値下振動の例示的なプロットを
示す図。
【図１２Ｃ】本開示のいくつかの態様による、成長しきい値下振動の例示的なプロットを
示す図。
【図１３】本開示のいくつかの態様による、漸進的な減衰、複数の持続振動、および／ま
たはしきい値下振動の漸進的成長をサポートするためにマルチステージ減衰領域、マルチ
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ステージ維持領域、および／またはマルチステージ成長領域に使用され得る、２次元によ
って定義された６つの領域による一般化された線形ニューロンモデル化の一例を示す図。
【図１４】本開示のいくつかの態様による、人工ニューロンを動作させるための例示的な
動作の流れ図。
【図１４Ａ】図１４に示す動作を実行することが可能な例示的な手段を示す図。
【図１５Ａ】本開示のいくつかの態様による、ニューロンモデルのためのパラメータが選
択、ロード、アクセス、追加、削除および／または更新され得る、単一のニューラル処理
ユニットのための共通のフレキシブルなニューラルアーキテクチャの実装形態を示す図。
【図１５Ｂ】本開示のいくつかの態様による、ニューロンモデルのためのパラメータが選
択、ロード、アクセス、追加、削除および／または更新され得る、単一のニューラル処理
ユニットのための共通のフレキシブルなニューラルアーキテクチャの実装形態を示す図。
【図１５Ｃ】本開示のいくつかの態様による、ニューロンモデルのためのパラメータが選
択、ロード、アクセス、追加、削除および／または更新され得る、単一のニューラル処理
ユニットのための共通のフレキシブルなニューラルアーキテクチャの実装形態を示す図。
【図１５Ｄ】本開示のいくつかの態様による、ニューロンモデルのためのパラメータが選
択、ロード、アクセス、追加、削除および／または更新され得る、単一のニューラル処理
ユニットのための共通のフレキシブルなニューラルアーキテクチャの実装形態を示す図。
【図１６】本開示のいくつかの態様による、ニューラル処理ユニットのシステムにおいて
複数のニューロンモデルの組合せを実施するための例示的な動作の流れ図。
【図１６Ａ】図１６に示す動作を実行することが可能な例示的な手段を示す図。
【図１７】本開示のいくつかの態様による、汎用プロセッサを使用して人工ニューロンの
状態を決定するための例示的な実装形態を示す図。
【図１８】本開示のいくつかの態様による、メモリが個々の分散処理ユニットとインター
フェースされ得る人工ニューロンの状態を決定するための例示的な実装形態を示す図。
【図１９】本開示のいくつかの態様による、分散メモリおよび分散処理ユニットに基づい
て人工ニューロンの状態を決定するための例示的な実装形態を示す図。
【図２０】本開示のいくつかの態様による、ニューラルネットワークの例示的な実装形態
を示す図。
【図２１】本開示のいくつかの態様による、現在の状態の量子化に従って、人工ニューロ
ンの状態を更新するために使用されるパラメータがメモリから取り出される区分的線形ニ
ューロンモデル化の例示的な実装形態のブロック図。
【発明を実施するための形態】
【００１９】
　[0042]添付の図面を参照しながら本開示の様々な態様について以下でより十分に説明す
る。ただし、本開示は、多くの異なる形態で実施され得、本開示全体にわたって提示され
る任意の特定の構造または機能に限定されるものと解釈されるべきではない。むしろ、こ
れらの態様は、本開示が周到で完全になり、本開示の範囲を当業者に十分に伝えるように
与えられる。本明細書の教示に基づいて、本開示の範囲は、本開示の任意の他の態様とは
無関係に実装されるにせよ、本開示の任意の他の態様と組み合わされるにせよ、本明細書
で開示する本開示のいかなる態様をもカバーするものであることを、当業者なら諒解され
たい。たとえば、本明細書に記載される態様をいくつ使用しても、装置は実装され得、ま
たは方法は実施され得る。さらに、本開示の範囲は、本明細書に記載される本開示の様々
な態様に加えてまたはそれらの態様以外に、他の構造、機能、または構造および機能を使
用して実施されるそのような装置または方法をカバーするものとする。本明細書で開示す
る本開示のいずれの態様も、請求項の１つまたは複数の要素によって実施され得ることを
理解されたい。
【００２０】
　[0043]「例示的」という単語は、本明細書では「例、事例、または例示の働きをするこ
と」を意味するために使用される。「例示的」として本明細書で説明するいかなる態様も
、必ずしも他の態様よりも好ましいまたは有利であると解釈されるべきであるとは限らな
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【００２１】
　[0044]本明細書では特定の態様について説明するが、これらの態様の多くの変形および
置換は本開示の範囲内に入る。好ましい態様のいくつかの利益および利点が説明されるが
、本開示の範囲は特定の利益、使用、または目的に限定されるものではない。むしろ、本
開示の態様は、様々な技術、システム構成、ネットワーク、およびプロトコルに広く適用
可能であるものとし、そのうちのいくつかを例として図および好ましい態様についての以
下の説明で示す。発明を実施するための形態および図面は、本開示を限定するものではな
く説明するものにすぎず、本開示の範囲は添付の特許請求の範囲およびそれの均等物によ
って定義される。
【００２２】
　例示的なニューラルシステム　
　[0045]図１は、本開示のいくつかの態様による、複数のレベルのニューロンをもつ例示
的なニューラルシステム１００を示す。ニューラルシステム１００は、シナプス結合のネ
ットワーク１０４（すなわち、フィードフォワード結合）を介してニューロンの別のレベ
ル１０６に結合されたニューロンのあるレベル１０２を備え得る。簡単のために、図１に
は２つのレベルのニューロンのみが示されているが、典型的なニューラルシステムには、
より少ないまたはより多くのレベルのニューロンが存在し得る。ニューロンのいくつかは
、ラテラル結合を介して同じレイヤの他のニューロンに結合し得ることに留意されたい。
さらに、ニューロンのいくつかは、フィードバック結合を介して前のレイヤのニューロン
に戻る形で結合し得る。
【００２３】
　[0046]図１に示すように、レベル１０２における各ニューロンは、前のレベル（図１に
図示せず）の複数のニューロンによって生成され得る入力信号１０８を受信し得る。信号
１０８は、レベル１０２のニューロンへの入力（たとえば、入力電流）を表し得る。その
ような入力は、膜電位を充電するためにニューロン膜上に蓄積され得る。膜電位がそれの
しきい値に達すると、ニューロンは、発火し、ニューロンの次のレベル（たとえば、レベ
ル１０６）に転送されるべき出力スパイクを生成し得る。そのような挙動は、アナログお
よびデジタル実装形態を含むハードウェアおよび／またはソフトウェアでエミュレートま
たはシミュレートされ得る。
【００２４】
　[0047]生物学的ニューロンでは、ニューロンが発火するときに生成される出力スパイク
は、活動電位と呼ばれる。電気信号は、約１００ｍＶの振幅と約１ｍｓの持続時間とを有
する比較的急速で、一時的で、全か無かの神経インパルスである。一連の結合されたニュ
ーロンを有するニューラルシステムの特定の態様（たとえば、図１におけるあるレベルの
ニューロンから別のレベルのニューロンへのスパイクの転送）では、あらゆる活動電位が
基本的に同じ振幅と持続時間とを有するので、信号における情報は、振幅によってではな
く、スパイクの周波数および数（またはスパイクの時間）によってのみ表される。活動電
位によって搬送される情報は、スパイク、スパイクしたニューロン、および１つまたは複
数の他のスパイクに対するスパイクの時間によって決定される。
【００２５】
　[0048]図１に示すように、あるレベルのニューロンから別のレベルのニューロンへのス
パイクの転送は、シナプス結合（または単に「シナプス」）のネットワーク１０４によっ
て達成され得る。シナプス１０４は、レベル１０２のニューロン（シナプス１０４に対す
るシナプス前ニューロン）から出力信号（すなわち、スパイク）を受信し得る。いくつか
の態様では、これらの信号は、調整可能なシナプス重み　
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【数１】

【００２６】
（ここでＰは、レベル１０２のニューロンとレベル１０６のニューロンとの間のシナプス
結合の総数である）に従ってスケーリングされ得る。他の態様では、シナプス１０４は、
いかなるシナプス重みをも適用しないことがある。さらに、（スケーリングされた）信号
は、レベル１０６における各ニューロン（シナプス１０４に対するシナプス後ニューロン
）の入力信号として合成され得る。レベル１０６におけるあらゆるニューロンは、対応す
る合成された入力信号に基づいて、出力スパイク１１０を生成し得る。出力スパイク１１
０は、次いで、シナプス結合の別のネットワーク（図１には図示せず）を使用して、別の
レベルのニューロンに転送され得る。
【００２７】
　[0049]生物学的シナプスは、電気シナプスまたは化学シナプスのいずれに分類され得る
。電気シナプスは、興奮性信号を送るために主に使用される一方、化学シナプスは、シナ
プス後ニューロンにおける興奮性活動または抑制性（過分極化）活動のいずれかを調停す
ることができ、ニューロン信号を増幅する役目を果たすこともできる。興奮性信号は通常
、膜電位を脱分極する（すなわち、静止電位に対して膜電位を増加させる）。しきい値を
超えて膜電位を脱分極するために十分な興奮性信号が一定期間内に受信された場合、シナ
プス後ニューロンに活動電位が生じる。対照的に、抑制性信号は一般に、膜電位を過分極
する（すなわち、低下させる）。抑制性信号は、十分に強い場合、興奮性信号のすべてを
相殺し、膜電位がしきい値に達するのを防止することができる。シナプス興奮を相殺する
ことに加えて、シナプス抑制は、自然に活発なニューロンに対して強力な制御を行うこと
ができる。自然に活発なニューロンは、たとえば、それのダイナミクスまたはフィードバ
ックに起因するさらなる入力なしにスパイクするニューロンを指す。これらのニューロン
における活動電位の自然な生成を抑圧することによって、シナプス抑制は、一般にスカル
プチャリングと呼ばれる、ニューロンの発火のパターンを形成することができる。様々な
シナプス１０４は、望まれる挙動に応じて、興奮性シナプスまたは抑制性シナプスの任意
の組合せとして働き得る。
【００２８】
　[0050]ニューラルシステム１００は、汎用プロセッサ、デジタル信号プロセッサ（ＤＳ
Ｐ）、特定用途向け集積回路（ＡＳＩＣ）、フィールドプログラマブルゲートアレイ（Ｆ
ＰＧＡ）もしくは他のプログラマブル論理デバイス（ＰＬＤ）、個別ゲートもしくはトラ
ンジスタ論理、個別ハードウェア構成要素、プロセッサによって実行されるソフトウェア
モジュール、またはそれらの任意の組合せによってエミュレートされ得る。ニューラルシ
ステム１００は、たとえば画像およびパターン認識、機械学習、モータ制御など、かなり
の適用範囲において利用され得る。ニューラルシステム１００における各ニューロン（ま
たはニューロンモデル）は、ニューロン回路として実装され得る。出力スパイクを開始す
るしきい値まで充電されるニューロン膜は、たとえば、そこを通って流れる電流を積分す
るキャパシタとして実装され得る。
【００２９】
　[0051]一態様では、キャパシタは、ニューロン回路の電流積分デバイスとして除去され
得、その代わりにより小さいメムリスタ（memristor）要素が使用され得る。この手法は
、ニューロン回路において、ならびにかさばるキャパシタが電流積分器として利用される
様々な他の適用例において適用され得る。さらに、シナプス１０４の各々は、メモリスタ
要素に基づいて実装され得、シナプス重みの変化は、メモリスタ抵抗の変化に関係し得る
。ナノメートルの特徴サイズのメモリスタを用いると、ニューロン回路およびシナプスの
面積が大幅に低減され得、それによって、非常に大規模なニューラルシステムハードウェ
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ア実装形態の実装が実用的になり得る。
【００３０】
　[0052]ニューラルシステム１００をエミュレートするニューラルプロセッサの機能は、
ニューロン間の結合の強さを制御し得る、シナプス結合の重みに依存し得る。シナプス重
みは、パワーダウン後にプロセッサの機能を維持するために、不揮発性メモリに記憶され
得る。一態様では、シナプス重みメモリは、主たるニューラルプロセッサチップとは別個
の外部チップ上に実装され得る。シナプス重みメモリは、交換可能メモリカードとしてニ
ューラルプロセッサチップとは別個にパッケージ化され得る。これは、ニューラルプロセ
ッサに多様な機能を提供することができ、特定の機能は、ニューラルプロセッサに現在取
り付けられているメモリカードに記憶されたシナプス重みに基づき得る。
【００３１】
　[0053]図２は、本開示のいくつかの態様による、計算ネットワーク（たとえば、ニュー
ラルシステムまたはニューラルネットワーク）の処理ユニット（たとえば、人工ニューロ
ン２０２）の一例２００を示す。たとえば、ニューロン２０２は、図１のレベル１０２の
ニューロンおよび１０６のニューロンのうちのいずれかに対応し得る。ニューロン２０２
は、ニューラルシステムの外部にある信号、または同じニューラルシステムの他のニュー
ロンによって生成された信号、またはその両方であり得る、複数の入力信号２０４1～２
０４N（ｘ1～ｘN）を受信し得る。入力信号は、電流または電圧、実数値または複素数値
であり得る。入力信号は、固定小数点表現または浮動小数点表現をもつ数値を備え得る。
これらの入力信号は、調整可能なシナプス重み２０６1～２０６N（ｗ1～ｗN）に従って信
号をスケーリングするシナプス結合を通してニューロン２０２に伝えられ得、Ｎはニュー
ロン２０２の入力接続の総数であり得る。
【００３２】
　[0054]ニューロン２０２は、スケーリングされた入力信号を合成し、合成された、スケ
ーリングされた入力を使用して、出力信号２０８（すなわち、信号ｙ）を生成し得る。出
力信号２０８は、電流または電圧、実数値または複素数値であり得る。出力信号は、固定
小数点表現または浮動小数点表現をもつ数値を備え得る。出力信号２０８は、次いで、同
じニューラルシステムの他のニューロンへの入力信号として、または同じニューロン２０
２への入力信号として、またはニューラルシステムの出力として伝達され得る。
【００３３】
　[0055]処理ユニット（ニューロン）２０２は電気回路によってエミュレートされ得、そ
れの入力接続および出力接続は、シナプス回路をもつワイヤによってエミュレートされ得
る。処理ユニット２０２、それの入力接続および出力接続はまた、ソフトウェアコードに
よってエミュレートされ得る。処理ユニット２０２はまた、電気回路によってエミュレー
トされ得るが、それの入力接続および出力接続はソフトウェアコードによってエミュレー
トされ得る。一態様では、計算ネットワーク中の処理ユニット２０２はアナログ電気回路
を備え得る。別の態様では、処理ユニット２０２はデジタル電気回路を備え得る。さらに
別の態様では、処理ユニット２０２は、アナログ構成要素とデジタル構成要素の両方をも
つ混合信号電気回路を備え得る。計算ネットワークは、上述の形態のいずれかにおける処
理ユニットを備え得る。そのような処理ユニットを使用した計算ネットワーク（ニューラ
ルシステムまたはニューラルネットワーク）は、たとえば画像およびパターン認識、機械
学習、モータ制御など、かなりの適用範囲において利用され得る。
【００３４】
　[0056]ニューラルネットワークをトレーニングする過程で、シナプス重み（たとえば、
図１の重み
【数２】
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【００３５】
および／または図２の重み２０６1～２０６N）がランダム値により初期化され得、学習ル
ールに従って増加または減少し得る。学習ルールのいくつかの例として、スパイクタイミ
ング依存可塑性（ＳＴＤＰ）学習ルール、Ｈｅｂｂ則、Ｏｊａ則、Ｂｉｅｎｅｎｓｔｏｃ
ｋ－Ｃｏｐｐｅｒ－Ｍｕｎｒｏ（ＢＣＭ）則などがある。非常に多くの場合、重みは、２
つの値のうちの１つに安定し得る（すなわち、重みの双峰分布）。この効果が利用されて
、シナプス重み当たりのビット数を低減し、シナプス重みを記憶するメモリとの間の読取
りおよび書込みの速度を上げ、シナプスメモリの電力消費量を低減し得る。
【００３６】
　　シナプスタイプ　
　[0057]ニューラルネットワークのハードウェアおよびソフトウェアモデルでは、シナプ
ス関係機能の処理がシナプスタイプに基づき得る。シナプスタイプは、非塑性シナプス（
non-plastic synapse）（重みおよび遅延の変化がない）と、可塑性シナプス（重みが変
化し得る）と、構造遅延可塑性シナプス（重みおよび遅延が変化し得る）と、完全可塑性
シナプス（重み、遅延および結合性が変化し得る）と、それの変形（たとえば、遅延は変
化し得るが、重みまたは結合性の変化はない）とを備え得る。これの利点は、処理が再分
割され得ることである。たとえば、非塑性シナプスは、可塑性機能を実行すること（また
はそのような機能が完了するのを待つこと）を必要とし得ない。同様に、遅延および重み
可塑性は、一緒にまたは別々に、順にまたは並列に動作し得る動作に再分割され得る。異
なるタイプのシナプスは、適用される異なる可塑性タイプの各々の異なるルックアップテ
ーブルまたは式およびパラメータを有し得る。したがって、本方法は、シナプスのタイプ
の関係するテーブルにアクセスすることになる。
【００３７】
　[0058]また、スパイクタイミング依存構造可塑性がシナプス可塑性とは無関係に実行さ
れ得るという事実のさらなる含意がある。構造可塑性（すなわち、遅延量の変化）は前後
スパイク時間差（pre-post spike time difference）の直接関数であり得るので、構造可
塑性は、重みの大きさに変化がない場合（たとえば、重みが最小値または最大値に達した
か、あるいはそれが何らかの他の理由により変更されない場合）でも実行され得る。代替
的に、それは、重み変化量に応じて、または重みもしくは重み変化の限界に関係する条件
に基づいて設定され得る。たとえば、重み変化が生じたとき、または重みが最大限に達す
るのではなく、重みがゼロに達した場合のみ、シナプス遅延が変化し得る。しかしながら
、これらのプロセスが並列化され、メモリアクセスの数および重複を低減し得るように、
独立した機能を有することが有利であり得る。
【００３８】
　シナプス可塑性の決定　
　[0059]神経可塑性（または単に「可塑性」）は、脳内のニューロンおよびニューラルネ
ットワークがそれらのシナプス結合と挙動とを新しい情報、感覚上の刺激、発展、損傷ま
たは機能不全に応答して変える能力である。可塑性は、生物学における学習および記憶に
とって、また計算論的神経科学およびニューラルネットワークにとって重要である。（た
とえば、Ｈｅｂｂ則理論による）シナプス可塑性、スパイクタイミング依存可塑性（ＳＴ
ＤＰ）、非シナプス可塑性、活性依存可塑性、構造可塑性および恒常的可塑性など、様々
な形の可塑性が研究されている。
【００３９】
　[0060]ＳＴＤＰは、脳内の場合のようなニューロン間のシナプス結合の強さを調整する
学習プロセスである。結合強度は、特定のニューロンの出力スパイクおよび受信入力スパ
イク（すなわち、活動電位）の相対的タイミングに基づいて調整される。ＳＴＤＰプロセ
スの下で、あるニューロンに対する入力スパイクが、平均して、そのニューロンの出力ス
パイクの直前に生じる傾向がある場合、長期増強（ＬＴＰ）が生じ得る。その場合、その
特定の入力はいくらか強くなる。対照的に、入力スパイクが、平均して、出力スパイクの
直後に生じる傾向がある場合、長期抑圧（ＬＴＤ）が生じ得る。その場合、その特定の入
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力はいくらか弱くなるので、「スパイクタイミング依存可塑性」と呼ばれる。したがって
、シナプス後ニューロンの興奮の原因であり得る入力は、将来的に寄与する可能性がさら
に高くなる一方、シナプス後スパイクの原因ではない入力は、将来的に寄与する可能性が
低くなる。結合の初期セットのサブセットが残る一方で、その他の部分の影響がゼロまた
はゼロの近くまで低減されるまで、このプロセスは続く。
【００４０】
　[0061]ニューロンは一般に出力スパイクを、それの入力の多くが短い期間内に生じる（
すなわち、出力をもたらすのに十分に累積している）ときに生成するので、通常残ってい
る入力のサブセットは、時間的に相関する傾向のあった入力を含む。さらに、出力スパイ
クの前に生じる入力は強化されるので、最も早い十分に累積的な相関指示を提供する入力
は結局、ニューロンへの最終入力となる。
【００４１】
　[0062]ＳＴＤＰ学習ルールは、シナプス前ニューロンのスパイク時間ｔpreとシナプス
後ニューロンのスパイク時間ｔpostとの間の時間差（すなわち、ｔ＝ｔpost－ｔpre）に
応じて、シナプス前ニューロンをシナプス後ニューロンに結合するシナプスのシナプス重
みを効果的に適合させ得る。ＳＴＤＰの通常の公式化は、時間差が正である（シナプス前
ニューロンがシナプス後ニューロンの前に発火する）場合にシナプス重みを増加させ（す
なわち、シナプスを増強し）、時間差が負である（シナプス後ニューロンがシナプス前ニ
ューロンの前に発火する）場合にシナプス重みを減少させる（すなわち、シナプスを抑制
する）ことである。
【００４２】
　[0063]ＳＴＤＰプロセスでは、経時的なシナプス重みの変化は通常、以下の式によって
与えられるように、指数関数的減衰を使用して達成され得る。
【数３】

【００４３】
ここで、ｋ+およびｋ-はそれぞれ、正の時間差および負の時間差の時間定数であり、ａ+

およびａ-は対応するスケーリングの大きさであり、μは正の時間差および／または負の
時間差に適用され得るオフセットである。
【００４４】
　[0064]図３は、ＳＴＤＰによる、シナプス前スパイクおよびシナプス後スパイクの相対
的タイミングに応じたシナプス重み変化の例示的なグラフ図３００を示す。シナプス前ニ
ューロンがシナプス後ニューロンの前に発火する場合、グラフ３００の部分３０２に示す
ように、対応するシナプス重みは増加し得る。この重み増加は、シナプスのＬＴＰと呼ば
れ得る。グラフ部分３０２から、シナプス前スパイク時間とシナプス後スパイク時間との
間の時間差に応じて、ＬＴＰの量がほぼ指数関数的に減少し得ることが観測され得る。グ
ラフ３００の部分３０４に示すように、発火の逆の順序は、シナプス重みを減少させ、シ
ナプスのＬＴＤをもたらし得る。
【００４５】
　[0065]図３のグラフ３００に示すように、ＳＴＤＰグラフのＬＴＰ（原因）部分３０２
に負のオフセットμが適用され得る。ｘ軸の交差３０６のポイント（ｙ＝０）は、レイヤ
ｉ－１からの原因入力の相関を考慮して、最大タイムラグと一致するように構成され得る
。フレームベースの入力（すなわち、入力は、スパイクまたはパルスを備える特定の持続
時間のフレームの形式である）の場合、オフセット値μは、フレーム境界を反映するよう
に計算され得る。直接的にシナプス後電位によってモデル化されるように、またはニュー
ラル状態に対する影響の点で、フレームにおける第１の入力スパイク（パルス）が経時的
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に減衰することが考慮され得る。フレームにおける第２の入力スパイク（パルス）が特定
の時間フレームの相関したまたは関連したものと考えられる場合、フレームの前および後
の関連する時間は、その時間フレーム境界で分離され、関連する時間の値が異なり得る（
たとえば、１つのフレームよりも大きい場合は負、１つのフレームよりも小さい場合は正
）ように、ＳＴＤＰ曲線の１つまたは複数の部分をオフセットすることによって、可塑性
の点で別様に扱われ得る。たとえば、曲線が、フレーム時間よりも大きい前後の時間で実
際にゼロよりも下になり、結果的にＬＴＰの代わりにＬＴＤの一部であるようにＬＴＰを
オフセットするために負のオフセットμが設定され得る。
【００４６】
　ニューロンモデルおよび演算　
　[0066]有用なスパイキングニューロンモデルを設計するための一般的原理がいくつかあ
る。良いニューロンモデルは、２つの計算レジーム、すなわち、一致検出および関数計算
の点で豊かな潜在的挙動を有し得る。その上、良いニューロンモデルは、時間コーディン
グを可能にするための２つの要素を有する必要がある。すなわち、入力の到着時間は出力
時間に影響を与え、一致検出は狭い時間ウィンドウを有し得る。最後に、計算上魅力的で
あるために、良いニューロンモデルは、連続時間にクローズド式解を有することができ、
ニアアトラクター（near attractor）と鞍点とを含む安定した挙動を有し得る。言い換え
れば、有用なニューロンモデルは、実用的なニューロンモデルであり、豊かで、現実的で
、生物学的に一貫した挙動をモデル化するために使用され得、かつ神経回路のエンジニア
リングとリバースエンジニアリングの両方を行うために使用され得るニューロンモデルで
ある。
【００４７】
　[0067]ニューロンモデルは事象、たとえば入力の到着、出力スパイク、または内部的で
あるか外部的であるかを問わず他の事象に依存し得る。豊かな挙動レパートリーを実現す
るために、複雑な挙動を示すことができるステートマシンが望まれ得る。入力寄与（ある
場合）とは別個の事象の発生自体がステートマシンに影響を与え、事象の後のダイナミク
スを制限し得る場合、システムの将来の状態は、単なる状態および入力の関数ではなく、
むしろ状態、事象および入力の関数である。
【００４８】
　[0068]一態様では、ニューロンｎは、下記のダイナミクスによって判定される膜電圧ｖ

n（ｔ）によるスパイキングリーキー積分発火ニューロンとしてモデル化され得る。
【数４】

【００４９】
ここでαおよびβはパラメータであり、ｗm,nは、シナプス前ニューロンｍをシナプス後
ニューロンｎに結合するシナプスのシナプス重みであり、ｙm（ｔ）は、ニューロンｎの
細胞体に到着するまでΔｔm,nに従って樹状遅延または軸索遅延によって遅延し得るニュ
ーロンｍのスパイキング出力である。
【００５０】
　[0069]シナプス後ニューロンへの十分な入力が達成された時間からシナプス後ニューロ
ンが実際に発火する時間までの遅延があることに留意されたい。Ｉｚｈｉｋｅｖｉｃｈの
単純モデルなど、動的スパイキングニューロンモデルでは、脱分極しきい値ｖtとピーク
スパイク電圧ｖpeakとの間に差がある場合、時間遅延が生じ得る。たとえば、単純モデル
では、電圧および復元のための１対の微分方程式、すなわち、
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【数５】

【００５１】
によってニューロン細胞体ダイナミクス（neuron soma dynamics）が判定され得る。ここ
でｖは膜電位であり、ｕは、膜復元変数であり、ｋは、膜電位ｖの時間スケールを記述す
るパラメータであり、ａは、復元変数ｕの時間スケールを記述するパラメータであり、ｂ
は、膜電位ｖのしきい値下変動に対する復元変数ｕの感度を記述するパラメータであり、
ｖrは、膜静止電位であり、Ｉは、シナプス電流であり、Ｃは、膜のキャパシタンスであ
る。このモデルによれば、ニューロンはｖ＞ｖpeakのときにスパイクすると定義される。
【００５２】
　Ｈｕｎｚｉｎｇｅｒ　Ｃｏｌｄモデル　
　[0070]Ｈｕｎｚｉｎｇｅｒ　Ｃｏｌｄニューロンモデルは、豊かな様々な神経挙動を再
生し得る最小二重レジームスパイキング線形動的モデルである。モデルの１次元または２
次元の線形ダイナミクスは２つのレジームを有することができ、時間定数（および結合）
はレジームに依存し得る。しきい値下レジームでは、時間定数は、慣例により負であり、
一般に生物学的に一貫した線形方式で静止状態に細胞を戻す役目を果たすリーキーチャネ
ルダイナミクスを表す。しきい値上レジームにおける時間定数は、慣例により正であり、
一般にスパイク生成のレイテンシを生じさせる一方でスパイク状態に細胞を駆り立てる反
リーキーチャネルダイナミクスを反映する。
【００５３】
　[0071]図４に示すように、モデルのダイナミクスは２つの（またはそれよりも多くの）
レジームに分割され得る。これらのレジームは、負レジーム４０２（リーキー積分発火（
ＬＩＦ）ニューロンモデルと混同されないように互換的にＬＩＦレジームとも呼ばれる）
および正レジーム４０４（反リーキー積分発火（ＡＬＩＦ）ニューロンモデルと混同され
ないように互換的にＡＬＩＦレジームとも呼ばれる）と呼ばれ得る。負レジーム４０２で
は、状態は将来の事象の時点における静止（ｖ-）の傾向がある。この負レジームでは、
モデルは一般に、時間的入力検出特性と他のしきい値下挙動とを示す。正レジーム４０４
では、状態はスパイキング事象（ｖs）の傾向がある。この正レジームでは、モデルは、
後続の入力事象に応じてスパイクにレイテンシを生じさせるなどの計算特性を示す。事象
の点からのダイナミクスの公式化およびこれら２つのレジームへのダイナミクスの分離は
、モデルの基本的特性である。
【００５４】
　[0072]線形二重レジーム２次元ダイナミクス（状態ｖおよびｕの場合）は、慣例により
次のように定義され得る。
【数６】
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ここでｑρおよびｒは、結合のための線形変換変数である。
【００５６】
　[0073]シンボルρは、ダイナミクスレジームを示すためにここで使用され、特定のレジ
ームの関係を論述または表現するときに、それぞれ負レジームおよび正レジームについて
符号「－」または「＋」にシンボルρを置き換える慣例がある。
【００５７】
　[0074]モデル状態は、膜電位（電圧）ｖおよび復元電流ｕによって定義される。基本形
態では、レジームは基本的にモデル状態によって決定される。正確で一般的な定義の微妙
だが重要な側面があるが、差し当たり、モデルが、電圧ｖがしきい値（ｖ+）を上回る場
合に正レジーム４０４にあり、そうでない場合に負レジーム４０２にあると考える。
【００５８】
　[0075]レジーム依存時間定数は、負レジーム時間定数であるτ-と正レジーム時間定数
であるτ+とを含む。復元電流時間定数τuは通常、レジームから独立している。便宜上、
τuと同様に、指数およびτ+が一般に正となる正レジームの場合に、電圧発展（voltage 
evolution）に関する同じ表現が使用され得るように、減衰を反映するために負の量とし
て負レジーム時間定数τ-が一般に指定される。
【００５９】
　[0076]２つの状態要素のダイナミクスは、事象において、ヌルクラインから状態をオフ
セットする変換によって結合され得、ここで変換変数は、
【数７】

【００６０】
であり、δ、ε、βおよびｖ-、ｖ+はパラメータである。ｖρのための２つの値は、２つ
のレジームのための参照電圧のベースである。パラメータｖ-は、負レジームのためのベ
ース電圧であり、膜電位は一般に、負レジームにおいてｖ-に減衰することになる。パラ
メータｖ+は、正レジームのためのベース電圧であり、膜電位は一般に、正レジームにお
いてｖ+から離れる傾向となる。
【００６１】
　[0077]ｖおよびｕのためのヌルクラインは、それぞれ変換変数ｑρおよびｒの負によっ
て与えられる。パラメータδは，ｕヌルクラインの傾きを制御するスケール係数である。
パラメータεは通常、－ｖ-に等しく設定される。パラメータβは、両方のレジームにお
いてｖヌルクラインの傾きを制御する抵抗値である。τρ時間定数パラメータは、指数関
数的減衰だけでなく、各レジームにおいて別個にヌルクラインの傾きを制御する。
【００６２】
　[0078]モデルは、電圧ｖが値ｖsに達したときにスパイクするように定義される。続い
て、状態は通常、（技術的に、スパイク事象と同じ１つのものであり得る）リセット事象
でリセットされる。
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【数８】

【００６３】
ここで、
【数９】

【００６４】
およびΔｕはパラメータである。リセット電圧
【数１０】

【００６５】
は通常、ｖ-にセットされる。
【００６６】
　[0079]瞬時結合の原理によって、状態について（また、単一の指数項による）だけでは
なく、特定の状態に到達するために必要とされる時間についても、クローズド式解が可能
である。クローズ形式状態解は、次のとおりである。

【数１１】

【００６７】
　[0080]したがって、モデル状態は、入力（シナプス前スパイク）または出力（シナプス
後スパイク）などの事象に伴ってのみ更新され得る。また、演算が（入力があるか、出力
があるかを問わず）任意の特定の時間に実行され得る。
【００６８】
　[0081]その上、瞬時結合原理によって、反復的技法または数値解法（たとえば、オイラ
ー数値解法）なしに、特定の状態に到達する時間が事前に決定され得るように、シナプス
後スパイクの時間が予想され得る。前の電圧状態ｖ0を踏まえ、電圧状態ｖfに到達するま
での時間遅延は、次の式によって与えられる。
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【数１２】

【００６９】
　[0082]スパイクが、電圧状態ｖがｖsに到達する時間に生じると定義される場合、電圧
が所与の状態ｖにある時間から測定されたスパイクが生じるまでの時間量、または相対的
遅延に関するクローズド式解は、次のとおりである。

【数１３】

【００７０】
ここで、
【数１４】

【００７１】
は通常、パラメータｖ+にセットされるが、他の変形も可能であり得る。
【００７２】
　[0083]モデルダイナミクスの上記の定義は、モデルが正レジームにあるか、それとも負
レジームにあるかに依存する。上述のように、結合およびレジームρは、事象に伴って計
算され得る。状態の伝搬のために、レジームおよび結合（変換）変数は、最後の（前の）
事象の時間における状態に基づいて定義され得る。続いてスパイク出力時間を予想するた
めに、レジームおよび結合変数は、次の（最新の）事象の時間における状態に基づいて定
義され得る。
【００７３】
　[0084]Ｃｏｌｄモデルの、適時にシミュレーション、エミュレーションまたはモデルを
実行するいくつかの可能な実装形態がある。これは、たとえば、事象更新モード、ステッ
プ事象更新モード、およびステップ更新モードを含む。事象更新は、（特定の瞬間におけ
る）事象または「事象更新」に基づいて状態が更新される更新である。ステップ更新は、
間隔（たとえば、１ｍｓ）をおいてモデルが更新される更新である。これは必ずしも、反
復的技法または数値解法を必要とするとは限らない。また、事象がステップもしくはステ
ップ間で生じる場合または「ステップ事象」更新によってモデルを更新するのみによって
、ステップベースのシミュレータにおいて限られた時間分解能で事象ベースの実装形態が
可能である。
【００７４】
　ニューラルコーディング　
　[0085]図１の人工ニューロン１０２、１０６から構成されるニューラルネットワークモ
デルなどの有用なニューラルネットワークモデルは、一致コーディング、時間コーディン
グまたはレートコーディングなど、様々な好適なニューラルコーディング方式のうちのい
ずれかを介して情報を符号化することができる。一致コーディングでは、情報は、ニュー
ロン集団の活動電位（スパイキング活動）の一致（または時間的近接度）で符号化される
。時間コーディングでは、ニューロンは、絶対時間であるか相対時間であるかを問わず、
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活動電位（すなわち、スパイク）の正確なタイミングを通して情報を符号化する。したが
って、情報は、ニューロン集団の間でスパイクの相対的タイミングで符号化され得る。対
照的に、レートコーディングは、発火レートまたは集団発火レートでニューラル情報をコ
ーディングすることを伴う。
【００７５】
　[0086]ニューロンモデルは、時間コーディングを実行し得る場合、（レートは単に、タ
イミングまたはスパイク間の間隔の関数であるので）レートコーディングも実行し得る。
時間コーディングを行うために、良いニューロンモデルは２つの要素を有する必要がある
。すなわち、（１）入力の到着時間は出力時間に影響を与え、（２）一致検出は狭い時間
ウィンドウを有し得る。時間パターンの要素を適切に遅延させることによって、要素はタ
イミング一致に組み込まれ得るので、結合遅延は、一致検出を時間パターン復号に拡大す
るための１つの手段を提供する。
【００７６】
　到着時間　
　[0087]良いニューロンモデルでは、入力の到着の時間は、出力の時間に影響を与えるは
ずである。シナプス入力は、ディラックのデルタ関数であるか、成形シナプス後電位（Ｐ
ＳＰ：shaped post-synaptic potential）であるかを問わず、興奮性（ＥＰＳＰ）である
か、抑制性（ＩＰＳＰ）であるかを問わず、到着時間（たとえば、デルタ関数またはステ
ップもしくは他の入力関数の開始もしくはピークの時間）を有し、これは入力時間と呼ば
れ得る。ニューロン出力（すなわち、スパイク）は、（細胞体、軸索に沿ったポイント、
または軸索の端部など、どこで測定される場合でも）発生の時間を有し、これは出力時間
と呼ばれ得る。出力時間は、スパイクのピークの時間、スパイクの開始の時間、または出
力波形に関係する任意の他の時間であり得る。支配的原理は、出力時間が入力時間に依存
することである。
【００７７】
　[0088]一見したところ、すべてのニューロンモデルがこの原理に従うと思われるかもし
れないが、これは一般には当てはまらない。たとえば、レートベースのモデルは、この特
徴を有しない。多くのスパイキングモデルも、一般には適合しない。リーキー積分発火（
ＬＩＦ）モデルは、（しきい値を越えて）追加の入力がある場合にさらに速く発火するこ
とはない。その上、非常に高いタイミング分解能でモデル化された場合に適合する可能性
があるモデルは多くの場合、タイミング分解能がたとえば１ｍｓのステップに限定されて
いるときに適合しない。
【００７８】
　入力　
　[0089]ニューロンモデルへの入力はディラックのデルタ関数、たとえば電流としての入
力または伝導性ベースの入力を含み得る。後者の場合、ニューロン状態への寄与は連続的
または状況依存的であり得る。
【００７９】
　例示的な区分的線形ニューロンモデル化　
　[0090]ニューロンのダイナミクスのための数学的モデルは、数十年にわたって模索され
、研究されている。様々なニューロンモデルが提案されており、複雑性およびモデルと生
物学的な対応物との合致の精度は異なる。基本的に、すべてのニューロンモデルは、実に
様々なイオンチャネルの相互作用に起因する細胞膜電圧の非線形挙動を捕捉することを試
み、共通の開始点、すなわち、１９５０年代のＨｏｄｇｋｉｎ－Ｈｕｘｌｅｙの画期的な
成果によって提供された数学的記述を有する。
【００８０】
　[0091]長年にわたって、神経科学者は、主に、２次元ニューロンモデルに収斂しており
、これは、神経科学者がモデル化を求める生物学的細胞の測定済み挙動を再現する能力と
２次元ニューロンモデルが分析されシミュレートされる場合の容易さおよび速度との間の
良好なトレードオフを提供するとみられる。最も一般的な２次元モデルは、１対の微分方
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【００８１】
　[0092]しかしながら、従来型のニューロンモデル実装形態は柔軟性に欠ける。通常、人
工ニューロンに関するニューロンモデルの実装形態は、たとえば、特定のニューロンモデ
ルを事前に選択することに基づく。この手法の難点は、まったく異なるニューロンモデル
や、若干変更されたニューロンモデルでさえ実装するのが難しいことである。
【００８２】
　[0093]本開示のいくつかの態様は、上述したように細胞膜電圧の非線形挙動を捕捉する
ことを試みる非線形関数Ｆ（ｖ）を別にすれば、様々な動的ニューロンモデルのための微
分方程式が等しいと考えられ得る事実を利用する。この実現により、１つの手法は、区分
的線形近似をもたらすためにニューロンのダイナミクスをモデル化するために使用される
微分方程式において非線形関数を有限量子化間隔で線形化することを含む。そのような手
法の利点は、比較的容易に、任意のニューロンモデルが分析されシミュレートされ得る場
合の一般的な数学的枠組みにより、連続時間または離散時間のいずれかにおけるダイナミ
クスに対する解を導出する能力を含む。これらの解は、本開示のいくつかの態様のための
異なるニューロンモデルの実装形態がパラメータの単純な置換を伴い得るように、所与の
ニューロンモデルに各量子化間隔に対応するパラメータを提供する。
【００８３】
　[0094]本開示のいくつかの態様は、この区分的線形化手法を、シナプス電流を含む関数
に適用する。このより一般化された手法は、とりわけ変数の中でも、時間変動シナプス伝
導性の関数であるシステム行列につながる。本開示はまず、得られる区分的線形時間変動
システムに対するいくつかの近似解を調べる。次に、本開示は、所与の時間間隔における
定数によって時間変動伝導性を近似することによって前の時間変動システムから取得され
た区分的線形時間不変（ＬＴＩ）システムを調べる。このより正確な手法は、シナプス電
流を含む関数を有しており、量子化プロセスによってカバーされる大きい動的レンジを有
するシステム行列に、したがって、様々な事前計算された行列を記憶する比較的大きいメ
モリ需要につながる。この手法の利点は、元の非線形時間変動システムの真のダイナミク
スのより正確な近似である。動的レンジの一部分で関連行列を記憶するのではなく計算す
ることによってメモリ需要を緩和する手法についても提示する。
【００８４】
　[0095]本開示のいくつかの態様は、任意の１次元、２次元またはより高い次元のニュー
ロンモデルをサポートする共通のアーキテクチャを実現する手段を提供する。このフレキ
シブルなアーキテクチャにより、様々な好適なニューロンモデルのいずれかが必要に応じ
て実行され、置換され得る。たとえば、ニューロンモデルは、Ｉｚｈｉｋｅｖｉｃｈの単
純モデル、指数関数積分発火（ＥＩＦ）モデル、ＦｉｔｚＨｕｇｈ－Ｎａｇｕｍｏモデル
、クォートモデル、または上述した、参照により本明細書に組み込まれる「Ｄｙｎａｍｉ
ｃａｌ　Ｅｖｅｎｔ　Ｎｅｕｒｏｎ　ａｎｄ　Ｓｙｎａｐｓｅ　Ｍｏｄｅｌｓ　ｆｏｒ　
Ｌｅａｒｎｉｎｇ　Ｓｐｉｋｉｎｇ　Ｎｅｕｒａｌ　Ｎｅｔｗｏｒｋｓ」と題する、２０
１２年５月３０日に出願された米国特許出願第１３／４８３，８１１号［代理人整理番号
１２２０２４］におけるＨｕｎｚｉｎｇｅｒ　Ｃｏｌｄモデルのうちの少なくとも１つを
含み得る。そのようなニューロンモデルは、本明細書で説明する区分的線形近似を使用し
て実装され得る。
【００８５】
　序論　
　[0096]微分方程式モデル化ニューロンダイナミクスの説明で始める。説明は２次元ニュ
ーロンモデルに焦点を当てるが、手法はより高い次元のモデルに拡張されてよく、１次元
モデルに適用されてもよい。
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【数１５】

【００８６】
　[0097]上記の式は、人工ニューロンのダイナミクスを定性的に記述している（表記上単
純にするために、変数の時間依存性は省略されている）。これらの式は、Ｈｏｄｇｋｉｎ
－Ｈｕｘｌｅｙの４次元モデルを、変数ｖおよびｕによって表される２次元に単純化した
結果である。変数ｖは、ニューロン膜電圧およびナトリウム活性化の挙動を捕捉する一方
、ｕは、カリウム活性化およびナトリウム不活性化のより緩慢な挙動を捕捉しようと試み
る「適応」または「復元」変数を表し、その結果、Ｈｏｄｇｋｉｎ－Ｈｕｘｌｅｙモデル
の４つの変数を２つに減らしている。式（１５）における変数Ｉは、入力電流を表す。よ
り一般的な２次元モデルは、
【数１６】

【００８７】
の形態であってよく、ここで、両方の微分方程式は非線形項を含み得る。ここで、式（１
５）および（１６）によって記述されるモデルなどのモデルに焦点が当てられるが、全体
を通して展開される同じ方法が上記の記述にも適用され得る。
【００８８】
　[0098]基本的に、文献で示唆されている最も普及しているニューロンモデルは、式（１
５）における関数Ｆ（ｖ）の選択によって異なる。いくつかの例は、（単純モデルとも呼
ばれる）Ｉｚｈｉｋｅｖｉｃｈによって示唆される２次関数を含む：
【数１７】

【００８９】
ＢｒｅｔｔｅおよびＧｅｒｓｔｎｅｒによる、線形プラス指数関数：
【数１８】

【００９０】
ＦｉｔｚＨｕｇｈ－Ｎａｇｕｍｏモデルを表す線形プラス３次関数：



(26) JP 5976948 B2 2016.8.24

10

20

30

40

50

【数１９】

【００９１】
ＴｏｕｂｏｕｌおよびＧｅｒｓｔｎｅｒによる、クォートモデルと呼ばれる線形プラスク
ォート項

【数２０】

【００９２】
そして最後に、以下のように定義される、「真性伝導性」モデルと呼ばれ得るもの

【数２１】

【００９３】
ここでＧ（ｖ）は、（伝導性の単位による）区分的定数関数であり、ｐ（ｖ）も、（電流
の単位による）区分的定数関数である。真性伝導性モデルの最も単純な形態は、上述した
Ｈｕｎｚｉｎｇｅｒ　Ｃｏｌｄモデルの場合のように、ただ２つの間隔でＧ（ｖ）および
ｐ（ｖ）が区分的定数であるときに取得され、Ｆ（ｖ）が以下の形態となる：

【数２２】

【００９４】
　[0099]ＦｉｔｚＨｕｇｈ－Ｎａｇｕｍｏモデルを除き、上記のモデルはすべて、２次元
ハイブリッドモデルと呼ばれ、その理由は、式（１５）および（１６）によって与えられ
る記述に加えて、リセット条件が与えられることである。たとえば、これらはそのような
モデルで提供され、その理由は、電圧しきい値を越えると、変数ｖが無限に拡大すること
である。したがって、以下のリセット条件が使用され得る。

【数２３】

【００９５】
　[0100]言い換えれば、電圧ｖがスパイキングしきい値ｖpeakを越える（または、いくつ
かの態様では、電圧がｖpeakを越えることになるとの決定が下される）とき、電圧は静止
値ｖrにリセットされ、復元変数ｕは、現在値プラス定数ｄに等しい値にリセットされる
。いくつかの態様では，ｕは、ｕ＋ｄの代わりに、所定の定数値（ｕreset）にリセット
され得る。いくつかの態様によれば、リセット条件は、制御信号のアクティブ化または受
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ムの可能な挙動を豊かにする。
【００９６】
　[0101]最も一般的には、入力電流Ｉ（ｔ）は、シナプス電流ＩSYN（ｔ）と一般電流Ｉe

xt（ｔ）との組合せによってモデル化される。シナプス電流は以下の式となる。
【数２４】

【００９７】
　[0102]式（２４）では、ｇi（ｔ）は、特定のチャネル（ｉ番目のチャネル）に関する
時間依存型伝導性を示し、Ｅiは、そのチャネルに関する逆転電位を示している。上記の
形態のシナプス電流は、実質的に線形の電流電圧関係を説明するのに十分であるが、場合
によっては（たとえば、Ｎ－メチル－Ｄ－アスパラギン酸（ＮＭＤＡ）チャネル）、伝導
性はシナプス後膜電圧の関数でもある。この場合、式（２４）は、より複雑な形態、すな
わち、
【数２５】

【００９８】
となり、関数ｈ（ｖ）は、シナプス後電圧に対する依存性を捕捉する。関数ｈ（ｖ）は、
【数２６】

【００９９】
としてモデル化され、パラメータαおよびβは、たとえば以下の値となる。α＝０．０６
２およびβ＝１／３．５７。
【０１００】
　[0103]したがって、最も一般的には、最大Ｌ個の異なるシナプスチャネルが次のように
モデル化され得る。

【数２７】

【０１０１】
ここで、
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【０１０２】
　[0104]さらに、時間依存型伝導性ｇi（ｔ）は、単純な指数関数、アルファ関数によっ
て、または指数差関数（difference-of-exponentials function）によってモデル化され
得る。θ（ｔ）がヘビサイドの階段関数である、時間定数τによる単純な減衰指数の場合
、以下を有する。
【数２９】

【０１０３】
アルファ関数の場合、以下を有する。

【数３０】

【０１０４】
指数差関数の場合、異なる増大時間定数および減衰時間定数を指数が有しており、以下を
有する。

【数３１】

【０１０５】
　[0105]定数
【数３２】

【０１０６】
は、次のようにピークがｇiに等しくなるような正規化係数を含む。
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【数３３】

【０１０７】
　[0106]次のセクションでは、動的システムの解に対する近似が探究される。システムは
非線形であるので、正確な解を見つけることはできない。したがって、（例１の場合のよ
うに）「正確な」解に言及したり、「正確な」解と比較したりするとき、意図されている
のは、数値的に取得された解（たとえば、ルンゲ＝クッタ）であるが、精度は高い。
【０１０８】
　公式化および微分　
　[0107]微分に進む前に、いくつかの定義および表記の慣例を紹介する。以後、太字の大
文字は行列を示し、太字の小文字はベクトルを示す。２次元状態ベクトルｘは次のように
定義され得る。

【数３４】

【０１０９】
　[0108]第１の状態変数は膜電圧ｖであり、第２の状態変数は復元変数ｕである。式（１
５）および（１６）はここでは、最も一般的な場合に関して次のように明示的に書き直さ
れる。
【数３５】

【０１１０】
　[0109]したがって、最も一般的な場合には、図７の７０２に示すように、非線形時間変
動（ＮＬＴＶ）２次元動的システムを扱っている。以下では、そのようなシステムは、最
初に７０６において区分的線形時間変動（ｐＬＴＶ）システムによって近似され、その後
さらに次のうちのいずれかとして近似される。（１）７１０における時間間隔依存型であ
る定数係数による区分的線形時間不変システム（ｐＬＴＩ）または（２）７１４における
時間間隔独立型である定数係数によるｐＬＴＩ。
【０１１１】
　区分的線形時間変動システム　
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　[0110]まず、時間軸ｔ∈［０，∞］は、任意の重複しない時間間隔、すなわち次のよう
に分割される。
【数３６】

【０１１２】
　[0111]各時間間隔（たとえば、ｎ番目の間隔）内では、間隔の最初に（たとえば、時間
ｔ＝Ｔnに）人工ニューロンの状態からパラメータが取得される線形時間変動（ＬＴＶ）
システムによってニューロン挙動が近似される。そのような近似を作るために、まず
【数３７】

【０１１３】
を定義し、式（３５）および（３６）のシステムは次のようになる。
【数３８】

【０１１４】
　[0112]次に、関数Γ（ｖ，ｔ）は、間隔ｔ∈［Ｔn，Ｔn+1］で近似的なアフィン線形式
により近似される。近似の係数は、時間Ｔnにおける電圧の関数である。明確なときの表
記を簡単にするために、
【数３９】

【０１１５】
を示し、その結果、次のようになる。
【数４０】

【０１１６】
　[0113]そのような近似のいくつかの例は、テイラー展開方法、平均傾斜方法、１次線形
補間方法、およびＬp近似誤差を最小化する最適線形補間方法を含む。テイラー展開方法
の場合、次のとおりである。
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【数４１】

【０１１７】
　[0114]平均傾斜方法における所与の電圧ステップΔｖnでは、平均傾斜は次のように計
算される。

【数４２】

【０１１８】
　[0115]１次線形補間方法では、電圧軸は間隔ｖ∈［Ｖk，Ｖk+1］、ｋ＝０，１，２，．
．．に区分され、ここでＶk≦ｖ（Ｔn）≦Ｖk+1である。その場合、以下のとおりとなる
。

【数４３】

【０１１９】
　[0116]Ｌp近似誤差を最小化する最適線形補間方法では、電圧軸は、前述のように間隔
ｖ∈［Ｖk，Ｖk+1］、ｋ＝０，１，２，．．．に区分される。ただし、線形近似
【数４４】

【０１２０】
は、Ｌpノルムに基づく元の関数に対する線形近似誤差を最小化するように設計される。
間隔ｖ∈［Ｖk，Ｖk+1］での近似誤差は、次のように定義され得る。
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【数４５】

【０１２１】
　[0117]式（４１）に基づいて、式（３９）および（４０）によって記述されるＬＴＶシ
ステムは次のように表現され得る。
【数４６】

【０１２２】
　[0118]よりコンパクトには、行列方程式
【数４７】

【０１２３】
を有し、ここでａ12＝－１／Ｃ、ａ21＝ａｂ、ａ22＝－ａ、およびｂ2＝－ａｂｖrである
。
【０１２４】
　[0119]上記のＬＴＶシステムの解は、ｔ∈［Ｔn，Ｔn+1］の場合、次のように表され得
る。

【数４８】

【０１２５】
ここで、遷移行列Φ（ｔ，Ｔn）はＰｅａｎｏ－Ｂａｋｅｒ式、すなわち以下の式によっ
て与えられる。
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【数４９】

【０１２６】
　[0120]場合によっては、式（４７）において与えられる級数は単純になる。たとえば、
　
　（ｉ）　Ａ（ｖn，ｔ）は、一定であり、Ａnに等しい。その場合、Φ（ｔ，Ｔn）は、
よく知られている行列指数形式、すなわち以下のようになる。　

【数５０】

【０１２７】
ここで、行列Ａの行列指数は以下のように定義される。

【数５１】

【０１２８】
　（ｉｉ）　より一般的な場合は、Ａ（ｖn，ｔ）および　

【数５２】

【０１２９】
が、いかなるｔでも交換可能なときである。その場合、以下のとおりとなる。
【数５３】

【０１３０】
以下の条件のいずれかは、上記の交換可能特性が満たされることを保証する。（ａ）Ａ（
ｖn，ｔ）は一定である、（ｂ）Ａ（ｖn，ｔ）＝ａ（ｔ）Ｍであり、ここでａ（ｔ）はス
カラー関数であり、Ｍは定数行列である、または（ｃ）Ａ（ｖn，ｔ）＝Σａi（ｔ）Ｍi

であり、ここでａi（ｔ）はスカラー関数であり、ＭiＭj　＝ＭjＭiは、いかなるｉ、ｊ
でも交換可能な定数行列である。
【０１３１】
　（ｉｉｉ）　いくらかより一般的な場合は、すべてのｔ∈［Ｔn，Ｔn+1］について、行
列Ａ（ｖn，ｔ）が２つの成分の合計として表され得るときである。　
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【数５４】

【０１３２】
ここでは、いくつかの整数ｋ≧０およびｓ≧１、いくつかの固定時刻ｔc≦τ≦ｔ、なら
びにいくつかの固定行列Ａk（ｖn，τ，ｔc）およびＡk+s（ｖn，τ、ｔc）である。時刻
および行列は、それらが時間パラメータｔ∈［Ｔn，Ｔn+1］から独立しているという意味
で「固定」である。おそらく、最も有用な例は、ｋ＝０およびｓ＝１または２のときであ
る。いずれの場合も、上記の式の第２項（すなわち、行列Ａk+s（ｖn，τ，ｔc）を伴う
項）がすべてのｔ∈［Ｔn，Ｔn+1］について第１の項よりもはるかに小さい場合、行列Φ
（ｔ，Ｔn）が以下の無限数級によって近似され得ることになる。

【数５５】

【０１３３】
ここで複素変数ｚならびに実数値パラメータｔおよびτの関数Ｇm,k,s（ｚ，ｔ，τ）が
定義される。関数Ｇm,k,s（ｚ，ｔ，τ）はｚ＝０で解析的であり、以下によって与えら
れる。
【数５６】

【０１３４】
ここで表記＜ｆ（ｚ）＞は、ｆ（ｚ）の解析成分を示す。上式では、解析成分は、指数項
をそれのべき級数表現に置き換え、積と微分とを計算し、次いでｚの負の累乗に関連する
項を除外することによって得られる。
【０１３５】
　[0121]時間変動行列Ａ（ｖn，ｔ）のすべての他の場合では、式（４７）の遷移行列に
対する近似が発見され得、次いで、式（４６）に対する近似解が取得され得る。
【０１３６】
　区分的線形時間不変システム　
　[0122]さらなる単純化は、式（４４）によって記述される線形時間変動（ＬＴＶ）シス
テムを線形時間不変（ＬＴＩ）システムに変換することによって達成され得る。そうする
ために、係数ａ11［ｖn，ｔ］は、間隔ｔ∈［Ｔn，Ｔn+1］で一定に維持される。この結
果は、いくつかの方法で達成され得るが、それらのうちのいくつかについて以下で説明す
る。上述のアフィン線形近似の各々について、定数係数は次のように定義され得る。
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【数５７】

【０１３７】
ここでは、任意の間隔ｔ∈［Ｔn，Ｔn+1］である。
【０１３８】
　[0123]代替として、次の時間ステップＴn+1の値が時間ｔ＝Ｔnにおいて既知である場合
、係数ａ11［ｖn，ｔ］の平均値は次のように計算され得る。

【数５８】

【０１３９】
ここでは、任意の間隔ｔ∈［Ｔn，Ｔn+1］である。
【０１４０】
　[0124]テイラー展開方法に関する一例により明確になるよう、
【数５９】

【０１４１】
を使用することによって、ＬＴＩシステムが得られる。
【０１４２】
　[0125]同じ平均化手法が、上述の方法のうちのいずれかに適用され得る。ＬＴＩシステ
ムはここでは、以下の行列式によって記述される。
【数６０】

【０１４３】
　[0126]解は次のように表され得る。

【数６１】

【０１４４】
遷移行列Φ（ｔ，Ｔn）はここでは行列指数である。
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【数６２】

【０１４５】
　[0127]Ｔn＝ｎＴ（すなわち、長さＴの固定の、均一の時間間隔）の場合、式（４９）
は以下の式になる。

【数６３】

【０１４６】
　[0128]要約すれば、最初の一般的モデルは、非線形時間変動２次元システムである。こ
の非線形システムはまず、所与の時間間隔で非線形関数Γ（ｖ，ｔ）に線形近似を適用す
ることによって、線形時間変動システムに変換された。時間変動システムはさらに、時間
変動システム行列Ａ（ｖn,ｔ）を取り、それを同じ所与の間隔で定数行列Anにより近似す

ることによって、線形時間不変(LTI)システムに変換された。

　　解　
　[0129]問題が公式化され、非線形関数に対するいくつかの可能なアフィン線形近似が提
案されたので、ここでは、式（４９）および（５１）ならびにそれらの実装形態によって
与えられる間隔ｔ∈［Ｔn，Ｔn+1］でのＬＴＩシステムに対する解に焦点を当てる。さら
に式（４９）の表記を単純化し、Ａ（ｖn，Ｔn）＝Ａnを示すと、

【数６４】

【０１４７】
となり、行列Ａ（ｖn，Ｔn）およびベクトルｂ（ｖn，ｔ）は
【数６５】

【０１４８】
によって与えられ、ここで係数ａ11［ｖn，Ｔn］およびｂ1［ｖn，ｔ］は上述の方法のい
ずれかによって計算される。
【０１４９】
　[0130]次に、テイラー展開方法に関する解が導出される（他の方法のいずれかに関する
解が相応に続く）。この場合、以下を有する。



(37) JP 5976948 B2 2016.8.24

10

20

30

40

【数６６】

【０１５０】
　[0131]表記を単純化すると、
【数６７】

【０１５１】
となる。
【０１５２】
　[0132]次のようにベクトルｂ（ｖn，ｔ）を表すのが好都合である。
【数６８】

【０１５３】
　[0133]次いで式（５２）が
【数６９】

【０１５４】
として表され得る。
【０１５５】
　[0134]式（５７）の第１の積分は、クローズド式で解かれ得、それにより
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【数７０】

【０１５６】
を取得し、ここでＩは２×２単位行列である。
【０１５７】
　[0135]ここで式（５２）は次のように表され得る。

【数７１】

【０１５８】
　[0136]外部電流は、式（５９）の最後の積分に関するクローズド式表現が取得できない
ようなものである場合、近似される必要があり得る。近似の一例は、ゼロホールド（zero
-hold）、すなわち以下のとおりである。

【数７２】

【０１５９】
　[0137]この場合、任意の間隔ｔ∈［Ｔn，Ｔn+1］に関するクローズド式解は以下の形と
なる。
【数７３】

【０１６０】
　[0138]式（６１）における主要成分は行列指数
【数７４】

【０１６１】
であり、これは次のように表され得る。λn1およびλn2を、２×２行列Ａnの固有値とす
る。その場合、以下のとおりとなる。
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【数７５】

【０１６２】
ここでλn1およびλn2は固有方程式ｄｅｔ（Ａn－λＩ）＝０の解である。
【０１６３】
　[0139]式（６２）～（６４）は、行列指数のための明示的な表現を与える。代替として
、多数の効率的な数値アルゴリズムが、行列指数の計算に利用可能である。したがって、
いずれかの方法を通して時間ｔ＝Ｔn+1におけるシステムの状態を決定することが実行可
能である。ただし、ハードウェア実装では、次に説明するような異なる手法を使用するの
が有益であり得る。
【０１６４】
　[0140]まず、行列Ａnにおいて、システムの発展に伴ってただ１つの係数ａ11［ｖn，Ｔ

n］が変化し、全体を通して残りの３つの係数は一定のままであることに注意されたい。
係数は、たとえば、式（５６）によって与えられる。例示的な効率的な手順は次のように
なる。（１）各時間において第１の状態変数（すなわち、膜電圧ｖn）を量子化し、有限
数の値にステップし、（２）関数

【数７６】

【０１６５】
の事前計算値によりルックアップテーブルをインデックス付けする。同様に、時刻も量子
化され、ｇi（Ｔn）の事前計算値がルックアップテーブルに記憶され得る。ここで、取り
出された値が使用されて、式（５６）を介してａ11［ｖn，Ｔn］を評価し、結果を有限数
の値Ｑ（ａ11［ｖn，Ｔn］）に量子化することができる。
【０１６６】
　[0141]同様に、ΔＴnに関するいくつかの選択が事前選択され得、式（６２）に現れる
行列の行列指数および逆行列がＱ（ａ11［ｖn，Ｔn］）およびΔＴnによって事前計算さ
れ、アドレス指定され得る。
【０１６７】
　　適応および固定時間ステップ　
　[0142]前のセクションでは、ＬＴＩシステムの状態に関する式が、任意の時刻で導出さ
れた。以下では、時間ステップが適応的に選択される場合、および固定された所定のステ
ップサイズΔＴn＝Ｔにより時刻が均一である同期システムのより単純な場合についてよ
り詳しく説明する。
【０１６８】
　[0143]適応戦略は、複雑性と精度の両方の点で有益であり得る。たとえば、時間ステッ
プは、状態がゆっくりと発展しているときには、より離れて（すなわち、より大きいΔＴ

n）選択されてよく、それにより計算の速度が増す。対照的に、時間ステップは、たとえ
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ば、ニューロンモデルがスパイキング事象に近いときには、小さくされてよく、それによ
りスパイク時間の計算精度が増す。次に、時間ステップの選択に関する可能なアルゴリズ
ムについて説明する。
【０１６９】
　[0144]式（６３）が示すように、システム発展の時間定数は、行列Ａnの固有値に反比
例する。具体的には、固有値がゼロに近い場合、時間定数は大きく、システムはゆっくり
と発展する。これに反して、固有値のうちの少なくとも１つが大きくなる（場合によって
は正になる）場合、システムは非常に急速に発展する。上記タスクを遂行する時間ステッ
プの選択に関する１つの例示的なアルゴリズムは、以下のとおりである。
【数７７】

【０１７０】
　[0145]式（６５）では、λn,maxは、行列Ａnの（絶対値による）最大固有値を示す一方
、ΔＴmaxおよびμnは設定可能パラメータである。これは、以下の関係の維持を確実にす
る。
【数７８】

【０１７１】
および、任意の間隔ｔ∈［Ｔn，Ｔn+1］について
【数７９】

【０１７２】
　[0146]次に、前のセクションの一般解が、サイズＴの固定された均一の時間ステップの
重要な場合に特化される。式（６１）で開始し、以下を取得する。
【数８０】

【０１７３】
例１：Ｉｚｈｉｋｅｖｉｃｈ（単純）モデルのためのテイラー展開
　[0147]この例では、式（６８）は、単純モデルおよびテイラー展開方法に基づく線形化
のために評価される。式をいくらか単純化するために、外部電流が存在しないと仮定され
る。
【０１７４】
　[0148]まず、単純モデル、すなわちＦ（ｖ）＝ｋ（ｖ－ｖr）（ｖ－ｖt）のためのテイ
ラー展開の係数は、式（５６）から開始して導出される。
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【数８１】

【０１７５】
という条件で、それは、以下を取得する。

【数８２】

【０１７６】
　[0149]非ＮＭＤＡシナプスチャネルの場合、式（７０）および（７１）は以下に単純化
される。

【数８３】

【０１７７】
　[0150]以下を取ると、
【数８４】

【０１７８】
式（６８）はここで以下の式になる。



(42) JP 5976948 B2 2016.8.24

10

20

30

40

50

【数８５】

【０１７９】
　[0151]もう一度、非ＮＭＤＡシナプス電流の場合、式（７４）は、以下のように単純化
される、
【数８６】

【０１８０】
　[0152]さらに、式（７４）および（７５）における積分は、クローズド式で解かれ得る
。たとえば、
【数８７】
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【０１８１】
　[0153]この例を完成させるために、パラメータｋ＝０．７、Ｃ＝１００、ａ＝０．０３
、ｂ＝－２、ｖr＝－６０ｍＶ、およびｖt＝－４０ｍＶを有する緩慢な興奮性ニューロン
モデルならびにパラメータτAMPA＝５ｍｓ、ＥAMPA＝０ｍＶ、およびｇAMPA＝５を有する
単一の指数ＡＭＰＡチャネルについて、Ｔ＝１ｍｓで式（７５）の正確性がテストされる
。それぞれ図５Ａおよび図５Ｂの膜電位プロット５００および復元電流プロット５２０に
示すように、式（７５）に基づく線形化は、非線形時間変動モデルに基づくプロットを正
確に追跡する。
【０１８２】
　例２：Ｈｕｎｚｉｎｇｅｒ　Ｃｏｌｄモデルのしきい値下ダイナミクス　
　[0154]Ｈｕｎｚｉｎｇｅｒ　Ｃｏｌｄモデルとして知られている単純な真性伝導性モデ
ルのしきい値下ダイナミクスを調べる目的で別の例が作成されている。この例では、シナ
プス電流なしおよび衝撃外部電流の単純だが興味深い場合が仮定されている。
【０１８３】
　[0155]Ｈｕｎｚｉｎｇｅｒ　Ｃｏｌｄモデル（上の式（２２）参照）では、膜電圧がし
きい値未満であるとき、行列Ａnは一定であり、Ａ-に等しい。
【数８８】

【０１８４】
　[0156]第１の状態変数が膜電圧から参照電圧を差し引いたものと定義される場合、微分
はさらに単純化され得る。そのような定義により、すべての定数項はゼロに等しく、式（
６１）は以下に単純化される。
【数８９】

【０１８５】
　[0157]さらに、外部電流が、振幅Ｉを有する時間Ｔnにおけるディラックのデルタ関数
である、すなわち、Ｉext（ｔ）＝Ｉδ（ｔ－Ｔn）であると仮定される場合、
【数９０】

【０１８６】
　[0158]衝撃入力が、初期条件と同じ効果をシステムに与えることに留意されたい。固有
値が実数値でありλ1≠λ2である場合、式（６２）が式（７８）に代入されて、ｖ＜ｖt

の場合の以下の連続時間解が取得され得る。

【数９１】
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【０１８７】
　[0159]新しい行列
【数９２】

【０１８８】
を定義し、
【数９３】

【０１８９】
を示すことによって、式（７２）は次のように書かれ得る。
【数９４】

【０１９０】
特に、Ｔn＝０の場合、以下を取得する。
【数９５】

【０１９１】
　[0160]図６Ａおよび図６Ｂの膜電位プロット６００および復元電流プロット６２０はそ
れぞれ、以下のパラメータ値の場合の式（８１）の時間発展を示している。τ-＝１４ｍ
ｓ、Ｃ＝１００、ａ＝０．０３，ｂ＝－２、Ｉext（ｔ）＝１００δ（ｔ）、およびｖ0＝
ｕ0＝０。膜電圧および復元電流は、以下の関数によって与えられる。

【数９６】

【０１９２】
　[0161]式（８０）の計算に関わる行列および固有値はアプリオリに知られているので、
所与の時間分解能により２つの指数関数を事前計算し（たとえば、ルックアップテーブル
に）記憶することによって、システムの時間的経過は非常に容易に、かつ望ましい精度で
計算され得る。代替として、指数関数の計算（近似）のための高速アルゴリズムが用いら
れてよく、式（８０）はリアルタイムで計算され得る。
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【０１９３】
　[0162]上記の公式化は、事象発生時の状態ベクトルを計算することが重要である事象ベ
ースの実装形態において特に関連性がある。たとえば、式（８０）および時間Ｔn+1にお
ける事象の発生の場合、
【数９７】

【０１９４】
を計算したいことがある。
【０１９５】
Δｎ＝Ｔn+1－Ｔnにより、以下を有する。
【数９８】

【０１９６】
　[0163]１つの重要な事象はスパイク時間（すなわち、上記のように人工ニューロンの膜
電圧がピークしきい値を越える時間）である。人工ニューロンのためのモデルがスパイク
時間に近いとき、固有値のうちの少なくとも１つは正であり、支配的である。したがって
、電圧の式における支配的な項のみを保持することによって、良好な近似が達成され得る
。言い換えれば、関数ｖ（ｔ）は式（８２）に示す形であるので、すなわち、以下のよう
になる。
【数９９】

【０１９７】
ｖ（ｔ）は、それの支配的な項によって近似されてよく、すなわち、以下のようになる。
【数１００】

【０１９８】
スパイキング時間は、以下から容易に取得され得る。
【数１０１】

【０１９９】
　　追加の単純化　
　[0164]「解」と題するサブセクションの最後は、行列指数と逆行列とを事前計算するた
めに、行列Ａnの第１の要素ａ11［ｖn，Ｔn］が、動的範囲をカバーする有限数の値に量
子化されるべきことを述べている。前のサブセクションの微分から、特に例１からわかる
ように、係数ａ11［ｖn，Ｔn］は、ｖnおよび時間Ｔnにおける伝導性の関数である。膜電
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圧の動的範囲はかなり限られているが、伝導性の動的範囲は非常に大きいことがある。し
たがって、この場合に、多数の事前計算された行列が記憶されなければならない可能性が
非常に高くなり得る。次に、メモリ需要を減らすためにさらなる単純化が探究される。１
つの手法は、限られた範囲で所望の行列を事前計算して記憶し、その範囲を越える値のた
めに所望の行列を近似する計算を実行する手法である。
【０２００】
　[0165]たとえば、係数ａ11［ｖn，Ｔn］が、行列Ａnの他の３つの固定係数よりも（絶
対値で）はるかに大きくなるとき、以下の近似が使用され得る。
【数１０２】

【０２０１】
ここでは、任意の複素数値関数Ψ（・）、たとえばΨ（ｘ）＝ｅxおよびΨ（ｘ）＝ｘ-1

である。この手法により、メモリ需要および計算の複雑度はトレードオフとなり得る。
【０２０２】
　[0166]メモリ需要のさらなる低減は、いくつかの近似を介して達成され得る。たとえば
、式（３８）によって定義されたものではなく、修正された関数

【数１０３】

【０２０３】
にアフィン線形近似が適用され得る。さらに、シナプス電流は外部電流として扱われ得、
得られる積分は後退方形ルールによって近似され得る。この場合、行列指数と逆行列とを
事前計算して記憶することに関係する動的範囲は、膜電圧のみの動的範囲であり、したが
って、かなり小さい。トレードオフは、メモリ需要と解の正確性とのトレードオフである
。
【０２０４】
　[0167]次に、上記の段落について、この追加の単純化に基づいて解を再導出することに
よって、より詳しく説明する。前述のように、式（３５）および（３６）で始めることが
でき、便宜上ここで繰り返す。
【数１０４】

【０２０５】
　[0168]ただし、ここでは、式（３８）の関数は次のように変更される。
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【数１０５】

【０２０６】
また、連立方程式は次のように再公式化される。

【数１０６】

【０２０７】
　[0169]システム行列Ａnはここでは以下の式に単純化される。
【数１０７】

【０２０８】
ベクトルｂ（ｖn，ｔ）はここで次のように定義される。
【数１０８】

【０２０９】
　[0170]上記の近似により、伝導性値に対するシステム行列（係数ａ11）の依存性が回避
され、その結果、行列指数を計算する際にカバーされるべき動的範囲を大幅に低減する。
該当時間わたって定数値に膜電圧を保持することによって、シナプス電流は外部電流とし
て扱われ得る。そして、固定時間ステップ実装形態では、解は以下のようになる。

【数１０９】

【０２１０】
　[0171]式（９６）におけるベクトル積分の第１の成分は、

【数１１０】



(48) JP 5976948 B2 2016.8.24

10

20

30

40

【０２１１】
であり、これは、関係するたいていの場合に解かれ得る。上記近似の最良の結果は、後退
方形ルールを使用することによって、すなわち、式（９７）において値ｖn＝ｖ（ｎＴ＋
Ｔ）を使用することによって、取得されている。
【０２１２】
　例３：後退方形ルールによる近似　
　[0172]説明および表記を単純化するために、この例は、シナプス電流が電圧依存型伝導
性チャネル（たとえば、ＮＭＤＡチャネル）を含まず、外部電流Ｉext（ｔ）がないと仮
定する。微分は、長さＴの固定ステップサイズで得られる。まず、式（６８）が次のよう
に単純化され得る。
【数１１１】

【０２１３】
ここで、ベクトルｑは定数項を含み、すなわち次のようになる。
【数１１２】

【０２１４】
　[0173]表記の便宜上、以下のベクトルおよび行列も定義され得る。
【数１１３】

【０２１５】
その結果、式（９８）は次のように書き直され得る。
【数１１４】

【０２１６】
　[0174]ここで、式（２９）に従って単純指数としてモデル化されたｇi（ｔ）について
解が導かれる。この場合、以下を有する。
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【数１１５】

【０２１７】
　[0175]積分は容易に解かれ得、さらに
【数１１６】

【０２１８】
を定義する場合、式（１０２）は次のように書かれ得る。
【数１１７】

【０２１９】
　[0176]左辺における時間nＴ＋Ｔでの状態を含む項を集めると、以下のようになる。
【数１１８】

【０２２０】
　[0177]逆にされるべき行列は
【数１１９】

【０２２１】
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【数１２０】

【０２２２】
　[0178]状態更新の計算は次のように進み得る（ここではｅAT≡Ｇ）。　
　　Ｉ.　所望の量子化により事前計算し、すべての係数（Ｇ、ｈi、およびｑ）を記憶す
る。　
　　ＩＩ．　チャネルごとに、以下を計算する。　
【数１２１】

【０２２３】
　　ＩＩＩ．　その合計とＥiによってスケーリングされた合計とを計算する。　
【数１２２】

【０２２４】
　　ＩＶ．　式（１０５）の右辺を評価し、補助変数に格納する。すなわち、　

【数１２３】

【０２２５】
　　Ｖ．　逆行列による乗算を実行する。　
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【数１２４】

【０２２６】
　[0179]二重指数を有するＮＭＤＡの場合、各指数が個別に扱われる可能性が非常に高く
なり得ることに留意されたい。これは２つのベクトル、すなわち減衰指数項のベクトルお
よび増大指数項のベクトルの事前計算および記憶につながる。
【０２２７】
　[0180]図２１は、式（１０６）の実現を示すブロック図２１００である。簡単のために
、式（１０６）の第１の部分を表す行列反転ブロック２１０２は拡大されていない。現在
の状態ベクトルｘ（ｎＴ）から、状態ベクトルからの膜電位ｖ（ｎＴ）が量子化ブロック
２１０４で量子化されて、メモリインデックスを決定する。メモリインデックスは、膜電
位の量子化間隔に対応するニューロンモデルの区分的線形近似のための所定のパラメータ
（たとえば、係数）を選択するために使用され、メモリルックアップテーブル２１０６に
記憶される。メモリインデックスに基づいて、指数行列Ｇ２１０８および上記の式（９９
）からの定義済みベクトルｑ２１１０のための係数を含む、量子化間隔に関連するパラメ
ータがロードされる。パラメータは、入力電流ベクトルｈ２１１２およびＮ個のシナプス
電流入力ベクトルｈi２１１４のための係数も含む。合計ブロック２１１６は、ベクトル
ｈ２１１２に適用された入力電流Ｉ（ｎＴ）／Ｃと、Ｎ個のシナプス電流入力ベクトルｈ

i２１１４に適用された逆転電位によってスケーリングされた伝導性値Ｅiｇi（ｎＴ）／
Ｃとを合計する。結果は、行列反転ブロック２１０２により式（１０６）に従って処理さ
れて、更新済み状態ベクトルｘ（ｎＴ＋Ｔ）を生成する。遅延ブロック２１１８は、連続
的にではなく適時に各ステップサイズＴで状態が更新されるように追加され得る。
【０２２８】
　[0181]式（１０１）における積分に対する他の近似が使用され得る。たとえば、正確な
値を計算してｈiベクトルに記憶するのではなく、ｇ（ｔ）に適用される台形規則が使用
されてよく、それにより、近似の若干の悪化という犠牲を払って、ｈiベクトルの記憶を
回避し、メモリ需要をさらに低減する。
【０２２９】
　　要約　
　[0182]上記のサブセクションでは、ニューロンモデルの区分的線形化に対する一般的手
法について説明した。図７は、様々なステップと線形化方法とを要約している。７０２に
おいて非線形時間変動システムで開始し、７０４において間隔Ｔn≦ｔ≦Ｔn+1で区分的線
形化が実行されて、７０６において行列Ａ（ｖn，ｔ）に関して区分的線形時間変動シス
テムを生成することができる。７０８において、間隔Ｔn≦ｔ≦Ｔn+1ごとに定数係数（す
なわち、区分的定数関数）が使用され、次いで７１０において行列Ａ（ｖn，Ｔn）に関し
て区分的ＬＴＩシステムが形成される。この線形化が７１２において時間間隔から独立し
て実行される場合、７１４において行列Ａ（ｖn）に関して区分的ＬＴＩシステムが形成
される。
【０２３０】
　　例示的な状態空間領域依存型線形ニューロンモデル化　
　[0183]上述した本開示のいくつかの態様は主に、状態変数のうちの１つ（たとえば、膜
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態空間は、単一の状態を使用して垂直ブロックに区分され、各ブロックは、電圧間隔を表
しており、線形微分方程式の別個のセットに関連付けられる。
【０２３１】
　[0184]後述のように、本開示のいくつかの態様はこの概念を拡張する。状態空間は、（
垂直ブロックに限定されない）異なる領域に区分され得、各領域は、線形微分方程式の別
個のセットに関連付けられる。領域は、重複しないことがある。下記の説明は主に、２状
態（または同等に２次元）モデルに焦点を当てており、これは、区分がそれぞれボリュー
ムおよび多次元領域であり得る３つ以上の状態に２状態モデルが容易に拡張され得るとい
う理解に基づく。
【０２３２】
　　ｖの関数としての区分的線形公式化の検討　
　[0185]２次元区分的線形微分方程式は、ｎ番目の対が以下によって定義されるＫ対の微
分方程式からなるセットとして表され得る。

【数１２５】

【０２３３】
ここでｋ∈［１，Ｋ］およびＦ（ｖ）＝ｍkｖ＋ｄkである。この手法では、電圧空間はＫ
個の別個の領域に区分され、ｋ番目の領域は、ｋ番目の対の微分方程式に関連付けられる
。Ｋ個の領域の結合は、（ｖ，ｕ）値の空間をカバーする。図８は、Ｋ＝４の場合の区分
を示しており、ここでは電圧空間は４つの領域、すなわち、ｖ＜ｖ1，ｖ1≦ｖ＜ｖ2，ｖ2

≦ｖ＜ｖ3およびｖ3≦ｖに分割される。Ｋ＝２の場合、これはＨｕｎｚｉｎｇｅｒ　Ｃｏ
ｌｄニューロンモデル（ｖk＜ｖ≦ｖk+1になるようにクローズド隔およびオープン間隔が
切り替えられる）に縮小する。
【０２３４】
　　一般化された公式化　
　[0186]基本的な考えは、区分的線形概念を、ｖに関してのみ定義された領域を越えて拡
張する（すなわち、式（１０９）のほか、式（１１０）が間隔ごとに変化することを可能
にする）ことである。これは、（ｖ，ｕ）空間でＫ個の２次元領域Ωkを定義することに
よって達成され、ここでｋ∈［１，Ｋ］であり、Ｋ個の領域の結合が（ｖ，ｕ）値の空間
全体をカバーし得る。さらに、ｍkおよびｄkに加えて、パラメータａおよびｂは、これら
のパラメータがｋの関数になるように領域ごとに別個であることが可能である。パラメー
タＣも、Ｃkとして領域ごとに別個のものにされてよいが、以下では領域ごとに固定され
たままとされ、これは、Ｃが領域固有のものにされ得るという理解に基づく。これらの拡
張は必ずしも、生物学的等価物を有するとは限らない。しかしながら、エンジニアリング
および計算上の観点から、そのような拡張は、より豊かなニューロンモデルおよびより単
純なプラットフォームの設計によるニューロンモデルの開発を可能にする。
【０２３５】
　[0187]２つの上述の拡張は以下をもたらす。
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【０２３６】
　[0188]上式は次のように、上述の状態空間表記を使用して、よりコンパクトに表され得
る。
【数１２７】

【０２３７】
　[0189]次に、Ｍ次元状態空間の領域依存型の場合および状態空間の解について説明する
。
【０２３８】
　Ｍ次元状態空間の場合　
　[0190]Ｍ個の状態変数があるＭ次元の場合、状態空間式は以下の式になる。
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【０２３９】
領域依存型状態空間の解
　[0191]連続時間ドメインおよび離散時間ドメインにおける式（１１３）の状態空間の解
が提示される。それらの微分は、上述の手法と同じ手法を使用して必然的に生じる。連続
時間の解は次のように表され得る。

【数１２９】

【０２４０】
ここでｘ（０）は、ｘ（ｔ）の初期値を表し、

【数１３０】

【０２４１】
およびｅxは、行列Ｘの行列指数を表す。
【０２４２】
　[0192]サンプリング期間をＴとする、対応する離散時間の解は以下の式として表され得
る。
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【０２４３】
　現在の状態空間ベクトルｘ（ｎＴ）は、領域Ωkと、

【数１３２】

【０２４４】
行列およびベクトルのどのセットを、式（１２０）に従ってｘ（ｎＴ＋Ｔ）を計算するた
めに使用するかとを識別する。
【０２４５】
　[0193]さらに、上述の非シナプス電流タイプおよびシナプス電流タイプに関する同じ解
は容易に当てはまる。これは、線形時間変動（ＬＴＶ）解を含む。これは、電圧依存領域
（垂直区分）を、これらのより一般的な状態空間領域に置き換えることを伴うことになる
。
【０２４６】
　例示的な例　
　[0194]図９は、３つの領域（すなわち、Ωk、ここでｋ∈［１，３］）を有する例を示
している。図９の３つの領域はすべて、方形領域である。
【０２４７】
　[0195]図１０は、４つの領域による、領域が方形である必要がない様相を示す例を示し
ている。（ｖ，ｕ）が成長半径を伴って外向きに渦巻きを描く領域、（ｖ，ｕ）が（減衰
も成長もなく）円形に渦巻きを描く領域、（ｖ，ｕ）が減衰半径を伴って内向きに渦巻き
を描く領域、および（ｖ，ｕ）が（Ｈｕｎｚｉｎｇｅｒ　ＣｏｌｄモデルのＡＬＩＦ領域
に相当する）スパイクする傾向がある領域をΩ1、Ω2、Ω3、およびΩ4が表すしきい値下
振動ニューロンを生成するために、この特定の設計が使用され得る。この設計は以下でよ
り詳細に説明される。
【０２４８】
　[0196]図１１は、任意の形状を有する１つの領域（たとえば、六角形、三角形、または
星形の領域）が理論的に作成され得ることを示す、５つの領域を有するよりアカデミック
な例を示している。
【０２４９】
　　状態空間領域依存型線形ニューロンモデル化の実現　
　[0197]現在、領域は
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【数１３３】

【０２５０】
によって定義され、ここでＶkおよびＶk+1は、電圧の左境界と右境界とを表す。そのため
、各時間ステップにおいて、インデックスｋは、現在の状態（ｖ（ｎＴ），ｕ（ｎＴ））
を取り、それをＫ個の領域、Ωk、ｋ∈［１，Ｋ］の各々に照らしてチェックすることに
よって決定される。インデックスｋは、ｋFによって表されており、量子化間隔、最小可
能電圧、および間隔数のほか、ｖのみの関数を介して直接計算され得る。

【数１３４】

【０２５１】
　[0198]いくつかの態様では、領域（またはその少なくとも一部分）は、若干重複するこ
とがある。この場合、Ｋ個の領域（Ωk、ｋ∈［１，Ｋ］）のうちどれが現在の状態（ｖ
（ｎＴ），ｕ（ｎＴ））を含むかを識別する際にヒステリシスが使用され得る。
【０２５２】
　[0199]一般化された領域の２つの例を以下で提供する。他の領域も開発され得る。
【０２５３】
ｖとｕの両方に依存する方形領域の場合
　[0200]一般化された方形領域の場合、ｋ番目の領域は、
【数１３５】

【０２５４】
によって定義されてよく、ここでｖkおよびｖk+1はそれぞれ、電圧の左境界および右境界
を表し、ここでｕkおよびｕk+1はそれぞれ、復元変数の下位境界および上位境界を表す。
そのため、各時間ステップにおいて、Ｋ個の領域（Ωk、ｋ∈［１，Ｋ］）のうちどれが
現在の状態（ｖ（ｎＴ），ｕ（ｎＴ））を含むかを識別することによって、インデックス
ｋが決定され得る。
【０２５５】
　楕円領域の場合　
　[0201]説明を簡単にするために、各々が静止状態（ｖr，０）を中心とする楕円領域の
みを仮定する。その場合、ｋ番目の領域は、

【数１３６】

【０２５６】
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によって定義されてよく、ここでρkは、ｖ軸に沿った内側楕円境界までの「半径距離」
であり、ρkは、ｖ軸に沿った外側楕円境界までの「半径距離」であり、「半径距離」は
、
【数１３７】

【０２５７】
と定義されてよく、βは、楕円に関連するパラメータである（β＝１は同心領域につなが
る）。前述のように、各時間ステップにおいて、インデックスｋは、現在の状態（ｖ（ｎ
Ｔ），ｕ（ｎＴ））を取り、それをＫ個の領域、Ωk、ｋ∈［１，Ｋ］の各々に照らして
チェックすることによって決定される。
【０２５８】
　　状態空間領域依存型線形ニューロンモデル化の利点　
　[0202]ニューロンモデル化のための状態空間のそのような一般化された区分は、ニュー
ロンの合成をサポートし、体系的にそうするのを後押しすることができる。これの２つの
例は、以下を実施する際のものである。（１）オンセット検出および事象カウント、なら
びに（２）しきい値下振動挙動、後者については次のセクションで説明する。
【０２５９】
　[0203]オンセット検出および事象カウントのために、（２つの区分を有する）Ｈｕｎｚ
ｉｎｇｅｒ　Ｃｏｌｄモデルに基づく人工ニューロンが作られ得る。この人工ニューロン
は、最初は静止しており、オンセット検出のためのスパイクを受信した場合に直ちに発火
するように設計される。その後、ニューロンは、入来スパイクのカウントを開始し、一定
数のスパイクの後に発火するように設計される。これはスパイクの到着に伴って自己反復
を続ける。この設計の潜在的な難点は、ニューロンが均衡静止状態に達するまでに約５０
０ｍｓ要し得るので、スパイクの到着がなくなった後に生じる。これは、ニューロンがオ
ンセット検出を実行し得るまでの時間があまりにも長いことがある。この設計における制
約の一部は、ニューロンをむしろＬＩＦニューロンとして挙動させることによって、静止
状態までの時間を短縮することが、スパイクカウント能力にどのように影響を与えるかで
ある。
【０２６０】
　[0204]本開示のいくつかの態様によれば、モデルＨｕｎｚｉｎｇｅｒ　Ｃｏｌｄデルに
より２つの領域を区分することによってＩｚｈｉｋｅｖｉｃｈニューロンモデルのＬＩＦ
およびＡＬＩＦの挙動が断ち切られ得る様相と類似して、区分を介して２つの挙動を分離
することによって制約が除去され得る。オンセット検出を実行するためにニューロンをリ
セットする時間は、ＬＩＦ領域において約０．３のしきい値よりも上または下でＵ状態変
数が挙動する様相を認識することによって低減され得る。その値よりも下では、システム
が静止状態に達するのに長い時間を要する。これは、改善されたオンセットおよび事象カ
ウントニューロンを実現するために、図９の３つの領域の状態空間に示すように、Ｕなら
びにＶに関して状態空間を区分することによって円滑にされ得る。Ｖ＜ＶTであるＬＩＦ
領域では、人工ニューロンは今や、Ｕ＞Ｕ0（すなわち、領域Ω2）である場合に事象カウ
ントのための積分発火（ＩＦ）ニューロンとして挙動し、そうでない（すなわち、領域Ω

1）場合にＶRに至るＬＩＦニューロンとして挙動する。状態が領域Ω1に入ると、システ
ムは、より短い時間定数により望まれる速さで静止状態に移るように設計され得る。領域
ごとに２対の微分方程式により、Ｕの関数としてＬＩＦ領域を２つの所望の領域（ＩＦの
場合はΩ2、ＬＩＦの場合はΩ1）に区分することによって、大幅な遅延は解消され得る。
【０２６１】
　状態空間領域依存型線形ニューロンモデルに基づく例示的なしきい値下振動ニューロン
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設計　
　[0205]膜電位が静止電位から上向く（すなわち、人工ニューロンのスパイク「準備をす
る（prime）」）際のスパイキングの可能性を高めるために、および下向く際の可能性を
低下させるために、神経人工神経系においてしきい値下振動が使用され得る。前のセクシ
ョンでは、状態変数のうちの１つ（たとえば、電圧）だけではなく、状態変数の組合せお
よび領域（または関数）にも基づく２次元（または多次元）状態空間の区分を可能にする
ことによる区分的線形ニューロンモデル化の拡張について説明している。このセクション
は、既存のしきい値下振動ニューロン設計の欠点を扱う。たとえば、既存のニューロンモ
デルは、３つの振動タイプ（たとえば、図１２Ａのグラフ１２００に示す減衰振動、図１
２Ｂのグラフ１２１０に示す持続振動、または図１２Ｃのグラフ１２２０に示す成長振動
）のうちのせいぜい１つを示すしきい値下振動ニューロンの設計をサポートすることがで
きるが、これらのモデルは、３つのタイプのうちの２つ以上を示す人工ニューロンの設計
を可能にすることができない。その上、既存のニューロンモデルは、特定の振動周波数に
よるしきい値下振動ニューロンの体系的設計、減衰振動のための減衰レート、成長振動の
ための成長レート、および／または持続振動のための大きさをサポートすることができな
い。
【０２６２】
　[0206]したがって、必要とされるのは、振動の３つのタイプすべてを示し、所望の振動
挙動の体系的実現をサポートすることが可能な改善されたニューロンモデルを有する人工
ニューロンである。
【０２６３】
　　しきい値下振動可能ニューロンモデル間の比較　
　[0207]しきい値下振動を生成することができる４つの既存のニューロンモデル、すなわ
ち、Ｉｚｈｉｋｅｖｉｃｈ（単純）モデル、（上述のＢｒｅｔｔｅおよびＧｅｒｓｔｎｅ
ｒの線形プラス指数関数である）適応型指数関数（ＡｄＥｘ：Adaptive Exponential）ニ
ューロンモデル、クォートモデル、およびＨｕｎｚｉｎｇｅｒ　Ｃｏｌｄモデルがある。
これらのニューロンモデルは、次の４つの方法で特徴付けされ得る。（１）モデルが３つ
の可能なしきい値下振動挙動（減衰振動、持続振動、または成長振動）のうちのどれを生
成し得るか、（２）３つの挙動のうちのいくつが、単一のニューロンによって示され得る
か、（３）所望の振動周波数によるニューロンを設計するのがどのくらい容易であるか、
および（４）振動設計を微調整する（たとえば、持続振動の大きさを定義する、または減
衰もしくは成長の複数のレートを定義する）のがどのくらい容易であるか。下の表は、第
１の測定について各ニューロンモデルがどのようになるかを要約している（これらのニュ
ーロンモデルは場合により、３つの振動タイプのうちの１つからすべてをサポートし得る
）。
【表１】

【０２６４】
　[0208]次の表は、残りの特徴付け測定について各ニューロンモデルがどのようになるか
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を要約している。
【表２】

【０２６５】
　[0209]（後述する状態空間領域依存型手法を除く）各ニューロンモデルは、単一の振動
タイプのみを示すことが可能なニューロンを再生することができる。そして、Ｈｕｎｚｉ
ｎｇｅｒ　Ｃｏｌｄモデルのみは、それの線形設計のために、目標を設計する体系的方法
を提供することが可能である。ただし、（後述する状態空間領域依存型手法を除く）それ
らのいずれも、微調整の能力を提供しない。
【０２６６】
　　状態空間領域依存型線形ニューロンモデル化に基づくしきい値下振動　
　[0210]上の表に示すように、既存のニューロンモデルとは対照的に、本開示のいくつか
の態様は、以下が可能である。（１）しきい値下レジームにおいて３つの振動タイプのす
べてまたは任意のサブセットを示し得る人工ニューロンを生成する、（２）Ｈｕｎｚｉｎ
ｇｅｒ　Ｃｏｌｄモデルのように体系的に設計されるだけではなく、設計の微調整のサポ
ートもする。
【０２６７】
　設計　
　[0211]３つの振動タイプすべてを示すことが、上述の状態空間領域依存型手法を使用す
ることによって実現され得る。たとえば、４つの領域の２次元ニューロンモデルが、図１
０に示すように定義され得る。
【０２６８】
　[0212]以下が成り立つように、線形微分方程式のセットに各状態空間領域Ωkが関連付
けられる。

【数１３８】

【０２６９】
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または、状態空間ベクトル表記では、
【数１３９】

【０２７０】
領域Ω1（円に見えるが、一般には楕円である）、Ω2（同じく一般には楕円）、Ω3およ
びΩ4はそれぞれ、成長振動、持続振動、減衰振動およびＡＬＩＦ挙動を再生するように
設計され得る。
【０２７１】
　[0213]いくつかの態様によれば、状態空間は、３つ以上の次元によって定義され得る。
この場合、以下の代替形式が代わりに使用され得る。
【数１４０】

【０２７２】
　[0214]持続振動が望まれる場合、ｖ（ｎＴ＋Ｔ）がうっかり持続振動領域をバイパスし
得るシナリオを処理するための時間ステップ型手法の場合に、ある程度の厚さが保証され
得る。
【０２７３】
　リセット変更　
　[0215]上記のように、リセット機構は、ｕをｕ＋ｄにリセットすることを伴うことがあ
り、これは結局、たとえば、スパイク事象の後または制御信号のアクティブ化後にｕを増
分する。いくつかの態様では、ｕ＋ｄ値が、ニューロンを直ちにスパイクさせること、ま
たは最初から持続振動に入らせることができるほど大きくないようにするために、ｕを目
標定数に（すなわち、ｕ＋ｄ以外に）リセットするオプションを有するのが望ましいこと
がある。このようにして、設計者は、状態空間のどこでニューロンがリセットするかを管
理する。
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　状態空間領域を定義　
　[0216]一般に、持続振動における（ｖ，ｕ）トレースは、長軸および短軸がｖ、ｕのデ
カルト軸と整合しないことがある楕円の形となり得る（すなわち、楕円は傾きを有し得る
）。解は、以下の形となり得る。
【数１４１】

【０２７５】
ここで４つの係数は、（インデックスｋが除外されている）Ａにおける行列要素および初
期条件（ｖ（０），ｕ（０））の関数である。
【０２７６】
　[0217]説明および設計を容易にするために、ここでの説明は、長軸および短軸が等しい
円トレースに焦点を当てる。これらは、行列要素が次の制約を満たすことを必要とする。

【数１４２】

【０２７７】
ここでλRおよびλIはそれぞれ、複素固有値λ1,2＝λR±λIの実数部および虚数部を表
し、τは（減衰または増大）時間定数を表し、ｆcは振動周波数を表し、インデックスｋ
は除外されている。これは、円領域および行列の単純な形式をもたらす。

【数１４３】

【０２７８】
　[0218]円領域を有するこのより単純な形式を使用して、均衡点（ｖr，０）を中心とす
る円の半径は、
【数１４４】

【０２７９】
であり、これは（ｖ，ｕ）から均衡点までの距離を表す。たとえば、ρ（ｖr＋２ｍＶ，
０）＝２である。そのため、ｋ番目の領域は、
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【数１４５】

【０２８０】
によって定義されてよく、ここでρk,inは、Ωkの内側円境界の半径を表し、ρk,outは、
Ωkの外側円境界を表す。
【０２８１】
　[0219]図１０のＫ＝４の例では、持続振動領域Ω2は、

【数１４６】

【０２８２】
によって定義されることになり、ここでρgは、Ω1とΩ2とを分離する円境界の半径を表
し、ρdは、Ω2とΩ3との間のそれを表す。
【０２８３】
　[0220]成長振動領域Ω1の場合：

【数１４７】

【０２８４】
　[0221]減衰振動領域Ω3の場合：

【数１４８】

【０２８５】
　[0222]図１０のＡＬＩＦ領域Ω4は、以下によって定義される。

【数１４９】

【０２８６】
マルチステージ減衰および成長領域のための追加領域
　[0223]上記の考えは、振動のより漸進的な減衰または漸進的な成長をサポートするよう
に拡張され得る。たとえば、減衰軌道の変動レートと成長軌道の変動レートとを有するた
めに、６個の領域を有する図１３に示すように、複数のリングが使用され得る。この例で
は、Ω3は、持続振動領域と考えられ得る。領域Ω5は、速い方の減衰軌道を有してよく、
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Ω4は、遅い方の減衰軌道を有し得る。これにより、持続振動領域Ω3への段階的でより緩
やかな減衰が可能になる。同様に、Ω1は、速い方の成長軌道を有してよく、Ω2は、遅い
方の成長軌道を有し得る。この概念は、さらに漸進的な変化のためのより多くのリングに
拡張され得る。さらに、異なる持続振動パラメータ（たとえば、異なる周波数）が望まれ
る場合にマルチステージ持続振動領域が使用され得る。
【０２８７】
　人工ニューロンを実施するための例示的な動作　
　[0224]図１４は、本開示のいくつかの態様による、人工神経系における人工ニューロン
の状態を更新するための例示的な動作１４００の流れ図である。動作１４００は、ハード
ウェアで（たとえば、神経形態学的プロセッサなどの１つもしくは複数のニューラル処理
ユニット（たとえば、人工ニューロン）によって）、ソフトウェアで、またはファームウ
ェアで実行され得る。人工神経系は、視覚神経系、聴覚神経系、海馬などのような様々な
生物学上または想像上の神経系のうちのいずれかでモデル化され得る。
【０２８８】
　[0225]動作１４００は、１４０２において、人工ニューロンの第１の状態が第１の領域
内にあると決定することによって始まり得る。１４０４において、線形動的方程式の第１
のセットに少なくとも部分的に基づいて人工ニューロンの第２の状態が決定され、ここに
おいて、線形動的方程式の第１のセットは、第１の領域に対応するパラメータ（たとえば
係数）の第１のセットに少なくとも部分的に基づく。１４０６において、人工ニューロン
の第２の状態が第２の領域内にあると決定される。１４０８において、線形動的方程式の
第２のセットに少なくとも部分的に基づいて人工ニューロンの第３の状態が決定される。
線形動的方程式の第２のセットは、第２の領域に対応するパラメータの第２のセットに少
なくとも部分的に基づき得る。
【０２８９】
　[0226]いくつかの態様によれば、１次方程式の第１のセットおよび第２のセットは、線
形時間不変（ＬＴＩ）状態空間方程式の離散時間解を含む。他の態様では、離散時間解は
、連続時間状態空間方程式に関するクローズド式解に少なくとも部分的に基づき得る。
【０２９０】
　[0227]いくつかの態様によれば、動作１４００は、メモリからパラメータの第１セット
または第２のセットのうちの少なくとも１つを取り出すことをさらに含む。本明細書で使
用するメモリは、永続的であるか、それとも一時的であるか、局所的であるか、それとも
リモートであるかを問わず、ランダムアクセスメモリ（ＲＡＭ）、キャッシュメモリ、レ
ジスタ、ラッチ、フリップフロップなどを含む処理ユニット、オンチップまたはオフチッ
プにデータを記憶するための様々な好適な手段のうちのいずれかを指し得る。そのような
取出しは、人工ニューロンの局所にあるメモリからパラメータの第１のセットまたは第２
のセットのうちの少なくとも１つを取り出すことを含み得る。いくつかの態様によれば、
動作１４００は、パラメータの第１のセットまたは第２のセットのうちの少なくとも１つ
の少なくとも一部分を計算することをさらに含む。パラメータの第１のセットまたは第２
のセットのうちの少なくとも１つの少なくとも一部分は、メモリから取り出された１つま
たは複数の値を使用して計算され得る。
【０２９１】
　[0228]いくつかの態様によれば、パラメータの第１のセットまたは第２のセットのうち
の少なくとも１つは、人工ニューロンに関連するニューロンモデルにおける非線形関数の
少なくとも一部分を区分的線形関数により近似することによって取得され得る。いくつか
の態様では、非線形関数は、電圧依存型伝導性（ｇ（ｖ））により増大する膜電位（ｖ）
を含む。電圧依存型伝導性は、区分的定数関数により近似され得る。他の態様では、非線
形関数は、電圧依存型関数（Ｆ（ｖ））を含み、ここでｖは、人工ニューロンの膜電位で
ある。区分的線形関数は、第１の領域および第２の領域の各々について傾き（ｍ）と切片
（ｄ）とを有し得る。いくつかの態様では、第１の領域は、区分的線形関数において第２
の領域とは異なる幅を有する。区分的線形関数における第１の領域または第２の領域の幅
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は、非線形関数に依存し得る。いくつかの態様では、区分的線形近似は、テイラー展開方
法、１次線形補間方法、最適線形補間方法、または平均傾斜方法のうちの少なくとも１つ
に少なくとも部分的に基づく。
【０２９２】
　[0229]いくつかの態様によれば、パラメータの第１のセットまたは第２のセットのうち
の少なくとも１つは、少なくとも部分的に人工ニューロンにおける特定の挙動を実現する
ように設計され得る。たとえば、パラメータの第１および／または第２のセットは、所望
の挙動を近似する特定の関数（たとえば、調整可能な曲線）を効果的に作成するように生
成される（たとえば、ニューロンモデル設計者によって手動で選択される）ことがある。
このようにして、人工ニューロンは、完全に新しいニューロンモデルまたは既存のニュー
ロンモデルの変更に基づいて動作することができる。
【０２９３】
　[0230]人工ニューロンの第１の状態、第２の状態、および第３の状態は、膜電位（ｖ）
および復元電流（ｕ）によって定義され得る。これらは、人工ニューロン状態変数の２つ
の例である。いくつかの態様によれば、動作１４００は、スパイク事象が生じているか、
または生じることになるとの決定に少なくとも部分的に基づいて、人工ニューロンの膜電
位または復元電流のうちの少なくとも１つをリセットすることをさらに含み得る。膜電位
は、静止電位にリセットされ得る（ｖ（ｔ）→ｖr）。復元電流は、復元電流の現在値と
オフセットとの合計にリセットされ得る（ｕ（ｔ）→ｕ（ｔ）＋ｄ）。
【０２９４】
　[0231]いくつかの態様によれば、１次方程式の第１のセットまたは第２のセットのうち
の少なくとも１つは、人工ニューロンのためのニューロンモデルに少なくとも部分的に基
づく。いくつかの態様では、ニューロンモデルは、Ｉｚｈｉｋｅｖｉｃｈの単純モデル、
指数関数積分発火（ＥＩＦ）モデル、ＦｉｔｚＨｕｇｈ－Ｎａｇｕｍｏモデル、クォート
モデル、または真性伝導性モデル（たとえば、電圧依存型伝導性（ｇ（ｖ））により増大
する膜電位（ｖ）として表されるニューロンモデル）のうちの少なくとも１つに少なくと
も部分的に基づく。いくつかの態様では、ニューロンモデルは、少なくとも２つの次元（
たとえば、少なくとも２つの状態変数）を備える。ニューロンモデルは、線形であり得る
１つまたは複数の１次常微分方程式（ＯＤＥ）に少なくとも部分的に基づき得る。
【０２９５】
　[0232]いくつかの態様によれば、ニューロンモデルの時間のステップサイズは、モデル
化されている人工ニューロンのタイプに少なくとも部分的に基づく。ニューロンモデルの
時間のステップサイズは不均一であり得る。いくつかの態様では、特定の時間ステップの
時間のステップサイズは、人工ニューロンの現在の状態もしくは過去の状態のうちの少な
くとも１つに、または（現在の状態もしくは過去の状態に関連付けられ得る）パラメータ
の特定のセットに少なくとも部分的に基づいて決定される。いくつかの態様では、第１の
状態の決定と第２の状態の決定との間の時間の第１のステップサイズは、第２の状態の決
定と第３の状態の決定との間の時間の第２のステップサイズとは異なる。いくつかの態様
によれば、１４０４における人工ニューロンの第２の状態の決定は第１の時間ステップで
実行されてよく、１４０８における人工ニューロンの第３の状態の決定は、第１の時間ス
テップに続く第２の時間ステップで実行されてよい。
【０２９６】
　[0233]いくつかの態様によれば、人工ニューロンの第２の状態または第３の状態のうち
の少なくとも１つを決定することは、人工ニューロンに入力された電流に少なくとも部分
的に基づく。いくつかの態様では、入力電流は、シナプス電流または一般的な外部電流の
うちの少なくとも１つを備える。シナプス電流は、１つまたは複数のチャネルの各々に関
する時間依存型伝導性および１つまたは複数のチャネルの各々に関する逆転電位に少なく
とも部分的に基づき得る。いくつかの態様では、シナプス電流は、Ｎ－メチル－Ｄ－アス
パラギン酸（ＮＭＤＡ）チャネルに関する人工ニューロンのシナプス後膜電圧に少なくと
も部分的に基づく。時間依存型伝導性は、指数関数、アルファ関数、または指数差関数に
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よってモデル化され得る。
【０２９７】
　[0234]いくつかの態様では、第１の領域および第２の領域は同じ領域である。
【０２９８】
　[0235]いくつかの態様によれば、動作１４００は、第１の状態、第２の状態、または第
３の状態のうちの少なくとも１つの指示をディスプレイに出力することをさらに含み得る
。
【０２９９】
　[0236]いくつかの態様によれば、第１の領域または第２の領域のうちの少なくとも１つ
は、２つ以上の次元によって定義される。第１の領域または第２の領域のうちの少なくと
も１つは、Ｍ≧２のＭ次元の部分空間である。Ｍ次元の部分空間は、任意の形状を有して
よく、任意の境界によって定義され得る（たとえば、ｖ＞１０ｍＶ）。いくつかの態様で
は、２つ以上の次元は２次元であり、Ｍ次元の部分空間は、楕円、円、多角形、方形、ま
たは正方形などの２次元の形状を有する。他の態様では、２つ以上の次元は３次元であり
、Ｍ次元の部分空間は、球、楕円体、多角柱、直方柱、または立方体などの３次元の形状
を有する。いくつかの態様では、第１の領域は、第２の領域とは異なる１次方程式のセッ
トに関連付けられる。第１の領域および第２の領域は、部分的に重複する領域または重複
しない領域であり得る。第１の領域および第２の領域は、異なる形状または異なるサイズ
のうちの少なくとも１つを有し得る。いくつかの態様では、第１の領域は人工ニューロン
の第１の挙動に関連付けられ、第２の領域は、第１の挙動とは異なる、人工ニューロンの
第２の挙動に関連付けられる。いくつかの態様では、第１の領域および第２の領域は、同
心リング、管、方形フレームなどのような階層化形状を有する。
【０３００】
　[0237]いくつかの態様によれば、２つ以上の次元は、膜電位（ｖ）および復元電流（ｕ
）によって定義された２次元から構成される。いくつかの態様では、動作１４００は、制
御信号の受信またはスパイク事象が生じているか、もしくは生じることになるとの決定の
うちの少なくとも１つに少なくとも部分的に基づいて、人工ニューロンの膜電位または復
元電流のうちの少なくとも１つをリセットすることをさらに含み得る。この場合、膜電位
は静止電位にリセットされてよく、復元電流は定数にリセットされてよい。
【０３０１】
　[0238]いくつかの態様によれば、第２の領域の少なくとも一部分は、第１の領域と重複
する。この場合、１４０６において人工ニューロンの第２の状態が第２の領域内にあると
決定することは、ヒステリシスに少なくとも部分的に基づき得る。
【０３０２】
　[0239]いくつかの態様によれば、人工ニューロンは、オンセット検出および事象カウン
トのために構成される。この場合、第１の領域は、事象カウントのための積分発火（ＩＦ
）挙動に関連付けられてよく、第２の領域は、リーキー積分発火（ＬＩＦ）挙動に関連付
けられてよい。
【０３０３】
　[0240]いくつかの態様によれば、人工ニューロンは、しきい値下振動挙動のために構成
される。しきい値下振動挙動は、減衰振動挙動、持続振動挙動、または成長振動挙動のう
ちの少なくとも１つを含み得る。いくつかの態様では、第１の領域は成長振動挙動に関連
付けられてよく、第２の領域は持続振動挙動に関連付けられてよく、および第３の領域は
減衰振動挙動に関連付けられてよい。さらに、第４の領域はＡＬＩＦ挙動に関連付けられ
る。いくつかの態様では、第１の領域は楕円形状を有し得る一方、第２の領域はリング形
状を有し得る。
【０３０４】
　例示的な共通のフレキシブルなニューラルアーキテクチャ　
　[0241]本開示のいくつかの態様は一般に、動的ニューロンモデルをサポートする共通の
フレキシブルなアーキテクチャを開発することに関する。設計目標は、低複雑度と、ニュ
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ーロンダイナミクスの正確なモデル化と、任意のニューロンモデルを実施する能力とを含
む。このフレキシブルなアーキテクチャにより、様々な好適なニューロンモデルのいずれ
かが必要に応じて実行され、置換され得る。たとえば、ニューロンモデルは、Ｉｚｈｉｋ
ｅｖｉｃｈの単純モデル、指数関数積分発火（ＥＩＦ）モデル、ＦｉｔｚＨｕｇｈ－Ｎａ
ｇｕｍｏモデル、クォートモデル、またはＨｕｎｚｉｎｇｅｒ　Ｃｏｌｄモデルのうちの
少なくとも１つを含み得る。そのようなニューロンモデルは、上記のように区分的線形近
似とそれに関連するパラメータ（たとえば、係数）とを使用して実施され得る。さらに、
フレキシブルなアーキテクチャは、人工神経系における異なる人工ニューロンが、異なる
ニューロンモデルにより同時に動作することを可能にする。
【０３０５】
　[0242]図１５Ａは、本開示のいくつかの態様による、ニューロンモデルのためのパラメ
ータが選択、ロード、アクセス、追加、削除、調整および／または更新され得る、単一の
ニューラル処理ユニット１５０２のためのそのような共通のフレキシブルなニューラルア
ーキテクチャの実装形態を示す。本明細書で説明する概念は、ニューラル処理ユニット１
５０２のシステム（たとえば、人工神経系）に容易に拡大され得るが、説明しやすいよう
に、図１５Ａには単一のニューラル処理ユニットのみが示されている。ニューラル処理ユ
ニット１５０２は、図示のように、１つまたは複数の入力とニューロンモデルのためのパ
ラメータのセットとを受信し、１つまたは複数の状態変数を出力するステートマシン１５
０６を実装し得る。ステートマシン１５０６は、人工ニューロンのための任意の好適な処
理アルゴリズムを実装し得る。
【０３０６】
　[0243]所与のニューロンモデルのためのパラメータは、複数のニューロンモデルのため
のパラメータのセット１５０４から選択され得る。いくつかの態様では、たとえば、オペ
レータが所与のニューラル処理ユニットにおいてあるニューロンモデルを使用することを
希望し、このモデルを利用可能なニューロンモデルのリストから選択することがある。他
の態様では、あるニューロンモデルが、学習またはトレーニング動作に基づいてニューラ
ル処理ユニットのシステムによって選択され得る。所与のニューロンモデルのためのパラ
メータは、上述の区分的線形近似に基づくパラメータであり得る。いくつかの態様では、
ニューラル処理ユニット１５０２に関連付けられ、かつ／またはニューラル処理ユニット
１５０２の局所にあるメモリに、パラメータのセット１５０４は記憶され得る。他の態様
では、複数のニューラル処理ユニットによって大域的にアクセス可能なメモリまたはニュ
ーラル処理ユニット１５０２の内部にあるキャッシュメモリに、パラメータのセット１５
０４は記憶され得る。ニューロンモデルＡのためのパラメータは、第１のメモリロケーシ
ョン１５０８（たとえば、アドレス指定可能なメモリブロック）に記憶され得る一方、ニ
ューロンモデルＢのためのパラメータは、第２のメモリロケーション１５１０に記憶され
得る。
【０３０７】
　[0244]図１５Ａでは、ニューロンモデルＡのためのパラメータは、ニューラル処理ユニ
ット１５０２にロードされている。本明細書で使用する「ロード」という用語は、広く定
義されてよく、ニューラル処理ユニットによって（またはニューラル処理ユニットのシス
テムによって）アクセス可能なメモリから所与のニューロンモデルのためのパラメータを
取り出すこと、ニューラル処理ユニットの局所にあるメモリにパラメータを記憶すること
、またはメモリにおける、ニューラル処理ユニットに関連する（たとえば、ニューラル処
理ユニットのために指定された）１つまたは複数のメモリエリアにアクセスすることを含
み得る。いくつかの態様によれば、あるニューロンモデルのためのパラメータを特定のニ
ューラル処理ユニットにロードすることは、設定事象に応答して生じ得る。たとえば、設
定事象は、特定のニューラル処理ユニットを起動すること、（特定の処理ユニットを含む
場合も含まない場合もある）ニューラル処理ユニットの１つもしくは複数の領域を起動す
ること、またはニューラル処理ユニットのシステム全体を起動することを含み得る。
【０３０８】



(67) JP 5976948 B2 2016.8.24

10

20

30

40

50

　[0245]図１５Ｂでは、ニューロンモデルＢのためのパラメータは、ニューラル処理ユニ
ット１５０２にロードされている。そのときから、ステートマシン１５０６は、これらの
直近にロードされたパラメータに少なくとも部分的に基づいて動作し得る。このようにし
て、ニューラル処理ユニット１５０２は、異なるパラメータをロードするだけで、異なる
ニューロンモデルに従って機能し得る。さらに、特定のニューロンモデルのためのパラメ
ータは、いつでも更新または削除され得る。
【０３０９】
　[0246]図１５Ｃでは、ニューロンモデルＣのためのパラメータがパラメータのセット１
５０４に追加され得る。たとえば、ニューロンモデルＣは、ニューラル処理ユニット１５
０２が動作可能になったときには利用できなかった、最近開発、購入またはライセンス供
与されたニューロンモデルであり得る。他の例示的なシナリオでは、技師またはシステム
設計者がニューロンモデルＣを考えていなかった可能性があるか、またはこのモデルは所
望のアプリケーションに適合しないと当初考えていた可能性があるが、今ではこのモデル
を追加することを希望している。
【０３１０】
　[0247]図１５Ｄでは、ニューロンモデルＣのためのパラメータが第３のメモリロケーシ
ョン１５１２に記憶され得る。ニューロンモデルＣのためのパラメータはニューラル処理
ユニット１５０２にロードされてよく、それによりステートマシン１５０６は、これらの
直近にロードされたパラメータに少なくとも部分的に基づいて動作することができる。ニ
ューラル処理ユニットにおいて異なるパラメータをロードするだけでニューラル処理ユニ
ットのためのニューロンモデルを効果的に変更する能力は、必要に応じて更新され変更さ
れ得る非常にフレキシブルなアーキテクチャをもたらす。
【０３１１】
　[0248]図１６は、本開示のいくつかの態様による、ニューラル処理ユニットのシステム
（たとえば、人工神経系）において複数のニューロンモデルの組合せを実施するための例
示的な動作１６００の流れ図である。動作１６００は、ハードウェアで（たとえば、神経
形態学的プロセッサなどの１つもしくは複数の処理ユニットによって）、ソフトウェアで
、またはファームウェアで実行され得る。人工神経系は、視覚神経系、聴覚神経系、海馬
などのような様々な生物学上または想像上の神経系のうちのいずれかでモデル化され得る
。
【０３１２】
　[0249]複数のニューロンモデルは、上述したニューロンモデルの任意の組合せ、ならび
に存在するか、または今のところ未開発もしくは未開示である任意の好適なニューロンモ
デルを含み得る。たとえば、複数のニューロンモデルは、Ｉｚｈｉｋｅｖｉｃｈの単純モ
デル、指数関数積分発火（ＥＩＦ）モデル、ＦｉｔｚＨｕｇｈ－Ｎａｇｕｍｏモデル、ク
ォートモデル、Ｈｕｎｚｉｎｇｅｒ　Ｃｏｌｄモデルまたは真性伝導性モデルのうちの少
なくとも１つを含み得る。本明細書で使用する「ニューロンモデルの組合せ」という句は
一般に、複数のニューロンモデルからなるセットを指し、セットは単一のメンバーを含み
得る。言い換えれば、複数のニューロンモデルの組合せは、複数のうちの１つと、複数の
任意のサブセットの任意の組合せとを含む。
【０３１３】
　[0250]動作１６００は、１６０２において、複数のニューロンモデルから選択された第
１のニューロンモデルのためのパラメータを第１のニューラル処理ユニット（たとえば、
人工ニューロン）にロードすることによって始まり得る。所与のニューロンモデルのため
のパラメータは、上述のニューロンモデルの区分的線形近似から導出されたパラメータで
あり得る。１６０４において、第１のニューロンモデルのためのロードされたパラメータ
に少なくとも部分的に基づいて、第１のニューラル処理ユニットの第１の状態が決定され
得る。１６０６において、第１のニューロンモデルのためのパラメータおよび第１の状態
に少なくとも部分的に基づいて、第１のニューラル処理ユニットの第２の状態が決定され
得る。
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【０３１４】
　[0251]いくつかの態様によれば、１６０８において複数のニューロンモデルが更新され
得る。上記のように、複数のニューロンモデルを更新することは、既存のニューロンモデ
ルのためのいくつかのパラメータを削除もしくは調整すること、または別のニューロンモ
デル（たとえば、複数のニューロンモデルがシステムで利用可能になった時点では利用可
能でなかった新しいニューロンモデルまたは新しいニューロンモデルを効果的に作成する
ための既存のニューロンモデルの望ましい変更）のためのパラメータを追加することを含
み得る。いくつかの態様では、複数のニューロンモデルを更新することは、第１のニュー
ロンモデルのためのパラメータをロード（または再ロード）し、第１のニューラル処理ユ
ニットの次の状態を決定する前に生じ得る。
【０３１５】
　[0252]１６１０において、第２のニューロンモデルのためのパラメータが第１のニュー
ラル処理ユニットに随意にロードされ得る。第２のニューロンモデルのためのこれらのパ
ラメータは、第１のニューロンモデルのための１６０２においてロードされたパラメータ
に取って代わり得る。１６１０において第２のニューロンモデルのためのパラメータがロ
ードされる前に、１６０８において複数のニューロンモデルが更新される必要はない。　
１６１２において、第２のニューロンモデルのためのパラメータに少なくとも部分的に基
づいて、（たとえば、第２の状態に続く）第１のニューラル処理ユニットの第３の状態が
決定され得る。
【０３１６】
　[0253]いくつかの態様によれば、１６０２において第１のモデルのための（または１６
１０において第２のニューロンモデルのための）パラメータをロードすることは、設定事
象に応答したものである。いくつかの態様では、設定事象は、ニューラル処理ユニットの
システムまたは第１のニューラル処理ユニットのうちの少なくとも１つのための起動であ
る。
【０３１７】
　[0254]いくつかの態様によれば、１６１２において第３の状態を決定することはさらに
、第２の状態に少なくとも部分的に基づく。後続ニューロンモデルのためのパラメータに
基づく後続状態の決定が、（後続ニューロンモデルとは異なる）先行ニューロンモデルの
ためのパラメータに基づいて決定された先行状態に基づく場合、これは、「ホットスワッ
プ」と呼ばれ得る。いくつかの態様では、第２のニューロンモデルは、少なくとも部分的
に、「ホットスワップ」条件に基づいてしきい値下振動を生成するように構成される。こ
の振動は、第２の状態から、または別の時点に始まり得る。いくつかの態様では、１６１
０における第２のニューロンモデルのためのパラメータのロードは、状態条件（たとえば
、状態が特定の領域に入るか、もしくはある挙動、たとえば変更のレートを示すなど）、
（たとえば、タイマーに基づく）時間条件またはトリガのうちの少なくとも１つに少なく
とも部分的に基づく。トリガは、たとえば、第１のニューラル処理ユニットの外部にあり
得る。
【０３１８】
　[0255]いくつかの態様によれば、動作１６００は、複数のニューロンモデルから選択さ
れた第２のニューロンモデルのためのパラメータを第２のニューラル処理ユニットにロー
ドすることをさらに含み得る。次いで、第２のニューロンモデルのためのパラメータに少
なくとも部分的に基づいて、第２のニューラル処理ユニットの状態が決定され得る。いく
つかの態様では、第１のニューラル処理ユニットおよび第２のニューラル処理ユニットは
、システムの異なるエリアに位置する。いくつかの態様では、第１のニューロンモデルお
よび第２のニューロンモデルは、異なるタイプのニューロンを表す。言い換えれば、ニュ
ーラル処理ユニットのシステムにおける異なるニューロンモデルは、ニューラルシステム
の異なる領域にあるニューロンをエミュレートするために使用され得る。たとえば、視覚
、聴覚またはモータ制御システムにおけるニューロンは、異なるニューロンモデルによっ
て表され得る。
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【０３１９】
　[0256]第１の、第２の、または任意の他のニューロンモデルのためのパラメータをロー
ドすることは、様々な好適な動作のうちのいずれかを伴い得る。下記の説明は、説明しや
すいように第１のニューロンモデルのためのパラメータをロードすることを含むが、その
ようなロードは、任意の他のニューロンモデルのためのパラメータにも当てはまる。いく
つかの態様によれば、第１のニューロンモデルのためのパラメータをロードすることは、
第１のニューロンモデルのためのパラメータを、第１のニューラル処理ユニットを含む複
数のニューラル処理ユニットにロードすることを含む。いくつかの態様では、第１のニュ
ーロンモデルのためのパラメータをロードすることは、第１のニューロンモデルのための
パラメータの少なくとも一部分をメモリから取り出すことを含む。このメモリは、いくつ
かの態様ではニューラル処理ユニットのシステムによってアクセス可能であり得る。いく
つかの態様では、メモリの少なくとも一部分は、第１のニューラル処理ユニットの局所に
あり得る。メモリの少なくとも一部分は、キャッシュメモリであり得る。いくつかの態様
では、第１のニューロンモデルのためのパラメータをロードすることは、メモリにおける
、第１のニューロンモデルに関連するメモリブロックにアクセスすることをさらに含む。
この場合、メモリブロックは、メモリブロックにおけるメモリアドレスに対するポインタ
によって指定され得る。
【０３２０】
　[0257]図１７は、本開示のいくつかの態様による、汎用プロセッサ１７０２を使用して
人工ニューロンを動作させるための上述した方法を実施するための構成要素の例示的なブ
ロック図１７００を示す。計算ネットワーク（ニューラルネットワーク）に関連する変数
（ニューラル信号）、シナプス重み、および／またはシステムパラメータは、メモリブロ
ック１７０４に記憶され得る一方、汎用プロセッサ１７０２において実行される関連した
命令は、プログラムメモリ１７０６からロードされ得る。本開示の一態様では、汎用プロ
セッサ１７０２にロードされる命令は、人工ニューロンの第１の状態が第１の領域内にあ
ると決定するためのコードと、１次方程式の第１のセットに少なくとも部分的に基づいて
人工ニューロンの第２の状態を決定するためのコードと、ここにおいて、１次方程式の第
１のセットは、第１の領域に対応するパラメータの第１のセットに少なくとも部分的に基
づく、人工ニューロンの第２の状態が第２の領域内にあると決定するためのコードと、１
次方程式の第２のセットに少なくとも部分的に基づいて人工ニューロンの第３の状態を決
定するためのコードと、ここにおいて、１次方程式の第２のセットは、第２の領域に対応
するパラメータの第２のセットに少なくとも部分的に基づく、を備え得る。いくつかの態
様では、第１の領域または第２の領域のうちの少なくとも１つは、２つ以上の次元によっ
て定義される。
【０３２１】
　[0258]本開示の別の態様では、汎用プロセッサ１７０２にロードされる命令は、複数の
ニューロンモデルから選択された第１のニューロンモデルのためのパラメータを（ニュー
ラル処理ユニットのシステムにおける）第１のニューラル処理ユニットにロードするため
のコードと、第１のニューロンモデルのためのパラメータに少なくとも部分的に基づいて
第１のニューラル処理ユニットの第１の状態を決定するためのコードとを備え得る。
【０３２２】
　[0259]図１８は、本開示のいくつかの態様による、メモリ１８０２が相互接続ネットワ
ーク１８０４を介して計算ネットワーク（ニューラルネットワーク）の個々の（分散型）
処理ユニット（ニューラルプロセッサ）１８０６とインターフェースされ得る人工ニュー
ロンを動作させるための上述した方法を実施するための構成要素の例示的なブロック図１
８００を示す。計算ネットワーク（ニューラルネットワーク）に関連する変数（ニューラ
ル信号）、シナプス重み、および／またはシステムパラメータは、メモリ１８０２に記憶
されてよく、相互接続ネットワーク１８０４の接続を介してメモリ１８０２から各処理ユ
ニット（ニューラルプロセッサ）１８０６にロードされ得る。本開示の一態様では、処理
ユニット１８０６は、人工ニューロンの第１の状態が第１の領域内にあると決定すること



(70) JP 5976948 B2 2016.8.24

10

20

30

40

50

と、１次方程式の第１のセットに少なくとも部分的に基づいて人工ニューロンの第２の状
態を決定することと、ここにおいて、１次方程式の第１のセットは、第１の領域に対応す
るパラメータの第１のセットに少なくとも部分的に基づく、人工ニューロンの第２の状態
が第２の領域内にあると決定することと、１次方程式の第２のセットに少なくとも部分的
に基づいて人工ニューロンの第３の状態を決定することと、ここにおいて、１次方程式の
第２のセットは、第２の領域に対応するパラメータの第２のセットに少なくとも部分的に
基づく、を行うように構成され得る。いくつかの態様では、第１の領域または第２の領域
のうちの少なくとも１つは、２つ以上の次元によって定義される。
【０３２３】
　[0260]本開示の別の態様では、処理ユニット１８０６は、複数のニューロンモデルから
選択された第１のニューロンモデルのためのパラメータを（ニューラル処理ユニットのシ
ステムにおける）第１のニューラル処理ユニットにロードし、第１のニューロンモデルの
ためのパラメータに少なくとも部分的に基づいて第１のニューラル処理ユニットの第１の
状態を決定するように構成され得る。
【０３２４】
　[0261]図１９は、本開示のいくつかの態様による、分散型重みメモリ１９０２および分
散型処理ユニット（ニューラルプロセッサ）１９０４に基づいて人工ニューロンを動作さ
せるための上述した方法を実施するための構成要素の例示的なブロック図１９００を示す
。図１９に示すように、１つのメモリバンク１９０２が、計算ネットワーク（ニューラル
ネットワーク）の１つの処理ユニット１９０４と直接インターフェースされてよく、メモ
リバンク１９０２は、その処理ユニット（ニューラルプロセッサ）１９０４に関連する変
数（ニューラル信号）、シナプス重み、および／またはシステムパラメータを記憶するこ
とができる。本開示の一態様では、処理ユニット１９０４は、人工ニューロンの第１の状
態が第１の領域内にあると決定することと、１次方程式の第１のセットに少なくとも部分
的に基づいて人工ニューロンの第２の状態を決定することと、ここにおいて、１次方程式
の第１のセットは、第１の領域に対応するパラメータの第１のセットに少なくとも部分的
に基づく、人工ニューロンの第２の状態が第２の領域内にあると決定することと、１次方
程式の第２のセットに少なくとも部分的に基づいて人工ニューロンの第３の状態を決定す
ることと、ここにおいて、１次方程式の第２のセットは、第２の領域に対応するパラメー
タの第２のセットに少なくとも部分的に基づく、を行うように構成され得る。いくつかの
態様では、第１の領域または第２の領域のうちの少なくとも１つは、２つ以上の次元によ
って定義される。
【０３２５】
　[0262]本開示の別の態様では、処理ユニット１９０４は、複数のニューロンモデルから
選択された第１のニューロンモデルのためのパラメータを（ニューラル処理ユニットのシ
ステムにおける）第１のニューラル処理ユニットにロードし、第１のニューロンモデルの
ためのパラメータに少なくとも部分的に基づいて第１のニューラル処理ユニットの第１の
状態を決定するように構成され得る。
【０３２６】
　[0263]図２０は、本開示のいくつかの態様による、ニューラルネットワーク２０００の
例示的な実装形態を示す。図２０に示すように、ニューラルネットワーク２０００は、上
述した方法の様々な動作を実行し得る複数のローカル処理ユニット２００２を備えること
ができる。各処理ユニット２００２は、ローカル状態メモリ２００４と、ニューラルネッ
トワークのパラメータを記憶するローカルパラメータメモリ２００６とを備えることがで
きる。さらに、処理ユニット２００２は、ローカル（ニューロン）モデルプログラムを有
するメモリ２００８と、ローカル学習プログラムを有するメモリ２０１０と、ローカル接
続メモリ２０１２とを備えることができる。さらに、図２０に示すように、各ローカル処
理ユニット２００２は、ローカル処理ユニットのローカルメモリのための設定を提供し得
る設定処理のためのユニット２０１４と、またローカル処理ユニット２００２間のルーテ
ィングを提供するルーティング接続処理要素２０１６とインターフェースされ得る。
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【０３２７】
　[0264]本開示のいくつかの態様によれば、各ローカル処理ユニット２００２は、ニュー
ラルネットワークの所望の１つまたは複数の機能的特徴に基づいてニューラルネットワー
クのパラメータを決定し、決定されたパラメータがさらに適合、調整および更新されるこ
とで、１つまたは複数の機能的特徴を所望の機能的特徴に向けて発展させるように構成さ
れ得る。
【０３２８】
　[0265]上述した方法の様々な動作は、対応する機能を実行することが可能な任意の好適
な手段によって実行され得る。それらの手段は、限定はしないが、回路、特定用途向け集
積回路（ＡＳＩＣ）、またはプロセッサを含む、様々なハードウェアおよび／またはソフ
トウェア構成要素および／またはモジュールを含み得る。たとえば、様々な動作は、図１
７～図２０に示す様々なプロセッサのうちの１つまたは複数によって実行され得る。概し
て、図に示されている動作がある場合、それらの動作は、同様の番号をもつ対応するカウ
ンターパートのミーンズプラスファンクション構成要素を有し得る。たとえば、図１４に
示す動作１４００は、図１４Ａに示す手段１４００Ａに対応する。
【０３２９】
　[0266]たとえば、表示するための手段は、ディスプレイ（たとえば、モニタ、フラット
スクリーン、タッチスクリーンなど）、プリンタ、または視覚的描写（たとえば、表、チ
ャートもしくはグラフ）のためのデータを出力するための任意の他の好適な手段を備え得
る。処理するための手段、生成するための手段、ロードするための手段、リセットするた
めの手段、取り出すための手段、更新するための手段、計算するための手段、算出するた
めの手段、出力するための手段、または決定するための手段は、１つまたは複数のプロセ
ッサまたは処理ユニットを含み得る、処理システムを備え得る。記憶するための手段は、
処理システムによってアクセスされ得る、メモリまたは任意の他の好適な記憶デバイス（
たとえば、ＲＡＭ）を備え得る。
【０３３０】
　[0267]本明細書で使用する「決定」という用語は、多種多様なアクションを包含する。
たとえば、「決定」は、計算すること、算出すること、処理すること、導出すること、調
査すること、ルックアップすること（たとえば、テーブル、データベースまたは別のデー
タ構造においてルックアップすること）、確認することなどを含み得る。また、「決定」
は、受信すること（たとえば、情報を受信すること）、アクセスすること（たとえば、メ
モリ中のデータにアクセスすること）などを含み得る。また、「決定」は、解決すること
、選択すること、選定すること、確立することなどを含み得る。
【０３３１】
　[0268]本明細書で使用する、項目のリスト「のうちの少なくとも１つ」を指す句は、単
一のメンバーを含む、それらの項目の任意の組合せを指す。一例として、「ａ、ｂ、また
はｃのうちの少なくとも１つ」は、ａ、ｂ、ｃ、ａ－ｂ、ａ－ｃ、ｂ－ｃ、およびａ－ｂ
－ｃを包含するものとする。
【０３３２】
　[0269]本開示に関連して説明した様々な例示的な論理ブロック、モジュール、および回
路は、汎用プロセッサ、デジタル信号プロセッサ（ＤＳＰ）、特定用途向け集積回路（Ａ
ＳＩＣ）、フィールドプログラマブルゲートアレイ信号（ＦＰＧＡ）または他のプログラ
マブル論理デバイス（ＰＬＤ）、個別ゲートまたはトランジスタ論理、個別ハードウェア
構成要素、あるいは本明細書で説明した機能を実行するように設計されたそれらの任意の
組合せを用いて実装または実行され得る。汎用プロセッサはマイクロプロセッサであり得
るが、代替として、プロセッサは、任意の市販のプロセッサ、コントローラ、マイクロコ
ントローラまたはステートマシンであり得る。プロセッサはまた、コンピューティングデ
バイスの組合せ、たとえば、ＤＳＰとマイクロプロセッサとの組合せ、複数のマイクロプ
ロセッサ、ＤＳＰコアと連携する１つまたは複数のマイクロプロセッサ、あるいは任意の
他のそのような構成として実装され得る。
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【０３３３】
　[0270]本開示に関連して説明した方法またはアルゴリズムのステップは、ハードウェア
で直接実施されるか、プロセッサによって実行されるソフトウェアモジュールで実施され
るか、またはその２つの組合せで実施され得る。ソフトウェアモジュールは、当技術分野
で知られている任意の形態の記憶媒体中に常駐し得る。使用され得る記憶媒体のいくつか
の例としては、ランダムアクセスメモリ（ＲＡＭ）、読取り専用メモリ（ＲＯＭ）、フラ
ッシュメモリ、ＥＰＲＯＭメモリ、ＥＥＰＲＯＭ（登録商標）メモリ、レジスタ、ハード
ディスク、リムーバブルディスク、ＣＤ－ＲＯＭなどを含む。ソフトウェアモジュールは
、単一の命令、または多数の命令を備えることができ、いくつかの異なるコードセグメン
ト上で、異なるプログラム間で、かつ複数の記憶媒体にわたって分散され得る。記憶媒体
は、プロセッサがその記憶媒体から情報を読み取ることができ、その記憶媒体に情報を書
き込むことができるように、プロセッサに結合され得る。代替として、記憶媒体はプロセ
ッサと一体化され得る。
【０３３４】
　[0271]本明細書で開示する方法は、説明した方法を達成するための１つまたは複数のス
テップまたはアクションを備える。本方法のステップおよび／またはアクションは、特許
請求の範囲から逸脱することなく互いに交換され得る。言い換えれば、ステップまたはア
クションの特定の順序が指定されない限り、特定のステップおよび／またはアクションの
順序および／または使用は、特許請求の範囲から逸脱することなく変更され得る。
【０３３５】
　[0272]説明した機能は、ハードウェア、ソフトウェア、ファームウェア、またはそれら
の任意の組合せで実装され得る。ハードウェアで実装される場合、例示的なハードウェア
構成はデバイス中に処理システムを備え得る。処理システムは、バスアーキテクチャを用
いて実装され得る。バスは、処理システムの特定の適用例および全体的な設計制約に応じ
て、任意の数の相互接続バスとブリッジとを含み得る。バスは、プロセッサと、機械可読
媒体と、バスインターフェースとを含む様々な回路を互いにリンクし得る。バスインター
フェースは、ネットワークアダプタを、特に、バスを介して処理システムに接続するため
に使用され得る。ネットワークアダプタは、信号処理機能を実装するために使用され得る
。いくつかの態様では、ユーザインターフェース（たとえば、キーパッド、ディスプレイ
、マウス、ジョイスティックなど）もバスに接続され得る。バスはまた、タイミングソー
ス、周辺機器、電圧調整器、電力管理回路などの様々な他の回路にリンクし得るが、それ
らは当技術分野でよく知られており、したがってこれ以上は説明されない。
【０３３６】
　[0273]プロセッサは、機械可読媒体に記憶されたソフトウェアの実行を含む、バスおよ
び一般的な処理を管理することを担当し得る。プロセッサは、１つまたは複数の汎用およ
び／または専用プロセッサを用いて実装され得る。例としては、マイクロプロセッサ、マ
イクロコントローラ、ＤＳＰプロセッサ、およびソフトウェアを実行し得る他の回路を含
む。ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、
ハードウェア記述言語などの名称にかかわらず、命令、データ、またはそれらの任意の組
合せを意味すると広く解釈されたい。機械可読媒体は、例として、ＲＡＭ（ランダムアク
セスメモリ）、フラッシュメモリ、ＲＯＭ（読取り専用メモリ）、ＰＲＯＭ（プログラマ
ブル読取り専用メモリ）、ＥＰＲＯＭ（消去可能プログラマブル読取り専用メモリ）、Ｅ
ＥＰＲＯＭ（電気消去可能プログラマブル読取り専用メモリ）、レジスタ、磁気ディスク
、光ディスク、ハードドライブ、または任意の他の好適な記憶媒体、あるいはそれらの任
意の組合せを含み得る。機械可読媒体はコンピュータプログラム製品において実施され得
る。コンピュータプログラム製品はパッケージング材料を備え得る。
【０３３７】
　[0274]ハードウェア実装形態では、機械可読媒体は、プロセッサとは別個の処理システ
ムの一部であり得る。しかしながら、当業者なら容易に理解するように、機械可読媒体ま
たはその任意の部分は処理システムの外部にあり得る。例として、機械可読媒体は、すべ
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てバスインターフェースを介してプロセッサによってアクセスされ得る、伝送線路、デー
タによって変調された搬送波、および／またはデバイスとは別個のコンピュータ製品を含
み得る。代替的に、または追加で、機械可読媒体またはその任意の部分は、キャッシュお
よび／または汎用レジスタファイルがそうであり得るように、プロセッサに統合され得る
。
【０３３８】
　[0275]処理システムは、すべて外部バスアーキテクチャを介して他のサポート回路と互
いにリンクされる、プロセッサ機能を提供する１つまたは複数のマイクロプロセッサと、
機械可読媒体の少なくとも一部分を提供する外部メモリとをもつ汎用処理システムとして
構成され得る。代替的に、処理システムは、プロセッサをもつＡＳＩＣ（特定用途向け集
積回路）と、バスインターフェースと、ユーザインターフェースと、サポート回路と、単
一のチップに統合された機械可読媒体の少なくとも一部分とを用いて、あるいは１つまた
は複数のＦＰＧＡ（フィールドプログラマブルゲートアレイ）、ＰＬＤ（プログラマブル
論理デバイス）、コントローラ、ステートマシン、ゲート論理、個別ハードウェア構成要
素、もしくは他の好適な回路、または本開示全体にわたって説明した様々な機能を実行し
得る回路の任意の組合せを用いて、実装され得る。当業者なら、特定の適用例と、全体的
なシステムに課される全体的な設計制約とに応じて、どのようにしたら処理システムにつ
いて説明した機能を最も良く実装し得るかを理解されよう。
【０３３９】
　[0276]機械可読媒体はいくつかのソフトウェアモジュールを備え得る。ソフトウェアモ
ジュールは、プロセッサによって実行されたときに、処理システムに様々な機能を実行さ
せる命令を含む。ソフトウェアモジュールは、送信モジュールと受信モジュールとを含み
得る。各ソフトウェアモジュールは、単一の記憶デバイス中に常駐するか、または複数の
記憶デバイスにわたって分散され得る。例として、トリガイベントが発生したとき、ソフ
トウェアモジュールがハードドライブからＲＡＭにロードされ得る。ソフトウェアモジュ
ールの実行中、プロセッサは、アクセス速度を高めるために、命令のいくつかをキャッシ
ュにロードし得る。次いで、１つまたは複数のキャッシュラインが、プロセッサによる実
行のために汎用レジスタファイルにロードされ得る。以下でソフトウェアモジュールの機
能に言及する場合、そのような機能は、そのソフトウェアモジュールからの命令を実行し
たときにプロセッサによって実装されることが理解されよう。
【０３４０】
　[0277]ソフトウェアで実装される場合、機能は、１つまたは複数の命令またはコードと
してコンピュータ可読媒体上に記憶されるか、あるいはコンピュータ可読媒体を介して送
信され得る。コンピュータ可読媒体は、ある場所から別の場所へのコンピュータプログラ
ムの転送を可能にする任意の媒体を含む、コンピュータ記憶媒体と通信媒体の両方を含む
。記憶媒体は、コンピュータによってアクセスされ得る任意の利用可能な媒体であり得る
。限定ではなく例として、そのようなコンピュータ可読媒体は、ＲＡＭ、ＲＯＭ、ＥＥＰ
ＲＯＭ、ＣＤ－ＲＯＭまたは他の光ディスクストレージ、磁気ディスクストレージまたは
他の磁気記憶デバイス、あるいは命令またはデータ構造の形態の所望のプログラムコード
を搬送または記憶するために使用され得、コンピュータによってアクセスされ得る、任意
の他の媒体を備えることができる。また、いかなる接続もコンピュータ可読媒体を適切に
名づけられる。たとえば、ソフトウェアが、同軸ケーブル、光ファイバーケーブル、ツイ
ストペア、デジタル加入者回線（ＤＳＬ）、または赤外線（ＩＲ）、無線、およびマイク
ロ波などのワイヤレス技術を使用して、ウェブサイト、サーバ、または他のリモートソー
スから送信される場合、同軸ケーブル、光ファイバーケーブル、ツイストペア、ＤＳＬ、
または赤外線、無線、およびマイクロ波などのワイヤレス技術は、媒体の定義に含まれる
。本明細書で使用するディスク（disk）およびディスク（disc）は、コンパクトディスク
（disc）（ＣＤ）、レーザーディスク（登録商標）（disc）、光ディスク（disc）、デジ
タル多用途ディスク（disc）（ＤＶＤ）、フロッピー（登録商標）ディスク（disk）、お
よびＢｌｕ－ｒａｙ（登録商標）ディスク（disc）を含み、ディスク（disk）は、通常、
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データを磁気的に再生し、ディスク（disc）は、データをレーザーで光学的に再生する。
したがって、いくつかの態様では、コンピュータ可読媒体は非一時的コンピュータ可読媒
体（たとえば、有形媒体）を備え得る。さらに、他の態様では、コンピュータ可読媒体は
一時的コンピュータ可読媒体（たとえば、信号）を備え得る。上記の組合せもコンピュー
タ可読媒体の範囲内に含まれるべきである。
【０３４１】
　[0278]したがって、いくつかの態様は、本明細書で提示する動作を実行するためのコン
ピュータプログラム製品を備え得る。たとえば、そのようなコンピュータプログラム製品
は、本明細書で説明する動作を実行するために１つまたは複数のプロセッサによって実行
可能である命令を記憶した（かつ／または符号化した）コンピュータ可読媒体を備え得る
。いくつかの態様では、コンピュータプログラム製品はパッケージング材料を含み得る。
【０３４２】
　[0279]さらに、本明細書で説明した方法および技法を実行するためのモジュールおよび
／または他の適切な手段は、適用可能な場合にデバイスによってダウンロードされ、かつ
／または他の方法で取得され得ることを諒解されたい。たとえば、そのようなデバイスは
、本明細書で説明した方法を実施するための手段の転送を可能にするためにサーバに結合
され得る。代替的に、本明細書で説明した様々な方法は、デバイスが記憶手段をデバイス
に結合または提供すると様々な方法を得ることができるように、記憶手段（たとえば、Ｒ
ＡＭ、ＲＯＭ、コンパクトディスク（ＣＤ）またはフロッピーディスクなどの物理記憶媒
体など）によって提供され得る。その上、本明細書で説明した方法および技法をデバイス
に与えるための任意の他の好適な技法が利用され得る。
【０３４３】
　[0280]特許請求の範囲は、上記で示した厳密な構成および構成要素に限定されないこと
を理解されたい。上記で説明した方法および装置の構成、動作および詳細において、特許
請求の範囲から逸脱することなく、様々な改変、変更および変形が行われ得る。
以下に、本願出願の当初の特許請求の範囲に記載された発明を付記する。
　　［Ｃ１］
　人工ニューロンの状態を更新するための方法であって、
　前記人工ニューロンの第１の状態が第１の領域内にあると決定することと、
　１次方程式の第１のセットに少なくとも部分的に基づいて前記人工ニューロンの第２の
状態を決定することと、ここにおいて、前記１次方程式の第１のセットは、前記第１の領
域に対応するパラメータの第１のセットに少なくとも部分的に基づく、
　前記人工ニューロンの前記第２の状態が第２の領域内にあると決定することと、
　１次方程式の第２のセットに少なくとも部分的に基づいて前記人工ニューロンの第３の
状態を決定することと
　を備え、前記１次方程式の第２のセットは、前記第２の領域に対応するパラメータの第
２のセットに少なくとも部分的に基づく、
方法。
　　［Ｃ２］
　前記１次方程式の第１のセットおよび第２のセットは、線形時間不変（ＬＴＩ）状態空
間方程式の離散時間解を備える、
［Ｃ１］に記載の方法。
　　［Ｃ３］
　メモリから前記パラメータの第１セットまたは第２のセットのうちの少なくとも１つを
取り出すことをさらに備える、
［Ｃ１］に記載の方法。
　　［Ｃ４］
　前記取り出すことは、前記人工ニューロンの局所にあるメモリから前記パラメータの第
１のセットまたは第２のセットのうちの前記少なくとも１つを取り出すことを備える、
［Ｃ３］に記載の方法。
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　　［Ｃ５］
　前記パラメータの第１のセットまたは第２のセットのうちの少なくとも１つの少なくと
も一部分を計算することをさらに備える、
［Ｃ１］に記載の方法。
　　［Ｃ６］
　前記パラメータの第１のセットまたは第２のセットのうちの前記少なくとも１つの前記
少なくとも前記一部分は、メモリから取り出された１つまたは複数の値を使用して計算さ
れる、
［Ｃ５］に記載の方法。
　　［Ｃ７］
　前記パラメータの第１のセットまたは第２のセットのうちの少なくとも１つは、前記人
工ニューロンに関連するニューロンモデルにおける非線形関数の少なくとも一部分を区分
的線形関数により近似することによって取得される、
［Ｃ１］に記載の方法。
　　［Ｃ８］
　前記非線形関数は、電圧依存型伝導性（ｇ（ｖ））により増大する膜電位（ｖ）を備え
る、
［Ｃ７］に記載の方法。
　　［Ｃ９］
　前記電圧依存型伝導性は、区分的定数関数により近似される、
［Ｃ８］に記載の方法。
　　［Ｃ１０］
　前記非線形関数は電圧依存型関数（Ｆ（ｖ））を備え、ｖは前記人工ニューロンの膜電
位である、
［Ｃ７］に記載の方法。
　　［Ｃ１１］
　前記第１の領域は、前記区分的線形関数において前記第２の領域とは異なる幅を有する
、
［Ｃ７］に記載の方法。
　　［Ｃ１２］
　前記区分的線形関数における前記第１の領域または前記第２の領域の幅は、前記非線形
関数に依存する、
［Ｃ７］に記載の方法。
　　［Ｃ１３］
　前記区分的線形関数近似は、テイラー展開方法、１次線形補間方法、最適線形補間方法
、または平均傾斜方法のうちの少なくとも１つに少なくとも部分的に基づく、
［Ｃ７］に記載の方法。
　　［Ｃ１４］
　前記パラメータの第１のセットまたは第２のセットのうちの少なくとも１つは、少なく
とも部分的に前記人工ニューロンにおける特定の挙動を実現するように設計される、
［Ｃ１］に記載の方法。
　　［Ｃ１５］
　前記人工ニューロンの前記第１の状態、第２の状態、および第３の状態は、膜電位（ｖ
）および復元電流（ｕ）によって定義される、
［Ｃ１］に記載の方法。
　　［Ｃ１６］
　スパイク事象が生じているか、または生じることになるとの決定に少なくとも部分的に
基づいて、前記人工ニューロンの前記膜電位または前記復元電流のうちの少なくとも１つ
をリセットすることをさらに備える、
［Ｃ１５］に記載の方法。
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　　［Ｃ１７］
　前記膜電位は、静止電位にリセットされ、前記復元電流は、前記復元電流の現在値とオ
フセットとの合計にリセットされる、
［Ｃ１６］に記載の方法。
　　［Ｃ１８］
　前記１次方程式の第１のセットまたは第２のセットのうちの少なくとも１つは、前記人
工ニューロンのためのニューロンモデルに少なくとも部分的に基づく、
［Ｃ１］に記載の方法。
　　［Ｃ１９］
　前記ニューロンモデルは、Ｉｚｈｉｋｅｖｉｃｈの単純モデル、指数関数積分発火（Ｅ
ＩＦ）モデル、ＦｉｔｚＨｕｇｈ－Ｎａｇｕｍｏモデル、クォートモデル、または真性伝
導性モデルのうちの少なくとも１つに少なくとも部分的に基づく、
［Ｃ１８］に記載の方法。
　　［Ｃ２０］
　前記真性伝導性モデルは、電圧依存型伝導性（ｇ（ｖ））により増大する膜電位（ｖ）
として表される前記ニューロンモデルを備える、
［Ｃ１９］に記載の方法。
　　［Ｃ２１］
　前記ニューロンモデルは少なくとも２つの次元を備える、
［Ｃ１８］に記載の方法。
　　［Ｃ２２］
　前記ニューロンモデルの時間のステップサイズは、モデル化されている前記人工ニュー
ロンのタイプに少なくとも部分的に基づく、
［Ｃ１８］に記載の方法。
　　［Ｃ２３］
　前記ニューロンモデルの時間のステップサイズは不均一である、
［Ｃ１８］に記載の方法。
　　［Ｃ２４］
　特定の時間ステップの時間の前記ステップサイズは、前記人工ニューロンの現在の状態
もしくは過去の状態のうちの少なくとも１つに、またはパラメータの特定のセットに少な
くとも部分的に基づいて決定される、
［Ｃ２３］に記載の方法。
　　［Ｃ２５］
　前記ニューロンモデルは、１つまたは複数の１次常微分方程式（ＯＤＥ）に少なくとも
部分的に基づく、
［Ｃ１８］に記載の方法。
　　［Ｃ２６］
　前記人工ニューロンの前記第２の状態または第３の状態のうちの少なくとも１つを決定
することは、前記人工ニューロンに入力された電流に少なくとも部分的に基づく、
［Ｃ１］に記載の方法。
　　［Ｃ２７］
　前記入力電流は、１つまたは複数のチャネルの各々に関する時間依存型伝導性および前
記１つまたは複数のチャネルの各々に関する逆転電位に少なくとも部分的に基づくシナプ
ス電流を備える、
［Ｃ２６］に記載の方法。
　　［Ｃ２８］
　前記シナプス電流は、Ｎ－メチル－Ｄ－アスパラギン酸（ＮＭＤＡ）チャネルに関する
前記人工ニューロンのシナプス後膜電圧に少なくとも部分的に基づく、
［Ｃ２７］に記載の方法。
　　［Ｃ２９］
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　前記時間依存型伝導性は、指数関数、アルファ関数、または指数差関数によってモデル
化される、
［Ｃ２７］に記載の方法。
　　［Ｃ３０］
　前記第１の状態を決定することと前記第２の状態を決定することとの間の時間の第１の
ステップサイズは、前記第２の状態を決定することと前記第３の状態を決定することとの
間の時間の第２のステップサイズとは異なる、
［Ｃ１］に記載の方法。
　　［Ｃ３１］
　前記人工ニューロンの前記第２の状態を決定することは、第１の時間ステップで実行さ
れ、前記人工ニューロンの前記第３の状態を決定することは、前記第１の時間ステップに
続く第２の時間ステップで実行される、
［Ｃ１］に記載の方法。
　　［Ｃ３２］
　人工ニューロンを動作させるための装置であって、
　前記人工ニューロンの第１の状態が第１の領域内にあると決定することと、
　１次方程式の第１のセットに少なくとも部分的に基づいて前記人工ニューロンの第２の
状態を決定することと、ここにおいて、前記１次方程式の第１のセットは、前記第１の領
域に対応するパラメータの第１のセットに少なくとも部分的に基づく、
　前記人工ニューロンの前記第２の状態が第２の領域内にあると決定することと、
　１次方程式の第２のセットに少なくとも部分的に基づいて前記人工ニューロンの第３の
状態を決定することと、ここにおいて、１次方程式の前記第２のセットは、前記第２の領
域に対応するパラメータの第２のセットに少なくとも部分的に基づく、
を行うように構成された処理システムと、
　前記処理システムに結合されたメモリと
を備える装置。
　　［Ｃ３３］
　前記１次方程式の第１のセットおよび第２のセットは、線形時間不変（ＬＴＩ）状態空
間方程式の離散時間解を備える、
［Ｃ３２］に記載の装置。
　　［Ｃ３４］
　前記処理システムは、前記メモリから前記パラメータの第１のセットまたは第２のセッ
トのうちの少なくとも１つを取り出すことを行うようにさらに構成される、
［Ｃ３２］に記載の装置。
　　［Ｃ３５］
　メモリは、前記人工ニューロンの局所にある、
［Ｃ３４］に記載の装置。
　　［Ｃ３６］
　前記処理システムは、前記パラメータの第１のセットまたは第２のセットのうちの少な
くとも１つの少なくとも一部分を計算することを行うようにさらに構成される、
［Ｃ３２］に記載の装置。
　　［Ｃ３７］
　前記パラメータの第１のセットまたは第２のセットのうちの前記少なくとも１つの前記
少なくとも一部分は、前記メモリから取り出された１つまたは複数の値を使用して計算さ
れる、
［Ｃ３６］に記載の装置。
　　［Ｃ３８］
　前記パラメータの第１のセットまたは第２のセットのうちの少なくとも１つは、前記人
工ニューロンに関連するニューロンモデルにおける非線形関数の少なくとも一部分を区分
的線形関数により近似することによって取得される、
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［Ｃ３２］に記載の装置。
　　［Ｃ３９］
　前記非線形関数は、電圧依存型伝導性（ｇ（ｖ））により増大する膜電位（ｖ）を備え
る、
［Ｃ３８］に記載の装置。
　　［Ｃ４０］
　前記電圧依存型伝導性は区分的定数関数により近似される、
［Ｃ３９］に記載の装置。
　　［Ｃ４１］
　前記非線形関数は電圧依存型関数（Ｆ（ｖ））を備え、ｖは前記人工ニューロンの膜電
位である、
［Ｃ３８］に記載の装置。
　　［Ｃ４２］
　前記第１の領域は、前記区分的線形関数において前記第２の領域とは異なる幅を有する
、
［Ｃ３８］に記載の装置。
　　［Ｃ４３］
　前記区分的線形関数における前記第１の領域または前記第２の領域の幅は、前記非線形
関数に依存する、
［Ｃ３８］に記載の装置。
　　［Ｃ４４］
　前記区分的線形関数近似は、テイラー展開方法、１次線形補間方法、最適線形補間方法
、または平均傾斜方法のうちの少なくとも１つに少なくとも部分的に基づく、
［Ｃ３８］に記載の装置。
　　［Ｃ４５］
　前記パラメータの第１のセットまたは第２のセットのうちの少なくとも１つは、少なく
とも部分的に前記人工ニューロンにおける特定の挙動を実現するように設計される、
［Ｃ３２］に記載の装置。
　　［Ｃ４６］
　前記人工ニューロンの前記第１の状態、第２の状態、および第３の状態は、膜電位（ｖ
）および復元電流（ｕ）によって定義される、
［Ｃ３２］に記載の装置。
　　［Ｃ４７］
　前記処理システムは、スパイク事象が生じているか、または生じることになるとの決定
に少なくとも部分的に基づいて、前記人工ニューロンの前記膜電位または前記復元電流の
うちの少なくとも１つをリセットすることを行うようにさらに構成される、
［Ｃ４６］に記載の装置。
　　［Ｃ４８］
　前記膜電位は、静止電位にリセットされ、前記復元電流は定数にリセットされる、
［Ｃ４７］に記載の装置。
　　［Ｃ４９］
　前記１次方程式の第１のセットまたは第２のセットのうちの少なくとも１つは、前記人
工ニューロンのためのニューロンモデルに少なくとも部分的に基づく、
［Ｃ３２］に記載の装置。
　　［Ｃ５０］
　前記ニューロンモデルは、Ｉｚｈｉｋｅｖｉｃｈの単純モデル、指数関数積分発火（Ｅ
ＩＦ）モデル、ＦｉｔｚＨｕｇｈ－Ｎａｇｕｍｏモデル、クォートモデル、または真性伝
導性モデルのうちの少なくとも１つに少なくとも部分的に基づく、
［Ｃ４９］に記載の装置。
　　［Ｃ５１］
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　前記真性伝導性モデルは、電圧依存型伝導性（ｇ（ｖ））により増大する膜電位（ｖ）
として表される前記ニューロンモデルを備える、
［Ｃ５０］に記載の装置。
　　［Ｃ５２］
　前記ニューロンモデルは少なくとも２つの次元を備える、
［Ｃ４９］に記載の装置。
　　［Ｃ５３］
　前記ニューロンモデルの時間のステップサイズは、モデル化されている前記人工ニュー
ロンのタイプに少なくとも部分的に基づく、
［Ｃ４９］に記載の装置。
　　［Ｃ５４］
　前記ニューロンモデルの時間のステップサイズは、不均一である、
［Ｃ４９］に記載の装置。
　　［Ｃ５５］
　特定の時間ステップの時間の前記ステップサイズは、前記人工ニューロンの現在の状態
もしくは過去の状態のうちの少なくとも１つに、またはパラメータの特定のセットに少な
くとも部分的に基づいて決定される、
［Ｃ５４］に記載の装置。
　　［Ｃ５６］
　前記ニューロンモデルは、１つまたは複数の１次常微分方程式（ＯＤＥ）に少なくとも
部分的に基づく、
［Ｃ４９］に記載の装置。
　　［Ｃ５７］
　前記処理システムは、前記人工ニューロンに入力された電流に少なくとも部分的に基づ
いて、前記人工ニューロンの前記第２の状態または第３の状態のうちの少なくとも１つを
決定することを行うように構成される、
［Ｃ３２］に記載の装置。
　　［Ｃ５８］
　前記入力電流は、１つまたは複数のチャネルの各々に関する時間依存型伝導性および前
記１つまたは複数のチャネルの各々に関する逆転電位に少なくとも部分的に基づくシナプ
ス電流を備える、
［Ｃ５７］に記載の装置。
　　［Ｃ５９］
　前記シナプス電流は、Ｎ－メチル－Ｄ－アスパラギン酸（ＮＭＤＡ）チャネルに関する
前記人工ニューロンのシナプス後膜電圧に少なくとも部分的に基づく、
［Ｃ５８］に記載の装置。
　　［Ｃ６０］
　前記時間依存型伝導性は、指数関数、アルファ関数、または指数差関数によってモデル
化される、
［Ｃ５８］に記載の装置。
　　［Ｃ６１］
　前記第１の状態を決定することと前記第２の状態を決定することとの間の時間の第１の
ステップサイズは、前記第２の状態を決定することと前記第３の状態を決定することとの
間の時間の第２のステップサイズとは異なる、
［Ｃ３２］に記載の装置。
　　［Ｃ６２］
　前記処理システムは、
　第１の時間ステップで前記人工ニューロンの前記第２の状態を決定することと、
　前記第１の時間ステップに続く第２の時間ステップで前記人工ニューロンの前記第３の
状態を決定することと
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　　［Ｃ６３］
　人工ニューロンを動作させるための装置であって、
　前記人工ニューロンの第１の状態が第１の領域内にあると決定するための手段と、
　１次方程式の第１のセットに少なくとも部分的に基づいて前記人工ニューロンの第２の
状態を決定するための手段と、ここにおいて、１次方程式の前記第１のセットは、前記第
１の領域に対応するパラメータの第１のセットに少なくとも部分的に基づく、
　前記人工ニューロンの前記第２の状態が第２の領域内にあると決定するための手段と、
　１次方程式の第２のセットに少なくとも部分的に基づいて前記人工ニューロンの第３の
状態を決定するための手段と
　を備え、１次方程式の前記第２のセットは、前記第２の領域に対応するパラメータの第
２のセットに少なくとも部分的に基づく、
装置。
　　［Ｃ６４］
　コンピュータ可読記憶デバイスを備える、人工ニューロンを動作させるためのコンピュ
ータプログラム製品であって、前記コンピュータ可読記憶デバイスは、
　前記人工ニューロンの第１の状態が第１の領域内にあると決定することと、
　１次方程式の第１のセットに少なくとも部分的に基づいて前記人工ニューロンの第２の
状態を決定することと、ここにおいて、前記１次方程式の第１のセットは、前記第１の領
域に対応するパラメータの第１のセットに少なくとも部分的に基づく、
　前記人工ニューロンの前記第２の状態が第２の領域内にあると決定することと、
　１次方程式の第２のセットに少なくとも部分的に基づいて前記人工ニューロンの第３の
状態を決定することと
　を行うように実行可能な命令を有し、ここにおいて、前記１次方程式の第２のセットは
、前記第２の領域に対応するパラメータの第２のセットに少なくとも部分的に基づく、
コンピュータプログラム製品。
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