US008291472B2

a2z United States Patent (10) Patent No.: US 8,291,472 B2
Bak et al. (45) Date of Patent: Oct. 16,2012
(54) REAL-TIME ADJUSTMENTS TO 7,937,462 B2* 5/2011 Andreevetal. 709/224
AUTHENTICATION CONDITIONS 2004/0068650 Al 4/2004 Resnitzky et al.
2005/0021964 Al 1/2005 Bhatnagar et al.
. . 2005/0198537 Al 9/2005 Rojewski
(75) Inventors: Nath.ay V Bak, Portland, OR (US); 5005/0216955 Al 02005 Wilkins et al.
Patricia A Gaughen, Portland, OR 2007/0169181 Al 7/2007 Roskind
(US); Avantika R Mathur, Tigard, OR 2008/0016369 Al 1/2008 Kirovski et al.
(US); Timothy C Pepper, Tigard, OR 2008/0222706 Al 9/2008 Renaud et al.
(US)’ ’ ’ 2008/0313721 Al 12/2008 Corella
2009/0144547 Al 6/2009 Roig
(73) Assignee: International Business Machines OTHER PUBLICATIONS
Corporation, Armonk, NY (US)
Author: M.E. Bsaibes; Ttl: Set Limit for Number of Bad Password
(*) Notice: Subject to any disclaimer, the term of this Retries for Local Area Network Server Logon; Database: IP.COM;
patent is extended or adjusted under 35 IP.COM No. IPCOM000117811D; Date: Jun. 1, 1996.
U.S.C. 154(b) by 338 days. * cited by examiner
(21) Appl. No.: 12/695,647
Primary Examiner — Hosuk Song
(22) Filed: Jan. 28, 2010 (74) Attorney, Agent, or Firm — Steven L. Bennett
(65) Prior Publication Data (57) ABSTRACT
US 2011/0185401 Al Jul. 28, 2011
b ’ Embodiments of the invention provide for adjusting authen-
(51) Int.CL tication conditions in real-time. A graph-theoretic data struc-
HO4L 9/32 (2006.01) ture is dyna.lmically. constmcting, having pod.es correqund-
(52) US.CL oo 72612, 726/3; 726/4; 726/5 08 to received valid and invalid authentication credentials
(58) Field of Classification Search 796/27 used in attempts to access a system. Based on the graph-
726/19: 713/150. 16817 018 17 09 /21721 8, theoretic data structure, embodiments compute a probability
’ ’ ’ ’ 709/223-22 5’ of an invalid credential being an authentication attempt by a
See application file for complete search history. particular type of user. If the probability is beyond a threshold
’ probability, embodiments trigger a security event is to adjust
(56) References Cited an authentication condition of the system, e.g., to increase or

U.S. PATENT DOCUMENTS

5394471 A 2/1995 Ganesan et al.
7,664,845 B2* 2/2010 Kurtzetal. 709/224

server-side

client-side

Y

decrease a maximum permissible number of failed login
attempts within a certain period of time.

20 Claims, 11 Drawing Sheets

100

Sccurity module
130

US 8,291,472 B2

Sheet 1 of 11

Oct. 16, 2012

U.S. Patent

0gT

o[npow £11mdag

| K

W_Mw\/\ Tl

001

_”
A o1
m — =
| o1

v

A

OPIS-19A13S opIS-1UaI[D

U.S. Patent Oct. 16, 2012 Sheet 2 of 11 US 8,291,472 B2

FIG. 2

US 8,291,472 B2

Sheet 3 of 11

Oct. 16, 2012

U.S. Patent

0€e
waIsAs 2y JO
UonIPuOd UONBINUSYINE Uk Jsnlpe 03 JudAd A11nods g 10831 ‘Aiiqeqoad proysaayy e puoLoq st Aijiqeqosd oup J

A

0ze
19sn jo 2d£y zemnonued e Aq 1dweye uoneonusyne ue 3uldq [BIJUSPIID PI[EAUL Y} JO
Lnqeqoad e aamonns viep onaioayl-ydess ayp uo paseq andwiod “fenuapald pijeaur ue Jo 1diacar 0y asuodsar uf

A

21
S[eNUIPAIO PIATIOI
AJoANO2sU00 0) SUIPUOdSALIOD SIPOU UM SOFP2 pajoallp 10J siyfom swm-[eal ut 2ndwo))

A

[413
JOpOU AU O} 0 S[BIIUOPID FuIpaddad PaAToadl 158 o1 01 Surpuodsoriod

apou 1se[& wol] a8pa pajoadp e SuIppe TeNUIPaId PI[BAUL U SBM [BIIUdP2I0 SuIpaoald paA1aoal
15T © J1 “pUB [ELIUIPIIO PIAIIDAT A[MOU 1) 0) SUIPUOASILIOD QIMIOMLIS BIBP S} 0] OPOU MOU B
QW81 Ul SUIPPE “0ImIonas eiep o) Ul Opou Surpuodsorios ou Sey [BIUIPIId POAIIIIT A[MOU B JT

01t
wWo)sAs B $5000€ 01 s)dwone ur posn S[BIIUOPOId UOTIEONUDINEG PI[BAUL PUB PI[BA POAIDIII 0} FuIpuodsosiod

Sopou SUIARY 2IMONIS BIRp ona10a)-ydess ag) ‘armonns eiep onotoay)-ydeis € jonnsuoo A[[eoueuA(]

I |

00t

U.S. Patent

TI:

T2:

Oct. 16,2012 Sheet 4 of 11

FIG. 4A

Node 4-1
Credential;
AVCDEF
(Invalid)

FIG. 4B

Node 4-2

Credential:

Node 4-1 :

Credential: ABCDEF
AVCDEF

(Invalid)

US 8,291,472 B2

U.S. Patent Oct. 16, 2012 Sheet 5 of 11 US 8,291,472 B2

FIG. 5A

TO:
Node 5-2
Credential:
Node 5-1 AVCDEF
Credential: (Invalid)
AGCDEF
(Invalid)
F1G. 5B
T1:
Node 5-2
Credential:
Node 5-1 AVCDEF
Credential: (Invalid)
AGCDEF
(Invalid)
FI1G. 5C
T2:
Node 5-2
Node 5-1 ?;dggga;:
Credential: ;
S GCDLF (Invalid)
(Invalid)
F1G. 5D
T3:

Node 5-2
Credential:
AVCDEF
(Invalid)

Node 5-1
Credential:
AGCDEF
(Invalid)

U.S. Patent Oct. 16, 2012 Sheet 6 of 11 US 8,291,472 B2

FIG. 6A
T4:
Credential Credential Credential
A B C
(Invalid) (Invalid) (Invalid)
Credential
P
(Valid)
FIG. 6B
TS:

Credential
A
(Invalid)

®

Credential
B
(Invalid)

Credential
C
(Tnvalid)

Credential
D
(Invalid)

O

Credential
P
(Valid)

O,

Credential
E
(Invalid)

O

U.S. Patent Oct. 16, 2012 Sheet 7 of 11 US 8,291,472 B2

FIG. 6C

Tm:

Credentlal
C
(lm alid)

Credential
A
(Invalid)

O

Credential
D

(Invalid)

chdcntlal

(leld)

Credential
E
(Invalid)

©

U.S. Patent Oct. 16, 2012 Sheet 8 of 11 US 8,291,472 B2

FIG. 6D

Tn:

C redentnl
C
(Invalld)

Credential
A
(Invalid)

®

redential
D
(Invalid)

C

C ledentlal

(Valld)

Credential
E
(Invalid)

®

US 8,291,472 B2

Sheet 10 of 11

Oct. 16, 2012

U.S. Patent

SNOTOT[B

[T
1dwape wmSo snodrew Jo Ajpiqeqord

JeNIEAD ‘2IMonys wep Jna10ar)) ydeis uo paseg

SNOTEW

018
(992 “dwmsowy
4unod spou “§-2)

-uou

.

¥I8

Korpod Kynosos

orendoidde £jdde pue Juapioul Ajunooes ojededoly

708
uonEeonuLYINE
1oj promssed
SIOTUR JOS()

S|eNUIPa1d PLRALL e
U0 paseq SIMONIS !
eyep aepd !
b . b wdop | | wSor | w30
(-
LOAay | | LoarTy 1 Lodrdad
ou)
A A 4
908 ¥08
JPI[BA IDAIOS < SEOUIPILI SOATIDDL |g
UOTJEIRUSYINE O} uonesnuAYINe A [pruzpaLo
passed sjenuopa1) Surnnbar 104138 jaaf yaompou
K
sk
A
: “%g pirel|
Lo “dumwisaniy 1dIDIV
JUNod apou <°32)

S[ETIUSPIID PIeA
Uo PISEq TS
eyep ayepdn)

8O

U.S. Patent Oct. 16, 2012 Sheet 11 of 11 US 8,291,472 B2

AR
43 -~

Frocessor

Main memaory

Display
inferface

Display unit

Gommunication |
Infrastructure N
(BUS}

secondary mamaory

Herd
disk drive

¥ G
56 v
¥

Removable Removable
storage drive storage unit

65~ B~

terface Removable
rface ‘ storage unit

§

Gl - 67 -

o
: G o

Communication
interface

Lommunication path

FIG. 9

US 8,291,472 B2

1
REAL-TIME ADJUSTMENTS TO
AUTHENTICATION CONDITIONS

FIELD

Embodiments of the invention relate generally to authen-
tication systems and, in particular, to adjusting authentication
conditions in real-time.

BACKGROUND

Authentication is the act of establishing or confirming
something or someone is what it/he/she claims to be. Authen-
tication may involve, for example, confirming identity of a
person, tracing the origins of an object, or tracing the origins
of information received from a source. For many systems
today, before access to the system is permitted, authentication
is required. Many users encounter sites requiring authentica-
tion several times throughout a day. This authentication typi-
cally involves entering a password (e.g., submitting a user-
name and password, or providing a card number and pin).
Users commonly reuse passwords between multiple sites. To
some, this is considered good security practice because it
allows a user to remember his/her password.

A malicious user (e.g., amalicious computer program or an
unauthorized person attempting to circumvent a security sys-
tem) may attempt to use brute force to guess passwords, e.g.,
to gain access to a system or to mount a denial-of-service
(DoS) attack. A denial-of-service attack is an attempt to make
a computer resource unavailable to its intended users. If a
malicious user or their activity is not limited in some way,
their activity can consume a system’s computing resources
and quickly lead to denial of service to the system’s intended
user(s). To avoid this scenario, many systems implement a
maximum failed login policy to avoid system resources from
being attacked. With such a policy, a user is permitted a
certain number (e.g., three) failed logins before the system
“locks-out” further login attempts, preventing any user from
attempting to login to that account. This policy may be
encountered by users of voicemail systems, computer appli-
cation log-ins, and online account log-ins (e.g., at a bank
website), for example. To “unlock” the account, an intended
user may have to reset the password, which may involve
contacting an information technology (IT) administrator,
who may contact the intended user’s manager or another
individual to verify access privileges, and/or waiting some
time (e.g., 24 hours or more) before the account is unlocked.

BRIEF SUMMARY

Embodiments of the invention provide a method for adjust-
ing authentication conditions in real-time, the method includ-
ing dynamically constructing within a device coupled to a
system a graph-theoretic data structure, the graph-theoretic
data structure having nodes corresponding to received valid
and invalid authentication credentials used in attempts to
access the system; in response to receipt of an invalid creden-
tial, computing based on the graph-theoretic data structure a
probability of the invalid credential being an authentication
attempt by a particular type of user; and if the probability is
beyond a threshold probability, triggering a security event to

20

25

30

35

40

45

50

55

60

65

2

adjust an authentication condition of the system. The dynami-
cally constructing may include, if a newly received credential
has no corresponding node in the data structure, adding in
real-time a new node to the data structure corresponding to
the newly received credential and, if a last received preceding
credential was an invalid credential, adding a directed edge
from a last node corresponding to the last received preceding
credentials to the new node, and computing in real-time a
weight for a directed edge between nodes corresponding to
consecutively received credentials.

Embodiments also provide a security module for triggering
real-time adjustments to authentication conditions of a sys-
tem, the security module including a non-static graph-theo-
retic data structure; and a graph analysis module coupled to
the non-static graph-theoretic data structure. The non-static
graph-theoretic data structure may include dynamically con-
structed nodes corresponding to received valid and invalid
authentication credentials used in attempts to access the sys-
tem, and dynamically weighted directed edges between
nodes corresponding to consecutively received credentials.
The graph analysis module may include logic components
configured to compute, based on the non-static graph-theo-
retic data structure, a probability of an invalid credential
being an authentication attempt by a particular type of user in
response to receipt of the invalid credential, and to trigger a
security event to adjust an authentication condition of the
system if the probability is beyond a threshold probability.

Embodiments further provide a system for adjusting
authentication conditions in real-time, the system including a
server coupled, via a network, to a client device, the server to
require valid authentication credentials from the client device
prior to providing the client device access to items in the
server; a backend authorization system coupled to the server,
the backend authorization system to establish authentication
conditions for access to the server; and a security module
coupled to the server and the backend authorization system,
the security module including a non-static graph-theoretic
data structure including dynamically constructed nodes cor-
responding to received valid and invalid authentication cre-
dentials used in attempts to access the server, and dynami-
cally weighted directed edges between nodes corresponding
to consecutively received credentials; and a graph analysis
module coupled to the non-static graph-theoretic data struc-
ture, wherein the graph analysis module includes logic com-
ponents configured to compute, based on the non-static
graph-theoretic data structure, a probability of the invalid
credential being an authentication attempt by a particular type
of'user in response to receipt of an invalid credential, and, if
the probability is beyond a threshold probability, to trigger
transmission of a security event to the backend authorization
system to adjust an authentication condition for access to the
server.

BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the invention are described by way of
example with reference to the accompanying drawings
wherein

FIG. 1is an illustration of a system in accordance with one
embodiment of the invention;

US 8,291,472 B2

3

FIG. 2 is a depiction of a security module in accordance
with one embodiment of the invention;

FIG. 3 is a block diagram of a process in accordance with
embodiments of this invention;

FIGS. 4A-4B are representations of a part of a data struc-
ture at various times in accordance with embodiments of the
invention;

FIGS. 5A-5D are additional representations of a part of a
data structure at various times in accordance with embodi-
ments of the invention;

FIGS. 6A-6D is a representation of dynamic construction
of a representation of a graph-theoretic data structure in
accordance with embodiments of this invention;

FIG. 7 is a representation of a graph-theoretic data struc-
ture in accordance with an embodiment of the invention;

FIG. 8 is a block flow diagram in accordance with embodi-
ments of this invention; and

FIG. 9 is a high level block diagram showing an informa-
tion processing system useful for implementing embodi-
ments of the invention.

DETAILED DESCRIPTION

Embodiments of the invention relate generally to authen-
tication systems and, in particular, to adjusting authentication
conditions in real-time. Authentication conditions are the
parameters of a system’s authentication activities. Authenti-
cation conditions include, but are not limited to, the number
of failed logins permitted for a particular account before a
system blocks further attempts to login to the account without
additional actions (e.g., clearance from a system administra-
tor).

Authentication conditions, e.g., limits on login attempts,
can be useful in protecting a system from unintended user or
uses. A security policy that uses fixed and readily discover-
able authentication conditions, e.g., placing a knowable blan-
ket limit on account login attempts, can make attacks from
malicious users simpler, rather than more difficult. For
example, if a malicious user is aware of a three attempt
lock-out policy, the malicious user can attempt three failed
logins on several accounts (knowing it does not need to
attempt more than three) to prevent many intended users from
logging in. Despite this, limits on authentication attempts can
be a useful tool to protect against malicious users, particularly
when intelligent computing systems and methods are applied
to aid in distinguishing between malicious failed logins (e.g.,
a malicious user carrying out a brute force attack) and legiti-
mate failed logins (e.g., an intended user accidentally typing
his/her password incorrectly, or typing a different password
that he/she uses at another site).

Considering the number of sites that, understandably,
require authentication today, many users have classes of pass-
words that they reuse for different sites. The classes tend to be
reused and/or shared among sites having similar security
concerns. For example, a user may reuse or share between
sites with less sensitive information more trivial and weaker
passwords. A user may reuse or share between sites with more
sensitive information (e.g., financial, medical, or personal
data) stronger passwords, or may limit reuse, or not reuse, a
particular password if he/she uses that password to access a
very secure site. When an intended user attempts to log into a

20

25

30

35

40

45

50

55

60

65

4

site, there is a likelihood the user may use a password valid for
a different website, or make a typographical error entering the
password. If a site’s security policy places a blanket limit on
login attempts, without or with little computing intelligence
as to whether the login attempt is a legitimate failed login or
a malicious failed login (i.e., a malicious attempt at access),
there is a significant likelihood that legitimate users will lock
themselves out. This result may be counter to a security
system’s underlying objective of providing easy access to
legitimate users, while preventing malicious users from using
the system’s resources.

Embodiments of this invention provide computing intelli-
gence to aid in distinguishing, in real-time, between authen-
tication attempts by intended users and authentication
attempts by unintended users. Embodiments of this invention
adjust authentication conditions by dynamically constructing
a graph-theoretic data structure within a device. In use, the
graph-theoretic data structure is constructed and traversed in
real-time to compute a probability of an invalid credential
being an authentication attempt by a particular type of user.

FIG. 1is an illustration of a system in accordance with one
embodiment of the invention. In FIG. 1, the system 100
includes servers 102, a backend authentication system 120, a
security device 106, a network 110, client devices 112, and a
security module 130. The server 102 is coupled one or more
client device 112, via the optional security device 106 and the
network 110. The server 102 requires valid authentication
credentials from the client device 112 prior to providing the
client device access to items (which may include services,
data, files, etc.) on the server. Access to items on the server
may include access to a web service if the server is a web
server, or to data stored in the server or in an attached storage
system (not shown) if the server is a ftp server, for example.

The optional security device 106 is located between, and
coupled to, the server 102 and the network 110. The security
device 106 may be included in systems with enhanced secu-
rity. The security device 106 may be, for example, a hardware
or software firewall. In one embodiment, adjusting authenti-
cation conditions involves adjusting conditions controlled by
the security device 106, as described in more detail below
with reference to FIG. 8.

The network 110 couples server-side devices to client-side
devices. The network 110 may be, for example, any type of
network, including a local area network (LAN) or a wide area
network (WAN).

The client device 112 may be any of a variety of now
known or future known devices that access items the server
102. For example, the client device may be a desktop com-
puter, a workstation, a laptop, a VOIP telephone, a mobile
phone, etc.

The backend authorization system 120 is coupled to one or
more servers 102. The backend authorization system 120
establishes authentication conditions for access to the server.
For example, the server 102 may receive a credential from a
client 112 and transmit that credential to the backend autho-
rization system 120, which may be located locally or
remotely (e.g., when administered by an entity specializing in
security/cryptography), for example. In FIG. 1, the backend
authorization system 120 analyzes the received credential and
transmits back to the server 102 whether the credential is a
valid or invalid. In certain embodiments, if the credential is

US 8,291,472 B2

5

invalid, the backend authorization system 120 responds with
additional actions, e.g., logging a security event or transmit-
ting a security alert to another device. If the backend autho-
rization system 120 determines that a DoS attack is underway,
for example, it may transmit a security alert to the mobile
phone of an IT administrator.

The system 100 includes a security module 130. In FIG. 1,
the security module 130 is coupled the backend authorization
system 120. The security module may also be coupled, alter-
natively or additionally, to a server 102 and/or the security
device 106. In one embodiment, the security module is
located in a geographically remote location from the server
(e.g., 102). For example, the security module may be located
in a different city than the server, and be coupled to the server
and/or the backend authorization system via a cloud. A secu-
rity module in accordance with one embodiment of the inven-
tion is described further with reference to FIG. 2.

FIG. 2 is a depiction of a security module in accordance
with one embodiment of the invention. The security module
230 includes a non-static graph-theoretic structure 232 and a
graph analysis module 234. The non-static graph-theoretic
structure 232 includes dynamically constructed nodes and
dynamically weighted directed edges between nodes. The
dynamically constructed nodes correspond to valid and
invalid authentication credentials received by the system and
used in attempts to access the system (e.g., the server 102). In
an exemplary embodiment, each authentication credential is a
cryptographic hash value. The dynamically weighted
directed edges between nodes correspond to consecutively
received credentials.

The graph analysis module 234 is coupled to the non-static
graph-theoretic data structure 232. The graph analysis mod-
ule 234 includes logic components configured to compute,
based on the non-static graph-theoretic data structure 232, a
probability of an invalid credential being an authentication
attempt by a particular type of user in response to receipt of
the invalid credential. For example, in FIG. 2, the graph
analysis module 234 includes a user probability calculator
module 236. The user probability calculator module 236 is
configured to compute, based on the graph-theoretic data
structure 232, a probability of the invalid credential being an
authentication attempt by a particular type of user. In certain
embodiments, the probability calculated is or includes the
likelihood that the source of the invalid credential is a legiti-
mate or intended user of the system who may have mistyped
the password, for example. In certain embodiments, the prob-
ability calculated is or includes the likelihood that the source
of'the invalid credential is a malicious user attempting to gain
unauthorized access to the account or system, or attempting a
more extensive attack on the system, for example.

In FIG. 2, the logic components of the graph analysis
module 234 are configured to trigger transmission of a secu-
rity event (e.g., to the backend authorization system 120) to
adjust an authentication condition for access to the server
(e.g., 102) if the probability is beyond a threshold probability.
For example, in FIG. 2, the graph analysis module 234
includes a security event transmitter 238 coupled to the user
probability calculator module 236. The security event trans-
mitter 238 is configured to transmit a security event to adjust
an authentication condition of a system (such as, or including,
the server 102) if the probability of the invalid credential
being an authentication attempt by a legitimate user is above
the threshold probability. For example, the security event
transmitter 238 may be coupled to a receiver in the backend
authorization system 120, and transmit to the backend autho-

20

25

30

35

40

45

50

55

60

65

6

rization system 120 a security event informing it that the
invalid credential is likely an authentication attempt by a
legitimate user. The transmission may trigger the server or the
backend authorization system to not count the invalid creden-
tial towards a default permissible number of invalid access
attempts.

FIG. 3 is a block diagram of a process 300 in accordance
with embodiments of the invention. The process 300 adjusts
authentication conditions in real-time. At 310, a graph-theo-
retic data structure is dynamically constructed. In one exem-
plary embodiment, the graph-theoretic data structure is con-
structed within a device coupled to a physical system. The
security module 230 may be such a device. A server 102 may
be such a physical system. The graph-theoretic data structure
(e.g., 232) has nodes corresponding to received valid and
invalid authentication credentials used in attempts to access
the system. The authentication credentials may have been
received by a server 102 or the backend authorization system
120 from a client 112, for example.

As shown at 312, in one exemplary embodiment, dynami-
cally constructing at 310 includes, if a newly received cre-
dential has no corresponding node in the data structure, add-
ing in real-time a new node to the data structure
corresponding to the newly received credential. Also at312, if
the last received preceding credential was an invalid creden-
tial, a directed edge from the node corresponding to the last
received preceding credentials to the new node is added. This
is described further with reference to FIGS. 4A-4B.

FIGS. 4A-4B are representations of a part of a data struc-
ture at various times in accordance with embodiments of the
invention. In FIG. 4A, at a point in time T1, a data structure
has a node corresponding to a received credential AVCDEF,
which is an invalid credential in this example. Later, the user
submits a credential corresponding to ABCDEF that has not
been previously received and for which no node exists in the
data structure at time T1. Accordingly, in FIG. 4B, at time T2,
anew node is added to the data structure corresponding to the
newly received credential ABCDEF. A directed edge is also
added from the last node corresponding to credential AVC-
DEF to the new node corresponding to credential ABCDEF.
In one embodiment, a separate list of pointers is employed to
lookup a given received credential so that determining
whether a current observed credential is in the graph may be
performed without traversing the graph.

Referring back to FIG. 3, in one exemplary embodiment, at
314, dynamically constructing includes computing in real-
time weights for directed edges between nodes corresponding
to consecutively received credentials. For example, for the
edge between the newly created node corresponding to cre-
dential ABCDEF and the node corresponding to the previ-
ously received credential AVCDEF, embodiments of the
invention compute in real-time a weight for the directed edge
between the previous node and the newly created node. In
embodiments in which edge weights are equal to usage
counts, the weight is 1 since this is the first time this edge has
been traversed, as shown in FIG. 4B. In some embodiments,
the edge weight may be a function of the usage count but not
equal to the usage count. In some embodiments, other factors
may scale the edge weight to a higher or lower value. These
factors may be, for example, the likelihood that the originat-
ing IP is a location of a legitimate user, the likelihood that the
destination server(s) is the destination of a legitimate user, the
protocol and/or port number transmitting the authentication,
the likelihood that the legitimate user is attempting to access
the system at that particular time, the likelihood that the
legitimate user is attempting to access the system from the
originating geographical location, etc.

US 8,291,472 B2

7

The process at 314 is further described with reference to
FIGS. 5A-5D as an example. FIGS. 5A-5D are representa-
tions of a part of a data structure at various times in accor-
dance with embodiments of the invention. In FIG. 5A, at time
TO, credentials AGCDEF and AVCDEF have both been
received before and exists in the data structure. In FIG. 5B, at
time T1, the credential AGCDEF is again received. In FIG.
5C, attime T2, the credential AVCDEF is also again received.
Even though a node already exists in the data structure cor-
responding to the credential AVCDEF, embodiments of the
invention will still compute in a real-time a weight for the
directed edge between the nodes corresponding to the con-
secutively received credentials AGCDEF and AVCDEF. In
embodiments in which edge weights are equal to usage
counts, since this is another instance of this edge being tra-
versed, the weight is increased to 2, as shown in FIG. 5D.
Accordingly, in certain embodiments, computing in real-time
a weight for a directed edge between nodes corresponding to
consecutively received credentials includes incrementing a
usage count for an edge being traversed between the nodes
corresponding to the consecutively received credentials.
Such incrementing may directly increment the weight of an
edge, in some instances. In other instances, such increment-
ing may factor into a mathematical function that determines
the weight of an edge. The representations shown in FIGS.
5A-5D may reflect a scenario in which, for example, a legiti-
mate user with a valid password ABCDEF has in the past, and
again at time T1, mistyped his/her password as AGCDEF,
which returned as a failed login, and then in the past, and
again at time T2, tried to type the valid password only to
mistype the password again, this time as AVCDEF.

In these examples, for ease of reading, the credentials and
passwords are being represented as letters. However, it shall
be readily understood that the invention is not so limited. In an
exemplary embodiment, each authentication credential
received for analysis by the security module is a crypto-
graphic hash value. This may be particularly the case when
public key encryption is utilized to protect against revealing
the password should the transmission be intercepted.

Weights for other directed edges in the graph theoretic data
structure may also be computed. For example, after receipt of
the credential AVCDEEF, the weight of an edge from a differ-
ent node (not shown) to the node 5-2 may be decreased since
that path was not traversed during this latest string of
attempted access. As another example, after receipt of the
credential AVCDEF, the weight of an edge to a node distant
from the valid credential may be reduced. In some instances,
the security module (e.g., 230) may remove that distant node
and that distant node’s edge to other node(s), thereby pruning
the data structure. Accordingly, in one embodiment, the pro-
cess may include pruning the graph-theoretic data structure to
remove a node(s) and associated edge(s).

Referring again to FIG. 3, at 320, in response to receipt of
an invalid credential, a probability of the invalid credential
being an authentication attempt by a particular type of user is
computed based on the graph-theoretic data structure. In an
exemplary embodiment, that computation is performed by
the security module (e.g., 230). In one embodiment, comput-
ing based on the graph-theoretic data structure (e.g., 232) a
probability of the invalid credential being an authentication
attempt by a particular type of user includes computing based
on the graph-theoretic data structure a probability of the
invalid credential being an authentication attempt by a legiti-
mate user. For example, in certain applications, it may be
desirable to have a system that, by default has strict restric-
tions on a maximum number of login attempts during a cer-
tain period of time (or other strict authentic conditions). The

20

25

30

35

40

45

50

55

60

65

8

default may be, for example, to lock further login attempts
after three failed attempts, unless there is a sufficient prob-
ability that the attempt is being made by a legitimate user. For
example, a user may be attempting to login using an older
password forgetting that he/she has recently changed his/her
password. In such cases, it may be desirable to allow the user
who is typing and/or mistyping his/her older password three
times to have additional login attempts. In another instance,
the user may be, for example, attempting to login from a work
computer she has not tried before. Her home computer may
have a password manager that memorizes her password so
that she does not have to enter it manually. When she attempts
to login from work, however, she may need to enter the
password manually, and this may usually take her two or three
tries before getting the password correct. Embodiments of
this invention include graph-theoretic data structures that
reflect such activity, and that are dynamically refined at each
login attempt to remain current. Accordingly, embodiments
may provide a probability that a login activity reflects a
known behavior of a legitimate user, based on such a graph-
theoretic data structure.

In one embodiment, computing, based on the graph-theo-
retic data structure, a probability of the invalid credential
being an authentication attempt by a particular type of user
includes computing based on the graph-theoretic data struc-
ture a probability of the invalid credential being an authenti-
cation attempt by a malicious user. For example, in certain
applications, it may be desirable to have a system that, by
default, provides relatively lenient login attempts (or other
lenient authentication conditions), unless there is a sufficient
probability that the attempt is being made by a malicious user
and/or that a security/resource attack is underway.

At 330, if the probability of the invalid credential being an
authentication attempt by a particular type of user is beyond
(above or below) a threshold probability, a security event is
triggered to adjust an authentication condition of the system.
In certain embodiments, this security event is triggered by the
security module (e.g., 230). In other embodiments, this secu-
rity event is triggered by a different component of the system,
e.g., the backend authorization system 120.

For example, consider an embodiment in which the prob-
ability computed at 320 is the probability of the invalid cre-
dential being an authentication attempt by a legitimate user. If
the probability is above the threshold (thereby indicating that
a legitimate user is attempting to access the system), at 330, a
security event is triggered to adjust an authentication condi-
tion of the system. This may be or include, for example,
triggering a security event to exclude the invalid credential as
a count against a permissible number of invalid access
attempts. This also may be or include, for example, allowing
a limited number of additional attempts above a default per-
missible number of invalid access attempts. If that limited
additional number is reached, embodiments may ask for other
information from the user instead of automatically locking
out additional attempts. For example, consider a situation in
which a legitimate user is attempting to log into a website to
access online banking The user may mistype the password
three times, e.g., once with caps lock on, then by entering a
wrong key, then, believing perhaps a different password was
used, entering one of her alternate passwords. Embodiments
of the invention compute, based on the graph-theoretic data
structure (which is traversed during the failed login attempts
and dynamically updated with information from each
attempt), a probability of the login attempts being by a legiti-
mate user. If the probability is above a threshold, the system
may first give the user two additional login attempts, for
example. If the user again mistypes the password the two

US 8,291,472 B2

9

additional times (e.g., by retyping the alternative password
believing perhaps she mistyped it, and then by trying a third
alternate password), and the probability that the login
attempts are by legitimate user are still above the threshold,
the authentication conditions may be adjusted again, but this
time to ask the user for the answer to a personal security
question, for example. If the probability that the login
attempts are by a legitimate user instead drops below the
threshold after the two additional attempts, the system may
instead of lock out additional attempts.

In certain embodiments, if (e.g., after the first three
attempts, or even after a first attempt) the probability is below
the threshold (thereby indicating that a user other than a
legitimate user is attempting to access the system), at 330, a
security event may be triggered (e.g., immediately) to adjust
an authentication condition of the system. This may be or
include, for example, triggering a security event to lock-out
additional attempts to access the system, e.g., attempts from
the originating source of the failed logins. If the thresholds are
being missed throughout the system within a certain period of
time, this may suggest a widespread security attack is under
way. In response, embodiments of the invention may adjust
the authentications conditions system-wide (e.g., to trigger a
system-wide lock-out after a single invalid log-in for an
account instead of the default three), or to adjust the thresh-
old.

As another example, consider an embodiment in which the
probability computed at 320 is the probability of the invalid
credential being an authentication attempt by a malicious
user. If the probability is above the threshold (thereby indi-
cating that a malicious user is attempt to access the system),
at 330, a security event may also be triggered to adjust an
authentication condition of the system. This may be or
include, for example, triggering a security event to lock-out
additional attempts to access the system. If the probability is
below the threshold (thereby indicating that a user other than
a malicious user is attempting to access the system), at 330,
certain embodiments also trigger a security event to adjust an
authentication condition of the system. This may be or
include, for example, triggering a security event to allow a

20

25

35

40

10

and then a valid login. In one embodiment, the system recog-
nizes the logins from the same user because the same user-
name was entered for each of the failed logins. In other
embodiments, an originating IP address may be used, for
example. Each of the credentials have been seen by the sys-
tem once before, illustrated in FIG. 6 A by the number 1 with
a circle around it inside each node. Additionally, each edge
has been traversed once in the specified direction, illustrated
in FIG. 6 A by the number 1 with a circle around it near each
directed edge. Assume that Credential C is (or represents) one
of the user’s common alternate passwords. In the current
example, the system continues to run and over time, the
system receives additional invalid credentials, and then
receives Credential C and P again. The data structure now
may be represented by FIG. 6B.

In FIG. 6B, Credential E was received, then Credential D,
then Credential C and then Credential P. The circled 2 in the
node representing Credential C and the node representing
Credential P indicates that this is the second time each of
Credential C and Credential P has been received. The circled
2 near the directed edge between Credential C and Credential
P indicates that this is also the second time that edge has been
traversed.

Embodiments of the invention traverse the graph (e.g.,
shown FIG. 6B) to calculate probabilities. For example,
assume that Credential B is now observed for the second time.
Embodiments of the invention compute the likelihood that
Credential B, which is invalid, will be followed by Credential
P, which is valid. Using one metric, the probability that Cre-
dential B will be followed by Credential P may be 0 since no
direct edge currently exists in the data structure between the
node representing Credential B and the node representing
Credential P. Using another metric, the probability that Cre-
dential B will be followed by Credential P may be 1 (or
100%). This may occur if a graph walking algorithm (e.g., a
depth first or breadth first algorithm) enumerating paths of
length 2, for example, is used. Such a graph walking algo-
rithm will out find that, out of the node representing the
invalid Credential B, there is a path of length 2 that ends at the
node representing the valid Credential P. These outcomes are
summarized in Table 1, below.

TABLE 1

With reference to FIG. 6B.

Metric 1

Metric 2

Pr(B—=P)=0 currently no directed edge between node representing
(i.e., 0%) Credential B and node representing Credential P
Pr(B—=P)=1 a graph walking algorithm enumerating paths of length
(i.e., 100%) 2 out of node representing Credential B will find one

such path that ends in node representing Credential P

limited number of additional attempts above a default per-
missible number of invalid access attempts.

FIGS. 6A-6D is a representation of dynamic construction
of a representation of a graph-theoretic data structure in
accordance with embodiments of this invention. FIG. 6A
shows a representation of a graph-theoretic data structure
after the system has received three failed logins from a user,

55

Continuing with this example, the system continues to run
and over time, the system receives additional credentials, and
continues to construct/refine the graph-theoretic data struc-
ture that it uses in real time. At time Tm, the data structure
now may be represented by FIG. 6C, for example. If Creden-
tial E is observed, the calculated probabilities based on the
data structure shown in FIG. 6C may be, for example:

TABLE 2

With reference to FIG. 6C.

Metric 1

Pr(E—P)=0
(i.e., 0%)

currently no directed edge from the node representing
Credential E directly to the node representing
Credential P (i.e., “one-hop” or a path of length 1)

US 8,291,472 B2
11
TABLE 2-continued

With reference to FIG. 6C.

Metric 2 Pr(E—=P)=0

(i.e., 0%)

a graph walking algorithm enumerating paths of length
2 out of node representing Credential E will not find
such a 2 length path that ends in the node representing

12

Credential P

At time Tn, Credential D is observed. The data structure 10 Three paths lead out from node_: C—D, C—P, and C—E.
HOYV may bbe r eprzsellllted bly FIIG.d6D, fg’r lf)l(ampllj. Ifdcredelrll- The path from C—D has been traversed once, the path from
tial D is observed, the calculated probabilities based on the .
data structure shown in FIG. 6D may be still be O using Metric C=P has been traversed five Tlmes, and the .pé.lth C—F has
1 since there are no directed edges from the node representing been traversed once, as shown in FIG. 6D. This is also shown
Credential D to the node representing Credential P, asunder- 15 in Table 6.
stood with reference to FIG. 6D. However, using Metric 2,
there is more than one “two-hop” path from the node repre- TABLE 6
senting Credential D (node,,) to the node representing Cre-
dential P (node,), as shown in Table 3. As understood with] o
reference to Table 3, % (or Y5 or 33%) of the two-hop paths 20 With reference to FIG. 6D, wherein, in this example,
out from nodeD reach nodeP. edge weight is based on edge usage count.

TABLE 3 Weight (based on edge usage
Paths out from node, count in this example)
“Two-hop” paths out from nodep,. 5
Ratio of paths from node representing C—=D 1/7
Two-hop paths out Reaches invalid Credential D reaching node
from nodep, nodep? representing valid Credential P C—=p 51
C—E 17
D—C =D No Vs
D—C —P Yes (33%) 30
D—C —E No
D—=B —P Yes
g—)g —)g EO Three paths lead out from nodez: B—P, B—C, and B—E.
—B — o
The path from B—P has been traversed once, the path from
35

Accordingly, if Credential D is observed, the calculated
probabilities based on the data structure shown in FIG. 6D for
example Metrics 1 and 2 are shown in Table 4.

TABLE 4

B—C has been traversed twice, and the path B—FE has been
traversed once, as shown in FIG. 6D. This is also shown in
Table 7.

With reference to FIG. 6D.

Metric 1 Pr(D—=P)=0 currently no directed edge from the node representing
(i.e., 0%) Credential D directly to the node representing
Credential P
Metric 2 Pr(D—=P)='s a graph walking algorithm enumerating paths of length
(i.e., 33%) 2 out of node representing Credential D will find such

a 2 length path that ends in the node representing

Credential P Y4rd of the time.

50
In certain embodiments, the probabilities of traversing a TABLE 7
path may be scaled by edge weights. For example, two paths
lead out from node: D_>.C and D_>B' The path from D—C With reference to FIG. 6D, wherein, in this example,
has been traversed four times while the path from D—B has o
X o X edge weight is based on edge usage count.
been traversed once, as shown in FIG. 6D. This is shown in 55
Table 5. Weight (based on edge usage
Paths out from node, count in this example
TABLE 5 » ple)
With reference to FIG. 6D, wherein, in this example, 60 B—P 1/4
edge weight is based on edge usage count. B—C 2/4
Weight (based on edge usage B—E 14
Paths out from nodep, count in this example)
D—C 4/5 . Jo .
D—B U5 65 Accordingly, Table 8 shows the probability of traversing a

path from node,, to node, scaled by edge weights in accor-
dance with one embodiment.

US 8,291,472 B2

13
TABLE 8

14

“Two-hop” paths out from noder,.

Two-hop
paths out Reaches
from node;; nodep? Scaling by edge weights

Percentage of observations traveling from
node representing invalid Credential D to
the node representing valid Credential P

D—=C—-=D No
D—C —=P Yes
D—C —E No
D—B —=P Yes
D—=B —=C No
D—B —E No

Ys* V=445 =11.4%
Y5 ¥ 54 =205 = 57.1%
Ys* =445 =11.4%
Ys* Yy= Yoo =5%

U5 * 2 =250 = 10%
Vs * Uy =50 = 5%

57.1% + 5% = 62.1%

Table 9 shows calculated probabilities based on the data {5 includes computing a historical ratio, wherein the ratio’s

structure shown in FIG. 6D for Metric 1 and Metric 2 when
scaled by edge weights described in the example above.

TABLE 9

numerator is a number of times an n-hop path from a node
corresponding to the invalid credential to a valid credential

With reference to FIG. 6D.

Metricl Pr(D—=P)=0 currently no directed edge from the node representing
(i.e., 0%) Credential D directly to the node representing
Credential P
Metric2 Pr (D —P) =%/140 a graph walking algorithm enumerating paths of

(i.e., 62.1%)

representing Credential P 62.1% of the time.

length 2 out of node representing Credential D will
find such a 2 length path that ends in the node

Table 10 shows calculated probabilities based on the data 5, node has been historically traversed and the ratio’s denomi-

structure shown in FIG. 6D for Metric 1 and Metric 2 when
the ratio of paths from node,, reaching node is scaled by the
edge weights described in the example above.

TABLE 10

nator is a number of times the invalid credential has been
historically received. For example, for the graph-theoretic
data structure represented by FIG. 6D, if the received creden-

With reference to FIG. 6D.

Metric 1 Pr(D—=P)=0 currently no directed edge from the node representing
(i.e., 0%) Credential D directly to the node representing
Credential P
Metric 2 Pr(D —P)=Y3* a graph walking algorithm enumerating paths of

87/140 = 87420
(i.e., 20.7%)

length 2 out of node representing Credential D will
find such a 2 length path that ends in the node

representing Credential P 20.7% of the time when

scaled.

45

Accordingly, in certain embodiments of the invention,
computing the probability of the invalid credential being an
authentication attempt by a legitimate user includes comput-
ing, based on the graph-theoretic data structure (e.g., 232), a
probability of subsequently receiving a valid credential based
on receipt of the invalid credential. This may include, for
example, identifying all n-hop paths out from a node corre-
sponding to the invalid credential, and determining what ratio

of'the all n-hop paths terminate at a valid credential node, e.g., 55

described with reference to Table 3. This may also include,
additionally or alternatively, determining a probability of tra-
versing an n-hop path terminating at the valid credential node,
e.g., described with reference to Tables 5-8. This may further

include scaling the ratio by the probability of traversing, e.g., 60

described with reference to Table 10. Determining the prob-
ability of traversing may be based on a factor such as a sum of
weights of edges in the n-hop path, a magnitude of n, and/or
a last traversal time of the n-hop path, for example.

In one embodiment, computing, based on the graph-theo- 65

retic data structure a probability of subsequently receiving a
valid credential based on receipt of the invalid credential

50

tial is C, the numerator for the ratio in this embodiment would
be 5 and the denominator for the ration would be 7. In one
embodiment, this ratio is scaled by a factor such as a prob-
ability of receiving a valid credential from the originating IP
address of the invalid credential, a probability of receiving a
valid credential from the originating geographical location of
the invalid credential, a probability of the system being a
security attack target, and/or a probability of receiving a valid
credential at approximately a time the invalid credential was
received, for example.

FIG. 7 is a representation of a graph-theoretic data struc-
ture in accordance with an embodiment of the invention. In
FIG. 7, each node represents a particular credential (e.g., a
particular hash value). The first number in the node (e.g., 710)
represents a number of times the hash value as been observed
(e.g., received by the server 102). The second number in the
node (e.g., 720) represents a number of hops between that
node and a successful log-in. In one embodiment, this second
number is an average number of hops from the node to a node
representing the valid credential. In FIG. 7, the numbers next
to the edge represent edge weights which may be the number

US 8,291,472 B2

15

of times that edge has been traversed. In certain embodi-
ments, the edge weight is a function of the number of times
that edge has been traversed, e.g., if the edge weight is also
dependent on how long ago that edge was traversed (e.g., 1
day ago versus 1 month ago), for example.

If a valid credential is changed (e.g., if a password is
changed), the numbers in the nodes shown in FIG. 7 may be
offset for a period oftime while the data structure adjusts with
each new login attempt. In certain embodiments, the security
module (e.g., 230) is coupled to a system which is aware of
the password change. In one case, this system may be the
backend authorization system 120. In such an embodiment,
the security module may be configured to automatically
adjust the data structure to account for the password change.
For example, the security module may increase the weight
between the old valid password and the new valid password in
situations in which a user submitting the old valid password is
likely to be a legitimate user (e.g., if the password change was
initiated by the user in response to a quarterly password
change requirement rather than due to an administrator reset
or auser’s report of suspected unauthorized account activity).

Asnoted above, embodiments of the invention may include
pruning the graph-theoretic data structure to remove a node.
InFIG. 7, for example, the node at the top right of the drawing
numbered (1@8.0) may be pruned in one embodiment.
Accordingly, in this example, pruning the graph-theoretic
data structure includes removing a node having a shortest
n-hop path terminating at a valid credential node, wherein n is
at or above a threshold magnitude (e.g., 8.0 in this example).
In one embodiment, pruning the graph-theoretic data struc-
ture includes removing a node with the lowest visit, and
removing edges to and from such node, until the node count
is below a threshold. This may be done each time a node is
added, for example. In one embodiment, pruning the graph-
theoretic data structure includes removing a node if the num-
ber of times it has been visited is below a threshold number
and the last time the node was observed is longer than a
certain period of time, and removing edges to and from such
node. In one embodiment, pruning the graph-theoretic data
structure includes removing a node with outgoing edges hav-
ing a value within a threshold range (e.g., between O and 1, or
between —1 and 1, for example). Pruning the graph may lead
to total probabilities that do not sum to 100%. However, for
the purposes of some embodiments of this invention, such a
result may be acceptable, e.g., if determining relative prob-
ability is sufficient.

FIG. 8 is a block flow diagram in accordance with embodi-
ments of this invention. At 802, a user (e.g., a person or a
program) enters a password for authentication in an attempt to
access a server/service. In an exemplary embodiment, the
password is converted into a credential (e.g., a cryptographic
hash value) which is then transmitted through the network
and firewall to the target server. At 804, the server/service
requiring authentication before it provides access to its items/
services receives the credentials. The credentials are passed to
the authentication server (e.g., 120), and the validity of the
credentials are determined at 806 (e.g., by 120).

If the credentials are valid, at 808, a graph-theoretic data
structure (e.g., 232) is updated based on the valid credential.
For example, the node representing the valid credential may
be associated with a number of times the node has been
observed (e.g., 720). This number may be incremented by one
at 808, for example. Other properties associated with valid
credential may also be updated, e.g., the timestamp of the
most recent receipt of the credential, etc. A communication is
transmitted to the server to accept the login or that the login is
valid.

20

25

30

35

40

45

50

55

60

65

16

Ifthe credentials are invalid, at 810, a graph-theoretic data
structure (e.g., 232) is updated based on the invalid credential.
For example, the node representing the invalid credential may
be associated with a number of times the node has been
observed (e.g., 720). This number may be incremented by one
at 810, for example. Other properties associated with valid
credential may also be updated, e.g., the timestamp of the
most recent receipt of the credential, etc.

At 812, based in the graph-theoretic data structure (e.g.,
232), a probability of the login attempt being a malicious
login attempt is evaluated. In an exemplary embodiment, this
evaluation is be performed by the security module 130. It
shall be appreciated that this evaluation may be based on
computing a probability that the invalid credential is from
either a legitimate user (and, for example, inverting the prob-
ability), or from a non-legitimate user. It shall also be appre-
ciated that this evaluation may factor in data such as the
likelihood that the originating IP is a location of a legitimate
user rather than a malicious user, the likelihood that the des-
tination server(s) is the destination of a legitimate user rather
than a malicious user, the protocol and/or port number trans-
mitting the authentication, the likelihood that a malicious user
rather than the legitimate user is attempting to access the
system at that particular time (e.g., a time that a previously
valid login has never been recorded), the likelihood that the
legitimate user rather than a malicious user is attempting to
access the system from the originating geographical location
(e.g., a location distant from the last valid login, a location
distant from an account address of the legitimate user, a
location from which a valid login has not previously been
recorded), etc.

If the probability of the login attempt being a malicious
login attempt is below a threshold, a communication is trans-
mitted to the server to reject the login or that the login is
invalid. If the probability of the login attempt being a mali-
cious login attempt is above a threshold, at 814, a security
incident event is generated and propagated, and an appropri-
ate security policy is applied. The security policy may, for
example, communicate (e.g., to the backend authorization
server 120) that further login attempts to that account should
be prevented, communicate (e.g., to the backend authoriza-
tion server 120) that further login attempts from the originat-
ing IP should be blocked, transmit a message to an I'T admin-
istrator, etc. In an exemplary embodiment, the security policy
applied is dependent on the magnitude of the probability that
the login attempt was a malicious login attempt. A commu-
nication is also transmitted to the server to reject the login. In
one embodiment, a communication is also transmitted to the
firewall to reject the login, and in some instances also to
propagate the security incident and apply a security policy
directly at the firewall.

Accordingly, adjusting authentication conditions in real-
time is disclosed. By monitoring login patterns and password
heuristics, embodiments of the invention may enhance
authentication confidence and actively manage, or assist in
the active management of, unauthorized access attempts
while minimizing legitimate user inconvenience. Computa-
tions of probabilities of a received credentials being from a
legitimate or non-legitimate user performed by embodiments
may be fed back into a system’s overall security infrastruc-
ture. In certain applications, this enables an increase in the
overall robustness of the security infrastructure (e.g., by
enabling special monitoring, blocking, or otherwise rate-lim-
iting traffic from suspicious sources, such as sources of likely
malicious login failures).

US 8,291,472 B2

17

In some of the embodiments described above, site may
refer to a website (e.g., a website for an online account login)
for clarity of illustration. However, it should be appreciated
that site as generally used herein is not so limited, and may
also refer to, for example, an intranet site, a physical site, etc.
Additionally, while some embodiments described above dis-
cuss real-time adjustments to authentication conditions of a
server, it should be appreciated that real-time adjustments of
authentication conditions may be made to or triggered in any
device/system coupled to the security module, including but
not limited to a password protected device (e.g., a mobile
phone) and a physical site (e.g., a secured room or building).
For example, the security module may be embedded in a
mobile phone. In one application, the security module may
compute in real-time, based on a graph-theoretic data struc-
ture, a probability that a failed pin entered to unlock the phone
is unlikely to be originating from the phone’s intended user.
This may trigger the phone to lock out further attempts,
and/or send an email to the user’s account address providing
the current GPS location of the phone, for example.

As will be appreciated by one skilled in the art, aspects of
the present invention may be embodied as a system, method
or computer program product. Accordingly, aspects of the
present invention may take the form of an entirely hardware
embodiment, an entirely software embodiment (including
firmware, resident software, micro-code, etc.) or an embodi-
ment combining software and hardware aspects that may all
generally be referred to herein as a “circuit,” “module” or
“system.” Furthermore, aspects of the present invention may
take the form of a computer program product embodied in one
or more computer readable medium(s) having computer read-
able program code embodied thereon.

Any combination of one or more computer readable medi-
um(s) may be utilized. The computer readable medium may
be a computer readable signal medium or a computer read-
able storage medium. A computer readable storage medium
may be, for example, but not limited to, an electronic, mag-
netic, optical, electromagnetic, infrared, or semiconductor
system, apparatus, or device, or any suitable combination of
the foregoing. More specific examples (a non-exhaustive list)
of the computer readable storage medium would include the
following: an electrical connection having one or more wires,
a portable computer diskette, a hard disk, a random access
memory (RAM), a read-only memory (ROM), an erasable
programmable read-only memory (EPROM or Flash
memory), an optical fiber, a portable compact disc read-only
memory (CD-ROM), an optical storage device, a magnetic
storage device, or any suitable combination of the foregoing.
In the context of this document, a computer readable storage
medium may be any tangible medium that can contain, or
store a program for use by or in connection with an instruction
execution system, apparatus, or device.

A computer readable signal medium may include a propa-
gated data signal with computer readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-mag-
netic, optical, or any suitable combination thereof. A com-
puter readable signal medium may be any computer readable
medium that is not a computer readable storage medium and
that can communicate, propagate, or transport a program for
use by or in connection with an instruction execution system,
apparatus, or device.

Program code embodied on a computer readable medium
may be transmitted using any appropriate medium, including
but not limited to wireless, wireline, optical fiber cable, RF,
etc., or any suitable combination of the foregoing.

20

25

30

35

40

45

50

55

60

65

18

Computer program code for carrying out operations for
aspects of the present invention may be written in any com-
bination of one or more programming languages, including
an object oriented programming language such as Java,
Smalltalk, C++ or the like and conventional procedural pro-
gramming languages, such as the “C” programming language
or similar programming languages. The program code may
execute entirely on the user’s computer, partly on the user’s
computer, as a stand-alone software package, partly on the
user’s computer and partly on a remote computer or entirely
on the remote computer or server. In the latter scenario, the
remote computer may be connected to the user’s computer
through any type of network, including a local area network
(LAN) or a wide area network (WAN), or the connection may
be made to an external computer (for example, through the
Internet using an Internet Service Provider).

Aspects of the present invention are described below with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems) and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations and/
or block diagrams, and combinations of blocks in the flow-
chart illustrations and/or block diagrams, can be imple-
mented by computer program instructions. These computer
program instructions may be provided to a processor of a
general purpose computer, special purpose computer, or other
programmable data processing apparatus to produce a
machine, such that the instructions, which execute via the
processor of the computer or other programmable data pro-
cessing apparatus, create means for implementing the func-
tions/acts specified in the flowchart and/or block diagram
block or blocks.

These computer program instructions may also be stored in
a computer readable medium that can direct a computer, other
programmable data processing apparatus, or other devices to
function in a particular manner, such that the instructions
stored in the computer readable medium produce an article of
manufacture including instructions which implement the
function/act specified in the flowchart and/or block diagram
block or blocks.

The computer program instructions may also be loaded
onto a computer, other programmable data processing appa-
ratus, or other devices to cause a series of operational steps to
be performed on the computer, other programmable appara-
tus or other devices to produce a computer implemented
process such that the instructions which execute on the com-
puter or other programmable apparatus provide processes for
implementing the functions/acts specified in the flowchart
and/or block diagram block or blocks.

FIG. 9 is a high level block diagram showing an informa-
tion processing system useful for implementing embodi-
ments of the invention. The computer system includes one or
more processors, such as processor 44. The processor 44 is
connected to a communication infrastructure 46 (e.g., a com-
munications bus, cross-over bar, or network). Various
embodiments are described in terms of this exemplary com-
puter system. After reading this description, it will become
apparent to a person of ordinary skill in the relevant art(s) how
to implement embodiments of the invention using other com-
puter systems and/or computer architectures.

The computer system can include a display interface 48
that forwards graphics, text, and other data from the commu-
nication infrastructure 46 (or from a frame buffer not shown)
for display on a display unit 50. The computer system also
includes a main memory 52, preferably random access
memory (RAM), and may also include a secondary memory
54. The secondary memory 54 may include, for example, a

US 8,291,472 B2

19

hard disk drive 56 and/or a removable storage drive 58, rep-
resenting, for example, a floppy disk drive, a magnetic tape
drive, or an optical disk drive. The removable storage drive 58
reads from and/or writes to a removable storage unit 60 in a
manner well known to those having ordinary skill in the art.
Removable storage unit 60 represents, for example, a floppy
disk, a compact disc, a magnetic tape, or an optical disk, etc.
which is read by and written to by removable storage drive 58.
As will be appreciated, the removable storage unit 60 includes
a computer readable medium having stored therein computer
software and/or data.

In alternative embodiments, the secondary memory 54
may include other similar means for allowing computer pro-
grams or other instructions to be loaded into the computer
system. Such means may include, for example, a removable
storage unit 62 and an interface 64. Examples of such means
may include a program cartridge and cartridge interface (such
as that found in video game devices), a removable memory
chip (such as an EPROM, or PROM) and associated socket,
and other removable storage units 62 and interfaces 64 which
allow software and data to be transferred from the removable
storage unit 62 to the computer system.

The computer system may also include a communications
interface 66. Communications interface 66 allows software
and data to be transferred between the computer system and
external devices. Examples of communications interface 66
may include a modem, a network interface (such as an Eth-
ernet card), a communications port, or a PCMCIA slot and
card, etc. Software and data transferred via communications
interface 66 are in the form of signals which may be, for
example, electronic, electromagnetic, optical, or other signals
capable of being received by communications interface 66.
These signals are provided to communications interface 66
via a communications path (i.e., channel) 68. This channel 68
carries signals and may be implemented using wire or cable,
fiber optics, a phone line, a cellular phone link, an RF link,
and/or other communications channels.

In this document, the terms “computer program medium,”
“computer usable medium,” and “computer readable
medium” are used to generally refer to media such as main
memory 52 and secondary memory 54, removable storage
drive 58, and a hard disk installed in hard disk drive 56.

Computer programs (also called computer control logic)
are stored in main memory 52 and/or secondary memory 54.
Computer programs may also be received via communica-
tions interface 66. Such computer programs, when executed,
enable the computer system to perform the features of the
present invention as discussed herein. In particular, the com-
puter programs, when executed, enable the processor 44 to
perform the features of the computer system. Accordingly,
such computer programs represent controllers of the com-
puter system.

The flowchart and block diagrams in the Figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods and computer program
products according to various embodiments of the present
invention. In this regard, each block in the flowchart or block
diagrams may represent a module, segment, or portion of
code, which includes one or more executable instructions for
implementing the specified logical function(s). It should also
be noted that, in some alternative implementations, the func-
tions noted in the block may occur out of the order noted in the
figures. For example, two blocks shown in succession may, in
fact, be executed substantially concurrently, or the blocks
may sometimes be executed in the reverse order, depending
upon the functionality involved. It will also be noted that each
block of the block diagrams and/or flowchart illustration, and

20

25

30

35

40

45

50

55

60

65

20

combinations of blocks in the block diagrams and/or flow-
chart illustration, can be implemented by special purpose
hardware-based systems that perform the specified functions
or acts, or combinations of special purpose hardware and
computer instructions.

The terminology used herein is for the purpose of describ-
ing particular embodiments only and is not intended to be
limiting of the invention. As used herein, the singular forms
“a”, “an” and “the” are intended to include the plural forms as
well, unless the context clearly indicates otherwise. It will be
further understood that the terms “comprises” and/or “com-
prising,” when used in this specification, specify the presence
of stated features, integers, steps, operations, elements, and/
or components, but do not preclude the presence or addition
of one or more other features, integers, steps, operations,
elements, components, and/or groups thereof Further, refer-
ences to “a method” or “an embodiment” throughout are not
intended to mean the same method or same embodiment,
unless the context clearly indicates otherwise. Additionally,
features of embodiments are not mutually exclusive, unless
the context clearly indicates otherwise.

The corresponding structures, materials, acts, and equiva-
lents of all means or step plus function elements in the claims
below are intended to include any structure, material, or act
for performing the function in combination with other
claimed elements as specifically claimed. The description of
the present invention has been presented for purposes of
illustration and description, but is not intended to be exhaus-
tive or limited to the invention in the form disclosed. Many
modifications and variations will be apparent to those of
ordinary skill in the art without departing from the scope and
spirit of the invention. The embodiment was chosen and
described in order to best explain the principles of the inven-
tion and the practical application, and to enable others of
ordinary skill in the art to understand the invention for various
embodiments with various modifications as are suited to the
particular use contemplated.

Having thus described the invention of the present appli-
cation in detail and by reference to embodiments thereof, it
will be apparent that modifications and variations are possible
without departing from the scope of the invention defined in
the appended claims.

What is claimed is:
1. A method for adjusting authentication conditions in
real-time, the method comprising:

dynamically constructing within a device coupled to a
physical system a graph-theoretic data structure, the
graph-theoretic data structure having nodes correspond-
ing to received valid and invalid authentication creden-
tials used in attempts to access the system, wherein the
dynamically constructing comprises:

ifanewly received credential has no corresponding node in
the data structure, adding in real-time a new node to the
data structure corresponding to the newly received cre-
dential and, if a last received preceding credential was an
invalid credential, adding a directed edge from a last
node corresponding to the last received preceding cre-
dentials to the new node, and

computing in real-time a weight for a directed edge
between nodes corresponding to consecutively received
credentials;

in response to receipt of an invalid credential, computing
based on the graph-theoretic data structure a probability
of the invalid credential being an authentication attempt
by a particular type of user; and

US 8,291,472 B2

21

if the probability is beyond a threshold probability, trigger-
ing a security event to adjust an authentication condition
of'the system.

2. The method of claim 1, wherein each authentication
credential is a cryptographic hash value.

3. The method of claim 1, wherein computing in a real-time
weight for a directed edge between nodes corresponding to
consecutively received credentials comprises:

incrementing a usage count for an edge being traversed

between the nodes corresponding to the consecutively
received credentials.

4. The method of claim 1, wherein computing based on the
graph-theoretic data structure a probability of the invalid
credential being an authentication attempt by a particular type
of user comprises:

computing based on the graph-theoretic data structure a

probability of the invalid credential being an authenti-
cation attempt by a legitimate user.

5. The method of claim 4, wherein, if the probability of the
invalid credential being an authentication attempt by a legiti-
mate user is above the threshold probability, triggering a
security event to adjust an authentication condition of the
system comprises:

triggering a security event to exclude the invalid credential

as a count against a permissible number of invalid access
attempts.

6. The method of claim 4, wherein, if the probability of the
invalid credential being an authentication attempt by a legiti-
mate user is below the threshold probability, triggering a
security event to adjust an authentication condition of the
system comprises:

triggering a security event to lock-out additional attempts

to access the system.

7. The method of claim 1, wherein computing based on the
graph-theoretic data structure a probability of the invalid
credential being an authentication attempt by a particular type
of user comprises:

computing based on the graph-theoretic data structure a

probability of the invalid credential being an authenti-
cation attempt by a malicious user.

8. The method of claim 7, wherein, if the probability of the
invalid credential being an authentication attempt by a mali-
cious user is below the threshold probability, triggering a
security event to adjust an authentication condition of the
system comprises:

triggering a security event to allow additional attempts

above a default permissible number of invalid access
attempts.

9. The method of claim 4, wherein computing the probabil-
ity of the invalid credential being an authentication attempt by
a legitimate user comprises:

computing, based on the graph-theoretic data structure, a

probability of subsequently receiving a valid credential
based on receipt of the invalid credential.

10. The method of claim 9, wherein computing, based on
the graph-theoretic data structure, a probability of subse-
quently receiving a valid credential based on receipt of the
invalid credential comprises:

identifying all n-hop paths out from a node corresponding

to the invalid credential; and

determining what ratio of said all n-hop paths terminate at

a valid credential node.

11. The method of claim 10, further comprising:

determining a probability of traversing an n-hop path ter-

minating at the valid credential node; and

scaling the ratio by said probability of traversing.

20

25

3

<

35

40

45

50

55

60

65

22

12. The method of claim 11, wherein determining the prob-
ability of traversing is based on a factor selected from the
group consisting of: a sum of weights of edges in the n-hop
path, a magnitude of n, and a last traversal time of the n-hop
path.

13. The method of claim 9, wherein computing, based on
the graph-theoretic data structure, a probability of subse-
quently receiving a valid credential based on receipt of the
invalid credential comprises:

computing a historical ratio, wherein the ratio’s numerator

is a number of times an n-hop path from a node corre-
sponding to the invalid credential to a valid credential
node has been historically traversed and the ratio’s
denominator is a number of times the invalid credential
has been historically received.

14. The method of claim 13, further comprising:

scaling the ratio by a factor selected from the group con-

sisting of

a probability of receiving a valid credential from an
originating IP address of the invalid credential,

a probability of receiving a valid credential from an
originating geographical location of the invalid cre-
dential,

aprobability of the system being a security attack target,
and

a probability of receiving a valid credential at approxi-
mately a time the invalid credential was received.

15. The method of claim 1, wherein dynamically construct-
ing the graph-theoretic data structure further comprises:

pruning the graph-theoretic data structure to remove anode

having a property selected from the group consisting of
the following:

outgoing edges having a value within a threshold range,

and

a shortest n-hop path terminating at a valid credential node,

wherein n is at or above a threshold magnitude.

16. A non-transitory computer-readable data storage
medium storing computer-readable and code for implement-
ing a security module for triggering real-time adjustments to
authentication conditions of a physical system, the security
module comprising:

a non-static graph-theoretic data structure comprising:

dynamically constructed nodes corresponding to
received valid and invalid authentication credentials
used in attempts to access the system, and

dynamically weighted directed edges between nodes
corresponding to consecutively received credentials;
and

a graph analysis module coupled to the non-static graph-
theoretic data structure, wherein the graph analysis
module comprising logic components configured to
compute, based on the non-static graph-theoretic data
structure, a probability of the invalid credential being
an authentication attempt by a particular type of user
in response to receipt of an invalid credential, and if
the probability is beyond a threshold probability, trig-
ger a security event to adjust an authentication condi-
tion of the system.

17. The non-transitory-computer readable data storage
medium of claim 16, wherein each authentication credential
is a cryptographic hash value.

18. The non-transitory-computer readable data storage
medium of claim 16, wherein the graph analysis module
comprises:

US 8,291,472 B2

23

a user probability calculator module, the user probability
calculator module being configured to compute, based
on the graph-theoretic data structure, a probability of the
invalid credential being an authentication attempt by a
legitimate user; and

a security event transmitter coupled to the user probability
calculator module, the security event transmitter config-
ured to transmit a security event to adjust an authentica-
tion condition of the physical system if the probability of
the invalid credential being an authentication attempt by
a legitimate user is above the threshold probability.

19. A system for adjusting authentication conditions in

real-time, the system comprising:

a server coupled, via a network, to a client device, the
server to require valid authentication credentials from
the client device prior to providing the client device
access to items in the server;

a backend authorization system coupled to the server, the
backend authorization system to establish authentica-
tion conditions for access to the server; and

a security module coupled to the server and the backend
authorization system, the security module comprising:

24

a non-static graph-theoretic data structure comprising:
dynamically constructed nodes corresponding to
received valid and invalid authentication credentials
used in attempts to access the server, and
dynamically weighted directed edges between nodes
corresponding to consecutively received credentials;
and
a graph analysis module coupled to the non-static graph-
theoretic data structure, wherein the graph analysis
module comprising logic components configured to
compute, based on the non-static graph-theoretic data
structure, a probability of the invalid credential being
an authentication attempt by a particular type of user
in response to receipt of an invalid credential, and if
the probability is beyond a threshold probability, trig-
ger transmission of a security event to the backend
authorization system to adjust an authentication con-
dition for access to the server.
20. The system of claim 19, wherein the security module is

20 located in a geographically remote location from the server.

#* #* #* #* #*

