wO 2009/014975 A1 |10 0 OO0 O A0

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
29 January 2009 (29.01.2009)

(10) International Publication Number

WO 2009/014975 Al

(51) International Patent Classification:

HO4L 9/00 (2006.01)
(21) International Application Number:
PCT/US2008/070263
(22) International Filing Date: 17 July 2008 (17.07.2008)
(25) Filing Language: English
(26) Publication Language: English

(30) Priority Data:

11/781,057 20 July 2007 (20.07.2007) US

(71) Applicant: CHECK POINT SOFTWARE TECH-
NOLOGIES, INC. [US/US]; (a Delaware Corporation),
800 Bridge Parkway, Redwood City, CA 94065 (US).

(72) Inventors: MOROZOYV, Artiom; Nezavisitmosti Ave.,
109 ap. 15, Minsk, 220023 (BY). KONANKA, Dzmitry;
Mihailov Kut Str, 78, Kolodischi, 223051 (BY).

(74) Agent: SMART, John, A.; 201 Los Gatos - Saratoga Rd
#161, Los Gatos, CA 95030-5308 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AOQ, AT, AU, AZ,BA, BB, BG, BH, BR, BW, BY, BZ, CA,
CH, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE,
EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID,
1L, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC,
LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN,
MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH,
PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, ST,
SV, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VC, VN,
ZA, 7M, 7ZW.
(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB,GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL,
NO, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG,
CIL, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:
with international search report

(54) Title: SYSTEM AND METHODS PROVIDING SECURE WORKSPACE SESSIONS

00
o — 210
Application layer /'
APPLICATION(s)
(MS-Word, IE, Notepad, etc.)
E
. g 225
Secured layer e /‘ 220 /‘
HOOKS
‘ INDIVIDUAL SECURE WORKSPACE HOOK(S) ENGINE
(cpsws.dll)
- [-
oS layer J U A
230 \/\‘ OS KERNEL (e.g., NTDLL.DLL) | ¥
o | 1 o SECURE
hd 4 & hd WORKSPACE
0S INFORMATION STORAGES MANAGER
b~_ 240 | (cpsws.exe)
CLIPBOARD 227
SECURE
WORKSPACE
POLICY
(cpsws.xmi)
SECURE
WORKSPACE
F/G 2A WALLPAPER

(cpsws.jpg)

(57) Abstract: System and methods providing secure workspace sessions is described. In one embodiment a method for providing
multiple workspace sessions for securely running applications comprises steps of: initiating a first workspace session on an existing
operating system instance running on the computer system, the first workspace session having a first set of privileges for running
applications under that session; while the first workspace session remains active, initiating a second workspace session on the existing
operating system instance running on the computer system, the second workspace session having a second set of privileges for
running applications under the second workplace session; and securing the second workspace session so that applications running
under the second workplace session are protected from applications running outside the second workspace session.

WO 2009/014975 PCT/US2008/070263

System and Methods Providing Secure Workspace Sessions

DESCRIPTION

Copyright Statement

[1] A portion of the disclosure of this patent document contains material which is subject
to copyright protection. The copyright owner has no objection to the facsimile reproduction by
anyone of the patent document or the patent disclosure as it appears in the Patent and Trademark

Office patent file or records, but otherwise reserves all copyright rights whatsoever.

Background of Invention

[2] 1. Field of the Invention

[3] The present invention relates generally to computers and data processing applications
and, more particularly, to system and methodology providing a secure workspace environment.
(4] 2. Description of the Background Art

[5] Growth of Internet-based remote access technologies has lead to an increasing
number of users working in unprotected or untrusted environments. Home users connect to their
corporate networks via different VPN clients. People on vacation check their emails via public
kiosks. Sales agents connect to their databases via wireless services in airports. Large networks
now are not just broadband lines that connect offices in several states or countries, they are far
more complicated and far less controlled at the end-points (e.g., at individual personal
computers). As the number of mobile users grows, the number of potential threats also grows.
Potential threats include, but are not limited to, phishing attacks, identity theft, trade secrets
theft, and the like.

[6] A network of the typical large organization can be protected with various tools. For
example, a firewall is installed to protect a company's gateway. Anti-virus software is installed
on the company's mail server to scan incoming and outgoing email. Anti-virus software can be
also installed on individual end user computers. For remote users, SSL. VPN or IPSEC VPN is
available to connect to the company's network from remote sites. For managing these
environments, I'T departments typically develop and deploy a set of security rules (security
policy) to endpoints. Notwithstanding the availability of these foregoing tools, corporate IT
departments today still face difficulties in protecting managed computers within the corporations

from the threats from the Internet.

WO 2009/014975 PCT/US2008/070263
[7] Consider for instance a firm, XYZ trading firm, which employs a clerk named John
Doe. John works with a firm-owned personal computer to connect to a business client-server
application running on another one of the firm's computers. This "business application" allows
him to access all-important data: customer information, invoices, and inventory availability of
items. Most of the data available to John is confidential. Sometimes John stays after work to
browse and download free music from web sites. Recently, he downloaded and installed
(without permission) a Tetris game for his own amusement during free time. Both of these
seemingly innocent activities of John can lead to the leakage of important data, however. For

example, many free music sites contain "spyware," "adware," or other malicious software
("malware"). Free game downloads (e.g., Tetris download) in particular often conceal malware
intended to steal confidential data. In this scenario, corporate firewall and antivirus software
installed on an employee's computer often will not help. Corporate firewalls, for example, are
frequently configured to allow HTTP traffic (i.e., port 80 is open); the HTTP protocol, in turn,
can be used to download files, including unintentional (or intentional) downloading of malware.
Importantly, antivirus (AV) software that may be running (e.g., on John's machine) is not
guaranteed to detect spyware programs, especially those particularly developed to bypass the
antivirus software.

[8] Given the risks posed by the above, some attempts have been made to address the
problem. The simplest way is to apply a strict security policy: prohibit Internet traffic for
computers where important business applications are installed. In many cases this will not
work, however, since Internet connectivity is a daily tool for many people. Employees need
Internet access in order to get news, search information, visit site of competitors, get email, use
online applications and services, and so forth. The simplest approach is therefore not a practical
solution for most firms.

[9] Another approach is to use two computers, one for internal business applications and
one to access the Internet. This is the most secure approach, but also the most expensive and
inconvenient. The cost grows not only because of the hardware duplication, but management of
the firm's IT (information technology) infrastructure becomes more complex and expensive.
The total cost of ownership (TCO) eventually grows to an unsustainable level. For example,
consider how an employee or clerk should send and receive email. If email (client) software is
installed on the same computer where an important business application is installed, special
precautions must be taken to prevent malicious software distributed by email. Although the
firm's system administrator may install antivirus to scan email on-the-fly, malware can easily

bypass such protections; for example, malware may be hidden in a password protected archive

2

WO 2009/014975 PCT/US2008/070263
(e.g., .ZIP) file. If the email client is installed on the computer with HTTP access enabled, the

system administrator must also worry about how data may be safely imported from the email
system into the business application. Given these shortcomings, the approach is reserved for
situations where high costs and inconvenience can be justified, for example in banking and
military deployments.

[10] Another approach involves the use of separate user profiles. When working with the
business application, the employee (e.g., John) is required to use a special OS (operating system)
profile -- that is, one requiring that he log-in under a username with special privileges. When
working with Internet, he would use another profile. Microsoft® Windows XP supports
somewhat fast profile switching. In spite of these improvements in this area, this approach is
not widely used, perhaps for obvious reasons: interference with usability and difficulty of
configuration make the approach relatively unattractive.

[11] What is needed is a solution that protects unmanaged computers from threats posed
by Internet connectivity. For example, such a solution should allow a user to do online
payments from his home personal computer without the worry of Internet-borne threats.
However, such a solution should provide this protection without high costs or inconvenience.

The present invention fulfills this and other needs.

Summary of Invention

[12] System and methods providing secure workspace sessions is described. In one
embodiment, for example, in a computer system, a method of the present invention is described
for providing multiple workspace sessions for securely running applications, the method
comprises steps of: initiating a first workspace session on an existing operating system instance
running on the computer system, the first workspace session having a first set of privileges for
running applications under that session; while the first workspace session remains active,
initiating a second workspace session on the existing operating system instance running on the
computer system, the second workspace session having a second set of privileges for running
applications under the second workplace session; and securing the second workspace session so
that applications running under the second workplace session are protected from applications
running outside the second workspace session.

[13] In another embodiment, for example, a system of the present invention providing that
allows users to run software programs in a plurality of workspace sessions subject to separate
security rules of a security policy is described that comprises: a computer running under an

operating system; a plurality of software programs for use by users of the computer; a

3

WO 2009/014975 PCT/US2008/070263

configurable security policy specifying security rules applicable to the software programs; a
session manager for creating a plurality of workspace sessions under the operating system with
each of the sessions subject to separate security rules of the security policy and isolated from
other workspace sessions, thereby allowing software programs to run in a secure manner subject
to the separate security rules; and a module for enforcing compliance with security rules of the

security policy by software programs running in each of the workspace sessions.

WO 2009/014975 PCT/US2008/070263
Brief Description of Drawings
[14] Fig. 1 is a very general block diagram of a computer system (e.g., an IBM-

compatible system) in which software-implemented processes of the present invention may be

embodied.

[15] Fig. 2A is a high-level block diagram illustrating the Secure Workspace System
(SWS) of the present invention.

[16] Fig. 2B is a block diagram providing a lower level view of the components of Fig.
2A.

[17] Figs. 3A-B comprise a single high-level flowchart illustrating a methodology for
initializing the secure desktop/workspace of the present invention.

[18] Fig. 4 is a flowchart illustrating a method of the present invention for de-
initialization.

[19] Fig. 5A is a block diagram illustrating an unmanaged computer that has established

(Internet connectivity) a session with a protected web resource (e.g., company portal).
[20] Fig. 5B is a block diagram illustrating a managed computer that has Internet
connectivity, for example to connect to a company portal.

[21] Fig. 6 is a bitmap screenshot illustrating launching of a concurrent or "hosted"

session as a separate window within the same single desktop.

[22] Fig. 7A is a block diagram illustrating the process of creation and start up of a hosted
session.

[23] Fig. 7B is a block diagram illustrating the process of initialization of the session
subsystem.

[24] Fig. 7C is a block diagram illustrating the last stage of subsystem initialization which

involves setting up input and video devices.

[25] Fig. 7D is a block diagram illustrating operations of the initial command.
[26] Fig. 8A is a block diagram illustrating the first stage of session termination.
[27] Fig. 8B is a block diagram illustrating the second stage of session termination.

WO 2009/014975 PCT/US2008/070263
Detailed Description
[28] Glossary
[29] The following definitions are offered for purposes of illustration, not limitation, in
order to assist with understanding the discussion that follows.
[30] Firewall: A firewall is a set of related programs, typically located at a network
gateway server, that protects the resources of a private network from other networks by
controlling access into and out of the private network. (The term also implies the security policy
that is used with the programs.) A firewall, working closely with a router program, examines
each network packet to determine whether to forward it toward its destination. A firewall may
also include or work with a proxy server that makes network requests on behalf of users. A
firewall is often installed in a specially designated computer separate from the rest of the
network so that no incoming request directly accesses private network resources.
[31] HTTP: HTTP is the acronym for HyperText Transfer Protocol, which is the
underlying communication protocol used by the World Wide Web on the Internet. HTTP
defines how messages are formatted and transmitted, and what actions Web servers and
browsers should take in response to various commands. For example, when a user enters a URL
in his or her browser, this actually sends a HTTP command to the Web server directing it to
fetch and transmit the requested Web page. Further description of HTTP is available in "RFC
2616: Hypertext Transfer Protocol -- HTTP/1.1." RFC 2616 is available from the World Wide
Web Consortium (W3C), and is available via the Internet (e.g., currently at
www.w3.org/Protocols/). Additional description of HTTP is available in the technical and trade
literature, see e.g., Stallings, W., "The Backbone of the Web," BYTE, October 1996.
[32] Network: A network is a group of two or more systems linked together. There are
many types of computer networks, including local area networks (LANSs), virtual private
networks (VPNs), metropolitan area networks (MANs), campus area networks (CANs), and
wide area networks (WANS5) including the Internet. As used herein, the term "network" refers
broadly to any group of two or more computer systems or devices that are linked together from
time to time (or permanently).
[33] Portal: A portal provides an individualized or personalized view of multiple
resources (e.g., Web sites) and services. A portal typically offers a single access point (e.g.,
browser page) providing access to a range of information and applications. A portal assembles
information from a number of different sources (e.g., Web sites and applications) enabling a user

to quickly receive information without having to navigate to a number of different Web sites. A

WO 2009/014975 PCT/US2008/070263

portal also typically enables a user to obtain a personalized view of information and applications
by organizing and grouping information and services for presentation to users.

[34] TCP/IP: TCP/IP stands for Transmission Control Protocol/Internet Protocol, the suite
of communications protocols used to connect hosts on the Internet. TCP/IP uses several
protocols, the two main ones being TCP and IP. TCP/IP is built into the UNIX operating system
and is used by the Internet, making it the de facto standard for transmitting data over networks.
For an introduction to TCP/IP, see e.g., "RFC 1180: A TCP/IP Tutorial". A copy of RFC 1180
is available via the Internet (e.g., currently at www.ietf.org/rfc/rfc1180.txt).

[35] Thread: A thread refers to a single sequential flow of control within a program.
Operating systems that support multi-threading enable programmers to design programs whose
threaded parts can execute concurrently. In some systems, there is a one-to-one relationship
between the task and the program, but a multi-threaded system allows a program to be divided
into multiple tasks. Multi-threaded programs may have several threads running through
different code paths simultaneously.

[36] URL: URL is an abbreviation of Uniform Resource Locator, the global address of
documents and other resources on the World Wide Web. The first part of the address indicates
what protocol to use, and the second part specifies the IP address or the domain name where the
resource is located.

[37] Winsock: Windows Sockets 2 (Winsock) is a Microsoft-provided interface that
enables programmers to create advanced Internet, intranet, and other network-capable
applications to transmit application data across the wire, independent of the network protocol
being used. With Winsock, programmers are provided access to advanced Microsoft Windows
networking capabilities such as multicast and Quality of Service (QOS). Winsock follows the
Windows Open System Architecture (WOSA) model; it defines a standard service provider
interface (SPI) between the application programming interface (API), with its exported functions
and the protocol stacks. It uses the sockets paradigm that was first popularized by Berkeley
Software Distribution (BSD) UNIX. It was later adapted for Windows in Windows Sockets 1.1,
with which Windows Sockets 2 applications are backward compatible. Winsock programming
was previously centered around TCP/IP. Some programming practices that worked with TCP/IP
do not work with every protocol. As a result, the Windows Sockets 2 API adds functions where
necessary to handle several protocols. For further information regarding Winsock, see e.g.,
"Winsock Reference", available from Microsoft Corporation. A copy of this documentation is

available via the Internet (e.g., currently at

WO 2009/014975 PCT/US2008/070263

msdn.microsoft.com/library/default.asp?url=/library/en-
us/winsock/winsock/winsock_reference.asp).

[38] XML: XML stands for Extensible Markup Language, a specification developed by
the World Wide Web Consortium (W3C). XML is a pared-down version of the Standard
Generalized Markup Language (SGML), a system for organizing and tagging elements of a
document. XML is designed especially for Web documents. It allows designers to create their
own customized tags, enabling the definition, transmission, validation, and interpretation of data
between applications and between organizations. For further description of XML, see e.g.,
"Extensible Markup Language (XML) 1.0", (2nd Edition, October 6, 2000) a recommended
specification from the W3C. A copy of this specification is available via the Internet (e.g.,

currently at www.w3.org /TR/REC-xml).

Introduction

[39] Referring to the figures, exemplary embodiments of the invention will now be
described. The following description will focus on the presently preferred embodiment of the
present invention, which is implemented in desktop and/or server software (e.g., driver,
application, or the like) operating in an Internet-connected environment running under an
operating system, such as the Microsoft Windows operating system. The present invention,
however, is not limited to any one particular application or any particular environment. Instead,
those skilled in the art will find that the system and methods of the present invention may be
advantageously embodied on a variety of different platforms, including Macintosh, Linux,
Solaris, UNIX, FreeBSD, and the like. Therefore, the description of the exemplary
embodiments that follows is for purposes of illustration and not limitation. The exemplary
embodiments are primarily described with reference to block diagrams or flowcharts. As to the
flowcharts, each block within the flowcharts represents both a method step and an apparatus
element for performing the method step. Depending upon the implementation, the
corresponding apparatus element may be configured in hardware, software, firmware, or

combinations thereof.

Computer-based implementation

[40] Basic system hardware and software (e.g., for desktop and server computers)

[41] The present invention may be implemented on a conventional or general-purpose
computer system, such as an IBM-compatible personal computer (PC) or server computer. Fig.

1 is a very general block diagram of a computer system (e.g., an IBM-compatible system) in

8

WO 2009/014975 PCT/US2008/070263

which software-implemented processes of the present invention may be embodied. As shown,
system 100 comprises a central processing unit(s) (CPU) or processor(s) 101 coupled to a
random-access memory (RAM) 102, a read-only memory (ROM) 103, a keyboard 106, a printer
107, a pointing device 108, a display or video adapter 104 connected to a display device 105, a
removable (mass) storage device 115 (e.g., floppy disk, CD-ROM, CD-R, CD-RW, DVD, or the
like), a fixed (mass) storage device 116 (e.g., hard disk), a communication (COMM) port(s) or
interface(s) 110, a modem 112, and a network interface card (NIC) or controller 111 (e.g.,
Ethernet). Although not shown separately, a real time system clock is included with the system
100, in a conventional manner.

[42] CPU 101 comprises a processor of the Intel Pentium family of microprocessors.
However, any other suitable processor may be utilized for implementing the present invention.
The CPU 101 communicates with other components of the system via a bi-directional system
bus (including any necessary input/output (I/O) controller circuitry and other "glue" logic). The
bus, which includes address lines for addressing system memory, provides data transfer between
and among the various components. Description of Pentium-class microprocessors and their
instruction set, bus architecture, and control lines is available from Intel Corporation of Santa
Clara, CA. Random-access memory 102 serves as the working memory for the CPU 101. In a
typical configuration, RAM of sixty-four megabytes or more is employed. More or less memory
may be used without departing from the scope of the present invention. The read-only memory
(ROM) 103 contains the basic input/output system code (BIOS) -- a set of low-level routines in
the ROM that application programs and the operating systems can use to interact with the
hardware, including reading characters from the keyboard, outputting characters to printers, and
so forth.

[43] Mass storage devices 115, 116 provide persistent storage on fixed and removable
media, such as magnetic, optical or magnetic-optical storage systems, flash memory, or any
other available mass storage technology. The mass storage may be shared on a network, or it
may be a dedicated mass storage. As shown in Fig. 1, fixed storage 116 stores a body of
program and data for directing operation of the computer system, including an operating system,
user application programs, driver and other support files, as well as other data files of all sorts.
Typically, the fixed storage 116 serves as the main hard disk for the system.

[44] In basic operation, program logic (including that which implements methodology of
the present invention described below) is loaded from the removable storage 115 or fixed
storage 116 into the main (RAM) memory 102, for execution by the CPU 101. During operation

of the program logic, the system 100 accepts user input from a keyboard 106 and pointing

9

WO 2009/014975 PCT/US2008/070263

device 108, as well as speech-based input from a voice recognition system (not shown). The
keyboard 106 permits selection of application programs, entry of keyboard-based input or data,
and selection and manipulation of individual data objects displayed on the screen or display
device 105. Likewise, the pointing device 108, such as a mouse, track ball, pen device, or the
like, permits selection and manipulation of objects on the display device. In this manner, these
input devices support manual user input for any process running on the system.

[45] The computer system 100 displays text and/or graphic images and other data on the
display device 105. The video adapter 104, which is interposed between the display 105 and the
system's bus, drives the display device 105. The video adapter 104, which includes video
memory accessible to the CPU 101, provides circuitry that converts pixel data stored in the
video memory to a raster signal suitable for use by a cathode ray tube (CRT) raster or liquid
crystal display (LCD) monitor. A hard copy of the displayed information, or other information
within the system 100, may be obtained from the printer 107, or other output device. Printer 107
may include, for instance, an HP LaserJet printer (available from Hewlett Packard of Palo Alto,
CA), for creating hard copy images of output of the system.

[46] The system itself communicates with other devices (e.g., other computers) via the
network interface card (NIC) 111 connected to a network (e.g., Ethernet network, Bluetooth
wireless network, or the like), and/or modem 112 (e.g., 56K baud, ISDN, DSL, or cable
modem), examples of which are available from 3Com of Santa Clara, CA. The system 100 may
also communicate with local occasionally-connected devices (e.g., serial cable-linked devices)
via the communication (COMM) interface 110, which may include a RS-232 serial port, a
Universal Serial Bus (USB) interface, or the like. Devices that will be commonly connected
locally to the interface 110 include laptop computers, handheld organizers, digital cameras, and
the like.

[47] IBM-compatible personal computers and server computers are available from a
variety of vendors. Representative vendors include Dell Computers of Round Rock, TX,
Hewlett-Packard of Palo Alto, CA, and IBM of Armonk, NY. Other suitable computers include
Apple-compatible computers (e.g., Macintosh), which are available from Apple Computer of
Cupertino, CA, and Sun Solaris workstations, which are available from Sun Microsystems of
Mountain View, CA.

[48] A software system is typically provided for controlling the operation of the computer
system 100. The software system, which is usually stored in system memory (RAM) 102 and on
fixed storage (e.g., hard disk) 116, includes a kernel or operating system (OS) which manages

low-level aspects of computer operation, including managing execution of processes, memory

10

WO 2009/014975 PCT/US2008/070263
allocation, file input and output (I/0), and device I/O. The OS can be provided by a

conventional operating system, Microsoft Windows NT, Microsoft Windows 2000, Microsoft
Windows XP, or Microsoft Windows Vista (Microsoft Corporation of Redmond, WA) or an
alternative operating system, such as the previously mentioned operating systems. Typically,
the OS operates in conjunction with device drivers (e.g., "Winsock" driver -- Windows'
implementation of a TCP/IP stack) and the system BIOS microcode (i.e., ROM-based
microcode), particularly when interfacing with peripheral devices. One or more application(s),
such as client application software or "programs" (i.e., set of processor-executable instructions),
may also be provided for execution by the computer system 100. The application(s) or other
software intended for use on the computer system may be "loaded" into memory 102 from fixed
storage 116 or may be downloaded from an Internet location (e.g., Web server). A graphical
user interface (GUI) is generally provided for receiving user commands and data in a graphical
(e.g., "point-and-click") fashion. These inputs, in turn, may be acted upon by the computer
system in accordance with instructions from OS and/or application(s). The graphical user
interface also serves to display the results of operation from the OS and application(s).

[49] The above-described computer hardware and software are presented for purposes of
illustrating the basic underlying desktop and server computer components that may be employed
for implementing the present invention. For purposes of discussion, the following description
will present examples in which it will be assumed that there exists at least one computer that
communicates with other computers over a network, such as one or more "clients" (e.g., desktop
computers) that communicate with various "servers" (e.g., Web servers) over the Internet. The
present invention, however, is not limited to any particular environment or device configuration.
In particular, a client/server distinction is not necessary to the invention, but is used to provide a
framework for discussion. Instead, the present invention may be implemented in any type of
system architecture or processing environment capable of supporting the methodologies of the

present invention presented in detail below.

Overview of base secured workspace

[50] In accordance with the present invention, a fully secured environment is provided in
the framework of the user's usual operating system (host OS, such as Microsoft Windows). The
main Input/Output (I/O) functions of the host OS are hooked or intercepted so that all
information, including session information that applications save to disk, is really stored in

encrypted form to prevent unauthorized access. In this manner, unauthorized or malicious users,

11

WO 2009/014975 PCT/US2008/070263

even those that have full access to the host OS, are prevented from accessing the information or
data created in the secured environment.

[51] This process occurs in a fashion that is fully transparently for both applications and
users. Applications think that they are working with usual OS functions and that they are storing
information to usual storages. The user sees the secured environment as a "virtual desktop," a
Secured Desktop. The user can easily switch between secured and not secured (usual) desktops,
for example by hotkeys or GUI elements. By intercepting all (relevant) OS functions, the
approach of the present invention can control all applications running on the Secured Desktop,
allowing or denying them the ability to do any specified action. This approach is used in
conjunction with a configurable security policy that specifies behavior or actions of software
programs that are, or are not, permitted. For example, it is possible to specify what applications
can be run on the virtual desktop at all. In this manner, the present invention may prevent the
launching of any noncompliant software (i.e., computer programs that would violate the policy),
including banning malicious software (e.g., spyware and computer viruses) that can steal
information or even damage the system.

[52] In the currently preferred embodiment, a Secure Workspace System (SWS) is
provided that gives the user a secured area for web sessions, with a clear visual separation from
non-secure areas. The workspace protects sensitive session information while a given session is
active and performs total clean up after the session is finished. The workspace enables
protection in user space mode, without developing device drivers (guest user rights are needed to
run the Secure Workspace System). The workspace performs API hooking at the lowest
possible level in the user space (e.g., native Windows NT API (NTDLL)), so that applications

that work directly with this layer will not bypass the hooking mechanism.

System components

[53] The Secure Workspace System (SWS) works at the application level on the client
side and prevents unauthorized access to a user's confidential information. The SWS creates a
new secured, virtual desktop, which the user can work on, and intercepts file/registry operations
for all applications started on this desktop. The system saves all sensitive user data on the user's
local machine in encrypted form and deletes it when the session is terminated.

[54] Fig. 2A is a high-level block diagram illustrating the Secure Workspace System
(SWS) of the present invention. As shown, the SWS 200 is a secure workspace or desktop
environment that includes (main) application(s) 210; secure workspace hook(s) 220, hooks

engine 225, and secure workspace manager 227. The secure workspace manager 227 is the

12

WO 2009/014975 PCT/US2008/070263

main module for controlling and configuring the SWS. In operation, the manager 227 creates a
new "secure" desktop and secure user profile, and initializes them according to a secure
workspace policy. The policy (cpsws.xml) file allows one to specify the SWS look and feel
(e.g., start menu, shortcuts, and the like), the list of applications that can be started on the secure
workspace, and security settings for individual applications (e.g., access rights for folders,
WinNT kernel objects, and the like). The workspace includes special displayable indicia, such
as distinctive desktop wallpaper, that is displayed when the user switches into the secure
workspace, thereby providing visual feedback that the user's system is operating in secure mode.
[55] During operation, the manager 227 starts a usual Windows shell (e.g., explorer.exe)
with an injection of the hooks engine 225 (cpsws.dll) on the created desktop. The injected
hooks engine 225 in turn hooks "process creation” routines and automatically injects itself into
all newly created processes. In this manner, each application 210 on the secure desktop receives
a workspace hook 220. In the Microsoft Windows environment, for example, the injected DLL
hooks API calls (invocations) by overwriting hooked NTDLL routines entry points with JMP
instructions, thus redirecting them to code inside the cpsws.dll. In this fashion, the system can
be assured that any kind of call to NTDLL API (including from Win32 DLL, and from the
application itself with GetProcAddress or import table) will be first intercepted by the SWS.
This allows the SWS 200 to control each application's interaction with the underlying operating
system 230, including the operating system's information storage 240 (e.g., Windows' registry,
file system, and Clipboard).
[56] In the currently preferred embodiment, the hooks engine 225 monitors the following
API functions:
ZwClose

ZwQueryObject

ZwQueryVolumelnformationFile

ZwSetVolumelnformationFile

ZwQueryQuotalnformationFile

ZwSetQuotalnformationFile

ZwDuplicateObject

ZwCreateFile

ZwOpenFile

ZwDeleteFile

ZwFlushBuffersFile

ZwCancelloFile

13

WO 2009/014975 PCT/US2008/070263
ZwReadFile

ZwReadFileScatter
ZwWriteFile
ZwWriteFileGather
ZwLockFile
ZwUnlockFile
ZwQueryAttributesFile
ZwQueryFullAttributesFile
ZwQueryInformationFile
ZwSetInformationFile
ZwQueryDirectoryFile
ZwNotifyChangeDirectoryFile
ZwFsControlFile
ZwQueryEaFile
ZwSetEaFile
ZwCreateSection
ZwQpenSection
ZwQuerySection
ZwExtendSection
ZwMapViewOfSection
ZwUnmapViewOfSection
ZwAreMappedFilesTheSame
ZwCreateProcess
ZwOpenProcess
ZwTerminateProcess
ZwCreateMutant
ZwOpenMutant
ZwCreateSemaphore
ZwOpenSemaphore
ZwCreateEvent
ZwQpenEvent
CreateProcessW
CreateProcessA

WinExec
14

WO 2009/014975 PCT/US2008/070263
ExitWindowsEx

StartDocA
StartDocW

ZwCreateKey

ZwOpenKey.
CoGetClassObject
CoLoadLibrary
CoCreatelnstance
CoCreatelnstanceEx
SetClipboardData
GetClipboardData
[57] Access to different system resources are allowed or denied based on the policy
(cpsws.xml). The hooks engine 227 allows applications started on the secure desktop to create
files and registry keys only inside a secure user profile. These items will be encrypted on the
host file system and will be deleted when the given session is terminated.
[58] Fig. 2B is a block diagram providing a lower level view of the components of Fig.
2A. (Components 210, 225, and 227 are shown carried over from Fig. 2A to Fig. 2B.) The
specific operation of these components will now be described in further detail. As shown, the
cpsws.dll is loaded into every secured process. During loading into a given target process, it
writes small code stubs into (i.e., applies code patches to) the beginning of every necessary
ntdll.dll exported function. The stub calls serve to dispatch or redirect function calls to routines
contained in cpsws.dll, instead of the original ntdll functions.
[59] As illustrated in the diagram, every loaded in-process module, including usual system
modules such as kernel32.dll, shell32.dll, and the like (even main application executable), can
communicate with the NT kernel via ntdll.dll calls. Use of the mechanism of ntdll.dll hooking
allows maximum possible in user-space control of all data flows between a given secured
application and hardware persistent storage. In this manner, the cpsws.dll can dispatch all files-
related functions, including those used by the application. The cpsws.dll encrypts all data on-
the-fly, and stores it to the target persistent storage in encrypted form.
[60] The cpsws.dll also controls creation of out-of-process COM objects. It does this by
hooking the particular ole32.dll functions that are used for object creation. It intercepts creating
out-of-process COM servers and creates their processes itself. Some user32.dll functions, such
as SetClipboardData and GetClipboardData, also may be hooked to allow on-the-fly encryption

of data copied to clipboard by secured applications. In the currently preferred embodiment,

15

WO 2009/014975 PCT/US2008/070263

additional kernel32.dll and shell32.dll functions are hooked to control process creation and file
operations at a higher level. In this manner, the SWS may, for example, show user alert
messages about rejected operations, including denied program startup, denied saving files to
non-secured locations, and the like.

[61] Initializing the secure desktop/workspace

[62] Figs. 3A-B comprise a single high-level flowchart illustrating a methodology 300 for
initializing the secure desktop/workspace of the present invention. At step 301, the secure
workspace manager 227 (cpsws.exe) is started with the following parameters:
/url="main_page url" -- URL, that will be opened in default browser after secured desktop
starts;

/cookie="server;cookiename=cookievalue" -- secured cookie, that will be inserted into each
HTTP(-S) request to the defined server; and

/shell="shell_id" -- shell identifier; refers to corresponding tag in the secured workspace policy;
defines a shell that will be started on secure desktop (explorer.exe by default).

[63] The policy file (cpsws.xml) may now be loaded, at step 302. At step 303, the secure
workspace manager (cpsws.exe) creates a pipe server that will listen and dispatch requests from
injected applications. The pipe server uses a secure cookie as an authorization password on
every client connect, so only processes that started with the SWS's dll can use this pipe. Next, at
step 304, the hooks engine 225 (cpsws.dll) is loaded into the SWS; this process is referred to
herein as "self-injection.” The hooks engine (cpsws.dll) hooks all necessary API (for example,
for Windows: ntdll.dll, kernel32.dll, ole32.dll, user32.dll, and the like), and also injects itself
into every child process that is created by an already-injected process. This is illustrated at step
305.

[64] As shown at step 306, the method proceeds to create a virtual user profile (according
to the policy), as follows:

Set files directory to: %9USERPROFILE%\CPSecured;

Set Registry to: HKCU\ CPSecured;

Initialize shortcuts;

Import files from original profile; and

Create profile files for Mozilla Firefox.

[65] At step 307, the method creates a virtual desktop, for example, via Windows'
CreateDesktop() WinAPI function. The method proceeds, at step 308, to create and initialize an
empty Discretionary Access Control List (DACL) security descriptor and assign it to the new

desktop. This disallows any other application from starting or installing input hooks on the

16

WO 2009/014975 PCT/US2008/070263

secure desktop. Any additional initialization may now be performed (e.g., get current
wallpaper), as indicated at step 309. The machine's shell (e.g., explorer.exe) is started on the
created virtual desktop, at step 310. Since injection occurred via the hooks engine (cpsws.dll),
the shell (explorer.exe) will be injected by the hooks engine (cpsws.dll) on startup. This allows
the system of the present invention to control applications that will be started on the virtual
desktop. Finally, at step 311, the method 300 switches operation of the machine to the just-

created desktop, if all preceding operations have succeeded.

[66] API hooks
[67] (a) API hooks initialization (dll)
[68] During processing of a Windows' DIIMain function (i.e., the optional entry point into

a Windows dynamic-link library (DLL)), the hooks engine (cpsws.dll) hooks to a list of
functions of ntdll.dll, kernel32.dll, ole32.dll, and user32.dll (i.e., operating system applications
programming interface (API) executable files). Then it waits while the parent process writes a
secure cookie to its memory (e.g., using WriteMemory API). This allows the system of the
present invention to further distinguish pipe clients in the SWS.

[69] (b) API hooks processing (dll)

[70] The API hooks processing proceeds as follows. Every created thread of the already-
secured application is switched to the secure desktop. The desktop handle is retrieved from the
hooks engine (cpsws.dll) using Windows DLL thread attachment program logic (i.e., specifying
the Windows DLL. THREAD ATTACH flag). The "process creation” functions (e.g.,
Windows' CreateProcessW, CreateProcessA functions) are hooked to allow injection of
cpsws.dll at the point when a new process is going to start. When such a new process has been
created, the hooks engine (cpsws.dll) writes a secure token to its memory. A child process may
use this as an authorization password for the pipe server.

[71] File functions are intercepted to allow "virtualization" and encryption of the file
system, as follows. When an application asks the system to create file, the hooks engine
(cpsws.dll) checks the file path in order to determine if creating a file in this directory is allowed
by policy. If it is allowed, the secure workspace manager (cpsws.exe) generates a random string
that will correspond to requested file name, thus allowing the file to be physically created with a
secure name.

[72] On write operation, the hooks engine (cpsws.dll) checks the user's rights to change
files in the given target directory, according to the policy file. If sufficient rights exist, the SWS
encrypts all data "on-the-fly" and writes it to a real file in secure form. Additional information is

written to file, including for example encryption algorithm ID and real size of file (recorded as

17

WO 2009/014975 PCT/US2008/070263

housekeeping information, for use with encryption algorithms that can encrypt data only by
blocks with constant length). This additional data is not visible to the application, but is instead
used by the hooks engine (cpsws.dll) internally.

[73] On read operation, the hooks engine (cpsws.dll) reads information from the file
header, and reads a corresponding fragment of data from the file (which can be larger than
requests, due to block encryption). The file information may now be decrypted and returned as
decrypted data to the requesting application. In response to a "files listing" request, the hooks
engine (cpsws.dll) checks the user's rights to list the particular directory. If the user has
sufficient rights, the SWS reads corresponding information from the file headers and returns the
real filename and size (which recall was written as a field of the file header).

[74] When an application creates a memory-mapped section of a file, the SWS creates a
corresponding in-memory section, with size of file. The system may now read decrypted
content of the file to this section and give the calling application (caller) a corresponding handle
to this section. If an application specifies a "section name" in the call, the hooks engine
(cpsws.dll) can change the name to separate sections created on the respective secure and default
desktops. Desired behavior is preferably configured in the policy file (cpsws.xml). When an
application calls usual ReadFile (Windows API function to read data from a file) or WriteFile
(Windows API function to write data to a file) functions for files that are mapped to memory,
the SWS satisfies the calls with simple read/write of data from section memory. When an
application requests closing of the section, data stored in the section is flushed to the
corresponding file and the section is closed.

[75] De-initialization of the secure desktop/workspace

[76] In response to a proper request, the SWS of the present invention may be shutdown.
Before closing, it optionally queries all running applications for shutdown, terminates all
secured application(s), and then deletes all secured data from local storages, to prevent
information leaks and quits. (Specific method steps for effecting de-initialization are described

in detail below.)

Security analysis

[77] The prevention of information leaks from the SWS will now be discussed.
[78] System swap file
[79] The underlying operating system (OS) may save memory pages of applications

running on secure desktop into a global system swap file. The SWS itself does not presently

solve this problem in the currently preferred embodiment. However, the issue may be addressed

18

WO 2009/014975 PCT/US2008/070263

by changes elsewhere. For example, the swap file itself may be written to an OS-supported
volume encryption (e.g., Microsoft Windows Vista Windows full volume encryption).
Additionally, in those deployments already employing large amounts of physical memory
(RAM), the amount of data paged to disk for virtual memory management (VMM) may
constitute a rather insignificant amount of application data. Further, those skilled in the art will
appreciate that the SWS may be designed to include kernel-level logic to supplant the OS's
native swap file with an encrypted one.

[80] Registry keys

[81] In the currently preferred embodiment, the SWS does not encrypt registry entries
created by applications on the secure desktop. These are deleted when a given session is
terminated. However, it is possible that during unexpected session termination sensitive data
will be left in the current user file (ntuser.dat). The issue may be addressed by encrypting
registry items in the same way as files.

[82] Analyzing secure user profile

[83] Content and names of files created on the secure desktop are encrypted on the host
file system. However, the corresponding encryption/decryption key is stored in memory
(subject to swapping via the swap file); similarly, the directory structure is potentially visible
outside the secure desktop. In embodiments contemplating use of electronic codebook (ECB)
mode, there is the potential disadvantage that identical plaintext blocks are encrypted to identical
ciphertext blocks; the approach does not hide data patterns. The issue may be addressed by
using cipher-block chaining (CBC) mode. In the cipher-block chaining (CBC) mode, each block
of plaintext is XORed with the previous ciphertext block before being encrypted. This way,
each ciphertext block is dependent on all plaintext blocks up to that point. Further, use of a

fully-virtual file system without correlation with host PC real file system provides additional

protection.
[84] Leaks through non-controlled API
[85] Applications running on the secure desktop can exchange sensitive data through non-

controlled API with non-secured applications on the default desktop (e.g., non-hooked out-of-
process COM servers started by main system SVCHOST.EXE service). This issue may be
addressed by hooking all API calls that can exchange sensitive information. In this manner, the

SWS does not allow applications that can leak information to be started on the secure desktop.

19

WO 2009/014975 PCT/US2008/070263

Detailed internal operation
[86] The following description presents method steps/program logic that may be
implemented using processor-executable instructions, for directing operation of a device under
processor control. The processor-executable instructions may be stored on a computer-readable
medium, such as CD, DVD, flash memory, or the like. The processor-executable instructions
may also be stored as a set of downloadable processor-executable instructions, for example, for
downloading and installation from an Internet location (e.g., Web server).

[87] Additional DLL loader

[88] The present invention includes an additional DLL loader that provides a mechanism
to start new processes with forced loading of an additional DLL in the address space of the new
process. This is done by creating a new process in suspended state, allocating a small memory
location in its address space, and writing to it the code that loads the necessary DLL and that
jumps to beginning of process execution code. The context of the main thread of the created
process is then changed, so that the computer processor's instruction pointer register (e.g., Intel
x86 Extended Instruction Pointer (EIP) register) points to this created code. The thread is now
resumed. After resuming, the process' thread executes code that loads the necessary DLL into
the process (space) and continues usual processing of executable code. This may be
implemented as follows (e.g., illustrated by the following pseudocode snippets):

1: typedef struct DLL_LOADER_

2:

3: unsigned char LoaderCode[LOADER_CODE_SIZE];

4: char DlIIPathName[MAX_PATH];

5: }DLL_LOADER, *PDLL_LOADER;

6:

7: void

8: AddAsmlInstruction

9: (PBYTE &pTemp, int Instructionld, int InstructionOperand)

10: {

11: memcpy(pTemp, asm_instruction_code_table[Instructionld],
asm_instruction_code_size[Instructionld]);

12: pTemp += asm_instruction_code_size[Instructionld]

13: memcpy(pTemp, &InstructionOperand,sizeof(int));

14: pTemp += sizeof(int);

15:}

20

WO 2009/014975 PCT/US2008/070263
16:
17: void
18: StartProcessWithDII
19: (LPTCSTR pszProcessImage, LPTCSTR pszDIIPathName)
20: {
21: STARTUPINFO si;
22: PROCESS_INFORMATION pi;
23: CreateProcess(pszProcessImage, pszProcessImage, NULL, NULL, FALSE,
CREATE_SUSPENDED, NULL, NULL, &si, &pi);
24: CONTEXT context;
25: GetThreadContext(pi.hThread, &context);
26: PVOID pDllLoaderRemote=Virtual AllocEx(pi.hProcess, NULL,
sizeof(DLL_LOADER), NEW_CODE, PAGE_EXECUTE_READWRITE);
27: DLL_LOADER DllLoaderLocal;
28: strepy(DllLoaderLocal.DlIPathName,pszDI1l1PathName);
29: PBYTE pTemp=(PBYTE)&pDllLoaderLocal;
30: AddAsmlInstruction(pTemp, ASM_PUSH, pDIllLoaderRemote +
LOADER_CODE_SIZE);//push pointer to DIIPathName to stack
31: AddAsmlInstruction(pTemp, ASM_CALL, &LoadLibrary);//call LoadLibrary
with pushed parameter
32: AddAsmlInstruction(pTemp, ASM_JMP, context.eip);//jmp to original
process code
33: WriteProcessMemory(pi.hProcess, pDllLoaderRemote, &pDllLoaderLocal,
sizeof(pDIllLoaderLocal), NULL);
34: context.eip = pDllLoaderRemote;
35: ResumeThread(pi.hThread);
36: }
[89] Of particular interest, the AddAsmlInstruction (helper) method call at line 30 serves
to push a pointer to the DLL path name onto the current stack (e.g., x86 stack). Now, the helper
method is again invoked at line 31 for purposes of calling the LoadLibrary (Windows API call)
with the pushed parameter, thereby forcing the loading of the DLL (whose name is referenced at
line 30). Then, at line 32, the helper method is invoked for purposes of effecting a jump (JMP

instruction) back to the original process code.

21

WO 2009/014975 PCT/US2008/070263

[90] Hooks engine
[91] The hooks engine provides a generic DLL that functions as an interception
mechanism in its own processes. The basic approach is to overwrite part of the DLL code in
memory, so that a given target function instead calls wrapper code immediately upon execution.
Here, the start of the target DLL function is disassembled, with its old (original) code being
saved in a newly allocated memory block. The original site of this code is overwritten with a
simple jump (JMP) instruction that calls the wrapper function. In this manner, the wrapper
function gains control, and can process the API call itself or call the original DLL function with
optionally changed input parameters. Core functionality of the hooks engine may be
implemented as follows (e.g., illustrated by the following pseudocode snippets):

1: typedef struct ORIGINAL_CALL._

2:{

3: unsigned char OriginalCode[MAX_ORIGINAL_CODE_SIZE];

4: unsigned char
JmpToOtherOriginalCode[asm_instruction_code_size[ASM_JMP]+sizeof(int)]

5: JORIGINAL_CALL, *PORIGINAL_CALL;

6:

7: #define NOP_CODE 0x90

8:

9: void

10: HookDIlFunction(LPTCSTR pszDIlIName, LPTCSTR pszFunctionName, PVOID
pFunctionWrapper, PVOID &pOriginalCall)

11:{

12: HMODULE hDIl = GetModuleHandle(pszD1l1Name);

13: PBYTE pFunction = GetProcAddress(hDll, pszFunctionName);

14: pOriginalCall = Virtual Alloc(NULL, sizeof(ORIGINAL_CALL), MEM_COMMIT,
PAGE_EXECUTE_READWRITE);

15:

16: int NeedSize = sizeof (ORIGINAL_CALL);

17: int ReplacedSize =

DisasmAndCalculateAsmIntstructionsSize(pOriginalCall, NeedSize);

18: memcpy(&pOriginalCall.OriginalCode,pFunction,ReplacedSize);//replaced

piece of instruction

19: memset(&pOriginalCall.OriginalCode + ReplacedSize, NOP_CODE,
22

WO 2009/014975 PCT/US2008/070263
MAX_ORIGINAL_CODE_SIZE - ReplacedSize);//fill not used space with NOP

instructions

20: AddAsmlInstruction(&pOriginalCall.JmpToOtherOriginalCode, ASM_JMP,

pFunction + ReplacedSize);//generate jump to other real function code

21:

22: AddAsmlInstruction(pFunction, ASM_JMP, pFunctionWrapper);//generate

Jump to hook code in the beginning of DLL exported function

23:}

[92] As shown, at line 18, the code performs a memory copy (memcpy) operation for
overwriting the original code as described above. Unused byte locations are padded out with
NOP (no operation) instructions (e.g., 0x90 bytes), as shown at line 19. At line 20, the
AddAsmlInstruction helper function is again invoked for generating a jump (instruction) to the
other real function code, and at line 22 the helper function is invoked for generating a jump to
hook code at the beginning of the DLL (exported) function.

[93] File system processing engine

[94] A file system processing engine of the present invention provides a mechanism for
serving file system calls, such as files and directories enumeration, creating and deleting files,
and reading and writing file data. When a secured application tries to read or write a user's
profile files, it serves I/O requests, allowing on-the-fly encryption of file names and content.
When the application tries to write to any restricted location (e.g., specified in policy), the
engine prevents any unauthorized write or even access operations, returning an "Access Denied"
error; in this manner, the SWS ensures that no private data is left on the system after the SWS is
closed down. File content encryption is designed for use with block-ciphers in ECB mode, with
the option of including salt (i.e., additional piece of information added to the hash) that can be
dependent of data-offset. Private user's file names are similarly secured in a manner to allow
both good security and fast accessing directories tree. When a given application creates a file
(which must be secured), the engine parses the path, splits it into corresponding names
components, and generates a random character string (corresponding to real names). The file is
physically stored by path, which is combined from random-names components. When the
application opens this file or tries to enumerate names of the secured file, the engine extracts the
corresponding logical file names from an internal look-up table that is stored only in memory.
[95] Memory-mapped file sections support can be considered as additional sub-
functionality of the file system processing engine. When an application tries to create a file

section in a secured file, the engine creates memory-stored section with corresponding attributes

23

WO 2009/014975 PCT/US2008/070263

and decrypts the file's content to it. If the application specifies a section name during creation or
opens an existing section by name, the engine can optionally change the section name to divide
sections opened by applications on default and secured desktops. The particular section names
that should be changed can be specified in policy. On every subsequent read/write request of the
file, the engine performs simple copy of memory data from section memory to I/O buffer.
Flushing of the section to physical storage occurs on closing the file's handle. The below two
pseudocode samples illustrate program logic implementing file processing features.
[96] The first sample illustrates program code from a ZwCreateFile wrapper that changes
file name or analyzes requested access rights:

1: NTSTATUS __ stdcall _wrapperZwCreateFile(

2: PHANDLE FileHandle,
ACCESS_MASK DesiredAccess,
POBJECT_ATTRIBUTES ObjectAttributes,
PIO_STATUS_BLOCK IoStatusBlock,
PLARGE_ INTEGER AllocationSize,
ULONG FileAttributes,
ULONG ShareAccess,
ULONG CreateDisposition,
10: ULONG CreateOptions,
11: PVOID EaBuffer,
12: ULONG EaLength)
13: {
14: NTSTATUS rv=STATUS_SUCCESS;

Y o RN Rw

15: bool need_original=true;

16: if(_threads_lock.EnterThread(LINE_))

17: {

18:

19: //Extract file path name from ObjectAttribute structure, with
conversion of it to a long form if necessary

20: std::string strFileName = ExtractLongPathName(ObjectAttributes);
21:

22: //Check is protection is enabled for current application

23: if(_Module::g_ProtectedApplication != paUnknown)

24 {

24

WO 2009/014975 PCT/US2008/070263
25: //Check for denied file path.

26:
27: if
(g_module.get protection().CheckForbiddenLocation(strFileName))

28: {

29: _threads_lock.LeaveThread(0);

30: return STATUS_ACCESS_DENIED:;
31: }

32:

33: std::string virtualFileName(strFileName);

34: //Check is this file should be secured (encrypted), with converting
its file path to the secured form if necessary

35:

36: if(g_module.get_protection().IsProtectedFile(strFileName))

37: {

38: need_original=false;

39: POBJECT_ATTRIBUTES
OurObjectAttributes=NamelInitObjectAttributes(ObjectAttributes,
strFileName);

40:

41: //Call original ZwCreateFile with encrypted file path and some flags

modified (we always need read access to the file)

42: rv = _originalZwCreateFile(

43: FileHandle,

44:

DesiredAccess==

FILE ALL ACCESS?DesiredAccess:DesiredAccessIFILE READ DATA,
45: OurObjectAttributes,

46: ToStatusBlock,

47: AllocationSize,

48: FileAttributes,

49:

FILE_SHARE_READIFILE_SHARE_WRITEIFILE_SHARE DELETE,//ShareAccess.//
50: CreateDisposition,

25

WO 2009/014975

51: CreateOptions,

52: EaBuffer,

53: Eal.ength);

54:

55:

56:

57: NameFreeObjectAttributes(OurObjectAttributes);
58: if(rv==STATUS_SUCCESS)

59: {

60: //Call CryptedFile::PostOpenlnitalize routine, that perfoms

initialization encryption header of file, if it doesn't have header

yet
61:
62: CryptedFile::PostOpenlnitalize(*FileHandle,strFileName);
63: OurHandles::HNDINFO info;
64: info.Flags=0;
65: info.RefCnt=1;
66: info.Name=StdStrToLower(virtualFileName);

67: //Store opened handle in our handles cache

68: OurHandles::PutHandle(*FileHandle,info);
69: }

70: Jelse

71: {

72: //if file is not encrypted, but can be opened for write by app then

simple pass call to original ZwCreateFile

73: if

(g_module.get protection().CheckWritablePath(strFileName))
74: {

75:

SWSUtils::EnsurePathExists(strFileName.substr(4,strFileName.size(
)>-4));
76: rv = _originalZwCreateFile(

77 FileHandle,
26

PCT/US2008/070263

WO 2009/014975
78: DesiredAccess,
79: ObjectAttributes,
80: ToStatusBlock,
81: AllocationSize,
82: FileAttributes,
83: ShareAccess,
84: CreateDisposition,
85: CreateOptions,
86: EaBuffer,
87: Eal.ength);
88: need_original=false;
89: Jelse
90: {

PCT/US2008/070263

91: //if app tried to create file in read-only location, pass FILE OPEN

flag to ZwCreateFile routine to check if file already exist and
return STATUS OBJECT NAME COLLISION if this case or
STATUS_ACCESS_DENIED, signaling app file is not exists, but app has

no write access to specified location

if(CreateDisposition==FILE_CREATE)

92:
93:
94.
95:
96:
97:
98:
99:

100:
101:
102:
103:
104:
105:
106:
107:

{

rv = _originalZwCreateFile(
FileHandle,
DesiredAccess,
ObjectAttributes,
ToStatusBlock,
AllocationSize,
FileAttributes,
ShareAccess,
FILE_OPEN,
CreateOptions,
EaBuffer,
Ealength);
if(rv==STATUS_SUCCESS)
{

27

WO 2009/014975 PCT/US2008/070263

108: _originalZwClose(*FileHandle);

109:

rv=loStatusBlock->Status=STATUS OBJECT NAME COLLISION;
110: Jelse

111: {

112: g logger->LogInfo("_wrapperZwCreateFile FILE CREATE
access denied for '%s'",strFileName.c_str());

113: rv=loStatusBlock->Status=STATUS_ACCESS DENIED:;
114: }

115: need_original=false;

116: Jelse

117: {

118: CreateDisposition=FILE_OPEN;

119:

120: //1f app simple opens file, then adjust access rights as specified in
policy

121: Desired Access=GetMaxAccess(strFileName,CreateOptions,DesiredAccess);
122: }

123: }

124:

125: }

126: }

127:

128: _threads_lock.LeaveThread(0);

129:

130: }

131:

132: if(need_original)

133: rv=_originalZwCreateFile(

134: FileHandle,

135: DesiredAccess,

136: ObjectAttributes,

137: ToStatusBlock,

138: AllocationSize,

28

WO 2009/014975 PCT/US2008/070263
139: FileAttributes,
140: ShareAccess,
141: CreateDisposition,
142: CreateOptions,
143: EaBuffer,
144: Ealength);

145:

146: return rv;

147: }

148:

[97] The second sample illustrates the processing of ZwWriteFile calls:

1: // Sample code that processes ZwWriteFile call (also from SWS):
2: NTSTATUS _ stdcall _wrapperZwWriteFile(
HANDLE FileHandle,

HANDLE Event,

PIO_APC_ROUTINE ApcRoutine,

PVOID ApcContext,
PIO_STATUS_BLOCK IoStatusBlock,
PVOID Buffer,

ULONG Length,

10: PLARGE_INTEGER ByteOffset,

11: PULONG Key)

12: {

13: OurHandles::HNDINFO info;

DO A S

14: //check is specified handle is stored in our handles cache, retrieve
some info about it if so
15: if(OurHandles::IsOurHandle(FileHandle,info))
16: {
17: //check if memory-mapping section object was opened for this file, if
so then copy data also to section address space
18: HANDLE
SectionHandle=OurSectionByName(SectionNameByFileName(info.Name),
false);
19: NTSTATUS rv;

29

WO 2009/014975 PCT/US2008/070263
20: SyncUtils::WaitMutant(sect_mtx,INFINITE);

21: if(SectionHandle)

22: {

23: OurHandles::HNDINFO sectioninfo;

24 if(OurHandles::IsOurHandle(SectionHandle,sectioninfo))

25: {

26: I0_STATUS_BLOCK isb;

27: FILE_POSITION_INFORMATION fpi={0,0};
28:

_originalZwQueryInformationFile(FileHandle,&isb,&{pi,sizeof (fpi),

FilePositionInformation);

29:

30: if(fpi.CurrentByteOffset.QuadPart<sectioninfo.ViewSize)
31: {

32: DWORD

pos=ByteOffset?fpi.CurrentByteOffset. LowPart-sizeof(
VD_CRYPT_HEADER):ByteOffset->LowPart,len=Length;

33: if(len>(sectioninfo.ViewSize-pos))

34 {

35: len=(DWORD)sectioninfo.ViewSize-pos;
36: }

37: memcepy(((unsigned char
*)sectioninfo.PrimaryMapView)+pos,Buffer,len);
38:

39: }

40: }

41: }

42:

43: LARGE_INTEGER WriteOffset;

44: if(!ByteOffset)

45: {

46: I0_STATUS_BLOCK isb;

47: FILE_POSITION_INFORMATION {pi={0,0};
48:

30

WO 2009/014975 PCT/US2008/070263
_originalZwQueryInformationFile(FileHandle,&isb,&{pi,sizeof (fpi),
FilePositionInformation);

49: WriteOffset=fpi.CurrentByteOffset;

50: Jelse

51:

WriteOffset.QuadPart=ByteOffset->QuadPart+sizeof(VD_CRYPT_HEADER);

52:

53: //call CryptedFile::WriteFile to perfom writing content with

encryption to physical file

54: rv=CryptedFile:: WriteFile(FileHandle, IoStatusBlock, Buffer,
Length,&WriteOffset,Key);

55

56: I0_STATUS_BLOCK isb;

57: FILE_POSITION_INFORMATION f{pi={0,0};

58:

_originalZwQueryInformationFile(FileHandle,&isb,&{pi,sizeof (fpi),
FilePositionInformation);

59: SyncUtils::ReleaseMutant(sect_mtx);

60: if(Event)SetEvent(Event);

61: return rv;

62: }

63:

64: //pass call to original ZwWriteFile routine if specified handle is

unknown for us

65: return _originalZwWriteFile(FileHandle, Event, ApcRoutine,

ApcContext,

66: IoStatusBlock, Buffer, Length, ByteOffset, Key);

67: }

[98] Synchronization objects virtualization

[99] A synchronization objects virtualization engine is provided that can optionally
change names of named synchronization objects (mutexes, semaphores, events, and the like) that
are created by secured applications, thus allowing independent applications to function on secure
and default desktops. For example, Adobe Acrobat Reader (acrord32.exe) creates certain named

objects, the existence of which it uses to determine whether an instance of the Reader is already

31

WO 2009/014975 PCT/US2008/070263

running (and thus a second instance should not be started). The specification of its names in the
policy (XML) file makes possible to ensure acrord32.exe is the only running application
instance in system.

[100] Registry processing engine

[101] A Registry processing engine is provided that allows flexible virtualization and
protection of selected registry keys (which can be customized in the policy). Write-protection of
selected keys is done by analyzing parameters of ZwCreateKey and ZwOpenKey routines and
returning "Access Denied" status, if any modification access is requested. Virtualization is done
by creating an additional registry subkey (HKCU\CPSecured) and changing all absolute paths
requested by secured applications to really point to this key. Also a Copy-On-Access feature is
provided to allow access to registry keys and values without noticeable delays for importing
values from the original keys.

[102] Exemplary wrapper code, ZwCreateKey, may be implemented as follows:

I: NTSTATUS __ stdcall _wrapperZwCreateKey(PHANDLE KeyHandle, ACCESS_MASK
DesiredAccess,

2: POBJECT_ATTRIBUTES ObjectAttributes, ULONG TitleIndex,

3: PUNICODE_STRING Class,ULONG CreateOptions, PULONG
Disposition)

4: |

S: //check is protection enabled for current application

6: if((_Module::g_ProtectedApplication !=
paUnknown)&&_threads_lock.EnterThread(_ LINE_))

7. |

8: std::string
keypath=UNCStr2String(ObjectAttributes->ObjectName);

9: std::string lkeypath=StdStrToLower(keypath);

10:

11: ~ NTSTATUS 1v;

12: // TranslateHKEY routine checks is specified path belongs to HKCU
hive, converting it to virtual key path and returning true in this
case, if path is read-only HKLM path it return false and don't change
key path

13: bool
mode=RegUtils:: Translate HKEY (ObjectAttributes->RootDirectory,keypath);

32

WO 2009/014975 PCT/US2008/070263
14: if(mode)
15: {
16: //if path is points to virtualized key, then call original
ZwCreateKey routine with path, relative to HKCU\CPSecured location
17: POBJECT_ATTRIBUTES
OurObjectAttributes=NamelInitObjectAttributes(ObjectAttributes,
keypath);
18: OurObjectAttributes->RootDirectory=NULL;
19:
20:
rv=_originalZwCreateKey(KeyHandle,DesiredAccess,OurObjectAttributes,
TitleIndex,Class,CreateOptions,Disposition);

21:

22: NameFreeObjectAttributes(OurObjectAttributes);
23: Jelse

24 {

25: //if path is read-only and app tried to get write access to this key
then just return access denied to it
if((DesiredAccess&KEY_SET_VALUE)I(
DesiredAccess&KEY_CREATE_SUB_KEY)ll((DesiredAccess&KEY_ALL_ACCESS)==
KEY_ALL_ACCESS))
26: {
27: _threads_lock.LeaveThread(STATUS_ACCESS_DENIED);
28: return STATUS_ACCESS_DENIED;
29: }
30:
31: DesiredAccess=KEY READ;
32:
33: //call original ZwCreateKey routine for read access
34:
rv=_originalZwCreateKey(KeyHandle,DesiredAccess,ObjectAttributes,
TitleIndex,Class,CreateOptions,Disposition);
35:
36: }

33

WO 2009/014975 PCT/US2008/070263
37:

38: _threads_lock.LeaveThread(rv);

39: return rv;
40: Jelse
41: return

_originalZwCreateKey(KeyHandle,Desired Access,ObjectAttributes,
TitleIndex,Class,CreateOptions,Disposition);
42: }
[103] For example, beginning with the program logic at line 6 the function checks whether
protection is enabled for current application (under consideration). At line 13, the
TranslateHKEY routine is invoked to check whether the specified path belongs to HKCU
(HKEY_CURRENT_USER) hive. If so, the routine converts it to a virtual key path and returns
"true." If the path is read-only (HKLM (HKEY_ LOCAL_MACHINE) path), the routine returns
"false" and the key path remains unchanged. At line 17, if the path points to a virtualized key,
then the original ZwCreateKey routine is called with the path (relative to the HKCU\CPSecured
location). At line 25, if the path is read-only and the application tries to get write access to this
key, the program logic returns "Access Denied" (for denying access to the key). Line 34
demonstrates a call to the original ZwCreateKey routine, for providing read access.
[104] OLE3?2 calls filtering
[105] OLE32 calls filtering is provided to intercept the OS' COM server's creation requests.
When an application asks OLE32 to create an out-of-process COM server, the wrapper checks
the COM server presence in the SWS. The path is extracted to an executable image of the COM
server from the registry HKCR (HKEY_CLASSES_ROOT) hive. The server starts itself, if the
server was not already started before. Such an approach allows the starting of secured COM
servers. The following program logic illustrates main aspects of this functionality:

1: bool Ole32APIWrapper::ChecklIsServerStarted(std::string server)

2: {//this function checks if specified image process is already started
in secured mode, if so we don't need to start it one more time

3: bool out=false;

4: typedef std::set<DWORD> PROCSET;

5: PROCSET procs;

6: HANDLE snt = CreateToolhelp32Snapshot(TH32CS_SNAPPROCESS,0);

7: if(snt!=INVALID_HANDLE VALUE)

8: {

34

WO 2009/014975 PCT/US2008/070263

9: PROCESSENTRY32 pe32={sizeof(PROCESSENTRY32),0};

10:

11: //prepare full list of active secured processes

12: if(Process32First(snt,&pe32))

13: {

14: do {

15:
if(VDPipeClient::IsPidSecured(pe32.th32ProcessID))procs.insert(pe32.
th32ProcessID);

16: } while(Process32Next(snt,&pe32));

17: }

18: CloseHandle(snt);
19: }

20:

21:

22: std::string ShortServer = StdStrToLower(ShortPathName(server));
23:
24: //compare image path names of secured processes with requested path,

if found matching path - return true, else - return false

25:
26: for(PROCSET::iterator i=procs.begin();i!=procs.end();++1)
27 |

28: ics::handle pre=OpenProcess(PROCESS_ALL_ACCESS,FALSE, *i);
29: std::vector<HINSTANCE> modarray(255);

30: DWORD needsize=sizeof(HINSTANCE)*modarray.size();

31: BOOL
modenumok=EnumProcessModules(prc,&modarray[0],needsize,&needsize);
32: if(needsize>(sizeof(HINSTANCE)*modarray.size()))

33: |

34: needsize+=512;

35: modarray.resize(needsize/sizeof(HINSTANCE));

36:
modenumok=EnumProcessModules(prc,&modarray[0],needsize,&needsize);
37}

35

WO 2009/014975 PCT/US2008/070263

38: if(!modenumok)

39: continue;

40:

41: needsize/=sizeof(HINSTANCE);

42: for(size_t j=0;j<needsize;j++)

43: |
44. char modpath[MAX_PATH+1];
45: DWORD

modlen=GetModuleFileNameEx (prc,modarray[j],modpath, MAX PATH);
46: if(modlen&&(modlenk=MAX_PATH))
47: {
48: std::string
CurServer=StdStrToLower(ShortPathName(std::string(modpath,modlen)));
49: if(ShortServer == CurServer)
50: {
51: out = true;
52: break;
53: }
54: }
55 1}
56:
57 }
58: return out;
59: }
60:
61: bool Ole32APIWrapper::CreateLocalServer(std::string server)
62: {
63: //check if server already started, in this case do nothing
64 if(EnsureServerStarted AndInjected(server))
65: return true;
66:
67: STARTUPINFO si={sizeof(STARTUPINFO),0};
68: PROCESS_INFORMATION pin={0};
69: std::string emd("\"");
36

WO 2009/014975 PCT/US2008/070263
70: cmd.append(server);
71: cmd.append("\" -Embedding");
72: //start COM server process with -Embedding parameter
73:
if(CreateProcess(server.c_str(),(char*)cmd.c_str(), NULL NULL,FALSE,0,
NULL,NULL,&si,&pin))
74: |
75: WaitForInputldle(pin.hProcess,5000);
76: Sleep(500);
77: CloseHandle(pin.hProcess);
78: CloseHandle(pin.hThread);

79: }

80: return true;

81: }

[106] The ChecklIsServerStarted function checks whether the specified image process is

already started in secured mode (so that is not necessary to start it one more time). At line 14, a
"do/while" loop is established to prepare a full list of active secured processes. At line 26, a
"for" loop compares the image path names of secured processes with the requested path. If the
comparison finds a matching path, the program logic returns "true"; otherwise, it returns "false."
If the server is already started (tested at line 64), then the function does no additional work and
simply returns "true." Otherwise, the function proceeds to start the COM server process with
embedding parameter.

[107] Exemplary ole32.dll wrappers that intercept attempts to create COM servers may be

constructed as follows:

2: /lole32.d1l wrappers, that intercepts/attempts to create COM servers

3: bool Ole32APIWrapper::CreateLocalServer(REFCLSID rclsid)

4: {

S: std::string strServerName = Ole32APIWrapper::ServerByCLSID(rclsid);
6: if (IstrServerName.empty())

7. |
8: return Ole32APIWrapper::CreateLocalServer(strServerName);
9: }

10: return true;

37

WO 2009/014975 PCT/US2008/070263
11:}
12:
13: HRESULT __ stdcall _wrapperCoCreatelnstanceEx(
14: REFCLSID rclsid,
15: IUnknown * punkOuter,
16: DWORD dwClsCtx,
17: COSERVERINFO * pServerlInfo,
18: ULONG cmgq,
19: MULTI QI * pResults)
20: {
21: if(!Ole32APIWrapper::CreateLocalServer(rclsid))
22: return E_NOINTERFACE;
23:
24: HRESULT rv = _originalCoCreateInstanceEx(rclsid, punkOuter,
dwClsCtx, pServerInfo, cmq, pResults);

25:
26: if (_Module::g_ProtectedApplication != paUnknown)
27 |

28: Ole32APIWrapper::TraceObjectNameByCLSID(rclsid,
"CoCreatelnstanceEx");
29: Ole32APIWrapper::CatchLocalServer(rclsid);
30: }
31:
32: returnrv;
33:}
[108] Clipboard processing engine
[109] A "Clipboard" processing engine is provided to serve as a mechanism to intercept
saving data to and retrieving data from the OS' clipboard by secured application(s), thereby
allowing on-the-fly encryption of private data stored to clipboard. In Windows OS, for example,
this can be achieved by intercepting only three functions -- GetClipboardData, SetClipboardData
and CloseClipboard -- that are exported by Windows' user32.dll. For example, a
GetClipboardData wrapper may be implemented as follows:

1: HANDLE __ stdcall _wrapperGetClipboardData(UINT uFormat)

2: 4

38

WO 2009/014975 PCT/US2008/070263
3: return globalDecrypt(_originalGetClipboardData(uFormat));

4:}

[110] As shown, this works in conjunction with a globalDecrypt function to decrypt the
data for reconstituting the original Clipboard data. The globalDecrypt function itself may be

constructed as follows:

1: HANDLE globalDecrypt(HANDLE src)
{

if(!src)return src;

size_t sz=GlobalSize(src);

if(sz<2)return src;

char *sbuff=(char *)GlobalLock(src);
if(!sbuff)return src;
HANDLE out=src;

if((sbuff[0]==0x07)& & (sbuff[1]==0x10))

{
12: unsigned int dstlen=0;
13: VDCryptUtils::DecryptR AWBufferFromString(sbuff+2, sz-2, NULL,

D S AR LR - S

—_
— O

dstlen);

14:

15: if(dstlen)
16: {

17: out=GlobalAlloc(GMEM_MOVEABLE,dstlen);
18: char *dbuff=(char *)GlobalLock(out);
19: VDCryptUtils::DecryptRAW BufferFromString(sbuff+2, sz-2, dbuff,
dstlen);
20: GlobalUnlock(out);
21: }
22: '}
23: GlobalUnlock(src);
24: return out;
25:}
39

WO 2009/014975 PCT/US2008/070263
[111] Print interceptor

[112] A print interceptor engine is provided to hook the Windows StartDocW and
StartDocA functions exported by gdi32.dll. These StartDoc functions start a print job in
Windows. By intercepting these functions, the SWS may deny any print operations.
Additionally, the feature can be configured by the policy file.

[113] Process creation interceptor

[114] A process creation interceptor is also provided. When a secured application tries to
create a new process, it executes hooking engine code that hooks all necessary API calls of the
created child process. It also writes some secure data (secure token) directly to memory of the
created process that allows the SWS to further distinguish between a secured application and
malicious applications (which may try to use SWS functionality to access secured data). Sample
pseudocode, illustrating main features of process creation wrapper, is as follows:

1: BOOL WINAPI _wrapperCreateProcessW

2: (

3: wchar_t *IpApplicationName, // name of executable
module

4: wchar_t *lpCommandLine, // command line string

5: LPSECURITY_ATTRIBUTES IpProcessAttributes, / SD
6: LPSECURITY_ATTRIBUTES IpThreadAttributes, // SD

7: BOOL bInheritHandles, // handle inheritance

option

8: DWORD dwCreationFlags, // creation flags

9: LPVOID IpEnvironment, // new environment block
10: wchar_t *IpCurrentDirectory, /[current directory name
11: LPSTARTUPINFOW IpStartupInfo, // startup information

12: LPPROCESS_INFORMATION IpProcessInformation // process information
13:)
14: {
15: it (!CheckPolicyExecAllowed (IpApplicationName))
16: {
17: SetLastError(ERROR_ACCESS_DENIED);
18: ShowAlert("Execute denied by policy");
19: return FALSE;
20: }
40

WO 2009/014975 PCT/US2008/070263
21:

22: BOOL bRes = StartProcessWithDII(IpApplicationName, CpSwsDIlPathName,
IpStartupInfo,lpProcessInformation);
23: if(!bRes)return FALSE;
24:
25: PVOID remoteSecureCookiePtr =
GetRemoteSecureCookiePtr(IpProcessInformation->hProcess);
26: WriteProcessMemory(lpProcessInformation->hProcess,
remoteSecureCookiePtr,&SecureCookie,sizeof(SecureCookie), NULL);
27: return TRUE;
28: 1
[115] Importantly, if the policy does not allow the executable, then the function returns
"false" at line 19. Otherwise, the function will proceed to allow process creation (at line 22).
[116] Encryption
[117] Encryption functionality implemented in the present invention is designed to be
flexible and easy to configure. It allows, for example, the use of different cryptographic
algorithms for encrypting objects of a given type. The particular encryption algorithm used is
noted (via a stored ID) in the stored object, via an opaque header. The header also stores other
housekeeping information, such as real data length. In the currently preferred embodiment,
encryption functionality is implemented using the following interface:

I: class IVDCrypt

2: 4

3: public:

4: virtual bool EncryptBuffer(char *Buffer, unsigned __int64
Offset,unsigned int Length)=0;

S: virtual bool DecryptBuffer(char *Buffer, unsigned __int64
Offset,unsigned int Length)=0;

6: virtual unsigned int Align()=0;

7}
[118] Every time engine functionality requests to encrypt or decrypt some blocks of data,
the engine creates an instance (of implementation) of the particular preferred crypto algorithm,
by giving the preferred algorithm ID to the encryption engine. If the engine detects that data is

not encrypted yet, it will proceed to use the specified algorithm. If data is already encrypted,

41

WO 2009/014975 PCT/US2008/070263

however, the engine will use the algorithm ID that is specified in encrypted data header. The
particular encryption key employed is currently randomly generated, on session initialization.
[119] URL secure cookie injector

[120] A URL secure cookie injector is provided for injecting a variable count of secure
cookies into HTTP requests. Thus, the SWS can inject one or more additional secure cookies
into every secured process using the Windows' InternetSetCookie API function. The SWS also
creates Mozilla Firefox profile files with secure cookies during initialization. HTTP URL and
corresponding secure cookie data is given to the secure workspace manager (cpsws.exe) by the
launcher, as command-line parameters. The manager (cpsws.exe) cleans up the command-line
after startup to prevent leaking of this information. This allows the corresponding HTTP server
of the enterprise portal to distinguish HTTP requests from secured and unsecured applications
(e.g., using GWLIB API).

[121] Configuration loader

[122] A configuration loader (with storage class) is provided that loads and analyzes the
policy (cpsws.xml file), in which configuration and policy settings are stored. The loader
provides an interface for other functionality parts to access their policies and configuration. It is
possible to configure in the XML file what registry keys should be initialized and what values
they should have for the SWS environment.

[123] Inter-process communication (IPC) channel

[124] An inter-process communication (IPC) channel is provided to serve as a generic
mechanism for low-level safe and secure communication between SWS functionality parts
loaded into different processes. It is implemented as a pipe server that is started in the
cpsws.exe core process on the early stage of initialization; given pipe clients that connect to the
server from cpsws.dll instances are loaded into secured applications. The server expects a
secure token as the first data sent from a given client via pipe. If it receives any other data, it
closes the pipe connection after waiting a prescribed period of time (as an anti-hacker delay). A

secure token is written directly to secured process memory on its creation, so no one else can use

the IPC channel/engine.
[125] Desktop initialization and security
[126] Desktop initialization and security uses the Windows' CreateDesktop API both with

NT security features to achieve maximum possible control of user-space prevention, and to
prevent keyboard loggers and screen-shooters from accessing private information. The
CreateDesktop API function creates a new desktop, associates it with the current window station

of the calling process, and assigns it to the calling thread. The virtual desktop, which is created

42

WO 2009/014975 PCT/US2008/070263
by the CreatesDesktop API function, can be optionally equipped with special Security
Descriptor that ensures no one can launch an application on the secured desktop or install a
keyboard hook into it (and even make it impossible to get a desktop handle to this desktop).
During initialization the manager (cpsws.exe) creates a desktop and assigns to it security
descriptor with an empty DACL. The security descriptor creation and initialization code may,
for example, be implemented along the following lines:

1: void DesktopSecurity::Secure()

2: 4

3: PSECURITY_DESCRIPTOR sd=(PSECURITY_DESCRIPTOR)new char[0xffff];
4: InitializeSecurityDescriptor(sd, SECURITY_DESCRIPTOR_REVISION);
5: ACL a;

6: 1if (InitializeAcl(&a,sizeof (ACL),ACL_REVISION)& & IsValidAcl(&a))

7 A

8: ApplySD(sd);

9: SECURITY_INFORMATION si=DACL_SECURITY_INFORMATION;
10: SetSecurityDescriptorDacl(sd, TRUE,&a,FALSE);
11: ApplySD(sd);
12: }
13: delete[] (char *)sd;
14: }

16:/7 ...

18: void DesktopSecurity::ApplySD(PSECURITY_DESCRIPTOR sd)

19: {

20: SECURITY_INFORMATION si=DACL_SECURITY_INFORMATION;
21: SetUserObjectSecurity(_desk,&si,sd);

22:}
[127] User and application specific initialization routines
[128] Since the SWS performs HKCU hive and user's profile virtualization, it is possible to

enforce some user-interface predefinitions for applications running under SWS. Examples
include disabling or extending some shell features, adding configuration shortcuts on Desktop or

Start Menu, importing some files from the original profile, and the like. Also, the SWS

43

WO 2009/014975 PCT/US2008/070263

performs automatic changing of desktop background wallpaper when switching from default
desktop to secured one and vice versa.

[129] Additional user-interface features

[130] After creating a virtual desktop, the SWS creates notification area (tray) icons both
on secured and default desktops. These icons allow switching between desktops and closing of
the SWS. The notification icon on the secure desktop is used also to display some user
information messages and security warnings (e.g., as information balloons). The SWS draws a
special icon on the right side of titles for all secured applications, to provide user
teedback/psychological conviction that he or she is working in a secure workspace.

[131] De-initialization

[132] On the exit command (that can be given directly from the notification icon menu or
by ExitWindowsEx API call invoked from any secured application), the SWS starts the de-
initialization procedure or method. Fig. 4 is a flowchart illustrating a method 400 of the present
invention for de-initialization. At step 401, the method queries all applications currently running
in the SWS for shutdown, by sending them WM_QUERYENDSESION and
WM_ENDSESSION messages. This allows applications to ask the user to save any information
before shutdown. Next, at step 402, all running SWS applications are terminated. The pipe
server is closed at step 403, and all encrypted files are deleted from virtual user profile at step
404. Finally, at step 405, the method 400 concludes by deleting HKCU\CPSecured registry key.
Overview of enhanced secured workspace

[133] The present invention enhances the secure workspace system to protect web sessions
on unmanaged computers. Consider, for example, a user who wants to do online payments from
his or home personal computer. Fig. 5A is a block diagram illustrating an unmanaged computer
500 that has established Internet connectivity a session with a protected web resource (e.g.,
company portal 520). Here, "unmanaged" means that the computer is largely (if not exclusively)
under control of the user, without active oversight by a system administrator. The unmanaged
computer 500 is provided with a virtualized "secure workspace" session (SWS) 510 that blocks
malware threats to applications running in the SWS, thereby allowing the unmanaged computer
500 to safely and securely communicate with the protected web resource 520. As shown, in the
secure workspace 510 secures the session from a malware threat already present on the
unmanaged computer itself.

[134] The present invention also enhances the secure workspace to protect computers
(typically, corporate or "managed" computers) from Internet-based threats. Fig. 5B is a block

diagram illustrating a managed computer 550 that has Internet connectivity, for example to

44

WO 2009/014975 PCT/US2008/070263

connect to a company portal 520. The managed computer 550 is provided with an enhanced
secure desktop 560 that secures the computer 550 from Internet threats, such as bad or malicious
websites 570. Significantly, the enhancements to the secure workspace include the following
features.

[135] Separation of privileges

[136] Two OS (e.g., Windows) sessions are created on the computer. One is a default
session (e.g., normal Windows desktop that user usually sees when he logins to the Windows);
the other session (sometimes referred to herein as a secure workspace session) is shown inside
the normal desktop as a window running another desktop. In other words, two "users" with
different privileges are simultaneously logged into the operating system at the same time. One
of the sessions ("hosted session") is shown as a window inside another session ("default
session"). System privileges for the user in the hosted session are different from the user in
default session. In addition, the hosted session uses SWS virtualization technology previously
described in this document so as to secure software applications running in the hosted session
from other applications (e.g., malware) outside the hosted session.

[137] Application of security policy

[138] The system administrator may create a security policy for which includes applying
different rules to each of the workspace sessions (e.g., the default session, the hosted session
and/or other workspace sessions created as described herein). An example of such policy for a
simple scenario involving a default session and a hosted session as described above can include:
1. Default session can access Intranet only, but not Internet.

2. Business applications can run only in the default session.

3. All instant messaging applications, peer-to-peer (P2P) software and web browsers can be
started only in hosted session.

4. Hosted session required to be virtualized; all changes are done not in real file system but in
virtual (temporary) one, all changes to the registry are also done in virtual (temporary) registry
storage.

5. Hosted session (optionally) is required to be flushed when the user logs off; all temporary
data, files and registry changes that happened during the hosted session are discarded.

6. Log file (optionally) created for the user sessions, so that system administrator can review it.
[139] Those skilled in the art will appreciate that the foregoing is only one example of
some possible rules of a security policy. Users may implement security policies including a
wide variety of rules and security measures applicable to software applications running in one of

the workspace sessions. In addition, although the above example references two sessions

45

WO 2009/014975 PCT/US2008/070263

(default session and hosted session), it should be understood that a plurality of secure workspace
sessions may be created in accordance with the methodology of the present invention. Each said
secure workspace session may be subject to different privileges, security rules, security
measures and the like and secured against access from other sessions or external threats as
described herein.

[140] User interface

[141] 1. Concurrent session

[142] Fig. 6 is a bitmap screenshot illustrating launching of a concurrent or "hosted"
session as a separate window 610 within the same single desktop 600. In the currently preferred
embodiment, the hosted session which runs concurrently with the normal "default" session is
preferably displayed on the same desktop. This is typically advantageous for non-experienced
users, since the approach does not require a separate desktop where the user must switch back
and forth between desktops. Separate desktops often lead to user confusion: they do not know
what to do, or how to switch between desktops. Displaying a new session as a separate window
on the same single desktop, on the other hand, is more intuitive and can more easily be
explained to novice users.

[143] 2. Multiple hosted sessions

[144] As an alternative approach to the design of the user interface, multiple sessions may
be concurrently hosted, with each secure workspace session serving a particular purpose. In that
alternative design, the default desktop is configured to include shortcuts to run hosted sessions
for different purposes, such as:

Browse the Web (Internet)

Browse Intranet

Read confidential documents

Run business application

Run personal application

Evaluate software

Securely connect to remote site (e.g., using VPN)

[145] Different backgrounds or logos may be selected to distinguish each hosted (secure
workspace) session, to further improve user experience or position company brand information.
[146] Additional enhancements may be performed as follows:

(1) Apply additional security measures on a per session basis, such as anti-keylogger and anti-

screen-grabber to a particular hosted session.

46

WO 2009/014975 PCT/US2008/070263

(2) Apply additional file scanning and antivirus measures on a per session basis, including
(optionally) flushing any hosted session where a bad file is detected.

(3) Stream (preinstall) particular applications into a hosted session; for example, a default
session need not include a web browser and instant messaging application as installed software,
but may make such applications available in a particular hosted session (i.e., applications are
streamed to the hosted session).

(4) Stream documents or data files (e.g., .PDF, . XLS, .DOC, or the like) into a hosted session.
(5) Create a security policy-based login account for a particular hosted session, including
streaming business applications (with or without data) into the hosted session pursuant to the
policy.

(6) Create firewall rules that are session specific, such as different rules for default and hosted
sessions.

(7) Set up VPN connection to the remote site inside hosted session. In this case user experience
can be further improved with created shortcut on the default desktop, such as "Connect to the
main office network".

(8) Invoke hosted session after a special event is detected. Exemplary events may include (but
not limited to): invoking browser software, going to the web site with SSL support, and clicking
on the web link inside email letter or IM message.

(9) Programmatically set up encryption key for a hosted session. In this case, sensitive data will
be protected and can be restored by the system administrator later.

(10) Configure hosted session to save document files (e.g., .PDF, .DOC, .XLS) on the network
drive. In such cases, confidential files can be easily archived and audited.

(11) Configure hosted session to save executable files on the network drive. There, they can be
easily scanned by (corporate) antivirus software.

(12) Restrict access to peripheral devices from a hosted session. Such devices can include:
PDAs, smartphones, flash drives, and the like. Such restrictions will provide greater protection
for sensitive information.

Detailed internal operation

[147] Introduction

[148] The SecureDesktop (SD) system of the present invention allows one to work with
several user accounts (secure workspace sessions) simultaneously. In the currently preferred
embodiment (operating on the Microsoft Windows platform), this is achieved through Microsoft
Windows' Remote Desktop Connection (RDP) -- that is, the way Microsoft Windows achieves

remote control of a machine. The SD system of the present invention uses the same API as RDP

47

WO 2009/014975 PCT/US2008/070263

does, but does so in a manner that bypasses two restrictions: a) RDP does not allow connection
to the machine where it is started, and b) Microsoft Windows license may prevent a user from
opening more than one session at a time except on Windows Server platforms.

[149] In order to understand how the SD system of the present invention is organized, it is
instructive to look at how a session is represented in Windows OS, including understanding how
different components interoperate. The components of interest include: Subsystem, Base named
objects (BNO), Session space, Raw Input Thread (RIT), Console, Initial Command, Session, and
Session manager. These will be explained in turn.

[150] Subsystem refers to the part of the OS (operating system) providing a subset of its
API. Microsoft Windows OS, for example, includes different subsystems: Win32 user API (as
opposed to Win32 kernel AP, user part is provided by user32.dll at a higher level), POSIX API,
more may be added. Process csrss.exe is responsible for providing this APIL

[151] Base named objects (BNO) collectively represents a directory (kernel object, not a
file system directory), containing all named IPC (inter-process communication) objects.

[152] Session space is a special range of virtual addresses in high part of memory (above
0x80000000). Windows memory manager maps them to specific physical pages based on the
session currently active. The exact address limits depend on OS version used. All session-
specific modules and data (e.g., video drivers) reside in this memory area.

[153] Raw Input Thread (RIT) is a thread responsible for providing user input (key presses,
mouse movements, and the like) to user applications. This thread communicates directly with
input device drivers.

[154] Console is a set of output and input devices.

[155] Initial Command is a process responsible for user authentication, launching all other
processes, managing Ul objects, and so forth; typically, this is winlogon.exe for a default
Windows session. For creation of secure workspace sessions (hosted sessions), the initial
command process operates as hereinafter described.

[156] Session is a structure characterizing a session. It is associated with its own
subsystem process, initial command process, unique session id (numerical, where initial session
is id of 0, and thereafter incremented for later sessions), BNO, own session space (and as such
own video driver, a Win32 subsystem specific), RIT (Win32 subsystem specific), and console
(Win32 subsystem specific).

[157] Session manager (smss.exe) is a process or module of the present invention which is
responsible for creating and destroying sessions. For that purpose, it exposes an API for

managing sessions via LPC port.

48

WO 2009/014975 PCT/US2008/070263

[158] Service descriptor table is an indexed array, where the index is the number of an OS
kernel function and the value is a pointer to the OS kernel function.
[159] In accordance with the present invention, the SD provides the user with an additional
session and a virtual console represented with a window on a screen in a user's default session.
To achieve this, the SD starts a session, provides video driver redirecting its output to a window,
and provides input devices that take and get input data from a window. The description which
follows focuses on implementation details of this process.
[160] Session creation
[161] Fig. 7A is a block diagram 700 illustrating the process of creation and start up of a
hosted session (secure workspace session). The Session Manager (SMSS) 701 is responsible for
session creation. An API for this operation is exposed via LPC port \SmApiPort 703. The
Session Manager (SMSS) 701 requires the caller to be a Local Service. Thus, in order to call
this API from a user program 705 a Session Port Server (CPSMSERYV) 702 must be running
with Local Service privileges. The \CpSmServSession API 704 of Session Port Server 702 is
invoked with a new session message, providing the name of the initial command:
SessionPortServer.cpp:SessionPortServer::createSession
[162] Native Windows logon (winlogon) is not used, as it requires extra authentication and
the user may not be licensed to run two active sessions on non-server OS'es. As shown at Fig.
7A, the session request from the user program 705 is routed through the Session Port Server
(CPSMSERV) 702 to the Session Manager (SMSS) 701 through the \SmApiPort 703. The
Session Port Server 702 is responsible for creating and terminating sessions by calling the
Session Manager 701 through the \SmApiPort 703. In response to the above session request, the
Session Manager (SMSS) 701 creates a session (hosted session) 710 and starts two processes
inside it: Win 32 subsystem (csrss.exe) 711 and CPLogon (initial command) 713. The Session
Port Server 702 is also responsible for controlling the Win32 subsystem (csrss.exe) 711 state and
session devices (indirectly through csrss.exe) as hereinafter described. In addition, the Session
Port Server 702 enables one-time interception through a helper driver as discussed below.
[163] Fig. 7B is a block diagram 720 illustrating the process of initialization of the session
subsystem. As shown Win32 subsystem (csrss.exe) 711 (process) detects when a remote session
is requested. By design, subsystem 711 would normally, in turn, connect to Terminal Services
727 port \SmSsWinStationApiPort 726 and wait for commands that are incoming replies
responding to requests sent to that port. However, because Terminal Services is unaware of the
SD system of the present invention, it is necessary to intercept the first attempt by subsystem

711 to connect to Terminal Services 727. This is achieved by a helper driver 728 that hooks a
49

WO 2009/014975 PCT/US2008/070263
ZwConnectPort function 722 by overwriting its pointer in SDT (Service Descriptor Table) 729
(desktopui.c:HookSDT) so as to intercept ZwConnectPort and redirect it so that Win32
subsystem 711 connects to the Session Port Server 702 via \CpSsWinStationApiPort 725 as
shown at 722 at Fig. 7B. It should be noted that helper driver 728 cannot redirect all attempts to
connect to Terminal Services 727 as it is potentially being used by other processes, but rather
only the first attempt by Win32 subsystem to connect to Terminal Services 727 is intercepted.
This is initiated by Session Port Server 702 which enables one-time interception by helper driver
728, just before the Win32 subsystem 711 process is created. The hook function in helper driver
728 redirects the new subsystem process 711 to the SD's own implementation of the Terminal
Server LPC server implemented in the Session Port Server 702
(connectport.c:HookZwConnectPort). As shown at Fig. 7B, the Win32 subsystem 711 process'
ZwConnectPort call 721 is intercepted and redirected. To sum up, instead of the original
ZwConnectPort 721 routing represented by dashed lines at Fig. 7B, the intercepted
ZwConnectPort call 722 is redirected to Session Port Server 702 via \CpSsWinStationApiPort
725. ZwConnectPort interception ends as soon as the new subsystem 711 is created, thus
allowing Terminal Services 727 to accept incoming RDP (Remote Desktop) connections. At
this stage, subsystem process 711 loads the kernel part of subsystem win32k.sys 715 and
provides it with names of sound and video device as well as input device handles. This data is
obtained from CpSsWinStationApiPort 725 which is served by Session Port Server
(CPSMSERV) 702, which, in turn, gets this data from helper driver 728
(DisconnectedClientState .cpp:DisconnectedClientState::replyToMessage). Creation of input
devices is described in further detail below and in Fig. 7C. At the next request, the video driver
is deregistered in the registry; otherwise the Terminal Server will fail to operate due to
unrecognized driver. Now, «idle» responses are issued to subsystem queries
(ConnectedClientState:ConnectedClientState::replyToMessage).

[164] Fig. 7C is a block diagram 730 illustrating the last stage of subsystem initialization
which involves setting up input and video devices. The SD's video driver (mirror video driver)
733 is already loaded and initialized by kernel subsystem win32k.sys 715 at this stage. Itis
implemented as a layered driver that uses mapped file as a main bitmap memory, so that
everything Win32 subsystem 711 draws onto virtual screen goes to a file that can be displayed
in another window (functions.c:GdiExample_DrvEnablePDEV). Preferably, the driver creates
all bitmaps by itself, never allowing win32k.sys to do this operation. Operations done on off-

screen bitmaps can be observed, thereby facilitating the display of layered windows.

50

WO 2009/014975 PCT/US2008/070263
[165] The SD's mouse 731 and keyboard device 732 are implemented as a shared queue of

input events (vmouse.c:VMouseCreateDevice, vkbd.c:VKbdCreateDevice). The queue is a
shared memory block with two signals (filled/empty), shared between userspace and kernel
mode. The subsystem starts the Raw Input Thread (RIT) 734, which connects to the SD's mouse
731 and keyboard 732 using handles obtained through helper driver 728 during the previous
initialization stage depicted at Fig. 7B. The RIT 734 reads events, which results in polling the

queue (sharedrwqueue.c:SharedRWQueueReadIntolrp). These operations are described in

further detail below.
[166] Initial command
[167] The initial command serves to login a user, create required Ul objects and adjust

kernel object privileges for the hosted session. It also starts a shell process. If virtualization is
required for the session, the shell process will be suspended and its handle will be duplicated to
a virtualization manager.

[168] Fig. 7D is a block diagram 740 illustrating operations of the initial command. The
first step for the initial command 713 is to allow the subsystem process to continue initialization.
This is performed by signaling CsrStartEvent event (cplogon.cpp:signal_csrss_start). Next, a
logon process registers itself in win32k.sys 715 and local fonts are loaded as illustrated at 741 at
Fig. 7D. This type of registration is required as a security measure, in order to prevent
corruption of session data by malicious processes. The required function for registration is
available only in kernel mode and a driver is used to call it (cplogon.cpp:register logon in user
mode, desktopui.c:RegisterLogonProcess in kernel mode). User interface (UI) initialization is
completed by loading local fonts. As kernel subsystem (win32k.system) 715 loads only a
limited set of fonts required for minimal functionality, a call is made to user32!LoadLocalFonts
(cplogon.cpp:load _local_fonts) to load local fonts.

[169] As subsequent operations involve Win32 user API, before proceeding a check is
made to make sure the subsystem process has completed initialization. When the subsystem
status is «idle», subsystem initialization is complete and initial command received credentials
(username/password) for a new session as shown at 743 at Fig. 7D. The credentials are chosen
by a user when a session is about to be started. Alternatively, the credentials may comprise
predefined values for a limited account when used for a virtual session
(Session.cpp:Session::Session for request,
SessionPortServer.cpp:SessionPortServer::respondWithSessionInfo for response). The
credentials are used for user logon (UserToken.cpp:UserToken::UserToken) and its profile is

loaded (UserToken.cpp:UserToken::loadProfile).
51

WO 2009/014975 PCT/US2008/070263

[170] The user account that has been created is now granted access to session BNO
(BaseNamedObjects) 746 as illustrated at 745 at Fig. 7D, so that new processes can use named
IPC (inter-process communication) objects
(UserAuth.cpp:UserAuth::grantAccessToObjectsDirectory). A window station is created as
shown at 747 and two desktops are allocated as shown at 749 at Fig. 7D: a limited logon desktop
and a user desktop (Session.cpp:Session::executeShell). User privileges are granted to the
window station and desktop, so that new processes can manipulate UI objects. A notification
window is also created (Session.cpp:Session::notificationThread) and registered with the help of
driver (desktopui.c:SetLogonNotifyWnd). This notification window will receive shutdown
notification when session termination is requested. Next, user profile settings are updated
(UserAuth.cpp:UserAuth::updateSystemInfoForUser) and user themes are applied
(UserAuth.cpp:UserAuth::enableThemes). Finally, a shell launcher (userinit.exe) 744 is started
with privileges provided by previously retrieved credentials (as described above and illustrated
at 743 at Fig. 7D). This involves authenticating a user, creating an environment block for a user,
appending profile variables (UserAuth.cpp:UserAuth::appendProfileData) and starting a process
(UserAuth.cpp:UserAuth::launchProcess).

[171] Getting video output from session

[172] At this point, a user is running in another session on another desktop. To obtain
video output from the session, another application is started that simply maps the video memory
file created by the video driver and copies it onto a window
(videomemory.c:VideoMemory_GetSharedMemory, virtualmonitor.c: VirtualMonitor_Update).
[173] Providing mouse and keyboard input for the session

[174] The same application used to display session screen handles also passes input events
to another session. For these purposes, low-level keyboard and mouse hooks are enabled as
soon as application window(s) becomes active (appmon.c:InitAllHooks,
appmon.c:EnableInputHook). These hooks are disabled as soon as input focus leaves
application window(s) (appmon.c:StopInputHook). Hook functions translate window messages
to driver-level input event structures and pass them to virtual keyboard/mouse devices set up
earlier by the driver via shared queue (hookmouse.cpp:MouseHook,
TranslateEventTolnputData; hookkbd.cpp:KbdHook).

[175] Terminating session

[176] Termination of the session involves two general stages. The first stage involves
telling the subsystem to stop. Fig. 8A is a block diagram 800 illustrating the first stage of

session termination. Using the same external user program 705 used to start the session (i.e., as

52

WO 2009/014975 PCT/US2008/070263
shown at Fig. 7A), an «exit windows» message
(ExitWindowsClientState.cpp:ExitWindowsClientState::replyToMessage) is sent to the Win32
subsystem (csrss.exe) 711 as shown at 803a, 803b at Fig. 8A. This message causes the
subsystem 711 to send shutdown notification as illustrated at 805 to the registered window of
initial command 713. In turn, initial command 713 calls ExitWindowsEx requesting system
shutdown as shown at 807 at Fig. 8A. It will correctly stop all processes running inside the
session, except for the subsystem process 711 and initial command 713. Initial command 713 is
then responsible for cleaning up all UI objects and for notification to CPSMSERYV 702 that the
first stage of the shutdown process is complete (Session .cpp:Session::disconnect) as shown at
809 at Fig. 8A.

[177] Fig. 8B is a block diagram 820 illustrating the second stage of session termination.

In the second stage, the subsystem 711 is told to disconnect and quit

(TerminateClientState.cpp: TerminateClientState::replyToMessage) by the Session Port Server
(CPSMSERV) 702 as illustrated at §21. Subsystem 711 will perform all required cleanup by
itself as depicted at 825 at Fig. 8B. As soon as this is done, a request is made by the
CPSMSERYV 702 to the session manager 701 via \SmApiPort 703 requesting session termination

(SessionPortServer.cpp:SessionPortServer::stopSession) as shown at 823 at Fig. 8B.

[178] While the invention is described in some detail with specific reference to a single-
preferred embodiment and certain alternatives, there is no intent to limit the invention to that
particular embodiment or those specific alternatives. For instance, those skilled in the art will
appreciate that modifications may be made to the preferred embodiment without departing from

the teachings of the present invention.

53

WO 2009/014975 PCT/US2008/070263
WHAT IS CLAIMED IS:

1. In a computer system, a method for providing multiple workspace sessions for
securely running applications, the method comprising:

initiating a first workspace session on an existing operating system instance running on
the computer system, said first workspace session having a first set of privileges for running
applications under that session;

while said first workspace session remains active, initiating a second workspace session
on the existing operating system instance running on the computer system, the second
workspace session having a second set of privileges for running applications under the second
workplace session; and

securing said second workspace session so that applications running under the second
workplace session are protected from applications running outside the second workspace

session.

2. The method of claim 1, further comprising:

while said first and second sessions remain active, initiating one or more subsequent
workspace sessions on the existing operating system instance running on the computer system,
each said subsequent workspace session having a particular set of privileges for running
applications under that session and secured so that applications running under that workspace

session are protected from applications running outside that workspace sessions.

3. The method of claim 1, wherein the privileges comprise security rules applicable to

applications running on the computer system.

4. The method of claim 3, wherein the security rules include whether an application is

authorized to access the Internet.

5. The method of claim 1, wherein said step of initiating the second workspace session
includes generating a separate window for the second workspace session for separately

displaying applications running in the second workspace session.

6. The method of claim 5, wherein generating a separate window includes displaying
user feedback indicating that the applications running in the second workspace sessions are

running in a secure manner.

54

WO 2009/014975 PCT/US2008/070263

7. The method of claim 5, wherein the separate window is displayed in a manner that
allows users to easily switch between the first workspace session and the second workspace

session.

8. The method of claim 1, wherein said step of securing the second workspace session
includes hooking particular functions of the operating system instance in order to regulate access

to information created during the second workspace session.

9. The method of claim 1, further comprising:
storing all temporary data created during the second workspace session in a temporary

file system.

10. The method of claim 9, further comprising:
discarding all temporary data created during the second workspace session when the

second workspace session terminates.

11. The method of claim 1, further comprising:
storing all registry changes made during the second workspace session in temporary

registry storage.

12. The method of claim 11, further comprising:
discarding all registry created during the second workspace session when the second

workspace session terminates.
13. The method of claim 1, further comprising:
creating a log file for all actions taken by applications running in the second workspace

session.

14. The method of claim 1, wherein said step of securing the second workspace session

includes applying additional security measures to the second workspace session.

55

WO 2009/014975 PCT/US2008/070263

15. The method of claim 14, wherein said additional security measures include selected
ones of encryption measures, anti-keylogger measures, anti-screen-grabber measures, antivirus

measures, and file scanning measures.

16. The method of claim 1, wherein said step of securing the second workplace session
includes applying one set of firewall rules to applications running in the first workspace session

and a second set of firewall rules to applications running in the second workspace session.

17. The method of claim 1, further comprising:
setting up a virtual private connection to a remote site inside the second workspace

session for purposes of providing a secure connection to the remote site.

18. The method of claim 1, wherein said step of securing the second workplace session
includes restricting access to peripheral devices from the second workspace session, so as to

secure data created during the second workspace session.

19. A computer-readable medium having processor-executable instructions for

performing the method of claim 1.

20. The method of claim 1, further comprising:
providing a downloadable set of processor-executable instructions for performing the

method of claim 1.

21. A system providing that allows users to run software programs in a plurality of
workspace sessions subject to separate security rules of a security policy, the system comprising:

a computer running under an operating system;

a plurality of software programs for use by users of the computer;

a configurable security policy specifying security rules applicable to the software
programs;

a session manager for creating a plurality of workspace sessions under the operating
system with each of said sessions subject to separate security rules of the security policy and
isolated from other workspace sessions, thereby allowing software programs to run in a secure

manner subject to said separate security rules; and

56

WO 2009/014975 PCT/US2008/070263

a module for enforcing compliance with security rules of the security policy by software

programs running in each of said workspace sessions.

22. The system of claim 21, wherein the security policy includes security rules

specifying whether a software program is authorized to access the Internet.

23. The system of claim 21, wherein the security policy includes security rules

specifying actions of a software program that are permitted and are not permitted.

24. The system of claim 21, wherein the security policy includes firewall rules, so as to

apply separate firewall rules to software programs running in different workspace sessions.

25. The system of claim 21, wherein the security policy specifies certain banned
programs that are not permitted to run in a particular workspace session, so as to secure software

programs running in the particular workspace session.

26. The system of claim 25, wherein said banned programs include selected ones of
spyware software, computer virus software, instant messaging software, peer-to-peer (P2P)

software and web browser software.

27. The system of claim 21, wherein the session manager hooks particular functions of
the operating system in creating a particular workspace session in order to regulate access to

information created during the particular workspace session.

28. The system of claim 21, wherein the session manager generates a separate window

for each workspace session for separately displaying software programs running in each session.

29. The system of claim 21, wherein the session manager sets up a virtual private
connection to a remote site inside a particular workspace session for purposes of providing a
secure connection to the remote site for software programs running in the particular workspace

session.

57

WO 2009/014975 PCT/US2008/070263

30. The system of claim 21, wherein said module for enforcing creates a log file for
actions taken during a particular workspace session so as to enable an administrator to review

said actions.

31. The system of claim 21, wherein said module for enforcing applies additional

security measures on a per workspace session basis.

32. The system of claim 31, wherein said additional security measures comprise selected
ones of encryption measures, anti-keylogger measures, anti-screen-grabber measures, antivirus

measures, and file scanning measures.

33. The system of claim 21, wherein said module for enforcing stores all temporary data

created during a particular workspace session in a temporary file system.

34. The system of claim 33, wherein said temporary data created during the particular

session is destroyed when the particular session terminates.

35. The system of claim 21, wherein said module for enforcing encrypts all data created

during a particular workspace session.

36. The system of claim 21, wherein said module for enforcing controls inter-process

communication between individual software programs.

37. The system of claim 36, wherein said module for enforcing blocks any inter-process

communication that would violate the security policy.

38. The system of claim 21, wherein each of said plurality of workspace sessions is used

for particular purposes.

39. The system of claim 38, wherein said particular purposes include selected ones of
browsing the Internet, browsing an Intranet, reading confidential documents, securely
connecting to a remote site, running business applications, running personal applications, and

evaluating software.

58

Sheet 1/15

PCT/US2008/070263

WO 2009/014975

(LYY HOI¥d)

d31NIHd AV1dSIa
A
t ~ o0l vOlL —~ Y
801 901 AYOWIN
) ™ O3AdIA
oLl
ONILNIOd © O3adIA
A A A
S3714d V1va
SNOILYOITddY o
SYIAINA
SO JOVHOLS -~ »
a3xi4 >
39OVIHOLS - (ndo)
I19vAOINTYH > (SILINA <
T ONISSIO0Nd TVHLINID
Lol /
) A A
L INOY INVY
00} —

oLl
J

JOV4H3LNI

WWOD

LLL
~

»] FOV4HTLNI

NIOMLAN

Sheet 2/15

WO 2009/014975

PCT/US2008/070263

200
L 210
Application layer /
APPLICATION(s)
(MS-Word, IE, Notepad, etc.)
®
33
23
° 85 ° 225
Secured layer 2 ® /’ 220 /
—~ <« »| HOOKs
INDIVIDUAL SECURE WORKSPACE HOOK(S) ENGINE
(cpsws.dll)
[®
OS layer < L
230 OS KERNEL (e.g., NTDLL.DLL)
SECURE
b J4 C ® WORKSPACE
OS INFORMATION STORAGES MANAGER
~_ 240 J (cpsws.exe)
CLIPBOARD 227
SECURE
WORKSPACE
POLICY

FIG. 2A

(cpsws.xmi)

SECURE
WORKSPACE
WALLPAPER

(cpsws.jpg)

PCT/US2008/070263

Sheet 3/15

WO 2009/014975

SIARIIE

JAOIN TINH3IA

\. gee

\. €ec

\ E[44 Aﬂ

lcc \\

7! 1@ 11dLN Jokel N
9P0o INo 9P0o INo
| | g dunr oydwnp
| @ J @
< Johe| Zguipm
SNOILONNA
Idv 40
NOILY.LINIWNITdII IdV C¢SUINA LeZ
|| INOLSND
| | 11a°2e310 11aceT1aHS 11aced3dsn TACETANSGIA
9P0o INo 9P0o INo 9P0o INo |1
o dwnp o dwnp o dwnp
. v v v
ANION3 SHOOH
@ @
&= §= §= §=
23 23 20 Y 8| JoAe; uoneoyddy
oA oA oA oA
>4 >4 >4 >4
(oo smso) 23 23 B3 23
HIADOVYNYIN m w m o m o m to
JOVdSYHOM IHND3S cm cm cm cm

(018 ‘pedeloN ‘J| ‘PIOM-SIN)
(S)NOILVDI1ddV

o_‘N\

Sheet 4/15

WO 2009/014975 PCT/US2008/070263

< BEGIN)
301
v -

START CPSWS.EXE WITH DEFAULT PARAMETERS.

302
v -

LOAD POLICY FILE CPSWS.XML.

303
v -

CPSWS.EXE CREATES PIPE SERVER THAT WILL LISTEN AND
DISPATCH REQUESTS FROM INJECTED APPLICATIONS. PIPE
SERVER USES SECURE COOKIE AS AUTHORIZATION
PASSWORD ON EVERY CLIENT CONNECT, SO ONLY
PROCESSES THAT STARTED WITH SWS's DLL CAN USE THIS
PIPE.

304
v -

LOAD CPSWS.DLL INTO CPSWS.EXE (SELF-INJECTION).

305
v -
CPSWS.DLL HOOKS ALL NECESSARY API (NTDLL.DLL,
KERNEL32.DLL, OLE32.DLL, USER32.DLL). ALSO IT INJECTS
ITSELF IN EVERY CHILD PROCESS, THAT IS CREATED BY
ALREADY INJECTED PROCESS.

306
v -

CREATE VIRTUAL USER PROFILE (ACCORDING TO POLICY).

307
v -

CREATE VIRTUAL DESKTOP VIA CREATEDESKTOP() WINAPI
FUNCTION.

CONTINUE TO FIG. 3B

v
FIG. 3A

(O8]
S

Sheet 5/15

WO 2009/014975 PCT/US2008/070263

CONTINUE FROM FIG. 3A 308
v -
CREATE AND INITIALIZE BY EMPTY DACL SECURITY
DESCRIPTOR AND ASSIGN IT TO NEW DESKTOP. THIS
DISALLOWS ANY OTHER APPLICATION TO START OR INSTALL
INPUT HOOKS ON SECURE DESKTOP.

309
v -

PERFORM ADDITIONAL INITIALIZATION (GET CURRENT
WALLPAPER).

310
’ -

START EXPORER.EXE ON CREATED VIRTUAL DESKTOP. SINCE
INJECTION OCURRED VIA THE CPSWS.DLL, EXPLORER.EXE
WILL BE INJECTED BY CPSWS.DLL ON STARTUP. THIS ALLOW
THE SYSTEM TO CONTROL APPLICATIONS THAT WILL BE
STARTED ON THE VIRTUAL DESKTOP.

311
v -

SWITCH TO CREATED DESKTOP, IF ALL PRECEDING
OPERATIONS HAVE SUCCEEDED.

A 4

< DONE)

FIG. 3B

Sheet 6/15

WO 2009/014975 PCT/US2008/070263

N
S

C BEGIN) 400
401
v -

QUERY ALL APPLICATIONS CURRENTLY RUNNING IN SWS FOR
SHUTDOWN BY SENDING THEM WM_QUERYENDSESION AND
WM_ENDSESSION MESSAGES. THIS ALLOWS APPLICATIONS TO
ASK USER TO SAVE ANY INFORMATION BEFORE SHUTDOWN.

402
v -

TERMINATE ALL RUNNING SWS APPLICATIONS.

403
v -

CLOSE PIPE SERVER.

404
v -

DELETE ALL ENCRYPTED FILES FROM VIRTUAL USER PROFILE.

405
v -

DELETE HKCU\CPSECURED REGISTRY KEY.

A 4

C DONE >

FIG. 4

WO 2009/014975

I 500

Sheet 7/15

510

Unmanaged PC

SECURE
WORKSPACE

SESSION

P I
-

MALWARE

FIG. 5A

PCT/US2008/070263

INTERNET

520

Protected web
resource
(Company
portal)

WO 2009/014975

Sheet 8/15

I 550

560 —

Corporate (managed) PC

V=

SECURE
DESKTOP

L

FIG. 5B

PCT/US2008/070263
INTERNET
Bad web
sites
MALWARE

570

Sheet 9/15

PCT/US2008/070263

WO 2009/014975

U 00 % [|

- g

Oy S00] SERi0sTg s o

0]3¢) 009

e

Sheet 10/15

PCT/US2008/070263

WO 2009/014975

H v0.

v/, 9Old

weusboud] ;
Jasn Uoissas jsanbay |+ | 'CVUOISSSSMOSWSAON
N (AY3ISINSHD)
502 0L Jenses Hod uoisses

0 Uoisses

k uoIssas jsenbay Z

€0/ ~_4 Hodidyws)

(SSINS)

youne-

Jabeue|y uoissas

104 K

dnjie}s uoissag

00/

\)

\ LLL
(exa'ss1s9)

wasAsqns ZgUIAA

Hm_&

\)

(pueWWOD [eniul)
uobod)D

| UOISS9S

o_&\\

Sheet 11/15

PCT/US2008/070263

WO 2009/014975

g/ 9ld4

L2l

S99IAJI9S [BUILIS |

9¢L

_v HodIdyUOIBISUIMSSWS)

| ‘dnuels
walsAsqng

Gcl

)y

|
vodioauuonmz

2.l “_~ pardaosa|

Hodidyuoneisuipassdo
20/ - (N43SINSdD)
JaAJag Uod UoIssag

8¢/L

JaAlQq JedisH

S99IA9P PUNOS PUB 08PIA 10) SWeU
$1041U09 1ndul 1o} sa|puey 1sanbay

uondaoJtaiul Lod awiy - auo sjqeuy

- -
_ SaWeU 92IA9p pPUNOS pue 0apIA
ton:om_::oo;N ‘sg|puey |0J1u09 ndul 199
|
N eulbuo)
“ | 62.-10dS = (6x5°55150) > s ieeum
uodjosliuoomz walsAsans ZEUnA peoT waysAsgns [aulay
junpjsou % N

ENIE)N

i L.
| UoISSag

o/ Ol

PCT/US2008/070263

Sheet 12/15

cel
Av 008pIA\SINSQ\
92IA8p PJE0gAS)| |t JBALIP 03PIA JOMIN |egt
8jea.o sBunmesAe|dsigabueypai
peal N
SNOUOJYOUAS
JoAuq JadjoH UUASY ee/ shsyzeuim
wajsAsgns |auJay]
N a)eald (L) A
pealy]induimey N
8z/ 90IAOD SSNO| |=g

vel

) :

L€l
Jo8uU0D8I0WeHIESNIN

syoalgOpawieNeseq \<pl>\UoISSaS\

Z ‘dnuels

waisAsgng
9jeald (oxo°s8.89) ||
wajsAsgns ZEUIAA S DL
ooy | UOISS9S

WO 2009/014975

o
N

Sheet 13/15

PCT/US2008/070263

WO 2009/014975

¢ ‘dnuels

walsAsqng

(AY3ISINSID)
JOAJBS IO UOoISsas

HodidyyuoneiSUundO\

-

a/l old

s}o8lqOpoWeNoSEg\<PI>\UOISSOS\ |«

//l ov.

ynejaq dopsa ‘uobojuipy dopiseq |e—

//l 6v.

0 BJSUIAA UOIE}S MOPUIAA

-

//\ YA

Jasn 1o}
§8900k JueIh

:

174

0 UoISsag

puUBLWIWOD pue

s|enuapalo 1senbay g/

Jesn JoJ

¥/ - 9xa'Juasn
‘B8 ‘puewwo)

§8900k JueIh
a]ealo

-~
youneT

bl en

GlL/ - shszguim
wiaisAsgns |aulay

-

(puBWWOD [ENIUIN)
uobodo

SJuO0} pEOT

MOPUIM UoNedInou Ja)sibay

‘sso004d uobo| Joisibay

//m_‘m

| UOISS9g

Sheet 14/15

PCT/US2008/070263

WO 2009/014975

[¢®)

V8 9Old

L ‘umopinys
wa)sAsgng

HodlidyuoneiSusSdo

L1/ - (ex9°s84SD)
weasAsgns ZSUIpA

SMOPUIM
X3 geo8

20/ - (ANY3SINSD)
JOAJBS IO UOoISsas

4 SMOPUIM UXT

k

GL/ - shsHggum —

G08 ~_ abessoaw
uoneslijou }x3

208 - (UMopINYS) | XJSMOPUINIXT
IdyuoissegaIagwSd (PuELIWOD [eRiul)
IdYUOISSESMESWSION e ma<siso 108UU02sIq ¢/ - uoboido <
SMOPUIM JIXg~" > BE08 608
G0/ - weibold Jasn
Q uoissag | UoIssas

Sheet 15/15

PCT/US2008/070263

WO 2009/014975

g8 9l

Z ‘umopinys
walsAsqng

ModlidyuonejSuipssdo \

L1/ - (ex9°s84SD)

128 ~_ Seulwis] Aq
pamol|o} Joauuoasiqg

20/ - (ANY3SINSD)

JOAJBS IO UOoISsas

0 UoISsag

uolssas ajeululs | «

¢

€es

€0L -
Hodldywsy

104 - SSINS

wa)sAsqns ZgUIAA

(199UU02sII8SNIN)
11 n_u_oym ‘JOALIP 0BPIA pEOJUN

('

Gzs
sAsH)Ze uIm

| UOISSag

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US 08/70263

A. CLASSIFICATION OF SUBJECT MATTER
IPC(8) - HO4L 9/00 (2008.04)
USPC - 713/168

According to Intemational Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

USPC: 713/168

Minimum documentation searched (classification system followed by classification symbols)

USPC: 713/150, 164, 168, 170; 709/201, 223, 227

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

PubWEST(USPT,PGPB,EPAB,JPAB), Google Scholar

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

Search terms used: session, workspace, internet, temporary file system, rule, registry, secure, privilege etc.

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
Y US 2006/0075106 A1 (Hochmuth et al.) 06 April 2006 (06.04.2006) entire document, especially, | 1-39
Fig . 1, para. [0005], [0006].
Y US 2007/0130458 A1 (Focke et al.) 07 June 2007 (07.06.2007) entire document, especially, 1-39
Fig. 2, 4, para. [0005], [0006], [0010], [0019]-{0020], {0021], [0030]-[0032], [0039], [0040},
[0044], [0114]-[0115], [0117]-[0121].
Y US 5,893,099 A (Schreiber et al.) 06 April 1999 (06.04.19989) entire document, especially, col. 9-10 and 33-34
9, In. 20-25.
Y US 2007/0128899 A1 (Mayer) 07 June 2007 (07.06.2007) entire document, especially, para. 11-12
{0023).

I:] Further documents are listed in the continuation of Box C.

[

* Special categories of cited documents;

“A” document defining the general state of the art which is not considered
to be of particular relevance

“E” earlier application or patent but published on or after the international
filing date

“L” document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

“0” document referring to an oral disclosure, use, exhibition or other
means

“P” document published prior to the international filing date but later than

the priority date claimed

“T” later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

“X" documemt of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

“Y” document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

“&” document member of the same patent family

Date of the actual completion of the international search

12 October 2008 (12.08.2008)

Date of mailing of the international search report

22 0CT 2008

Name and mailing address of the ISA/US

Mail Stop PCT, Attn: ISA/US, Commissioner for Patents
P.O. Box 1450, Alexandria, Virginia 22313-1450

Facsimile No. 571-273-3201

Authorized officer:
Lee W. Young

PCT Helpdesk: 571-272-4300
PCT OSP: 571-272-7774

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - description
	Page 49 - description
	Page 50 - description
	Page 51 - description
	Page 52 - description
	Page 53 - description
	Page 54 - description
	Page 55 - claims
	Page 56 - claims
	Page 57 - claims
	Page 58 - claims
	Page 59 - claims
	Page 60 - drawings
	Page 61 - drawings
	Page 62 - drawings
	Page 63 - drawings
	Page 64 - drawings
	Page 65 - drawings
	Page 66 - drawings
	Page 67 - drawings
	Page 68 - drawings
	Page 69 - drawings
	Page 70 - drawings
	Page 71 - drawings
	Page 72 - drawings
	Page 73 - drawings
	Page 74 - drawings
	Page 75 - wo-search-report

