PCT

WORLD INTELLECI'UAL_ PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification : (11) International Publication Number: WO 97/07657
. A2

Not classified (43) International Publication Date: 6 March 1997 (06.03.97)

(21) International Application Number: PCT/US96/11925 | (81) Designated States: AL, AM, AT, AT (Utility model), AU,

(22) International Filing Date: 19 July 1996 (19.07.96)

(30) Priority Data;

08/519,307 25 August 1995 (25.08.95) Us

(71) Applicant (for all designated States except US): INTEL COR-
PORATION [US/US]; 2200 Mission College Boulevard,
Santa Clara, CA 95052 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): AUCSMITH, David, W.
[US/US]; 6995 S.W. Laber Road, Portland, OR 97225
(US). KNAUERHASE, Robert, C. [US/US]; 19000 N.W.
Evergreen Parkway, No. 259, Hillsboro, OR 97124 (US).

(74) Agents: CHO, Lawrence, M. et al.; Blakely, Sokoloff, Taylor &
Zafman, 7th floor, 12400 Wilshire Boulevard, Los Angeles,
CA 90025 (US).

AZ, BB, BG, BR, BY, CA, CH, CN, CU, CZ, CZ (Utility
model), DE, DE (Utility model), DK, DK (Utility model),
EE, EE (Utility model), ES, FI, FI (Utility model), GB, GE,

- HU, IL, 1S, JP, KE, KG, KP, KR, KZ, LK, LR, LS, LT,
LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT,
RO, RU, 8D, SE, SG, SI, SK, SK (Utility model), TJ, TM,
TR, TT, UA, UG, US, UZ, VN, ARIPO patent (KE, LS,
MW, 8D, SZ, UG), Eurasian patent (AM, AZ, BY, KG,
KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE,
DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE),
OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR,
NE, SN, TD, TG).

Published
Without international search report and to be republished
upon receipt of that report.

(54) Title: PARAMETERIZED HASH FUNCTIONS FOR ACCESS CONTROL

(57) Abstract

[ecelve & biock of date heving
A method and apparatus for access control in a computer system are disclosed. . —r an
A storage unit receives a block of data having an encrypted executable image and a m
signature component. A separation unit coupled to the storage unit separates the signature '
component from the encrypted executable image. A decryption unit coupled to the e
separation unit decrypts the encrypted executable image using the signature component =
as a key. This yields a decrypted executable program. An identification unit coupled T
to the decryption unit locates an identification mark in the decrypted executable program
and identifies a composite key assigned to the identification mark. A signature generation Oocryot e executatie imege.
unit coupled to the identification unit performs a keyed cryptographic hash algorithm m
on the decrypted executable program using the composite key as a key. A verification I
unit coupled to the signature generation unit compares the signature component with the ‘;‘::_mﬂ--ﬁ
computed keyed cryptographic hash value to verify the source of the block of data and to nge.
determine whether it has been modified. If the signature matches the keyed cryptographic - o
hash value, a rights assignment unit coupled to the verification unit assigns appropriate sty u composte oy
access rights to the decrypted executable program and allows it to be executed by a ----::
computer system. s
— 1
Compute & keyed cryptographic
houh vaiue of e decrypted
nacutabie image.
-}
Doss the signamse No Do not exscute the
m o8
Yes
Aseign rights using composie
ey.
m
]
Exacute the decryped
exacutable program.
210
e ———

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international
applications under the PCT.

AM Armenia GB United Kingdom MW Malawi

AT Austria GE Georgia MX Mexico

AU Australia GN Guinea NE Niger

BB Barbados GR Greece NL Netherlands

BE Belgium HU Hungary NO Norway

BF Burkina Faso IE Treland NZ New Zealand

BG Bulgaria IT Ttaly PL Poland

BJ Benin Jp Japan PT Portugal

BR Brazil KE Kenya RO Romania

BY Belarus KG Kyrgystan RU Russian Federation

CA Canada KP Democratic People’s Republic SD Sudan

CF Central African Republic of Korea SE Sweden

CG Congo KR Republic of Korea SG Singapore

CH Switzerland Kz Kazakhstan SI Slovenia

CI Cote d'Ivoire LI Liechtenstein SK Slovakia

CM Cameroon LK Sri Lanka SN Senegal

CN China LR Liberia Sz Swaziland

(o] Czechoslovakia LT Lithuania ™ Chad

Cz Czech Republic LU Luxembourg TG Togo

DE Germany LV Latvia k¥ Tajikistan

DK Denmark MC Monaco TT Trinidad and Tobago
Estonia MD Republic of Moldova UA Ukraine

ES Spain - MG Madagascar UG Uganda

FI Finland ML Mali us United States of America

FR France MN Mongolia vz Uzbekistan

GA Gabon MR Mauritania VN Viet Nam

WO 97/07657 PCT/US96/11925

-1-

PARAMETERIZED HASH FUNCTIONS FOR ACCESS CONTROL

FIELD OF THE INVENTION

The present invention relates to access control in a computer
system. More specifically, the present invention relates to an apparatus
and method for identifying the origin of an executable image and using
that identification to determine the level of access rights allowed to the
executable.

BACKGROUND OF THE INVENTION

Security violations on a computer systems can be categorized as
being either intentional or accidental. Among the forms of intentional
access are unauthorized reading of data, unauthorized modification of
data, and unauthorized destruction of data. Most operating systems
provide a means for processes to spawn other processes. In such an
environment, it is possible to create a situation where operating-system
resources and user files are misused. Worms and viruses are two
common methods of misuse. The protection of a computer system
depends on its ability to identify the source of the programs that are to be
executed and to verify that these programs have not been modified in a
way such that then may pose a security threat to the system.

In addition to verifying the authenticity of the source of a
program, there is also a need to ensure that the files, memory segments,
CPU, and other resources of a computer system can be utilized only by
those processes that have gained proper authorization from the operating
system. There are several reasons for providing this protection. The
most obvious is the need to prevent mischievous, intentional violation of
an access restriction. Of more general importance is the need to ensure
that each program component active in a system uses system resources in
ways consistent with the stated policies for the uses of these resources.
Protection can improve the reliability by detecting latent errors at the
interfaces between component subsystems. Early detection of interface
errors can prevent contamination of a healthy subsystem by another
subsystem that is malfunctioning.

WO 97/07657 ' PCT/US96/11925

2-

A process typically operates within a protection domain. The
domain specifies the resources that the process may access. Each domain
defines a set of objects and the types of operations that may be invoked
on each object. The ability to execute an operation on an object is an
access right. A domain is a collection of access rights, each of which is
typically an ordered pair: <object-name, rights-set>. For example, if
domain D has the access right <file F, {read, write}>, then a process
executing in domain D can both read and write file F. It should not,
however, be allowed to perform any other operation on that object.
Domains may be disjoint or they may share access rights. The
association between a process and a domain may also be either static of
dynamic. Thus, it is important to restrict the protection domains
accessible to each process.

Thus, what is needed is an apparatus and method for providing
an unforgible signature of an executable image that can be used to
identify the origin of the executable image, whether there has been any
modification to the executable, and the level of access rights or trust the
executable should be allowed by the operating system.

SUMMARY OF THE INVENTION

A method and apparatus for access control in a computer system
is disclosed. One embodiment of the access controller comprises a
storage unit. The storage unit stores a block of data having a signature
component and a encrypted executable image. A separation unit is
coupled to the storage unit. The separation unit receives the block of
data and separates the signature component from the encrypted
executable image. A decryption unit is coupled to the separation unit.
The decryption unit receives the encrypted executable image and
decrypts the encrypted executable image into an executable program.
This can be achieved by running a decryption algorithm which uses the
signature component as a key to decrypt the encrypted executable image.
An identification unit is coupled to the decryption unit. The
identification unit receives the executable program to be used and
identifies a key designated to an identification mark in the executable

WO 97/07657 PCT/US96/11925

-3-

program for computing a cryptographic keyed hash value of the
executable program. A signature generation unit is coupled to the
decryption unit. The signature generation unit receives the executable
program and computes a cryptographic keyed hash value to the
executable program usir{g a stored key identified by the identification
unit. A verification unit is coupled to the hash unit. The verification unit
- compares the keyed hash value with the signature component to verify

the source of the block of data and that no modification has been made to
the block of data. A rights assignment unit is coupled to the hash unit.
The rights assignment unit receives the key used for computing the
keyed hash value of the executable program and assigns rights to the
executable program according to rights associated with the key.

A second embodiment of the present invention discloses a method
for access control in a computer system. First, a block of data having a
signature component and an encrypted executable image is received.
After the block of data is received, the signature component is separated
from the encrypted executable image. Next, the executable image is
decrypted by executing a decryption algorithm which uses the signature
component as a key. A composite key corresponding to an identification
mark in the executable program is identified. The composite key is used
to compute a keyed hash value of the executable program. After the
keyed hash value is computed, the keyed hash value is compared with
the signature component to verify the source of the block of data. Rights
are assigned to the executable program according to rights pre-assigned
to the key.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention will be understood more fully from the
detailed description given below and the accompanied drawings of the
various features and elements embodied in the invention. The
description and drawings are not meant to limit the invention to the
specific embodiment. They are provided for explanation and
understanding.

WO 97/07657 PCT/US96/11925

-4-

Figure 1 illustrates one embodiment of a access controller
implemented in a computer system.

Figure 2 illustrates a block diagram of one embodiment of an
encoding unit of the present invention.

Figure 3 illustrates how a message is encoded using an encoding
unit of the present invention.

Figure 4 illustrates a block diagram of a second embodiment of an
access controller of the present invention.

Figure 5 illustrates a block diagram of a third embodiment of the
video processing system of the present invention.

Figure 6 is a flow chart illustrating a method for encoding.

Figure 7 is a flow chart illustrating a method for access control of a
computer system.

DETAILED DESCRIPTION

A novel access controller unit is described. In the following
detailed description, numerous specific details are set forth in order to
provide a thorough understanding of the present invention. However, it
will be understood by those skilled in the art that the present invention
may be practiced without these specific details. In other instances, well-
known methods, procedures, components, and circuits have not been
described in detail so as not to obscure the present invention.

Some portions of the detailed descriptions which follow are
presented in terms of algorithms and symbolic representations of
operations on data bits within a computer memory. These algorithmic
descriptions and representations are the means used by those skilled in
the data processing arts to most effectively convey the substance of their
work to others skilled in the art. An algorithm is conceived to be a self-
consistent sequence of steps leading to a desired result. The steps are
those requiring physical manipulations of physical quantities. Usually,
though not necessarily, these quantities are electrical or magnetic signals
capable of being stored, transferred, combined, compared, and otherwise
manipulated. It has proven convenient at times, principally for reasons
of common usage, to refer to these signals as bits, values, elements,

WO 97/07657 PCT/US96/11925

-5-

symbols, characters, terms, numbers, or the like. It should be borne in
mind, however, that all of these and similar terms are to be associated
with the appropriate physical quantities and are merely convenient labels
applied to these quantities. Unless specifically stated otherwise as
apparent from the following discussions, it is appreciated that
throughout the present invention, discussions utilizing terms such as
"processing” or "computing" or “calculating” or "determining" or
"displaying" or the like, refer to the action and processes of a computer
system or similar electronic computing device that manipulates and
transforms data represented as physical (electronic) quantities within the
computer system'’s registers and memories into other data similarly
represented as physical quantities within the computer system memories
or registers or other such information storage, transmission or display
devices. |

Figure 1 illustrates in block diagram form a computer system of
one embodiment of the present invention. The computer system
comprises bus 100, keyboard interface 101, external memory 102, mass
storage device 103, processor 104 and display device controller 105. Bus
100 is coupled to display device controller 105, keyboard interface 101,
microprocessor 104, memory 102 and mass storage device 103. Display
device controller 105 can be coupled to a display device. Keyboard
interface 101 can be coupled to a keyboard.

Bus 100 can be a single bus or a combination of multiple buses. As
an example, bus 100 can comprise an Industry Standard Architectural
(ISA) bus, an Extended Industry Standard Architecture (EISA) bus, a
system bus, a X-bus, PS/2 bus, a Peripheral Components Interconnect
(PCI) bus, a Personal Computer Memory Card International Association
(PCMCIA) bus or other buses. Bus 100 can also comprise a combination
of any of these buses. Bus 100 provides communication links between
components in the computer system. Keyboard interface 101 can be a
keyboard controller or other keyboard interface. Keyboard interface 101
can be a dedicated device or can reside in another device such as a bus
controller or other controller. Keyboard interface 101 allows coupling of
a keyboard to the computer system and transmits signals from a

WO 97/07657 PCT/US96/11925

-6-

keyboard to the computer system. External memory 102 can comprise a
dynamic random access memory (DRAM) device, a static random access
memory (SRAM) device, or other memory devices. External memory 102
stores information and data from mass storage device 103 and processor
104 for use by processor 104. Mass storage device 103 can be a hard disk
drive, a floppy disk drive, a CD-ROM device, a flash memory device or
other mass storage device. Mass storage device 103 provides information
and data to external memory 102.

Processor 104 processes information and data from external
memory 102 and stores information and data into external memory 102.
Processor 104 also receives signals from keyboard controller 101 and
transmits information and data to display device controller 105 for
display on a display device. Processor 104 also transmits video images to
the display controller for display on a display device. Processor 104 can
be a complex instruction set computing (CISC) microprocessor, a reduced
instruction set computing (RISC) microprocessor, a very long instruction
word (VLIW) microprocessor or other processor device. Display device
controller 105 allows coupling of a display device to the computer system
and acts as an interface between the display device and the computer
system. Display device controller 105 can be a monochrome display
adapter (MDA) card, a color graphics adapter (CGA) card, enhanced
graphics adapter (EGA) card, multi-color graphics array (MCGA) card,
video graphics array (VGA) card, extended graphics array (XGA) card or
other display device controller. The display device can be a television
set, a computer monitor, a flat panel display or other display device. The
display device receives information and data from processor 104 through
display device controller 105 and displays the information and data to
the user of the computer system.

The computer system also comprises access controller unit 106.
Access controller unit 106 is coupled to bus 100. A set of keys that are
associated with access rights within the computer system are stored in
access controller unit 106. Each key defines the domain that a program
operates in. The keys also define one or more composite keys which are
used as parameters in a cryptographic hash function for generating a

WO 97/07657 PCT/US96/11925

7-

program signature. The program signature is further used as a
encryption key for encrypting the executable program.

Access controller unit 106 receives a process to be run by
processor 104 from mass storage device 103 or another I/O device
coupled to bus 100. The process comprises an encrypted executable
image and a signature component. Before the computer system executes
a program, the access controller unit 106 verifies that the signature of the
program is legally constructed from a known composite key. By
checking the signature component of the process, the access controller
unit 106 identifies the origin of the process, verifies that the process has
not been modified in a way that is threatening to the computer system,
and determines the level of access the operating system should grant the
process. The access controller unit 106 then allows the executable
program to execute with the rights assigned to the keys used in deriving
the composite key.

Figure 2 illustrates a block diagram of one embodiment of a file
encoding unit of the present invention. File encoding unit 210 comprises
signature generator 221 and encryption unit 230. Signature generator 221
operates to create a signature of an executable program to be executed by
processor 104. Encryption unit 230 encrypts the file containing the
executable program using the signature as a key. Signature generator
221 performs a cryptographic keyed hash function on the plain text of an
executable program, generating cipher text. Signature generator 221 uses
keys which are composite keys of keys stored in access control unit 106.
Each of the composite keys used in the cryptographic hash function are
associated with a set of access rights. These rights are assigned to the
executable program prior to execution.

Signature generator 221 comprises computation unit 222 and
encryption unit 223. Signature generator 221 can use computation unit
222 and encryption unit 223 to perform any number of cryptographic
keyed hash functions or encryption algorithms on the plain text of the
executable program. The keys can be either private symmetric-keys or
public asymmetric-keys. The difference is the extent of protection
required by the operating system's copy of the key. Signature generator

WO 97/07657 PCT/US96/11925

-8-

22] can use such conventional algorithms as Lucifer, Madryga, NewDES,
FEAL, REDOC, LOKI, Khufu, Khafre or IDEA to generate a
cryptographic keyed hash value for the executable program. In one

“embodiment of the present invention, computation unit 222 and
encryption unit 223 uses the Data Encryption Standard (DES) Cipher
Block Chaining (CBC) to generate a cryptographic keyed hash value for
the executable program.

Figure 3 illustrates the steps-taken by computation unit 222 and
encryption unit 223 when it uses CBC to generate a keyed hash value for
the executable program. Chaining uses a feedback mechanism. The
results of the encryption of previous blocks are fed back into the
encryption of the current block. In other words, the previous block is
used to modify the encryption of the next block. Each ciphertext block is
dependent on both the plaintext block that generated it and the previous
plaintext blocks. In CBC, the plaintext is XORed with the previous
ciphertext block before it is encrypted.

In this example, encoding unit 210 receives a file containing an
executable program with a size of 24 bytes. The signature generator 221
breaks the 24 byte file into three 8 byte sections. The first 8 bytes of plain
text is represented as P1 in block 301. P1 is XORed with an initiation
vector (IV) stored in the computation unit 222. This yields a first
product. The initiation vector is a function of a first composite key
associated with a set of access rights to be assigned to the executable
program. After P1is XORed with IV, the encryption unit 223 performs a
keyed encryption algorithm using a second composite key on the first
product, yielding an encrypted first product, C1. The keyed encryption
algorithm can be one of a variety of different keyed encryption
algorithms, including any of the keyed encryption algorithms listed
earlier. Computation unit 222 XORs the encrypted first product with the
second 8 byte section, represented as P2, to yield a second 8 byte product.
Encryption unit 223 performs a keyed encryption algorithm using the
second composite key on the second product, yielding an encrypted
second product, C2. Computation unit 222 XORs the encrypted second

product with the third 8 byte section to yield a third 8 byte product.

WO 97/07657 PCT/US96/11925

-9-

Encryption unit 223 performs a keyed encryption algorithm using the
second composite key on the third product. This yields a third encrypted
product, C3, which is used as a signature of the executable program.

Signature generation unit 221 generates a signature of the
executable program that is a function of all the characters in the file.
Thus, if the executable program is modified, one would be able to detect
-the modification by recomputing the cryptographic keyed hash value
and comparing the recomputed value with the original signature.

Encryption unit 230 operates to encrypt the executable program by
performing an encryption algorithm using the signature created from the
keyed cryptographic hash algorithm as a key. This yields an encrypted
executable image. The encryption of the executable program provides an
additional level of protection to prevent an unauthorized third party
from reading the executable program. Any variety of encryption
algorithms can be used by encryption unit 230. Both the encrypted
executable image and the signature are sent as a file to a computer
system to be executed.

Figure 4 illustrates a block diagram of a second embodiment of an
access controller of the present invention. Access control unit 400
comprises storage unit 410, separation unit 420, decryption unit 430,
identification unit 440, signature generation unit 450, verification unit
460, and rights assignment unit 470.

Storage unit 410 receives a block of data comprising an encrypted
executable image and a signature component. Storage unit 410 can
comprise a DRAM device, a SRAM device or other memory devices.
Storage unit 410 uses a pointer to indicate to the computer system
whether the file stored is an executable image or an executable program.
The pointer indicates to the computer system that storage unit 410 is
being used as temporary storage when the file stored is an executable
image. The pointer indicates to the computer system that storage unit
410 is being used as executable space when the file is an executable
program.

Separation unit 420 is coupled to storage unit 410. Separation unit
420 receives the block of data from the storage unit 410 and separates the

WO 97/07657 PCT/US96/11925

-10-

encrypted executable image from the signature component. This allows
access control unit 400 to process the encrypted executable image and the
signature component separately.

Decryption unit 430 is coupled to separation unit 420 and storage
unit 410. Decryption unit 430 receives the encrypted executable image in
cipher text form and the signature component from separation unit 420.
Decryption unit 430 decrypts the encrypted executable image using the
signature component as the decryption key. Decryption unit 430
transforms the encrypted executable image into an decrypted executable
program.

Identification unit 440 is coupled to decryption unit 430 and
storage unit 410. Identification unit 440 receives the executable program
from the decryption unit 430. Identification unit 440 reads an
identification mark in the executable program and obtains the identity of
a corresponding composite key which is assigned to the identification
mark. This composite key is typically the same key used by signature
generation unit 221 to generate the keyed hash value of the executable
program. In one embodiment of the present invention, identification
processor 440 contains a look-up table matching various identification
marks with various composite keys. The composite key is associated
with specific access rights that are granted to the executable program.

Signature generation unit 450 is coupled to identification unit 440
and storage unit 410. Signature generation unit 450 receives the identity
of the composite key assigned to the identification mark of the executable
program. Signature generation unit 450 operates to compute a
cryptographic keyed hash value of the decrypted executable program
received by identification unit 440 using the identity of the composite key
received by identification unit 440. Signature generation unit 450 stores a
plurality of keys which are assigned specific access rights to the
computer system. These keys derive a plurality of composite keys which
are used to encode and decode executable programs and decrypted
executable programs.

Verification unit 460 is coupled to signature generation unit 450
and storage unit 410. Comparison unit 460 receives the signature

WO 97/07657 PCT/US96/11925

-11-

component of the executable image from the storage unit 410 and the
keyed hash value of the decrypted executable program from signature
generation unit 450. Verification unit 460 compares the keyed hash value
of the decrypted executable program with the signature component of
the executable image. If the two are the same, verification unit 460
allows the decrypted executable program to be executed by the computer
system. If the two are not the same, verification unit 460 realizes that the
executable image has been modified and should not be executed by the
computer system.

In one embodiment of the present invention, signature generation
unit 450 does not receive the identity of a composite key used to compute
a keyed hash function of the decrypted executable program. Instead,
signature generation unit 450 calculates several keyed hash values of the
decrypted executable program using composite keys derived by
permutations of stored keys in signature generation unit 450. These
keyed hash values are received by verification unit 460 which determines
whether any of the keyed hash values match the original signature
component. Similarly, if there is a match between the signature
component of the executable image and any of the computed keyed hash
values of the decrypted executable program, verification unit 460 allows
the decrypted executable program to be executed by the computer
system. If there are no matches, verification unit 460 realizes that the
executable image has been modified and should not be executed by the
computer system.

Rights assignment unit 470 is coupled to verification unit 460 and
storage unit 410. Rights assignment unit 470 receives the identity of the
composite key used for computing the matching keyed hash value to the
signature component of the executable image. When rights assignment
unit 470 receives a signal from verification unit 460 indicating that the
decrypted executable program is to be executed by the computer system,
rights assignment unit 470 operates to assign rights which are available
to the program by identifying the rights associated to the specific
composite keys used for calculating the matching keyed hash value. In
one embodiment of the present invention, rights assignment unit 470 can

WO 97/07657 PCT/US96/11925

-12-

contain a look-up table matching various composite keys with various
levels of access rights. After rights assignment unit 470 assigns the
appropriate rights to decrypted executable program, rights assignment
unit 470 moves the pointer in storage unit 410 to indicate to the computer
system that storage unit 410 is being used as executable space. The
computer system will realize that storage unit 410 contains an executable
program and will proceed to execute the executable program.

Figure 5 illustrates in block diagram form a typical computer
system of a fourth embodiment of the present invention. The computer
system comprises bus 500, microprocessor 510, memory 520, data storage
device 530, keyboard controller 540, and display device controller 550.

Microprocessor 510 can be a complex instruction set computing
(CISC) microprocessor, a reduced instruction set computing (RISC)
microprocessor or other processor device. Microprocessor executes
instructions or code stored in memory 520 and performs operations on
data stored in memory 520. Computer system 500 further comprises a
data storage device 530 such as a hard, floppy, or optical disk drive
which is coupled to bus 515. Display device controller 550 is also
coupled to bus 515. Display device controller 550 allows coupling of a
display device to the computer system. Keyboard controller 540 allows
coupling of a keyboard to the computer system and transmits signals
from a keyboard to the computer system.

Memory 520 is coupled to the microprocessor 510 through bus
500. Memory 520 can be a dynamic random access memory (DRAM),
static random access memory (SRAM) or other memory device. Memory
520 can store instruction or code executable by processor 510 that are part
of application programs, operating system programs or other computer
programs. Mernory 520 comprises storage module 521, separation
module 522, decryption module 523, identification module 524, signature
generation module 525, verification module 526, and rights assignment
module 527. Storage module 521 comprises a first plurality of processor
executable instructions that are executed by processor 510 in the manner
shown in Figure 7. Storage module performs functions similar to that of
storage unit 410 in Figure 4. Separation module 522 comprises a second

WO 97/07657 PCT/US96/11925

-13-

plurality of processor executable instructions that are executed by
processor 510 in the manner shown in Figure 7. Separation module 522
performs functions similar to that of separation unit 420 in Figure 4.
Decryption module 523 comprises a third plurality of processor
executable instructions that are executed by processor 510 in the manner
shown in Figure 7. Decryption module 523 performs functions similar to
that of decryption unit 430 in Figure 4. Identification module 524
comprises a fourth plurality of processor executable instructions that are
executed by processor 510 in the manner shown in Figure 7.
Identification module 524 functions similarly to the identification unit
440 in Figure 4. Signature generation module 525 comprises a fifth
plurality of processor executable instructions that are executed by
processor 510 in the manner shown in Figure 7. Signature generation
module 525 performs functions similar to that of signature generation
unit 450 in Figure 4. Verification module 526 comprises a sixth plurality
of processor executable instructions that are executed by processor 510 in
the manner shown in Figure 7. Verification module 526 performs
functions similar to that of verification unit 460 in Figure 4. Rights
assignment module 527 comprises a seventh plurality of processor
executable instructions that are executed by processor 510 in the manner
shown in Figure 7. Rights assignment module 527 functions similarly to
the rights assignment unit 470 in Figure 4.

Figure 6 is a flow chart illustrating a method for encoding an
executable program to be executed by a computer system. First, receive
an executable program as shown in block 601. Next, receive a composite
key which defines associated rights to be assigned to the executable
program as shown in block 602.

Perform a keyed cryptographic hash algorithm on the executable
program. The composite key used can be either a private symmetric-
keys or public asymmetric-keys. This yields a encrypted keyed hash
value which serves as a signature or a fingerprint for the executable
program. This is shown in block 603.

Next, encrypt the executable program using the encrypted keyed
hash value as a key. This yields an executable image. This is shown in

WO 97/07657 PCT/US96/11925

-14-

block 604. After the executable program is encrypted to an executable
image, send both the executable image and the signature component to a
computer system to be processed and executed. This is shown in block
605.

Figure 7 is a flow chart illustrating a method for access control in a
computer system. First, receive a block of data having a signature
component and an executable image as shown in block 701. Separate the
signature component from the executable image as shown in block 702.
Decrypt the executable image using the signature component as the key.
This yields a decrypted executable program. This is shown in block 703.

Next, locate an identification mark in the decrypted executable
program as shown in block 704. Identify a composite key associated with
the identification mark. This is shown in block 705. Compute a keyed
cryptographic hash value of the decrypted executable program using the
composite key associated with the identification mark as shown in block
706. Next, verify the source of the block of data and whether the block
has been modified by comparing the signature component in the block of
data with the computed keyed cryptographic hash value for the
decrypted executable program. This is shown in block 707. If the
signature component in the block of data does not match that of the
computed keyed cryptographic hash value, do not execute the decrypted
executable program. This is shown in block 708. If the signature
component in the block of data does match that of the computed keyed
cryptographic hash value, assign the appropriate rights to the decrypted
executable program as identified by the composite key. This is shown in
block 709. Lastly, execute the decrypted executable program as shown in
block 710.

In the foregoing description, the invention is described with
reference to specific exemplary embodiments thereof. It will, however,
be evident that various modifications and changes may be made thereto
without departing from the broader spirit and scope of the invention as
set forth in the appended claims. The specifications and drawings are,
accordingly, to be regarded in an illustrative rather than a restrictive
sense.

WO 97/07657 PCT/US96/11925

-15-

Whereas many alterations and modifications of the present
invention will be comprehended by a person skilled in the art after
having read the foregoing description, it is to be understood that the
particular embodiments shown and described by way of illustration are
in no way intended to be limiting. Therefore, references to details of
particular embodiments are not intended to limit the scope of the claims
which in themselves recite only those features regarded as essential to
the invention.

WO 97/07657 PCT/US96/11925

-16-
CLAIMS
What is claimed is:
1. An access controller comprising:

a storage unit for storing a block of data having a signature
component and a encrypted executable image;

a separation unit coupled to said storage unit for receiving said
block and for separating said signature component from said encrypted
executable image;

a decryption unit coupled to said separation unit for receiving said
encrypted executable image and for decrypting said encrypted
executable image into an executable program;

a signature generation unit coupled to said decryption unit for
receiving said executable program and for computing a cryptographic
keyed hash value of said executable program using a stored key; and

a verification unit coupled to said signature generation unit for
comparing said cryptographic keyed hash value with said signature
component to verify a source of said block of data.

2. The access controller of claim 1, wherein said decryption unit
receives said signature component from said separation unit and
decrypts said encrypted executable image using said signature
component as a key.

3. The access controller of claim 1, wherein said hash unit further
comprises a key storage component for storing keys utilized by said
signature generation unit for computing said cryptographic keyed hash
value of said executable program.

4. The access controller of claim 1 further comprising an
identification unit coupled to said decryption unit for receiving said
executable program, said identification unit finding a composite key
designated to an identification mark in said executable program for
computing said cryptographic hash value of said executable program.

WO 97/07657 PCT/US96/11925

-17-

5. The access controller of claim 1 further comprising a rights
assignment unit coupled to said hash unit for receiving said composite
key used for computing said cryptographic keyed hash value of said
executable program, said rights assignment unit assigning rights to said
executable program according to rights associated with said composite
key.

6. A device for encoding an executable program comprising:

a signature generation unit for receiving an executable program,
said signature generator performing a cryptographic keyed hash function
on said executable program for generating a signature component; and

a first encryption unit coupled to said signature generation unit
for encrypting said executable program, said encryption unit performing
an encryption algorithm on said executable program using said signature
component as a key.

7. The device of claim 6 wherein said signature generator further
comprises a computation unit and a second encryption unit for
performing a data encryption standard cipher block chaining algorithm

8. An access controller comprising:

storage means for storing a block of data having a signature
component and a encrypted executable image;

separation means coupled to said storage means for receiving said
block and for separating said signature component from said encrypted
executable image;

decryption means coupled to said separation means for receiving
said encrypted executable image and for decrypting said encrypted
executable image into an executable program;

signature generation means coupled to said decryption means for
receiving said executable program and for computing a cryptographic
keyed hash value of said executable program using a stored key; and

WO 97/07657 PCT/US96/11925

-18-

verification means coupled to said signature generation means for
comparing said cryptographic keyed hash value with said signature
component to verify a source of said block of data.

9. A computer system comprising:

a bus providing links between components in said computer
system;

a display device controller coupled to said bus allowing coupling
of a display device to said computer system;

external memory coupled to said bus capable of storing
information; and

an access controller comprising a storage unit for storing a block of
data having a signature component and a encrypted executable image, a
separation unit coupled to said storage unit for receiving said block and
for separating said signature component from said encrypted executable
image, a decryption unit coupled to said separation unit for receiving
said encrypted executable image and for decrypting said encrypted
executable image into an executable program, a signature generation unit
coupled to said decryption unit for receiving said executable program
and for computing a cryptographic keyed hash value to said executable
program using a stored key, and a verification unit coupled to said
signature generation unit for comparing said cryptographic keyed hash
value with said signature component to verify a source of said block of
data.

10. A method for access control comprising

receiving a block of data having a signature component and a
executable image;

separating said signature component from said executable image;

decrypting said executable image into a executable program;

computing a cryptographic keyed hash value of said executable
program;

verifying a source of said block of data by comparing said
signature component with said cryptographic keyed hash value.

WO 97/07657 PCT/US96/11925

-19-

11. Themethod of claim 10 wherein decrypting said executable image
is achieved by executing a decryption algorithm using said signature
component as a key.

12, The method of claim 10 further comprising finding an
identification mark in said executable program and looking up a
corresponding composite key for performing a cryptographic keyed hash
function on said executable program.

13. The method of claim 10 further comprising assigning rights to said
executable program according to rights associated with said composite
key.

14. A method for generating an encoded executable image
comprising:

performing a cryptographic keyed hash function on an executable
program generating a signature component; and

performing an encryption algorithm on said executable program
which is a function of said signature component.

15. The method of claim 14 wherein performing a cryptographic
keyed hash function is achieved by performing a data encryption
standard cipher block chaining algorithm.

WO 97/07657 PCT/US96/11925

177

PROCESSOR MEMORY MASS
STORAGE
DEVICE
104 102 103
BUS
100
ACCESS KEYBOARD ‘ggs:—é\g
NTROLLER
Co Uf:”T CONTROLLER CONTROLLER
106 101 105
FIG. |

SUBSTITUTE SHEET (RULE 26)

WO 97/07657

277

PCT/US96/11925

Signature Generator

Computation
Unit

222

Encryption
Unit

ral
“]

Encryption
Unit

Encoding Unit
210

SUBSTITUTE SHEET (RULE 26)

FIG. 2

WO 97/07657 PCT/US96/11925

3/7
\Y
I Pr Encrypt f——1 E (Pq 69 IVJ =| Cq
‘aE—
Composite Key Kp ——»
——

Po Encrypt }——{E (P> @ C1)] =l G
“—————— b
Composite Key Kp —»

TE——

P3| Encrypt §——E (P3 69 C;)I = Cs |
R |
Composite Key Kp —»

T
\

SUBSTITUTE SHEET (RULE 26)

WO 97/07657

400

4L/7

PCT/US96/11925

Separation Unit

420
b

Decryption Unit

430

Identification

Storage Unit

Unit

440
L e

Signature

Generation Unit

450
AR,

Verification Unit

46

ree—

Rights

FIG. 4

SUBSTITUTE SHEET (RULE 26)

Assignment Unit

470
L e

WO 97/07657

577

Processor

210

PCT/US96/11925

Memory

Storage
Module

Separation
Module

522

Decryption
Module

523

ldentification
Modute

324

Signature
Generation

Module 525

Verification
Module

Rights
Assignment
Module

27

!

L S

520

BUS

500

:

Device

!

Mass Storage

Keyboard
Controller

540

:

Controfler

Display Device

850

FIG. 5

SUBSTITUTE SHEET (RULE 26)

WO 97/07657

6/7

Receive an executable program.

601

——=

Receive a composite key.

602

— =

Perform a keyed cryptographic hash
algorithm on the executable program.

603

—]

Encrypt the executable program.

604

— =

Send the encrypted executable
program and the signature component
to a computer system to be processed

and executed.

FIG. 6

SUBSTITUTE SHEET (RULE 26)

PCT/US96/11925

WO 97/07657 PCT/US96/11925

/7

Receive a block of data having
a signature component and an
executable image.

01

— |

Separate the signature
component from the executable

image.

Y74

Decrynt the executable image.

203

Locate an identification mark
in the decrypted executable
image.

104

—]

Identify a composite key
associated with the
identification mark.

105

o —

Compute a keyed cryptographic
hash value of the decrypted
executable image.

106

Does the signature No Do not execute the

component match the decrypted executable
computed value? program.
Assign rights using composite
key.
109
R |
— FIG. 7

Execute the decrypted

executable program.

110

SUBSTITUTE SHEET (RULE 26)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

