PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 :

H04B A2

(11) International Publication Number:

(43) International Publication Date:

WO 98/27662

25 June 1998 (25.06.98)

(21) International Application Number: PCT/US97/23287

(22) International Filing Date: 16 December 1997 (16.12.97)

(30) Priority Data:
08/767,576 16 December 1996 (16.12.96) US
08/844,171 18 April 1997 (18.04.97) Us
08/901,061 24 July 1997 (24.07.97) us

(71) Applicant: JUNIPER NETWORKS [US/US]J; 3260 Jay Street,
Santa Clara, CA 95051 (US).

(72) Inventors: FERGUSON, Dennis, C.; 203 Orchard Glen Court,
Mountain View, CA 94043 (US). SINDHU, Pradeep, S.;
1557 Montalto Drive, Mountain View, CA 94040 (US).
PATEL, Rajiv, N.; 3116 Whitesand Drive, San Jose, CA
95148 (US).

(74) Agents: BOROVOY, Roger, S. et al.; Fish & Richardson P.C.,
Suite 100, 2200 Sand Hill Road, Menlo Park, CA 94025
us).

(81) Designated States: CA, JP, European patent (AT, BE, CH, DE,
DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

Published
Without international search report and to be republished
upon receipt of that report.

(54) Title: HIGH SPEED VARIABLE LENGTH BEST MATCH LOOK-UP IN A SWITCHING DEVICE

IV

Fals

[}

o1/

—

MemoryY

[
%

ve

wy 7

197
(57) Abstract

[
\Y o»‘
104 T
123
109

A method and apparatus for looking up a key associated with a packet to determine a route through a routing device, the method
including, upon receipt of a key, forward traversing one or more nodes which make up a trie stored in a memory by evaluating at each
node traversed a bit in the key as indicated by a bit—to—test indicator associated with each node. A value of the bit in the key determining
the path traversed along the trie. The method includes locating an end node having a route and comparing the route to the key. If they
match, destination information associated with the end node is outputted to guide the transfer of the packet through the routing device. If
they do not match, the trie is traversed backwards to locate a best match for the key.

AL
AM
AT
AU
AZ
BA
BB
BE
BF
BG
BJ
BR
BY
CA
CF
CG
CH
CI
CM
CN
Cu
CzZ
DE
DK
EE

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus

Canada

Central African Republic
Congo
Switzerland
Cote d’Ivoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES
FI
FR
GA
GB
GE
GH
GN
GR
HU
IE
IL
IS
IT
JP
KE
KG
KP

KR
KZ
LC
LI

LK
LR

FOR THE PURPOSES OF INFORMATION ONLY

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Treland

Israel

Iceland

Ttaly

Japan

Kenya
Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS
LT
LU
LV
MC
MD
MG
MK

ML
MN
MR
MW
MX
NE
NL
NO
NZ
PL
PT
RO
RU
Sb
SE
SG

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

SI
SK
SN
SZ
TD
TG
TJ
™
TR
TT
UA
UG
us
UZ
VN
YU
YA

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

WO 98/27662 PCT/US97/23287

10

15

20

25

30

HIGH SPEED VARIABLE LENGTH BEST MATCH
LOOK-UP IN A SWITCHING DEVICE

Background

The present invention relates generally to data
routing systems, and more particularly to a method and
apparatus for routing packets through a high speed data
switch.

In packet switched communication systems, a router
(switch or packet forwarding engine) is a switching
device which receives packets on one port, and based on
destination information contained within the packet,
routes the packet to the destination (or intermediary
destination) via another port. Prior art routers perform
this routing function by evaluating header information
associated with a first data block in the packet in order
to determine the proper output port for a particular
packet. The evaluation process involves two basic steps
performed sequentially: key extraction and route look-up.

Each packet contains a header and data field. The
header field contains control information associated with
the routing of the packet, including source and
destination information. The data field contains
information which may include embedded headers for higher
level protocols. The first step of the routing process
is the identification of the key. The key contains the
information that is used to look-up the route for an
incoming packet. Upon identifying the key associated
with an incoming packet, the router next must determine

which port provides the best path to the destination.

WO 98/27662 PCT/US97/23287

10

15

20

25

- 2 -

Associated with the router is a route table. The
route table includes entries having a route and
destination associated therewith. After a key for a
packet has been determined, the router performs a look-up
in the route table for the destination associated with
that key to determine the output port for the packet.

The key may match multiple routes in the route table.
Assuming the router located a match of the key in the
route table, the entire packet is thereafter routed to
the destination via the indicated output port.

In the prior art, the process of performing the
look-up in a large route table was a very time consuming
process. In order to speed the look-up process, caching
of the most recent route matches was often performed.
However, caching is minimally effective, providing an
advantage only if the same key patterns are repeated.

In addition, the process of changing a route in an
existing route table was difficult in prior art systems,
often requiring the disruption of the look-up process.

Finally, prior art route tables typically provide
only route and destination information. The size of the
route tables were often minimized to include only minimal
information for route look-up. Typically, separate
tables were required for unicast and multicast routing.
Pejorative information relating to flow identification,
packet routing or accounting was not stored in the route
tables so as not to slow down the already under-

performing look-up engines.

WO 98/27662 PCT/US97/23287

10

15

20

25

30

- 3 -

Summary of the Invention

In general, in one aspect, the invention provides
a method of looking up a key associated with a packet to
determine a route through a routing device including upon
receipt of a key, forward traversing one or more nodes
which make up a trie stored in a memory by evaluating at
each node traversed a bit in the key as indicated by a
bit-to-test indicator associated with each node. A value
of the bit in the key determining the path traversed
along the trie. The method includes locating an end node
having a route and comparing the route to the key. If
they match, destination information associated with the
end node is outputted to guide the transfer of the packet
through the routing device. 1If they do not match, the
trie is traversed backwards to locate a best match for
the key.

Preferred embodiments include the following
features. Forward traversing includes storing on a stack
for each node having an attached route the bit-to-test
indicator and a pointer to the attached route.

Traversing the trie backwards includes comparing
the key with the route to determine a first dissimilar
bit location, popping entries off the stack to determine
when the bit-to-test indicator associated with a first
node in the backward traversal is less than or equal to
the first dissimilar bit location, and outputting
destination information associated with the first node to
guide the transfer of the packet through the routing
device.

The first node includes a route and statistical
information for each packet is calculated and stored in
memory with the route for the end node and the first

node. The statistical information is transferred along

WO 98/27662 PCT/US97/23287

10

15

20

25

30

- 4 -

with the destination information to an output port in the
routing device for transfer to a destination.

Prior to a forward traversal of the trie, a root
table is searched for a match of a predetermined number
of bits in the key where the root table is indexed by the
predetermined number of bits and each entry includes a
pointer to a start node in the trie to begin the forward
traversal.

The forward traversal of the trie includes loading
node information for each node traversed in the trie
until the end node is reached, the node information
including a bit-to-test indicator, a left child pointer,
a right child pointer and an attached route. The nodes
in the trie include left child pointers and right child
pointers with each pointer including a bit-to-test
indicator for indicating a bit to be tested in the key
associated with a child node to which the left or right
child pointer indicates. Memory accesses are minimized
in the forward traversal of the trie by requiring the
loading of a single pointer at each node until the end
node.

In another aspect, the invention provides a
method of routing a packet through a switch including
upon receipt of a packet, extracting a key from the
packet. Thereafter a trie is forward traversed by
evaluating at each node a bit in the key as indicated by
a bit-to-test indicator associated with each node. A
value of the bit in the key located at a position
indicated by the bit-to-test indicator determining the
path traversed along the trie at each node. Thereafter,
an end node having a route is located. The route is
compared to the key. If they match, destination

information associated with the end node is retrieved.

WO 98/27662 PCT/US97/23287

10

15

20

25

30

- 5 -

If they do not match, the trie is traversed backwards to
locate a best match for the key having a route and
destination information associated therewith. The packet
is routed through the switch according to the destination
information.

Preferred embodiments of the invention include the
following features. Statistical information associated
with each route is calculated and stored in memory with
an assoclated route. The statistical information is
forwarded along with the packet to a destination. The
statistical information includes transaction statistics
associated with numbers or types of packets routed to a
particular destination or billing information.

Quality of service information is assigned to each
route. The quality of service information determining a
priority of a transfer of the packet out of the routing
device.

In another aspect the invention provides a method
of inserting a route in a route table where the route
table is stored as a trie in a memory of a routing
device. The route table defining the path by which a
packet is transferred through the routing device. The
method includes traversing a trie to determine an
insertion point, creating a new node, and determining if
the insertion point for the new node is between existing
nodes in the trie. If so, a child pointer is set in the
new node to indicate a node directly beneath the
insertion point. The new node is stored in memory.
Thereafter, a child pointer in a node directly above the
insertion point is updated to indicate a starting address
in memory for the new node.

In another aspect the invention provides a router

for routing packets in a packet switched network

WO 98/27662 PCT/US97/23287

10

15

20

25

30

- 6 -

including one or more input ports for receiving packets,
a packet memory, an input switch coupled to each input
port and the memory. The input switch including a
transfer engine for transferring packets from an input
port to the packet memory and a key extraction engine for
extracting a key from each packet. The router further
including a controller coupled to the input switch. The
controller including a key look-up engine and a route
memory. The route memory for storing a route table where
the route table includes a trie. The key look-up engine
traversing the trie to determine a best match to the key.
Upon determining the best match for the key the
controller generates notification information. The
router further including one or more ocutput ports, an
output switch coupled to the controller, the packet
memory and the output port for transferring packets from
packet memory to an appropriate output port based on the
notification information received from the controller.

Preferred embodiments include the following
features. The key look-up engine forward traverses the
trie by evaluating at each node traversed a bit in the
key as indicated by a bit-to-test indicator associated
with each node. A value of the bit in the key determining
the path traversed along the trie.

The route memory is divided into a plurality of
banks, and where parent and children nodes in the trie
are stored in different banks.

Each node in the trie includes a bit-to-test
indicator, a left child pointer, a right child pointer
and an attached route. The left child pointer indicating
a child node to be traversed in the forward traversal
when a value of a bit in the key as indicated by the bit-

to-test indicator is a first value. The right child

WO 98/27662 PCT/US97/23287

10

15

20

25

30

- 7 -

pointer indicating a child node to be traversed in the
forward traversal when a value of a bit in the key
indicated by the bit-to-test indicator is a second value.
The left child pointer, right child pointer and attached
route are stored in contiguous locations in the route
memory.

In another aspect the invention provides a route
look-up engine for locating a best match for a key in a
route table. The route table including a trie stored in
a memory associated with a routing device. The trie
including one or more entries defining a path through a

routing device for transferring a packet in a packet

switched network from a source to a destination. The

route look-up engine including a stack for storing stack
entries including a bit-to-test indicator and a pointer
to a destination and a look-up engine including a buffer,
a bit comparison engine and a key comparison engine. The
buffer for storing node information that is retrieved
from the memory. The node information including a bit-
to-test indicator.

In another aspect the invention provides a trie
for storing routes in a routing device to allow for
efficient routing of packets through the routing device
including a start node including a bit-to-test indicator,
a left child pointer, a right child pointer and an
attached route. The left and right child pointers
pointing to internal nodes. The trie includes an
internal node including a bit-to-test indicator, a right
child pointer, a left child pointer and an attached
route. The left and right child pointers pointing to a
route node or another internal node. The trie including a
route node having a bit-to-test indicator and an attached

route.

WO 98/27662 PCT/US97/23287

10

15

20

25

30

- 8 -

Preferred embodiments include the following
features. The attached route includes statistical and
quality of service information.

In another aspect the invention provides a
computer program, tangibly stored on a computer-readable
medium, comprising instructions for causing a computer
to, upon receipt of a key, forward traverse a trie stored
in a memory by evaluating at each node traversed a bit in
the key as indicated by a bit-to-test indicator
associated with each node. A value of the bit in the key
determining the path traversed along the trie. The
computer caused to locate an end node in the trie having
a route and compare the route to the key. 1If they match,
destination information associated with the end node is
outputted to guide a transfer of a packet through a
routing device. If they do not match, the trie is
traversed backwards to locate a best match for the key
and destination information associated therewith.

One advantage of the invention is that routes may
be simply added to existing route tables without
requiring the disruption of the look-up process.

Another advantage of the invention is that
additional information including that needed for
multicast and flow identification (ID) may be stored in a
single route table without affecting the performance of
the look-up. The present invention provides a single
unified mechanism for performing efficient best-match
look-up for unicast, multicast and flow based routing in
the presence of extremely large route tables.

Another advantage of the present invention is that
line rate route look-ups may be performed on the whole

route table without requiring route caching.

WO 98/27662 PCT/US97/23287

10

15

20

25

30

9
Another advantage of the present invention is that

large route tables may be efficiently searched at line

rates.
Other advantages and features will be apparent

from the following description and claims.

Brief Description of the Drawings

Figure 1 is a schematic block diagram of a packet
switching system according to one embodiment of the
present invention.

Figure 2 is a schematic block diagram of a router
according to one embodiment of the present invention.

Figure 3 1s a schematic block diagram of a route
trie according to one embodiment of the present
invention.

Figure 4a is a schematic block diagram of a data
structure for an internal node with an attached route
according to one embodiment of the present invention.

Figure 4b is a schematic block diagram of a data
structure for a start node according to one embodiment of
the present invention.

Figure 4c is a schematic block diagram of a data
structure for a route node according to one embodiment of
the present invention.

Figure 4d 1s a schematic block diagram of a data
structure for a internal node according to one embodiment
of the present invention.

Figures b5a-5g collectively are a flow chart for a
populating a trie according to one embodiment of the
present invention.

Figures 6a and 6b collectively are a process for
routing data through the router according to one

embodiment of the present invention.

WO 98/27662 PCT/US97/23287

10

15

20

25

30

- 10 -

Figure 7a is a schematic block diagram of a data
structure for a internal node according to an alternative
embodiment of the present invention.

Figure 7b is a schematic block diagram of a data
structure for a internal node with an attached route
according to an alternative embodiment of the present
invention.

Figure 7c is a schematic block diagram of a data
structure for a route node according to an alternative
embodiment of the present invention.

Figures 8a and 8b collectively are a process for
routing data through the router according to an

alternative embodiment of the present invention.

Detailed Description

Referring to Figure 1, in a packet switched
network, a source 10 is connected to one or more routers
20 for transmitting packets to one or more destinations
30. Each router includes a plurality of ports that are
connected to various sources and destinations.
Accordingly, a packet from source 10 may pass through
more than one router 20 prior to arriving at its
destination.

Referring to Figure 2, each router 20 includes an
input switch 100, an output switch 102, a memory 104, a
controller 106 and a plurality of input ports 107 and
output ports 108. Associated with the controller 106 is
a memory element 109 for storing controller data. Each
switch 100 and 102 is connected to each input and output
port 107 and 108 respectively in router 20. 1In one
embodiment, router 20 includes eight input and output
ports 107 and 108, respectively. 1In this embodiment, the

number of input ports and output ports is equal, however,

WO 98/27662 PCT/US97/23287

10

15

20

25

30

- 11 -

other applications may necessitate greater numbers of one
or the other.

Associated with the controller 106 is a route
look-up engine 110. 1In one embodiment of the present
invention a plurality of route look-up engihes 110 are
included in controller 106, each receiving look-up
requests in round-robin fashion so as to speed the
routing process. In one embodiment, controller memory
109 is a four bank static random access memory (SRAM)
that requires thirty two route look-up engines 110 to
service at full bandwidth.

The present invention is scalable with respect to
performance. That 1s, the number of route look-up
engines 110 included within the controller may be
increased to provide higher performance without requiring
an increase in memory size. In one embodiment, the
numper of route look-up engines is eight times as great
as the number of memory banks in controller memory 109.
Alternatively, lesser cost and performance units may use
lesser numbers of route look-up engines 110.

In operation, packets are received at an input
port 107, transferred to input switch 100 and stored
temporarily in memory 104. When the packet is received
by switch 100, a key extraction engine reads the key from
the first data block in the packet and transfers the key
to controller 106. The input switch also includes a
transfer engine for transferring packets received from an
input port 107 to memory 104.

The key includes at least destination information
and may also include source information, a flow
identifier and physical source information (input port
ID). The key is located in the header field associated
with the first block of data in a packet. The header may

WO 98/27662 PCT/US97/23287

10

15

20

25

30

- 12 -

contain other information (ISO layer 2 and layer 3
headers), such information is passed to memory for
storage. The process of reading key information from a
packet 1is known in the art. The present invention
accommodates keys of various types. For example, keys
for various protocols may be designated (IPV4, IPV6,
etc.). The length of the key is user definable. 1In
general, the key is derived from the header, but portions
may also be derived from the payload (data field
associated with the packet).

When the controller receives the key information,
1t must determine a key type. In one embodiment of the
present invention, a plurality of key types are defined.
The user may define up to 4 types of keys, each having
variable length. In one embodiment, the key type is
defined by a two bit field in the header. A look-up of
the two bit field is used to determine the appropriate
trie to search.

Thereafter, route look-up engine 110 performs a
trie based search for the best variable length match of
the key, with each key type defining a particular trie
for searching. A trie 1s a data structure that is used
to locate the best (longest) matching route for a given
key. The process of the trie based search will be
described in greater detail below in reference to Figure
6. At the completion of the trie search, the route look-
up engine returns a result which includes the output port
associated with the destination. The result and other
information (source ID, flow ID, packet length, quality
of service and statistical information) for routing the
packet through the router combine to form a notification.
The notification is transferred from the controller 106

to the output switch 102. Upon receiving the

WO 98/27662 PCT/US97/23287

10

15

20

25

30

- 13 -

notification, the output switch 102 initiates the
transfer of the packet from memory 104 to the respective
output port 108 associated with the result.

Route look-up engine 110 performs the best match
variable length look-up based on a modified radix trie
search routine. Specifically, in one embodiment of the
invention, a route table is stored in memory 109 in the
form of one or more tries. Each trie is comprised of one
or more nodes including a start node 300, and may include
internal nodes (without an attached route) 302, internal
nodes with an attached route 304 and route nodes 306 as
is shown in Figure 3. In one embodiment, the starting
node includes an attached route that is guaranteed to
match any key having a type associated with this
particular trie. 1In this way, the attached route
provides a default path in the event no other match is
located in the trie for a particular key.

Nodes are the decision points in the look-up
process. A key associated with a packet has various ones
of its bits tested at nodes along the trie, and depending
on the value of the indicated bit in the key being
tested, will result in the traversal down a particular
branch of the trie. The bits of a key are numbered left
to right. Associated with each node is a bit-to-test
indicator. The value of the bit-to-test indicator in a
trie branch increases until a leaf (route node) is
reached. Internal nodes may be of two types, those with
and those without attached rcutes. An internal node with
an attached route 304, may be a match for a key.

Internal nodes without attached routes are never a match
for a key. Route nodes 306 are nodes which have no
children and, accordingly, only contain route

information. The traversal along the trie will be

WO 98/27662 PCT/US97/23287

10

15

20

25

30

- 14 -

described in greater detail below in reference to Figure
6.

The data structure for each internal node in a
trie according to one embodiment of the present invention
is shown in Figure 4a. Associated with each node is a
bit-to-test indicator field 400, a left child pointer
402, a right child pointer 404 and an attached route 406.
The bit-to-test indicator field indicates the bit in the
key which 1s to be tested at this node in order to
determine which branch (left child or right child) in the
trie should be traversed in the look-up process. The
left child pointer 402 points to a left child in the trie
structure while the right child pointer 404 points to a
right child in the trie structure. A left child is the
next node in the trie to be traversed when the bit tested
for the present node has a value of 0. Conversely the
right child is the next node in the trie to traverse when
the bit tested associated with the present node has a
value of 1.

The attached route 406 indicates a result which is
assocliated with this particular node. In one embodiment,
the attached route is two words and includes both output
port and prefix information. Alternatively, the attached
route may also include other data such as quality of
service and statistical information. In one embodiment,
the attached route includes fields associated with the
route (destination) which are updated each time a packet
is processed for the given route. The information is
stored along with the attached route and may be
downloaded in response to a query from a user or the
destination. Alternatively, a portion or all of the
information may be downloaded with each packet

transferred to a destination as part of the notification.

WO 98/27662 PCT/US97/23287

10

15

20

25

30

15

Often it is desirable to attach information to a route
that indicates statistical information associated with a
given route (destination). Examples of statistical
information that may be transferred to a destination
include number of packets (in a given time period),
frequency of packets, average size of packets, and time
since the last packet. Other statistical information
including accounting information may also be stored with
the attached route and may be incorporated into the
notification. For example, billing information for a
particular transfer or cumulative billing information may
also be incorporated into the notification. In one
embodiment of the present invention, controller 106
(Figure 2) includes statistical modules for calculating
statistical information related to each packet
transferred through the router. As each packet is
processed by the controller, statistical modules update
the statistical information stored with the destination
route determined in the look-up process.

In addition, quality of service information may be
stored with an attached route to speed the routing of
certain packets through the switch structure. A quality
of service value may be set for each route to allow for
the prioritization of packets transferred out a
particular output port.

In one embodiment, the data structure of an
attached route is comprised of a prefix length, a prefix
(the portion that is left justified and matched against
the key), a result field, a statistics field and a
quality of service field. Prefix length indicates the
length of the prefix in bits. The prefix is a pattern
(portion of a key) that is compared against a key to

determine a best match. The result field stores the

WO 98/27662 PCT/US97/23287

10

15

20

25

30

16

output port (destination port) associated with the
particular route (prefix). 1In the event that the prefix
assocliated with a particular node is itself the best
match for a given key, then the attached route indicates
the output port to which the packet is to be routed. 1In
one embodiment of the present invention, the attached
route is a pointer which points to the location in memory
where the attached route is stored. Alternatively, the
attached route may be stored in consecutive memory
locations with the rest of the node information as
described above.

The data structure for the start node according to
one embodiment of the present invention is shown in
Figure 4b. Associated with the start node are a left
child pointer 402, a right child pointer 404 and an
attached route 406. In one embodiment of the present
invention, no bit-to-test indicator field is stored in
memory for the start node. This is because, typically
the bit-to-test indicator for the start node is set to
bit zero. Alternatively, another bit in the key may be
the first bit-to-test. If another bit is the first bit-
to-test, then the associated bit identifier is stored in
a bit-to-test indicator field for the start node.

The data structure for each route node according
to one embodiment of the present invention is shown in
Figure 4c. Each route node has only an attached route
406.

Internal nodes without routes attached have a data
structure as shown in Figure 4d. Specifically, no space
is set aside for an attached route. Otherwise, the data
structure is identical to that shown in Figure 4a.

In a typical router implementation, a route table

is not fully populated. That is, not all of the possible

WO 98/27662 PCT/US97/23287

10

15

20

25

30

- 17 -

key values are mapped to a particular output port.
Accordingly, some bits in the key are “don’t care”
values, and are not required to be tested during the
route look-up process, because they do not affect the
determination of the output port. In some prior art
systems, the look-up of keys in the route table required
the comparison of each bit in the key with entries in the
route table. Such systems were inefficient. With a trie
structure, not every bit in a key needs to be tested in
order to determine the best match associated with a
particular packet. By testing only the smallest number
of bits that allow the discrimination between a key and
existing routes, the speed of determining a match is
improved.

Accordingly, for each key type, a route table is
created in trie format. Referring now to Figure 5, in a
method of creating a trie, a start node is created for
the trie(500). The start node is assigned an attached
route (502). The left and right child pointers are
assigned a null value (a binary 511 in one embodiment of
the present invention) indicating that no left or right
child exists (504). Finally, the four word start node
including left child pointer (1), right child pointer (1)
and attached route (2) is stored in memory 108 (506).

A check is made to determine if any other routes
are needed to be placed in the trie (508). If not then,
the process ends (510). Else, the next route is loaded
(512). The first route in the trie is added as a route
node (514). An associated route is assigned based on the
destination for the particular prefix (516). The
attached route and prefix information is stored in memory
(518). Thereafter, the appropriate pointer in the start
node (left child pointer or right child pointer) is

WO 98/27662 PCT/US97/23287

10

15

20

25

30

- 18 -

updated based on the value of the zero bit of the first
prefix (520). If the value of the zero bit in the first
prefix (route) loaded is a “0", then the left child
pointer is updated to reflect the starting address in
memory where the route node for this prefix is stored.
Alternatively, if the value of the zero bit in the first
prefix loaded is a “1", then the right child pointer is
updated to reflect the starting address in memory where
the route node for this prefix is stored.

A check is made to determine if any other prefixes
are needed to be placed in the trie (522). If so, the
next prefix is loaded (523). The next prefix will be
placed in the trie as either a route node, an internal
node, an internal node with an attached route, or as an
attached route to an existing internal node. A prefix
search is performed in the existing trie (524). The
search entails traversing the trie by testing the new
prefix based on the bit indicated by the bit-to-test
indicator for each node. At a given node, the bit in the
new prefix designated by the bit-to-test indicator for
the node is checked in order to determine the next node
in the search. The prefix search continues until an end
route 1s determined (526). An end route will be found
either at a route node or at an internal node having an
attached route. An end route is either the route
associated with a route node or the first route located
on the trie after the bit-to-test indicator associated
with the current node on the trie exceeds the number of
bits in the prefix being searched. The first route
located may be an attached route to an internal node, or
a route node. The search must terminate at a node which
has an associated route in order to determine where (and

how) the new prefix will be inserted into the trie.

WO 98/27662 PCT/US97/23287

10

15

20

25

30

- 19 -

That 1s, at the start node, the value of the zero
bit is checked in the new prefix to determine if the
search should proceed down a left child or the right
child. At each subsequent node in the trie, the bit
indicated by the bit-to-test indicator associated with
the node is checked to determine a next node in the
traversal. Eventually, the search will come to an end as
described above. In our initial two node trie (start
node and a route node), the search is diminimus, and may
end at either the start node (if the new prefix being
searched has a value in the zero bit different from the
prefix associated with the route node) or at the route
node.

At the end of the search, a comparison is made
between the prefix being searched and the end route to
determine the first dissimilar bit (BIT,,.)in the new
prefix (528). 1In one embodiment of the present
invention, an EXCLUSIVE OR operation on the two prefixes
is performed to reveal the first dissimilar bit. If a
dissimilar bit is found, then branch A in the process is
performed (529). 1If no dissimilar bits are found, then
all of the bits of the new prefix match the end route and
branch B in the process is performed.

In branch A, a dissimilar bit has been determined,
and the new prefix will be inserted into the trie as
route node pointed to by a new internal node which is to
be inserted into the existing trie. Specifically, a new
route node is created and stored in memory indicating the
destination associated with the new prefix (530).
Thereafter, a new internal node is created (532). The
bit-to-test indicator for the new internal node is
assigned to be the first dissimilar bit (BIT,;,)

discovered above (534). One of the child pointers

WO 98/27662 PCT/US97/23287

10

15

20

25

30

- 20 -

(either the left child or the right child) of the new
internal node is assigned the address of the new route
node depending on the value of the bit-to-test indicator
in the new prefix (536). Starting at the node associated
with the end route identified above, the trie is
traversed in reverse to locate the first node (the parent
node} having a bit-to-test indicator which is less than
the first dissimilar bit (BIT.) (538). The node
immediately beneath the parent node in the original trie
is referred to as the grand-child node. The new internal
node is inserted into the trie between the parent and the
grand-child nodes by assigning the remaining child
pointer in the new internal node the starting address
associated with the grand-child node (540). Finally,
the address of the pointer in the parent node which
previously pointed to the grand-child node is updated to
indicate the starting address in memory of the new
internal node (542). Branch A is complete.

In branch B, no dissimilar bits were determined,
necessitating a comparison of the length of the new
prefix with the length of the end route (545). If the
length of the new prefix is longer than the length of end
route then branch Bl is traversed (546). If the length
of the new prefix is shorter than the length of end
route, then branch B2 will be traversed (547). Finally,
if the length of the new prefix is the same as the length
of end route, branch B3 will be traversed.

In branch Bl (the new prefix is longer than the
length of end route), the new prefix will be inserted
into the trie below the node associated with the end
route as a new route node. Specifically, a new route
node is created and stored in memory indicating the

destination associated with the new prefix (550).

WO 98/27662 PCT/US97/23287

10

15

20

25

30

- 21 -

Thereafter, a determination is made of the type of node
associated with the end route (552). If the node
associated with the end route is an internal node with an
associated route, then the appropriate child pointer
(based on the value of the bit in the new prefix of the
bit-to-test indicator associated with the internal node)
is assigned the starting address of the new route node
(554). Else, a new internal node is created (556). The
bit-to-test indicator for the new internal node is
assigned to be the last bit in the end route (558). One
of the child pointers (either the left child or the right
child) of the new internal node 1is assigned the address
of the new route node depending on the value of the bit
in the new prefix of the bit-to-test indicator associated
with the new internal node (560). Finally, the address
of the pointer in the parent node (the node immediately
preceding the route node associated with the end route
and whose pointer previously indicated the starting
address of the route node associated with the end route)
is updated to indicate the starting address in memory of
the new internal node (562). Branch Bl is complete.

In branch B2 the new prefix is shorter than the
end route. The new prefix is inserted into the trie
above the node associated with the end route, as either a
new route or as an internal node with a route attached.
Specifically, starting at the node associated with the
end route, the trie is traversed backwards until a node
(the parent node) is found having a bit~to-test indicator
less than or equal to the index (length) of the new
prefix (570). The node immediately beneath the parent
node in the original trie is referred to as the grand-

child node.

WO 98/27662 PCT/US97/23287

10

15

20

25

30

- 22 -

If the bit-to-test indicator is less than the
index of the new prefix (571), then a new internal node
is inserted below the parent node (572). The bit-to-test
indicator for the new internal node is assigned the value
of the index (length) of the new prefix (574).
Accordingly, the new internal node tests the first bit
after the end of the new prefix. The new internal node
is inserted into the trie between the parent and the
grand-child nodes by assigning one of the child pointers
(as indicated by the value of the bit-to-test indicator
of the new internal node) the starting address associated
with the grand-child node (576). The other child
pointer (either the left child or the right child) of the
new internal node is assigned a null value (binary 511 in
one embodiment) (578). Finally, the address of the
pointer in the parent node which previously pointed to
the grand-child node is updated to indicate the starting
address in memory of the new internal node (580).

If the bit-to-test indicator of the node
discovered in the backwards search is equal to the index
of the new prefix, then the new prefix is inserted as an
attached route for the node (590). Specifically, the
attached route associated with the node determined in the
search is updated to reflect the destination of the new
prefix. Branch B2 is complete.

In branch B3 the new prefix is the same length as
the end route. The new prefix is inserted into the trie
as an update to the end route (592). Specifically, the
route associated with the end node is updated to reflect
the destination of the new prefix.

At the completion of branches A and B (and the
various sub-branches of branch B including B1, B2 and

B3), a check is performed to determine if any more

WO 98/27662 PCT/US97/23287

10

15

20

25

30

- 23 -

prefixes need to be inserted into the trie (598). If so,
then the process continues at step (523). Else, the
process ends (510).

In one embodiment of the present invention, the
process of constructing a trie is performed for each type
of key based on an initial set of prefixes and associated
destination information. 1In addition, each trie may be
updated dynamically by a routing protocol associated with
the controller 106 (Figure 2). The routing protocol
services the tries, and may insert new prefixes as
necessary. The process for inserting a new prefix is
identical to the process described above for inserting a
next prefix after the first prefix in the trie has been
installed as a route node (steps 522-592).

The updating process advantageously does not
require the shutting down of the route look-up process.
As was described above, the insertion of a route is
accomplished off line, and only the final step in the
process affects the trie. The final step in any
insertion process requires writing in memory the address
for a new node to the new node’s parent. Accordingly,
searches in a trie may be performed the entire time that
an insertion process is operated to insert new entries or
make changes to existing entries. The trie is never
invalid, thus never requiring the shutting down of the
look-up process for trie maintenance.

Having created a route table including one or more
tries which are stored in memory as described above, the
router is ready to process packets. A key is copied from
an inbound packet by input switch 100 (Figure 2) and
transferred to route look-up engine 110 (Figure 2) in the
controller 106 (Figure 2). Referring to Figures 2 and 6,

in a best variable length match look-up method, a key

WO 98/27662 PCT/US97/23287

10

15

20

25

30

- 24 -

type 1s determined for a new key to identify the
particular trie that must be traversed in the look-up
process (600). The look-up process includes a forward
and backward traversal of the trie to determine the best
match associated with a given key. The forward search
begins at the start node. Specifically, the four word
data block associated with the first node in the
appropriate trie type is loaded into a buffer in the
route look-up engine 110 from memory 108 (602). A bit
test engine in route look-up engine 110 determines the
value of the bit in the new key indicated by the bit-to-
test indicator (as defined by the bit-to-test indicator
field retrieved in step (602)) (604). Thereafter, the
route look-up engine determines if the pointer indicated
by the bit value (either the left child pointer or right
child pointer) indicates a child node (606). If no child
is indicated, then route look-up engine 110 performs a
key comparison as is shown in branch C.

If the pointer indicates a child, then a check is
made to determine if the start node has an attached route
(608). If an attached route is associated with the start
node, the route look-up engine stores the starting
address in memory for the attached route (or the starting
address associated with the contiguous memory locations
associated with the start node) and the bit-to-test
indicator associated therewith on a forward search stack
in the route look-up engine (610). If no attached route
exists, the process continues at branch G. The route
look-up engine thereafter loads the data words associated
with the next node indicated by the respective child
pointer (612). For example, where the start node bit-to-
test indicator is set to the “zero’th” bit, and if the

zero’th bit in the new key location has a value of “0",

WO 98/27662 PCT/US97/23287

10

15

20

25

30

- 25 ~

then the route look-up engine will load the node
indicated by the left child pointer. Alternatively, if
the zero’th bit has a value of “1", the route look-up
engine will load the node indicated by the right child
pointer. 1In one embodiment of the present invention, the
loading process of a node entails loading all of the data
blocks associated with a given node (5 for internal nodes
or 2 for route nodes). Alternatively, a lesser number of
data words may be loaded as will be described below.
Thereafter the route look-up engine determines if
the new node is a route node (614). If so, then a route
has been determined and the process continues at branch
C. If not, then the route look-up engine (bit comparison
engine) determines the bit value in the new key of the
bit indicated by the bit-to-test indicator associated
with the new node (node loaded in step 612), where the
bit-to-test is defined by the bit-to-test indicator field
retrieved as part of the load in step 612 (616).
Thereafter, the route look-up engine determines if the
pointer indicated by the bit value (either the left child
pointer or right child pointer) indicates a child node
(618). If no child is indicated then the route look-up
engine performs a key comparison as is shown in branch C.
Alternatively, the route look-up engine checks to
determine if the new node has an attached route (620).
If so, then the process continues at branch F resulting
in the storage of the address associated with the
attached route onto the stack (or the pointer indicating
the starting address in memory for the attached route)
prior to the loading of a next route. Alternatively, the
process continues at branch G and the next node is loaded

for processing. The route look up engine repeats this

WO 98/27662 PCT/US97/23287

10

15

20

25

30

- 26 -

process for each node (steps 610-620) until an end node
has been located.

An end node may be a route node or an internal
node having an attached route. An internal node with an
attached route will only be an end node if the value of
the bit indicated by the bit-to-test indicator in the key
being tested indicates a child pointer associated with
the internal node that points nowhere (null). When an
end node is reached, the route look-up engine performs
branch C. Specifically, if the pointer indicated by a
bit-to-test value in the new key points to a route, then
the forward search portion of the process ends when the
route 1is retrieved. If however, the pointer indicates a
null, the search ends with the internal node.

Branch C can be characterized as follows: the
forward search has terminated at an internal node (the
end node) having a pointer to a left child or a pointer
to a right child which has no data, and, this “no-data”
pointer is indicated by the bit value in the new key of
the bit-to-test bit of the end node; or, the search has
terminated at a route node. The backward portion of the
search begins by comparing the route associated with the
current node (either an attached route for an internal
node or a route associliated with a route node) and the new
key.

At this point, the best match for the new key will
be at the end node or is guaranteed to be somewhere back-
up stream (along the path from the end node back to the
start node). Accordingly, in order to determine the best
match, a key comparison engine in route look~up engine
110 compares the key being searched and the end route
(the route associated with the end node) to determine the

first dissimilar bit (BIT,;,)in the new key (630). In one

WO 98/27662 PCT/US97/23287

10

15

20

25

30

- 27 =

empbodiment of the present invention, an EXCLUSIVE OR
operation on the new key and prefix (route) is performed
to reveal the first dissimilar bit. If a dissimilar bit
is found, then branch D in the process is performed
(632). 1If no dissimilar bits are found, then all of the
bits of the new key match the end route and branch E in
the process is performed.

In branch D, a dissimilar bit has been determined,
and the end route is not a match for the new key.
Starting at the end node, the trie is traversed in
reverse to locate the first node (the best match node)
having a bit-to-test indicator which is less than or
equal to the bit number of the first dissimilar bit
(BITy:;) (640). 1In one embodiment of the present
invention, this is performed by popping off entries from
the forward search stack in the route look-up engine
(each entry associated with nodes that have attached
routes and have been traversed as part of the forward
search), until an entry is located which has a bit-to-
test indicator value that is less than or equal to the
bit number of the first dissimilar bit. When the best
match node has been located, then the process continues
at branch E.

In branch E, a best match route has been
determined either by discovering no dissimilar bits when
comparing the new key to the end route, or by traversing
the trie and locating the route associated with the best
match node. The route look-up engine loads the best
match route from memory (650). 1In one embodiment, if the
end route associated with the end node matches the new
key, no load is required, such load having already been
accomplished as part of the loading of the end node in

the forward search of the trie. Alternatively, if the

WO 98/27662 PCT/US97/23287

10

15

20

25

30

- 28 -

trie i1s reguired to be traversed backwards, the route
information is loaded based on the pointer stored on the
stack. The route look-up engine transfers the best match
route information to the output switch 102 (Figure

2) (652). Thereafter the process ends (654) .

One of the advantages of the present invention is
that the trie structure guarantees a best match for each
key transmitted through the switch. 2As is described
above, each route stored in the trie has a prefix
associated therewith. A prefix is a left justified
subset of a key. Accordingly, a key may match many
prefixes in a trie. The best match is the matching
prefix having the longest length. The system of the
present invention provides for a best (longest) match for
a key.

In addition, only a single key comparison is
required in the entire matching process. The key is
compared to a single prefix (at the end node) and
thereafter the best match may be determined without
performing any additional comparisons of the key to

prefixes stored in the route look-up table.

ALTERNATIVE EMBODIMENTS

In one embodiment of the invention, numerous
techniques are employed to speed the look~up process and
minimize the number of memory accesses. Specifically,
the following techniques are employed: minimized data
word loads, multiple memory banks, spread data structures

across memory banks and root table.

Minimized Data Word Loads

As was described above in conjunction with the

forward traversal of a trie, a load operation is

WO 98/27662 PCT/US97/23287

10

15

20

25

30

- 29 -

performed of the data words associated with each node in
the forward search. This requires the loading of up to
five words per node (bit-to-test indicator, left child
pointer, right child pointer, and attached route (2
words)). Alternatively, lesser number of words may be
loaded.

Specifically, in one embodiment of the invention,
only the bit-to-test indicator and child pointers are
loaded for a given node. 1In the event that the node is
determined to be the end node in a forward search, then
the attached route information can be loaded as required.

In another embodiment of the present invention,
only the bit-to-test indicator is loaded initially for a
given node. After the bit-to-test indicator is loaded
for a given node, the bit value of the new key is used to
determine which child should be loaded for this node, if
any. For example, if the bit value of the bit in the new
key indicated by the bit-to-test indicator is a “0", the
left child only is loaded. 1If the bit value in the bit
in the new key is a “1", then only the right child is
loaded.

In another embodiment of the present invention, an
alternative data structure associated with the nodes is
used to minimize memory accesses. Referring to Figure
7a, a data structure for an internal node without an
attached route is shown. Each internal node without an
attached route includes a left child pointer 700, and a
right child pointer 702. The left and right child
pointers include two status bits 704 and 706 (little “r”
and big “R”, respectively), a pointer field 708 which
points to the starting address of an associated child,
and a bit-to-test indicator field 710 which indicates the

bit-to-test in the child‘node indicated by the pointer

WO 98/27662 PCT/US97/23287

10

15

20

25

30

- 30 -

field 708. The first status bit (little “r”) 704
indicates whether the pointer stored in the pointer field
708 points to a route node or an internal node. The
second status bit (big “R”) 706 indicates whether an
attached route exists for this node.

The data structure for an internal node with an
attached route is shown in Figure 7b. Each internal node
with an attached route includes a left child pointer 700,
a right child pointer 702 and an attached route 720. The
left and right child pointers include two status bits 704
and 706 (little “r” and big “R”, respectively), a pointer
field 708 which points to the starting address of an
associated child, and a bit-to-test indicator field 710
which indicates the bit-to-test in the child node
indicated by the pointer field 708. The attached route
720 contains an index 722, a prefix 724, a result 726
(destination port), a statistics field 728 and quality of
service field 730, the functions of which have been
described above.

The data structure for a route node is shown in
Figure 7c. Each route node includes an attached route
720.

With this data structure, a single word per node
is required to be loaded in order to traverse the trie.
Only minor variations in the creation of the trie and in
the traversal of the trie are required, yet the memory
accesses required have been reduced substantially.

During the look-up operation, the benefits of the
data structure proposed above are readily apparent.
Referring to Figure 8, the process of performing a best
match variable length look-up of a route begins with
determining the type of key for a new key received at the

controller (800). The starting address of an appropriate

WO 98/27662 PCT/US97/23287

10

15

20

25

30

- 31 -

start node is determined based on the trie type (802).
Thereafter, a check is made of the value of the bit in
the new key indicated by the bit-to-test indicator
associated with the start node (typically bit zero) (804).
If the value of bit in the new key is a “0", then the
route look-up engine retrieves the left child pointer
associated with the start node which will be located at
the starting address determined above in step 802 (806).
If the value of bit in the new key is a “1", the route
look-up engine will increment by one the starting address
received in step 802 (807) and retrieve the right child
pointer associated with the start node (808) .

A check is made to determine if the pointer
retrieved points to a route (node) or to another internal
node (810). If the pointer points to a route node (as
indicated by the status of the little “r” status bit 704)
then the route indicated by the pointer (the first left
or right child pointer) is retrieved (812). If the
pointer points to an internal node, then the route look-
up engine will store the pointer retrieved on a stack if
the “R” status bit is set (814). Specifically, the route
look-up engine stores the bit-to-test indicator
associated with the given node and the pointer retrieved
in step 812. Thereafter, the route look-up engine (bit
comparison engine) will test the bit of the new key
indicated by the bit-to-test indicator field in the
pointer retrieved in steps 806 or 808.

If the bit indicated by the bit-to-test indicator
has a value of “0" in the new key, then the route look-up
engine will retrieve the left child associated with the
address indicated by the pointer (816). Specifically,

the route look-up engine will retrieve the data word

WO 98/27662 PCT/US97/23287

10

15

20

25

30

- 32 -

which is indicated by the address indicated by the left
or right child pointer.

If the bit (in step 812) has a value of “1" in the
new key, then the route look-up engine will retrieve the
right child associated with the address indicated by the
pointer (818). Specifically, the route look-up engine
will retrieve the data word which is indicated by the
address indicated by the child pointer incremented by
one.

This process repeats (steps 814-822) until an end
route is located. Specifically, if the pointer indicated
by a bit-to-test value in the new key points to a route
(820), then the forward search portion of the process
ends when the route is retrieved (812). If however, the
pointer retrieved indicates a null value (822), a check
is made to determine if the node has an attached route
(824). If so, then the forward search portion of the
process ends and the associated internal route is
retrieved in step 812. 1If no attached route exists, a
check is made to determine if the stack 1is empty (825).
If so, an error condition occurs and the route look-up
terminates (826). If the stack is not empty, then the
last entry on the stack is retrieved (828) and the
process continues at step 830. The route retrieved from
the route node, the internal node with attached route, or
the route indicated by the stack entry will become the
end route for the purposes of performing the backward
portion of the look-up process.

In order to determine the best match, the route
look-up engine (key comparison engine) compares the key
being searched and the end route to determine the first
dissimilar bit (BIT,,)in the new key (830). TIf a
dissimilar bit is found (832), then starting at the end

WO 98/27662 PCT/US97/23287

10

15

20

25

30

- 33 ~

node, the trie is traversed in reverse to locate the
first node (the best match node) having a bit-to-test
indicator stored on the stack which is less than or equal
to the bit number of the first dissimilar bit (BIT,,,)
(840). In one embodiment of the present invention, this
is performed by popping off entries from the forward
search stack in the route look-up engine, each entry
associated with nodes that have been traversed as part of
the forward search, until a entry is located which has a
bit-to-test indicator value that is less than or equal to
the bit number of the first dissimilar bit.

If no dissimilar bits are found or if the best
match node has been determined in step 840, then the
route look-up engine loads the best match route, either
the route associated with the best match node or the end
route from memory (850). If the best match route is the
end route, no memory load is required, such load having
been accomplished as part of the comparison above.
Alternatively, the route information is loaded by
incrementing the memory address retrieved from the stack
node by two (1f the starting address for the node is
stored on the stack as opposed to the address for the
attached route), and lcading the appropriate route
information. Thereafter, the route look-up engine
transfers the best match route to the output switch 102
(852) .

Multiple Memorv Banks

Referring again to Figure 2, in one embodiment of
the invention, the memory 108 attached to controller 106
is a bank of four static RAMs (SRAMs). 1In the
construction of the route table, parents and children are

distributed among the SRAM banks such that no parent and

WO 98/27662 PCT/US97/23287

10

15

20

25

30

34

child are stored in the same bank of static RAM.
Accordingly, when a route look-up engine accesses a
particular memory location in memory 108, it is
guaranteed to not to have to access the same memory bank
in order to traverse to the next node in a given path.
The use of multiple memory banks is useful to increase
the number of simultaneous read operations which can be
performed in the look-up process. Distribution of parent
and children nodes across the memory banks helps to avoid

bank conflicts.

Spread Data Structures across Memory Banks

Another memory saving technique included in one
embodiment of the present invention is the attachment of
routes sequentially in memory for a given node. As was
described above in reference to the node data structures
as described in reference to Figures 4 and 7, if an
internal node has an attached route, then the route is
placed by design immediately following the associated
right child pointer in memory. Accordingly, when the
best match is located for a given node, the destination
information associated therewith is known precisely, and
may be retrieved directly from memory (as opposed to
indirect retrieval if a pointer system is used). This
organization technique saves on memory accesses.

For example, upon a match condition, the route
look-up engine must load the result which includes the
output port associated with the particular switch. With
the memory structure described above, the result may be
loaded directly by incrementing the pointer information
popped off the stack during the backward traversal of the
trie (by adding 2 or 3 address locations to the stack

pointers depending on the type of node).

WO 98/27662 PCT/US97/23287

10

15

20

Root Table

In one embodiment of the present invention, a root
table is used as a preliminary screen for matching the
most significant bits in a key. A root table may be used
to perform a quick match of the most significant bits in
a key so as to avoid having to perform many memory
accesses in the trie search. The root table is stored in
controller 106 (Figure 2). Each entry in the route table
includes an address to the start node in memory at which
the look-up is to begin and a stack entry. The stack
entry includes a bit-to-test indicator and a pointer to
an attached route. The table is indexed according to the
first N bits of the key. 1In one embodiment of the
present invention, the first eight bits of the key are
indexed.

The present invention has been described in terms
of specific embodiments, which are illustrative of the
invention and not to be construed as limiting. Other

embodiments are within the scope of the following claims.

What is claimed is:

WO 98/27662 PCT/US97/23287

- 36 -

1. A method of looking up a key associated with
a packet to determine a route through a routing device
comprising:
upon receipt of a key, forward traversing one or
5> more nodes which make up a trie stored in a memory by
evaluating at each node traversed a bit in the key as
indicated by a bit-to-test indicator associated with each
node, a value of the bit in the key determining the path
traversed along the trie;
10 locating an end node in the trie, the end node
having a route;
comparing the route to the key;
if they match, outputting destination information
associated with the end node to guide the transfer of the
15 packet through the routing device; and
if they do not match, traversing the trie

backwards to locate a best match for the key.

2. The method of claim 1 wherein the step of
20 forward traversing includes storing on a stack for each
node having an attached route the bit-to-test indicator

and a pointer to the attached route.

3. The method of claim 2 wherein the step of
traversing the trie backwards includes:
25 comparing the key with the route to determine
a first dissimilar bit location;
popping entries off the stack to determine
when the bit-to-test indicator associated with a first
node in the backward traversal is less than or equal to

30 the first dissimilar bit location; and

WO 98/27662 PCT/US97/23287

10

15

20

25

- 37 -

outputting destination information associated
with the first node to guide the transfer of the packet

through the routing device.

4. The method of claim 3 wherein the first node
includes a route, the method further including
calculating statistical information for each packet and
storing in memory the statistical information with the

route for the end node and the first node.

5. The method of claim 4 further including
transferring the statistical information along with the
destination information to an output port in the routing

device for transfer to a destination.

6. The method of claim 1 further including the
step of prior to a forward traversal of the trie,
searching a root table for a match of a predetermined
number of bits in the key, the root table indexed by the
predetermined number of bits where each entry includes a
pointer to a start node in the trie to begin the forward

traversal.

7. The method of claim 1 wherein the forward
traversal of the trie includes loading node information
for each node traversed in the trie until the end node is
reached, the node information including a bit-to-test
indicator, a left child pointer, a right child pointer

and an attached route.

8. The method of claim 1 where the nodes in the
trie include left child pointers, and right child

pointers, each pointer including a bit-to-test indicator

WO 98/27662 PCT/US97/23287

10

15

20

25

30

- 38 -

for indicating a bit to be tested in the key associated
with a child node to which the left or right child
pointer indicates, whereby memory accesses are minimized
in the forward traversal of the trie by requiring loading

of a single pointer at each node until the end node.

9. A method of routing a packet through a switch
comprising:

upon receipt of a packet, extracting a key from
the packet;

forward traversing a trie by evaluating at each
node a bit in the key as indicated by a bit-to-test
indicator associated with each node, a value of the bit
in the key located at a position indicated by the bit-to-
test indicator determining the path traversed along the
trie at each node;

locating an end node in the trie, the end node
having a route;

comparing the route to the key;

if they match, retrieving destination information
associated with the end node;

if they do not match, traversing the trie
backwards to locate a best match for the key having a
route and destination information associated therewith;
and

routing the packet through the switch according to

the destination information.

10. The method of claim 9 further including
calculating statistical information associated with each
route and storing the statistical information in memory

with an associated route.

WO 98/27662 PCT/US97/23287

10

15

20

25

30

- 39 -

11. The method of claim 10 wherein the
statistical information is forwarded along with the

packet to a destination.

12. The method of claim 10 wherein the
statistical information includes transaction statistics
associated with numbers or types of packets routed to a

particular destination.

13. The method of claim 10 wherein the

statistical information includes billing information.

1l4. The method of claim 9 further including
assigning quality of service information to each route,
the quality of service information determining a priority

of a transfer of the packet out of the routing device.

15. A method of inserting a route in a route
table where the route table is stored as a trie in a
memory of a routing device, the route table defining the
path by which a packet is transferred through the routing
device, the method comprising:

traversing the trie to determine an insertion
point;

creating a new node;

determining if the insertion point for the new
node 1s between existing nodes in the trie;

if so, setting a child pointer in the new node to
indicate a node directly beneath the insertion point;

storing the new node in memory; and

updating a child pointer in a node directly above
the insertion point to indicate a starting address in

memory for the new node.

WO 98/27662 PCT/US97/23287

10

15

20

25

30

- 40 -

16. A router for routing packets in a packet
switched network comprising:

one or more input ports for receiving packets;

a packet memory;

an input switch coupled to each input port and the
memory, the input switch including a transfer engine for
transferring packets from an input port to the packet
memory and a key extraction engine for extracting a key
from each packet;

a controller coupled to the input switch, the
controller including a key look-up engine and a route
memory, the route memory for storing a route table where
the route table includes a trie, the key look-up engine
traversing the trie to determine a best match to the key,
upon determining the best match for the key generating
notification information;

one or more output ports;

an output switch coupled to the controller, the
packet memory and the output port for transferring
packets from packet memory to an appropriate output port
based on the notification information received from the

controller.

17. The apparatus of claim 16 wherein the key
look-up engine forward traverses the trie by evaluating
at each node traversed a bit in the key as indicated by a
bit-to-test indicator associated with each node, a value
of the bit in the key determining the path traversed
along the trie;

the key look-up engine locating an end node having
a route and comparing the route to the key;

if they match, the key look-up engine outputs

destination information associated with the end node to

WO 98/27662 PCT/US97/23287

10

15

20

25

30

- 41 -

guide transfer of a packet through the routing device;
and

if they do not match, the key look-up engine
traverses the trie backwards to locate a best match for

the key.

18. The apparatus of claim 17 further including a
stack and where forward traversing includes, for each
node having an attached route, storing on the stack a
bit-to-test indicator for the node and a pointer to the

attached route.

19. The apparatus of claim 18 where traversing
the trie backwards includes the key look-up engine
comparing the key with the route to determine a first
dissimilar bit location, popping entries off the stack to
determine when a bit-to-test indicator associated with a
first node in the backward traversal is less than or
equal to the first dissimilar bit location, and
outputting destination information associated with the
first node to guide a transfer of a packet through the

router.

20. The apparatus of claim 16 further including a
statistical engine for calculating statistical
information for each data packet and outputting the
statistical information with destination information for

transfer to a destination port.

21. The apparatus of claim 16 where the route
memory is divided into a plurality of banks, and where
parent and children nodes in the trie are stored in

different banks.

WO 98/27662 PCT/US97/23287

10

15

20

25

30

- 42 -

22. The apparatus of claim 16 where each node in
the trie includes a bit-to-test indicator, a left child
pointer, a right child pointer and an attached route, the
left child pointer indicating a child node to be
traversed in the forward traversal when a value of a bit
in the key as indicated by the bit-to-test indicator is a
first value, the right child pointer indicating a child
node to be traversed in the forward traversal when a
value of a bit in the key indicated by the bit-to-test

indicator is a second value.

23. The apparatus of claim 22 where the left
child pointer, right child pointer and attached route are

stored in contiguous locations in the route memory.

24. A route look-up engine for locating a best
match for a key in a route table, the route table
including a trie stored in a memory associated with a
routing device, the trie including one or more entries
defining a path through a routing device for transferring
a packet in a packet switched network from a source to a
destination, the route look-up engine comprising:

a stack for storing stack entries including a bit-
to-test indicator and a pointer to a destination; and

a look-up engine including a buffer, a bit
comparison engine and a key comparison engine, the buffer
for storing node information that is retrieved from the
memory, the node information including a bit-to-test
indicator,

wherein responsive to receiving a key associated
with a packet, the look-up engine forward traverses the
trie, the bit comparison engine evaluating at each node

traversed a bit in the key as indicated by a bit-to-test

WO 98/27662 PCT/US97/23287

10

15

20

25

30

-~ 43 -

indicator associated with each node, a value of the bit
in the key determining the path traversed along the trie,
the look-up engine storing stack entries on the stack for
each node traversed having an attached route, the look-up
engine locating an end node having a route, the key
comparison engine performing a singular key comparison
for each packet routed through the routing device by
comparing the key with the route, if they match, the
look-up engine outputting destination information
assoclated with the end node to guide the transfer of the
packet through the routing device and if they do not
match, the look-up engine traverses the trie backwards
popping entries off the stack to locate a best match for

the key and destination information associated therewith.

25. A trie for storing routes in a routing device
to allow for efficient routing of packets through the
routing device, comprising:

a start node including a bit-to-test indicator, a
left child pointer, a right child pointer and an attached
route, the left and right child pointers pointing to
internal nodes;

an internal node including a bit-to-test
indicator, a right child pointer, a left child pointer
and an attached route, the left and right child pointers
pointing to a route node or another internal node;

a route node including a bit-to-test indicator and

an attached route.

26. The trie of claim 25 wherein the attached
route includes statistical and quality of service

information.

WO 98/27662 PCT/US97/23287

- 44 -

27. A computer program, tangibly stored on a
computer-readable medium, comprising instructions for
causing a computer to:

upon receipt of a key, forward traverse a trie

5 stored in a memory by evaluating at each node traversed a
bit in the key as indicated by a bit-to-test indicator
associated with each node, a value of the bit in the key
determining the path traversed along the trie;

locate an end node in the trie, the end node

10 having a route;

compare the route to the key:;

if they match, output destination information
associated with the end node to guide a transfer of a
packet through a routing device; and

15 if they do not match, traverse the trie backwards
to locate a best match for the key and destination

information associated therewith.

28. The apparatus of claim 27 wherein the forward
20 traverse includes instructions to cause the computer to:
store on a stack for each node having an attached
route the bit-to-test indicator for the node and a

pointer to the attached route.

29. The apparatus of claim 27 wherein the
25 backward traverse includes instructions to cause the
computer to:
compare the key with the route to determine a
first dissimilar bit location;
pop entries off the stack to determine when the
30 bit-to-test indicator associated with a first node in the
backward traversal is less than or equal to the first

dissimilar bit location; and

WO 98/27662 PCT/US97/23287

- 45 -

output destination information associated with the
first node to guide a transfer of the packet through the

routing device.

PCT/US97/23287

WO 98/27662

1/14

NOILVNILS3Q

_og

NOILYNILS3A

"H31N0Y

F "OId

NOILYNILS3d

d31Nnod

- 0g

/om

H31NoYd

//QN

//Qm

//QN

3F0HNOS

o

SUBSTITUTE SHEET (RULE 26)

PCT/US97/23287

WO 98/27662

2/14

V4

¢ Old

A

AHOWIW

NOILVOIdILON

_901

™60/

ANV A3

4ITIOHYLNOD | NOILVWHO4NI

SUBSTITUTE SHEET (RULE 26)

WO 98/27662

3/14

PCT/US97/23287

START | —300
NODE
ROUTE 306 INTERNAL | 302
NODE | NODE a
INTERNAL 302 ROUTE | ~ 306
NODE | NODE
205 INTERNAL 204
ROUTE NODE WITH
NODE | ATTACHED -
ROUTE
FIG. 3 ROUTE | 906
. NODE

SUBSTITUTE SHEET (RULE 26)

WO 98/27662 PCT/US97/23287

4/14

BIT TO TEST |~ 400
| 402

LEFT CHILD POINTER

RIGHT CHILD POINTER |~ 404

ATTACHED ROUTE |~ 406

FIG._4A

LEFT CHILD POINTER |~ 402

RIGHT CHILD POINTER |~ 794

ATTACHED ROUTE | 406

FIG._4B

ATTACHED ROUTE |~ 406

FIG._4C

BIT TO TEST |~ 400
|- 402

LEFT CHILD POINTER

FIG._ 4D RIGHT CHILD POINTER

404

SUBSTITUTE SHEET (RULE 26)

PCT/US97/23287

WO 98/27662

5/14

6cSs

Ve "Old

¢
SERLS
HVYTINISSIA ANV
JH3IHL
Etelv

8cs \

ASM ANV
31N0Y «dN3.
JHVdNOD

A

925"

31N0Y N3,
3ivOO1

|

pac-"

gz6 |

HOHVIS
Xid34dd
NHO4d3d

)

A3X LX3N
avot

ccs

2
SAIM H3IHLO
ANV

0zs -~

JAdON 1HV1S
NI H3LNIOd
J1lvddn

)

815"

AHOWIN NI
JAON 31LN0oY
JHOLS

A

NOILVYNILS3A
NO d3svd
3AdON 31N0Yd
oL 31noY
V NOISSY

A

3AON 3ALNO0YH
SY A3x aav

)

A3X LX3N
avon

oy

12
SAIM HIHILIO
ANY

805

AHOWIW NI
3AdON 14VI1S
JHOLS

[\-905

)

m3|—<> :Ouu <
SH3ILNIOd
diHO LHSIY
ANV 1437
NOISSY

[\ 105

A

3dON 1HV1S
01 31Nn0oY
a3aHOVLLY
NOISSY

|

3AON 1HVILS
31v3HO

SUBSTITUTE SHEET (RULE 26)

WO 98/27662

CREATE NEW
ROUTE NODE
AND STORE
IN MEMORY

Va 530

Y

CREATE NEW
INTERNAL
NODE

Vs 532

y

ASSIGN BIT
TO TEST VALUE
EQUALTO

Vs 534

Y

ASSIGN ONE
CHILD POINTER
ADDRESS OF
NEW POINT NODE

Vs 536

Y

TRAVERSE TREE
BACKWARDS
TO LOCATE
PARENT NODE

Vs 538

i

INSERT NEW NODE

BETWEEN PARENT

AND GRAND-CHILD
NODE

Va 540

Y

UPDATE POINTER
IN PARENT
NODE

¥a 542

FIG._5B

PCT/US97/23287

6/14

COMPARE 545
LENGTH OF L/
KEY WITH
“‘END” ROUTE
546

IS

KEY LONGER

THAN “END”

ROUTE
?

547

IS

THE KEY

SHORTER
?

NO

FIG._5C

SUBSTITUTE SHEET (RULE 26)

WO 98/27662

NO

7114

PCT/US97/23287

CREATE NEW
ROUTE NODE AND
STORE IN
MEMORY

IS “END”

Y

Vs 550

YES

NODE A ROUTE 7
NODE
?

Y
ASSIGN
CHILD POINTER _ [- 554 556 | C'?NETAET FERENI\XI—:_W
IN INTERNAL NODE TERN
THE ADDRESS OF
NEW ROUTE
Y

ASSIGN BIT TO TEST

558~ | FOR NEW INTERNAL

NODE TO BE LAST
BIT IN “END” ROUTE
|
ASSIGN ONE

560~ | CHILD POINTER THE

ADDRESS OF NEW
ROUTE NODE
562
UPDATE ADDRESS
» OF POINTERIN |}«
PARENT NODE

SUBSTITUTE SHEET (RULE 26)

WO 98/27662 PCT/US97/23287

8/14

LOCATE | 570
PARENT NODE

571

1S BIT
YES TO TEST LESS NO
THAN INDEX
OF KEY
?
 J
! 500 UPDATE
INSERT NEW 570 ~| ATTACHED

INTERNAL NODE } ROUT%ICID\IDPEARENT
BELOW PARENT

i

ASSIGN BITTOTEST | . 574
THE VALUE OF THE |}
INDEX OF THE KEY

i

ASSIGN ONE POINTER 576
THE STARTING "
ADDRESS OF THE
GRAND-CHILD NODE

Y

ASSIGN OTHER | 578
POINTER A
ZERO VALUE

Y
UPDATE POINTER

(1)
IN PARENT (1)}
VU

NODE

s 580

FIG._5E

SUBSTITUTE SHEET (RULE 26)

WO 98/27662 PCT/US97/23287

9/14

592

UPDATE
“END” ROUTE

FIG._5F

ANY MORE
KEYS
?

YES

FIG._5G

SUBSTITUTE SHEET (RULE 26)

WO 98/27662

PCT/US97/23287

10/14

600

DETERMINE
KEY TYPE

y 602

LOAD
START NODE

v 604

DETERMINE BIT
VALUE OF BIT IN
KEY INDICATED
BY BIT TO TEST
INDICATOR

606

DOES

POINTER

POINT TO ACHILD

NODE
7

608

DOES

START NODE HAVE

AN ATTACHED

ROUTE
?

YES 610

STORE BIT TO
TEST INDICATOR
AND ROUTE
ADDRESS
ON STACK

Y 612

LOAD
NEXT NODE

T T

IS

NODE A ROUTE

NODE
?

NO

DETERMINE VALUE
OF BIT IN KEY
INDICATED BY BIT
TO TEST INDECATOR

618

DOES

POINTER

INDICATE A CHILD

NODE
?

620

DOES
NODE HAVE AN
ATTACHED
ROUTE
?

NO

FIG._6A

SUBSTITUTE SHEET (RULE 26)

WO 98/27662

11/14

@ /630

DETERMINE FIRST
DISSIMILAR
BIT IN KEY

ANY

DISSIMILAR

BITS
?

NO

FIG._6B

640
~

TRAVERSE TREE
BACKWARDS AND
LOCATE BEST
MATCH NODE

FIG._6C

SUBSTITUTE SHEET (RULE 26)

PCT/US97/23287

650
/‘

LOAD BEST
MATCH ROUTE

V Vs 652

TRANSFER
ROUTE TO
OUTPUT SWITCH

Y
END

FIG._6D

WO 98/27662 PCT/US97/23287

12/ 14
704~ 706 708 710
r | R POINTER FIELD Btt |« 700
r R POINTER FIELD Bt |« 702

FIG._7A

704~ 706 708 710

r | R POINTER FIELD Bt | 700

- | R POINTER FIELD Bt fe 702

726~_ RESULT 720
722~ PREFIX INDEX 724
728 STATISTICS Qos 750

FIG._7B

726~ RESULT 720
T e T e
728~ STATISTICS QOS 730

FIG._7C

SUBSTITUTE SHEET (RULE 26)

WO 98/27662

PCT/US97/23287

13/ 14
800
| R ST
| POINTER |
’ ON STACK
IFR=1
DETERMINE
802~ | STARTING
ADDRESS OF 815
TREE IS
BIT TO TEST
804 .
IS BIT YES
ZERO OF KEY . |
A;g y 816 818~ 4
807~ 806~ RETRIEVE RETRIEVE
NO LEFT RIGHT
INCREMENT | RETRIEVE CHILD CHILD
ADDRESS RIGHT
CHILD
| POINTER et
RETRIEVE 808
RIGHT CHILD |~ 820
POINTER YES DOES
POINTER POINT

810

DOES

POINTER POINT

TO A ROUTE

NODE
?

YES

RETRIEVE

TO AROUTE
?

822

IS THE NO

POINTER VALUE
NULL
?

824

812
N ROUTE -

828 ™~

DOES

NODE HAVE

AN ATTACHED

ROUTE
?

RETRIEVE ROUTE
FOR LAST STACK

ENTRY

FIG._8A (5_

SUBSTITUTE SHEET (RULE 26)

WO 98/27662 PCT/US97/23287

14/ 14

DETERMINE Vs 830
FIRST DISSIMILAR

BIT
840
832 s
ANY TRANSVERSE TREE
DISSIMILAR YES BACKWARDS TO
BITS LOCATE BEST
o MATCH NODE
NO
LOAD
BEST MATCH |
ROUTE
TRANSFER
ROUTE TO
OUTPUT SWITCH FIG. 8B

SUBSTITUTE SHEET (RULE 26)

	BIBLIOGRAPHY
	DESCRIPTION
	CLAIMS
	DRAWINGS

