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At least one drawing originally filed was informal and the print reproduced here is taken from a later filed formal copy.
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AN APPARATUS AND METHOD FOR EXECUTING
A PLURALITY OF THREADS

BACKGROUND

The present technique relates to an apparatus and method for executing a
plurality of threads.

It is known for a contemporary data processing apparatus such as a graphics
processing unit (GPU) to be programmed in a single program multiple data (SPMD)
fashion in which the programmer provides a single program (known as a kernel) and a
set of multiple data items on which that single program should operate. OpenCL for
example provides a way for a programmer to arrange for the GPU to execute SPMD
kernels. The data processing apparatus then creates and executes a thread for each
data item within that data set. For example, in the context of image processing on a
GPU (which is designed to execute a large number of threads efficiently), a thread can
be created and executed for each pixel in a frame, with the multiple different threads
being executed in order to perform the same data processing operations on each pixel
within the frame. When defining such a task for a GPU, it is known to provide an N
dimensional range of thread identifiers used to determine the multiple threads that are
required to execute the program. In OpenCL, such an N dimensional range is referred
to as “NDRange”, where N may vary from 1 to 3. A separate thread is created for
each thread identifier within the range, and each created thread then executes the
kernel.

In order for the threads to do distinct useful work, the data processed by each
thread will typically depend on the thread identifier. The above arrangement is often
used to execute kernels which perform work over a matrix, image or array of data.
Which data value within the matrix, image or array is to be processed by each thread
will typically depend on the thread identifier, and accordingly it is necessary for the
kernel to compute the relevant location within the matrix, image or array identifying
the data value applicable to that thread from the thread identifier. The kernel typically
includes a series of arithmetic instructions for that purpose. Whilst the data processing
apparatus can be designed to execute those instructions efficiently, that series of

instructions must be executed separately within each thread, which gives rise to a
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significant amount of computation which can adversely affect performance. This
performance impact can be particularly significant if the operations performed by the
rest of the kernel are relatively simple.

Accordingly, it would be desirable to provide an improved mechanism for
providing such thread identifier dependent values.

SUMMARY

In one example arrangement, there is provided an apparatus, comprising;
processing circuitry to execute a plurality of threads, each thread executing a program to
perform processing operations on thread data, each thread having a thread identifier, and
the thread data including a value which is dependent on the thread identifier; and value
generator circuitry to perform a computation using the thread identifier of a chosen thread
in order to generate said value for the chosen thread, and to make said value available to
the processing circuitry for use by the processing circuitry when executing said chosen
thread.

In another example arrangement, there is provided a method of executing a
plurality of threads, comprising: employing processing circuitry to execute said plurality
of threads, each thread executing a program to perform processing operations on thread
data, each thread having a thread identifier, and the thread data including a value which is
dependent on the thread identifier; and employing value generator circuitry to perform a
computation using the thread identifier of a chosen thread in order to generate said value
for the chosen thread, and to make said value available to the processing circuitry for use
by the processing circuitry when executing said program for the chosen thread.

In a yet further example arrangement, there is provided an apparatus, comprising:
processing means for executing a plurality of threads, each thread for executing a
program to perform processing operations on thread data, each thread having a thread
identifier, and the thread data including a value which is dependent on the thread
identifier; and value generator means for performing a computation using the thread
identifier of a chosen thread in order to generate said value for the chosen thread, and for
making said value available to the processing means for use by the processing means

when executing said program for the chosen thread.



10

15

20

25

30

BRIEF DESCRIPTION OF THE DRAWINGS

The present technique will be described further, by way of example only, with
reference to embodiments thereof as illustrated in the accompanying drawings, in
which:

Figure 1 is a block diagram of a system including a data processing apparatus
in accordance with one embodiment;

Figure 2 is a block diagram illustrating in more detail the value generator
circuitry of Figure 1 in accordance with one embodiment;

Figure 3 schematically illustrates the operation of the value generator circuitry
in accordance with one embodiment;

Figure 4 schematically illustrates the operation of the value generator circuitry
in accordance with an alternative embodiment;

Figure 5 schematically illustrates how the value generation computations of
Figures 3 and 4 may be performed when a particular region of an image is being
processed, in accordance with one embodiment;

Figure 6 illustrates an alternative embodiment of the value generator circuitry
in accordance with one embodiment;

Figure 7A illustrates stepper circuitry that may provide one example
configuration of the computation elements of Figure 2 in accordance with one
embodiment;

Figure 7B is a flow diagram illustrating the operation of the stepper circuitry of
Figure 7A in accordance with one embodiment;

Figure 8 illustrates how additional terms may be added to the value generator
computation illustrated schematically in Figure 4 in order to create thread blocks in
accordance with one embodiment;

Figures 9A and 9B illustrate instructions that can be added to each thread to
access the value(s) generated by the value generator circuitry in accordance with one
embodiment, and

Figure 10 is a flow diagram illustrating the operation of the throughput
processor of Figure 1 in accordance with one embodiment.

DESCRIPTION OF EMBODIMENTS
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Before discussing the embodiments with reference to the accompanying
figures, the following description of embodiments is provided.

In accordance with one example arrangement, an apparatus is provided that has
processing circuitry to executed a plurality of threads, where each thread executes a
program to perform processing operations on thread data. Each thread has a thread
identifier, and the thread data includes a value which is dependent on the thread
identifier. Value generator circuitry is then used to perform a computation using a
thread identifier of a chosen thread in order to generate the above mentioned value for
the chosen thread, and to then make that value available to the processing circuitry for
use by the processing circuitry when executing the chosen thread.

In accordance with the above arrangement, rather than executing a series of
instructions within each thread in order to compute the value applicable for the
associated thread, value generator circuitry external to the thread is instead used to
perform a computation based on the thread identifier in order to generate the required
value for any particular thread. This value can then be made available to the
processing circuitry when it executes that thread, for example by storing that value in a
register accessible to the processing circuitry.

This can significantly reduce the computation required within each thread, and
hence give rise to significant performance benefits. Further, by providing separate
value generator circuitry, it is possible for that circuitry to generate the values required
for multiple threads, in one embodiment for all of the various threads, and this can give
rise to significant efficiency gains when compared with the prior art approach, where
each thread was required to calculate in isolation the value applicable to that thread.

There are a number of ways in which the plurality of threads, and the program
to be executed by those threads, can be identified. In one embodiment, the processing
circuitry is arranged to process a task, the task specifying an N dimensional range of
thread identifiers used to determine the plurality of threads, and a same program to be
executed as said program by each of the plurality of threads. In one embodiment, the task
can be defined by another element in the system, such as a central processing unit (CPU)
coupled to the above described apparatus, for example by storing the details of the task in
a portion of memory shared between the CPU and the above mentioned apparatus. The

above mentioned apparatus can then in one embodiment take the form of a throughput
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processor, for example a GPU, which loads the details of the task in from the memory
and then creates and executes the required threads in accordance with the thread identifier
information and the program information specified by the task. In an alternative
embodiment, the processing circuitry may itself define tasks for it to perform, for
example where one task is used to set up other tasks.

In one embodiment, the apparatus can concurrently be running multiple such
tasks, one example being where a new task is set up as an old task comes to an end.

The value generator circuitry can be configured in a variety of ways. In one
embodiment, the value generator circuitry is arranged to perform the computation using
as inputs the thread identifier of the chosen thread and a set of constant values that are
fixed for said task. In one particular embodiment, the task further specifies the set of
constant values, and hence the element in the system responsible for defining the task can
set the constant values appropriately in order to allow useful values to be computed by
the value generator circuitry for subsequent reference by the processing circuitry when
executing the various threads defined for the task. Such an approach can be readily
incorporated into existing GPU drivers.

In one embodiment, APIs such as OpenCL specify compilation of kernels at
runtime. So in such an embodiment the OpenCL implementation can, at compile time,
inspect the code and identify useful values which can be computed using the circuitry,
and output a compiled kernel that uses the generated values and the constants needed
to generate them at the same time. In addition, as these details are only visible inside
the OpenCL implementation, a program written to use OpenCL could take advantage
of the above described techniques without needing any changes.

There are a number of ways in which the value generator circuitry can be
arranged to perform the computation required to produce the value that is dependent on
the thread identifier. In one embodiment, the value generator circuitry is arranged to
perform the computation by determining the sum of a plurality of terms, each term being
determined by performing a sub-computation on term-specific inputs, said term-specific
inputs comprising at least one constant specified for that term and at least a part of the
thread identifier. Where the range of thread identifiers is one dimensional, then each sub-
computation may use the thread identifier. However, if the range of thread identifiers is

multi-dimensional, such that the thread identifier for each thread may then for example
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comprise multiple coordinate values, each sub-computation may in one embodiment use
one of the coordinate values of the thread identifier. This enables a simplification of the
computation. For example, it is common for data structures/matrices, etc. to have an
address component depending on each coordinate value, so arranging the generators in
this way is an efficient approach.

In one embodiment, the value generator circuitry is further arranged to generate
the value by adding the sum of the plurality of terms to a predetermined constant value in
the above mentioned set of constant values. In one embodiment, this for example enables
the base address of the data structure to be added.

In one embodiment, the number of terms in said plurality of terms is fixed to
provide one term for each dimension of a maximum number of dimensions supported by
the value generator circuitry. In particular, the apparatus of which the value generator
circuitry is part will typically be designed having regards to a maximum number of
dimensions that can be supported. For example referring to the earlier mentioned
example of OpenCL, the maximum number of dimensions supported would be three
dimensions. If, for any particular task, less than the maximum number of dimensions are
actually utilised, then in one embodiment the constant value input in relation to the sub-
computation to be performed for that unused dimension can be set to a value that
effectively removes that sub-computation. For example, in an arrangement where the
sub-computation involves a multiplication of a constant by another input, that constant
could be set to zero for the relevant sub-computation. Alternatively the term could be
ignored (so the term from unused dimensions is not added on), or in one embodiment
the fact that unused dimensions have a value zero themselves so nothing happens is
exploited (e.g. if a 5x5 2D job is specified, this is equivalent to a 5x5x1 3D job, and
for such a job the coordinate range could be set to be (0,0,0) — (4,4,0), i.e. the z
coordinate would always be zero).

Whilst in the above mentioned embodiment the plurality of terms is fixed, in an
alternative embodiment the number of terms in the plurality of terms may be
configurable. By varying the number of terms, this enables significantly improved
flexibility as to how the value for any particular thread is generated from the thread

identifier.
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In one embodiment, the processing circuitry executes said plurality of threads in
order to process an M-dimensional array of data values, each thread executing the
program in relation to one of the data values in said M-dimensional array. The value
generator circuitry may then be arranged to perform the computation for the chosen
thread in order to identify as said value a location of the data value for the chosen thread
within said M-dimensional array. Hence, in such embodiments, the computation
performed by the value generator circuitry effectively maps the thread identifier to a
particular location within the M-dimensional array, and hence identifies a particular data
value within that M-dimensional array.

In one particular embodiment, the M-dimensional array of data values is stored in
memory and said value generated by the value generator circuitry comprises a memory
address associated with the data value for the chosen thread.

In one embodiment the N-dimensional range of thread identifiers is a one
dimensional range, and hence for example in one particular embodiment the various
thread identifiers may increase from zero to a value one less than the total number of
threads.

In one such embodiment, the number of terms and the constant values are
specified so that performance of the computation by the value generator circuitry causes
each of a plurality of sub-ranges of thread identifiers within the one dimensional range to
map to a different M-dimensional block within the M-dimensional array. This can give
rise to significant performance improvements, by taking account of certain hardware
constraints within the system. For example, advantages related to cache locality can result
if the data values within the M-dimensional array are processed in a particular order,
hence increasing efficient utilisation of the cache. Thus, by specifying the number of
terms and the constant values in an appropriate manner, the various data values within the
M-dimensional array can be processed in a series of blocks aimed at improving efficient
hardware utilisation, such as the above mentioned cache utilisation. A technique for
ordering threads into blocks is described in commonly owned co-pending US patent
application no 14/557,935, the entire contents of which are hereby incorporated by

reference.
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In an alternative embodiment, the N-dimensional range of thread identifiers is a
multi-dimensional range and each thread identifier specifies coordinate values in said N-
dimensional range.

Whilst N can be different to M, in one embodiment N=M. Hence, the coordinate
space over which the program is run by the various threads reflects the shape of the M-
dimensional array of data values. As one very specific example, a task may be defined to
include a 1920x1080 array of thread identifiers in order to cause a plurality of threads to
be created to work on a 1920x1080 image within a GPU, with each thread performing a
computation related to the corresponding pixel in the image. The computation can take a
variety of forms, but could for example be a filter operation, where each thread generates
a new value for the corresponding pixel in the output image.

The set of constant values provided as an input to the value generator circuitry
can take a variety of forms, but in one embodiment the set of constant values provides an
indication of a base location (e.g. a base address in memory), a data size of the data
values in the M-dimensional array, and a number of data values extending in each
dimension of the M-dimensional array.

In one embodiment, the value generator circuitry is arranged to perform the
computation for each of the plurality of threads in order to generate the value for each
thread.

However, in an alternative embodiment, the plurality of threads may be
considered to consist of a plurality of thread groups, and the value generator circuitry can
in such an embodiment be arranged to compute the value for a chosen thread in each
thread group, and to generate a vector of offset values for use by the processing circuitry
to derive the value for each of the threads in the thread group based on the value
computed for the chosen thread of the thread group. Hence, in such an arrangement, it is
not necessary to separately compute each value, since within each thread group the values
applicable to each thread of that thread group can be derived from the value computed for
one of threads.

In one such embodiment, each of the threads within the thread group is
constrained to be executed in lock-step, such that at any particular point in time each
thread in the thread group is executing the same instruction within the program. In such

an arrangement, the above approach of providing a value for one of the threads in the
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thread group, along with a vector of offset values, can provide a particularly efficient
implementation.

The value generator circuitry can be arranged to generate the required values at
any suitable point in time, but will typically be configured so as to make the values
available to the processing circuitry by the time the processing circuitry requires that
value during execution of the thread. In one embodiment, the value generator circuitry is
arranged to precompute the value for the chosen thread prior to the processing circuitry
executing that chosen thread.

In one particular embodiment, the value generator circuitry is arranged to store
each computed value in a register for access by the processing circuitry. This register may
be a special purpose register, or in an alternative embodiment can be a general purpose
register.

The value generator circuitry can be constructed in a variety of ways. In one
embodiment, the value generator circuitry comprises a plurality of computation elements,
each computation element being arranged to perform the sub-computation of a term
allocated to that computation element.

In one particular embodiment, each of the computation elements can be
identically constructed, in order to perform the same sub-computation, but with each
computation element being provided with a different set of inputs.

In one embodiment, each computation element is formed by stepper circuitry
arranged to use a counter mechanism to control the output from that computation
element. This enables relatively simple counter circuits to be used, and can avoid the
need for more complex circuits such as multipliers.

In one embodiment, the value generator circuitry may comprise multiple
generators, each generator arranged to perform a different computation such that said
multiple generators generate, for the chosen thread, multiple values that are dependent on
the thread identifier. Hence, multiple thread identifier dependent values can be generated
for each thread using such multiple generators. This may be useful if a kernel needs to
access multiple images or arrays, for example when reading an input image,
performing some computation and writing to an output image.

Whilst in one embodiment, each generator may have its own dedicated set of

computation elements, in an alternative embodiment the multiple generators may share
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use of a plurality of computation elements. Accordingly, by way of example, particular
computation elements may be allocated for some portion of time to one generator, and for
another portion of time to a different generator. This allows flexibility in how the
generator resources are used, for example some kernels can use a small number of
complex generators with many terms while other kernels may use a larger number of
simpler generators with fewer terms.

Particular embodiments will now be described with reference to the Figures.

Figure 1 is a block diagram of a system in accordance with one embodiment, the
system including a central processing unit (CPU) 10 coupled via a system bus 35 with a
throughput processor 20, which for example may be a graphics processing unit (GPU) in
one embodiment. Both CPU 10 and throughput processor 20 share access to memory 30.

When the CPU 10 wishes to set up a task for the throughput processor to perform,
it writes a job descriptor 70 for that task in memory 30, and then notifies the throughput
processor 20 (in one embodiment this notification may occur by the GPU having a slave
connection onto the bus), whereupon the throughout processor can retrieve the job
descriptor from memory and begin performing the defined task.

The throughput processor 20 includes processing circuitry in the form of an
execution pipeline 40 that can be configured to execute a plurality of threads using
execution resources 42, 44, 46. Each thread will execute a program specified by the task,
with each thread typically operating on different data. In one embodiment, the job
descriptor identifies the program to be executed by the threads, and provides an N-
dimensional range of thread identifiers used to determine the number of threads required
to be executed in order to implement the task. Control circuitry 55 then creates the
individual threads, and notifies the execution pipeline 40 in order to cause the various
threads to be executed. During execution of the various threads, the execution pipeline 40
will have access to a register bank 50 containing a set of general purpose registers that
can be used to store data values required when executing the threads. One or more special
purpose registers 48 can also be provided within the execution pipeline 40 for access by
the threads.

In one embodiment, at least one item of data used within each thread during
execution of the program has a value which is dependent on the thread identifier of that

thread. In accordance with one embodiment, value generator circuitry 60 is provided, for
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example within the control circuitry 55, to precompute such values and make them
available to the execution pipeline 40 for use by the execution pipeline when executing
the various threads. The values may in one embodiment be stored within special purpose
registers 48, or can alternatively be stored within one or more of the general purpose
registers 50.

In one example embodiment, the task specified by the job descriptor 70 may
require operations to be performed in respect of an M-dimensional data image 80 stored
in memory 30, where a separate thread is established to operate on each data value within
that data image. One example of a value that can be generated by the value generator
circuitry 60 is a memory address to identify a particular data value within the data image
80 applicable to a particular thread. In particular, based on the thread identifier, the value
generator circuitry can perform a computation in order to determine the memory address
for the corresponding data value in the data image 80.

As shown in Figure 2, in one embodiment the value generator circuitry 60
consists of one or more generators 100, 105, each generator being arranged to generate a
value required during execution of the threads by the execution pipeline 40. In one
embodiment, each generator will generate a value for each thread, and accordingly if
there are two generators 100, 105, the value generator circuitry 60 can in one
embodiment generate, for each thread, two values required by that thread when it is being
executed, both of the values being dependent on the thread identifier of the thread, and
accordingly varying between the various threads executed by resources 42, 44, 46.

The value generator circuitry 60 can be configured in a variety of ways, but in one
embodiment comprises a series of computation elements 110, 115, 120 used to perform a
sub-computation on term specific inputs. As shown in Figure 2, in one embodiment
those term specific inputs include at least one constant and at least part of the thread
identifier of the thread whose value is being generated. Where the N-dimensional range
of thread identifiers specified in the job descriptor 70 is one dimensional, then typically
each computation element will receive the entire thread identifier. However, where the
N-dimensional range of thread identifiers is multi-dimensional, such that each thread
identifier may comprise multiple coordinates, then each computation element may

receive one of the coordinates of the thread identifier.
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As shown in Figure 2, the outputs from the various computation elements are
input to a summation element 125 which adds those outputs together, and in one
embodiment also adds a further constant provided to the summation element, with the
result then being provided as the value output from the generator.

In one embodiment, the particular values given to the various constants input to
the generator will dictate the computation performed, and in one embodiment those
plurality of constants are defined within the job descriptor 70 set up by the CPU. This
enables the CPU to configure how the values are generated by the value generator
circuitry 60 from the various thread identifiers.

In one embodiment, the number of computation elements is fixed, and in
particular in one embodiment the number of computation elements is dependent on the
maximum number of dimensions supported by the value generator circuitry, and hence
by the throughput processor 20. Hence, by way of example, if the maximum number of
dimensions supported is three, then three computation elements may be provided in one
embodiment.

However, in an alternative embodiment, not only may the constant values
provided to each generator be configurable, but in addition the number of computation
elements within each generator 100 may also be configurable. As will be described for
example later with reference to Figure 8, by enabling the number of computation
elements to be varied, this can allow for some arbitrarily complex mappings between the
thread identifier and the associated values produced, in the Figure 8 example the values
produced being addresses into a data image such as the data image 80.

Whilst in one embodiment the number of computation elements provided in each
generator may be predetermined, in an alternative embodiment the value generator
circuitry 60 may have a predetermined number of computation elements, but the way in
which those computation elements are allocated to individual generators 100, 105 may be
varied. Accordingly, in such an embodiment the various computation elements are
shared between the generators of the value generator circuitry 60, for example on a time
division basis.

The computation performed by each generator 100, 105 can take a variety of
forms, but Figure 3 illustrates one example form of computation shown within the box

180. In particular, in this example each thread identifier can include an x, y and z
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coordinate, and four constants g[0] to g[3] are provided. To illustrate the operation of the
computation, an example data image 150 is considered having a base address of 0x1000,
and a data size of four bytes, i.e. each data value is four bytes in length. The block 150
shown in Figure 3 then identifies the address associated with each data value in the two
dimensional array of data values shown by block 150. The difference between the
addresses of the first elements of two consecutive rows is referred to as the stride, and
accordingly in this example is six. The stride can be measured in either bytes or number
of data values, but for the purposes of the current embodiment description it is measured
in terms of the number of data values. In some embodiments the stride may actually
equal the width of the data image. However, for the purposes of the current example, the
data image 150 has a width of five data values, whilst the stride is six data values, to
allow better alignment of data in memory.

In this example, it is assumed that the N-dimensional range of thread identifiers
takes the form of a two dimensional range of thread identifiers, matching the two
dimensional form of the data image 150. As shown by reference numeral 160 in Figure
3, the two dimensional range of thread identifiers is such that each thread identifier
comprises an x and a y component. For simplicity, in this example a two dimensional
data image 150 and a corresponding two dimensional range of thread identifiers 160 is
shown, but the same principle can be applied to three dimensional data images and three
dimensional ranges of thread identifiers. The various thread coordinates of each thread
identifier are input over path 165 to the relevant generator 100, 105 within the value
generator circuitry 60, and the corresponding constants to be used for all threads of the
task are provided over path 170. As shown in Figure 3, in this example the constant g[0]
is equal to the base address of the data image 150, and hence in this example is equal to
0x1000. The constant g[1] is equal to the data size, which in this example is four bytes,
and hence takes the hexadecimal form Ox4. The constant g[2] is equal to the stride
multiplied by the data size, which is 24 in decimal, or 0x18 in hexadecimal. In this
particular example, since only two dimensional arrays are being considered, the constant
g[3] is set equal to zero.

As will be apparent from Figure 3, for any particular combination of x, y

coordinates forming a thread identifier, the output value produced by the computation



10

15

20

25

30

14

shown in block 180 produces the memory address of the corresponding data value within
the data image 150.

Whilst in Figure 3 the dimensionality of the range of thread identifiers matches
the dimensionality of the data image, in an alternative embodiment this is not the case.
Figure 4 shows the same data image 150, but in this example a one dimensional range of
thread identifiers 200 is provided. In particular, the thread identifiers range from zero
through to a value one less than the total number of threads (i.e. 19 in this example since
there are 20 threads, one for each of the data values in the data image 150). The
computation set out in the box 215 identifies how the output value (namely the address of
a corresponding data value in the data image 150) is computed based on the thread
identifier input over path 205, and a set of constants input over path 210, again the
constants being fixed for all threads of the task. In the equation set out in box 215, the
percentage sign indicates a modulus operation. As can be seen, the sub-computation
performed for each term has the same format, but with a different set of constant values
provided. For the first sub-term, the constant g[1] is set equal to one, since no division is
required. In this example, both the constants g[2] and g[4] are set equal to the width of
the data image, namely Ox5. The constant g[3] is set equal to the data size, i.e. 0x4 to
denote four bytes. Further, the constant g[5] is set equal to the height of the data image,
namely Ox4 in this example. Finally, the constant g[6] is set equal to a value equal to the
stride multiplied by the data size, which in this example is 24 in decimal or Ox18 in
hexadecimal.

As will be apparent from the computation defined in box 215, this again enables
the memory address of the appropriate data value in the data image 150 to be computed
for each input thread identifier.

As will be described later for example with reference to Figure 8, the general
form of the computation in block 215 can be extended to include additional terms, again
all of the terms being identical, but with a different three constant values being provided
for each term. This enables an arbitrarily complex mapping from the linear thread
identifiers to the various memory addresses of the data image 150.

The techniques described in Figures 3 and 4 can also be performed in respect of
particular image regions within a data image, if it is not desired to process the entire data

image. For example, Figure 5 shows a data image 250, but where the image region to be
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processed is shown by the reference numeral 260. When adopting the Figure 3 approach,
all that is required when constructing the original two dimensional range of thread
identifiers is to add one to each of the x and y dimensions so that the top left thread
identifier is 1,1 and the bottom right thread identifier is 5,4. The constants g[0], g[1] and
g[3] are exactly the same as in the Figure 3 example. However, in this example the stride
is 8, and accordingly the constant g[2] becomes 0x20. With these changes, the value
generator computation 180 will again correctly map each thread identifier to a
corresponding address within the data image region 260.

The Figure 4 approach can also be used in connection with the data image region
260. When adopting the Figure 4 approach, the constants g[1] through g[S] are
unchanged. However, the base address constant g[0] is set equal to 0x1024 in order to
identify the base address of the first data value within the data image region 260. Further,
the constant g[6] becomes 0x20, given that the stride is 8 due to the size of the data image
250.

Whilst in one embodiment each generator 100, 105 can be arranged to generate a
corresponding value for each thread, in an alternative embodiment it is not necessary to
generate the value for each thread. In particular, in one embodiment the plurality of
threads specified by the job descriptor can be split up into multiple thread groups. Within
each thread group, a Single Instruction Multiple Thread (SIMT) mechanism can be used
to ensure that the threads within the thread group are executed in lockstep within the
execution pipeline 40. As a result, at any particular point in time, all of the threads in the
thread group will be executing the same instruction. If each thread group relates to a
series of threads extending in the x dimension, then it will be appreciated that once the
address value has been generated for one of threads, the address value for all of the other
threads can be computed merely by adding an offset. Hence, as shown in Figure 6 for the
specific example image region 260 of Figure 5, the value generator circuitry 300 may be
arranged to generate a set of values 305, namely an address value for the first address in
each thread group. In addition, a vector of offsets 310 can be generated which can be
provided to the execution pipeline 40 to enable all of the other addresses for the thread
group to be generated from the address within the set 305 produced for the corresponding
thread group. This can significantly reduce the number of computations required by the

value generator circuitry 60, whilst enabling the various address values to be readily
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generated within the execution pipeline using existing adder structures to add the offsets
to an initial address specified in relation to the first thread of the thread group.

In the example of Figure 6, it is assumed that each thread group consists of five
threads. More typically, it will often be the case that thread groups include a number of
threads which is a power of two, for example four, eight, sixteen, etc. However, for ease
of illustration, the principle has been shown in Figure 6 with reference to the data image
region 260 assuming that a thread group can be constructed for each of the series of
threads in the x dimension.

In addition it should be noted that typically the number of threads will be much
larger than the examples provide in the figures (which are purposely small for ease of
illustration). Hence, if a partial thread group is required at the end of a row, the overall
impact is small. By way of example, if the width is 1001 and the number of threads in
each thread group is 8, this will result in 125 complete thread groups and 1 odd thread
group of size 1, which is a small overhead.

In one embodiment, the functionality of the various computation elements 110,
115, 120 can be implemented using stepper circuitry such as shown in Figure 7A. In
particular, the use of stepper circuits can provide a very efficient implementation in
embodiments where the value generator circuitry is arranged to generate a value for each
of the threads determined from the N-dimensional range of thread identifiers specified for
the task. Separate stepper circuits 350, 355 can be provided to implement the
functionality of each computation element. The constants provided can be used to set a
threshold value within the threshold value register 360, and a step value referenced by the
step value circuitry 375. In one embodiment, the counter 365 is initialised at zero, and
each time a value is required to be produced by the stepper circuitry 350, the counter is
incremented, and then compared with the threshold value stored in the register 360 by the
comparison circuitry 370. Based on the comparison, a control signal is sent to the step
value circuitry 375 from the comparison circuitry 370. In particular, if the comparison
circuitry 370 detects that the counter is less than the threshold value, then the control
signal causes the step value circuitry to output a zero value. However, once the counter
reaches the threshold value, the control signal from the comparison circuitry 370 causes
the step value circuitry 375 to output the step value, and a reset signal is sent to the

counter to reset the counter to zero.
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This process is shown in Figure 7B. In particular, at step 400, it is determined
whether a value is required, and when a value is required, the counter is incremented at
step 405. Thereafter, it is determined at step 410 whether the counter is less than the
threshold value. If so, then a zero value is output at step 415, and the process returns to
step 400. However, if at step 410 the counter is determined to not be less than the
threshold value, then the step value is output at step 420, and the counter is reset at step
425, whereafter the process returns to step 400.

If we consider by way of example seeking to implement the value generator
computation of Figure 4 in relation to the data image region 260 of Figure 5, then the two
terms shown in box 215 that include divide and modulus computations can be
implemented using stepper circuits as shown in Figure 7A. In particular, a first stepper
circuit will have the threshold value set to one, and a step value set to four (representing
four bytes). Accordingly, it will be seen that each time an output value is required, the
first stepper circuit will output a value of four. This enables a series of addresses to be
produced, starting with the base address 0x1000, and increasing by four bytes each time.
A second stepper circuit is then used with a threshold of five and a step value of four, to
cause the address output to skip to the next row when required. Hence, by combining the
outputs from the two stepper circuits, the series of addresses within the data image 150
will be produced.

Similarly, with regard to Figure 5, it will be appreciated that not every address
increment required is four bytes, since at the end of each row there is a jump in address
space to identify the next required address in the following row. This functionality can be
achieved by a second stepper circuit, having a threshold value set at five, and a step value
set equal to twelve. This will ensure that for every fifth value generated, the second
stepper circuitry will output a value of twelve, outputting a value of zero otherwise.
Accordingly, taking for example the situation where the last address generated was
0x1034, then the next time an output value is required, the first stepper circuitry outputs a
value of four, and the second stepper circuitry outputs a value of twelve, thereby causing
a value of 16 to be added to the previous result of 0x1034, in order to produce the next
output address of 0x1044.

As will be appreciated, when using stepper circuits such as those discussed above,

the previous output address is used as the starting address for the next cycle. Such an
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approach provides a very efficient and simple mechanism for sequentially generating
each of the addresses within the data image region such as that shown by the element 260
in Figure 5. In particular, the value (address) required for every thread can be readily
generated using such simple stepper circuits, hence significantly reducing the complexity
of the value generator circuitry.

As mentioned previously, when utilising the generator computation approach
illustrated in Figure 4, additional terms of the same form can be added to the computation
performed, in order to allow for arbitrarily complex mappings between the one
dimensional range of thread identifiers and the M-dimensional data image. Such an
approach can be very useful in ensuring that the various resources of the processing
circuitry 20 are utilised efficiently. This is illustrated by way of example with reference
to Figure 8, which shows a large data image 450 that needs to be processed by a plurality
of threads. Rather than processing the threads in an order which would cause each row of
the data image to be processed in turn, it has been found that a more efficient utilisation
of the resources can be achieved if instead the threads are organised in blocks so as to
process different portions of the data image at a time. For example, this can give rise to
significantly improved utilisation of cache resources, by avoiding data being evicted
merely to be reloaded into the cache at a later time. In the example of Figure 8, it is
assumed that 3x3 thread blocks are created, two such examples being the thread blocks
462 and 465 shown in Figure 8, but it will be appreciated that the size of the various
thread blocks can vary dependent on the desired implementation.

To achieve the mapping between the one dimensional range of thread identifiers
and the two dimensional image 450 shown in Figure 8, it is merely necessary to add two
additional terms to the value generator computation 215 shown in Figure 4, each of the
terms having an identical form to the other terms, but using three different constants.
Figure 8 shows the constants used in each term. The constant 455 is the base address, as
per the example of Figure 4. The first set of constants 460 specify that g[1] is equal to 1,
g[2] is equal to 3 (i.e. the width of the thread block), and g[3] is set equal to 4 (i.e. the
data size of four bytes). This term causes the address to advance to the next element
within each row of the thread block.

The second set of constants 470 specifies that the constant g[4] equals 3 (i.e.
again the width of the thread block), g[5] equals 3 (i.e. the height of the thread block) and
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g[6] has a value equal to four times the stride value for the data image 450. The value of
four is the data size (i.e. four bytes), and the stride will have a value depending on the
overall size of the data image 450. This term causes the address to advance to the next
row within each thread block.

For the third term, the constants 480 identify that g[7] equals 9 (essentially
identifying the number of threads between each jump to an adjacent thread block in the x
dimension), the constant g[8] is equal to the width of the data image 450 divided by three
(to identify that the width is split into a series of thread blocks each containing three data
values), and the constant g[9] is set equal to OxC (identifying the separation in the x
dimension between the corresponding elements in two adjacent thread blocks). This term
causes the address to advance to the next block of nine threads once the end of the thread
block is reached.

Finally, for the fourth term, the constants 490 include a constant g[10] which is
set equal to the width multiplied by three (effectively identifying the number of thread
mappings that will have taken place before jumping to a new thread block in the y
dimension), the constant g[11] is set to a suitably large number to ensure that the modulus
functionality has no effect in the fourth term (in this example infinity), and the third
constant g[12] is set equal to 4 x 3 x the stride (i.e. the data size of four bytes multiplied
by the effective stride amount (given that each thread block occupies three rows and
hence the effective stride amount is three times the stride of the data image 450)). This
term causes the address to advance to the next row of thread blocks once the end of the
row is reached.

Hence, it will be appreciated that the form of computation shown in Figure 4 is
very powerful, since it is possible to add further terms to the computation, where all of
the terms perform the same basic computation, but where the constants provided to each
term are changed, in order to allow arbitrary mappings of the one dimensional range of
thread identifiers into the M-dimensional data image. This hence allows execution of the
task to be optimised to make best use of the available resources of the processing unit
such as the GPU performing that task without needing dedicated hardware to arrange this
thread blocking.

Once the required values have been generated by the value generator circuitry 60,

then all that is required within each individual thread is to add the instructions necessary
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to access those values. In the example of Figure 9A, it is assumed that the values are
stored into the special purpose registers 48 of Figure 1, and then each thread loads the
value relevant to that thread from the associated special purpose register into one of the
general purpose registers of the register bank prior to then utilising the value.
Accordingly, an MRS instruction (move from special purpose register to general register)
is used in the example illustrated in Figure 9A to load the contents of special register zero
into a general purpose register x0, it being assumed that special register zero is used to
store the value required by the thread P shown in Figure 9A. Thereafter, a load
instruction is used to load into the general purpose register x1 the data value found at the
address stored in the register x0, this hence causing the data value at the calculated
address to be loaded from the data image 80 in the example of Figure 1.

Figure 9B shows an optimisation, where the address value stored in the special
purpose register can be used directly rather than needing to be loaded into the register
bank first. In this instance, all that is required is a load instruction to load into one of the
general purpose registers, in this example x0, the data value found at the address stored in
the special register zero.

Without the techniques of the above described embodiments, a significant
number of instructions would need to be added to each thread. If for instance the
figure 3 example is considered, the following instructions would be needed in each

thread:

MRS x0, thread id x
MRS x1, thread id y
MRS x2, base address reg
MRS x3, stride reg

MLA x0, x1, x2, x0

LDR x0, [x2, x0, LSL #2]

The MLA instruction computes the offset (in elements) by multiplying the y
coordinate by the stride and adding the x coordinate. The LDR (load) instruction then
adds the offset to the base address, applying a shift to convert an element offset to a

byte offset.
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For more complex schemes, such as 3D coordinates, even more complex
computation may be required.

Hence, it can be seen that within each thread, the complexity of the computations
required can be significantly reduced, and in particular a whole series of instructions can
be removed that would otherwise be required within each thread to compute the address
value needed based on the thread identifier.

As will also be apparent from the above discussions, by moving such
functionality into a dedicated value generator circuit 60, it does not just remove the
complexity form the individual threads that need to be executed within the execution
pipeline, but it is often the case that significant improvements in computational efficiency
can be achieved by centralising the generation of the values within the value generator
circuitry, rather than requiring each thread to independently calculate its own value. For
example, if the values are generated in increasing order, strength reduction can be used to
simplify the computation of the value for each subsequent thread identifier, for example
by replacing some multiplies by additions, as described in Figure 6.

Figure 10 is a flow diagram illustrating the steps performed by the throughput
processor 20 when executing a task specified by a job descriptor 70 in memory 30, in
accordance with one embodiment. At step 500, the job descriptor is read from memory
by the control circuitry 55 of throughput processor 20. At step 505, the set of constants
and the N-dimensional range of thread identifiers specified in the job descriptor are
passed to the value generator circuitry 60, whereafter at step 510 the value generator
circuitry computes the value for each thread and stores the resultant values in the special
purpose registers 48.

At step 515, the threads are then dispatched from the control circuitry 55 into the
execution pipeline 40, to cause the program specified by the job descriptor 70 to be
executed for each thread. During execution, the threads will then obtain their thread
specific value from the special purpose registers 48.

It will be appreciated that Figure 10 is only intended to illustrate a general
sequence of flow within the throughput processor. It will be appreciated that the exact
sequence in which steps are performed may vary dependent on embodiment. For
example, if there are an insufficient number of special purpose registers to hold all of the

values that need to be generated, and the required threads are going to be executed in
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batches within the execution pipeline, then the values required for each batch can be
generated and stored in the special purpose registers before that batch of threads is then
executed. This process can then be repeated for each batch. Further, as mentioned
earlier, in alternative embodiments it may be arranged that the value generator circuitry
directly stores the generated values within registers of the register bank 50 ahead of them
being required by each particular thread being executed within the execution pipeline.

Further, as discussed for example with reference to Figure 6, in some
embodiments it may be the case that a separate value is not generated for every thread,
but instead a set of values is generated, one per thread group, and then in addition within
the special purpose registers a vector of offsets is stored for reference by the threads of
each thread group as they are executing,

In the present application, the words “configured to...” are used to mean that
an element of an apparatus has a configuration able to carry out the defined operation.
In this context, a “configuration” means an arrangement or manner of interconnection
of hardware or software. For example, the apparatus may have dedicated hardware
which provides the defined operation, or a processor or other processing device may
be programmed to perform the function. “Configured to” does not imply that the
apparatus element needs to be changed in any way in order to provide the defined
operation.

Although illustrative embodiments of the invention have been described in
detail herein with reference to the accompanying drawings, it is to be understood that
the invention is not limited to those precise embodiments, and that various changes,
additions and modifications can be effected therein by one skilled in the art without
departing from the scope and spirit of the invention as defined by the appended claims.
For example, various combinations of the features of the dependent claims could be
made with the features of the independent claims without departing from the scope of

the present invention.
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CLAIMS

1. An apparatus, comprising;

processing circuitry to execute a plurality of threads, each thread executing a
program to perform processing operations on thread data, each thread having a thread
identifier, and the thread data including a value which is dependent on the thread
identifier; and

value generator circuitry to perform a computation using the thread identifier of a
chosen thread in order to generate said value for the chosen thread, and to make said
value available to the processing circuitry for use by the processing circuitry when

executing said chosen thread.

2. An apparatus as claimed in Claim 1, wherein the processing circuitry is arranged
to process a task, the task specifying an N dimensional range of thread identifiers used to
determine the plurality of threads, and a same program to be executed as said program by

each of said plurality of threads.

3. An apparatus as claimed in Claim 2, wherein the value generator circuitry is
arranged to perform the computation using as inputs the thread identifier of the chosen

thread and a set of constant values that are fixed for said task.

4. An apparatus as claimed in Claim 3, wherein the value generator circuitry is
arranged to perform said computation by determining the sum of a plurality of terms,
each term being determined by performing a sub-computation on term-specific inputs,
said term-specific inputs comprising at least one constant specified for that term and at

least a part of the thread identifier.

5. An apparatus as claimed in Claim 4, wherein the value generator circuitry is
arranged to generate said value by adding the sum of said plurality of terms to a

predetermined constant value in said set of constant values.
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6. An apparatus as claimed in Claim 4 or Claim 5, wherein the number of terms in

said plurality of terms is configurable.

7. An apparatus as claimed in Claim 4 or Claim 5, wherein the number of terms in
said plurality of terms is fixed to provide one term for each dimension of a maximum

number of dimensions supported by the value generator circuitry.

8. An apparatus as claimed in any preceding claim, wherein:

the processing circuitry executes said plurality of threads in order to process an
M-dimensional array of data values, each thread executing the program in relation to one
of the data values in said M-dimensional array; and

the value generator circuitry is arranged to perform the computation for the
chosen thread in order to identify as said value a location of the data value for the chosen

thread within said M-dimensional array.

9. An apparatus as claimed in Claim 8, wherein said M-dimensional array of data
values is stored in memory and said value generated by the value generator circuitry

comprises a memory address associated with the data value for the chosen thread.

10. An apparatus as claimed in Claim 8 or Claim 9 when dependent on Claim 2,
wherein the value generator circuitry is arranged to perform said computation in order to
map the thread identifier within said N-dimensional range of thread identifiers to the

corresponding location within said M-dimensional array.

11.  An apparatus as claimed in any preceding claim, wherein said N-dimensional

range of thread identifiers is a one dimensional range.

12. An apparatus as claimed in Claim 10 when dependent on Claim 4, wherein:
said N-dimensional range of thread identifiers is a one dimensional range; and
the number of terms and the constant values are specified so that performance of

the computation by the value generator circuitry causes each of a plurality of sub-ranges
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of thread identifiers within said one dimensional range to map to a different M-

dimensional block within said M-dimensional array.

13, An apparatus as claimed in any of claims 1 to 10, wherein said N-dimensional
range of thread identifiers is a multi-dimensional range and each thread identifier

specifies coordinate values in said N-dimensional range.

14.  An apparatus as claimed in Claim 13, wherein N=M.

15. An apparatus as claimed in any preceding claim when dependent on Claim 4,
wherein the processing circuitry executes said plurality of threads in order to process an
M-dimensional array of data values, and said set of constant values provides an indication
of a base location, a data size of the data values in said M-dimensional array and a

number of data values extending in each dimension of the M-dimensional array.

16. An apparatus as claimed in any preceding claim, wherein the value generator
circuitry is arranged to perform said computation for each of said plurality of threads in

order to generate said value for each of said plurality of threads.

17.  An apparatus as claimed in any of claims 1 to 15, wherein the plurality of threads
comprise a plurality of thread groups, and the value generator circuitry is arranged to
compute the value for a chosen thread in each thread group, and to generate a vector of
offset values for use by the processing circuitry to derive the value for each of the threads

in the thread group based on the value computed for the chosen thread of the thread

group.

18. An apparatus as claimed in any preceding claim, wherein said value generator
circuitry is arranged to precompute the value for the chosen thread prior to the processing

circuitry executing the chosen thread.
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19. An apparatus as claimed in any preceding claim, wherein the value generator
circuitry 1s arranged to store each computed value in a register for access by the

processing circuitry.

20. An apparatus as claimed in any preceding claim when dependent on Claim 4,
wherein the value generator circuitry comprises a plurality of computation elements, each
computation element being arranged to perform the sub-computation of a term allocated

to that computation element.

21.  An apparatus as claimed in Claim 20, wherein each computation element is
formed by stepper circuitry arranged to use a counter mechanism to control the output

from that computation element.

22. An apparatus as claimed in any preceding claim, wherein the value generator
circuitry comprises multiple generators, each generator arranged to perform a different
computation such that said multiple generators generate, for the chosen thread, multiple

values that are dependent on the thread identifier.

23. An apparatus as claimed in Claim 22 when dependent on Claim 20, wherein said

multiple generators share use of said plurality of computation elements.

24, A method of executing a plurality of threads, comprising:

employing processing circuitry to execute said plurality of threads, each thread
executing a program to perform processing operations on thread data, each thread having
a thread identifier, and the thread data including a value which is dependent on the thread
identifier; and

employing value generator circuitry to perform a computation using the thread
identifier of a chosen thread in order to generate said value for the chosen thread, and to
make said value available to the processing circuitry for use by the processing circuitry

when executing said program for the chosen thread.

25.  An apparatus, comprising;
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processing means for executing a plurality of threads, each thread for executing a
program to perform processing operations on thread data, each thread having a thread
identifier, and the thread data including a value which is dependent on the thread
identifier; and

value generator means for performing a computation using the thread identifier of
a chosen thread in order to generate said value for the chosen thread, and for making said
value available to the processing means for use by the processing means when executing

said program for the chosen thread.

26. An apparatus for executing a plurality of threads, substantially as hereinbefore

described with reference to the accompanying figures.

27. A method of executing a plurality of threads, substantially as hereinbefore

described with reference to the accompanying figures.
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