实用新型名称
一种基于栅极控制的串联 IGBT 均压电路

摘要
本实用新型公开了一种基于栅极控制的串联 IGBT 均压电路，将静态均压电阻同时作为采样电阻，将电压互感器与辅助 IGBT 的栅极、发射极相连，当出现过电压时，通过导通辅助 IGBT，使辅助电容并联在 IGBT 的集电极和栅极之间，从而实现较好的均压效果。相较于现有技术，本实用新型将静态均压电阻作为采样电阻，通过辅助 IGBT 的导通与否来确定辅助电容是否参与电压的调节，只需要极少的元器件即可实现串联 IGBT 理想均压。
1. 一种基于栅极控制的串联 IGBT 均压电路，包括两个以上串联的主 IGBT，其特征在于，所述每个主 IGBT 均连接有一个均压单元；所述均压单元包括运算放大器、电压互感器、辅助 IGBT 或 MOS 管，由两个均压电阻串联组成的均压支路，所述均压支路并联在所述主 IGBT 集电极和发射极之间；所述运算放大器正输入端并联接入所述两个均压电阻之间，所述运算放大器输出端与所述电压互感器原边一个输入端依次连接，所述电压互感器原边另一个输入端与所述均压支路一端、主 IGBT 的发射极连接，所述电压互感器副边的一个输出端与所述辅助 IGBT 栅极或 MOS 管栅极连接，所述电压互感器副边的另一个输出端与所述辅助 IGBT 发射极或 MOS 管源极连接，所述辅助 IGBT 发射极或 MOS 管源极接入所述主 IGBT 栅极；所述均压支路另一端通过一个电容电阻并联支路接入所述辅助 IGBT 集电极或 MOS 管漏极；所述运算放大器输出端与所述运算放大器负输入端连接。

2. 根据权利要求 1 所述的基于栅极控制的串联 IGBT 均压电路，其特征在于，所述均压支路与所述电阻电容并联支路之间接有一个二极管。
说明书

一种基于栅极控制的串联 IGBT 均压电路

技术领域

【0001】本实用新型涉及一种 IGBT 的过电压抑制电路，特别是一种基于栅极控制的串联 IGBT 均压电路。

背景技术

【0002】随着 IGBT 耐压和通流能力逐渐提高，IGBT 作为大功率全控型器件在电力系统中的应用越来越广，例如轻型直流输电、风力发电的并网运行等。现有的 IGBT 串联方法很多，有直接串联、三电平、多电平、级联技术等。但是多电平、级联技术控制电路复杂，使用的器件数目增多多。而两电平或三电平器件数目小，驱动电路简单，因此高压输电工程实际应用中还是以 IGBT 直接串联技术为主。但是采用直接 IGBT 串联技术常需要数十个甚至上百个 IGBT 进行串联，由于 IGBT 转换开关速度快，器件本身存在差异，信号传输不平缓等从而将引起电压的分压不均衡，特别是动态电压不均衡时的电应力冲击更可能引起 IGBT 串联的烧坏等故障，因此需要外围的辅助电路来调节 IGBT 串联的均压均衡。

【0003】目前，国内外对 IGBT 串联方法的研究很多，负载侧控制和栅极控制两大类。负载侧控制是指通过 IGBT 负载侧电压不均衡时，直接在负载侧也就是电网电极进行控制调节。栅极控制是指通过实现电压不均衡时，通过对 IGBT 的栅极进行调节来控制 IGBT 电压的均衡。针对 IGBT 串联均压控制，对于采用负载侧进行控制时，当出现过电压较大的时候，负载侧控制的方法由于 IGBT 两端电容的吸收能量不同，将引起 IGBT 的两端电压不均衡较大，负载控制之间断时间较长，因而损耗较大。IGBT 串联控制的方法中，国内外针对栅极控制的研究相对较多，但是一般的栅极控制方法反应延迟时间较长，电路较为复杂，或者可能引起震荡。

发明内容

【0004】本实用新型所要解决的技术问题是，针对现有技术不足，提供一种结构简单、反应时间快的基于栅极控制的串联 IGBT 均压电路，实现串联 IGBT 的静态和动态电压均衡。

【0005】为解决上述技术问题，本实用新型所采用的技术方案是：一种基于栅极控制的串联 IGBT 均压电路，包括两电以上串联的主 IGBT，所述每个主 IGBT 均连接有一个均压单元，所述均压单元包括运算放大器、电压互感器、辅助 IGBT 或 MOS 管、由两个均压电阻串联组成的均压支路，所述均压支路并联在所述主 IGBT 电极和发射极之间；所述运算放大器正输入端并联接入所述两个均压电阻之间，所述运算放大器输出端与所述电压互感器原边一个输入端依次连接，所述电压互感器原边另一个输入端与所述均压支路一端、主 IGBT 的发射极连接，所述电压互感器副边的一个输出端与所述辅助 IGBT 栅极或 MOS 管栅极连接，所述电压互感器副边的另一个输出端与所述辅助 IGBT 发射极或 MOS 管源极连接，所述辅助 IGBT 发射极或 MOS 管源极接所述主 IGBT 栅极；所述均压支路另一端通过一个电容电阻并联支路接入所述辅助 IGBT 集电极或 MOS 管漏极；所述运算放大器输出端与所述运算放大器负输入端连接。
所述均压支路与所述电阻电容并联支路之间接有一个二极管。

与现有技术相比，本实用新型所具有的有益效果为本实用新型电路反应时间快，结构简单，实现了串联 IGBT 的静态和动态电压均衡。

附图说明

图 1 为本实用新型一实施例两个主 IGBT 串联的电路原理图。

具体实施方式

如图 1 所示，本实用新型一实施例包括两个主 IGBT Z_1 和 Z_2，静态均压电阻 R_{a} 和 R_{a}、脉冲变压器、运算放大器 OP 本实施例中用作电压跟随器、电压互感器 T_1，辅助 IGBT Z_1，辅助元件 C_{a}，放电电阻 R_{a}（辅助元件 C_{a}，放电元件 R_{a} 并联组成电阻电容支路）、二极管 D_{a} 构成。静态均压电阻 R_{a} 和 R_{a} 并联在主 IGBT 的集电极 - 发射极作为电压检测电阻，R_{a} 并联在电压互感器 T_1 的原边，辅助 IGBT Z_1 的栅极和集电极并联在 T_1 的副边，辅助元件 C_{a} 和二极管 D_{a} 串联在主 IGBT 的集电极与辅助 IGBT Z_1 的集电极之间，R_{a} 并联在辅助元件 C_{a} 两端，其中“x”表示“1”或“2”。

电阻 R_{a} 和 R_{a} 串联作为静态均压电阻调节静态的电压均衡。电阻 R_{a} 作为电压检测电阻，当无论何种原因引起某个主 IGBT 上的电压超过主 IGBT 设定的承受电压时，R_{a} 上的电压将超过辅助 IGBT 的阈值电压，采集的过电压信号经过电压跟随器后通过电压互感器作用在辅助 IGBT Z_1 的栅极 - 发射极，从而使辅助 IGBT Z_1 导通，此时辅助元件 C_{a} 调节 IGBT 的电压均衡，从而达到主 IGBT 均压的目的。其中电压互感器的作用包括如下几个方面：首先当出现过电压时使 Z_1 管导通从而使元件 C_{a} 并联在 IGBT 集电极 - 发射极两端；另一方面，使均压电路不致主 IGBT 的正常关断电压的设定，另外还能起到隔离静态均压支路和 Z_1 栅极发射极的作用。为了防止电压互感器副边的负载对原边电压信号的影响，在电压互感器的原边加入一个电压跟随器，同时电压跟随器也能起到增强驱动能力的作用。为了防止导通时辅助元件对导通时间的影响，增加了二极管 D_{a}。R_{a} 的作用是电容 C_{a} 提供一个放电回路，电容 C_{a} 的能量应在一个周期内通过 R_{a} 消耗，让电容 C_{a} 为下一次次参过电压抑制做准备。

辅助的 IGBT 可以采用 MOS 管替代，即 MOS 管的漏极等效 IGBT 的集电极，MOS 的源极等效 IGBT 的发射极。