

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

WIPO | PCT

(10) International Publication Number

WO 2013/063069 A1

(43) International Publication Date

2 May 2013 (02.05.2013)

(51) International Patent Classification:

A61F 2/02 (2006.01) *A61L 27/04* (2006.01)
A61L 27/14 (2006.01) *A61L 27/06* (2006.01)

(21) International Application Number:

PCT/US2012/061627

(22) International Filing Date:

24 October 2012 (24.10.2012)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

13/317,719 26 October 2011 (26.10.2011) US

(72) Inventors; and

(71) Applicants : **PICHA, George, J.** [US/US]; 2632 Hidden Canyon Drive, Brecksville, OH 44141 (US).
THOMPSON, Dawn; 1416 Kendal Drive, Broadview Heights, OH 44147 (US).

(74) Agents: **YORK, Gregory, M.** et al.; Pearne & Gordon LLP, 1801 East 9th Street, Suite 1200, Cleveland, OH 44114-3108 (US).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,

BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

- with international search report (Art. 21(3))
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments (Rule 48.2(h))

(54) Title: HARD TISSUE IMPLANT

FIG. 1

(57) Abstract: Hard-tissue implants are provided that include a bulk implant, a face, pillars, and slots. The pillars are for implantation into a hard tissue. The slots are to be occupied by the hard tissue. The hard-tissue implant has a Young's modulus of elasticity of at least 10 GPa, has a ratio of the sum of (i) the volumes of the slots to (ii) the sum of the volumes of the pillars and the volumes of the slots of 0.40:1 to 0.90:1, does not comprise any part that is hollow, and does not comprise any non-pillar part extending to or beyond the distal ends of any of the pillars. Methods of making and using hard-tissue implants are also provided.

HARD-TISSUE IMPLANT

CROSS-REFERENCE

[0001] This application claims the benefit of U.S. Non-Provisional Patent Application No. 5 13/317,719 filed October 26, 2011, the entire disclosure of which is incorporated herein by reference.

TECHNICAL FIELD

[0002] The present disclosure relates generally to a hard-tissue implant, and more particularly to a hard-tissue implant including a bulk implant, a face, pillars, and slots.

10

BACKGROUND

[0003] Conventional hard-tissue implants include implants designed to promote in-growth of hard tissue based on forming a tissue/implant interface in which the implant forms a continuous phase and the tissue forms a discontinuous phase, e.g. based on the implant having a concave and/or porous surface into which the hard tissue can grow, and designed to have add-on surface modifications, e.g. modifications added based on sintering.

15

[0004] For example, Van Kampen et al., U.S. Pat. No. 4,608,052, discloses an implant for use in a human body having an integral attachment surface adapted to permit ingrowth of living tissue. The implant surface is defined by a multiplicity of adjacent, generally concave surface parts having intersecting, generally aligned rims defining an inner attachment surface portion and by a multiplicity of spaced posts projecting from the inner attachment surface. Van Kampen also discloses that implants have been provided with porous surfaces, as described in U.S. Pat. Nos. 3,605,123, 3,808,606, and 3,855,638.

20

[0005] Also for example, J.D. Bobyn et al, 150 Clinical Orthopaedics & Related Research 263 (1980), discloses that a pore size range of approximately 50 to 400 μm provided an optimal or maximal fixation strength (17 MPa) in the shortest time period (8 weeks) with regard to cobalt-base alloy implants with powder-made porous surfaces. Specifically, implants were fabricated based on coating cylindrical rods of cast cobalt-base alloy with cobalt base alloy powder in four particle size ranges. The particle size ranges were as follows: 25 to 45 μm ; 45 to 150 μm ; 150 to 300 μm ; and 300 to 840 μm . The corresponding pore size ranges of the particles were as follows: 20 to 50 μm ; 50 to 200 μm ; 200 to 400 μm ; and 400 to 800 μm , respectively. The particles were then bonded to the rods based on sintering. All implants were manufactured to have a maximal diameter of 4.5 mm and a length of 9.0 mm. The implants were surgically inserted into holes in dog femurs and bone ingrowth was allowed to proceed. After varying periods of time (4, 8, or 12 weeks), the maximum force required to dislodge the implants was determined. Implants with a pore size lower than 50 μm yielded relatively low fixation strengths at all time points, while implants with a pore size higher than 400 μm exhibited relatively high scatter with regard to fixation strengths, thus indicating that a pore size range of approximately 50 to 400 μm provided an optimal or maximal fixation strength.

[0006] Conventional hard-tissue implants also include implants having surface texturing, e.g. barbs or pillars, to make it difficult to withdraw the implants from hard tissue or to more effectively mechanically anchor at an early date or affix into adjoining hard tissue.

[0007] For example, Amrich et al., U.S. Pat. No. 7,018,418, discloses implants having a textured surface with microrecesses such that the outer surface overhangs the microrecesses. In one embodiment, unidirectional barbs are produced in the surface that can be inserted into bone or tissue. The directional orientation of the barbs is intended to make it difficult to withdraw from the bone or tissue.

[0008] Also for example, Picha, U.S. Pat. No. 7,556,648, discloses a spinal implant, i.e. an implant for use in fusing and stabilizing adjoining spinal vertebrae, including a hollow, generally tubular shell having an exterior lateral surface, a leading end, and a trailing end. The exterior surface includes a plurality of pillars arranged in a non-helical array. Each pillar has a height of 100 to 4,500 μm and a lateral dimension at the widest point of 100 to 4,500 μm . The exterior surface also has a plurality of holes therethrough to permit bone ingrowth therethrough.

[0009] Unfortunately, interfaces of hard tissue and hard-tissue implants in which the hard tissue is in a discontinuous phase may be susceptible to stress shielding, resulting in resorption of affected hard tissue, e.g. bone resorption, over time. Also, addition of surface texturing to implants by sintering can result in the surface texturing occupying an excessive volume of corresponding hard tissue/implant interfaces, leaving insufficient space for hard tissue. In addition, spinal implants are designed to perform under conditions relevant to spine, i.e. compression, rotational shear, and vertical shear, with the compression being essentially constant, the rotational shear being intermittent, and the vertical shear being rare, rather than conditions relevant to other hard tissues such as long bone, maxillary bone, mandibular bone, and membranous bone, i.e. load bearing conditions, including compression and tension, varying across the hard tissue and across time, and intermittent rotational and vertical shear. Accordingly, there is a need for hard-tissue implants of general applicability that address these issues and provide improvements. The device disclosed here is such an implant.

SUMMARY

[0010] A hard-tissue implant is provided that includes a bulk implant, a face, pillars, and slots. The face is an exterior surface of the bulk implant. The pillars are for implantation into a hard tissue. The pillars are distributed on the face, across an area of at least 80 mm^2 , and extend distally therefrom. Each pillar is integral to the bulk implant, has a distal end, has a transverse area of (200 $\mu\text{m} \times 200 \mu\text{m}$) to (10,000 $\mu\text{m} \times 10,000 \mu\text{m}$), i.e. $4.0 \times 10^4 \mu\text{m}^2$ to $1.0 \times 10^8 \mu\text{m}^2$, and has a height of 100 to 10,000 μm . The slots are to be occupied by the hard tissue. The slots are defined by the pillars. Each slot has a width of 100 to 10,000 μm as measured along the shortest distance between adjacent pillars. The hard-tissue implant has a Young's modulus of elasticity of at least 10 GPa, and has a ratio of (i) the sum of the volumes of the slots to (ii) the sum of the volumes of the pillars and the volumes of the slots of 0.40:1 to 0.90:1. The hard-tissue implant does not include any part that is hollow, and does not include any non-pillar part extending to or beyond the distal ends of any of the pillars.

[0011] Also provided is a method of making a hard-tissue implant that, upon implantation into a hard tissue, provides immediate load transfer and prevents stress shielding. The hard-tissue implant includes a bulk implant, a face, pillars, and slots. The face is an exterior surface of the bulk implant. The pillars are for implantation into a hard tissue. The pillars are distributed on the face, across an area of at least 80 mm², and extend distally therefrom. Each pillar is integral to the bulk implant, has a distal end, has a transverse area of (200 μm × 200 μm) to (10,000 μm × 10,000 μm), i.e. 4.0 × 10⁴ μm² to 1.0 × 10⁸ μm², and has a height of 100 to 10,000 μm. The slots are to be occupied by the hard tissue. The slots are defined by the pillars. Each slot has a width of 100 to 10,000 μm as measured along the shortest distance between adjacent pillars. The hard-tissue implant has a Young's modulus of elasticity of at least 10 GPa, and has a ratio of (i) the sum of the volumes of the slots to (ii) the sum of the volumes of the pillars and the volumes of the slots of 0.40:1 to 0.90:1. The hard-tissue implant does not include any part that is hollow, and does not include any non-pillar part extending to or beyond the distal ends of any of the pillars. The method includes designing the hard-tissue implant such that the ratio of (i) the product of (a) the Young's modulus of the hard-tissue implant and (b) the sum of the volumes of the pillars to (ii) the product of (a) the Young's modulus of the hard tissue and (b) the sum of the volumes of the slots will be 0.80:1 to 3.8:1. The method also includes making the hard-tissue implant.

[0012] Also provided is a method of use of a hard-tissue implant in a hard tissue of an individual in need thereof. The hard-tissue implant includes a bulk implant, a face, pillars, and slots. The face is an exterior surface of the bulk implant. The pillars are for implantation into a hard tissue. The pillars are distributed on the face, across an area of at least 80 mm², and extend distally therefrom. Each pillar is integral to the bulk implant, has a distal end, has a transverse area of (200 μm × 200 μm) to (10,000 μm × 10,000 μm), i.e. 4.0 × 10⁴ μm² to 1.0 × 10⁸ μm², and has a height of 100 to 10,000 μm. The slots are to be occupied by the hard tissue. The slots are defined by the pillars. Each slot has a width of 100 to 10,000 μm as measured along the shortest distance between adjacent pillars. The hard-tissue implant has a Young's modulus of elasticity of at least 10 GPa, and has a ratio of (i) the sum of the volumes of the slots to (ii) the sum of the volumes of the pillars and the volumes of the slots of 0.40:1 to 0.90:1. The hard-tissue implant does not include any part that is hollow, and does not include any non-pillar part extending to or beyond the distal ends of any of the pillars. The method includes selecting the hard-tissue implant such that the ratio of (i) the product of (a) the Young's modulus of the hard-tissue implant and (b) the sum of the volumes of the pillars to (ii) the product of (a) the Young's modulus of the hard tissue and (b) the sum of the volume of the slots is 0.80:1 to 3.8:1. The method also includes implanting the hard-tissue implant in the hard-tissue.

BRIEF DESCRIPTION OF THE DRAWINGS

[0013] The patent or application file contains at least one drawing executed in color. Copies of this patent or patent application publication with color drawing(s) will be provided by the Office upon request and payment of the necessary fee.

[0014] These and other features, aspects, and advantages of the present disclosure are better understood when the following detailed description is read with reference to the accompanying drawings, in which:

[0015] **FIG. 1** is a schematic perspective view of a hard-tissue implant;

5 **[0016]** **FIG. 2** is another schematic perspective view of a hard-tissue implant;

[0017] **FIG. 3** is a schematic top plan view of a hard-tissue implant;

[0018] **FIG. 4** is a schematic side elevational view of a hard-tissue implant;

[0019] **FIG. 5A** is a schematic perspective view of a pillar of a hard-tissue implant;

[0020] **FIG. 5B** is a schematic cross-sectional view of a pillar of a hard-tissue implant;

10 **[0021]** **FIGS. 6A-E** are schematic top plan views of a hard-tissue implant in which the circumference of the transverse area of the pillars thereof have (A) a square shape, (B) a rectangular shape, (C) a herringbone shape, (D) a circular shape, and (E) an oval shape;

[0022] **FIG. 7** is a schematic perspective view of part of a hard-tissue implant;

15 **[0023]** **FIGS. 8A-E** are graphs of canine compressive results, expressed as load (N) versus extension (mm), for canine femur implants corresponding to (A) a control implant, (B) implant 1, (C) implant 2, (D) implant 3, and (E) implant 4;

[0024] **FIG. 9** is a graph of average ultimate load (N) at failure for the control implant and implants 1 to 4; and

20 **[0025]** **FIGS. 10A-D** are histological micrographs at 4X magnification of (A) implant 1 (PEEK, 100 μ m slot width) face 25 μ m cut H&E stain, (B) implant 2 (PEEK, 200 μ m slot width) face 25 μ m trichrome stain, (C) implant 3 (PEEK, 400 μ m slot width) face 25 μ m trichrome stain, and (D) implant 4 (titanium, 400 μ m slot width) 25 μ m trichrome stain.

DETAILED DESCRIPTION

25 **[0026]** The present disclosure will now be described more fully hereinafter with reference to the accompanying drawings in which example embodiments of the invention are shown. Whenever possible, the same reference numerals are used throughout the drawings to refer to the same or like parts. However, this invention may be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. These example embodiments are provided so that this disclosure will be 30 both thorough and complete, and will fully convey the scope of the invention to those skilled in the art.

[0027] As set forth in the figures, example hard-tissue implants are provided. The hard-tissue implants provide advantages, including for example that the hard-tissue implants can promote hard-tissue remodeling and growth at the site of implantation and that the interface of the hard-tissue implants and the hard tissue can withstand substantial yield/elongation and load before failure. Without wishing to be 35 bound by theory, it is believed that these advantages are based on properties of the hard-tissue implants and the interface resulting from implantation thereof. Specifically, the hard-tissue implants can provide immediate load transfer upon implantation and prevent stress shielding over time, thus promoting hard-tissue remodeling and growth at the site of implantation. For example, by providing immediate load

transfer, the pillars of the implants may be pressed deeply into hard tissue, allowing enhanced load transfer, potentially eliminating micro-motion and migration of the implant over time, accommodating torque, and/or eliminating the need for adhesives such as cement or grout to hold the implant in place. Moreover, the interface can have a continuous phase corresponding to the hard tissue and a discontinuous 5 phase corresponding to the hard-tissue implant. The hard tissue can also make up at least 40% of the volume of the interface, and the product of the Young's modulus of elasticity of the hard tissue and the volume of the tissue and the product of the Young's modulus of elasticity of the implant and the volume of the pillars of the implant can be well matched. Thus, the interface exhibits mechanical properties similar to those of the bulk hard tissue adjacent to the interface. The result is that the interface following 10 implantation of a hard-tissue implant into a hard tissue is surprisingly long-lasting and resilient to load. In addition, the hard-tissue implants may promote rich vascularization of the hard tissue of the interface, enhancing wound healing, providing nutritional support, accelerating healing, remodeling, and integration of the hard tissue, and limiting the potential for infection of the hard tissue. Rapid or immediate integration of the hard tissue into the space between the pillars of the hard-tissue implant, e.g. by 15 immediate impregnation of the implant into the surrounding tissue without need for subsequent ingrowth by the hard tissue, may also prevent detrimental cellular reactions at the interface, such as formation of fibrous tissue, seroma, or thrombosis.

[0028] As used herein, the term "hard-tissue implant" means an implant suitable for implantation in a hard tissue. Exemplary hard-tissue implants include rods, plates, screws, pins, and devices for 20 anchoring into bone. Exemplary hard-tissue implants also include a tibial implant, a femur implant, a shoulder implant, a small joint implant, a skull plate implant, a cervical implant, and a metatarsal implant. Exemplary hard tissue implants also include a dental implant. Exemplary hard-tissue implants also include cartilage implants. Exemplary hard tissues suitable for implantation of the hard-tissue implants include bone, cartilage, calcified cartilage, non-calcified cartilage, and tissue that has become mineralized. 25 Exemplary hard tissues also include long bone, maxillary bone, mandibular bone, and membranous bone. Exemplary hard tissues also include tibia, femur, shoulder, small joints, skull, and metatarsal. Exemplary hard tissues also include spine.

[0029] As used herein, the term "pillar" means a projection that extends distally from a face of a hard-tissue implant, that is not in direct physical contact with any other pillars or other parts of the implant 30 other than the face, and that is for implantation into a hard tissue. Because a pillar is not in direct physical contact with any other pillars or other parts of the implant other than the face, upon implantation into a hard tissue no pillar forms a continuous phase within the resulting interface of the hard tissue and hard-tissue implant. A pillar can have a transverse area, i.e. an area of a cross-section taken relative to a vertical axis along which the pillar extends distally from the face of the implant, of, for example, (i) $(200 \mu\text{m} \times 200 \mu\text{m})$ to $(10,000 \mu\text{m} \times 10,000 \mu\text{m})$, i.e. $4.0 \times 10^4 \mu\text{m}^2$ to $1.0 \times 10^8 \mu\text{m}^2$, (ii) $(200 \mu\text{m} \times 200 \mu\text{m})$ to $(2,000 \mu\text{m} \times 2,000 \mu\text{m})$, i.e. $4.0 \times 10^4 \mu\text{m}^2$ to $4.0 \times 10^6 \mu\text{m}^2$, (iii) $(250 \mu\text{m} \times 250 \mu\text{m})$ to $(1,000 \mu\text{m} \times 1,000 \mu\text{m})$, i.e. $6.3 \times 10^4 \mu\text{m}^2$ to $1.0 \times 10^6 \mu\text{m}^2$, (iv) $(300 \mu\text{m} \times 300 \mu\text{m})$ to $(500 \mu\text{m} \times 500 \mu\text{m})$, i.e. $9 \times 10^4 \mu\text{m}^2$ to $2.5 \times 10^5 \mu\text{m}^2$, (v) $(350 \mu\text{m} \times 350 \mu\text{m})$ to $(450 \mu\text{m} \times 450 \mu\text{m})$, i.e. $1.2 \times 10^5 \mu\text{m}^2$ to $2.0 \times 10^5 \mu\text{m}^2$, 35

or (vi) (395 $\mu\text{m} \times 395 \mu\text{m}$) to (405 $\mu\text{m} \times 405 \mu\text{m}$), i.e. $1.6 \times 10^5 \mu\text{m}^2$. Of note, the expression of transverse areas of pillars as squares of linear dimensions, i.e. (200 $\mu\text{m} \times 200 \mu\text{m}$), here and throughout this application, is for purposes of convenience only and is not intended to limit any pillars so described to square shapes, square transverse areas, or square cross-sections. A pillar can have a pillar height, i.e. the 5 height of the pillar from the face of the hard-tissue implant to the distal end of the pillar, of, for example, 100 to 10,000 μm , 100 to 5,000 μm , 200 to 2,500 μm , 300 to 1,000 μm , 400 to 600 μm , 450 to 550 μm , 490 to 510 μm , or 500 μm . A pillar can have a volume, i.e. product of pillar transverse area and pillar height, of, for example (i) (200 $\mu\text{m} \times 200 \mu\text{m} \times 100 \mu\text{m}$) to (10,000 $\mu\text{m} \times 10,000 \mu\text{m} \times 10,000 \mu\text{m}$), i.e. 10 $4.0 \times 10^6 \mu\text{m}^3$ to $1.0 \times 10^{12} \mu\text{m}^3$, (ii) (200 $\mu\text{m} \times 200 \mu\text{m} \times 100 \mu\text{m}$) to (2,000 $\mu\text{m} \times 2,000 \mu\text{m} \times 5,000 \mu\text{m}$), i.e. $4.0 \times 10^6 \mu\text{m}^3$ to $2.0 \times 10^{10} \mu\text{m}^3$, (iii) (250 $\mu\text{m} \times 250 \mu\text{m} \times 200 \mu\text{m}$) to (1,000 $\mu\text{m} \times 1,000 \mu\text{m} \times 2,500 \mu\text{m}$), i.e. $1.3 \times 10^7 \mu\text{m}^3$ to $2.5 \times 10^9 \mu\text{m}^3$, (iv) (300 $\mu\text{m} \times 300 \mu\text{m} \times 300 \mu\text{m}$) to (500 $\mu\text{m} \times 500 \mu\text{m} \times 1,000 \mu\text{m}$), i.e. $2.7 \times 10^7 \mu\text{m}^3$ to $2.5 \times 10^8 \mu\text{m}^3$, (v) (350 $\mu\text{m} \times 350 \mu\text{m} \times 400 \mu\text{m}$) to (450 $\mu\text{m} \times 450 \mu\text{m} \times 600 \mu\text{m}$), i.e. $4.9 \times 10^7 \mu\text{m}^3$ to $1.2 \times 10^8 \mu\text{m}^3$, or (vi) (395 $\mu\text{m} \times 395 \mu\text{m} \times 490 \mu\text{m}$) to (405 $\mu\text{m} \times 405 \mu\text{m} \times 510 \mu\text{m}$), i.e. $7.7 \times 10^7 \mu\text{m}^3$ to $8.4 \times 10^7 \mu\text{m}^3$. A pillar can have, as seen from a top view, a square shape, a 15 rectangular shape, a herringbone shape, a circular shape, or an oval shape, respectively, or alternatively can have other polygonal, curvilinear, or variable shapes.

[0030] As used herein, the term “slot” means the spaces between the pillars. Accordingly, the pillars define the slots. The slots can have a slot height as defined by the pillars, of, for example, 100 to 10,000 μm , 100 to 5,000 μm , 200 to 2,500 μm , 300 to 1,000 μm , 400 to 600 μm , 450 to 550 μm , or 500 μm . The slots can have a slot width as measured along the shortest distance between adjacent pillars of, 20 for example, 100 to 10,000 μm , 100 to 7,500 μm , 100 to 3,000 μm , 150 to 1,000 μm , 175 to 450 μm , 190 to 410 μm , 190 to 210 μm , or 390 to 410 μm . The slots have a volume corresponding to the volume of the space between the pillars.

[0031] As used herein, the term “pore” refers to a void space of less than 1,000 μm in size, i.e. 25 having a diameter of less than 1,000 μm , on or below a surface, e.g. the surface of a hard-tissue implant. Pores can occur in a material naturally, e.g. based on a natural porosity of the material, or can be introduced, e.g. by chemical or physical treatment. Pores can be continuous with respect to each other, based on being interconnected with each other below a surface, or pores can be discontinuous, based on 30 not being interconnected with each other below a surface. Pores can be sufficiently large to allow for migration and proliferation of osteoblasts and mesenchymal cells. Accordingly, for example, a porous surface is a surface that includes void spaces of less than 1,000 μm in size in the surface, whereas a non-porous surface is a surface that does not include such a void space.

[0032] As used herein the term “hollow,” when used in reference to a part of a hard-tissue 35 implant, means that the part includes, below a surface thereof, at least one void space, e.g. cavity, hole, or the like, of more than 5,000 μm in size, i.e. having a diameter greater than 5,000 μm . Accordingly, a part that is not hollow does not include any such void space.

[0033] As used herein, the term “interface resulting from implantation of the hard-tissue implant into a hard tissue,” or more simply “interface,” means the product of implantation wherein the pillars of

the hard-tissue implant are implanted in a hard tissue and the slots of the hard-tissue implant are occupied, partially or completely, by the hard tissue. The interface includes the pillars, the hard tissue that occupies the slots of the hard-tissue implant, any remaining unoccupied space in the slots, any hard tissue that occupies any additional space between the face of the implant and a plane defined by the distal ends of the 5 pillars, and any hard tissue that occupies any pores on the face or the pillars. Accordingly, the interface boundaries are the face of the hard tissue implant, the internal surfaces of any pores on the face, and the bulk tissue surrounding interface. In one example embodiment, e.g. immediately after pressing the hard-tissue implant into the hard tissue and/or after remodeling and growth of the hard tissue to fill in all space between the hard-tissue implant and the hard tissue, the pillars are implanted in the hard tissue, and the 10 slots are completely occupied by the hard tissue. In another example embodiment, e.g. after implanting the hard-tissue implant partially into the hard tissue and/or before remodeling and growth of the hard tissue to fill in all space between the hard-tissue implant and the hard tissue, the pillars are partially implanted in the hard tissue, and the slots are partially occupied by the hard tissue.

15 [0034] As used herein, the term “continuous,” when used for example in reference to the hard-tissue of an interface, means that the hard tissue forms a single continuous phase, extending throughout and across the interface to each boundary of the interface. As used herein, the term “discontinuous,” when used for example in reference to the hard-tissue implant of an interface, means that the hard-tissue implant does not form such a single continuous phase.

20 Hard-Tissue Implant

25 [0035] Considering the features of an example hard-tissue implant in more detail, **FIG. 1** provides a schematic illustration in perspective view of one example hard-tissue implant **100** in perspective view for illustration purposes. As described in more detail below, the hard-tissue implant **100** can be made from a material having a Young’s modulus of elasticity, i.e. a tensile modulus of elasticity, of at least 10 GPa, as measured at 21° C, including for example (i) implantable-grade polyetheretherketone, e.g. carbon-fiber-reinforced implantable-grade polyetheretherketone, which has a Young’s modulus of elasticity of at least 18 GPa, (ii) titanium, which has a Young’s modulus of elasticity of approximately 110 GPa, (iii) stainless steel, which has a Young’s modulus of elasticity of approximately 200 GPa, (iv) cobalt-chromium alloy, which has a Young’s modulus of elasticity of greater than 200 GPa, or (iv) 30 titanium alloy, which has a Young’s modulus of elasticity of approximately 105-120 GPa, all as measured at 21° C. The hard-tissue implant **100** can be also made from a hard tissue obtained from a human or animal, e.g. an autologous hard tissue, an allogeneic hard tissue, a xenogeneic hard tissue, human cartilage, animal cartilage, a human bone, an animal bone, or a cadaver bone. Such hard tissues obtained from a human or animal can have a Young’s modulus of elasticity of, e.g. 10 to 18 GPa. Such hard 35 tissues obtained from a human or animal can also be treated, in advance of implantation, to decrease or eliminate the capacity of the hard tissue to elicit an immune response in an individual upon implantation into the individual. The hard-tissue implant can also be made from more than one of the above-noted materials and/or hard tissues. Accordingly, the hard-tissue implant **100** has a Young’s modulus of

elasticity of at least 10 GPa, for example 18 to 230 GPa, 18 to 25 GPa, 100 to 110 GPa, 190 to 210 GPa, 200 to 230 GPa, 105 to 120 GPa, or 10 to 18 GPa.

[0036] As shown in **FIG. 1**, the hard-tissue implant **100** includes a bulk implant **110**, a face **120**, pillars **140**, and slots **150**.

5 [0037] Considering the bulk implant **110** in more detail, as shown in **FIG. 1** the bulk implant **110** forms the core of the hard-tissue implant **100** and can have a three-dimensional rectangular prism shape, although cuboidal, cylindrical, pyramidal, conical, and other three-dimensional shapes may be used in further examples. The bulk implant **110** can be made from one or more of the materials or hard tissues noted above with respect to the implant **100**, e.g. a material such as implantable-grade
10 polyetheretherketone, titanium, stainless steel, cobalt-chromium alloy, or titanium alloy, or e.g. a hard tissue obtained from a human or animal such as an autologous hard tissue, an allogeneic hard tissue, a xenogeneic hard tissue, human cartilage, animal cartilage, a human bone, an animal bone, or a cadaver bone.

15 [0038] The bulk implant **110** can be porous or non-porous. For example, the bulk implant **110** can include one or more surfaces that are porous, and/or can be made from one or more materials that are porous. Such porous surfaces can include pores having diameters of, e.g. 1 to 900 μm , 100 to 800 μm , or 200 to 600 μm . Also for example, the bulk implant **110** can include only surfaces that are non-porous, and/or can be made only from one or more materials that are non-porous.

20 [0039] Considering now the face **120** in more detail, as shown in **FIG. 1** the face **120** of the hard-tissue implant **100** is an exterior surface of the bulk implant **110**, having a total area **160**. As shown in
25 **FIG. 1**, the face **120** can be flat, i.e. have a flat contour. Alternatively, as shown in **FIG. 2**, the face **120** can be cylindrical, i.e. have a cylindrical contour. As further alternatives, the face **120** can have other angular, curvilinear, and/or irregular contours. As shown in **FIG. 3**, the face **120** can have a rectangular peripheral shape as seen from a top view, although other polygonal, curvilinear, or other shapes may be
30 used in further examples. As shown in **FIGS. 1** and **2**, the face can be defined by an edge **130**. For example, as shown in **FIG. 1**, the edge **130** can be a single continuous edge that defines the face **120**. Also for example, as shown in **FIG. 2**, the edge **130** can be two edges that are discontinuous with respect to each other that together define the face **120**. Also for example, the edge **130** can be three or more edges that are discontinuous with respect to each other that together define the face **120**. As shown in **FIGS. 1** and **2**, the edge **130** and the pillars **140** closest to the edge **130** can define a peripheral border **122** of the face **120**. As also shown in **FIGS. 1** and **2**, the edge **130** can define an intersection between the face **120** and one or more adjacent faces **124** of the hard-tissue implant **100**. As shown, the face **120** and the one or more adjacent faces **124** may intersect at the edge **130** at a right angle, although the face **120** and the one or more adjacent faces **124** may also intersect at other angles, e.g. acute angles, obtuse angles, or varying
35 angles. As also shown, the edge **130** can be sharp, although other rounded, angular, smooth, and/or irregular edges may be used in further examples. The face **120** can be porous, e.g. including pores having diameters of, e.g. 1 to 900 μm , 100 to 800 μm , or 200 to 600 μm , or the face **120** can be non-porous. The bulk implant **110** can include more than one face **120**, e.g. two, three, four, five, or more faces **120**.

[0040] Considering now the pillars **140** in more detail, the pillars **140** are for implantation into a hard tissue. The hard tissue can be selected, for example, from the group consisting of bone, cartilage, calcified cartilage, non-calcified cartilage, and tissue that has become mineralized. The hard tissue can also be selected, for example, from the group consisting of long bone, maxillary bone, mandibular bone, and membranous bone. The hard tissue can also be selected, for example, from the group consisting of tibia, femur, shoulder, small joints, skull, and metatarsal. The hard tissue can also be, for example, spine.

[0041] As shown in **FIG. 3**, the pillars **140** are distributed on the face **120** of the hard-tissue implant **100**, across an area **170** of the face **120** of at least 80 mm². For example, the pillars **140** can be distributed in a regular pattern **310** on the face **120** of the hard-tissue implant **100**, across the area **170** of the face **120**. In this regard, the pillars **140** can be distributed in even rows along a horizontal axis **320** and a vertical axis **330** of the face **120**, and can be distributed along a given row uniformly with respect to the distances between the centers **142** of the pillars **140** in the row. Also for example, the pillars **140** can also be distributed in other regular patterns, e.g. the pillars **140** can be distributed in rows that are even with respect to the horizontal axis **320** but not the vertical axis **330**, or vice versa, the pillars **140** in one row may be offset from the pillars **140** in adjacent rows, the pillars **140** may be arranged in a spiral pattern, etc. Also for example, the pillars **140** can be distributed on the face **120** of the hard-tissue implant **100** in irregular patterns or randomly. For example, the pillars **140** can be distributed on the face **120** of the hard-tissue implant **100** such that the pillars **140** are packed more densely on one area of the face **120** and less densely on another area of the face **120**. Moreover, for a bulk implant **110** including more than one face **120** across which pillars **140** are distributed, the pillars **140** can be distributed differently on the various faces **120**, e.g. in different regular patterns **310**, in different irregular patterns, and/or packed at different densities.

[0042] As shown in **FIGS. 1** and **3**, the pillars **140** can be distributed on the face **120** of the hard-tissue implant **100** such that none of the pillars **140** are located at an edge **130**, i.e. the face **120** can have a peripheral border **122** that is not occupied by any pillars **140**, resulting in the area **170** of the face **120** across which the pillars **140** are distributed being less than the total area **160** of the face **120**. In other example embodiments the pillars **140** can be distributed on the face **120** of the hard-tissue implant **100** such that at least some of the pillars **140** are located at an edge **130**, e.g. the area **170** of the face **120** across which the pillars **140** are distributed can be equal to the total area **160** of the face **120**.

[0043] As shown in **FIG. 4**, the pillars **140** extend distally from the face **120** of the hard-tissue implant **100**. For example, the pillars **140** can extend distally along a vertical axis **410** from the face **120** of the hard-tissue implant **100**. As shown, the pillars **140** can extend in a uniform direction, i.e. all pillars **140** extend distally at the same angle with respect to the face **120** and in the same direction. Also for example, some pillars **140** may extend distally at a different angle and/or in a different direction relative to other pillars **140**, for example for a hard-tissue implant **100** for which the face **120** is not flat. As also shown, the pillars **140** can be perpendicular to the face **120**, e.g. extending perpendicularly from the face **120**. Also for example, the pillars **140** can extend from the face **120** at other angles and/or varying angles.

[0044] As shown in **FIG. 1**, each pillar **140** is integral to the bulk implant **110**, i.e. the pillars **140** and the bulk implant **110** are made from the same starting material, rather than, for example, the pillars **140** being an add-on to the bulk implant **110**. Like the bulk implant **110**, the pillars **140** can be porous, e.g. including pores having diameters of, e.g. 1 to 900 μm , 100 to 800 μm , or 200 to 600 μm , or the pillars **140** can be non-porous.

[0045] As shown in **FIG. 4**, each pillar **140** has a distal end **430**, corresponding to the distal-most portion of the pillar **140** relative to the face **120** of the hard-tissue implant **100**. As also shown, each pillar **140** can have distal edges **432**, corresponding to edges defining the distal end **430** of each pillar **140**. Each pillar **140** can also have lateral edges **434**, corresponding to edges of the lateral sides of each pillar **140**. As further shown, the distal edges **432** and/or the lateral edges **434** can be sharp, although other rounded, angular, smooth, and/or irregular edges may be used in further examples.

[0046] With respect to dimensions of the pillars **140**, as shown in **FIGS. 5A** and **5B** each pillar **140** has a transverse area **510**, i.e. an area of a cross-section taken relative to the vertical axis **410** along which the pillar **140** extends distally from the face **120**, of, for example, (i) (200 $\mu\text{m} \times$ 200 μm) to (10,000 $\mu\text{m} \times$ 10,000 μm), i.e. $4.0 \times 10^4 \mu\text{m}^2$ to $1.0 \times 10^8 \mu\text{m}^2$, (ii) (200 $\mu\text{m} \times$ 200 μm) to (2,000 $\mu\text{m} \times$ 2,000 μm), i.e. $4.0 \times 10^4 \mu\text{m}^2$ to $4.0 \times 10^6 \mu\text{m}^2$, (iii) (250 $\mu\text{m} \times$ 250 μm) to (1,000 $\mu\text{m} \times$ 1,000 μm), i.e. $6.3 \times 10^4 \mu\text{m}^2$ to $1.0 \times 10^6 \mu\text{m}^2$, (iv) (300 $\mu\text{m} \times$ 300 μm) to (500 $\mu\text{m} \times$ 500 μm), i.e. $9 \times 10^4 \mu\text{m}^2$ to $2.5 \times 10^5 \mu\text{m}^2$, (v) (350 $\mu\text{m} \times$ 350 μm) to (450 $\mu\text{m} \times$ 450 μm), i.e. $1.2 \times 10^5 \mu\text{m}^2$ to $2.0 \times 10^5 \mu\text{m}^2$, or (vi) (395 $\mu\text{m} \times$ 395 μm) to (405 $\mu\text{m} \times$ 405 μm), i.e. $1.6 \times 10^5 \mu\text{m}^2$. As shown in **FIGS. 4** and **5B**, each pillar **140** has a pillar height **420**, i.e. the height of the pillar **140** from the face **120** of the hard-tissue implant **100** to the distal end **430** of the pillar **140**, of, for example, 100 to 10,000 μm , 100 to 5,000 μm , 200 to 2,500 μm , 300 to 1,000 μm , 400 to 600 μm , 450 to 550 μm , 490 to 510 μm , or 500 μm . As shown in **FIG. 5A**, each pillar **140** has a volume **520**, i.e. product of pillar transverse area **510** and pillar height **420**, of, for example (i) (200 $\mu\text{m} \times$ 200 $\mu\text{m} \times$ 100 μm) to (10,000 $\mu\text{m} \times$ 10,000 $\mu\text{m} \times$ 10,000 μm), i.e. $4.0 \times 10^6 \mu\text{m}^3$ to $1.0 \times 10^{12} \mu\text{m}^3$, (ii) (200 $\mu\text{m} \times$ 200 $\mu\text{m} \times$ 100 μm) to (2,000 $\mu\text{m} \times$ 2,000 $\mu\text{m} \times$ 5,000 μm), i.e. $4.0 \times 10^6 \mu\text{m}^3$ to $2.0 \times 10^{10} \mu\text{m}^3$, (iii) (250 $\mu\text{m} \times$ 250 $\mu\text{m} \times$ 200 μm) to (1,000 $\mu\text{m} \times$ 1,000 $\mu\text{m} \times$ 2,500 μm), i.e. $1.3 \times 10^7 \mu\text{m}^3$ to $2.5 \times 10^9 \mu\text{m}^3$, (iv) (300 $\mu\text{m} \times$ 300 $\mu\text{m} \times$ 300 μm) to (500 $\mu\text{m} \times$ 500 $\mu\text{m} \times$ 1,000 μm), i.e. $2.7 \times 10^7 \mu\text{m}^3$ to $2.5 \times 10^8 \mu\text{m}^3$, (v) (350 $\mu\text{m} \times$ 350 $\mu\text{m} \times$ 400 μm) to (450 $\mu\text{m} \times$ 450 $\mu\text{m} \times$ 600 μm), i.e. $4.9 \times 10^7 \mu\text{m}^3$ to $1.2 \times 10^8 \mu\text{m}^3$, or (vi) (395 $\mu\text{m} \times$ 395 $\mu\text{m} \times$ 490 μm) to (405 $\mu\text{m} \times$ 405 $\mu\text{m} \times$ 510 μm), i.e. $7.7 \times 10^7 \mu\text{m}^3$ to $8.4 \times 10^7 \mu\text{m}^3$. As shown in **FIG. 1**, the pillars **140** can, for example, all have identical dimensions, e.g. identical pillar transverse areas **510**, pillars heights **420**, and thus identical individual volumes.

Alternatively, one or more pillars **140** can have dimensions that differ from those of other pillars **140**, such that the individual volumes of the one or more pillars **140** differ from those of the other pillars **140**.

[0047] Turning to **FIGS. 6A-6E**, corresponding to a top plan view of hard-tissue implants **100** having pillars **140** of various shapes, the pillars **140** can have, as seen from a top view, a square shape **610**, a rectangular shape **620**, a herringbone shape **630**, a circular shape **640**, or an oval shape **650**, respectively, or alternatively can have other polygonal, curvilinear, or variable shapes. For example, in

some embodiments all pillars **140** can have the same shape, e.g. a square shape **610**, a rectangular shape **620**, a herringbone shape **630**, a circular shape **640**, or an oval shape **650**, as seen from a top view. Also for example, in some embodiments not all pillars **140** have the same shape as seen from a top view.

[0048] Considering now the slots **150** in more detail, the slots **150** are to be occupied by the hard tissue. For example, upon implantation of the hard-tissue implant **100** into a hard tissue, the hard tissue can immediately occupy all or part of the space corresponding to the slots **150**. This can be accomplished, for example, by pressing the hard-tissue implant **100** into the hard tissue. Moreover, to the extent that the hard tissue does not, upon implantation, immediately occupy all of the space corresponding to slots **150**, the hard tissue can eventually occupy all or part of the space corresponding to the slots **150** based on remodeling and/or growth of the hard tissue over time.

[0049] As shown in FIGS. 1, 3, and 4, the pillars **140** define the slots **150** therebetween, i.e. the slots **150** are the spaces between the pillars **140**. Accordingly, as shown in FIG. 4, the slots **150** have a slot height **440** as defined by the pillars **140**, of, for example, 100 to 10,000 μm , 100 to 5,000 μm , 200 to 2,500 μm , 300 to 1,000 μm , 400 to 600 μm , 450 to 550 μm , or 500 μm . As shown in FIGS. 6A-E, the slots **150** have a slot width **152** as measured along the shortest distance between adjacent pillars **140** of, for example, 100 to 10,000 μm , 100 to 7,500 μm , 100 to 3,000 μm , 150 to 1,000 μm , 175 to 450 μm , 190 to 410 μm , 190 to 210 μm , or 390 to 410 μm . As shown in FIG. 7, the slots **150** have a volume **710** corresponding to the volume of the space between the pillars **140**.

[0050] The hard-tissue implant **100** has a ratio of (i) the sum of the volumes **710** of the slots **150** to (ii) the sum of the volumes **520** of the pillars **140** and the volumes **710** of the slots **150**, of, for example, 0.40:1 to 0.90:1, 0.51:1 to 0.90:1, 0.51:1 to 0.60:1, or 0.70:1 to 0.76:1. Without wishing to be bound by theory, it is believed that this ratio determines the approximate percentages of hard tissue and hard-tissue implant **100** that will occupy the interface following implantation of the hard-tissue implant **100**, e.g. that upon pressing the implant **100** into the hard tissue, or upon remodeling and growth of the hard-tissue following implantation, that the hard tissue will occupy all or essentially all of the space corresponding to the slots **150** of the hard-tissue implant **100**.

[0051] More specifically, as shown in FIG. 7, the interface includes (i) the pillars **140**, (ii) the slots **150** of the hard-tissue implant **100**, which have a volume **710** and which, upon or following implantation, become occupied by hard tissue, (iii) any additional space between the face **120** of the implant **100** and a plane **720** defined by the distal ends **430** of the pillars **140**, e.g. the space between the peripheral border **122** of the face **120** that is not occupied by pillars **140** and the plane **720**, which has a volume **730** and which also becomes occupied by hard tissue, and (iv) any pores **740** on the face **120** or the pillars **140**, which, depending on their size, may also become occupied by hard tissue.

[0052] Accordingly, for example, a ratio of the sum of (i) the volumes **710** of the slots **150** to (ii) the sum of the volumes **520** of the pillars **140** and the volumes **710** of the slots **150** of 0.40:1 would, following implantation of a hard-tissue implant **100** and subsequent remodeling and growth of hard tissue, wherein the implant **100** includes an edge **130** and for which pillars **140** are located at the edge **130**, result in an interface that includes by volume 40% hard tissue and 60% hard-tissue implant **100**, and more

particularly 60% pillars **140** of the hard-tissue implant **100**. Similarly, a ratio of (i) the sum of the volumes **710** of the slots **150** to (ii) the sum of the volumes **520** of the pillars **140** and the volumes **710** of the slots **150** of 0.40:1 would, following implantation of a hard-tissue implant **100** and subsequent remodeling and growth of hard tissue, wherein the implant **100** includes an edge **130** and for which no pillars **140** are located at the edge **130**, result in an interface that includes by volume more than 40% hard tissue and less than 60% hard-tissue implant **100**, with the percentage of hard tissue increasing, and the percentage of hard-tissue implant **100** decreasing, with increasing distance between the peripheral-most pillars **140** and slots **150** and the edge **130** of the hard-tissue implant **100**. By way of further examples, ratios of 0.51:1, 0.60:1, 0.70:1, 0.76:1, and 0.90:1, would result in interfaces that include, by volume, 51% hard tissue and 49% hard-tissue implant **100**, 60% hard tissue and 40% hard-tissue implant **100**, 70% hard tissue and 30% hard-tissue implant **100**, 76% hard tissue and 24% hard-tissue implant **100**, and 90% hard tissue and 10% hard-tissue implant, respectively, for a hard-tissue implant **100** wherein the implant **100** includes an edge **130** and for which pillars **140** are located at the edge **130**. Moreover, the percentage of hard tissue would increase, and the percentage of hard-tissue implant **100** would decrease, with increasing distance between the peripheral-most pillars **140** and slots **150** and the edge **130** of the hard-tissue implant **100**. It is further believed that by achieving an interface that is at least 40% hard tissue, but that has a sufficient amount of the hard-tissue implant **100** to provide support and to keep the implant **100** from migrating, that the interface will exhibit properties similar to those of the bulk hard tissue adjacent to the interface, e.g. high resilience to load.

[0053] As shown in **FIG. 1**, the hard-tissue implant **100** does not include any part that is hollow. By this, it is meant that neither the bulk implant **110**, nor any of the pillars **140**, nor any other physical part (meaning additional physical components, not the slots **150**) of the hard-tissue implant **100**, include, below a surface thereof, any void space, e.g. cavity, hole, or the like, of more than 5,000 μm in size, i.e. having a diameter greater than 5,000 μm .

[0054] As also shown in **FIG. 1**, the hard-tissue implant **100** also does not include any non-pillar part extending to or beyond the distal ends **430** of any of the pillars **140**. By this, it is meant that, with respect to any face **120** of the hard-tissue implant **100** from which pillars **140** extend distally, no other physical part of the hard-tissue implant **100** (meaning additional physical components, not the slots **150**) extends to, or beyond, the distal ends **430** of the pillars **140**. Put another way, the pillars **140** of the hard-tissue implant **100** are not recessed or sunken relative to any other part of the hard-tissue implant **100**.

[0055] Without wishing to be bound by theory, it is believed that by having the hard-tissue implant **100** not include any part that is hollow and not include any non-pillar part extending to or beyond the distal ends **430** of any of the pillars **140**, that the interface resulting from implantation of the hard-tissue implant **100** into the hard tissue will result in an interface that is continuous with respect to the hard tissue and discontinuous with respect to the hard-tissue implant **100**. It is also believed that such an interface will further exhibit properties similar to those of the bulk hard tissue adjacent to the interface, e.g. high resilience to load.

[0056] Considering example embodiments of the hard-tissue implant 100 in more detail, in one example embodiment, the Young's modulus of the hard-tissue implant 100 is 18 to 25 GPa and the ratio of (i) the sum of the volumes 710 of the slots 150 to (ii) the sum of the volumes 520 of the pillars 140 and the volumes 710 of the slots 150 is 0.51:1 to 0.60:1. In another example embodiment, the Young's 5 modulus of the hard-tissue implant 100 is 100 to 110 GPa and the ratio of (i) the sum of the volumes 710 of the slots 150 to (ii) the sum of the volumes 520 of the pillars 140 and the volumes 710 of the slots 150 is 0.70:1 to 0.76:1. In another example embodiment, the hard-tissue implant 100 is made of implantable-grade polyetheretherketone, the transverse area 510 of each pillar 140 is (350 $\mu\text{m} \times 350 \mu\text{m}$) to (450 $\mu\text{m} \times 450 \mu\text{m}$), the pillar height 420 of each pillar 140 is 400 to 600 μm , the slot width 152 of each slot 150 is 10 190 to 210 μm , and the ratio of (i) the sum of the volumes 710 of the slots 150 to (ii) the sum of the volumes 520 of the pillars 140 and the volumes 710 of the slots 150 is 0.85:1 to 1.6:1. In another example embodiment, the hard-tissue implant 100 is made of implantable-grade polyetheretherketone, the transverse area 510 of each pillar 140 is (395 $\mu\text{m} \times 395 \mu\text{m}$) to (405 $\mu\text{m} \times 405 \mu\text{m}$), the pillar height 420 of each pillar 140 is 490 to 510 μm , the slot width 152 of each slot 150 is 190 to 210 μm , and the ratio of 15 (i) the sum of the volumes 710 of (ii) the slots 150 to the sum of the volumes 520 of the pillars 140 and volumes 710 of the slots 150 is 0.92:1 to 1.4:1. In another example embodiment, the hard-tissue implant 100 is made of titanium, the transverse area 510 of each pillar 140 is (350 $\mu\text{m} \times 350 \mu\text{m}$) to (450 $\mu\text{m} \times 450 \mu\text{m}$), the pillar height 420 of each pillar 140 is 400 to 600 μm , the slot width 152 of each slot 150 is 390 to 410 μm , and the ratio of (i) the sum of the volumes 710 of the slots 150 to (ii) the sum of the 20 volumes 520 of the pillars 140 and the volumes 710 of the slots 150 is 2.2:1 to 3.7:1. In another example embodiment, the hard-tissue implant 100 is made of titanium, the transverse area 510 of each pillar 140 is (395 $\mu\text{m} \times 395 \mu\text{m}$) to (405 $\mu\text{m} \times 405 \mu\text{m}$), the pillar height 420 of each pillar 140 is 490 to 510 μm , the slot width 152 of each slot 150 is 390 to 410 μm , and the ratio of (i) the sum of the volumes 710 of the slots 150 to (ii) the sum of the volumes 520 of the pillars 140 and the volumes 710 of the slots 150 is 2.4:1 25 to 3.5:1.

Methods of Making Hard-Tissue Implants

[0057] Methods will now be described for making a hard-tissue implant that, upon implantation into a hard tissue, provides immediate load transfer and prevents stress shielding. As described above 30 with reference to FIGS. 1-7, the hard-tissue implant 100 includes a bulk implant 110, a face 120, pillars 140, and slots 150. The face 120 is an exterior surface of the bulk implant 110. The pillars 140 are for implantation into a hard tissue. The pillars 140 are distributed on the face 120 of the hard-tissue implant 100, across an area of at least 80 mm^2 . The pillars 140 extend distally from the face 120 of the hard-tissue implant 100. Each pillar 140 is integral to the bulk implant 110, has a distal end 430, has a transverse area 35 of 510 of (200 $\mu\text{m} \times 200 \mu\text{m}$) to (10,000 $\mu\text{m} \times 10,000 \mu\text{m}$), i.e. $4.0 \times 10^4 \mu\text{m}^2$ to $1.0 \times 10^8 \mu\text{m}^2$, and has a pillar height 420 of 100 to 10,000 μm . The slots 150 are to be occupied by the hard tissue. The slots 150 are defined by the pillars 140. Each slot 150 has a width 152 of 100 to 10,000 μm as measured along the shortest distance between adjacent pillars 140. The hard-tissue implant 100 has a Young's modulus of

elasticity of at least 10 GPa and a ratio of (i) the sum of the volumes **710** of the slots **150** to (ii) the sum of the volumes **520** of the pillars **140** and the volumes **710** of the slots **150** of 0.40:1 to 0.90:1. The hard-tissue implant **100** does not include any part that is hollow, and does not include any non-pillar part extending to or beyond the distal ends **430** of any of the pillars **140**.

5 [0058] The method can include a step of designing the hard-tissue implant **100** such that the ratio of (i) the product of (a) the Young's modulus of the hard-tissue implant **100** and (b) the sum of the volumes **520** of the pillars **140**, to (ii) the product of (a) the Young's modulus of the hard tissue and (b) the sum of the volumes **710** of the slots **150**, will be, for example, 0.80:1 to 3.8:1, 0.90:1 to 3.6:1, 0.85:1 to 1.6:1, 0.92:1 to 1.4:1, 2.2:1 to 3.7:1, or 2.4:1 to 3.5:1. Without wishing to be bound by theory, it is
10 believed that by designing the hard-tissue implant **100** in this way the interface resulting from implantation of the hard-tissue implant **100** will have a Young's modulus of elasticity similar to that of the bulk hard tissue adjacent to the interface, and again will exhibit properties similar to those of the bulk hard tissue adjacent to the interface, e.g. high resilience to load. This step can be carried out, for example by determining the features of the hard-tissue implant **100** in view of the particular hard tissue that will be the
15 object of implantation. Features to be determined include the material from which the hard-tissue implant **100** will be made, the dimensions of the bulk implant **110** of the hard-tissue implant **100**, the area **170** of the face **120** of the hard-tissue implant **100** across which pillars **140** will be distributed, and the number, distribution, size, and direction of extension of the pillars **140**.

20 [0059] The hard tissue can be selected, for example, from the group consisting of bone, cartilage, calcified cartilage, non-calcified cartilage, and tissue that has become mineralized. The hard tissue can also be selected, for example, from the group consisting of long bone, maxillary bone, mandibular bone, and membranous bone. The hard tissue can also be selected, for example, from the group consisting of tibia, femur, shoulder, small joints, skull, and metatarsal. The hard tissue can also be, for example, spine.

25 [0060] The hard-tissue implant **100** can be made, for example, of a material selected from the group consisting of implantable-grade polyetheretherketone, titanium, stainless steel, cobalt-chromium alloy, and titanium alloy. The hard-tissue implant **100** can be also made, for example, from a hard tissue obtained from a human or animal selected from the group consisting of an autologous hard tissue, an allogeneic hard tissue, a xenogeneic hard tissue, human cartilage, animal cartilage, a human bone, an animal bone, and a cadaver bone.

30 [0061] The Young's modulus of elasticity of the hard tissue into which the hard-tissue implant **100** will be implanted can be taken into account. The Young's modulus of elasticity of the hard tissue can be determined, for example, based on previously determined values for hard tissue of that type or based on direct measurement. For example, it has been reported in the art that wet human femoral bone yields values for Young's modulus of elasticity, as determined by mechanical testing, as follows: E_{long} 17 GPa, E_{transv} 11.5, and E_{transv} 11.5. See, e.g., Elastic anisotropy of bone, <http://silver.neep.wisc.edu/~lakes/BME315N3.pdf> (last accessed Dec. 8, 2010) (citing Reilly, D.T. & Burstein, A.H., The Elastic and Ultimate Properties of Compact Bone Tissue, 8 J. Biomechanics 393-405 (1975)). It has also been reported in the art that wet bovine femoral bone yields values for Young's

modulus of elasticity, as determined by ultrasound, as follows: E_{long} 22 GPa, E_{transv} 15, and E_{transv} 12. See, e.g., Elastic anisotropy of bone (citing Van Buskirk, W.C. & Ashman, R.B., The Elastic Moduli of Bone, in Mechanical Properties of Bone, Joint ASME-ASCE Applied Mechanics, Fluids Engineering and Bioengineering Conference, Boulder, CO, 1981). It has also been reported in the art that the stiffness of compact bone tissue varies with the type of bone, e.g. the Young's moduli of fibular bone and tibial bone are about 18% greater and 7% greater, respectively, than the Young's modulus of femoral bone. See, e.g., Elastic anisotropy of bone.

[0062] Also, the hard-tissue implant **100** can include the various example embodiments as disclosed above.

[0063] Thus, for example, the hard-tissue implant **100** can be designed for implantation in, for example, a femur. The hard-tissue implant **100** can be made, for example, of implantable-grade polyetheretherketone, which has a Young's modulus of elasticity of 18 GPa. The hard-tissue implant **100** can be designed such that the bulk implant **110** thereof has a three-dimensional rectangular prism shape with a length of 12 mm, a width of 8 mm, and a height of 3 mm. The area **170** of the face **120** across which the pillars **140** are distributed can be designed, for example, to be $11.2 \text{ mm} \times 7.6 \text{ mm}$, i.e. 85 mm^2 , and to have a flat contour. The hard-tissue implant **100** can include, for example, pillars **140** distributed in a regular pattern of 19 columns across the length of the bulk implant **110** and 13 rows across the width of the bulk implant **110**, for a total of 247 pillars **140**. The pillars **140** can be designed to have, for example, a square shape as seen in a top view, each pillar **140** having a length of 400 μm , a width of 400 μm , and a height of 500 μm . The pillars **140** can also extend perpendicularly from the face **120**.

[0064] From the foregoing, it will also be appreciated that this design would result in a sum of (i) the volumes **520** of the pillars **140** and (ii) the volumes **710** of the slots **150** being equal to the product of (i) the area **170** of the face **120** across which the pillars **140** are distributed and (ii) the pillar height **420** of the pillars **140**, the product in this case being $(1.12 \times 10^4 \mu\text{m} \times 7.6 \times 10^3 \mu\text{m} \times 500 \mu\text{m})$, i.e. $4.26 \times 10^{10} \mu\text{m}^3$.

[0065] It will also be appreciated that this design would result in each pillar **140** having a transverse area **510** of $(400 \mu\text{m} \times 400 \mu\text{m})$, i.e. $1.6 \times 10^5 \mu\text{m}^2$. It will also be appreciated that the sum of the volumes **520** of the pillars **140** could be determined from the product of (i) the number of pillars **140** on the face **120**, (ii) the transverse area **510** of each pillar **140**, and (iii) the pillar height **420** of each pillar **140**, the product in this case being $(19 \times 13 \times 400 \mu\text{m} \times 400 \mu\text{m} \times 500 \mu\text{m})$, i.e. $1.98 \times 10^{10} \mu\text{m}^3$.

[0066] It will also be appreciated that this design would result in slot widths **150**, as measured along the shortest distance between adjacent pillars **140**, of 200 μm . It will also be appreciated that the sum of the volumes **710** of the slots **150** could also be determined from the difference between (i) the product of (a) the area **170** of the face **120** across which the pillars **140** are distributed and (b) the pillar height **420** of the pillars **140** and (ii) the sum of the volumes **520** of the pillars **140**, the difference in this case being $(4.26 \times 10^{10} \mu\text{m}^3 - 1.98 \times 10^{10} \mu\text{m}^3)$, i.e. $2.28 \times 10^{10} \mu\text{m}^3$.

[0067] From the foregoing, it will also be appreciated that the ratio of (i) the sum of the volumes **710** of the slots **150** to (ii) the sum of the volumes **520** of the pillars **140** and the volumes **710** of the slots **150** can also be determined, the ratio in this case being $(2.28 \times 10^{10} \mu\text{m}^3):(4.26 \times 10^{10} \mu\text{m}^3)$, i.e. 0.54:1.

[0068] As can be seen from the values above, for implantation of a hard-tissue implant **100** made of implantable-grade polyetheretherketone having a Young's modulus of elasticity of 18 GPa and having the dimensions noted above, into wet human femoral bone, which as noted above has values for Young's modulus of elasticity of E_{long} 17 GPa, E_{transv} 11.5, and E_{transv} 11.5, the ratio of (i) the product of (a) the Young's modulus of the hard-tissue implant **100** and (b) the sum of the volumes **520** of the pillars **140**, i.e. $(18 \times 1.98 \times 10^{10} \mu\text{m}^3)$, or $3.56 \times 10^{11} \mu\text{m}^3$, to (ii) the product of (a) the Young's modulus of the hard tissue and (b) the sum of the volumes **710** of the slots **150**, i.e. $(17 \times 2.28 \times 10^{10} \mu\text{m}^3)$ to $(11.5 \times 2.28 \times 10^{10} \mu\text{m}^3)$, or $3.88 \times 10^{11} \mu\text{m}^3$ to $2.62 \times 10^{11} \mu\text{m}^3$, is 0.92:1 to 1.4:1.

[0069] As another example, the hard-tissue implant **100** can be designed for implantation in, again for example, a femur. The hard-tissue implant **100** can be made, for example, of titanium, which has a Young's modulus of elasticity of 107 GPa. The hard-tissue implant **100** can be designed such that the bulk implant **110** thereof has a three-dimensional rectangular prism shape with a length of 12 mm, a width of 8 mm, and a height of 3 mm. The area **170** of the face **120** across which the pillars **140** are distributed can be designed, for example, to be $11.6 \text{ mm} \times 7.6 \text{ mm}$, i.e. 85 mm^2 , and to have a flat contour. The hard-tissue implant **100** can include, for example, pillars **140** distributed in a regular pattern of 15 columns across the length of the bulk implant **110** and 10 rows across the width of the bulk implant **110**, for a total of 150 pillars **140**. The pillars **140** can be designed to have, for example, a square shape as seen in a top view, each pillar **140** having a length of 400 μm , a width of 400 μm , and a height of 500 μm . The pillars **140** can again extend perpendicularly from the face **120**.

[0070] From the foregoing, it will also be appreciated that this design would result in a sum of (i) the volumes **520** of the pillars **140** and (ii) the volumes **710** of the slots **150** being equal to the product of (i) the area **170** of the face **120** across which the pillars **140** are distributed and (ii) the pillar height **420** of the pillars **140**, the product in this case being $(1.16 \times 10^4 \mu\text{m} \times 7.6 \times 10^3 \mu\text{m} \times 500 \mu\text{m})$, i.e. $4.41 \times 10^{10} \mu\text{m}^3$.

[0071] It will also be appreciated that this design would result in each pillar **140** having a transverse area **510** of $(400 \mu\text{m} \times 400 \mu\text{m})$, i.e. $1.6 \times 10^5 \mu\text{m}^2$. It will also be appreciated that the sum of the volumes **520** of the pillars could be determined from the product of (i) the number of pillars **140** in accordance with the regular pattern **310** of distribution of the pillars **140**, (ii) the transverse area **510** of each pillar **140**, and (iii) the pillar height **420** of each pillar **140**, the product in this case being $(15 \times 10 \times 400 \mu\text{m} \times 400 \mu\text{m} \times 500 \mu\text{m})$, i.e. $1.20 \times 10^{10} \mu\text{m}^3$.

[0072] It will also be appreciated that this design would also result in slot widths **150**, as measured along the shortest distance between adjacent pillars **140**, of 400 μm . Accordingly, it will also be appreciated that the sum of the volumes **710** of the slots **150** could also be determined from the difference between (i) the product of (a) the area **170** of the face **120** across which the pillars **140** are distributed and (b) the pillar height **420** of the pillars **140** and (ii) the sum of the volumes **520** of the pillars **140**, the difference in this case being $(4.41 \times 10^{10} \mu\text{m}^3 - 1.20 \times 10^{10} \mu\text{m}^3)$, i.e. $3.21 \times 10^{10} \mu\text{m}^3$.

[0073] From the foregoing, it will also be appreciated that the ratio of (i) the sum of the volumes **710** of the slots **150** to (ii) the sum of the volumes **520** of the pillars **140** and the volumes **710** of the slots **150** can also be determined, the ratio in this case being $(3.21 \times 10^{10} \mu\text{m}^3):(4.41 \times 10^{10} \mu\text{m}^3)$, i.e. 0.73:1.

[0074] As can be seen from the values above, for implantation of a hard-tissue implant **100** made of implantable-grade polyetheretherketone having a Young's modulus of elasticity of 18 GPa and having the dimensions noted above, into wet human femoral bone, which as noted above has values for Young's modulus of elasticity of E_{long} 17 GPa, E_{transv} 11.5, and E_{transv} 11.5, the ratio of (i) the product of (a) the Young's modulus of the hard-tissue implant **100** and (b) the sum of the volumes **520** of the pillars **140**, i.e. $(18 \times 1.20 \times 10^{10} \mu\text{m}^3)$, or $1.28 \times 10^{12} \mu\text{m}^3$, to (ii) the product of (a) the Young's modulus of the hard tissue and (b) the sum of the volumes **710** of the slots **150**, i.e. $(17 \times 3.21 \times 10^{10} \mu\text{m}^3)$ to $(11.5 \times 3.21 \times 10^{10} \mu\text{m}^3)$, or $5.45 \times 10^{11} \mu\text{m}^3$ to $3.69 \times 10^{11} \mu\text{m}^3$, is 2.4:1 to 3.5:1.

[0075] Additional alternatives for the step of designing the hard-tissue implant **100** such that the ratio of (i) the product of (a) the Young's modulus of the hard-tissue implant **100** and (b) the sum of the volumes **520** of the pillars **140** to (ii) the product of (a) the Young's modulus of the hard tissue and (b) the sum of the volumes **710** of the slots **150** will be, for example, 0.80:1 to 3.8:1, 0.90:1 to 3.6:1, 0.85:1 to 1.6:1, 0.92:1 to 1.4:1, 2.2:1 to 3.7:1, or 2.4:1 to 3.5:1, can include, for example, use of different materials for making the hard-tissue implant **100**, selecting different dimensions of the bulk implant **110** of the hard-tissue implant **100**, selecting a different area **170** of the face **120** of the hard-tissue implant **100** across which pillars **140** will be distributed, and/or selecting different numbers, distributions, sizes, and directions of extension of the pillars **140**. For example, for design of a hard-tissue implant **100** made from a hard tissue, the relatively low Young's modulus of elasticity of the hard tissue could be taken into account, such that the hard-tissue implant **100** could be designed to yield an interface, upon implantation into a hard tissue, for which the ratio of (i) the sum of the volumes of the slots to (ii) the sum of the volumes of the pillars and the volumes of the slots is approximately 0.50:1 and the ratio of (i) the product of (a) the Young's modulus of the hard-tissue implant **100** and (b) the sum of the volumes **520** of the pillars **140** to (ii) the product of (a) the Young's modulus of the hard tissue and (b) the sum of the volumes **710** of the slots **150** will be about 1:1. Also for example, for design of a hard-tissue implant **100** for implantation into a relatively old hard tissue, e.g. a bone of an elderly person, a relative decrease in Young's modulus of elasticity associated with increasing age of a hard tissue can be taken into account in designing the hard-tissue implant **100**.

[0076] The method can also include a step of making the hard-tissue implant **100** in accordance with the design. Methods for making a hard-tissue implant **100** as disclosed herein include laser cutting, injection molding, and other standard fabrication methods that are well known in the art.

35 Methods of Using Hard-Tissue Implants

[0077] Methods will now be described for use of a hard-tissue implant **100** in a hard tissue of an individual in need thereof. As described above with reference to FIGS. 1-7, the hard-tissue implant **100** includes a bulk implant **110**, a face **120**, pillars **140**, and slots **150**. The face **120** is an exterior surface of

the bulk implant 110. The pillars 140 are for implantation into a hard tissue. The pillars 140 are distributed on the face 120 of the hard-tissue implant 100, across an area of at least 80 mm². The pillars 140 extend distally from the face 120 of the hard-tissue implant 100. Each pillar 140 is integral to the bulk implant 110, has a distal end 430, has a transverse area of 510 of (200 µm × 200 µm) to (10,000 µm 5 × 10,000 µm), i.e. $4.0 \times 10^4 \mu\text{m}^2$ to $1.0 \times 10^8 \mu\text{m}^2$, and has a pillar height 420 of 100 to 10,000 µm. The slots 150 are to be occupied by the hard tissue. The slots 150 are defined by the pillars 140. Each slot 150 has a width 152 of 100 to 10,000 µm as measured along the shortest distance between adjacent pillars 140. The hard-tissue implant 100 has a Young's modulus of elasticity of at least 10 GPa and a ratio of (i) the sum of the volumes 710 of the slots 150 to (ii) the sum of the volumes 520 of the pillars 140 and the 10 volumes 710 of the slots 150 of 0.40:1 to 0.90:1. The hard-tissue implant 100 does not include any part that is hollow, and does not include any non-pillar part extending to or beyond the distal ends 430 of any of the pillars 140.

[0078] The method includes a step of selecting the hard-tissue implant 100 such that the ratio of (i) the product of (a) the Young's modulus of the hard-tissue implant 100 and (b) the sum of the volumes 15 520 of the pillars 140, to (ii) the product of (a) the Young's modulus of the hard tissue and (b) the sum of the volumes 710 of the slots 150, is, for example, 0.80:1 to 3.8:1, 0.90:1 to 3.6:1, 0.85:1 to 1.6:1, 0.92:1 to 1.4:1, 2.2:1 to 3.7:1, or 2.4:1 to 3.5:1.

[0079] The method also includes a step of implanting the hard-tissue implant 100 in the hard-tissue. The implanting can be done, for example, without rotation or twisting of the hard-tissue implant 20 100. The implanting can also be done, for example, without use of adhesives, e.g. cement or grout. The implanting can also be done, for example, without use of screws or plating mechanisms.

[0080] The implanting can include, for example, pressing the hard-tissue implant 100 into the hard tissue, thereby providing immediate load transfer and preventing stress shielding. The pressing can be, for example, by direct compression, mechanical compression, or tapping. Such pressing can include 25 pressing the pillars 140 of the hard-tissue implant 100 into the hard tissue, such that the pillars 140 penetrate into the hard tissue, partially or completely. For example, the hard-tissue implant 100 can be pressed into the hard-tissue such that the pillars 140 penetrate the hard-tissue to a depth of, for example, 1 to 10,000 µm, 100 to 5,000 µm, 200 to 2,500 µm, 300 to 1,000 µm, 400 to 600 µm, 450 to 550 µm, 490 to 510 µm, or 500 µm. Also for example, the pillars 140 can be pressed into the hard-tissue such that pillars 30 140 penetrate the hard tissue to a depth, relative to the pillar height 420 of the pillars 140, of for example 25%, 50%, 75%, and 100% of the pillar height 420 of the pillars 140.

[0081] The implanting can also include, for example, pressing the hard-tissue implant 100 into the hard tissue, such that the pillars 140 are oriented perpendicularly to the primary axis of tension and compression of the hard tissue and penetrate the hard tissue, thereby providing immediate load transfer 35 and preventing stress shielding. The term "primary axis of tension and compression of the hard tissue," as used herein, means the main axis of the hard tissue along which forces of tension and compression are transmitted during normal function and use of the hard tissue, e.g. the long axis of a bone such as tibia or femur. Without wishing to be bound by theory, it is believed that by having the pillars 140 oriented

perpendicularly to the primary axis of tension and compression of the hard tissue, and further by having the pillars **140** penetrate the hard tissue during the implanting, that immediately following the implanting the hard-tissue implant **100** will experience immediate load transfer with respect to tension and compression of the hard tissue, and that this will prevent stress shielding of the hard tissue at the interface 5 of the hard-tissue implant **100** and the hard tissue.

[0082] Also for example, the implanting can include pressing the hard-tissue implant **100** into the hard tissue, such that the pillars **140** are oriented at an acute angle relative to the direction of the pressing and penetrate the hard tissue, thereby providing immediate load transfer and preventing stress shielding. By the pillars **140** being oriented at an acute angle relative to the direction of the pressing it is meant that 10 pillars **140** are angled forward to at least some extent, i.e. are at an angle of less than 90°, relative to the direction of the path by which the implant **100** is pressed into the hard tissue. By being oriented at an acute angle, it is meant that a plurality of pillars **140**, e.g. at least 10%, at least 20%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, or 100%, are oriented at an acute angle, e.g. at angles ranging from 1° to 89°, 10° to 80°, 20° to 70°, 30° to 60°, 40° to 50°, 1° to 10°, 11° to 15 20°, 21° to 30°, 31° to 40°, 41° to 50°, 51° to 60°, 61° to 70°, 71° to 80°, 81° to 89°, 15°, 30°, 45°, 60°, or 75°, relative to the direction of the pressing. Without wishing to be bound by theory, it is believed that by having the pillars **140** oriented at an acute angle relative to the direction of the pressing, and further by having the pillars **140** penetrate the hard tissue during the implanting, that again immediately following the implanting the hard-tissue implant **100** will experience immediate load transfer with respect to tension 20 and compression of the hard tissue, thereby providing immediate load transfer between the hard-tissue implant **100** and the hard tissue, and that this will prevent stress shielding of the hard tissue at the interface of the hard-tissue implant **100** and the hard tissue.

[0083] Also for example, the implanting can include pressing the hard-tissue implant **100** into a cavity that has been milled in the hard tissue, such that the pillars **140** penetrate the hard tissue, thereby 25 providing immediate load transfer and preventing stress shielding. For example, the cavity can be milled to dimensions wider than that of the bulk implant **110** but narrower than the bulk implant **110** including the pillars **140**, such that the pressing of the hard-tissue implant **100** into the cavity results in the pillars **140** of the hard-tissue implant **100** contacting and penetrating the hard tissue during the pressing. Also for example, the cavity that has been milled in the hard tissue can be tapered from the surface of the hard 30 tissue inward, i.e. wider at the surface of the hard tissue and narrower with increasing depth in the hard tissue, such that the pressing of the hard-tissue implant **100** into the cavity results in the pillars **140** of the hard-tissue implant **100** contacting and penetrating the hard tissue only after the implant **100** has been pressed to some depth in the cavity. Also for example, the hard-tissue implant **100** can be tapered, such that a tapered cavity and a tapered hard-tissue implant **100** have a complementary fit, e.g. such that 35 pressing of the hard-tissue implant **100** into the cavity results in the pillars **140** of the hard-tissue implant **100** contacting and penetrating the hard tissue only after the implant **100** has been pressed to some depth in the cavity at each area of complementary fit between the tapered cavity and the tapered hard-tissue implant **100**. Without wishing to be bound by theory, it is believed that by pressing the hard-tissue

implant 100 into a cavity that has been milled in the hard tissue, such that the pillars 140 penetrate the hard tissue during the implanting, that again immediately following the implanting the hard-tissue implant 100 will experience immediate load transfer with respect to tension and compression of the hard tissue, and that this will prevent stress shielding of the hard tissue at the interface of the hard-tissue implant 100 and the hard tissue.

5 [0084] Standard approaches for implanting the hard-tissue implant 100, pressing the hard-tissue implant 100 into hard tissue, orienting the hard-tissue implant 100 or pillars 140 thereof, and pressing the hard-tissue implant 100 into a cavity that has been milled in the hard tissue are known in the art and can be used in the methods disclosed here.

10 [0085] The hard tissue can be selected, for example, from the group consisting of bone, cartilage, calcified cartilage, non-calcified cartilage, and tissue that has become mineralized. The hard tissue can also be selected, for example, from the group consisting of long bone, maxillary bone, mandibular bone, and membranous bone. The hard tissue can also be selected, for example, from the group consisting of tibia, femur, shoulder, small joints, skull, and metatarsal. The hard tissue can also be, for example, spine.

15 [0086] The hard-tissue implant 100 can be made, for example, of a material selected from the group consisting of implantable-grade polyetheretherketone, titanium, stainless steel, cobalt-chromium alloy, and titanium alloy. The hard-tissue implant 100 can be also made, for example, from a hard tissue obtained from a human or animal selected from the group consisting of an autologous hard tissue, an allogeneic hard tissue, a xenogeneic hard tissue, human cartilage, animal cartilage, a human bone, an animal bone, and a cadaver bone.

20 [0087] The method can be applied to example embodiments of the hard-tissue implant 100 as disclosed above. The ratio of (i) the sum of the volumes 710 of the slots 150 to (ii) the sum of the volumes 520 of the pillars 140 and the volumes 710 of the slots 150 can be determined essentially as described above with respect to designing the hard-tissue implant 100. The ratio of (i) the product of (a) the Young's modulus of the hard-tissue implant 100 and (b) the sum of the volumes 520 of the pillars 140, to (ii) the product of (a) the Young's modulus of the hard tissue and (b) the sum of the volumes 710 of the slots 150, can also be determined essentially as described above with respect to designing the hard-tissue implant 100.

25 [0088] The implanting can include, for example, pressing the hard-tissue implant 100 into the hard tissue, thereby providing immediate load transfer and preventing stress shielding. Methods for pressing a hard-tissue implant 100 in a hard tissue are also known in the art.

30 [0089] Further aspects of the present disclosure will be understood in conjunction with one or more of the following examples, which are provided by way of illustration.

[0090] Hard-tissue implants: Four types of pillared hard-tissue implants, herein designated implant 1, implant 2, implant 3, and implant 4, and a smooth control implant were designed and made.

5 [0091] Specifically, implants 1 to 3 were made from implantable-grade polyetheretherketone (“PEEK”), having a Young’s modulus of elasticity of approximately 18 GPa. Implant 4 was made from titanium, having a Young’s modulus of elasticity of approximately 107 GPa. All of the implants 1 to 4 were made to have a generally rectangular prism shape, with a length of 12 mm, a width of 8 mm, and a depth of 4 mm. The bulk implants of the implants 1 to 4 were all made with a length of 12 mm, a width of 8 mm, and a depth of 3 mm. Accordingly, the bulk implants of the implants 1 to 4 each had two faces having a length of 12 mm and a width of 8 mm. Each of the two faces was defined by a sharp edge.

10 [0092] Pillars were distributed in a regular pattern on the two faces of each bulk implant of implants 1 to 4, as follows.

15 [0093] For implant 1 (PEEK), the pillars were distributed on each of the two faces in 23 columns across the length of the bulk implant and 15 rows across the width of the bulk implant, corresponding to 345 pillars per face. The pillars were located 300 μm from the edge. The pillars were integral to the bulk implant. The pillars each had a length of 400 μm and a width of 400 μm , and thus a square shape as seen from a top view and a transverse area of $1.6 \times 10^5 \mu\text{m}^2$. The pillars each had a height of 500 μm . In accordance with this distribution, the width of the slots was 100 μm as measured along the shortest distance between adjacent pillars, and the slot height was 500 μm .

20 [0094] For implant 2 (PEEK), the pillars were distributed on each of the two faces in 19 columns across the length of the bulk implant and 13 rows across the width of the bulk implant, corresponding to 247 pillars per face. The pillars were located 200 μm from the edge having a length of 12 mm, and 400 μm from the edge having a length of 8 mm. The pillars were integral to the bulk implant. The pillars each had a length of 400 μm and a width of 400 μm , and thus a square shape as seen from a top view and a transverse area of $1.6 \times 10^5 \mu\text{m}^2$. The pillars each had a height of 500 μm . In accordance with this distribution, the width of the slots was 200 μm as measured along the shortest distance between adjacent pillars, and the slot height was 500 μm .

25 [0095] For implants 3 (PEEK) and 4 (titanium), the pillars were distributed on each of the two faces in 15 columns across the length of the bulk implant and 10 rows across the width of the bulk implant, corresponding to 150 pillars per face. The pillars were located 200 μm from the edge. The pillars were integral to the bulk implant. The pillars each had a length of 400 μm and a width of 400 μm , and thus a square shape as seen from a top view and a transverse area of $1.6 \times 10^5 \mu\text{m}^2$. The pillars each had a height of 500 μm . In accordance with this distribution, the width of the slots was 400 μm as measured along the shortest distance between adjacent pillars, and the slot height was 500 μm .

30 [0096] The dimensions of the pillars and slots, with respect to one of the two faces of each of the implants 1 to 4, and various ratios thereof, calculated essentially as described above, are shown in

TABLES 1-3.

35

TABLE 1

Implant #	Material	Pillar length \times width	Slot width	Pillar and slot height

Implant 1	PEEK	400 $\mu\text{m} \times 400 \mu\text{m}$	100 μm	500 μm
Implant 2	PEEK	400 $\mu\text{m} \times 400 \mu\text{m}$	200 μm	500 μm
Implant 3	PEEK	400 $\mu\text{m} \times 400 \mu\text{m}$	400 μm	500 μm
Implant 4	Titanium	400 $\mu\text{m} \times 400 \mu\text{m}$	400 μm	500 μm

TABLE 2

Implant #	Material	Number of pillars (per face of implant)	Volume of pillars (per face of implant)	Volume of slots (per face of implant)	Volume of interface, i.e. total area of implant face \times pillar height (per face)
Implant 1	PEEK	345	$2.76 \times 10^{10} \mu\text{m}^3$	$1.46 \times 10^{10} \mu\text{m}^3$	$4.8 \times 10^{10} \mu\text{m}^3$
Implant 2	PEEK	247	$1.98 \times 10^{10} \mu\text{m}^3$	$2.28 \times 10^{10} \mu\text{m}^3$	$4.8 \times 10^{10} \mu\text{m}^3$
Implant 3	PEEK	150	$1.20 \times 10^{10} \mu\text{m}^3$	$3.21 \times 10^{10} \mu\text{m}^3$	$4.8 \times 10^{10} \mu\text{m}^3$
Implant 4	Titanium	150	$1.20 \times 10^{10} \mu\text{m}^3$	$3.21 \times 10^{10} \mu\text{m}^3$	$4.8 \times 10^{10} \mu\text{m}^3$

TABLE 3

Implant #	Material	Ratio of (i) sum of volumes of slots to (ii) sum of volumes of pillars and volumes of slots	Ratio of (i) volume of hard tissue to (ii) volume of interface
Implant 1	PEEK	0.35:1	0.43:1
Implant 2	PEEK	0.54:1	0.59:1
Implant 3	PEEK	0.73:1	0.75:1
Implant 4	Titanium	0.73:1	0.75:1

5 [0097] The ratios of (i) the product of (a) the Young's modulus of the hard-tissue implant and (b) the sum of volumes of the pillars to (ii) the product of (a) the Young's modulus of the hard tissue and (b) the sum of the volumes of the slots, for each of implants 1 to 4, with respect to human femur, calculated essentially as described above, are shown in TABLE 4.

10 TABLE 4

Implant #	Material (Young's modulus)	Hard-tissue (Young's modulus $E_{\text{long}}, E_{\text{transv}}, E_{\text{long}}$)	Sum of volumes of pillars	Sum of volumes of slots	Ratio*
Implant 1	PEEK (18 GPa)	Human femur (17, 11.5, 11.5 GPa)	$2.76 \times 10^{10} \mu\text{m}^3$	$1.46 \times 10^{10} \mu\text{m}^3$	2.0:1 to 3.0:1
Implant 2	PEEK (18 GPa)	Human femur (17, 11.5, 11.5 GPa)	$1.98 \times 10^{10} \mu\text{m}^3$	$2.20 \times 10^{10} \mu\text{m}^3$	0.92:1 to 1.0:1

	GPa)	11.5, 11.5 GPa)	μm^3	μm^3	1.4:1
Implant 3	PEEK (18 GPa)	Human femur (17, 11.5, 11.5 GPa)	$1.20 \times 10^{10} \mu\text{m}^3$	$3.21 \times 10^{10} \mu\text{m}^3$	0.40:1 to 0.59:1
Implant 4	Titanium (107 GPa)	Human femur (17, 11.5, 11.5 GPa)	$1.20 \times 10^{10} \mu\text{m}^3$	$3.21 \times 10^{10} \mu\text{m}^3$	2.4:1 to 3.5:1

*Ratio corresponds to ratio of (i) the product of (a) the Young's modulus of the hard-tissue implant and (b) the volume of the pillars to (ii) the product of (a) the Young's modulus of the hard tissue and (b) the sum of the volumes of the slots.

5 [0098] The smooth control implant was made from PEEK, had dimensions of 12 mm \times 8 mm \times 3 mm, and had no pillared surfaces.

EXAMPLE 2

10 [0099] Mechanical and histological testing of hard-tissue implants: The mechanical and histological properties of implants 1 to 4 and the control implant, as described in Example 1, and tissue-implant interfaces thereof, were tested in an animal model. Specifically 5 large adult male mongrels were selected. IACCUC regulated and approved surgery was carried out. One each of implants 1 to 4 and the control implant were implanted in each femur of each dog, the implantation being in the diaphysis posterior shaft of the femur, the implants being implanted in a single line along the long axis of the femur, 15 the order the implants being determined randomly, and the implants being oriented such that the 12 mm axes of the implants were parallel to the long axis of the femur, and the 8 mm axes of the implants were orthogonal to the surface of the femur, i.e. the implants were implanted such that the two pillared faces of each of implants 1 to 4 were in contact with the femur. Implantation was carried out by pressing each implant into the femur. Six weeks after implantation, the mongrels were euthanized and the implants 20 were harvested. For each of implants 1 to 4 and the control implant, six specimens were tested mechanically and two specimens were analyzed with respect to histology.

25 [00100] Mechanical testing was carried out as follows. Each specimen was tested via a compression push-through method based on use of a compression head and a plunger. Preparation of harvested implants included cutting bone into separate testing sections and removing medullary tissue to decrease extra resistance. The implant surface was aligned normal to the compression head. The plunger was a 3 \times 10 mm piece of metal. A compression rate of 1 mm/min was used. The upper limit of load for the load cell was 1000 N. Load (N) versus extension (mm) and load (N) to failure were measured with respect to each specimen.

30 [00101] Results for extension per load are provided in **FIGS. 8A-E**. As can be seen in **FIGS. 8C-E**, the implants 2, 3, and 4, corresponding to PEEK, PEEK, and titanium implants, respectively, having slot widths of 200 μm , 400 μm , and 400 μm , respectively, underwent substantial yield/elongation before failure. Indeed two specimens of implant 4 withstood the upper limit of 1000 N load for the load cell. In contrast, as can be seen in **FIGS. 8A** and **8B**, the control implant, which lacked

pillars, and implant 1, corresponding to a PEEK implant having a slot width of 100 μm , did not undergo substantial yield/elongation before failure. The results suggest that slot widths of 200 to 400 μm enable implants to undergo substantial yield elongation before failure.

[00102] Results for load to failure are provided in **FIG. 9**. As can be seen, implant 4, 5 corresponding to a titanium implant having a slot width of 400 μm , exhibited the highest average load to failure, > 816 N (taking into account that two of the samples withstood the upper limit of 1000 N load for the load cell). Implant 2, corresponding to a PEEK implant having a slot width of 200 μm , exhibited the next highest load to failure, 742 N. Implant 3, corresponding to a PEEK implant having a slot width of 400 μm , exhibited the next highest load to failure, 700 N. Implant 1, corresponding to a PEEK implant 10 having a slot width of 100 μm , and the control implant, corresponding to a PEEK implant lacking pillars, exhibited substantially lower loads to failure, 286 N and 46 N, respectively. The results suggest that slot widths of 200 to 400 μm enable implants to withstand relatively high load before failure. Moreover, 15 considering these results in view of the data of **TABLE 3**, the results also suggest that hard-tissue implants having a ratio of the sum of the volumes of the slots to the sum of the volumes of the pillars and the volumes of the slots of 0.51:1 to 0.90:1, e.g. implants 2, 3, and 4, can withstand relatively high loads before failure. In addition, considering these results in view of the data of **TABLE 4**, the results suggest 20 that hard-tissue implants additionally having a ratio of (i) the product of the Young's modulus of the hard-tissue implant and the sum of the volumes of the pillars to (ii) the product of the Young's modulus of the hard tissue and the sum of the volumes of the slots of between about 0.80:1 to 3.8:1, e.g. implants 2 and 4, can withstand even higher loads before failure.

[00103] Histological analyses were carried out using hematoxylin and eosin stain and trichrome stain. Exemplary results are shown in **FIGS. 10A-D**, corresponding to histological micrographs at 4X magnification of (A) implant 1 (PEEK, 100 μm slot width) face 25 μm cut H&E stain, (B) implant 2 (PEEK, 200 μm slot width) face 25 μm trichrome stain, (C) implant 3 (PEEK, 400 μm slot width) face 25 μm trichrome stain, and (D) implant 4 (titanium, 400 μm slot width) 25 μm trichrome stain. Results for 25 the histological analyses indicate that implants 1 to 4, having slot widths of 100 μm , 200 μm , 400 μm , and 400 μm , respectively, all exhibited bone ingrowth in the slots thereof. The ingrowth for implant 1 was 30 different than that of implants 2 to 4 but nonetheless occurred. Implants 2 to 4, but not implant 1, also exhibited rich vascularity in the slots thereof. No significant inflammatory responses were noted with any of implants 1 to 4. The results indicate that the failure of implant 1 to undergo substantial yield/elongation before failure and the lower load to failure for implant 1 relative to implants 2, 3, and 4 are not due to an absence of bone ingrowth but rather suggest that limitation of bone volume in the 35 interface may cause implants to fail to undergo substantial yield/elongation before failure and to exhibit relatively low loads to failure.

35

EXAMPLE 3

[00104] Prophetic example regarding hip and other prosthesis: The hard-tissue implant, including a bulk implant, a face, pillars, and slots, as described above, may be used in hip prosthesis to

allow for early ambulation or, potentially, immediate ambulation, with the avoidance of a need for grout or cement, and for intimate and immediate integration of the bone with the implant at the interface. The interface of the hard-tissue implant and the hard tissue is expected to respond to mechanical stress more like natural hard tissue than would a corresponding interface formed with a conventional implant, with 5 potential benefits including elimination of stress shielding. The implant can be, for example, a non-metal polymer implanted at a joint articulating surface. Similarly, the hard-tissue implant may be used in shoulder prosthesis, wrist or finger joint prosthesis, ankle prosthesis, knee prosthesis, and inserts for cartilage.

10

EXAMPLE 4

[00105] Prophetic example regarding metatarsal wedge implants: The hard-tissue implant, including a bulk implant, a face, pillars, and slots, as described above, may be used in metatarsal wedge implants. In podiatry, there are patients for whom an implant wedge needs to be implanted in order to realign and redirect the metatarsal and tarsal elements. Conventional wedge devices tend to be 15 inadequately fixed due to poor integration and load transfer. The hard-tissue implant as described above may allow for fixation with the potential for elimination of screws and other fixation mechanisms and may reduce the potential for implant migration and nonunion.

20

EXAMPLE 5

[00106] Prophetic example regarding screws: The hard-tissue implant, including a bulk implant, a face, pillars, and slots, as described above, may be formed as a screw including the pillars on threads or a helical face of the screw. Such a screw may be useful for spinal surgery, fixation of plates, or ligamentous repair, e.g. anterior cruciate ligament repair of the knee, with the fixation end of the screw, including the pillars, being implanted into hard tissue to allow for optimal load transfer. Such a screw 25 may also be useful for tendon insertion and anchoring.

25

EXAMPLE 6

[00107] Prophetic example regarding dental implants: The hard-tissue implant, including a bulk implant, a face, pillars, and slots, as described above, may also be used as a dental implant. 30 Conventional mechanisms for fixation of dental implants having smooth surfaces or conventional surface morphologies in maxillary bone and mandibular bone are inadequate, based on poor load transfer with respect to compression and vertical shear from the bone to the dental implants and poor matching of the Young's modulus of elasticity between the dental implants and the bone. The hard-tissue implant as described above may provide improved load transfer, based on implanting of the hard-tissue implant, in 35 the form of a dental implant, either (i) such that the pillars of the implant are oriented perpendicularly to the primary axis of compression of the maxillary or mandibular bone and penetrate the maxillary bone, or (ii) by pressing the implant into the maxillary or mandibular bone such that the pillars of the implant are oriented at an acute angle relative to the direction of the pressing and penetrate the bone. The hard-tissue

implant as described above may also provide improved matching of the Young's modulus of elasticity between the implant and the hard tissue in the interface. The resulting interface may be expected to be long-lasting, resistant to stress shielding, and resilient to load.

5

EXAMPLE 7

[00108] Prophetic example regarding minimally invasive surgery: The hard-tissue implant, including a bulk implant, a face, pillars, and slots, as described above, may also be used in minimally invasive surgery. Current approaches for reconstructive surgery include minimally invasive surgery requiring addition or removal of only a minor or superficial portion of a hard-tissue component of 10 a joint, finger, wrist, elbow, shoulder, knee, or (potentially) hip is required. Consequently a new interface needs to be created and inserted in the corresponding hard tissue. The hard-tissue implant as described above may be designed for early impregnation and load bearing, based on good surface integration through load bearing, with the result that no extensive use of screws or plating mechanisms would be required at the time of implantation.

15

EXAMPLE 8

[00109] Prophetic example regarding hard-tissue implants made from hard-tissue: The hard-tissue implant, including a bulk implant, a face, pillars, and slots, as described above, may be made from a hard tissue. For example, a hard tissue such as bone, e.g. human bone, animal bone, or cadaver 20 bone, may be machined to form the implant as described above. The implant may then be implanted in an individual, e.g. a human or animal, in need thereof, e.g. a cancer patient from whom a tumor has been removed and into which a large segment of bone may be inserted. Machining bone to form the implant may allow for more rapid ambulation, integration, and interfacial integration, in comparison to a conventional implant. Also for example, a hard tissue such as cartilage may be machined to form the 25 implant as described above. The implant may then be implanted on another hard tissue, e.g. bone, in order to resurface the other hard tissue. Implants machined from a hard tissue may be used to replace part or all of the articulating surfaces of the hard tissues into which they are implanted, leaving most of the surrounding hard tissue in place and thus minimizing the extent of the implantation.

[00110] It will be apparent to those skilled in the art that various modifications and 30 variations can be made without departing from the spirit and scope of the claimed invention.

CLAIMS

What is claimed is:

1. A hard-tissue implant comprising:
 - (a) a bulk implant;
 - (b) a face being an exterior surface of the bulk implant;
 - (c) pillars for implantation into a hard tissue, the pillars being distributed on the face, across an area of at least 80 mm², and extending distally therefrom, and each pillar being integral to the bulk implant, having a distal end, having a transverse area of (200 × 200) to (10,000 × 10,000) µm², and having a height of 100 to 10,000 µm; and
 - (d) slots to be occupied by the hard tissue, the slots being defined by the pillars and each slot having a width of 100 to 10,000 µm as measured along the shortest distance between adjacent pillars; wherein:
the hard-tissue implant has a Young's modulus of elasticity of at least 10 GPa, has a ratio of (i) the sum of the volumes of the slots to (ii) the sum of the volumes of the pillars and the volumes of the slots of 0.40:1 to 0.90:1, does not comprise any part that is hollow, and does not comprise any non-pillar part extending to or beyond the distal ends of any of the pillars.
2. The hard-tissue implant of claim 1, wherein the hard-tissue implant is made of a material selected from the group consisting of implantable-grade polyetheretherketone, titanium, stainless steel, cobalt-chromium alloy, and titanium alloy.
3. The hard tissue implant of claim 1, wherein the hard-tissue implant is made of another hard tissue selected from the group consisting of an autologous hard tissue, an allogeneic hard tissue, a xenogeneic hard tissue, human cartilage, animal cartilage, a human bone, an animal bone, and a cadaver bone.
4. The hard-tissue implant of claim 1, wherein the face is flat.
5. The hard-tissue implant of claim 1, wherein the face is cylindrical.
6. The hard-tissue implant of claim 1, wherein the pillars extend in a uniform direction.
7. The hard-tissue implant of claim 1, wherein the pillars are perpendicular to the face.
8. The hard-tissue implant of claim 1, wherein the transverse area of each pillar is (250 × 250) µm² to (1,000 × 1,000) µm².
9. The hard-tissue implant of claim 1, wherein the height of each pillar is 200 to 2,500 µm.

10. The hard-tissue implant of claim 1, wherein the width of each slot is 200 to 2,500 μm .
11. The hard-tissue implant of claim 1, wherein the Young's modulus of the hard-tissue implant is 18 to 25 GPa and the ratio of (i) the sum of the volumes of the slots to (ii) the sum of the volumes of the pillars and the volumes of the slots is 0.51:1 to 0.60:1.
12. The hard-tissue implant of claim 1, wherein the Young's modulus of the hard-tissue implant is 100 to 110 GPa and the ratio of (i) the sum of the volumes of the slots to (ii) the sum of the volumes of the pillars and the volumes of the slots is 0.72:1 to 0.76:1.
13. The hard-tissue implant of claim 1, wherein the hard-tissue implant is made of implantable-grade polyetheretherketone, the transverse area of each pillar is (350×350) to $(450 \times 450) \mu\text{m}^2$, the height of each pillar is 400 to 600 μm , the width of each slot is 190 to 210 μm , and the ratio of the sum of (i) the volumes of the slots to (ii) the sum of the volumes of the pillars and the volumes of the slots is 0.51:1 to 0.60:1.
14. The hard-tissue implant of claim 1, wherein the hard-tissue implant is made of titanium, the transverse area of each pillar is (350×350) to $(450 \times 450) \mu\text{m}^2$, the height of each pillar is 400 to 600 μm , the width of each slot is 390 to 410 μm , and the ratio of (i) the sum of the volumes of the slots to (ii) the sum of the volumes of the pillars and the volumes of the slots is 0.72:1 to 0.76:1.
15. A method of making a hard-tissue implant that, upon implantation into a hard tissue, provides immediate load transfer and prevents stress shielding, the hard-tissue implant comprising:
 - (a) a bulk implant;
 - (b) a face being an exterior surface of the bulk implant;
 - (c) pillars for implantation into a hard tissue, the pillars being distributed on the face, across an area of at least 80 mm^2 , and extending distally therefrom, and each pillar being integral to the bulk implant, having a distal end, having a transverse area of (200×200) to $(10,000 \times 10,000) \mu\text{m}^2$, and having a height of 100 to 10,000 μm ; and
 - (d) slots to be occupied by the hard tissue, the slots being defined by the pillars and each slot having a width of 100 to 10,000 μm as measured along the shortest distance between adjacent pillars; wherein:
the hard-tissue implant has a Young's modulus of elasticity of at least 10 GPa, has a ratio of (i) the sum of the volumes of the slots to (ii) the sum of the volumes of the pillars and the volumes of the slots of 0.40:1 to 0.90:1, does not comprise any part that is hollow, and does not comprise any non-pillar part extending to or beyond the distal ends of any of the pillars;

the method comprising:

(1) designing the hard-tissue implant such that the ratio of (i) the product of (a) the Young's modulus of the hard-tissue implant and (b) the sum of the volumes of the pillars to (ii) the product of (a) the Young's modulus of the hard tissue and (b) the sum of the volumes of the slots will be 0.80:1 to 3.8:1; and

(2) making the hard-tissue implant.

16. The method of claim 15, wherein the ratio of (i) the product of (a) the Young's modulus of the hard-tissue implant and (b) the sum of the volumes of the pillars to (ii) the product of (a) the Young's modulus of the hard tissue and (b) the sum of the volumes of the slots is 0.90:1 to 3.6:1.

17. The method of claim 15 wherein the hard tissue is selected from the group consisting of long bone, maxillary bone, mandibular bone, and membranous bone.

18. The method of claim 15, wherein the hard-tissue implant is made of a material selected from the group consisting of implantable-grade polyetheretherketone, titanium, stainless steel, cobalt-chromium alloy, and titanium alloy.

19. The method of claim 15, wherein the hard-tissue implant is made of another hard tissue selected from the group consisting of an autologous hard tissue, an allogeneic hard tissue, a xenogeneic hard tissue, human cartilage, animal cartilage, a human bone, an animal bone, and a cadaver bone.

20. The method of claim 15, wherein the hard-tissue implant is made of implantable-grade polyetheretherketone, the transverse area of each pillar is (350×350) to $(450 \times 450) \mu\text{m}^2$, the height of each pillar is 400 to 600 μm , the width of each slot is 190 to 210 μm , and the ratio of (i) the sum of the volumes of the slots to (i) the sum of the volumes of the pillars and the volumes of the slots is 0.51:1 to 0.60:1.

21. The method of claim 15, wherein the hard-tissue implant is made of titanium, the transverse area of each pillar is (350×350) to $(450 \times 450) \mu\text{m}^2$, the height of each pillar is 400 to 600 μm , the width of each slot is 390 to 410 μm , and the ratio of (i) the sum of the volumes of the slots to (ii) the sum of the volumes of the pillars and the volumes of the slots is 0.70:1 to 0.76:1.

22. A method of use of a hard-tissue implant in a hard tissue of an individual in need thereof, the hard-tissue implant comprising:

(a) a bulk implant;

(b) a face being an exterior surface of the bulk implant;

(c) pillars for implantation into a hard tissue, the pillars being distributed on the face, across an area of at least 80 mm^2 , and extending distally therefrom, and each pillar being integral to the bulk

implant, having a distal end, having a transverse area of (200×200) to $(10,000 \times 10,000) \mu\text{m}^2$, and having a height of 100 to 10,000 μm ; and

(d) slots to be occupied by the hard tissue, the slots being defined by the pillars and each slot having a width of 100 to 10,000 μm as measured along the shortest distance between adjacent pillars; wherein:

the hard-tissue implant has a Young's modulus of elasticity of at least 10 GPa, has a ratio of (i) the sum of the volumes of the slots to (ii) the sum of the volumes of the pillars and the volumes of the slots of 0.40:1 to 0.90:1, does not comprise any part that is hollow, and does not comprise any non-pillar part extending to or beyond the distal ends of any of the pillars;

the method comprising:

(1) selecting the hard-tissue implant such that the ratio of (i) the product of (a) the Young's modulus of the hard-tissue implant and (b) the sum of the volumes of the pillars to (ii) the product of (a) the Young's modulus of the hard tissue and (b) the sum of the volumes of the slots is 0.80:1 to 3.8:1; and

(2) implanting the hard-tissue implant in the hard-tissue of the individual.

23. The method of claim 22, wherein the implanting comprises pressing the hard-tissue implant into the hard tissue, thereby providing immediate load transfer and preventing stress shielding.

24. The method of claim 22, wherein the implanting comprises pressing the hard-tissue implant into the hard tissue, such that the pillars are oriented perpendicularly to the primary axis of tension and compression of the hard tissue and penetrate the hard tissue, thereby providing immediate load transfer and preventing stress shielding.

25. The method of claim 22, wherein the implanting comprises pressing the hard-tissue implant into the hard tissue, such that the pillars are oriented at an acute angle relative to the direction the pressing and penetrate the hard tissue, thereby providing immediate load transfer and preventing stress shielding.

26. The method of claim 22, wherein the implanting comprises pressing the hard-tissue implant into a cavity that has been milled in the hard tissue, such that the pillars penetrate the hard tissue, thereby providing immediate load transfer and preventing stress shielding.

27. The method of claim 22, wherein the hard tissue is selected from the group consisting of long bone, maxillary bone, mandibular bone, and membranous bone.

28. The method of claim 22, wherein the ratio of (i) the product of (a) the Young's modulus of the hard-tissue implant and (b) the sum of the volumes of the pillars to (ii) the product of (a) the Young's modulus of the hard tissue and (b) the sum of the volumes of the slots is 0.90:1 to 3.6:1.

29. The method of claim 22, wherein the hard-tissue implant is made of a material selected from the group consisting of implantable-grade polyetheretherketone, titanium, stainless steel, cobalt-chromium alloy, and titanium alloy.

30. The method of claim 22, wherein the hard-tissue implant is made of another hard tissue selected from the group consisting of an autologous hard tissue, an allogeneic hard tissue, a xenogeneic hard tissue, human cartilage, animal cartilage, a human bone, an animal bone, and a cadaver bone.

31. The method of claim 22, wherein the hard-tissue implant is made of implantable-grade polyetheretherketone, the transverse area of each pillar is (350×350) to $(450 \times 450) \mu\text{m}^2$, the height of each pillar is 400 to 600 μm , the width of each slot is 190 to 210 μm , and the ratio of (i) the sum of the volumes of the slots to (ii) the sum of the volumes of the pillars and the volumes of the slots is 0.51:1 to 0.60:1.

32. The method of claim 22, wherein the hard-tissue implant is made of titanium, the transverse area of each pillar is (350×350) to $(450 \times 450) \mu\text{m}^2$, the height of each pillar is 400 to 600 μm , the width of each slot is 390 to 410 μm , and the ratio of (i) the sum of the volumes of the slots to (ii) the sum of the volumes of the pillars and the volumes of the slots is 0.70:1 to 0.76:1.

1 / 11

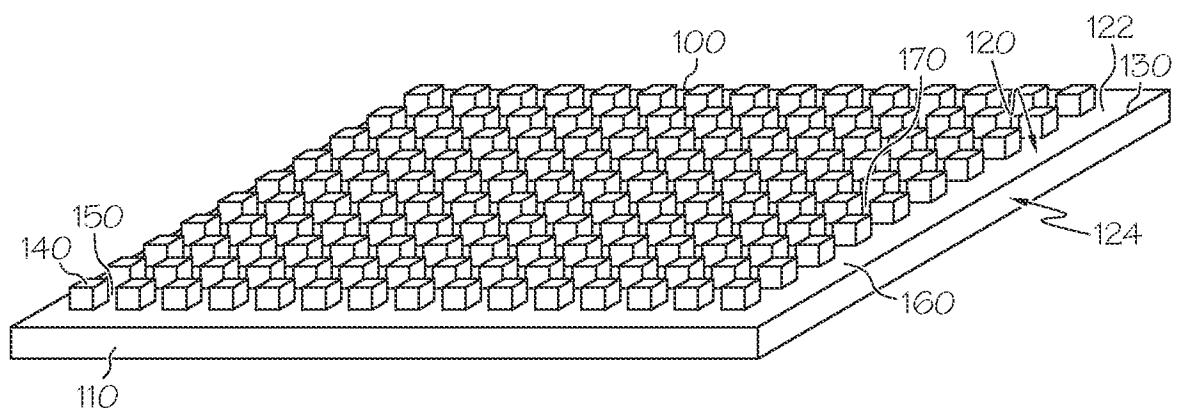


FIG. 1



FIG. 2

2 / 11

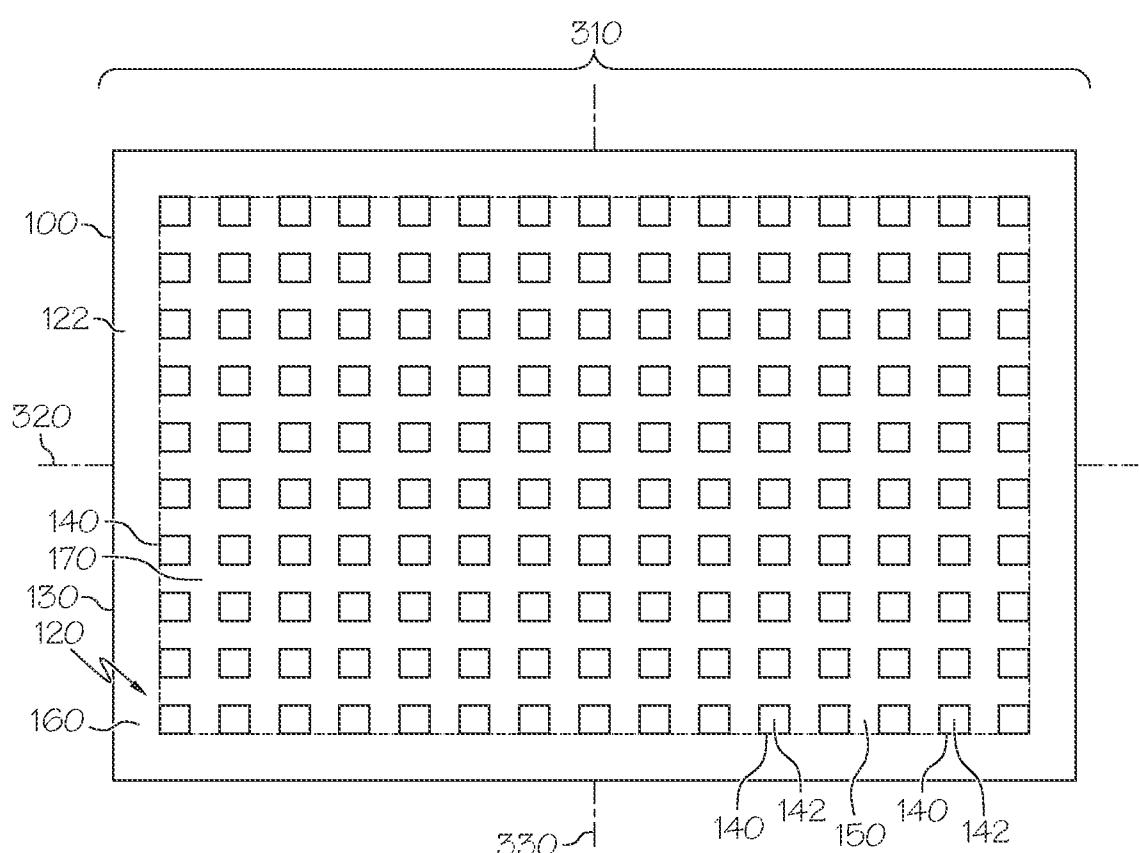


FIG. 3

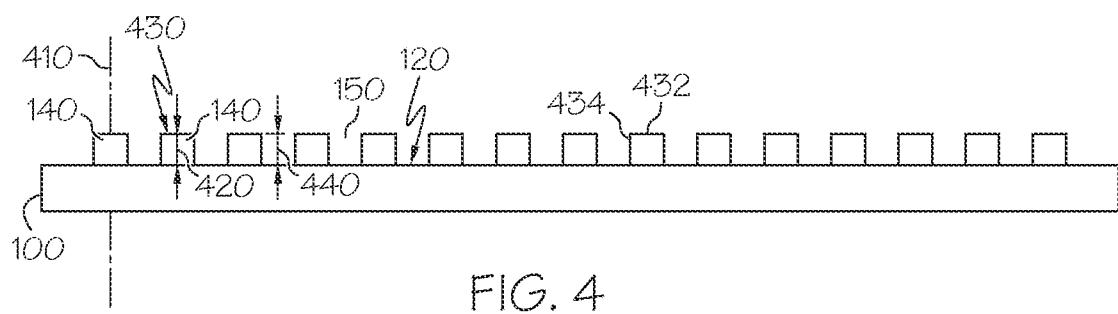


FIG. 4

3 / 11

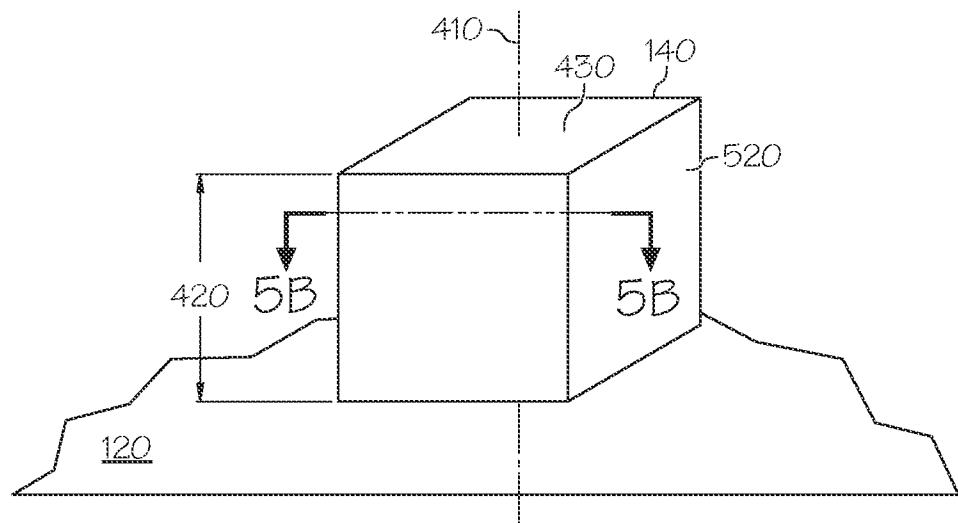


FIG. 5A

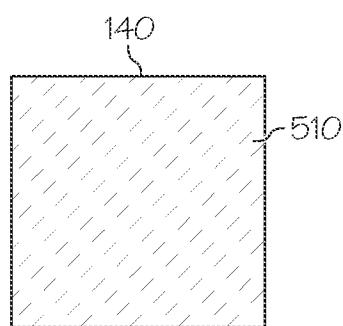


FIG. 5B

4 / 11

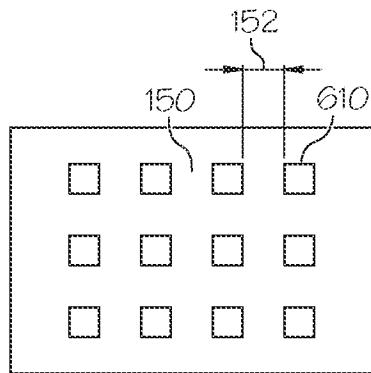


FIG. 6A

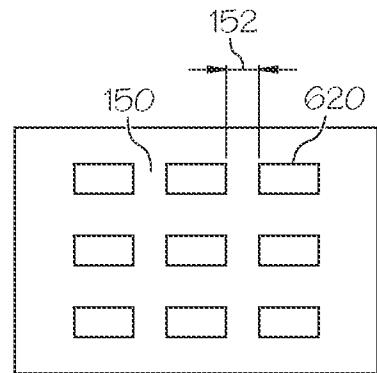


FIG. 6B

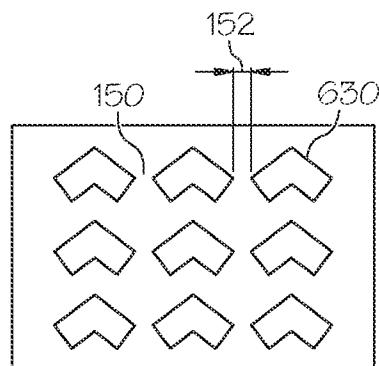


FIG. 6C

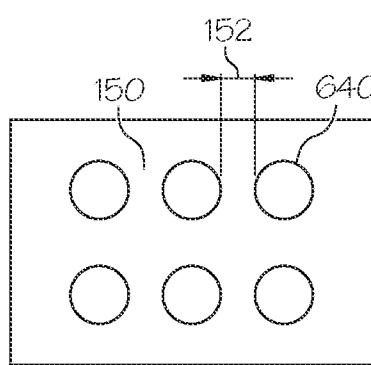


FIG. 6D

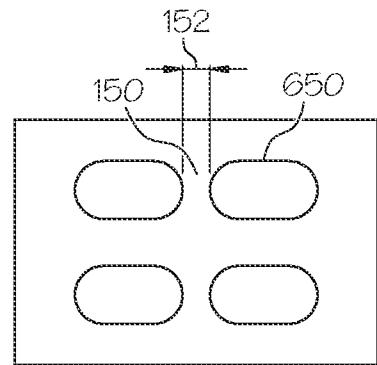


FIG. 6E

5 / 11

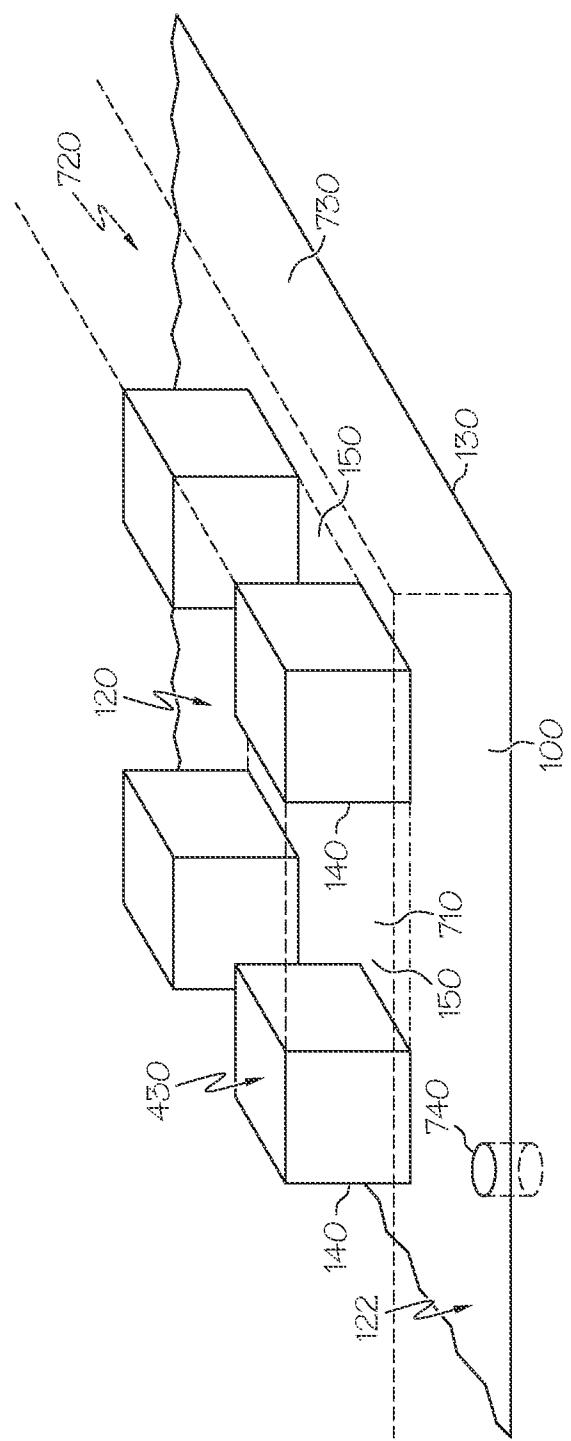


FIG. 7

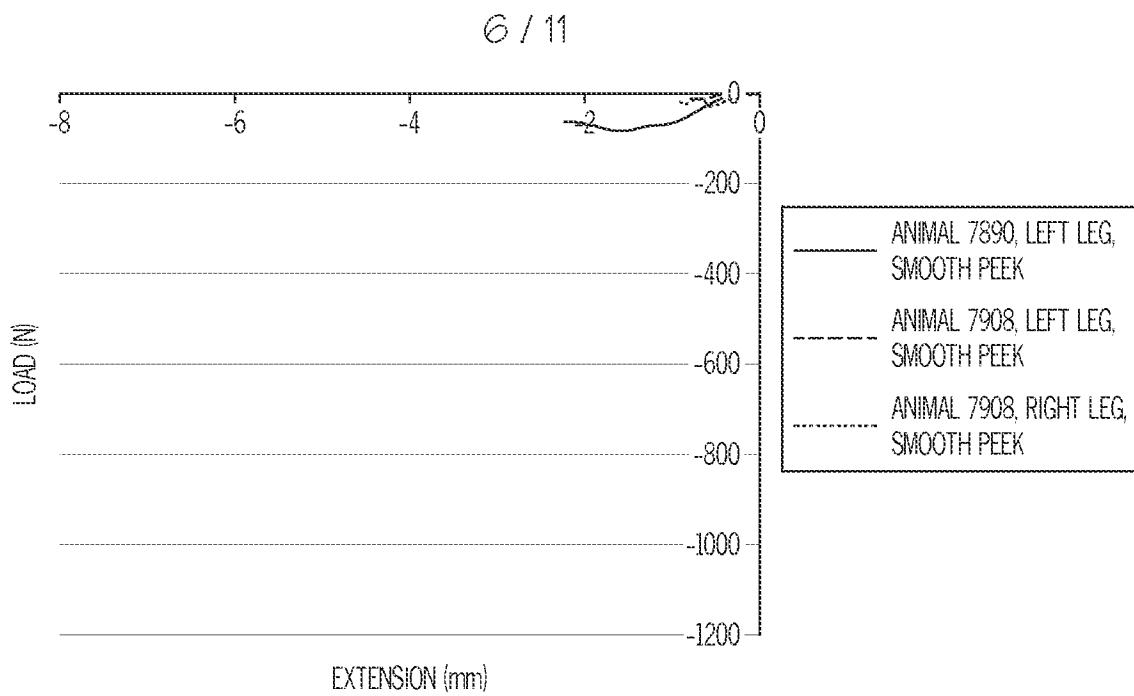


FIG. 8A

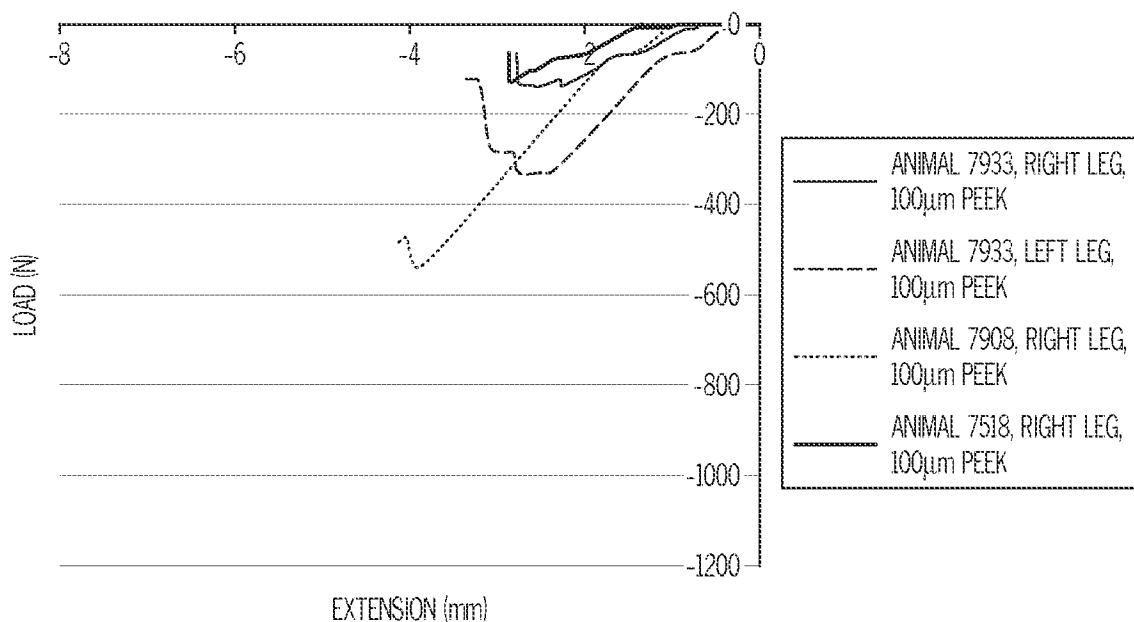


FIG. 8B

7 / 11

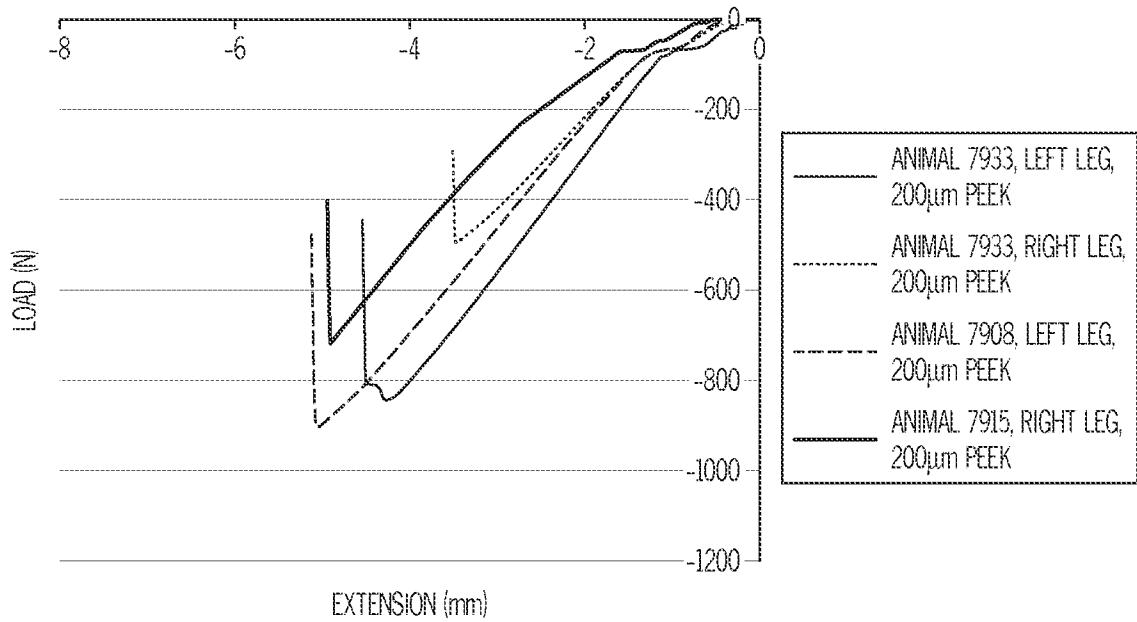


FIG. 8C

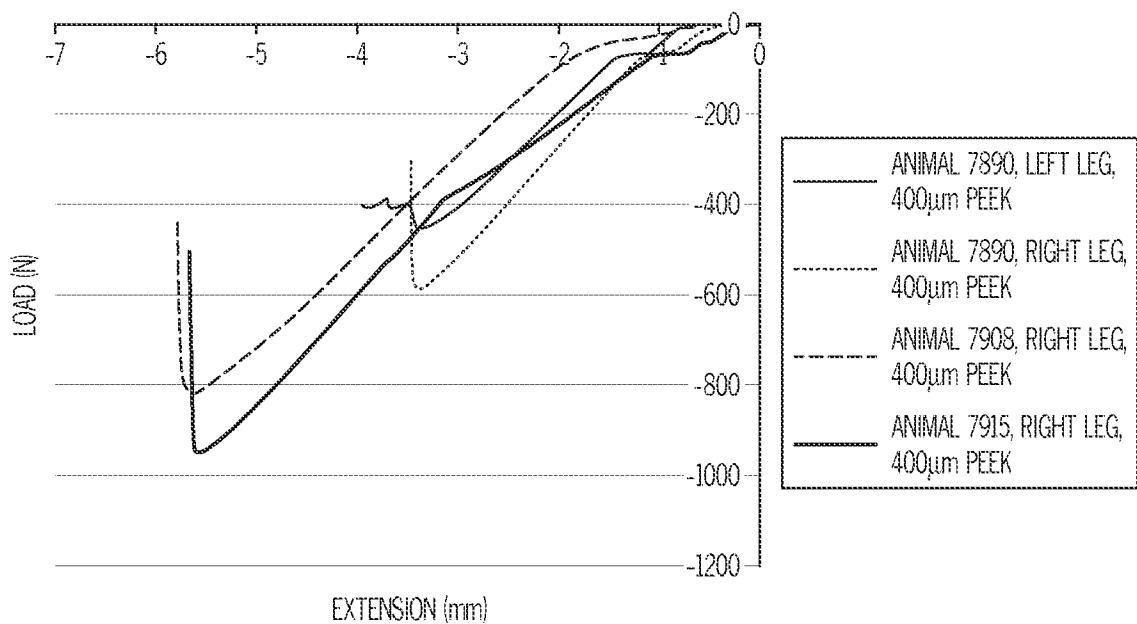


FIG. 8D

8 / 11

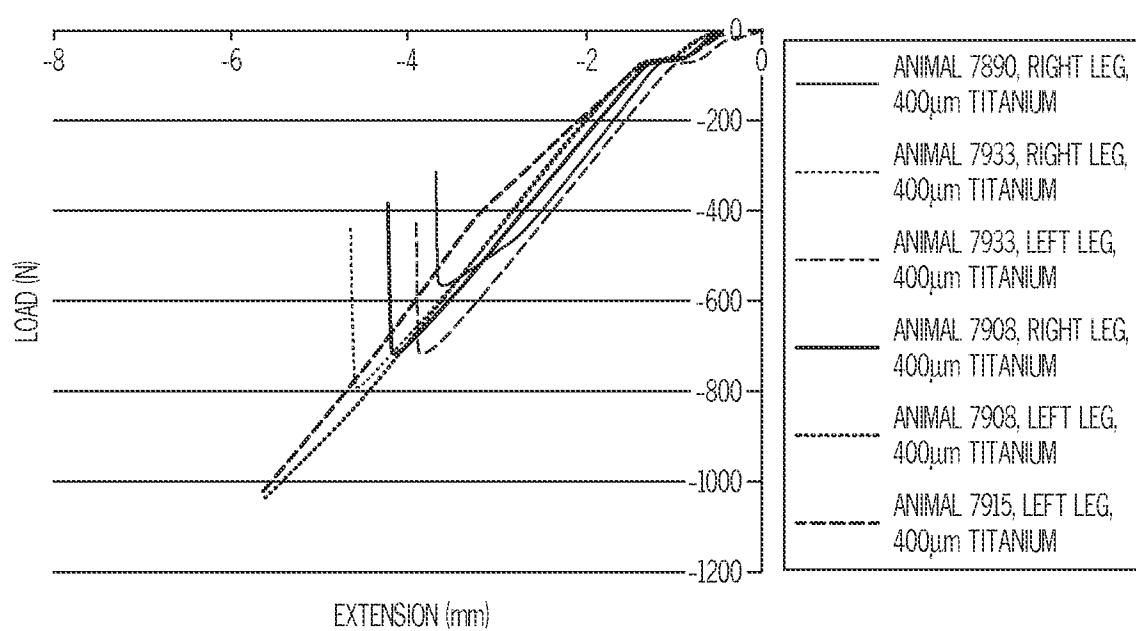
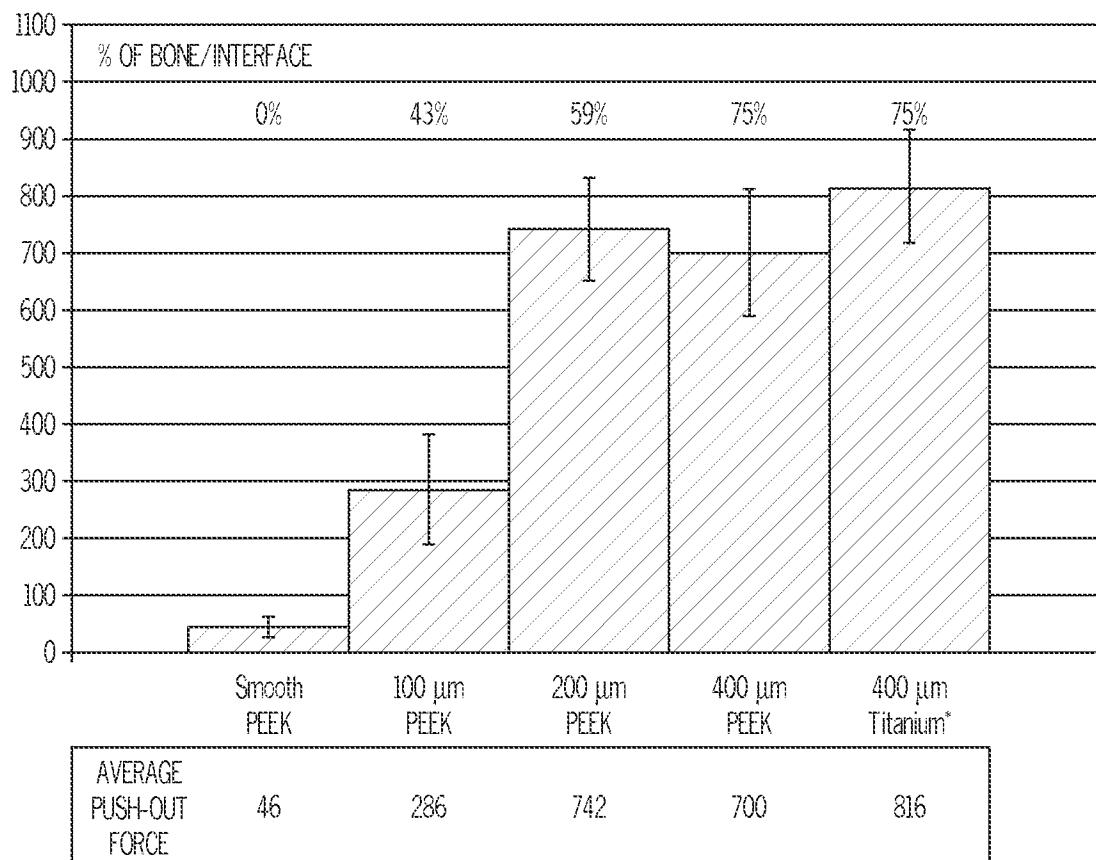



FIG. 8E

9 / 11

*FOR 400 μm TITANIUM TREATMENT, TWO OUT OF SIX SAMPLES EXCEEDED LOAD CELL. THUS, ACTUAL AVERAGE PUSH-OUT FORCE FOR THE TREATMENT WAS GREATER THAN 816.

FIG. 9

10/11

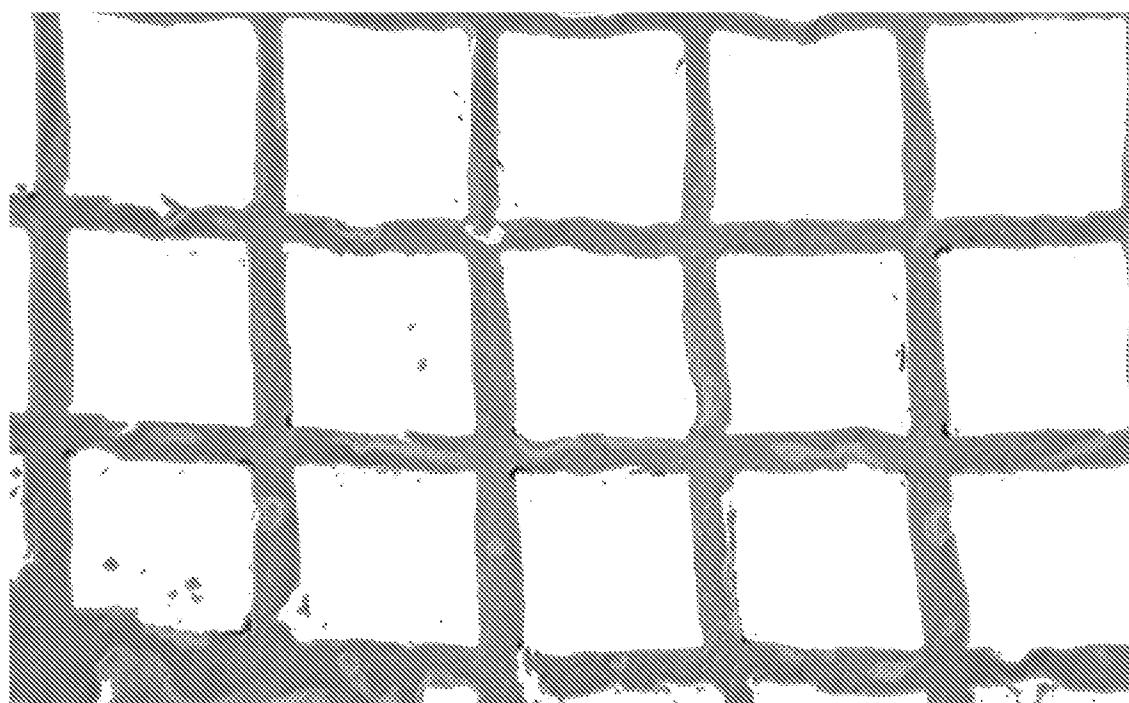


FIG. 10A

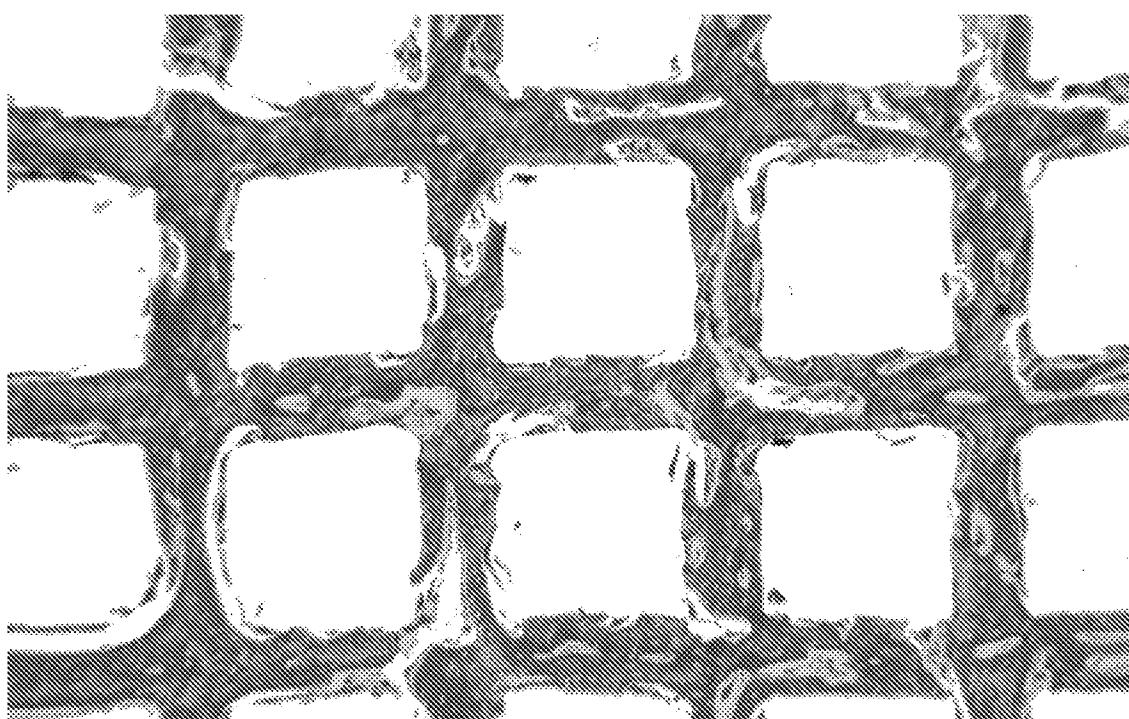


FIG. 10B

11/11

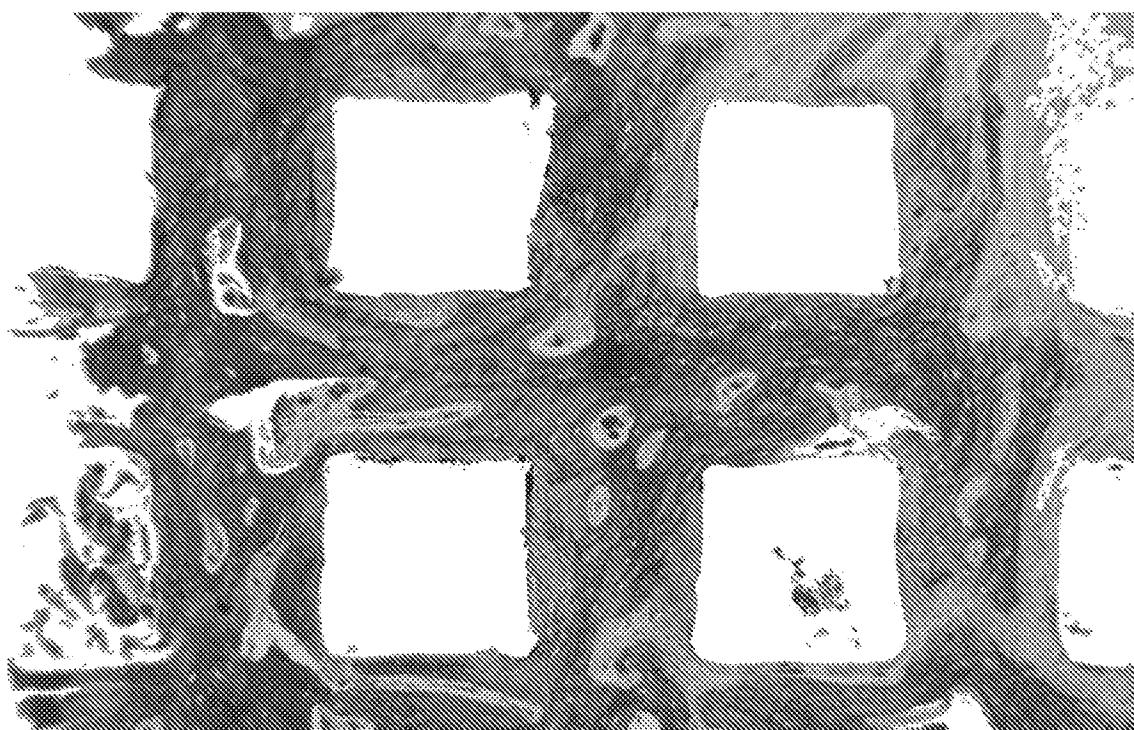


FIG. 10C

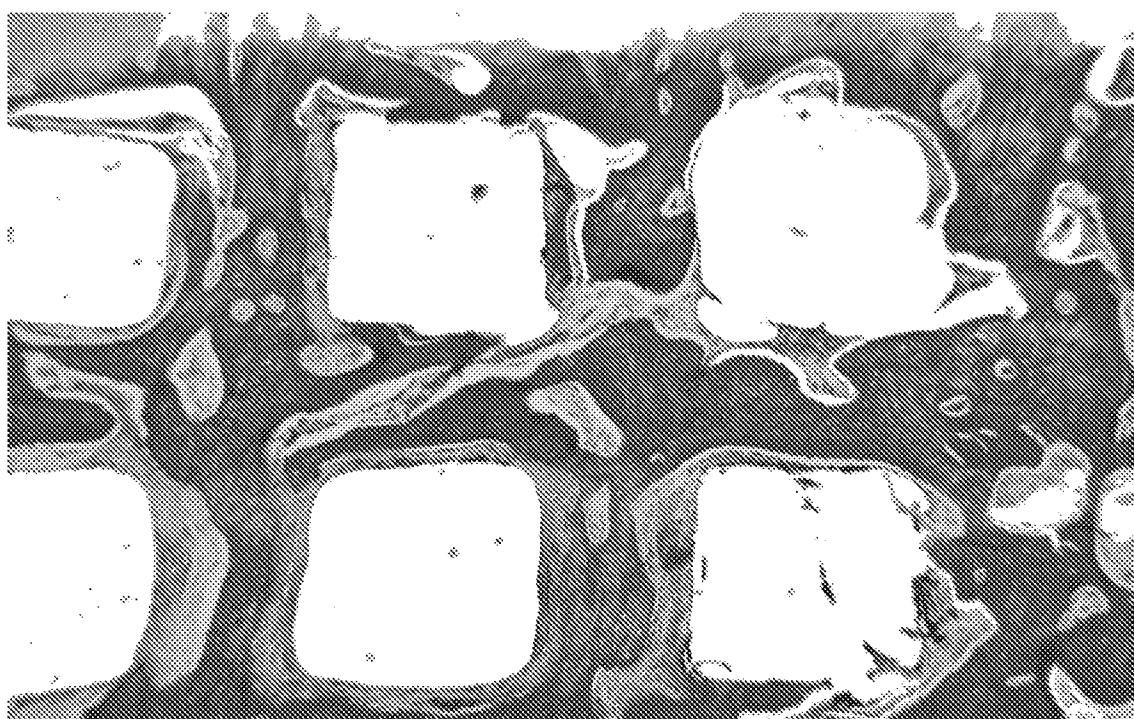


FIG. 10D

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US2012/061627

A. CLASSIFICATION OF SUBJECT MATTER

A61F 2/02(2006.01)i, A61L 27/14(2006.01)i, A61L 27/04(2006.01)i, A61L 27/06(2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

A61F 2/02; A61F 2/28; A61F 2/30; A61F 2/44; A61F 2/38

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Korean utility models and applications for utility models

Japanese utility models and applications for utility models

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

eKOMPASS(KIPO internal) & keywords: implant, pillar, projection, slot, bone/hard-tissue

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	US 5545226 A (WINGO, J. P. et al.) 13 August 1996 See abstract; claims 1-16; figures 2-7.	1-21
A	US 2006-0015184 A1 (WINTERBOTTOM, J. et al.) 19 January 2006 See abstract; claim 1; figure 4.	1-21
A	US 2004-0181286 A1 (MICHELSON, G. K.) 16 September 2004 See abstract; claims 1-29; figures 1-21.	1-21
A	WO 2009-108789 A1 (VOT, LLC) 3 September 2009 See abstract; claim 1, page 14, lines 3-10; figure 3.	1-21
A	US 6071310 A (PICHA, G. J. et al.) 6 June 2000 See abstract; claim 1; figures 1, 20.	1-21
A	US 2010-0298950 A1 (MCDONNELL, P. et al.) 25 November 2010 See abstract; claims 1-12; figure 1, 3, 10.	1-21

 Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:
 "A" document defining the general state of the art which is not considered to be of particular relevance
 "E" earlier application or patent but published on or after the international filing date
 "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of citation or other special reason (as specified)
 "O" document referring to an oral disclosure, use, exhibition or other means
 "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
 "&" document member of the same patent family

Date of the actual completion of the international search
22 FEBRUARY 2013 (22.02.2013)

Date of mailing of the international search report

26 FEBRUARY 2013 (26.02.2013)

Name and mailing address of the ISA/KR

Facsimile No. 82-42-472-7140

Authorized officer

HAN, In Ho

Telephone No. 82-42-481-3362

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US2012/061627**Box No. II Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)**

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.: 22-32
because they relate to subject matter not required to be searched by this Authority, namely:
Claims 22-32 pertain to methods for treatment of the human and thus relate to a subject-matter which this International Searching Authority is not required, under Article 17(2)(a)(i) of the PCT and Rule 39.1(iv) of the Regulations under the PCT, to search.
2. Claims Nos.:
because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
3. Claims Nos.:
because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box No. III Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

- The additional search fees were accompanied by the applicant's protest and, where applicable, the payment of a protest fee.
- The additional search fees were accompanied by the applicant's protest but the applicable protest fee was not paid within the time limit specified in the invitation.
- No protest accompanied the payment of additional search fees.

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No.

PCT/US2012/061627

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
US 05545226 A	13.08.1996	None	
US 2006-0015184 A1	19.01.2006	AU 2005-210630 A1 CA 2555026 A1 EP 1708652 A1 EP 1708652 A4 JP 2007-519492 A WO 2005-074850 A1	18.08.2005 18.08.2005 11.10.2006 24.08.2011 19.07.2007 18.08.2005
US 2004-0181286 A1	16.09.2004	US 2001-0047208 A1 US 2002-0013624 A1 US 2004-0117018 A1 US 2005-0021150 A1 US 6827740 B1 US 7051417 B2 US 7115143 B1 US 7166129 B2 US 7244275 B2 US 7972381 B2	29.11.2001 31.01.2002 17.06.2004 27.01.2005 07.12.2004 30.05.2006 03.10.2006 23.01.2007 17.07.2007 05.07.2011
WO 2009-108789 A1	03.09.2009	US 2009-0228112 A1 US 2009-0228114 A1 US 8100981 B2 US 8226727 B2 WO 2009-111266 A2 WO 2009-111266 A3	10.09.2009 10.09.2009 24.01.2012 24.07.2012 11.09.2009 30.12.2009
US 06071310 A	06.06.2000	AU 1998-58464 B2 JP 10-328217 A US 2002-0040242 A1 US 6346122 B1 US 7556648 B2	31.05.2001 15.12.1998 04.04.2002 12.02.2002 07.07.2009
US 2010-0298950 A1	25.11.2010	CN 101889911 A EP 2253291 A1 JP 2010-269144 A	24.11.2010 24.11.2010 02.12.2010