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SEGMENTING ULTRASOUND IMAGES

CROSS-REFERENCE TO RELATED APPLICATIONS
[0001] This application claims priority to and the benefit of U.S. Provisional
Application Serial No. 62/432.849, filed on December 12, 2016, entitled
“SEGMENTING ULTRASOUND IMAGES,” the entirety of which is incorporated

herein by reference.

BACKGROUND

[0002] One of the first tasks that a human learns as an infant is the process of
recognizing objects. As an infant grows older, that infant’s ability to immediately
identify objects within his/her surroundings continuously improves. Eventually, infants
get to the point where they can scan their surroundings and immediately understand the
environment in which they are situated. Similar to scanning an environment, humans
also have the ability to examine an image (e.g., a picture) and immediately understand
the scene that is illustrated in the image. This ability to examine, recognize, and
identify/categorize objects is a learned trait that is developed over time.

[0003] In contrast, this ability (i.e. recognizing objects in an image and then
classifying those objects) is not an innate process for a computer system. To clarify,
computers do not view images in the same manner that a human does. For instance,
instead of seeing an artful canvas on which many different colors and objects are
illustrated, a computer simply “sees” an array of pixels. The computer must then
analyze each of these pixels to determine which pixels belong to which objects in the
image.

[0004] Similar to how an infant progressively learns to recognize objects, a
computer can also be trained to recognize objects. In the case of machine learning, this
training process can be accomplished by providing the computer with a large number
of images. The computer is then “taught” what a particular object is through a process
of identifying that particular object within the images to the computer. By way of
example, suppose a user wanted to teach the computer to recognize a dog within an
image. To do so, the user will feed a selected number of dog images to the computer
and tell the computer that a dog is present in each of those images. The computer can

then learn (i.e. machine learning) about the various features of a dog.
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[0005] For the most part, efforts in teaching a computer how to perform image
recognition/classification have been focused on the use of natural images (i.e. images
that capture real-world objects) as opposed to medical images (e.g., ultrasound images
or MRI images). This bias is due, in part, to the unlimited availability of natural images
as compared to the availability of medical images. Another reason is due to the limited
number of personnel who are qualified to teach the computer system regarding the
objects that are captured in a medical image.
[0006] To date, the analysis of medical images is mostly performed by human
inspection. In many instances, this process can be quite laborious. Furthermore, the
analysis can be wrought with inconsistencies and misidentifications. Accordingly, there
exists a substantial need in the field of image recognition and classification to assist a
human in analyzing medical images. Even further, there exists a substantial need in the
field to enable a computer to examine, recognize, and identify/classify objects within a
medical image.
[0007] In the case that computer systems are used to analyze medical images,
significant processing and algorithm maintenance is required. Further, the resulting
digital classifications of images can be error prone. While computer processing of
medical images would provide significant technical advantages, the wvarious
inaccuracies and processing requirements associated with conventions computer
systems place significant technical barriers to wide spread adoption.
[0008] The subject matter claimed herein is not limited to embodiments that solve
any disadvantages or that operate only in environments such as those described above.
Rather, this background is provided to illustrate only one exemplary technology area

where some embodiments described herein may be practiced.

BRIEF SUMMARY
[0009] This Summary is provided to introduce a selection of concepts in a
simplified form that are further described below in the Detailed Description. This
Summary is not intended to identify key features or essential features of the claimed
subject matter, nor is it intended to be used as an aid in determining the scope of the
claimed subject matter.
[0010] Disclosed embodiments are directed to systems, hardware storage devices,

and methods for segmenting tissue objects that are included within an ultrasound image.
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[0011] Initially, raw image data (e.g., an ultrasound image) is received. Here, this
raw image data is comprised of an array of pixels, and each pixel comprises ultrasound
information. This raw image data is processed through a first fully convolutional
network to generate a first segmentation label map. This first segmentation label map
includes a first set of objects that have been segmented into a “coarse” segmentation
class. Of note, each object within this first set corresponds to a group of pixels from the
array of pixels. Then, this first segmentation label map is processed through a second
fully convolutional network to generate a second segmentation label map. When the
first segmentation label map is processed through the second fully convolutional
network, the second fully convolutional network uses the raw image data (e.g., the
ultrasound image) as a base reference. The resulting second segmentation label map
includes a second set of objects that have been segmented into a “fine” segmentation
class. Here, each object within the second set also corresponds to a group of pixels from
the array of pixels. Subsequently, a contour optimization algorithm is applied to at least
one of the second set of objects in order to refine that object’s contour boundary.
Additionally, that object is identified as corresponding to a lymph node.

[0012] These and other objects and features of the present invention will become
more fully apparent from the following description and appended claims, or may be

learned by the practice of the invention as set forth hereinafter.

BRIEF DESCRIPTION OF THE DRAWINGS
[0013] To further clarify the above and other advantages and features of the present
invention, a more particular description of the invention will be rendered by reference
to specific embodiments thereof which are illustrated in the appended drawings. It is
appreciated that these drawings depict only illustrated embodiments of the invention
and are therefore not to be considered limiting of its scope. The invention will be
described and explained with additional specificity and detail through the use of the
accompanying drawings in which:
[0014] Figure 1 illustrates an example computer system.
[0015] Figure 2 illustrates an example architecture for segmenting tissue objects
from an ultrasound image.
[0016] Figure 3 shows a digital image that is comprised of an array of pixels.
[0017] Figure 4 illustrates a high-level overview of a semantic segmentation

process.
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[0018] Figure 5 provides an introduction to lymph nodes.
[0019] Figure 6 shows an ultrasound image of a lymph node.
[0020] Figure 7 displays multiple lymph node ultrasound images.
[0021] Figure 8 illustrates an example of a fully convolutional network architecture.
[0022] Figure 9 illustrates an example of a fully convolutional network architecture
that is processing an ultrasound image.
[0023] Figure 10 shows a high-level flow chart illustrating a process for segmenting
tissue objects from an ultrasound image.
[0024] Figures 11A and 11B illustrate a medical image being processed through a
first stage fully convolutional network.
[0025] Figure 12 illustrates a medical image being processed through a second
stage fully convolutional network module.
[0026] Figure 13 illustrates a post-processing procedure for improving contour
boundaries.
[0027] Figure 14 illustrates a resulting contour boundary after post-processing has
been performed.
[0028] Figure 15 illustrates an example method for performing semantic
segmentation on an ultrasound image.
[0029] Figure 16 illustrates another flow chart for performing semantic
segmentation.
[0030] Figures 17, 18, and 19 illustrate various example user interfaces for

displaying the results of semantically segmenting an ultrasound image.

DETAILED DESCRIPTION

[0031] Disclosed embodiments are directed to systems, hardware storage devices,
and methods for segmenting tissue objects within an ultrasound image.

[0032] As used herein, the term “segmenting” generally refers to the process of
examining, recognizing, and identifying/categorizing an object within an image. As
used herein, “semantic segmentation” is an analogous term and can be interchangeably
used in connection with “segmenting.” Further, as used herein an “object” comprises a
visually distinguishable portion of an image that is distinct from at least another portion
of the image. For example, an object within a medical image may comprise a particular

organ, a portion of an organ, a tissue mass, or a particular type of tissue.
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[0033] The embodiments may be implemented to overcome many of the technical
difficulties and computational expenses associated with a computer performing image
identification and classification (i.e. segmentation). In particular, the embodiments
provide a computerized, automated method of accurately segmenting tissue image
objects from within a complex ultrasound image. Such a process greatly assists medical
practitioners when they conduct a medical examination. For instance, objects can be
identified within medical images with greater accuracy and through the use of less
computer resources than previously possible. Accordingly, medical practitioners will
be able to provide more accurate and timelier medical assistance to patients.
[0034] The disclosed embodiments provide additional benefits by not only
identifying objects within a medical image, but by also removing any uncertainties that
are associated with those objects. For instance, some objects within a medical image
may have visual impairments (e.g., blurred edges or other irregular features) as a result
of being captured in the medical image. Disclosed embodiments are able to correct
these visual impairments and provide an accurate depiction of those objects.
[0035] Additionally, one of skill in the art will appreciate that some tissues may
appear to be visually similar to other tissues (e.g., a lymph node may appear to be
visually similar to a certain type of blood vessel). It may be difficult for a trained
professional, much less a conventional image processing system, to correctly identify
tissue types from a medical image. Nevertheless, disclosed embodiments are able to
accurately distinguish between visually similar tissue types. Accordingly, the disclosed
embodiments provide significant advances in diagnosis and disease identification.
[0036] The present embodiments also improve the underlying functionality of a
computer system that performs image processing. For instance, the disclosed
embodiments are able to perform semantic segmentation in one or more stages. By
utilizing a unique staging of the segmentation process, the disclosed embodiments
significantly improve how the computer system operates because the computer
system’s resources are utilized in a much more efficient manner.
[0037] To achieve these benefits (and others), the disclosed embodiments segment
tissue objects that are included within an ultrasound image. At a high level, the
embodiments initially receive raw image data (e.g., an ultrasound image). Here, this
raw image data is comprised of an array of pixels, and each pixel comprises ultrasound
information. This raw image data, in the form of the array of pixels, is processed

through a first fully convolutional network to generate a first segmentation label map.
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This first segmentation label map includes a first set of objects that have been
segmented into a “coarse” segmentation class. Of note, each object within this first set
corresponds to a group of pixels from the array of pixels. Then, this first segmentation
label map is processed through a second fully convolutional network to generate a
second segmentation label map. Of note, this second segmentation label map is
processed using the raw image data as a base reference. Further, this second
segmentation label map includes a second set of objects that have been segmented into
a “fine” segmentation class. Here, each object within the second set also corresponds
to a group of pixels from the array of pixels. Then, a contour optimization algorithm is
applied to at least one of the second set of objects in order to refine that object’s contour
boundary. Subsequently, that object is identified as corresponding to a lymph node.
[0038] Having just described various high-level features and benefits of the
disclosed embodiments, the disclosure will now turn to Figure 1, which presents an
introductory discussion of an example computer system. Following that discussion, an
example architecture for segmenting tissue objects will be discussed with respect to
Figure 2. Figures 3 through 4, which discuss various aspects of semantic segmentation,
will then be presented. Following that disclosure, a discussion on lymph nodes will be
presented with respect to Figures 5 through 7. Next, various architectures and
supporting architectures will be discussed with respect to Figures 8 through 9.
Following that disclosure, various flow diagrams, example illustrations, methods, and
example user interfaces will be detailed with respect to the remaining figures (Figures
10 through 19).

Example Computer System
[0039] As illustrated in Figure 1, in its most basic configuration, a computer system
100 includes various different components. For example, Figure 1 shows that computer
system 100 includes at least one hardware processing unit 105, a graphics processing
unit (GPU) 110, input/output (I/O) interfaces 115, graphics rendering engines 120,
storage 125, and one or more sensors 130.
[0040] The storage 125 may be physical system memory, which may be volatile,
non-volatile, or some combination of the two. The term “memory” may also be used
herein to refer to non-volatile mass storage such as physical storage media. If the
computing system 100 is distributed, the processing, memory, and/or storage capability

2%

may be distributed as well. As used herein, the term “executable module,” “executable

component,” or even “component” can refer to software objects, routines, or methods
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that may be executed on the computing system 100. The different components,
modules, engines, and services described herein may be implemented as objects or
processors that execute on the computing system 100 (e.g. as separate threads).
[0041] The disclosed embodiments may comprise or utilize a special-purpose or
general-purpose computer including computer hardware, such as, for example, one or
more processors (such as processor 105) and system memory (such as storage 125), as
discussed in greater detail below. Embodiments also include physical and other
computer-readable media for carrying or storing computer-executable instructions
and/or data structures. Such computer-readable media can be any available media that
can be accessed by a general-purpose or special-purpose computer system. Computer-
readable media that store computer-executable instructions in the form of data are
physical computer storage media. Computer-readable media that carry computer-
executable instructions are transmission media. Thus, by way of example and not
limitation, the current embodiments can comprise at least two distinctly different kinds
of computer-readable media: computer storage media and transmission media.
[0042] Computer storage media are hardware storage devices, such as RAM, ROM,
EEPROM, CD-ROM, solid state drives (SSDs) that are based on RAM, Flash memory,
phase-change memory (PCM), or other types of memory, or other optical disk storage,
magnetic disk storage or other magnetic storage devices, or any other medium that can
be used to store desired program code means in the form of computer-executable
instructions, data, or data structures and that can be accessed by a general-purpose or
special-purpose computer.
[0043] The computer system 100 may also be connected (via a wired or wireless
connection) to external sensors 140 (e.g., ultrasound devices, MRI devices, etc.).
Further, the computer system 100 may also be connected through one or more wired or
wireless networks 135 to remote systems(s) that are configured to perform any of the
processing described with regard to computer system 100.
[0044] The graphics rendering engine 115 is configured, with the processor(s) 105
and the GPU 110, to render one or more objects on a user interface.
[0045] A “network,” like the network 135 shown in Figure 1, is defined as one or
more data links and/or data switches that enable the transport of electronic data between
computer systems, modules, and/or other electronic devices. When information is
transferred, or provided, over a network (either hardwired, wireless, or a combination

of hardwired and wireless) to a computer, the computer properly views the connection
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as a transmission medium. The computer system 100 will include one or more
communication channels that are used to communicate with the network 135.
Transmissions media include a network that can be used to carry data or desired
program code means in the form of computer-executable instructions or in the form of
data structures. Further, these computer-executable instructions can be accessed by a
general-purpose or special-purpose computer. Combinations of the above should also
be included within the scope of computer-readable media.
[0046] Upon reaching various computer system components, program code means
in the form of computer-executable instructions or data structures can be transferred
automatically from transmission media to computer storage media (or vice versa). For
example, computer-executable instructions or data structures received over a network
or data link can be buffered in RAM within a network interface module (e.g., a network
interface card or “NIC”) and then eventually transferred to computer system RAM
and/or to less volatile computer storage media at a computer system. Thus, it should be
understood that computer storage media can be included in computer system
components that also (or even primarily) utilize transmission media.
[0047] Computer-executable (or computer-interpretable) instructions comprise, for
example, instructions that cause a general-purpose computer, special-purpose
computer, or special-purpose processing device to perform a certain function or group
of functions. The computer-executable instructions may be, for example, binaries,
intermediate format instructions such as assembly language, or even source code.
Although the subject matter has been described in language specific to structural
features and/or methodological acts, it is to be understood that the subject matter
defined in the appended claims is not necessarily limited to the described features or
acts described above. Rather, the described features and acts are disclosed as example
forms of implementing the claims.
[0048] Those skilled in the art will appreciate that the embodiments may be
practiced in network computing environments with many types of computer system
configurations, including personal computers, desktop computers, laptop computers,
message processors, hand-held devices, multi-processor systems, microprocessor-
based or programmable consumer electronics, network PCs, minicomputers,
mainframe computers, mobile telephones, PDAs, pagers, routers, switches, and the like.
The embodiments may also be practiced in distributed system environments where local

and remote computer systems that are linked (either by hardwired data links, wireless
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data links, or by a combination of hardwired and wireless data links) through a network
each perform tasks (e.g. cloud computing, cloud services and the like). In a distributed
system environment, program modules may be located in both local and remote
memory storage devices.
[0049] As discussed above, computer systems are able to provide a broad variety
of different functions. One such function includes performing image processing.
Accordingly, attention will now be directed to Figure 2, which illustrates an example
architecture for performing semantic segmentation on an ultrasound image.
[0050] Figure 2 illustrates a computer system 200 that is analogous to the computer
system 100 of Figure 1. In particular, computer system 200 includes all of the features
and functionalities that were discussed in relation to computer system 100 of Figure 1.
[0051] As illustrated, computer system 200 includes a Fully Convolutional
Network (FCN) component A 205 and a FCN component B 210. Computer system also
includes a post-processing component 215 and storage. Included within this storage is
a set of rules 220. The computer system 200 is configured to segment tissue image
objects from within an ultrasound image. Further detail on computer system 200’s
components will be provided later in the disclosure in connection with the methods that
are presented herein. Accordingly, attention will now be directed to Figure 3, which
illustrates a high-level overview of how digital images are analyzed.

Semantic Segmentation
[0052] There are various different methods for analyzing a digital image. Such
methods include object recognition/detection and semantic segmentation, to name a
few. Briefly, object recognition is the process of generally identifying one or more
objects within an image and distinguishing those objects from one another through the
use of bounding boxes. In contrast, semantic segmentation is the process of classifying
one or more pixels of a digital image so that each classified pixel belongs to a particular
object. Semantic segmentation is a more comprehensive classification scheme. In view
of this understanding, the remainder of this disclosure will focus on semantic
segmentation.
[0053] Turning now to Figure 3, Figure 3 provides an illustration of what a
computer “sees” when it examines a digital image 305. From a human’s perspective,
the digital image 305 includes a table and a vase. In contrast to what a human sees, a
computer simply sees that the digital image 305 is comprised of an array of pixels 310

(aka an array of pixel values).
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[0054] It will be appreciated that this array of pixels 310 may be any size. For
example, the size of the array of pixels 310 may be 1020x1020, meaning that the array
of pixels 310 1s 1020 pixels in height by 1020 pixels in width. Depending on whether
the image is a color image or a black and white image, the array of pixels 310 may have
another dimension value. For example, if the digital image 305 is a color image, then
the size of the array of pixels 310 may be 1020 x 1020 x 3, where the 3 indicates that
there are three color channels (e.g., RGB). Alternatively, if the digital image 305 is a
black and white image, then the size of the array of pixels 310 may be 1020 x 1020 x
1, where the 1 indicates that only a single-color channel is present. Here, it will be
appreciated that these values are being used for example purposes only and should not
be considered as binding or limiting in any manner.
[0055] As such, when a computer analyzes the digital image 305, it is actually
analyzing the array of pixels 310. Accordingly, the end result of the semantic
segmentation process is to enable the computer to accurately examine, recognize, and
identify/categorize each object that is present in the digital image 305.
[0056] To perform semantic segmentation, the computer system analyzes each
pixel thatis included in a digital image (e.g., the digital image 305). After understanding
the digital image at a pixel-level, the computer system then attempts to group each pixel
so that it is associated with a particular identifiable object. As such, the computer system
assigns each pixel to an object class.
[0057] In the scenario presented in Figure 3, there is a vase object class, a table
object class, a background object class, etc. As a consequence, the computer system
will analyze each pixel and attempt to determine which object class that pixel belongs
to. By “attempt,” it is meant that the computer system will assign a probability metric
indicating a determined probability that a particular pixel belongs to a particular object
class. By way of example, consider the top right corner edge of the table in the digital
image 305. That top right corner is dark in color whereas the background is much lighter
in color. By analyzing the pixels, the computer system will assign a high-value
probability that the dark areas near the table edge are a part of the table and not a part
of the background image. It will be appreciated that this is an example only and should
not be considered limiting. Furthermore, semantic segmentation is not based only on
pixel intensity (e.g., dark or light pixels).
[0058] As discussed earlier and as will be discussed in more detail later, a computer

system is trained on how to recognize an image object. For example, at an earlier time,
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the computer system was provided with a selected number of vase images, table images,
background images, etc. By processing these training images through a machine
learning algorithm, the computer system learns what a vase looks like, what a table
looks like, and so on. When the computer system encounters a new image, such as
digital image 305, then the computer system is able to examine the image and use its
past learning to identify the objects within that image. As discussed earlier, the
computer system assigns a probability metric, or value, to each pixel. This metric
indicates a level of confidence that the computer system has with regard to its
classifying a particular pixel to a particular object class (e.g., a vase class, a table class,
etc.).
[0059] Figure 4 illustrates an example overview of the semantic segmentation
process. On the left, Figure 4 shows an original digital image 405. In the middle, Figure
4 shows a ground truth image 410. In this context, a “ground truth” image is an image
whose image objects (e.g., a vase, table, background, etc.) have been perfectly (or near
perfectly) segmented from one another. As such, in at least one embodiment, a ground
truth image is considered a “control” image for testing purposes and is used to quantify
the accuracy of the semantic segmentation process. On the right, Figure 4 shows an
output image 415 that has undergone semantic segmentation.
[0060] The goal of semantic segmentation is to not only accurately identify each
object within an image but to also distinguish between the contour boundaries for each
of those objects. In the context of Figure 4, the end goal of semantic segmentation
would be to not only accurately identify and label the vase but to also identify its
contour boundaries, which boundaries are distinct from the boundaries of the other
objects in the image. Furthermore, the semantic segmentation process should also
identify and label the table along with its contour boundary.
[0061] As can be seen in Figure 4, the vase is resting on top of the table. As a result,
the semantic segmentation process should determine where the vase ends and where
the table begins. The output image 415 shows that as a result of the semantic
segmentation process, the contour boundary of the vase is delineated, or rather
identified as being distinct, from the contour boundary of the table. Furthermore, the
contour boundaries of the vase and table are delineated from the background portion.
To do this semantic segmentation process, the disclosed embodiments obtain a dense
pixel-level understanding of the digital image by analyzing the digital image’s array of

pixels.
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[0062] Accordingly, in at least one embodiment, semantic segmentation is a
process for examining, recognizing, and identifying/categorizing the various objects
that are included within an image. Currently, various methods exist for performing
semantic segmentation. One such method for performing semantic segmentation is
through the use of a “fully convolutional network™ (hereinafter FCN). Additional
details on a FCN will be discussed later. Now, however, attention will be directed to an
introductory discussion on medical imaging.

Lymph Nodes In Medical Images
[0063] Turning now to Figure 5, a brief discussion on lymph nodes will be
presented. Figure 5 shows an abstract view of a human with a group of lymph nodes
505 that have been emphasized to show their features. Lymph nodes are found
throughout the human body (e.g., in the neck, armpit, stomach, etc.). They are major
sites for immune cells, and they also assist in immune system functions. Although
lymph nodes are usually not visible from the outside of a person’s body, medical
imaging devices (e.g., an ultrasound) are available to capture images of what a lymph
node looks like.
[0064] For example, Figure 6 shows an ultrasound image 605 of a group of tissues
(e.g., lymph nodes 610 and other tissues 615 that are not lymph nodes, to be discussed
in more detail later). This ultrasound image 605 was captured using an ultrasound
device. Here, it will be appreciated that the ultrasound image 605 is comprised of an
array of pixels (e.g., similar to the array of pixels 310 of Figure 3). Accordingly, the
ultrasound’s array of pixels includes (1) pixels that correspond to lymph nodes 610 and
(2) pixels that correspond to tissues 615 that are not lymph nodes. This ultrasound
image 605 is displayed on a user interface of a computer system (e.g., the computer
system 100 of Figure 1). Relatedly, the ultrasound device that was used to capture the
ultrasound image 605 may be included as one of the sensors 130 or 140 shown in Figure
1. While Figure 6 shows an instance where the user interface is displaying a single
ultrasound image 605, Figure 7 shows an instance where multiple ultrasound images
705 are visually displayed simultaneously with each other.
[0065] To provide some background, an ultrasound device is a widely used device
for imaging lymph nodes and other tissues for clinical diagnosis. Indeed, ultrasound
imaging is a common first-line imaging device used during patient examinations for

those patients who have certain kinds of medical issues (e.g., neck lumps). An
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ultrasound device is often used first because it is non-invasive and readily available in
most hospitals.
[0066] The remaining portion of this disclosure will focus on lymph nodes. It will
be appreciated, however, that the disclosed embodiments are able to operate with any
kind of tissue and not just lymph nodes. For brevity, however, only lymph nodes will
be discussed hereinafter.
[0067] Quantitative analysis of lymph nodes’ size, shape, morphology, and their
relations in an ultrasound image provides useful and reliable information for clinical
diagnosis, cancer staging, patient prognosis, and treatment planning. It also helps obtain
a better understanding of what are solid and effective features for diagnosing lymph
node related diseases.
[0068] Returning to Figure 6, the ultrasound image 605 shows various different
tissues, including lymph nodes 610 and tissues 615 that are not lymph nodes. As
illustrated, the tissues 615 that are not lymph nodes are somewhat similar in visual
appearance to the lymph nodes 610. Because of this similarity, it may be difficult for a
medical practitioner to accurately distinguish between the lymph nodes 610 and the
tissues 615 that are not lymph nodes. Accordingly, there is a substantial need to provide
an automatic method for segmenting lymph nodes in an ultrasound image.
[0069] Furthermore, an ultrasound image (e.g., the ultrasound image 605) may
contain multiple lymph nodes (e.g., the multiple lymph nodes labeled as lymph nodes
610). In some instances, lymph node areas in the ultrasound image may be unclear and
the contour boundaries may be blurred. While some systems have been developed to
perform semantic segmentation on natural images, such systems are inadequate when
it comes to performing semantic segmentation on medical images because medical
images are significantly more complex and less intuitive than a natural image.
Furthermore, additional non-trivial difficulties arise because of the stark differences
between natural images and medical images. By way of example, lymph node object
areas can be in dark or bright conditions, and non-lymph node objects (e.g., blood
vessels and background tissue) can also contain dark or bright areas. As a result, using
only pixel-level intensity will not ensure satisfactory segmentation results.
Accordingly, existing techniques for semantic segmentation are deficient when it comes
to segmenting a medical image because those techniques either (1) have no detection
part and require manual delineation of the detection methods (e.g., based on intensity

level) or (2) are too simple to give accurate results. The disclosed embodiments provide
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significant advantages because they provide accurate segmentation results in medical
images.

Example FCN Architectures
[0070] A fully convolutional network (FCN) is a window-based method for
performing semantic segmentation. According to the disclosed embodiments, a
“coarse-to-fine” stacked FCN model is provided. This model is structured to
incrementally learn segmentation knowledge from a non-expert level to an expert level
for tissue (e.g., lymph node) segmentation. As discussed earlier, a computer system is
trained to recognize image objects. According to the principles disclosed herein, the
embodiments recognize image objects in a coarse-to-fine approach, which will be
discussed in more detail momentarily.
[0071] A FCN module is a deep learning model that mainly contains “convolutional
layers” and does not contain any “fully connected layers” which is in contrast to a
“convolutional neural network” (aka a CNN). Each FCN module is able to process an
image to identify objects within that image. The disclosed embodiments are able to
support a stacked configuration in which multiple FCN modules are stacked, or rather
staged, together. By staged, it is meant that the output of one FCN module is used as
the input to another FCN module. As a result, the disclosed embodiments are configured
to support any number of serially-arranged FCN modules. By stacking a number of
FCN modules, the embodiments are able to realize a much more accurate understanding
of the objects included within an image.
[0072] For semantic segmentation on a 2D image (e.g., the ultrasound image 605
of Figure 6), the input to a FCN module will be a n x m x ¢ tensor, where 7 is the pixel
length of the image, m is the pixel width of the image, and c is the number of channels,
as generally discussed earlier. The output of that FCN module will be a n x m x s tensor,
where s is the number of object classes that were identified by the FCN module. Using
Figure 3 as an example, the FCN module might determine that s is equal to 3 because
there is a vase object, a table object, and a background object.
[0073] In a different example, for a pixel with coordinates (x, y), if that pixel
belongs to object class 1 (as determined by the ground truth understanding of the digital
image), then (x, y, /) in the output tensor should have a very large probability value
(close to 1), meaning that if the FCN module accurately segmented that pixel, then the
FCN module should have a high level of confidence for that class. Similarly, that pixel

will have a very low probability value for the other object classes. To illustrate, for that
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same pixel (x, y, i), but where i = 2, ..., s, then the resulting probability values should
all be quite low (close to 0). As a result, a single pixel may have multiple probability
values associated to it, one probability value for each of the identified object classes.
Accordingly, each pixel is given a probability metric, or value, which value indicates a
level of confidence that the FCN module has in its classifying that pixel as belonging
to a particular object class.
[0074] In some embodiments, objects (i.e. groups of pixels) that have been
segmented into a first object class/set will have associated therewith a similarity
probability that satisfies a first threshold level. In this context, the first threshold level
indicates that the FCN module is sufficiently confident in its classification of that pixel.
If the probability is below that first threshold level, then the FCN module is not
sufficiently confident. By way of example and not limitation, supposed the FCN
module determines that a pixel must have a probability value of at least 65% to be
accurately categorized as belonging to a particular class. Now, suppose there are three
object classes within an image. Further, suppose that the pixel is assigned a probability
of 33% for object class A, 33% for object class B, and 34% for object class C. Here,
none of the probabilities satisty the 65% threshold value. As a result, it can be
determined that the FCN module is not sufficiently confident in labeling that pixel as
belonging to a particular object class.
[0075] As another example, consider lymph node objects and other tissue objects.
Some of the other tissue objects may appear to be visually similar to a lymph node. For
this first threshold value, the FCN module may determine that if an object has a 60%
probability of being a lymph node, then it satisfies the first threshold level and may be
initially categorized as a lymph node. Accordingly, this first threshold level acts as an
initial gate in classifying objects as lymph nodes.
[0076] As such, the first threshold level may be set so as to differentiate between
objects that are visually similar to lymph nodes and objects that are not visually similar
to lymph nodes. In at least one embodiment, the first threshold level is used as an initial
filter for distinguishing between tissues that are visually similar to lymph nodes and
tissues that are not visually similar. In this manner, if a pixel is given a probability value
that satisfies the first threshold level, then the FCN module is at least somewhat
confident that the pixel corresponds to a lymph node. Of note, the first threshold level
is simply a minimum confidence level. As a result, some false positives may be present,

as discussed above.
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[0077] In this manner, the similarity probability is based on an estimated similarity
in visual appearance between each of the objects in the first class/set and an identifiable
lymph node. Such a first threshold value may be used during a first stage FCN module.
In other words, after a first FCN module processes the digital image, the FCN module
may use this first threshold value to distinguish between objects that appear to be similar
to lymph nodes and objects that are not visually similar to lymph nodes.
[0078] For subsequent FCN stages, a second threshold level may be used. For
example, a second stage FCN module may classify objects into a second class/set. Here,
these second class/set objects all have a similarity probability that satisfies the second
threshold level, which is stricter than the first threshold level. To clarify, the second
threshold level indicates that the FCN module is confident that those objects are actually
lymph nodes and not just objects that appear to be visually similar to lymph nodes. By
way of example and not limitation, the second threshold level may be set to 90%
(whereas the first threshold level was set at 60%). After processing the image data
through the second FCN module, the model will have a better understanding of the
objects that are in the digital image. During the pass through the first FCN module, the
segmentation was a “coarse” segmentation, during subsequent passes through FCN
modules, the segmentation becomes a better, or rather “fine,” segmentation.
[0079] In this manner, objects may be accurately segmented into lymph nodes and
non-lymph nodes. Accordingly, the above discussion illustrates how each pixel is
assigned a likelihood of belonging to a particular object class.
[0080] After the image data is processed through a first FCN module, the first FCN
module generates an “intermediate” segmentation label map. Similar to the above
discussion, this “intermediate” segmentation label map is coarse because it may contain
one or more false positives (i.e. objects that were classified as lymph nodes even though
they are not actually lymph nodes). After the image data is passed through one or more
subsequent FCN modules, a final segmentation label map will be produced. This final
segmentation label map is a “fine” segmentation label map because it has an expert-
level understanding of the image data.
[0081] Accordingly, in some of the disclosed embodiments, there are at least two
object classes/sets for the intermediate segmentation label map. The first class includes
objects that are visually similar to lymph nodes while the second class includes objects

that are not visually similar to lymph nodes. Relatedly, the final segmentation label map
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also includes at least two object classes, namely, objects that are real lymph nodes and
objects that are other types of tissues and/or background images.
[0082] Turning now to Figure 8, this Figure shows an example of a U-Net FCN
module architecture. The depicted U-Net is a FCN model for biomedical imaging tasks.
In particular, the depicted U-Net can systematically combine fine imaging details with
middle-level and object-level information for accurate object detection and
segmentation in biomedical images. As shown in Figure 8, an input image of dimension
388 x 388 is entered in the FCN module. It will be appreciated, however, that the input
image may be of any size. Accordingly, 388 x 388 is simply an example size. The
numbers near the top of each vertical box (e.g., 64, 128, and 256) illustrate the number
of feature channels that are currently present. The horizontal arrows illustrate that a 3x3
convolution function is performed on that image. The horizontal arrows (with right
inclined lines) illustrate that a 2x2 max pooling function is performed. The vertical
arrows (with left inclined lines) illustrate that an up-convolution function is performed
while the vertical arrows (with crossed lines) illustrate that a 1x1 convolution function
is performed. The arrow labeling scheme is visible in the legend.
[0083] Making the model deeper (i.e. adding more max-pooling layers) can help
the model capture larger-scale object-level information. As shown in Figure 8, one
max-pooling operation reduces the image size to ¥4 of its original size (e.g., a 388x388
image is reduced to a 194x194 image, which is ¥ of the size of the 388x388 image).
Such a process allows the corresponding masks in the convolutional layers to work on
a larger “view” in the image domain. This operation is beneficial for the model because
it enables the model to capture part-object-level and whole-object-level image cues.
[0084] By fusing (i.e. the element-wise addition function shown in Figure 8) the
segmentation results (which have been up-convoluted from different scales), a more
accurate lymph node segmentation may be realized. Because lymph node sizes can vary
considerably, fusing the output from different scales helps the final results accurately
capture lymph nodes of different sizes. Here, it is worthwhile to note that the disclosed
embodiments do not require the use of auxiliary classifiers on the output that is up-
convoluted.
[0085] Accordingly, each of the FCN modules (i.e. each FCN stage) may be
designed in the manner presented in Figure 8. Figure 9 shows another high-level

overview of this example architecture. Figure 9 includes some additional detail in that
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an ultrasound image and a resulting segmentation label map are illustrated.
Additionally, the sizing that results from each max-pooling operation is shown.
[0086] Turning now to Figure 10, Figure 10 illustrates a high-level flowchart for
performing semantic segmentation using a multi-staged FCN module approach. Here,
it will be appreciated that this multi-staged FCN module approach is a coarse-to-fine
process.
[0087] Initially, as shown in Figure 10, the process includes a step 1005 of receiving
raw image data (e.g., the ultrasound image 605 of Figure 6). This raw image data is
provided as input to segmentation module A at step 1010. Here, the segmentation
module A is a FCN module configured in the manner illustrated in Figure 8.
Segmentation module A takes the raw image data and produces an intermediate
segmentation result, as shown in step 1015. This intermediate segmentation result
distinguishes tissue objects that are visually similar to lymph nodes from tissue objects
that are not visually similar to lymph nodes. Here, it will be appreciated that the
intermediate segmentation label map is considered to be a “coarse” label map because
the intermediate segmentation label map may include one or more false positives.
[0088] This intermediate segmentation result is then fed into a second segmentation
module (i.e. segmentation module B) at step 1020. In addition to the intermediate
segmentation result, the raw image data is also fed as input into the segmentation
module B. Here, the raw image data acts as a base reference for the segmentation
module B. The segmentation module B then produces a final segmentation result at step
1025. This final segmentation result accurately identifies all lymph nodes and
distinguishes those lymph nodes from all other tissues, even tissues that appear to be
visually similar to a lymph node. Accordingly, because the final segmentation result
(i.e. the final segmentation label map) includes an accurate identification of the lymph
nodes, this final segmentation label map is considered to be a “fine” label map. As a
result, the disclosed segmentation process is a coarse-to-fine segmentation process.
[0089] Accordingly, as can be seen in Figure 10, some of the disclosed
embodiments consist of multiple stages of FCN modules (i.e. the segmentation
modules). As discussed earlier, the FCN modules are trained so as to recognize tissue
objects. One reason why medical image processing is significantly more difficult than
natural image processing is because of the limited number of available training samples.
Whereas there is a countless number of natural images for training purposes (e.g., there

is a countless number of dog images available to train a computer to recognize a dog),
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there are significantly fewer medical images for training purposes. Even further, the
number of qualified individuals to provide the training for the computer is limited. As
a result, performing semantic segmentation on medical images is significantly more
difficult than performing semantic segmentation on natural images.
[0090] Accordingly, segmentation module A is trained to learn segmentation
knowledge from the raw input image to produce a segmentation label map (an
intermediate result) that shows all the areas that are visually similar to lymph nodes.
Here, it will be appreciated that this intermediate result is based on non-expert
knowledge and may include false positives. In contrast to segmentation module A,
segmentation module B is trained to use the intermediate result combined with the raw
image to produce the final (i.e. expert-level) lymph node segmentation label map.
[0091] Up to this point, the disclosure has focused on embodiments that use two
stages (as shown in Figure 10). It will be appreciated, however, that other embodiments
include additional stages. For example, some embodiments include three stages in
which three FCN modules are used. Other embodiments include four stages in which
four FCN modules are used. Accordingly, it will be appreciated that the disclosed
embodiments may include any number of stages (e.g, 2, 3,4, 5,6, 7, 8, 9, 10, or more).
In at least one embodiment, by multiple stages, it is meant that there are multiple
stacked FCNs, where each FCN receives input and produces output so as to produce a
semantically segmented image.
[0092] Additionally, the disclosed embodiments are able to perform a post-
processing method. This post-processing will be discussed in much more detail later
on. However, by way of a brief introduction, the post-processing step includes the
implementation of a convex-shape constraint based graph search method to improve
the lymph node contour boundaries. This post-processing significantly improves the
accuracy of the final lymph node segmentation label map.
[0093] As discussed earlier, the FCN modules are trained to recognize lymph nodes
and other tissues. In this manner, some of the disclosed embodiments make use of a
multi-stage incremental learning concept for designing deep learning models. Based on
this concept, the deep learning model learns how to perform semantic segmentation in
a coarse-to-fine, simple-to-complex manner. Furthermore, some of the disclosed
embodiments use a stacked FCN model with the guidance of the coarse-to-fine
segmentation label maps (i.e. the intermediate segmentation label map and the final

segmentation label map).
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[0094] Returning to Figure 8, this U-Net FCN module architecture is a small-sized
FCN that is used to build the FCN modules for some of the disclosed embodiments. It
will be appreciated, however, that other FCN architectures may be used. In each
learning stage, the model is kept relatively simple so as to avoid over-fitting in each
learning stage. Since the label maps are designed in an incremental manner (i.e. coarse-
to-fine), any risk of over-fitting for the whole model is greatly reduced.
[0095] With regard to training the FCN modules, a non-expert is permitted to train
the first FCN module (i.e. segmentation module A in Figure 10). Here, the non-expert
identifies all possible lymph node areas in a set of digital images. The intermediate
segmentation label map is expected to then cover all true lymph nodes and may contain
one or more false positives. The intermediate segmentation label map is used to guide
the training of segmentation module A. For segmentation module B, the resulting
segmentation label map shows the real lymph node areas and can be marked by an
experienced sonographer. As such, in at least one embodiment, an expert sonographer
can train the segmentation module B. In situations where the intermediate segmentation
label map misses some real lymph nodes, the disclosed embodiments are able to
generate subsequent intermediate segmentation label maps by combining previous
segmentation label maps with a final segmentation label map. Furthermore, the FCN
modules are able to use the original ultrasound image as a base reference.
[0096] The disclosed embodiments provide significant advantages in that they
improve the training process when training the FCN modules. Accordingly, the
following disclosure presents some of the methods for training FCN modules.
[0097] For example, in some training situations, a stochastic gradient descent based
method (e.g., Adam or RMSProp) may be applied to train the modules. In some
instances, all of the FCN modules are trained at the same time using the same image
data. Here, each FCN module influences all of the other FCN modules. In a different
scenario, the first FCN module is trained using only intermediate segmentation label
maps while subsequent FCN modules are trained using only final segmentation label
maps. Here, the intermediate segmentation label maps influence the subsequent FCN
modules but the final segmentation label maps and the subsequent FCN modules do not
influence the first FCN module. In yet another training scenario, the first FCN module
may be trained using intermediate segmentation label maps. Then, the first FCN module
is fixed and the subsequent FCN modules are trained. In this context, the first FCN

module influences the subsequent FCN modules, but not vice versa. Different from the
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earlier training scenario, in this scenario the influence from the first FCN module to the
subsequent FCN modules remains the same for the same image samples in different
situations.

FCN Module Results
[0098] Attention will now be directed to Figures 11A, 11B, and 12, which Figures
illustrate a practical example in which some of the disclosed embodiments are realized.
[0099] Figure 11A illustrates an example ultrasound image, which ultrasound
image is analogous to the ultrasound images presented in Figures 6 and 7. Here, the
ultrasound image includes various different objects, some of which correspond to
lymph nodes and some of which do not correspond to lymph nodes. In at least one
embodiment, the computer system receives this ultrasound image and feeds it as input
into a FCN module.
[00100] Figure 11B shows a resulting intermediate segmentation label map. In this
scenario, the intermediate segmentation label map is designed to overlap, or “mask,”
the original ultrasound image. As illustrated, the intermediate segmentation label map
includes objects that have been segmented into various different object classes/sets. In
particular, objects have been segmented into class one objects 1105 and class two
objects 1110. The objects included as part of the class one objects 1105 are objects that
are determined to be visually similar to actual lymph nodes. As discussed earlier, the
intermediate segmentation label map may include objects that appear to be visually
similar to lymph nodes but that are not actual lymph nodes. In contrast to the class one
objects 1105, objects that are segmented as class two objects 1110 are objects that do
not have a visual appearance similar to a lymph node.
[00101] In the scenario presented in Figure 11B, the class one objects 1105 have
been emphasized so as to be distinguishable from the class two objects 1110. In
particular, the class one objects 1105 have been enshrouded with a partially transparent
mask and provided with a definitive contour border. In contrast to the class one objects
1105, all the other objects (i.e. the class two objects 1110) have no such emphasis.
Accordingly, from this disclosure, it will be appreciated that different object classes
may be visually emphasized in different manners. For example, objects that are
segmented into a first object class may be visually emphasized using a first format while
objects that are segmented into a second object class may be visually emphasized using
a second format. The formatting may be any type of formatting. By way of example

and not limitation, the formatting includes highlighting the objects, creating a border
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around the objects, placing a semi-transparent mask on top of the objects, or any other
process for distinguishing one object from another.
[00102] Accordingly, Figure 11B illustrates an example intermediate segmentation
label map. Turning now to Figure 12, Figure 12 illustrates a final segmentation label
map. According to the principles discussed herein, the intermediate segmentation label
map and the original ultrasound image are both fed into another FCN module. Here,
this process constitutes a second stage. The second FCN module will then process the
images and produce a final segmentation label map, which is illustrated in Figure 12.
[00103] As illustrated, the final segmentation label map includes class one objects
1210, class two objects 1215, and class three objects 1205. Here, the class two objects
1215 are analogous to the class two objects 1110 of Figure 11 in that all objects that
were segmented into the class two objects 1215 are objects that do not have a visual
appearance similar to a lymph node. Here, it is worthwhile to note that some
embodiments do not perform any additional analysis on class two objects after being
segmented as such in the intermediate segmentation label map. To clarify, if an object
is initially labeled as a class two object when the original ultrasound image is passed
through the first FCN module, then some embodiments do not further analyze those
objects during subsequent passes through a FCN module. Other embodiments,
however, are configured to verify the results of the initial segmentation process. For
example, some embodiments, during subsequent passes through a FCN module (i.e.
during later stage processing), perform verification checks to ensure that an object was
not improperly labeled as “not a lymph node” when it actually was a lymph node.
Accordingly, some embodiments perform verification processing.
[00104] Returning to Figure 12, Figure 12 shows class one objects 1210 and class
three objects 1205. As illustrated, both the class one objects 1210 and the class three
objects 1205 were previously included as a part of the class one objects 1105 shown in
Figure 11B. After passing through a subsequent FCN module, however, the class one
objects 1105 of Figure 11 were further processed to accurately segment objects that are
actual lymph nodes (i.e. class three objects 1205) from objects that do appear to be
visually similar to a lymph node but that actually are not lymph nodes (i.e. class one
objects 1210). Accordingly, by using multiple stages of FCN modules, the disclosed
embodiments provide a coarse-to-fine segmentation process for accurately identifying
actual lymph nodes and for identifying objects that are visually similar to lymph nodes

but that are not actual lymph nodes.
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[00105] Similar to the intermediate segmentation label map of Figure 11B, the final
segmentation label map also includes different formatting for the different classes of
objects. For instance, the class three objects 1205 are visualized in a format that is
different than a format of the class one objects 1210. Further, the formats of the class
three objects 1205 and the class one objects 1210 are different than the format of the
class two objects 1215. In particular, the mask that has been applied over the original
ultrasound image uses different formatting for the various different object classes.

Post Processing to Improve Contour Boundaries
[00106] Having just provided a practical example of the semantic segmentation
process according to the disclosed principles, attention will now be directed to Figures
13 and 14, which Figures illustrate a unique process for refining the contour boundaries
of a segmented lymph node object in a final segmentation label map.
[00107] Figure 13 shows a final segmentation label map that is analogous to the final
segmentation label map of Figure 12. Additionally, Figure 13 shows an expanded
portion of one of the segmented objects that is included in the final segmentation label
map. As illustrated, the contour boundary 1305 of the object is generally rough, fuzzy,
or otherwise irregular. In view of this rough contour boundary 1305, the disclosed
embodiments are able to apply post-processing to further refine the lymph node’s
contour boundaries. For instance, refining an object’s contour boundary results in
smoothing any irregular portions. This refinement process is based on the segmentation
results of the coarse-to-fine FCN segmentation process.
[00108] As a general matter, most of the time lymph nodes have a convex shape
when portrayed in an ultrasound image. Although alternative shapes are possible, it is
not very common to find concave points on the contour boundary of a lymph node. In
light of this phenomenon, the disclosed embodiments are configured to use a soft
convex-shape constraint to refine the border contours of lymph nodes. Such a
refinement process helps generate a more accurate lymph node segmentation.
[00109] This contour optimization is modeled as a shortest path problem on a graph.
For instance, given a contour C for a lymph node segmented according to the principles
discussed earlier, some of the embodiments uniformly sample g points on C in a
clockwise manner on the input image (i.e. the original ultrasound image). For each
sample point a;, let 7; be a ray of / pixels orthogonal to the direction of the curvature of

C at a; (r; centers at a; € ().



WO 2018/111940 PCT/US2017/065913

10

15

20

25

30

24
[00110] Now, denote the i-th point (pixel) on the ray 7; as pij = (xp i Y, j) in the

image. To ensure the optimized output contour C’ being sufficiently smooth, some
embodiments apply a smoothness constraint, specified by a parameter s, namely, each

j+1-L]+g

’ =7 x 0
y along C’, for any |i' —i| < s, where i =

pij is allowed to connect only to p
1,2, ..,h,and j = 1,2, ..., g (where s may be chosen to be 5 in this instance, but some
other value may also be used).

[00111] Some embodiments also enforce a convexity shape constraint in that any
concave edge-to-edge connection (pl] _1pij, to pij,p{,jrl) along C’ is penalized by
incurring a large connection cost. A graph G is then built on the sample points (graph
nodes) of these rays with node weights reflecting inverse image gradient responses and
edge weights reflecting the degrees of convexity at the internal angles of the sought
contour (. A parameter w is used to control the relative importance between the node
weights and edge weights in G. Computing the optimal convex-shape constrained
closed contour C’ in G takes O(s’h’g) amount of time. Using these principles, this
boundary refinement process produces a cleaner and more accurate lymph node
segmentation. Accordingly, some embodiments use the contour optimization algorithm
to refine an object’s boundary as a function of convexity.

[00112] Turning now to Figure 14, Figure 14 illustrates an example scenario in
which the contour boundary post-processing refinement process has been performed.
For example, a final segmentation label map, which is analogous to the other final
segmentation label maps discussed thus far, is illustrated. Whereas previously the
lymph nodes boundaries may have included fuzzy or irregular portions, the lymph node
shown in Figure 14 now has a smooth boundary 1405. Accordingly, by applying the
refinement principles discussed earlier, a final segmentation label map may be further
refined so that the contours of the lymph nodes are more accurate.

[00113] To this point, the disclosure has focused on embodiments that refine the
contours of only final segmentation label map objects. It will be appreciated, however,
that other embodiments apply the refinement process at other stages of the segmentation
process. For instance, some embodiments apply refinements to the intermediate
segmentation label map. Still further, other embodiments apply refinements to both the

intermediate segmentation label map and the final segmentation label map. Even

further, some embodiments apply refinements to every resulting segmentation label
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map produced during the segmentation process. By way of example and not limitation,
if the segmentation process included five stages, then the refinement process may be
performed five separate times. Accordingly, from this disclosure it will be appreciated
that the refinement process may be performed any number of times and may be
implemented at any stage throughout the segmentation process.

Example Methods
[00114] The following discussion now refers to a number of methods and method
acts that may be performed. Although the method acts may be discussed in a certain
order or illustrated in a flow chart as occurring in a particular order, no particular
ordering is required unless specifically stated, or required because an act is dependent
on another act being completed prior to the act being performed. The methods are
implemented by one or more processors of a computer system (e.g., the computer
system 100 of Figure 1). It will be appreciated that a computer system includes one or
more computer-readable hardware storage media that stores computer-executable code.
This computer-executable code is executable by the one or more processors to cause
the computer system to perform these methods.
[00115] Turning now to Figure 15, Figure 15 illustrates an example method 1500 for
segmenting tissue objects from an ultrasound image. Initially, method 1500 includes an
act of receiving raw image data that is comprised of an array of pixels (act 1505). Here,
each pixel within the array of pixels comprises ultrasound information. This act is
performed by the FCN Component A 205 of the computer system 200 of Figure 2.
[00116] Method 1500 is also shown as including an act of processing the raw image
data through a first fully convolutional network to generate a first segmentation label
map (act 1510). In some instances, this first segmentation label map comprises a first
set of objects that have been segmented into at least a coarse segmentation class (e.g.,
the class one objects 1105 of Figure 11). Additionally, in some instances, each object
within the first set of objects may correspond to a group of pixels from the array of
pixels. Here, this act is also performed by the FCN Component A 205.
[00117] Method 1500 also includes an act of processing the first segmentation label
map through a second fully convolutional network to generate a second segmentation
label map (act 1515). Here, the processing may be performed using the raw image data
as a base reference (e.g., as shown in Figure 10). Additionally, the second segmentation
label map may include a second set of objects that have been segmented into a fine

segmentation class (e.g., the class three objects 1205 of Figure 12). Here, each object
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within the second set of objects corresponds to a group of pixels from the array of
pixels. This act is performed by the FCN Component B 210 of the computer system
200 of Figure 2.
[00118] Method 1500 also includes an act of applying a contour optimization
algorithm to at least one object within the second set of objects (act 1520). As discussed
earlier, this contour optimization algorithm refines a corresponding contour boundary
for the object. This act is performed using the rules 220 stored in the storage shown in
Figure 2. Here, the rules 220 define the contour optimization algorithm. As a result, the
segmented objects are evaluated against a specialized set of rules so as to refine the
contour boundaries of the segmented objects. The post-processing component 215
performs this act using the rules 220.
[00119] Method 1500 also includes an act of generating an identification that the at
least one object corresponds to a lymph node (act 1525). Here, this act is performed by
the FCN Component B 210 of Figure 2.
[00120] Figure 16 shows another high-level flow chart depicting the method 1500
of Figure 15. As illustrated, a raw image is fed as input into FCN Module A. FCN
Module A then produces a first segmentation label map. In some instances, the first
segmentation label map includes objects that have been segmented into a first class (i.e.
objects that are visually similar to lymph nodes) and a second class (i.e. objects that are
not visually similar to lymph nodes). This first segmentation label map, along with the
original raw image, is then fed as input into a second FCN module (i.e. FCN Module
B). Here, the original raw image acts as a base reference for the segmentation process
that occurs in FCN Module B.
[00121] FCN Module B produces a second segmentation label map. Here, this
second segmentation label map includes objects that have been segmented into a third
class (e.g., the class three objects 1205 shown in Figure 12). In the scenario presented
in Figure 16, the segmentation process includes only two stages. As a result, the second
segmentation label map constitutes a final segmentation label map.
[00122] Next, a set of rules are evaluated against the final segmentation label map.
Here, the set of rules defines a contour optimization algorithm that is evaluated against
at least one of the third-class objects. This algorithm refines the contour boundaries of
that object so as to remove any fuzziness or irregular portions. As a result of evaluating

the set of rules against the final segmentation label map, a refined final (i.e. second)
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segmentation label map is produced, which map includes one or more refined elements
that belong to the third class.
[00123] Having just described various example methods, the remaining disclosure
will discuss various example user interfaces for displaying the resulting segmentation
label maps.
[00124] For example, Figure 17 shows a user interface that includes an original raw
ultrasound image (i.e. the left image) and a final segmentation label map. In this context,
the final segmentation label map is not overlaid, or rather is not masking, a copy of the
original ultrasound image. Instead, the final segmentation label map is an independent
image. Further, Figure 17 shows that the various objects have been segmented into
different object classes. As shown, there are three object classes, namely, a class
formatted in black, a class formatted in light grey, and a class formatted in dark grey.
The dark grey class indicates objects that are actual lymph nodes. The light grey class
indicates objects that are visually similar to lymph nodes but that are not actual lymph
nodes. Finally, the black objects are objects that are not visually similar to lymph nodes.
As a result, a final segmentation label map may be displayed on a user interface of the
computer system. As illustrated, all of the objects that have been segmented into a
particular set/class are displayed using a first format while all other objects may be
displayed in a different format.
[00125] Figure 18 shows another example user interface. Here, this user interface
shows both the intermediate segmentation label map (top right map) and a final
segmentation label map (bottom right map). As illustrated, the various object classes
are emphasized in different manners. Accordingly, some example user interfaces
include the raw image, the intermediate segmentation label map, and the final
segmentation label map all displayed simultaneously with each other. In the scenario
presented in Figure 18, the intermediate and final segmentation label maps are masked
on top of a copy of the original raw image. Here, the second (i.e. final) segmentation
label map (bottom right) is displayed on a user interface of the computer system.
Additionally, all of the objects that have been segmented into a particular set/class are
displayed using a first format while all the other objects are displayed using a different
format.
[00126] Figure 19 shows yet another example user interface. Here, this user interface
is similar to the user interface of Figure 18 with the exception that independent images

have been created for the intermediate (i.e. top right image) and final (i.e. bottom right
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image) segmentation label maps. To clarify, in the user interface of Figure 19, the
intermediate and final segmentation label maps are not masked on top of a copy of the
original raw image. Furthermore, in this example user interface, all of the objects that
are emphasized in the final segmentation label map (i.e. the bottom right image)
correspond only to lymph nodes.

[00127] Accordingly, some example user interfaces are configured to display the
original raw image, the intermediate segmentation label map, the final segmentation
label map, or various combinations of the above.

[00128] The present invention may be embodied in other specific forms without
departing from its spirit or essential characteristics. The described embodiments are to
be considered in all respects only as illustrative and not restrictive. The scope of the
invention is, therefore, indicated by the appended claims rather than by the foregoing
description. All changes which come within the meaning and range of equivalency of

the claims are to be embraced within their scope.
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CLAIMS
What is claimed is:
1. A computer system comprising;

one or more processors, and

one or more computer-readable hardware storage devices having stored thereon

computer-executable instructions that, when executed by the one or more processors,

cause the computer system to:

receive raw image data that is comprised of an array of pixels, each pixel
within the array of pixels comprising ultrasound information,;
process the raw image data through a first fully convolutional network
to generate a first segmentation label map, wherein:
the first segmentation label map comprises a first set of objects
that have been segmented into at least a coarse segmentation class, and
each object within the first set of objects corresponds to a group
of pixels from the array of pixels;
process the first segmentation label map through a second fully
convolutional network to generate a second segmentation label map, wherein:
processing the first segmentation label map through the second
fully convolutional network is performed using the raw image data as a
base reference,
the second segmentation label map comprises a second set of
objects that have been segmented into a fine segmentation class, and
each object within the second set of objects corresponds to a
group of pixels from the array of pixels;
apply a contour optimization algorithm to at least one object within the
second set of objects, wherein the contour optimization algorithm refines a
corresponding contour boundary for the at least one object; and
generate an identification that the at least one object corresponds to a
lymph node.

2. The computer system of claim 1, wherein the array of pixels includes

(1) pixels that correspond to a lymph node and (2) pixels that correspond to tissues that

are not lymph nodes.
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3. The computer system of claim 2, wherein objects within the first set have
associated therewith a similarity probability that satisfies a first threshold level, the
similarity probability being based on an estimated similarity in visual appearance
between each of the objects in the first set and an identifiable lymph node.

4. The computer system of claim 3, wherein objects within the second set
are objects whose similarity probability satisfies a second threshold level, the second
threshold level being stricter than the first threshold level.

5. The computer system of claim 1, wherein the contour optimization
algorithm refines the corresponding contour boundary for the at least one object as a
function of convexity.

6. The computer system of claim 1, wherein the array of pixels defines (1)
an image length of the raw image data, (2) an image width of the raw image data, and
(3) a number of color channels that are included in the raw image data.

7. The computer system of claim 6, wherein the number of color channels
is 1.

8. The computer system of claim 1, wherein the first segmentation label
map is displayed on a user interface of the computer system, and wherein all of the
objects in the first set are displayed using a first format while all other objects are
displayed using a different format.

0. The computer system of claim 1, wherein the second segmentation label
map is displayed on a user interface of the computer system, and wherein all of the
objects in the second set are displayed using a first format while all other objects are
displayed using a different format.

10.  The computer system of claim 1, wherein the first segmentation label
map and the second segmentation label map are displayed simultaneously with each
other on a user interface of the computer system.

11. One or more hardware storage devices having stored thereon computer-
executable instructions that, when executed by one or more processors of a computer
system, cause the computer system to:

receive raw image data that is comprised of an array of pixels, each pixel
within the array of pixels comprising ultrasound information,;
process the raw image data through a first fully convolutional network

to generate a first segmentation label map, wherein:



WO 2018/111940 PCT/US2017/065913

10

15

20

25

30

31
the first segmentation label map comprises a first set of objects
that have been segmented into at least a coarse segmentation class, and
each object within the first set of objects corresponds to a group
of pixels from the array of pixels;
process the first segmentation label map through a second fully
convolutional network to generate a second segmentation label map, wherein:
processing the first segmentation label map through the second
fully convolutional network is performed using the raw image data as a
base reference,
the second segmentation label map comprises a second set of
objects that have been segmented into a fine segmentation class, and
each object within the second set of objects corresponds to a
group of pixels from the array of pixels;
apply a contour optimization algorithm to at least one object within the
second set of objects, wherein the contour optimization algorithm refines a
corresponding contour boundary for the at least one object; and
generate an identification that the at least one object corresponds to a
lymph node.

12.  The one or more hardware storage devices of claim 11, wherein applying
the contour optimization algorithm includes applying a smoothness constraint on the
corresponding boundary for the at least one object.

13.  The one or more hardware storage devices of claim 11, wherein applying
the contour optimization algorithm includes applying a convexity shape constraint on
the corresponding boundary for the at least one object.

14. The one or more hardware storage devices of claim 11, wherein the first
segmentation label map is a coarse label map, and wherein the second segmentation
label map is a fine label map.

15. The one or more hardware storage devices of claim 11, wherein the
corresponding contour boundary for the at least one object initially includes an irregular
portion, and wherein refining the corresponding contour boundary for the at least one
object results in smoothing the irregular portion.

16. A method for segmenting tissue objects that are included within an
ultrasound image, the method being implemented by one or more processors of a

computer system, the method comprising:
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receiving raw image data that is comprised of an array of pixels, each
pixel within the array of pixels comprising ultrasound information;
processing the raw image data through a first fully convolutional
network to generate a first segmentation label map, wherein:
the first segmentation label map comprises a first set of objects
that have been segmented into at least a coarse segmentation class, and
each object within the first set of objects corresponds to a group
of pixels from the array of pixels;
processing the first segmentation label map through a second fully
convolutional network to generate a second segmentation label map, wherein:
processing the first segmentation label map through the second
fully convolutional network is performed using the raw image data as a
base reference,
the second segmentation label map comprises a second set of
objects that have been segmented into a fine segmentation class, and
each object within the second set of objects corresponds to a
group of pixels from the array of pixels;
applying a contour optimization algorithm to at least one object within
the second set of objects, wherein the contour optimization algorithm refines a
corresponding contour boundary for the at least one object; and

generating an identification that the at least one object corresponds to a

lymph node.

17. The method of claim 16, wherein all objects in the second set correspond
only to lymph nodes.

18. The method of claim 16, wherein applying the contour optimization

algorithm includes applying a soft convex-shape constraint.

19. The method of claim 16, wherein (1) the raw image data, (2) the first
segmentation label map, and (3) the second segmentation label map are displayed
simultaneously with each other on a user interface of the computer system.

20. The method of claim 19, wherein a format of all objects in the second

set is different than a format of all objects in the first set on the user interface.
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