wo 2012/151075 A1 I}] 0000 OO O

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2012/151075 A1

8 November 2012 (08.11.2012) WIPO I PCT
(51) International Patent Classification: CA 94022 (US). MYLES, Gideon, M. [US/US]; 1482
GO6F 21/22 (2006.01) Maxine Avenue, San Jose, CA 95125 (US). TESSIER,
(21) International Application Number: Cedric [FR/FR]; 61 Avenue Jean Jaures, F-94250 Gentilly
PCT/US2012/034716 (FR).
(22) International Filing Date: (74) Agent: McKNIGHT, Brian; Novak Druce + Quigg LLP,
g ’ 23 April 2012 (23.04.2012 1000 Louisiana Street, Fifty-Third Floor, Houston, TX
pri (23.04.2012) 77002 (US).
(25) Filing Language: English (81) Designated States (uniess otherwise indicated, for every
(26) Publication Language: English kind of national protection available). AE, AG, AL, AM,
L. AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
(30) Priority Data: CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
(71) Applicant (for all designated States except US): APPLE HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR,
INC. [US/US]; 1 Infinite Loop, Cupertino, CA 95014 KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
(US). MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD,
(72) Inventors; and SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR,
(75) Inventors/Applicants (for US only): MCLACHLAN, Jon TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
[US/US]; 30 Dore Street, Unit 403, San Francisco, CA
(84) Designated States (uniess otherwise indicated, for every

94103 (US). ZAKS, Ganna [US/US]; 950 High School
Way, Apt 3206, Mountain View, CA 94041 (US). LER-
OUGE, Julien [FR/US]; 1506 Llikai Avenue, San Jose,
CA 95118 (US). BETOUIN, Pierre [FR/FR]; 7 Rue Marie
Bonaparte, F-92210 Saint-cloud (FR). FARRUGIA, Au-
gustin, J. [FR/US]; 25045 Oneonta Drive, Los Altos Hills,

kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU,
TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,

[Continued on next page]

(54) Title: SYSTEM AND METHOD FOR BLURRING INSTRUCTIONS AND DATA VIA RELOCATION

FIG. 6

618

S INSTRUCTION SET 1 §

T

604wz,

- 520 e 822

618

REFERENCE A I

02 ol Ezf‘ T

DATA &

{
BlZ

TEXT ~~ 606

(57) Abstract: Disclosed herein are systems, methods, and
non-transitory computer-readable storage media for obfuscat-
ing a computer program. A system configured to practice the
method identifies a set of executable instructions at a first
location in an instruction section of the computer program
and identifies a second location in a data section of the com-
puter program. Then the system moves the set of executable
instructions to the second location and patches references in
the computer program to the set of executable instructions to
point to the second location. The instruction section of the
computer program can be labeled as TEXT, text and the
data section of the computer program is labeled as_ DATA,
data. The set of executable instructions can include one or
more non-branching instructions optionally followed by a
branching instruction. The placement of the first and second
locations can be based on features of a target computing ar-
chitecture, such as cache size.

WO 2012/151075 A1 WK 00N 0 T

LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, Published:
SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW, ML, MR, NE, SN, TD, TG).

— with international search report (Art. 21(3))

Declarations under Rule 4.17:

— as to applicant’s entitlement to apply for and be granted
a patent (Rule 4.17(ii))

WO 2012/151075 PCT/US2012/034716

SYSTEM AND METHOD FOR BLURRING INSTRUCTIONS AND DATA VIA RELOCATION

CROSS REFERENCE TO RELATED APPLICATIONS
[0001] This application claims priority to U.S. Patent Application Serial No. 13/100,041,
entitled, “SYSTEM AND METHOD FOR BLURRING INSTRUCTIONS AND DATA
VIA BINARY OBFUSCATION”, filed on 3 May 2011, which is hereby incorporated

herein by reference in its entirety.

BACKGROUND

1. Technical Field
[0002] The present disclosure relates to obfuscating a computer program, and more
specifically to obfuscating data and instruction segments of a computer program.

2. Introduction
[0003] When compiling a computer program, a standard compiler will place the data and
instructions for that computer program into distinct blocks. Because these blocks are
logically organized, the computer can execute the instructions by running line after line of
commands from the instruction blocks and retrieving necessary data from neatly
organized data blocks. Unfortunately, these neatly organized and predictably laid out
blocks of instructions and data are exploited by reverse engineers.
[0004] Attempts to reverse engineer a software program typically rely on one or both of
two primary techniques: static analysis and dynamic analysis. Some static techniques
identify specific sections of code and perform a linear sweep of the code section, line
upon line, to disassemble the code from machine code to assembler. Static analysis can
be quite effective at reverse engineering programs, but rely upon specific assumptions
about the compiled code to correctly perform the reverse engineering. When these
assumptions fail, reverse engineers are then forced to employ dynamic analysis,
observing the inputs and outputs of the program and drawing inferences about the
underlying code to either attempt to build an equivalent piece of code or understand
and/or modify the functions of the code.
[0005] By using static and dynamic techniques to reverse engineer software programs,

reverse engineers can develop software to mimic or replace previously developed
1

WO 2012/151075 PCT/US2012/034716

software. In some cases, this new software fails to completely emulate the original
software, while in other cases, attackers insert malicious code or functionality in reverse
engineered software. For these and other reasons, software developers wish to protect
their code by preventing unauthorized duplication, modification, or other attacks on their

software.

SUMMARY
[0006] Additional features and advantages of the disclosure will be set forth in the
description which follows, and in part will be obvious from the description, or can be
learned by practice of the herein disclosed principles. The features and advantages of the
disclosure can be realized and obtained by means of the instruments and combinations
particularly pointed out in the appended claims. These and other features of the
disclosure will become more fully apparent from the following description and appended
claims, or can be learned by the practice of the principles set forth herein.
[0007] Disclosed are systems, methods, and non-transitory computer-readable storage
media for obfuscating the data and instructions of a software program. A system can
include one or more of a processor, system, computer, computing device, etc., configured
to practice the method. The system can obfuscate the machine code during compilation,
shortly after compilation, or can obfuscate the machine code when being loaded into
system memory.
[0008] The disclosed approaches for obfuscation can include placing instructions, and
sets of instructions, in blocks otherwise specified as ‘data blocks.” Similarly, the
obfuscation approach can include placing data within instruction blocks. In some
circumstances, data and instructions may be swapped, and there may be some size
adjustment if the data size does not match the instruction size.
[0009] The disclosed obfuscation approaches can include moving multiple instructions
and multiple pieces of data from their traditional locations, such as text or data sections,
and placing the instructions and/or data in locations other than a designated or labeled
region of a file, storage, or memory. One result of moving multiple sets of instructions
and multiple pieces of data is an updated network of links and references to the new

locations of the data and/or instructions. Another possible result is blocks of data or

2

WO 2012/151075 PCT/US2012/034716

instructions which, in fact, contain no data or instructions, or possibly no relevant data or
instructions.

[0010] A system, such as a compiler, configured to practice the exemplary method of
obfuscating a computer program first identifies a set of executable instructions at a first
location in an instruction section of the computer program. Then the system identifies a
second location in a data section of the computer program. The system can then move the
set of executable instructions to the second location and patch references in the computer
program to the set of executable instructions in the first location to point to the second
location. The patched computer program is obfuscated and retains the same overall
functionality as the unobfuscated computer program, but as the program executes, some
instructions are read from new/different locations. This approach can be used to produce
multiple differently obfuscated versions, which are functionally identical, even though
their exact execution paths differ. For example, the selection of which locations to
obfuscate and where to move those locations can be selected randomly. In this way, a
software distributor can ship multiple functionally compatible versions of the same
executable file, but a successful reverse engineering or other attack on one version of the

executable file is not transferable to another version of the executable file.

BRIEF DESCRIPTION OF THE DRAWINGS
[0011] In order to describe the manner in which the above-recited and other advantages
and features of the disclosure can be obtained, a more particular description of the
principles briefly described above will be rendered by reference to specific embodiments
thereof which are illustrated in the appended drawings. Understanding that these
drawings depict only exemplary embodiments of the disclosure and are not therefore to
be considered to be limiting of its scope, the principles herein are described and explained
with additional specificity and detail through the use of the accompanying drawings in
which:
[0012] FIG. 1 illustrates an example system embodiment;
[0013] FIG. 2 illustrates an example of a data stack;
[0014] FIG. 3 illustrates an exemplary binary obfuscator implemented within the

compiler;

WO 2012/151075 PCT/US2012/034716

[0015] FIG. 4 illustrates an exemplary binary obfuscator implemented as a post-compiler
component;

[0016] FIG. 5 illustrates an exemplary set of data and instruction blocks before
obfuscation;

[0017] FIG. 6 illustrates the exemplary set of data and instruction blocks of FIG. 5 after
obfuscation;

[0018] FIG. 7 illustrates multiple exemplary data and instruction blocks before
obfuscation;

[0019] FIG. 8 illustrates the multiple exemplary data and instruction blocks of FIG. 7
after obfuscation;

[0020] FIG. 9 illustrates a first example method embodiment; and

[0021] FIG. 10 illustrates a second example method embodiment.

DETAILED DESCRIPTION

[0022] Various embodiments of the disclosure are discussed in detail below. While
specific implementations are discussed, it should be understood that this is done for
illustration purposes only. A person skilled in the relevant art will recognize that other
components and configurations may be used without parting from the spirit and scope of
the disclosure.

[0023] The present disclosure addresses the need in the art for data and instruction
obfuscation in software programs. A system, method and non-transitory computer-
readable media are disclosed which obfuscate data and instructions of software programs
by altering, obfuscating, or scrambling locations of the data and instructions and
references to those locations. A brief introductory description of a basic general purpose
system or computing device in FIG. 1 which can be employed to practice the concepts is
disclosed herein. A more detailed description of the obfuscation approaches will then
follow. These variations shall be discussed herein as the various embodiments are set
forth. The disclosure now turns to FIG. 1.

[0024] With reference to FIG. 1, an exemplary system 100 includes a general-purpose
computing device 100, including a processing unit (CPU or processor) 120 and a system

bus 110 that couples various system components including the system memory 130 such

4

WO 2012/151075 PCT/US2012/034716

as read only memory (ROM) 140 and random access memory (RAM) 150 to the
processor 120. The system 100 can include a cache 122 of high speed memory connected
directly with, in close proximity to, or integrated as part of the processor 120. The system
100 copies data from the memory 130 and/or the storage device 160 to the cache 122 for
quick access by the processor 120. In this way, the cache 122 provides a performance
boost that avoids processor 120 delays while waiting for data. These and other modules
can control or be configured to control the processor 120 to perform various actions.
Other system memory 130 may be available for use as well. The memory 130 can
include multiple different types of memory with different performance characteristics. It
can be appreciated that the disclosure may operate on a computing device 100 with more
than one processor 120 or on a group or cluster of computing devices networked together
to provide greater processing capability. The processor 120 can include any general
purpose processor and a hardware module or software module, such as module 1 162,
module 2 164, and module 3 166 stored in storage device 160, configured to control the
processor 120 as well as a special-purpose processor where software instructions are
incorporated into the actual processor design. The processor 120 may essentially be a
completely self-contained computing system, containing multiple cores or processors, a
bus, memory controller, cache, etc. A multi-core processor may be symmetric or
asymmetric.

[0025] The system bus 110 may be any of several types of bus structures including a
memory bus or memory controller, a peripheral bus, and a local bus using any of a variety
of bus architectures. A basic input/output (BIOS) stored in ROM 140 or the like, may
provide the basic routine that helps to transfer information between elements within the
computing device 100, such as during start-up. The computing device 100 further
includes storage devices 160 such as a hard disk drive, a magnetic disk drive, an optical
disk drive, tape drive or the like. The storage device 160 can include software modules
162, 164, 166 for controlling the processor 120. Other hardware or software modules are
contemplated. The storage device 160 is connected to the system bus 110 by a drive
interface. 'The drives and the associated computer readable storage media provide
nonvolatile storage of computer readable instructions, data structures, program modules

and other data for the computing device 100. In one aspect, a hardware module that

WO 2012/151075 PCT/US2012/034716

performs a particular instruction includes the software component stored in a non-
transitory computer-readable medium in connection with the necessary hardware
components, such as the processor 120, bus 110, display 170, and so forth, to carry out
the function. The basic components are known to those of skill in the art and appropriate
variations are contemplated depending on the type of device, such as whether the device
100 is a small, handheld computing device, a desktop computer, or a computer server.
[0026] Although the exemplary embodiment described herein employs the hard disk 160,
it should be appreciated by those skilled in the art that other types of computer readable
media which can store data that are accessible by a computer, such as magnetic cassettes,
flash memory cards, digital versatile disks, cartridges, random access memories (RAMs)
150, read only memory (ROM) 140, a cable or wireless signal containing a bit stream and
the like, may also be used in the exemplary operating environment. Non-transitory
computer-readable storage media expressly exclude media such as energy, carrier signals,
electromagnetic waves, and signals per se.

[0027] To enable user interaction with the computing device 100, an input device 190
represents any number of input mechanisms, such as a microphone for speech, a touch-
sensitive screen for gesture or graphical input, keyboard, mouse, motion input, speech and
so forth. An output device 170 can also be one or more of a number of output
mechanisms known to those of skill in the art. In some instances, multimodal systems
enable a user to provide multiple types of input to communicate with the computing
device 100. The communications interface 180 generally governs and manages the user
input and system output. There is no restriction on operating on any particular hardware
arrangement and therefore the basic features here may easily be substituted for improved
hardware or firmware arrangements as they are developed.

[0028] For clarity of explanation, the illustrative system embodiment is presented as
including individual functional blocks including functional blocks labeled as a
"processor" or processor 120. The functions these blocks represent may be provided
through the use of either shared or dedicated hardware, including, but not limited to,
hardware capable of executing software and hardware, such as a processor 120, that is
purpose-built to operate as an equivalent to software executing on a general purpose

processor. For example the functions of one or more processors presented in FIG. 1 may

WO 2012/151075 PCT/US2012/034716

be provided by a single shared processor or multiple processors. (Use of the term
"processor" should not be construed to refer exclusively to hardware capable of executing
software.) Illustrative embodiments may include microprocessor and/or digital signal
processor (DSP) hardware, read-only memory (ROM) 140 for storing software
performing the operations discussed below, and random access memory (RAM) 150 for
storing results. Very large scale integration (VLSI) hardware embodiments, as well as
custom VLSI circuitry in combination with a general purpose DSP circuit, may also be
provided.

[0029] The logical operations of the various embodiments are implemented as: (1) a
sequence of computer implemented steps, operations, or procedures running on a
programmable circuit within a general use computer, (2) a sequence of computer
implemented steps, operations, or procedures running on a specific-use programmable
circuit; and/or (3) interconnected machine modules or program engines within the
programmable circuits. The system 100 shown in FIG. 1 can practice all or part of the
recited methods, can be a part of the recited systems, and/or can operate according to
instructions in the recited non-transitory computer-readable storage media. Such logical
operations can be implemented as modules configured to control the processor 120 to
perform particular functions according to the programming of the module. For example,
FIG. 1 illustrates three modules Mod1 162, Mod2 164 and Mod3 166 which are modules
configured to control the processor 120. These modules may be stored on the storage
device 160 and loaded into RAM 150 or memory 130 at runtime or may be stored as
would be known in the art in other computer-readable memory locations.

[0030] Having disclosed some components of a basic computing system, the disclosure
turns now to a discussion of computer program layout and obfuscation of that layout. A
computer program generally relies on a stack of data and functions in a stack frame for
execution. A compiler organizes data into blocks that contain variables, arguments, CPU
register contents, and/or other information for the program. These blocks, often called
segments or sections, can be designated with a label, such as “__DATA,__data” or can
simply allocate space for specific data structures. Instructions are generally similarly

organized into blocks which can be designated with a label, such as “__TEXT,__text” or

WO 2012/151075 PCT/US2012/034716

can simply contain instructions for the processor on what commands to execute. These
blocks can be designated with other labels or with no label.

[0031] This arrangement of data and instruction blocks allows for easier readability for
both a reverse engineer and the processor. By analyzing the machine code produced by
the compiler an attacker can determine where the instruction and data blocks begin and
end, and use disassembling technology or other tools to understand how the code works,
or even revert the machine code to human readable code. The most direct technique for
doing this often is static analysis, relying upon a traversal of the code either linearly or
recursively. When static analysis is either not available or not effective, attackers are
forced to rely upon dynamic analysis, which requires the execution of the instructions to
be observed in real time, rather than statically analyzed. Whereas with static techniques
an attacker can essentially replicate all or most of a program from extracted code, with
dynamic techniques must reconstruct the program based on inferences and observations.
[0032] Obfuscation can be a useful tool to disrupt static reverse engineering techniques
and force a reverse engineer to utilize dynamic techniques to build a comparable program
or modify the existing program. The disclosed system obfuscates program information
such that a reverse engineer must use dynamic techniques, rather than static techniques, in
attempting to reverse engineer the software. In one aspect, the system identifies a set of
instructions within an instruction block. The set of instructions can be one or more lines
of code, an entire function, a group of instructions ending in a jump command, or other
segment of the code. The system can then move the identified set of instructions out of
the designated instruction block and into a designated data block, after which the system
can patch in the removed set of instructions such that the function proceeds normally.
Alternatively, if the obfuscation components are integrated as part of a compiler, the
system does not need to take the extra step of moving the identified instructions out of a
designated instruction block. Instead the compiler can simply initially place the identified
instructions directly in the designated data block.

[0033] In one variation, the system identifies data within a data block. The system can
then move the identified data from the data block to an instruction block or simply place
the identified data directly in the instruction block. The system can then patch references

to the data block to point to the data’s new location in the instruction block.

WO 2012/151075 PCT/US2012/034716

[0034] The system can also swap a set of instructions with data. In an exemplary
embodiment of this aspect, the system identifies a set of instructions in an instruction
block and identifies data in a data block. The identified set of instructions can be of equal
or different size in comparison to the identified data. The system then relocates the
identified set of instructions to the original location of the data and relocates the data to
the original location of the set of instructions. If the set of instructions and the data are
different sizes, the system can create a buffer for the swapped material of lesser size,
which can be located directly adjacent to the swapped material or elsewhere.

[0035] The system can move multiple sets of instructions and multiple pieces of data
during obfuscation. The result can be a complicated web of instructions and data found in
normal and/or abnormal locations. References to data can refer to an instruction section
for retrieval or to a standard data section. Moving multiple sets of instructions and data
can also result in unequal placement of those sets of instructions and data. This unequal
placement can result in some blocks having many pieces of program critical information,
whereas other blocks may be essentially blank of necessary information. While each
section retains its label as “data” or as “instructions”, the accuracy and meaning of those
labels is reduced because the system obfuscates at least some of the data and instructions
in direct contradiction to those labels.

[0036] Another aspect of this obfuscation system during runtime can be the ability to
place sets of instructions from instruction blocks into different types of data blocks.
Often, within an executable, there are “Text” sections for instructions, “Data” sections for
initialized data, and another data segment for uninitialized data. This data segment for
uninitialized data can have varied titles, but a common title can be the “bss” or “.bss”
section. While this section is often defaulted to binary values of zero, the present
obfuscation system can move sets of instructions to the section and apply the
corresponding patching.

[0037] Having disclosed some aspects of obfuscation and the computing system, the
disclosure now turns to FIG. 2, which illustrates an exemplary data stack 200. Here, the
operating system kernel 210 has designated memory. A “Text” section 208 is a block
designated for program instructions, where instructions sent to the processor are normally

stored. A “Data” section 206 is a block designated for storing program variables,

WO 2012/151075 PCT/US2012/034716

constants, strings, and other information utilized by the program. A “BSS” section 204 is
uninitialized data, often set to a binary O upon program loading. These sections can have
header information designating what type it is, such as “__TEXT,_ _text” for text

3

sections, “_ DATA,_ data” for data sections, and “bss” or “.bss” for uninitialized data
sections. The stack or heap 202 is used by the system 100 to dynamically allocate
memory before or during runtime.

[0038] FIG. 3 illustrates a block diagram of an exemplary compiler 300 including
mechanisms for code obfuscation 314 within the compiler. A compiler 300 converts
human-readable source code to object code which is understandable to and typically
executable by a computing device 100. A compiler 300 is likely to perform the following
representative operations as well as other operations: lexical analysis, preprocessing,
parsing, semantic analysis, code optimization, and code generation. Compilers are
important in the world of computer science and software because they allow programmers
to write software using high level languages and convert those high level instructions to
binary machine code or other object code.

[0039] The compiler 300 takes as input source code 302 for a computer program written
in a programming language like Perl, Objective-C, Java, etc. The compiler 300 passes the
code to the front end of the compiler 300 which includes the lexical analyzer 304 and the
semantic analyzer or parser 306. The compiler 300 then operates on the source 302 in the
back end, which includes the code optimizer 308 and the code generator 310. At any
point in the compiler, an obfuscator 314 can process the source code or intermediate
stages of the code. For example, the obfuscator 314 can communicate with the code
optimizer 308 exclusively, with the code generator 310 exclusively, or as an intermediary
between the code optimizer 308 and the code generator 310.

[0040] Often the division between the front end and the back end of a compiler is
somewhat blurred. The compiler 300 can include other modules and can appear in
different configurations. Other possible front end components include a preprocessing
module and a semantic analysis module, not shown. The front end produces an
intermediate representation of the code which is passed to the back end of the compiler
300. The back end of a compiler 300 can include an optimizer 308, a code generator 310,

and an obfuscator 314. Finally, the code generator 310 produces machine code 312 or

10

WO 2012/151075 PCT/US2012/034716

object code. This code 312, having gone through the obfuscator 314, will have sets of
instructions and data in blocks not normally designated for the type of information found
there. A linker, not shown, can combine the obfuscated output 312 from several related
compiled projects into a single executable file. Other compiler components and modules
can be added within the spirit and scope of this disclosure.

[0041] FIG. 4 illustrates a block diagram of an exemplary compiler 400 including
mechanisms for code obfuscation 314 after compilation. As in FIG. 3, the compiler 400
takes as input source code 402 for a computer program written in a programming
language like Perl, Objective-C, Java, etc. The compiler 400 passes the code to the front
end of the compiler 400 which includes the lexical analyzer 404 and the semantic
analyzer or parser 406. The compiler 400 then operates on the source 402 in the back
end, which includes the code optimizer 408 and the code generator 410.

[0042] After the code generator 410 has produced the machine code 412, an obfuscator
414 obfuscates sets of instructions and data such that the normal code reading process is
modified, resulting in obfuscated machine code 416. The obfuscator can be a separate
tool optionally or selectively applied to the resulting machine code 412. For instance, if
the obfuscator is a separate tool, then a separate command or a particular compiler flag
can trigger the application of the obfuscator to the machine code 412. If a linker, not
shown, is used, this obfuscation can occur prior to, during, or after the linker combines
multiple machine code files into a single executable. Obfuscation can also occur during
program loading into the data stack, thereby obfuscating in runtime. Other compiler
components and modules can be added within the spirit and scope of this disclosure.
[0043] FIG. 5 illustrates exemplary data and instruction blocks 500 prior to obfuscation.
The instruction block 502 contains a block label 506 which reads “Text.” The data block
504 contains a block label 508 which reads “Data.” Within the instruction block 502 a set
of executable instructions 510 is located by the system 100, here identified as “Instruction
Set 1.” The set of executable instructions 510 can be a single instruction or multiple
instructions. A second location is identified by the system 100 in the data section 504. In
this example, the second location 512 also corresponds to a piece of data 512 of lesser
size than the identified set of instructions 510. Thus a buffer 514 is created or identified

by the system 100 corresponding to the difference in size between the data 512 and the

11

WO 2012/151075 PCT/US2012/034716

instruction set 510. Also identified are any instructions 516 in instruction blocks which
contain references 518 to the identified data 512.

[0044] FIG. 6 illustrates exemplary data and instruction blocks 600 of FIG. 5 after an
obfuscation operation. The instruction block 602 continues to have a block label 606
which reads “Text.” The data block 604 continues to have a block label 608 which reads
“Data.” Now, however, the previously identified data 612 has moved from an original
location in the data block 604 to the instruction block 602, as shown by an illustrative
arrow 620. Similarly, the previously identified instruction set 610 has moved from an
original location in the instruction block 602 to a second location in the data block 604,
illustrated by an arrow 618. The reference in the instruction blocks 616 to the identified
data 612 has been modified to correctly access the data 612 in its new location, illustrated
by the changed reference arrow 624. In this example, the instruction set 610 is being
replaced by data 612, which is not of equal size, so a buffer 614 helps fill the remaining
space. To ensure proper program execution, a patch 622 is made from the end of the
moved set of instructions 610 to the location in the instructions which would have been
executed next had the set of instructions 610 never been moved. A similar patch, not
shown, may be necessary to properly link to the moved set of instructions 610.

[0045] FIG. 7 illustrates multiple instruction and data blocks 700 before obfuscation. The
instruction blocks are labeled 702 such that the system 100 can identify them as
instruction blocks, here with the word “Text.” Similarly, the data blocks are labeled 704
such that the system 100 can identify them as data blocks, here with the word “Data.”
Sets of instructions 706 are identified, as are pieces of data 708 and references in the
instructions to the data 710.

[0046] FIG. 8 illustrates the multiple instruction and data blocks 800 of FIG. 7 after
obfuscation. The instruction blocks 802 and data blocks 804 now have changed content,
with sets of instructions 806, data 808, and instructions with references to data 810 all
being moved to new locations. In this example, at least one data block 812 now has no
relevant program information, or no information which was relocated. Not shown are
illustrations of paths of movement made by the identified data or sets of instruction. Such

an illustration would create a complicated web of movements, patches, and references.

12

WO 2012/151075 PCT/US2012/034716

[0047] Having disclosed some basic system components and concepts, the disclosure
now turns to the exemplary method embodiment shown in FIG. 9. For the sake of clarity,
the method is discussed in terms of an exemplary system 100 as shown in FIG. 1
configured to practice the method. The steps outlined herein are exemplary and can be
implemented in any combination thereof, including combinations that exclude, add, or
modify certain steps. The system identifies a set of executable instructions, in the form of
compiled code or intermediate compiled code for example, at a first location in an
instruction set of a computer program (902). The system then identifies a second location
in a data section of the computer program (904). The system moves the identified set of
executable instructions to the second location (906), and patches references in the
computer program to the set of executable instructions in the first location to point to the
second location (908). Likewise, the system can also move data into the instruction
section.

[0048] The system can patch the references during compilation, at run time, and/or during
relocation of segments. The set of instructions can include any number of instructions.
The set of instructions can be as few as a single non-branching instruction, or can be
many instructions followed by a single branching instruction, for example. The second
location can be based on the execution architecture of a target computing device, where
the execution architecture can be the cache size of the target device. For example, the
system can relocate related data and instructions to be in close proximity to each other to
avoid a cache miss, and the corresponding penalty hit, or to keep the related data and
instructions in a same memory page. If desired, the identified executable instructions can
be swapped for the data in the second location, and therefore the data of the second
location will be relocated to the first location in the instruction section. If the executable
instructions in the first location are the same size as the data at the second location, the
system can swap the data and the executable instructions. If the instructions and the data
are different sizes, the system can optionally pad one or the other or both of the locations
to achieve the same size.

[0049] FIG. 10 illustrates a separate exemplary method embodiment. Again, the system
identifies a set of executable instructions at a first location in an instruction section of the

computer program (1002). The set of executable instructions can be a number of non-

13

WO 2012/151075 PCT/US2012/034716

branching instructions, or can be a number of non-branching instructions followed by a
branching instruction. Then the system identifies data at a second location in a data
section of the computer program (1004). The system then moves the set of executable
instructions identified to the second location (1006) and moves the data identified to the
first location (1008). The system then patches first references to the set of executable
instructions in the computer program to point to the second location and patching second
references to the data in the computer program to point to the first location (1010), so that
the resulting moved data and instructions, the patched references, and the remaining
portions of the computer program (if any) retain functionally equivalent to the original
computer program prior to the moving and patching. That is, the original program and
the obfuscated program are semantically equivalent. For example, if the original
computer program performed steps W, X, Y, and Z, then the modified computer program
with the data and instructions moved and any corresponding references patched will also
perform steps W, X, Y, and Z, even though the modified computer program performs the
steps in a different way, either in a smaller, equal, or greater number of instructions or
bytes. The data section can include initialized or uninitialized data, and the patching can
occur either during compilation or at run time.

[0050] Embodiments within the scope of the present disclosure may also include tangible
and/or non-transitory computer-readable storage media for carrying or having computer-
executable instructions or data structures stored thereon. Such non-transitory computer-
readable storage media can be any available media that can be accessed by a general
purpose or special purpose computer, including the functional design of any special
purpose processor as discussed above. By way of example, and not limitation, such non-
transitory computer-readable media can include RAM, ROM, EEPROM, CD-ROM or
other optical disk storage, magnetic disk storage or other magnetic storage devices, or any
other medium which can be used to carry or store desired program code means in the
form of computer-executable instructions, data structures, or processor chip design.
When information is transferred or provided over a network or another communications
connection (either hardwired, wireless, or combination thereof) to a computer, the

computer properly views the connection as a computer-readable medium. Thus, any such

14

WO 2012/151075 PCT/US2012/034716

connection is properly termed a computer-readable medium. Combinations of the above
should also be included within the scope of the computer-readable media.

[0051] Computer-executable instructions include, for example, instructions and data
which cause a general purpose computer, special purpose computer, or special purpose
processing device to perform a certain function or group of functions. Computer-
executable instructions also include program modules that are executed by computers in
stand-alone or network environments. Generally, program modules include routines,
programs, components, data structures, objects, and the functions inherent in the design of
special-purpose processors, etc. that perform particular tasks or implement particular
abstract data types. Computer-executable instructions, associated data structures, and
program modules represent examples of the program code means for executing steps of
the methods disclosed herein. The particular sequence of such executable instructions or
associated data structures represents examples of corresponding acts for implementing the
functions described in such steps.

[0052] Those of skill in the art will appreciate that other embodiments of the disclosure
may be practiced in network computing environments with many types of computer
system configurations, including personal computers, hand-held devices, multi-processor
systems, microprocessor-based or programmable consumer electronics, network PCs,
minicomputers, mainframe computers, and the like. Embodiments may also be practiced
in distributed computing environments where tasks are performed by local and remote
processing devices that are linked (either by hardwired links, wireless links, or by a
combination thereof) through a communications network. In a distributed computing
environment, program modules may be located in both local and remote memory storage
devices.

[0053] The various embodiments described above are provided by way of illustration
only and should not be construed to limit the scope of the disclosure. Those skilled in the
art will readily recognize various modifications and changes that may be made to the
principles described herein without following the example embodiments and applications
illustrated and described herein, and without departing from the spirit and scope of the

disclosure.

15

WO 2012/151075 PCT/US2012/034716

CLAIMS

We claim:

1. A method of obfuscating a computer program, the method comprising:
identifying a set of executable instructions at a first location in an instruction
section of the computer program;
identifying a second location in a data section of the computer program;
moving the set of executable instructions to the second location; and
patching references in the computer program to the set of executable instructions

in the first location to point to the second location.

2. The method of claim 1, wherein the set of executable instructions comprises at

least one non-branching instruction followed by exactly one branching instruction.

3. The method of claim 1, wherein the set of executable instructions comprises at

least one non-branching instruction.

4. The method of claim 1, wherein patching references in the computer program

occurs at compile time of the computer program.

5. The method of claim 1, wherein patching references in the computer program

occurs at run time of the computer program.

6. The method of claim 1, wherein moving the set of executable instructions to the
second location further comprises:

swapping the set of executable instructions at the first location with data stored at
the second location; and

patching references in the computer program to the data stored at the second

location to point to the first location.

16

WO 2012/151075 PCT/US2012/034716

7. The method of claim 6, wherein the set of executable instructions at the first

location and the data stored at the second location are of a same size.

8. The method of claim 7, wherein at least one of the set of executable instructions at
the first location and the data stored at the second location are padded to achieve the same

size.

0. A system for compiling computer code, the system comprising:

a processor;

a first module configured to control the processor to receive source code;

a second module configured to control the processor to compile the source code to
generate object code;

a third module configured to control the processor to identify a set of instructions
at a first location in an instruction section of the object code and identify a second
location in a data section of the object code;

a fourth module configured to control the processor to move the set of instructions
to the second location; and

a fifth module configured to control the processor to patch references in the object

code to the set of instructions in the first location to point to the second location.

10. The system of claim 9, wherein the third, fourth, and fifth modules iteratively

process the object code for multiple sets of instructions at different locations.

11. The system of claim 9, wherein the second location is identified based on an

execution architecture of a target computing device.

12. The system of claim 11, wherein the execution architecture comprises a cache

size.

17

WO 2012/151075 PCT/US2012/034716

13. A non-transitory computer-readable storage medium storing obfuscated
instructions which, when executed by a computing device, cause the computing device to
perform a task, wherein the obfuscated instructions are generated according to steps
comprising:

identifying data at a first location in a data section of the obfuscated instructions;

identifying a second location in an instruction section of the obfuscated
instructions;

moving the data to the second location; and

patching references in the obfuscated instructions to the data in the first location to

point to the second location.
14. The non-transitory computer-readable storage medium of claim 13, wherein the
instruction section is labeled as __ TEXT, _text, and wherein the data section is labeled as

__DATA,__data.

15. The non-transitory computer-readable storage medium of claim 13, wherein the

data section comprises at least one of initialized data or uninitialized data.

18

WO 2012/151075

&3
[Te R

STORAGE
DEVICE

o2 P
D o™
e ¥

4
§
ROM

3
§
MEMORY

o4

=
B2 g
oo ot Lad = 52
— G [& oo

fanang onadg) B
B o e = rr
2 sk Lad oy bad
ot Py £ o
o]

3

L)

<3) &3
s o e)

i

o)

- [aws]
O
oy
£
[]
(98]
73
[}
(]
L]
£33
o

&

P S

¥
B
X
L]
L
[48]
b
O
agona

PCT/US2012/034716

WO 2012/151075 PCT/US2012/034716

tiG. 2
G 200
PRIOR_ART »f
STACK
% - 202
HEAP
BSS 204
DATA - 206
TEXT -~~~ 208
0S KERNEL 210

WO 2012/151075 PCT/US2012/034716

SOURCE CODE

¥

304 e LEXICAL

ANALYZER
306~ SEMANTIC ANALYZER
OR PARSER
’ 34
308~—+—— CODE OFTMIZER | § o
{ OBFUSCATOR

310~ CODE GENERATOR >

WO 2012/151075 PCT/US2012/034716

SOURCE CODE

¥

A0] LEXICAL
ANALYZER

¥

SEMANTIC ANALYIEIR
OR PARSER

408 b1 CODE OPTIMIZER - 400

v
410~ CODE GENERATOR

_—
oy

{15 OBFUSCATED
MACHINE CODE

WO 2012/151075

FiId.
G. 5 500
f»"
DATA ~ 508
e 514
504~ DATA A et 51
-3
o 518
A
/r“
TEXT - 506
REFERENCE A 516
507
INSTRUCTION SET 1 b 510
N

PCT/US2012/034716

WO 2012/151075 PCT/US2012/034716

Fid.,
g 6 800
| DATA—— 608
§18 610
604 < \ :
-l INSTRUCTION SET 1
.
{
REFERENCE A
B02 el 515 o 534
DATA A [
{
TEXT <~ 606 812
N

WO 2012/151075 PCT/US2012/034716

7/9

FIG. 7 700 FIG. 8 s

704~ DATA 804~ DATA

T0B ket DATA A 806 ~b——t INSTRUCTION 1

708 —— DATA B BOE =1 INSTRUCTION 3

08— DATA { 810 ~—te—1{ REFERENCE B

702 - TEXT 802~ TEXT

706 ~t={ INSTRUCTION 1 808 —b—t DATA A

740 ~—t—i REFERENCE B 808——] DATA D

704~ DATA 804~ DATA

708 —t=— DATA D 812

702~ TEXT 802~ TEXT

706 i~ INSTRUCTION 2 808! DATA E

706~ INSTRUCTION 3 504 DATA

704 DATA 810~ REFERENCE E

708~ DATAE 806 ~—t=— INSTRUCTION 2

702 1641 807 TEXT

740~ REFERENCE E B8 b=l DATA B
808~ pATA C

WO 2012/151075 PCT/US2012/034716

8/9

FIG. 9
(_START)

3

IDENTIFYING A SET OF EXECUTABLE INSTRUCTIONS
AT A FIRST LOCATION IN AN INSTRUCTION SECTION | 902
OF THE COMPUTER PROGRAM

¥

JDENTIFYING A SECOND LOCATION IN A DATA 004
SECTION OF THE COMPUTER PROGRAM

3
MOVING THE SET OF EXECUTABLE INSTRUCTIONS 10
THE SECOND LOCATION

%

PATCHING REFERENCES IN THE COMPUTER PROGRAM
10 THE SET OF EXECUTABLE INSTRUCTIONS IN THE
FIRST LOCATION 7O POINT 1O THE SECOND
LOCATION

(_FINISH)

WO 2012/151075 PCT/US2012/034716

9/9

FIG. 10
(_ START)

3

IDENTIFYING A SET OF EXECUTABLE INSTRUCTIONS
AT A FIRST LOCATION IN AN INSTRUCTION SECTION [~ 1002
OF THE COMPUTER PROGRAM

¥

IDENTIFYING DATA AT A SECOND LOCATION IN A | \noy
DATA SECTION OF THE COMPUTER PROGRAM

3
MOVING THE SET OF EXECUTABLE INSTRUCTIONS 10
THE SECOND LOCATION

MOVING THE DATA 7O THE FIRST LOCATION =~ 1008

3

ING FIRST REFERENCES IN THE COMPUTER
ROGRAM TO THE SET OF EXECUTABLE
INSTRUCTIONS TO POINT TO THE SFCOND LoCATIoN [1010
AND SECOND REFERENCES IN THE COMPUTER

PROGRAM TO THE DATA TO POINT TO THE FIRST
LOCATION

PATCHIN
P

4

(_FINISH)

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2012/034716

A. CLASSIFICATION OF SUBJECT MATTER

INV.
ADD.

GO6F21/22

According to International Patent Classification (IPC) or to both national classification and IPG

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

GO6F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, INSPEC, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

US 2005/183072 Al (HORNING JAMES J [US] ET
AL) 18 August 2005 (2005-08-18)
paragraphs [0003], [0101], [0103],
[0133] - [0136], [0199] - [0204],
figures 3, 7a, 7b, 8d, 8e, 21

[0372]

1-15

7 August 2008 (2008-08-07)
paragraphs [0008], [0009],
[0027], [0029], [0030]
figures 2a, 2b, 6

X WO 2008/094808 Al (MACROVISION CORP [US];
GADEA IVAN [ES]; TORRUBIA ANDRES M [ES])

[0025],

1-15

D Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"Q" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

18 July 2012

Date of mailing of the international search report

25/07/2012

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswik

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Volpato, Gian Luca

Form PCT/ISA/210 (second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2012/034716
Patent document Publication Patent family Publication
cited in search report date member(s) date

US 2005183072 Al 18-08-2005 US 7430670 Bl 30-09-2008
Us 2005183072 Al 18-08-2005
US 2005204348 Al 15-09-2005
Us 2005210275 Al 22-09-2005
US 2007234070 Al 04-10-2007
US 2011035733 Al 10-02-2011
W0 2008094808 Al 07-08-2008 US 2007256138 Al 01-11-2007
WO 2008094808 Al 07-08-2008

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - claims
	Page 19 - claims
	Page 20 - claims
	Page 21 - drawings
	Page 22 - drawings
	Page 23 - drawings
	Page 24 - drawings
	Page 25 - drawings
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - wo-search-report
	Page 31 - wo-search-report

