(19) World Intellectual Property Organization
 International Bureau

(43) International Publication Date
 14 June 2001 (14.06.2001)

(10) International Publication Number
 WO 01/42466 A2

(51) International Patent Classification: C12N 15/12,
 C07K 14/755, 16/36, C12Q 1/68, A61K 38/37, C12N
 15/11, A01K 67/027, C12N 15/62, G01N 33/68, A61K
 48/00

(21) International Application Number: PCT/US00/33161

(22) International Filing Date: 7 December 2000 (07.12.2000)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:

(71) Applicant: ZYMOSGENETICS, INC. [US/US]; 1201
 Eastlake Avenue East, Seattle, WA 98102 (US).

(72) Inventor: HOLLOWAY, James, L.; 835 NE 89th Street,
 Seattle, WA 98115 (US).

(74) Agent: JONES, Phillip, B., C.; ZymoGenetics, Inc.; 1201
 Eastlake Avenue East, Seattle, WA 98102 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU,
 AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE,
 DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU,
 ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS,
 LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ,
 PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT,
 TZ, UA, UG, UZ, VN, YU, ZA, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM,
 KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian
 patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European
 patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE,
 IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF,
 CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:
 — Without international search report and to be republished
 upon receipt of that report.

For two-letter codes and other abbreviations, refer to the "Guide-
ance Notes on Codes and Abbreviations" appearing at the begin-
ing of each regular issue of the PCT Gazette.

(54) Title: ZVWF1: A MEMBER OF THE VON WILLEBRAND FACTOR TYPE A DOMAIN SUPERFAMILY

(57) Abstract: Proteins comprising one or more copies of von Willebrand factor type A domain play important roles in host defense mechanisms, such as immune response, inflammation, and hemostasis. Zvwf1 is a new member of this superfamily.
Zwvf1: A Member of the Von Willebrand Factor Type A Domain Superfamily

TECHNICAL FIELD

The present invention relates generally to a new human polypeptide. In particular, the present invention relates to a novel polypeptide, designated “Zwvf1,” and to nucleic acid molecules encoding Zwvf1.

BACKGROUND OF THE INVENTION

Von Willebrand factor is a large plasma glycoprotein, which plays essential roles in hemostasis (see, for example, Ruggeri, J. Clin. Invest. 99:559 (1997)). The von Willebrand factor precursor includes 13 domains that are multiples of domains A to D. The A domains mediate key macromolecular interactions by von Willebrand factor, and A domain mutations are associated with bleeding disorders.

The von Willebrand factor type A domain is a characteristic of a protein superfamily, and occurs in complement factors, integrins, collagen, and other extracellular proteins (see, for example, Colombatti et al., Matrix 13:297 (1993), and Bork and Rhode, Biochem. J. 279:908 (1991)). Proteins comprising these type A domains participate in a wide variety of biological processes, including cell adhesion, cell migration, and signal transduction (Jenkins et al., Blood 91:2032 (1998)). Certain proteins that contain one or more copies of the type A domain take part in host defense mechanisms, such as immune response and inflammation (see, for example, Celikel et al., Nature Structural Biology 5:189 (1998)).

In view of the significant roles played by such proteins, a need exists for the identification of new members of this superfamily, which can provide new tools in detecting and treating alterations in such basic biological functions.
BRIEF SUMMARY OF THE INVENTION

The present invention provides a novel polypeptide, designated “Zvwf1.” The present invention also provides Zvwf1 polypeptides and Zvwf1 fusion proteins, nucleic acid molecules encoding such polypeptides and proteins, and methods of using these amino acid and nucleotide sequences.

DETAILED DESCRIPTION OF THE INVENTION

1. Overview

The present invention provides nucleic acid molecules that encode a new human polypeptide that is a member of the von Willebrand factor type A domain superfamily. An illustrative nucleic acid molecule containing a sequence that encodes the polypeptide, designated as “Zvwf1,” has the nucleotide sequence of SEQ ID NO:1. The encoded polypeptide has the following amino acid sequence: DCKIDLSFLIDGSTSIGKRR FRIQKQLLAD VAQALDIGPA GPLMGVVQYG DNPATHFNLK

THTNSRDLLT AIEKITQRGG LSNVGRAISF VTKNFFSKAN GRNRSAPNVV VVMVDGWPTD KVEEASRLAR ESGINIFFIT IEAAMEKQ YVVEPNFANK

AVCRTNGFYS LVHQQSWFGLH KTLQPLVKRV CDTRLACSK TCLNSADIGF

VIDGSSSVGT GNFRTVLQFV TNTIKEFES DTDTRIGAVQ YTYEQRLEFG

FDKYSSKPDI LNAIKRVGYW SGGTSTGAAI NFALEQLFKK SKPNKRLMI

LITDGDSYDD VRIPAMAAMH (SEQ ID NO:2). The type A domains reside within amino acid residues 5 to 186, and amino acid residues 207 to 328, of SEQ ID NO:2. The Zvwf1 gene is expressed in human ovarian tissue and nervous system tissue, including brain tumor tissue, meningioma tissue, and neuroganglion tumor tissue.

Sequence analysis indicates that Zvwf1 is a paralog of the Coch-5B2 gene, which is a positional candidate gene for deafness disorder (Robertson et al., Genomics 46:345 (1997)). Mutations of the Coch-5B2 gene, which is also known as the COCH gene, are associated with cochleaovestibular impairment and sensorineural hearing loss (Robertson, et al., Nat. Genet. 20:299 (1998); Bom et al., Laryngoscope 109:1525 (1999); Fransen et al., Hum. Mol. Genet. 8:1425 (1999)).

As detailed below, the present invention provides isolated polypeptides having an amino acid sequence that is at least 70%, at least 80%, or at least 90% identical to a reference amino acid sequence, such as the amino acid sequence of SEQ ID NO:2, amino acid residues 1 to 49 of SEQ ID NO:2, amino acid residues 1 to 223 of SEQ ID NO:2, amino acid residues 5 to 186 of SEQ ID NO:2, and amino acid residues 207 to 328 of SEQ ID NO:2. Certain of these polypeptides specifically bind with an
antibody that specifically binds with a polypeptide consisting of the amino acid sequence of SEQ ID NO:2.

An illustrative polypeptide is a polypeptide that comprises the amino acid sequence of SEQ ID NO:2. Additional exemplary polypeptides include polypeptides comprising an amino acid sequence of at least 15 contiguous amino acid residues of amino acid residues 1 to 64 of SEQ ID NO:2, amino acid residues 1 to 223 of SEQ ID NO:2, amino acid residues 5 to 186 of SEQ ID NO:2, or amino acids 96 to 129 of SEQ ID NO:2. Other illustrative polypeptides comprise an amino acid sequence selected from the group consisting of the amino acid sequence of SEQ ID NO:2, amino acid residues 1 to 223 of SEQ ID NO:2, amino acid residues 1 to 49 of SEQ ID NO:2, amino acid residues 5 to 186 of SEQ ID NO:2, and amino acid residues 207 to 328 of SEQ ID NO:2. Additional examples include polypeptides consisting of an amino acid sequence selected from the group consisting of: the amino acid sequence of SEQ ID NO:2, amino acid residues 1 to 49 of SEQ ID NO:2, amino acid residues 1 to 223 of SEQ ID NO:2, amino acid residues 5 to 186 of SEQ ID NO:2, and amino acid residues 207 to 328 of SEQ ID NO:2.

The present invention further provides antibodies and antibody fragments that specifically bind with such polypeptides. Exemplary antibodies include polyclonal antibodies, murine monoclonal antibodies, humanized antibodies derived from murine monoclonal antibodies, and human monoclonal antibodies. Illustrative antibody fragments include F(ab')2, F(ab')2, Fab', Fab, Fv, scFv, and minimal recognition units. The present invention also includes anti-idiotype antibodies that specifically bind with such antibodies or antibody fragments. The present invention further includes compositions comprising a carrier and a peptide, polypeptide, antibody, or anti-idiotype antibody described herein.

The present invention also provides isolated nucleic acid molecules that encode a ZvWF1 polypeptide, wherein the nucleic acid molecule is selected from the group consisting of: a nucleic acid molecule comprising the nucleotide sequence of SEQ ID NO:3; a nucleic acid molecule encoding the amino acid sequence of SEQ ID NO:2; and a nucleic acid molecule that remains hybridized following stringent wash conditions to a nucleic acid molecule consisting of a nucleotide sequence selected from the group consisting of: (a) the nucleotide sequence of SEQ ID NO:1, (b) the nucleotide sequence of nucleotides 1 to 147 of SEQ ID NO:1, (c) the nucleotide sequence of nucleotides 1 to 669 of SEQ ID NO:1, (d) the nucleotide sequence of nucleotides 1 to 987 of SEQ ID NO:1, and (e) a nucleotide sequence that is the complement of the nucleotide sequence of (a), (b), (c), or (d).
Illustrative nucleic acid molecules include those in which any difference between the amino acid sequence encoded by the nucleic acid molecule and the corresponding amino acid sequence of SEQ ID NO:2 is due to a conservative amino acid substitution. The present invention further contemplates isolated nucleic acid molecules that comprise the nucleotide sequence of SEQ ID NO:1, nucleotides 1 to 147 of SEQ ID NO:1, nucleotides 1 to 669 of SEQ ID NO:1, or nucleotides 1 to 987 of SEQ ID NO:1.

The present invention also includes vectors and expression vectors comprising such nucleic acid molecules. Such expression vectors may comprise a transcription promoter, and a transcription terminator, wherein the promoter is operably linked with the nucleic acid molecule, and wherein the nucleic acid molecule is operably linked with the transcription terminator. The present invention further includes recombinant host cells comprising these vectors and expression vectors. Illustrative host cells include bacterial, yeast, fungal, insect, avian, mammalian, and plant cells. Recombinant host cells comprising such expression vectors can be used to produce Zvwf1 polypeptides by culturing such recombinant host cells that comprise the expression vector and that produce the Zvwf1 protein, and, optionally, isolating the Zvwf1 protein from the cultured recombinant host cells. The present invention further includes products made by such processes.

The present invention also contemplates methods for detecting the presence of Zvwf1 RNA in a biological sample, comprising the steps of (a) contacting a Zvwf1 nucleic acid probe under hybridizing conditions with either (i) test RNA molecules isolated from the biological sample, or (ii) nucleic acid molecules synthesized from the isolated RNA molecules, wherein the probe has a nucleotide sequence comprising a portion of the nucleotide sequence of SEQ ID NO:1, or its complement, and (b) detecting the formation of hybrids of the nucleic acid probe and either the test RNA molecules or the synthesized nucleic acid molecules, wherein the presence of the hybrids indicates the presence of Zvwf1 RNA in the biological sample. An illustrative nucleic acid probe consists of the nucleotide sequence of nucleotides 1 to 669 of SEQ ID NO:1. An example of a biological sample is a human biological sample, such as a biopsy or autopsy specimen.

The present invention further provides methods for detecting the presence of Zvwf1 polypeptide in a biological sample, comprising the steps of: (a) contacting the biological sample with an antibody or an antibody fragment that specifically binds with a polypeptide having the amino acid sequence of SEQ ID NO:2, wherein the contacting is performed under conditions that allow the binding of the antibody or antibody fragment to the biological sample, and (b) detecting any of the
bound antibody or bound antibody fragment. Such an antibody or antibody fragment may further comprise a detectable label selected from the group consisting of radioisotope, fluorescent label, chemiluminescent label, enzyme label, bioluminescent label, and colloidal gold. An example of a biological sample is a human biological sample, such as a biopsy or autopsy specimen.

The present invention also provides kits for performing these detection methods. For example, a kit for detection of Zvwf1 gene expression may comprise a container that comprises a nucleic acid molecule, wherein the nucleic acid molecule is selected from the group consisting of (a) a nucleic acid molecule comprising the nucleotide sequence of SEQ ID NO:1, (b) a nucleic acid molecule comprising the complement of the nucleotide sequence of SEQ ID NO:1, (c) a nucleic acid molecule that is a fragment of (a) consisting of at least eight nucleotides, and (d) a nucleic acid molecule that is a fragment of (b) consisting of at least eight nucleotides. Illustrative nucleic acid molecules include nucleic acid molecules comprising nucleotides 1 to 147 of SEQ ID NO:1, nucleotides 1 to 987 of SEQ ID NO:1, nucleotides 1 to 669 of SEQ ID NO:1, or the complement thereof. Such a kit may also comprise a second container that comprises one or more reagents capable of indicating the presence of the nucleic acid molecule. On the other hand, a kit for detection of Zvwf1 protein may comprise a container that comprises an antibody, or an antibody fragment, that specifically binds with a polypeptide having the amino acid sequence of SEQ ID NO:2.

The present invention also contemplates anti-idiotypic antibodies, or anti-idiotypic antibody fragments, that specifically bind an antibody or antibody fragment that specifically binds a polypeptide consisting of the amino acid sequence of SEQ ID NO:2.

The present invention further provides variant Zvwf1 polypeptides, which comprise an amino acid sequence that shares an identity with the amino acid sequence of SEQ ID NO:2 selected from the group consisting of at least 70% identity, at least 80% identity, at least 90% identity, at least 95% identity, or greater than 95% identity, and wherein any difference between the amino acid sequence of the variant polypeptide and the amino acid sequence of SEQ ID NO:2 is due to one or more conservative amino acid substitutions.

The present invention also provides fusion proteins comprising a Zvwf1 polypeptide moiety. Such fusion proteins can further comprise an immunoglobulin moiety. In such fusion proteins, the immunoglobulin moiety may be an immunoglobulin heavy chain constant region, such as a human Fc fragment. The present invention further includes isolated nucleic acid molecules that encode such fusion proteins.
These and other aspects of the invention will become evident upon reference to the following detailed description.

2. **Definitions**

In the description that follows, a number of terms are used extensively. The following definitions are provided to facilitate understanding of the invention.

As used herein, “nucleic acid” or “nucleic acid molecule” refers to polynucleotides, such as deoxyribonucleic acid (DNA) or ribonucleic acid (RNA), oligonucleotides, fragments generated by the polymerase chain reaction (PCR), and fragments generated by any of ligation, scission, endonuclease action, and exonuclease action. Nucleic acid molecules can be composed of monomers that are naturally-occurring nucleotides (such as DNA and RNA), or analogs of naturally-occurring nucleotides (e.g., α-enantiomeric forms of naturally-occurring nucleotides), or a combination of both. Modified nucleotides can have alterations in sugar moieties and/or in pyrimidine or purine base moieties. Sugar modifications include, for example, replacement of one or more hydroxyl groups with halogens, alkyl groups, amines, and azido groups, or sugars can be functionalized as ethers or esters. Moreover, the entire sugar moiety can be replaced with sterically and electronically similar structures, such as aza-sugars and carbocyclic sugar analogs. Examples of modifications in a base moiety include alkylated purines and pyrimidines, acylated purines or pyrimidines, or other well-known heterocyclic substitutes. Nucleic acid monomers can be linked by phosphodiester bonds or analogs of such linkages. Analogs of phosphodiester linkages include phosphorothioate, phosphorodithioate, phosphoroselenoate, phosphorodiselenoate, phosphoroanilothioate, phosphoranilidate, phosphoramidate, and the like. The term “nucleic acid molecule” also includes so-called “peptide nucleic acids,” which comprise naturally-occurring or modified nucleic acid bases attached to a polyamide backbone. Nucleic acids can be either single stranded or double stranded.

The term “complement of a nucleic acid molecule” refers to a nucleic acid molecule having a complementary nucleotide sequence and reverse orientation as compared to a reference nucleotide sequence. For example, the sequence 5' ATGCACGGG 3' is complementary to 5' CCCGTGCAT 3'.
The term “contig” denotes a nucleic acid molecule that has a contiguous stretch of identical or complementary sequence to another nucleic acid molecule. Contiguous sequences are said to “overlap” a given stretch of a nucleic acid molecule either in their entirety or along a partial stretch of the nucleic acid molecule.

The term “degenerate nucleotide sequence” denotes a sequence of nucleotides that includes one or more degenerate codons as compared to a reference nucleic acid molecule that encodes a polypeptide. Degenerate codons contain different triplets of nucleotides, but encode the same amino acid residue (i.e., GAU and GAC triplets each encode Asp).

The term “structural gene” refers to a nucleic acid molecule that is transcribed into messenger RNA (mRNA), which is then translated into a sequence of amino acids characteristic of a specific polypeptide.

An “isolated nucleic acid molecule” is a nucleic acid molecule that is not integrated in the genomic DNA of an organism. For example, a DNA molecule that encodes a growth factor that has been separated from the genomic DNA of a cell is an isolated DNA molecule. Another example of an isolated nucleic acid molecule is a chemically-synthesized nucleic acid molecule that is not integrated in the genome of an organism. A nucleic acid molecule that has been isolated from a particular species is smaller than the complete DNA molecule of a chromosome from that species.

A “nucleic acid molecule construct” is a nucleic acid molecule, either single- or double-stranded, that has been modified through human intervention to contain segments of nucleic acid combined and juxtaposed in an arrangement not existing in nature.

“Linear DNA” denotes non-circular DNA molecules having free 5' and 3' ends. Linear DNA can be prepared from closed circular DNA molecules, such as plasmids, by enzymatic digestion or physical disruption.

“Complementary DNA (cDNA)” is a single-stranded DNA molecule that is formed from an mRNA template by the enzyme reverse transcriptase. Typically, a primer complementary to portions of mRNA is employed for the initiation of reverse transcription. Those skilled in the art also use the term “cDNA” to refer to a double-stranded DNA molecule consisting of such a single-stranded DNA molecule and its complementary DNA strand. The term “cDNA” also refers to a clone of a cDNA molecule synthesized from an RNA template.

A “promoter” is a nucleotide sequence that directs the transcription of a structural gene. Typically, a promoter is located in the 5' non-coding region of a gene, proximal to the transcriptional start site of a structural gene. Sequence elements within promoters that function in the initiation of transcription are often characterized by
consensus nucleotide sequences. These promoter elements include RNA polymerase binding sites, TATA sequences, CAAT sequences, differentiation-specific elements (DSEs; McGehee et al., Mol. Endocrinol. 7:551 (1993)), cyclic AMP response elements (CREs), serum response elements (SREs; Treisman, Seminars in Cancer Biol. 1:47 (1990)), glucocorticoid response elements (GREs), and binding sites for other transcription factors, such as CRE/ATF (O'Reilly et al., J. Biol. Chem. 267:19938 (1992)), AP2 (Ye et al., J. Biol. Chem. 269:25728 (1994)), SP1, cAMP response element binding protein (CREB; Loeken, Gene Expr. 3:253 (1993)) and octamer factors (see, in general, Watson et al., eds., Molecular Biology of the Gene, 4th ed. (The Benjamin/Cummings Publishing Company, Inc. 1987), and Lemaigre and Rousseau, Biochem. J. 303:1 (1994)). If a promoter is an inducible promoter, then the rate of transcription increases in response to an inducing agent. In contrast, the rate of transcription is not regulated by an inducing agent if the promoter is a constitutive promoter. Repressible promoters are also known.

A “core promoter” contains essential nucleotide sequences for promoter function, including the TATA box and start of transcription. By this definition, a core promoter may or may not have detectable activity in the absence of specific sequences that may enhance the activity or confer tissue specific activity.

A “regulatory element” is a nucleotide sequence that modulates the activity of a core promoter. For example, a regulatory element may contain a nucleotide sequence that binds with cellular factors enabling transcription exclusively or preferentially in particular cells, tissues, or organelles. These types of regulatory elements are normally associated with genes that are expressed in a “cell-specific,” “tissue-specific,” or “organelle-specific” manner.

An “enhancer” is a type of regulatory element that can increase the efficiency of transcription, regardless of the distance or orientation of the enhancer relative to the start site of transcription.

“Heterologous DNA” refers to a DNA molecule, or a population of DNA molecules, that does not exist naturally within a given host cell. DNA molecules heterologous to a particular host cell may contain DNA derived from the host cell species (i.e., endogenous DNA) so long as that host DNA is combined with non-host DNA (i.e., exogenous DNA). For example, a DNA molecule containing a non-host DNA segment encoding a polypeptide operably linked to a host DNA segment comprising a transcription promoter is considered to be a heterologous DNA molecule. Conversely, a heterologous DNA molecule can comprise an endogenous gene operably linked with an exogenous promoter. As another illustration, a DNA molecule
comprising a gene derived from a wild-type cell is considered to be heterologous DNA if that DNA molecule is introduced into a mutant cell that lacks the wild-type gene.

A “polypeptide” is a polymer of amino acid residues joined by peptide bonds, whether produced naturally or synthetically. Polypeptides of less than about 10 amino acid residues are commonly referred to as “peptides.”

A “protein” is a macromolecule comprising one or more polypeptide chains. A protein may also comprise non-peptidic components, such as carbohydrate groups. Carbohydrates and other non-peptidic substituents may be added to a protein by the cell in which the protein is produced, and will vary with the type of cell. Proteins are defined herein in terms of their amino acid backbone structures; substituents such as carbohydrate groups are generally not specified, but may be present nonetheless.

A peptide or polypeptide encoded by a non-host DNA molecule is a “heterologous” peptide or polypeptide.

An “integrated genetic element” is a segment of DNA that has been incorporated into a chromosome of a host cell after that element is introduced into the cell through human manipulation. Within the present invention, integrated genetic elements are most commonly derived from linearized plasmids that are introduced into the cells by electroporation or other techniques. Integrated genetic elements are passed from the original host cell to its progeny.

A “cloning vector” is a nucleic acid molecule, such as a plasmid, cosmid, or bacteriophage, that has the capability of replicating autonomously in a host cell. Cloning vectors typically contain one or a small number of restriction endonuclease recognition sites that allow insertion of a nucleic acid molecule in a determinable fashion without loss of an essential biological function of the vector, as well as nucleotide sequences encoding a marker gene that is suitable for use in the identification and selection of cells transformed with the cloning vector. Marker genes typically include genes that provide tetracycline resistance or ampicillin resistance.

An “expression vector” is a nucleic acid molecule encoding a gene that is expressed in a host cell. Typically, an expression vector comprises a transcription promoter, a gene, and a transcription terminator. Gene expression is usually placed under the control of a promoter, and such a gene is said to be “operably linked to” the promoter. Similarly, a regulatory element and a core promoter are operably linked if the regulatory element modulates the activity of the core promoter.

A “recombinant host” is a cell that contains a heterologous nucleic acid molecule, such as a cloning vector or expression vector. In the present context, an example of a recombinant host is a cell that produces ZvWF1 from an expression vector.
In contrast, Zvwf1 can be produced by a cell that is a "natural source" of Zvwf1, and that lacks an expression vector.

"Integrative transformants" are recombinant host cells, in which heterologous DNA has become integrated into the genomic DNA of the cells.

A "fusion protein" is a hybrid protein expressed by a nucleic acid molecule comprising nucleotide sequences of at least two genes. For example, a fusion protein can comprise at least part of a Zvwf1 polypeptide fused with a polypeptide that binds an affinity matrix. Such a fusion protein provides a means to isolate large quantities of Zvwf1 using affinity chromatography.

The term "receptor" denotes a cell-associated protein that binds to a bioactive molecule termed a "ligand." This interaction mediates the effect of the ligand on the cell. Receptors can be membrane bound, cytosolic or nuclear; monomeric (e.g., thyroid stimulating hormone receptor, beta-adrenergic receptor) or multimeric (e.g., PDGF receptor, growth hormone receptor, IL-3 receptor, GM-CSF receptor, G-CSF receptor, erythropoietin receptor and IL-6 receptor). Membrane-bound receptors are characterized by a multi-domain structure comprising an extracellular ligand-binding domain and an intracellular effector domain that is typically involved in signal transduction. In certain membrane-bound receptors, the extracellular ligand-binding domain and the intracellular effector domain are located in separate polypeptides that comprise the complete functional receptor.

In general, the binding of ligand to receptor results in a conformational change in the receptor that causes an interaction between the effector domain and other molecule(s) in the cell, which in turn leads to an alteration in the metabolism of the cell. Metabolic events that are often linked to receptor-ligand interactions include gene transcription, phosphorylation, dephosphorylation, increases in cyclic AMP production, mobilization of cellular calcium, mobilization of membrane lipids, cell adhesion, hydrolysis of inositol lipids and hydrolysis of phospholipids.

The term "secretory signal sequence" denotes a nucleotide sequence that encodes a peptide (a "secretory peptide") that, as a component of a larger polypeptide, directs the larger polypeptide through a secretory pathway of a cell in which it is synthesized. The larger polypeptide is commonly cleaved to remove the secretory peptide during transit through the secretory pathway.

An "isolated polypeptide" is a polypeptide that is essentially free from contaminating cellular components, such as carbohydrate, lipid, or other proteinaceous impurities associated with the polypeptide in nature. Typically, a preparation of isolated polypeptide contains the polypeptide in a highly purified form, i.e., at least about 80% pure, at least about 90% pure, at least about 95% pure, greater than 95% pure, or greater
than 99% pure. One way to show that a particular protein preparation contains an isolated polypeptide is by the appearance of a single band following sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis of the protein preparation and Coomassie Brilliant Blue staining of the gel. However, the term “isolated” does not exclude the presence of the same polypeptide in alternative physical forms, such as dimers or alternatively glycosylated or derivatized forms.

The terms “amino-terminal” and “carboxyl-terminal” are used herein to denote positions within polypeptides. Where the context allows, these terms are used with reference to a particular sequence or portion of a polypeptide to denote proximity or relative position. For example, a certain sequence positioned carboxyl-terminal to a reference sequence within a polypeptide is located proximal to the carboxyl terminus of the reference sequence, but is not necessarily at the carboxyl terminus of the complete polypeptide.

The term “expression” refers to the biosynthesis of a gene product. For example, in the case of a structural gene, expression involves transcription of the structural gene into mRNA and the translation of mRNA into one or more polypeptides.

The term “splice variant” is used herein to denote alternative forms of RNA transcribed from a gene. Splice variation arises naturally through use of alternative splicing sites within a transcribed RNA molecule, or less commonly between separately transcribed RNA molecules, and may result in several mRNAs transcribed from the same gene. Splice variants may encode polypeptides having altered amino acid sequence. The term splice variant is also used herein to denote a polypeptide encoded by a splice variant of an mRNA transcribed from a gene.

As used herein, the term “immunomodulator” includes cytokines, cell growth factors, lymphotoxins, co-stimulatory molecules, hematopoietic factors, and synthetic analogs of these molecules.

The term “complement/anti-complement pair” denotes non-identical moieties that form a non-covalently associated, stable pair under appropriate conditions. For instance, biotin and avidin (or streptavidin) are prototypical members of a complement/anti-complement pair. Other exemplary complement/anti-complement pairs include receptor/ligand pairs, antibody/antigen (or hapten or epitope) pairs, sense/antisense polynucleotide pairs, and the like. Where subsequent dissociation of the complement/anti-complement pair is desirable, the complement/anti-complement pair preferably has a binding affinity of less than 10^9 M$^{-1}$.

An “anti-idiotypic antibody” is an antibody that binds with the variable region domain of an immunoglobulin. In the present context, an anti-idiotypic antibody
binds with the variable region of an anti-Zvwf1 antibody, and thus, an anti-idiotype antibody mimics an epitope of Zvwf1.

An "antibody fragment" is a portion of an antibody such as F(ab')2, F(ab)2, Fab', Fab, and the like. Regardless of structure, an antibody fragment binds with the same antigen that is recognized by the intact antibody. For example, an anti-Zvwf1 monoclonal antibody fragment binds with an epitope of Zvwf1.

The term "antibody fragment" also includes a synthetic or a genetically engineered polypeptide that binds to a specific antigen, such as polypeptides consisting of the light chain variable region, "Fv" fragments consisting of the variable regions of the heavy and light chains, recombinant single chain polypeptide molecules in which light and heavy variable regions are connected by a peptide linker ("scFv proteins"), and minimal recognition units consisting of the amino acid residues that mimic the hypervariable region.

A "chimeric antibody" is a recombinant protein that contains the variable domains and complementary determining regions derived from a rodent antibody, while the remainder of the antibody molecule is derived from a human antibody.

"Humanized antibodies" are recombinant proteins in which murine complementarity determining regions of a monoclonal antibody have been transferred from heavy and light variable chains of the murine immunoglobulin into a human variable domain.

A "detectable label" is a molecule or atom which can be conjugated to an antibody moiety to produce a molecule useful for diagnosis. Examples of detectable labels include chelators, photoactive agents, radioisotopes, fluorescent agents, paramagnetic ions, or other marker moieties.

The term "affinity tag" is used herein to denote a polypeptide segment that can be attached to a second polypeptide to provide for purification or detection of the second polypeptide or provide sites for attachment of the second polypeptide to a substrate. In principal, any peptide or protein for which an antibody or other specific binding agent is available can be used as an affinity tag. Affinity tags include a polyhistidine tract, protein A (Nilsson et al., EMBO J. 4:1075 (1985); Nilsson et al., Methods Enzymol. 198:3 (1991)), glutathione S transferase (Smith and Johnson, Gene 67:31 (1988)), Glu-Glu affinity tag (Grussenmeyer et al., Proc. Natl. Acad. Sci. USA 82:7952 (1985)), substance P, FLAG peptide (Hopp et al., Biotechnology 6:1204 (1988)), streptavidin binding peptide, or other antigenic epitope or binding domain.

See, in general, Ford et al., Protein Expression and Purification 2:95 (1991). Nucleic acid molecules encoding affinity tags are available from commercial suppliers (e.g., Pharmacia Biotech, Piscataway, NJ).
A “naked antibody” is an entire antibody, as opposed to an antibody fragment, which is not conjugated with a therapeutic agent. Naked antibodies include both polyclonal and monoclonal antibodies, as well as certain recombinant antibodies, such as chimeric and humanized antibodies.

As used herein, the term “antibody component” includes both an entire antibody and an antibody fragment.

In eukaryotes, RNA polymerase II catalyzes the transcription of a structural gene to produce mRNA. A nucleic acid molecule can be designed to contain an RNA polymerase II template in which the RNA transcript has a sequence that is complementary to that of a specific mRNA. The RNA transcript is termed an “anti-sense RNA” and a nucleic acid molecule that encodes the anti-sense RNA is termed an “anti-sense gene.” Anti-sense RNA molecules are capable of binding to mRNA molecules, resulting in an inhibition of mRNA translation.

An “anti-sense oligonucleotide specific for ZvWF1” or a “ZvWF1 anti-sense oligonucleotide” is an oligonucleotide having a sequence (a) capable of forming a stable triplex with a portion of the ZvWF1 gene, or (b) capable of forming a stable duplex with a portion of an mRNA transcript of the ZvWF1 gene.

A “ribozyme” is a nucleic acid molecule that contains a catalytic center. The term includes RNA enzymes, self-splicing RNAs, self-cleaving RNAs, and nucleic acid molecules that perform these catalytic functions. A nucleic acid molecule that encodes a ribozyme is termed a “ribozyme gene.”

An “external guide sequence” is a nucleic acid molecule that directs the endogenous ribozyme, RNase P, to a particular species of intracellular mRNA, resulting in the cleavage of the mRNA by RNase P. A nucleic acid molecule that encodes an external guide sequence is termed an “external guide sequence gene.”

The term “variant ZvWF1 gene” refers to nucleic acid molecules that encode a polypeptide having an amino acid sequence that is a modification of SEQ ID NO:2. Such variants include naturally-occurring polymorphisms of ZvWF1 genes, as well as synthetic genes that contain conservative amino acid substitutions of the amino acid sequence of SEQ ID NO:2. Additional variant forms of ZvWF1 genes are nucleic acid molecules that contain insertions or deletions of the nucleotide sequences described herein. A variant ZvWF1 gene can be identified by determining whether the gene hybridizes with a nucleic acid molecule having the nucleotide sequence of SEQ ID NO:1, or its complement, under stringent conditions.

Alternatively, variant ZvWF1 genes can be identified by sequence comparison. Two amino acid sequences have “100% amino acid sequence identity” if the amino acid residues of the two amino acid sequences are the same when aligned for
maximal correspondence. Similarly, two nucleotide sequences have "100% nucleotide sequence identity" if the nucleotide residues of the two nucleotide sequences are the same when aligned for maximal correspondence. Sequence comparisons can be performed using standard software programs such as those included in the LASERGENE bioinformatics computing suite, which is produced by DNASTAR (Madison, Wisconsin). Other methods for comparing two nucleotide or amino acid sequences by determining optimal alignment are well-known to those of skill in the art (see, for example, Peruski and Peruski, *The Internet and the New Biology: Tools for Genomic and Molecular Research* (ASM Press, Inc. 1997), Wu et al. (eds.), "Information Superhighway and Computer Databases of Nucleic Acids and Proteins," in *Methods in Gene Biotechnology*, pages 123-151 (CRC Press, Inc. 1997), and Bishop (ed.), *Guide to Human Genome Computing*, 2nd Edition (Academic Press, Inc. 1998)). Particular methods for determining sequence identity are described below.

Regardless of the particular method used to identify a variant *Zwlf1* gene or variant *Zwlf1* polypeptide, a variant gene or polypeptide encoded by a variant gene may be characterized by the ability to bind specifically to an anti-*Zwlf1* antibody.

The term "allelic variant" is used herein to denote any of two or more alternative forms of a gene occupying the same chromosomal locus. Allelic variation arises naturally through mutation, and may result in phenotypic polymorphism within populations. Gene mutations can be silent (no change in the encoded polypeptide) or may encode polypeptides having altered amino acid sequence. The term allelic variant is also used herein to denote a protein encoded by an allelic variant of a gene.

The term "ortholog" denotes a polypeptide or protein obtained from one species that is the functional counterpart of a polypeptide or protein from a different species. Sequence differences among orthologs are the result of speciation. “Paralogs” are distinct but structurally related proteins made by an organism. Paralogs are believed to arise through gene duplication. For example, α-globin, β-globin, and myoglobin are paralogs of each other.

The present invention includes functional fragments of *Zwlf1* genes. Within the context of this invention, a “functional fragment” of a *Zwlf1* gene refers to a nucleic acid molecule that encodes a portion of a *Zwlf1* polypeptide, which specifically binds with an anti-*Zwlf1* antibody.

Due to the imprecision of standard analytical methods, molecular weights and lengths of polymers are understood to be approximate values. When such a value is expressed as “about” X or “approximately” X, the stated value of X will be understood to be accurate to ±10%.
3. **Production of Nucleic Acid Molecules Encoding Human Zvwf1**

Nucleic acid molecules encoding a human Zvwf1 gene can be obtained by screening a human cDNA or genomic library using polynucleotide probes based upon SEQ ID NO:1. These techniques are standard and well-established.

As an illustration, a nucleic acid molecule that encodes a human Zvwf1 gene can be isolated from a human cDNA library. In this case, the first step would be to prepare the cDNA library by isolating RNA from tissue, such as ovarian tissue, using methods well-known to those of skill in the art. In general, RNA isolation techniques must provide a method for breaking cells, a means of inhibiting RNase-directed degradation of RNA, and a method of separating RNA from DNA, protein, and polysaccharide contaminants. For example, total RNA can be isolated by freezing tissue in liquid nitrogen, grinding the frozen tissue with a mortar and pestle to lyse the cells, extracting the ground tissue with a solution of phenol/chloroform to remove proteins, and separating RNA from the remaining impurities by selective precipitation with lithium chloride (see, for example, Ausubel et al. (eds.), *Short Protocols in Molecular Biology, 3rd Edition*, pages 4-1 to 4-6 (John Wiley & Sons 1995) ["Ausubel (1995)"]; Wu et al., *Methods in Gene Biotechnology*, pages 33-41 (CRC Press, Inc. 1997) ["Wu (1997)"]).

Alternatively, total RNA can be isolated from tissue by extracting ground tissue with guanidinium isothiocyanate, extracting with organic solvents, and separating RNA from contaminants using differential centrifugation (see, for example, Chirgwin et al., *Biochemistry* 18:52 (1979); Ausubel (1995) at pages 4-1 to 4-6; Wu (1997) at pages 33-41).

In order to construct a cDNA library, poly(A)$^+$ RNA must be isolated from a total RNA preparation. Poly(A)$^+$ RNA can be isolated from total RNA using the standard technique of oligo(dT)-cellulose chromatography (see, for example, Aviv and Leder, *Proc. Nat'l Acad. Sci. USA* 69:1408 (1972); Ausubel (1995) at pages 4-11 to 4-12).

Double-stranded cDNA molecules are synthesized from poly(A)$^+$ RNA using techniques well-known to those in the art. (see, for example, Wu (1997) at pages 41-46). Moreover, commercially available kits can be used to synthesize double-stranded cDNA molecules. For example, such kits are available from Life Technologies, Inc. (Gaithersburg, MD), CLONTECH Laboratories, Inc. (Palo Alto, CA), Promega Corporation (Madison, WI) and STRATAGENE (La Jolla, CA).

Various cloning vectors are appropriate for the construction of a cDNA library. For example, a cDNA library can be prepared in a vector derived from bacteriophage, such as a λgt10 vector. See, for example, Huynh et al., "Constructing

Alternatively, double-stranded cDNA molecules can be inserted into a plasmid vector, such as a PBLUESCRIPT vector (STRATAGENE; La Jolla, CA), a LAMDAGEM-4 (Promega Corp.) or other commercially available vectors. Suitable cloning vectors also can be obtained from the American Type Culture Collection (Manassas, VA).

To amplify the cloned cDNA molecules, the cDNA library is inserted into a prokaryotic host, using standard techniques. For example, a cDNA library can be introduced into competent *E. coli* DH5 cells, which can be obtained, for example, from Life Technologies, Inc. (Gaithersburg, MD).

A human genomic library can be prepared by means well-known in the art (see, for example, Ausubel (1995) at pages 5-1 to 5-6; Wu (1997) at pages 307-327). Genomic DNA can be isolated by lysing tissue with the detergent Sarkosyl, digesting the lysate with proteinase K, clearing insoluble debris from the lysate by centrifugation, precipitating nucleic acid from the lysate using isopropanol, and purifying resuspended DNA on a cesium chloride density gradient.

DNA fragments that are suitable for the production of a genomic library can be obtained by the random shearing of genomic DNA or by the partial digestion of genomic DNA with restriction endonucleases. Genomic DNA fragments can be inserted into a vector, such as a bacteriophage or cosmid vector, in accordance with conventional techniques, such as the use of restriction enzyme digestion to provide appropriate termini, the use of alkaline phosphatase treatment to avoid undesirable joining of DNA molecules, and ligation with appropriate ligases. Techniques for such manipulation are well-known in the art (see, for example, Ausubel (1995) at pages 5-1 to 5-6; Wu (1997) at pages 307-327).

Nucleic acid molecules that encode a human *Zwfl* gene can also be obtained using the polymerase chain reaction (PCR) with oligonucleotide primers having nucleotide sequences that are based upon the nucleotide sequences of the human *Zwfl* gene, as described herein. General methods for screening libraries with PCR are provided by, for example, Yu et al., “Use of the Polymerase Chain Reaction to Screen Phage Libraries,” in Methods in Molecular Biology, Vol. 15: PCR Protocols: Current Methods and Applications, White (ed.), pages 211-215 (Humana Press, Inc. 1993). Moreover, techniques for using PCR to isolate related genes are described by, for example, Preston, “Use of Degenerate Oligonucleotide Primers and the Polymerase Chain Reaction to Clone Gene Family Members,” in Methods in Molecular Biology,

Alternatively, human genomic libraries can be obtained from commercial sources such as Research Genetics (Huntsville, AL) and the American Type Culture Collection (Manassas, VA).

A library containing cDNA or genomic clones can be screened with one or more polynucleotide probes based upon SEQ ID NO:1, using standard methods (see, for example, Ausubel (1995) at pages 6-1 to 6-11).

Anti-Zwff1 antibodies, produced as described below, can also be used to isolate DNA sequences that encode human Zwff1 genes from cDNA libraries. For example, the antibodies can be used to screen λgt11 expression libraries, or the antibodies can be used for immunoscreening following hybrid selection and translation (see, for example, Ausubel (1995) at pages 6-12 to 6-16; Margolis et al., “Screening λ expression libraries with antibody and protein probes,” in DNA Cloning 2: Expression Systems, 2nd Edition, Glover et al. (eds.), pages 1-14 (Oxford University Press 1995)).

As an alternative, a Zwff1 gene can be obtained by synthesizing nucleic acid molecules using mutually priming long oligonucleotides and the nucleotide sequences described herein (see, for example, Ausubel (1995) at pages 8-8 to 8-9). Established techniques using the polymerase chain reaction provide the ability to synthesize DNA molecules at least two kilobases in length (Adang et al., Plant Molec. Biol. 21:1131 (1993), Bambot et al., PCR Methods and Applications 2:266 (1993), Dillon et al., “Use of the Polymerase Chain Reaction for the Rapid Construction of Synthetic Genes,” in Methods in Molecular Biology, Vol. 15: PCR Protocols: Current Methods and Applications, White (ed.), pages 263-268, (Humana Press, Inc. 1993), and Holowachuk et al., PCR Methods Appl. 4:299 (1995)).

The nucleic acid molecules of the present invention can also be synthesized with “gene machines” using protocols such as the phosphoramidite method. If chemically-synthesized double stranded DNA is required for an application such as the synthesis of a gene or a gene fragment, then each complementary strand is made separately. The production of short genes (60 to 80 base pairs) is technically straightforward and can be accomplished by synthesizing the complementary strands and then annealing them. For the production of longer genes (>300 base pairs), however, special strategies may be required, because the coupling efficiency of each cycle during chemical DNA synthesis is seldom 100%. To overcome this problem, synthetic genes (double-stranded) are assembled in modular form from single-stranded fragments that are from 20 to 100 nucleotides in length. For reviews on polynucleotide synthesis, see, for example, Glick and Pasternak, Molecular Biotechnology, Principles

The sequence of a Zvwf1 cDNA or ZvWF1 genomic fragment can be determined using standard methods. ZvWF1 polynucleotide sequences disclosed herein can also be used as probes or primers to clone 5' non-coding regions of a ZvWF1 gene. Promoter elements from a ZvWF1 gene can be used to direct the expression of heterologous genes in tissues of, for example, transgenic animals or patients treated with gene therapy. The identification of genomic fragments containing a ZvWF1 promoter or regulatory element can be achieved using well-established techniques, such as deletion analysis (see, generally, Ausubel (1995)).

Cloning of 5' flanking sequences also facilitates production of ZvWF1 proteins by “gene activation,” a technique disclosed in U.S. Patent No. 5,641,670. Briefly, expression of an endogenous ZvWF1 gene in a cell is altered by introducing into the ZvWF1 locus a DNA construct comprising at least a targeting sequence, a regulatory sequence, an exon, and an unpaired splice donor site. The targeting sequence is a ZvWF1 5' non-coding sequence that permits homologous recombination of the construct with the endogenous ZvWF1 locus, whereby the sequences within the construct become operably linked with the endogenous ZvWF1 coding sequence. In this way, an endogenous ZvWF1 promoter can be replaced or supplemented with other regulatory sequences to provide enhanced, tissue-specific, or otherwise regulated expression.

4. Production of ZvWF1 Variants

The present invention provides a variety of nucleic acid molecules, including DNA and RNA molecules, which encode the ZvWF1 polypeptides disclosed herein. Those skilled in the art will readily recognize that, in view of the degeneracy of the genetic code, considerable sequence variation is possible among these polynucleotide molecules. SEQ ID NO:3 is a degenerate nucleotide sequence that encompasses all nucleic acid molecules that encode the ZvWF1 polypeptides of SEQ ID NO:2. Those skilled in the art will recognize that the degenerate sequence of SEQ ID NO:3 also provides all RNA sequences encoding SEQ ID NO:2, by substituting U for T. Thus, the present invention contemplates ZvWF1 polypeptide-encoding nucleic acid molecules comprising nucleotide 1 to nucleotide 987 of SEQ ID NO:1, and their RNA equivalents.

Table 1 sets forth the one-letter codes used within SEQ ID NO:3 to denote degenerate nucleotide positions. “Resolutions” are the nucleotides denoted by a code letter. “Complement” indicates the code for the complementary nucleotide(s).
For example, the code Y denotes either C or T, and its complement R denotes A or G, A being complementary to T, and G being complementary to C.
The degenerate codons used in SEQ ID NO:3, encompassing all possible codons for a given amino acid, are set forth in Table 2.
Table 2

<table>
<thead>
<tr>
<th>Amino Acid</th>
<th>One Letter Code</th>
<th>Codons</th>
<th>Degenerate Codon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cys</td>
<td>C</td>
<td>TGC TGT</td>
<td>TGY</td>
</tr>
<tr>
<td>Ser</td>
<td>S</td>
<td>AGC AGT TCA TCC TCG TCT</td>
<td>WSN</td>
</tr>
<tr>
<td>Thr</td>
<td>T</td>
<td>ACA ACC ACG ACT</td>
<td>ACN</td>
</tr>
<tr>
<td>Pro</td>
<td>P</td>
<td>CCA CCC CGG CCT</td>
<td>CCN</td>
</tr>
<tr>
<td>Ala</td>
<td>A</td>
<td>GCA GCC GCG GCT</td>
<td>GCN</td>
</tr>
<tr>
<td>Gly</td>
<td>G</td>
<td>GGA GCC GGG GGT</td>
<td>GGN</td>
</tr>
<tr>
<td>Asn</td>
<td>N</td>
<td>AAC AAT</td>
<td>AAY</td>
</tr>
<tr>
<td>Asp</td>
<td>D</td>
<td>GAC GAT</td>
<td>GAY</td>
</tr>
<tr>
<td>Glu</td>
<td>E</td>
<td>GAA GAG</td>
<td>GAR</td>
</tr>
<tr>
<td>Gln</td>
<td>Q</td>
<td>CAA CAG</td>
<td>CAR</td>
</tr>
<tr>
<td>His</td>
<td>H</td>
<td>CAC CAT</td>
<td>CAY</td>
</tr>
<tr>
<td>Arg</td>
<td>R</td>
<td>AGA AGG CGA CGC CGG CGT</td>
<td>MGN</td>
</tr>
<tr>
<td>Lys</td>
<td>K</td>
<td>AAA AAG</td>
<td>AAR</td>
</tr>
<tr>
<td>Met</td>
<td>M</td>
<td>ATG</td>
<td>ATG</td>
</tr>
<tr>
<td>Ile</td>
<td>I</td>
<td>ATA ATC ATT</td>
<td>ATH</td>
</tr>
<tr>
<td>Leu</td>
<td>L</td>
<td>CTA CTC CTG CTT TTA TTG</td>
<td>YTN</td>
</tr>
<tr>
<td>Val</td>
<td>V</td>
<td>GTA GTC GTG GTT</td>
<td>GTN</td>
</tr>
<tr>
<td>Phe</td>
<td>F</td>
<td>TTC TTT</td>
<td>TTY</td>
</tr>
<tr>
<td>Tyr</td>
<td>Y</td>
<td>TAC TAT</td>
<td>TAY</td>
</tr>
<tr>
<td>Trp</td>
<td>W</td>
<td>TGG</td>
<td>TGG</td>
</tr>
<tr>
<td>Ter</td>
<td>.</td>
<td>TAA TAG TGA</td>
<td>TRR</td>
</tr>
<tr>
<td>Asn</td>
<td>Asp</td>
<td>B</td>
<td>RAY</td>
</tr>
<tr>
<td>Glu</td>
<td>Gln</td>
<td>Z</td>
<td>SAR</td>
</tr>
<tr>
<td>Any</td>
<td>X</td>
<td></td>
<td>NNN</td>
</tr>
</tbody>
</table>
One of ordinary skill in the art will appreciate that some ambiguity is introduced in determining a degenerate codon, representative of all possible codons encoding an amino acid. For example, the degenerate codon for serine (WSN) can, in some circumstances, encode arginine (AGR), and the degenerate codon for arginine (MGN) can, in some circumstances, encode serine (AGY). A similar relationship exists between codons encoding phenylalanine and leucine. Thus, some polynucleotides encompassed by the degenerate sequence may encode variant amino acid sequences, but one of ordinary skill in the art can easily identify such variant sequences by reference to the amino acid sequence of SEQ ID NO:2. Variant sequences can be readily tested for functionality as described herein.

Different species can exhibit “preferential codon usage.” In general, see, Grantham et al., Nucleic Acids Res. 8:1893 (1980), Haas et al. Curr. Biol. 6:315 (1996), Wain-Hobson et al., Gene 13:355 (1981), Grosjean and Fiers, Gene 18:199 (1982), Holm, Nuc. Acids Res. 14:3075 (1986), Ikemura, J. Mol. Biol. 158:573 (1982), Sharp and Matassi, Curr. Opin. Genet. Dev. 4:851 (1994), Kane, Curr. Opin. Biotechnol. 6:494 (1995), and Makrides, Microbiol. Rev. 60:512 (1996). As used herein, the term “preferential codon usage” or “preferential codons” is a term of art referring to protein translation codons that are most frequently used in cells of a certain species, thus favoring one or a few representatives of the possible codons encoding each amino acid (See Table 2). For example, the amino acid threonine (Thr) may be encoded by ACA, ACC, ACG, or ACT, but in mammalian cells ACC is the most commonly used codon; in other species, for example, insect cells, yeast, viruses or bacteria, different Thr codons may be preferential. Preferential codons for a particular species can be introduced into the polynucleotides of the present invention by a variety of methods known in the art. Introduction of preferential codon sequences into recombinant DNA can, for example, enhance production of the protein by making protein translation more efficient within a particular cell type or species. Therefore, the degenerate codon sequences disclosed in SEQ ID NO:3 serves as templates for optimizing expression of polynucleotides in various cell types and species commonly used in the art and disclosed herein. Sequences containing preferential codons can be tested and optimized for expression in various species, and tested for functionality as disclosed herein.

The present invention further provides variant polypeptides and nucleic acid molecules that represent counterparts from other species (orthologs). These species include, but are not limited to mammalian, avian, amphibian, reptile, fish, insect and other vertebrate and invertebrate species. Of particular interest are ZvWF1 polypeptides from other mammalian species, including murine, porcine, ovine, bovine, canine, feline, equine, and other primate polypeptides. Orthologs of human ZvWF1 can
be cloned using information and compositions provided by the present invention in combination with conventional cloning techniques. For example, a cDNA can be cloned using mRNA obtained from a tissue or cell type that expresses Zvwf1 as disclosed herein. Suitable sources of mRNA can be identified by probing northern blots with probes designed from the sequences disclosed herein. A library is then prepared from mRNA of a positive tissue or cell line.

A Zvwf1-encoding cDNA can then be isolated by a variety of methods, such as by probing with a complete or partial human cDNA or with one or more sets of degenerate probes based on the disclosed sequences. A cDNA can also be cloned using the polymerase chain reaction with primers designed from the representative human Zvwf1 sequences disclosed herein. Within an additional method, the cDNA library can be used to transform or transfec host cells, and expression of the cDNA of interest can be detected with an antibody to Zvwf1 polypeptide. Similar techniques can also be applied to the isolation of genomic clones.

Those skilled in the art will recognize that the sequence disclosed in SEQ ID NO:1 represents a single allele of human Zvwf1, and that allelic variation and alternative splicing are expected to occur. Allelic variants of this sequence can be cloned by probing cDNA or genomic libraries from different individuals according to standard procedures. Allelic variants of the nucleotide sequence shown in SEQ ID NO:1, including those containing silent mutations and those in which mutations result in amino acid sequence changes, are within the scope of the present invention, as are proteins which are allelic variants of SEQ ID NO:2. cDNA molecules generated from alternatively spliced mRNAs, which retain the properties of the Zvwf1 polypeptide are included within the scope of the present invention, as are polypeptides encoded by such cDNAs and mRNAs. Allelic variants and splice variants of these sequences can be cloned by probing cDNA or genomic libraries from different individuals or tissues according to standard procedures known in the art.

Within certain embodiments of the invention, the isolated nucleic acid molecules can hybridize under stringent conditions to nucleic acid molecules consisting of nucleotide sequences disclosed herein. For example, such nucleic acid molecules can hybridize under stringent conditions to nucleic acid molecules consisting of the nucleotide sequence of nucleotides 1 to 987 of SEQ ID NO:1, nucleotides 1 to 669 of SEQ ID NO:1, or to nucleic acid molecules consisting of a nucleotide sequence complementary to the nucleotide sequence of nucleotides 1 to 987, or 1 to 669, of SEQ ID NO:1. Within certain embodiments of the invention, the isolated nucleic acid molecules can hybridize to nucleic acid molecules having the nucleotide sequence of SEQ ID NO:1, or a sequence complementary thereto, under “stringent conditions.”
general, stringent conditions are selected to be about 5°C lower than the thermal melting point (T_m) for the specific sequence at a defined ionic strength and pH. The T_m is the temperature (under defined ionic strength and pH) at which 50% of the target sequence hybridizes to a perfectly matched probe.

As an illustration, a nucleic acid molecule encoding a variant Zvwf1 polypeptide can be hybridized with a nucleic acid molecule having the nucleotide sequence of nucleotides 1 to 987 of SEQ ID NO:1 (or its complement) at 42°C overnight in a solution comprising 50% formamide, 5xSSC (1xSSC: 0.15 M sodium chloride and 15 mM sodium citrate), 50 mM sodium phosphate (pH 7.6), 5x Denhardt’s solution (100x Denhardt’s solution: 2% (w/v) Ficoll 400, 2% (w/v) polyvinylpyrrolidone, and 2% (w/v) bovine serum albumin), 10% dextran sulfate, and 20 μg/ml denatured, sheared salmon sperm DNA. One of skill in the art can devise variations of these hybridization conditions. For example, the hybridization mixture can be incubated at a higher temperature, such as about 65°C, in a solution that does not contain formamide. Moreover, premixed hybridization solutions are available (e.g., EXPRESSHYB Hybridization Solution from CLONTECH Laboratories, Inc.), and hybridization can be performed according to the manufacturer’s instructions.

Following hybridization, the nucleic acid molecules can be washed to remove non-hybridized nucleic acid molecules under stringent conditions, or under highly stringent conditions. Typical stringent washing conditions include washing in a solution of 0.5x - 2x SSC with 0.1% sodium dodecyl sulfate (SDS) at 55 - 65°C. For example, certain nucleic acid molecules encoding a variant Zvwf1 polypeptide remain hybridized with a nucleic acid molecule consisting of the nucleotide sequence of nucleotides 1 to 669 of SEQ ID NO:1 (or its complement) following stringent washing conditions, in which the wash stringency is equivalent to 0.5x - 2x SSC with 0.1% SDS at 55 - 65°C, including 0.5x SSC with 0.1% SDS at 55°C, or 2xSSC with 0.1% SDS at 65°C. One of skill in the art can readily devise equivalent conditions, for example, by substituting SSPE for SSC in the wash solution.

Typical highly stringent washing conditions include washing in a solution of 0.1x - 0.2x SSC with 0.1% sodium dodecyl sulfate (SDS) at 50 - 65°C. As an illustration, particular nucleic acid molecules encoding a variant Zvwf1 polypeptide remain hybridized with a nucleic acid molecule consisting of the nucleotide sequence of nucleotides 1 to 669 of SEQ ID NO:1 (or its complement) under highly stringent washing conditions, in which the wash stringency is equivalent to 0.1x - 0.2x SSC with 0.1% SDS at 50 - 65°C, including 0.1x SSC with 0.1% SDS at 50°C, or 0.2xSSC with 0.1% SDS at 65°C.
The present invention also provides isolated Zvwf1 polypeptides that have a substantially similar sequence identity to the polypeptides of SEQ ID NO:2, or their orthologs. The term “substantially similar sequence identity” is used herein to denote polypeptides having 70%, 80%, 90%, 95% or greater than 95% sequence identity to the sequences shown in SEQ ID NO:2, or their orthologs.

The present invention also contemplates Zvwf1 variant nucleic acid molecules that can be identified using two criteria: a determination of the similarity between the encoded polypeptide with the amino acid sequence of SEQ ID NO:2, and a hybridization assay, as described above. Such Zvwf1 variants include nucleic acid molecules (1) that remain hybridized with a nucleic acid molecule consisting of the nucleotide sequence of nucleotides 1 to 669 of SEQ ID NO:1 (or its complement) following stringent washing conditions, in which the wash stringency is equivalent to 0.5x - 2x SSC with 0.1% SDS at 55 - 65°C, and (2) that encode a polypeptide having 70%, 80%, 90%, 95% or greater than 95% sequence identity to the amino acid sequence of SEQ ID NO:2. Alternatively, Zvwf1 variants can be characterized as nucleic acid molecules (1) that remain hybridized with a nucleic acid molecule consisting of the nucleotide sequence of nucleotides 1 to 669 of SEQ ID NO:1 (or its complement) following highly stringent washing conditions, in which the wash stringency is equivalent to 0.1x - 0.2x SSC with 0.1% SDS at 50 - 65°C, and (2) that encode a polypeptide having 70%, 80%, 90%, 95% or greater than 95% sequence identity to the amino acid sequence of SEQ ID NO:2.

Percent sequence identity is determined by conventional methods. See, for example, Altschul et al., Bull. Math. Bio. 48:603 (1986), and Henikoff and Henikoff, Proc. Natl. Acad. Sci. USA 89:10915 (1992). Briefly, two amino acid sequences are aligned to optimize the alignment scores using a gap opening penalty of 10, a gap extension penalty of 1, and the “BLOSUM62 scoring matrix of Henikoff and Henikoff (ibid.) as shown in Table 3 (amino acids are indicated by the standard one-letter codes). The percent identity is then calculated as: ([Total number of identical matches]/ [length of the longer sequence plus the number of gaps introduced into the longer sequence in order to align the two sequences])×(100).
Table 3

	A	R	N	D	C	Q	E	G	H	I	L	K	M	F	P	S	T	W	Y	V						
	4																									
5		-1																								
	N	-2	0	0																						
	D	-2	-2	1	6																					
	C	0	-3	-3	-3	9																				
	Q	-1	1	0	0	-3	5																			
10	E	-1	0	0	2	-4	2	5																		
	G	0	-2	0	-1	-3	-2	-2	6																	
	H	-2	0	1	-1	-3	0	0	-2	8																
	I	-1	-3	-3	-3	-1	-3	-3	-4	-3	4															
	L	-1	-2	-3	-4	-1	-2	-3	-4	-3	2	4														
	K	-1	2	0	-1	-3	1	1	-2	-1	-3	-2	5													
15	M	-1	-1	-2	-3	-1	0	-2	-3	-2	1	2	-1	5												
	F	-2	-3	-3	-3	-2	-3	-3	-3	-1	0	0	-3	0	6											
	P	-1	-2	-2	-1	-3	-1	-1	-2	-2	-3	-3	-1	-2	-4	7										
	S	1	1	1	1	0	1	0	0	0	-1	-2	-2	0	1	2	-1	4								
	T	0	-1	0	-1	-1	-1	-2	-2	-1	-1	-1	-1	-2	-1	1	5									
20	W	-3	-3	-4	-4	-2	-2	-3	-2	-3	-2	-3	-1	1	4	-3	-2	1	1							
	Y	-2	-2	-2	-3	-2	-1	-2	-3	2	-1	-1	-2	1	3	-3	-2	-2	2	7						
	V	0	-3	-3	-3	-1	-2	-2	-3	-3	3	1	-2	1	1	-2	-2	0	-3	-1	4					
Those skilled in the art appreciate that there are many established algorithms available to align two amino acid sequences. The “FASTA” similarity search algorithm of Pearson and Lipman is a suitable protein alignment method for examining the level of identity shared by an amino acid sequence disclosed herein and the amino acid sequence of a putative ZvWF1 variant. The FASTA algorithm is described by Pearson and Lipman, *Proc. Nat'l Acad. Sci. USA* 85:2444 (1988), and by Pearson, *Meth. Enzymol.* 183:63 (1990).

Briefly, FASTA first characterizes sequence similarity by identifying regions shared by the query sequence (e.g., SEQ ID NO:2) and a test sequence that have either the highest density of identities (if the ktup variable is 1) or pairs of identities (if ktup=2), without considering conservative amino acid substitutions, insertions, or deletions. The ten regions with the highest density of identities are then rescored by comparing the similarity of all paired amino acids using an amino acid substitution matrix, and the ends of the regions are “trimmed” to include only those residues that contribute to the highest score. If there are several regions with scores greater than the “cutoff” value (calculated by a predetermined formula based upon the length of the sequence and the ktup value), then the trimmed initial regions are examined to determine whether the regions can be joined to form an approximate alignment with gaps. Finally, the highest scoring regions of the two amino acid sequences are aligned using a modification of the Needleman-Wunsch-Sellers algorithm (Needleman and Wunsch, *J. Mol. Biol.* 48:444 (1970); Sellers, *SIAM J. Appl. Math.* 26:787 (1974)), which allows for amino acid insertions and deletions. Preferred parameters for FASTA analysis are: ktup=1, gap opening penalty=10, gap extension penalty=1, and substitution matrix=BLOSUM62. These parameters can be introduced into a FASTA program by modifying the scoring matrix file (“SMATRIX”), as explained in Appendix 2 of Pearson, *Meth. Enzymol.* 183:63 (1990).

FASTA can also be used to determine the sequence identity of nucleic acid molecules using a ratio as disclosed above. For nucleotide sequence comparisons, the ktup value can range between one to six, preferably from three to six, and most preferably, three. The other parameters can be set as: gap opening penalty=10, and gap extension penalty=1.

The present invention includes nucleic acid molecules that encode a polypeptide having a conservative amino acid change, compared with the amino acid sequence of SEQ ID NO:2. That is, variants can be obtained that contain one or more amino acid substitutions of SEQ ID NO:2, in which an alkyl amino acid is substituted for an alkyl amino acid in a ZvWF1 amino acid sequence, an aromatic amino acid is substituted for an aromatic amino acid in a ZvWF1 amino acid sequence, a sulfur-
containing amino acid is substituted for a sulfur-containing amino acid in a Zvwf1 amino acid sequence, a hydroxy-containing amino acid is substituted for a hydroxy-containing amino acid in a Zvwf1 amino acid sequence, an acidic amino acid is substituted for an acidic amino acid in a Zvwf1 amino acid sequence, a basic amino acid is substituted for a basic amino acid in a Zvwf1 amino acid sequence, or a dibasic monocarboxylic amino acid is substituted for a dibasic monocarboxylic amino acid in a Zvwf1 amino acid sequence.

Among the common amino acids, for example, a “conservative amino acid substitution” is illustrated by a substitution among amino acids within each of the following groups: (1) glycine, alanine, valine, leucine, and isoleucine, (2) phenylalanine, tyrosine, and tryptophan, (3) serine and threonine, (4) aspartate and glutamate, (5) glutamine and asparagine, and (6) lysine, arginine and histidine.

The BLOSUM62 table is an amino acid substitution matrix derived from about 2,000 local multiple alignments of protein sequence segments, representing highly conserved regions of more than 500 groups of related proteins (Henikoff and Henikoff, Proc. Nat’l Acad. Sci. USA 89:10915 (1992)). Accordingly, the BLOSUM62 substitution frequencies can be used to define conservative amino acid substitutions that may be introduced into the amino acid sequences of the present invention. Although it is possible to design amino acid substitutions based solely upon chemical properties (as discussed above), the language “conservative amino acid substitution” preferably refers to a substitution represented by a BLOSUM62 value of greater than -1. For example, an amino acid substitution is conservative if the substitution is characterized by a BLOSUM62 value of 0, 1, 2, or 3. According to this system, preferred conservative amino acid substitutions are characterized by a BLOSUM62 value of at least 1 (e.g., 1, 2 or 3), while more preferred conservative amino acid substitutions are characterized by a BLOSUM62 value of at least 2 (e.g., 2 or 3).

Particular variants of Zvwf1 are characterized by having at least 70%, at least 80%, at least 85%, at least 90%, at least 95% or greater than 95% sequence identity to the corresponding amino acid sequence (i.e., SEQ ID NO:2), wherein the variation in amino acid sequence is due to one or more conservative amino acid substitutions.

Conservative amino acid changes in a Zvwf1 gene can be introduced by substituting nucleotides for the nucleotides recited in SEQ ID NO:1. Such “conservative amino acid” variants can be obtained, for example, by oligonucleotide-directed mutagenesis, linker-scanning mutagenesis, mutagenesis using the polymerase chain reaction, and the like (see Ausubel (1995) at pages 8-10 to 8-22; and McPherson (ed.), Directed Mutagenesis: A Practical Approach (IRL Press 1991)). A variant
ZvWF1 polypeptide can be identified by the ability to specifically bind anti-ZvWF1 antibodies.

The proteins of the present invention can also comprise non-naturally occurring amino acid residues. Non-naturally occurring amino acids include, without limitation, \textit{trans}-3-methylproline, 2,4-methanoproline, \textit{cis}-4-hydroxyproline, \textit{trans}-4-hydroxyproline, \textit{N}-methylglycine, \textit{allo}-threonine, methylthreonine, hydroxyethylcysteine, hydroxyethylhomocysteine, nitroglutamine, homoglutamine, pipercolic acid, thiazolidine carboxylic acid, dehydropoline, 3- and 4-methylproline, 3,3-dimethylproline, \textit{tert}-leucine, norvaline, 2-azaphenylalanine, 3-azaphenylalanine, 4-azaphenylalanine, and 4-fluorophenylalanine. Several methods are known in the art for incorporating non-naturally occurring amino acid residues into proteins. For example, an \textit{in vitro} system can be employed wherein nonsense mutations are suppressed using chemically aminoacylated suppressor tRNAs. Methods for synthesizing amino acids and aminoacylating tRNA are known in the art. Transcription and translation of plasmids containing nonsense mutations is typically carried out in a cell-free system comprising an \textit{E. coli} S30 extract and commercially available enzymes and other reagents. Proteins are purified by chromatography. See, for example, Robertson et al., \textit{J. Am. Chem. Soc.} 113:2722 (1991), Ellman et al., \textit{Methods Enzymol.} 202:301 (1991), Chung et al., \textit{Science} 259:806 (1993), and Chung et al., \textit{Proc. Nat'l Acad. Sci. USA} 90:10145 (1993).

In a second method, translation is carried out in \textit{Xenopus} oocytes by microinjection of mutated mRNA and chemically aminoacylated suppressor tRNAs (Turcatti et al., \textit{J. Biol. Chem.} 271:19991 (1996)). Within a third method, \textit{E. coli} cells are cultured in the absence of a natural amino acid that is to be replaced (e.g., phenylalanine) and in the presence of the desired non-naturally occurring amino acid(s) (e.g., 2-azaphenylalanine, 3-azaphenylalanine, 4-azaphenylalanine, or 4-fluorophenylalanine). The non-naturally occurring amino acid is incorporated into the protein in place of its natural counterpart. See, Koide et al., \textit{Biochem.} 33:7470 (1994). Naturally occurring amino acid residues can be converted to non-naturally occurring species by \textit{in vitro} chemical modification. Chemical modification can be combined with site-directed mutagenesis to further expand the range of substitutions (Wynn and Richards, \textit{Protein Sci.} 2:395 (1993)).

A limited number of non-conservative amino acids, amino acids that are not encoded by the genetic code, non-naturally occurring amino acids, and unnatural amino acids may be substituted for ZvWF1 amino acid residues.

Essential amino acids in the polypeptides of the present invention can be identified according to procedures known in the art, such as site-directed mutagenesis.

The location of Zvwf1 receptor binding domains can also be determined by physical analysis of structure, as determined by such techniques as nuclear magnetic resonance, crystallography, electron diffraction or photoaffinity labeling, in conjunction with mutation of putative contact site amino acids. See, for example, de Vos et al., Science 255:306 (1992), Smith et al., J. Mol. Biol. 224:899 (1992), and Wlodaver et al., FEBS Lett. 309:59 (1992). Moreover, Zvwf1 labeled with biotin or FITC can be used for expression cloning of Zvwf1 receptors.

Multiple amino acid substitutions can be made and tested using known methods of mutagenesis and screening, such as those disclosed by Reidhaar-Olson and Sauer (Science 241:53 (1988)) or Bowie and Sauer (Proc. Nat’l Acad. Sci. USA 86:2152 (1989)). Briefly, these authors disclose methods for simultaneously randomizing two or more positions in a polypeptide, selecting for functional polypeptide, and then sequencing the mutagenized polypeptides to determine the spectrum of allowable substitutions at each position. Other methods that can be used include phage display (e.g., Lowman et al., Biochem. 30:10832 (1991), Ladner et al., U.S. Patent No. 5,223,409, Huse, international publication No. WO 92/06204, and region-directed mutagenesis (Derbyshire et al., Gene 46:145 (1986), and Ner et al., DNA 7:127, (1988)).

Variants of the disclosed Zvwf1 nucleotide and polypeptide sequences can also be generated through DNA shuffling as disclosed by Stemmer, Nature 370:389 (1994), Stemmer, Proc. Nat’l Acad. Sci. USA 91:10747 (1994), and international publication No. WO 97/20078. Briefly, variant DNAs are generated by in vitro homologous recombination by random fragmentation of a parent DNA followed by reassembly using PCR, resulting in randomly introduced point mutations. This technique can be modified by using a family of parent DNAs, such as allelic variants or DNAs from different species, to introduce additional variability into the process. Selection or screening for the desired activity, followed by additional iterations of mutagenesis and assay provides for rapid “evolution” of sequences by selecting for desirable mutations while simultaneously selecting against detrimental changes.
Mutagenesis methods as disclosed herein can be combined with high-throughput, automated screening methods to detect activity of cloned, mutagenized polypeptides in host cells. Mutagenized DNA molecules that encode biologically active polypeptides, or polypeptides that bind with anti-Zwff1 antibodies, can be recovered from the host cells and rapidly sequenced using modern equipment. These methods allow the rapid determination of the importance of individual amino acid residues in a polypeptide of interest, and can be applied to polypeptides of unknown structure.

The present invention also includes “functional fragments” of Zwff1 polypeptides and nucleic acid molecules encoding such functional fragments. Routine deletion analyses of nucleic acid molecules can be performed to obtain functional fragments of a nucleic acid molecule that encodes a Zwff1 polypeptide. As an illustration, DNA molecules having the nucleotide sequence of SEQ ID NO:1 can be digested with Bal31 nuclease to obtain a series of nested deletions. The fragments are then inserted into expression vectors in proper reading frame, and the expressed polypeptides are isolated and tested for the ability to bind anti-Zwff1 antibodies. One alternative to exonuclease digestion is to use oligonucleotide-directed mutagenesis to introduce deletions or stop codons to specify production of a desired fragment. Alternatively, particular fragments of a Zwff1 gene can be synthesized using the polymerase chain reaction.

The present invention also contemplates functional fragments of a Zwff1 gene that has amino acid changes, compared with the amino acid sequence of SEQ ID NO:2. A variant Zwff1 gene can be identified on the basis of structure by determining the level of identity with nucleotide and amino acid sequences of SEQ ID NOs:1 and 2, as discussed above. An alternative approach to identifying a variant gene on the basis
of structure is to determine whether a nucleic acid molecule encoding a potential variant
Zwffl gene can hybridize to a nucleic acid molecule having the nucleotide sequence of
SEQ ID NO:1, as discussed above.

The present invention also provides polypeptide fragments or peptides
comprising an epitope-bearing portion of a Zwffl polypeptide described herein. Such
fragments or peptides may comprise an “immunogenic epitope,” which is a part of a
protein that elicits an antibody response when the entire protein is used as an
immunogen. Immunogenic epitope-bearing peptides can be identified using standard
methods (see, for example, Geysen et al., Proc. Nat’l Acad. Sci. USA 81:3998 (1983)).

In contrast, polypeptide fragments or peptides may comprise an
“antigenic epitope,” which is a region of a protein molecule to which an antibody can
specifically bind. Certain epitopes consist of a linear or contiguous stretch of amino
acids, and the antigenicity of such an epitope is not disrupted by denaturing agents. It is
known in the art that relatively short synthetic peptides that can mimic epitopes of a
protein can be used to stimulate the production of antibodies against the protein (see,
for example, Sutcliffe et al., Science 219:660 (1983)). Accordingly, antigenic epitope-
bearing peptides and polypeptides of the present invention are useful to raise antibodies
that bind with the polypeptides described herein.

Antigenic epitope-bearing peptides and polypeptides can contain at least
four to ten amino acids, at least ten to fifteen amino acids, or about 15 to about 30
amino acids of SEQ ID NO:2. Such epitope-bearing peptides and polypeptides can be
produced by fragmenting a Zwffl polypeptide, or by chemical peptide synthesis, as
described herein. Moreover, epitopes can be selected by phage display of random
peptide libraries (see, for example, Lane and Stephen, Curr. Opin. Immunol. 5:268
(1993), and Cortese et al., Curr. Opin. Biotechnol. 7:616 (1996)). Standard methods
for identifying epitopes and producing antibodies from small peptides that comprise an
etope are described, for example, by Mole, “Epitope Mapping,” in Methods in
Molecular Biology, Vol. 10, Manson (ed.), pages 105-116 (The Humana Press, Inc.
1992), Price, “Production and Characterization of Synthetic Peptide-Derived
Antibodies,” in Monoclonal Antibodies: Production, Engineering, and Clinical
Application, Ritter and Ladyman (eds.), pages 60-84 (Cambridge University Press
1995), and Coligan et al. (eds.), Current Protocols in Immunology, pages 9.3.1 - 9.3.5
and pages 9.4.1 - 9.4.11 (John Wiley & Sons 1997). Regardless of the particular
nucleotide sequence of a variant Zwffl gene, the gene encodes a polypeptide may be
characterized by its ability to bind specifically to an anti-Zwffl antibody.

For any Zwffl polypeptide, including variants and fusion proteins, one
of ordinary skill in the art can readily generate a fully degenerate polynucleotide
sequence encoding that variant using the information set forth in Tables 1 and 2 above. Moreover, those of skill in the art can use standard software to devise ZvWF1 variants based upon the nucleotide and amino acid sequences described herein. Accordingly, the present invention includes a computer-readable medium encoded with a data structure that provides at least one of the following sequences: SEQ ID NO:1, SEQ ID NO:2, and SEQ ID NO:3. Suitable forms of computer-readable media include magnetic media and optically-readable media. Examples of magnetic media include a hard or fixed drive, a random access memory (RAM) chip, a floppy disk, digital linear tape (DLT), a disk cache, and a ZIP disk. Optically readable media are exemplified by compact discs (e.g., CD-read only memory (ROM), CD-rewritable (RW), and CD-recordable), and digital versatile/video discs (DVD) (e.g., DVD-ROM, DVD-RAM, and DVD+RW).

5. Production of ZvWF1 Fusion Proteins

Fusion proteins of ZvWF1 can be used to express ZvWF1 in a recombinant host, and to isolate expressed ZvWF1. One type of fusion protein comprises a peptide that guides a ZvWF1 polypeptide from a recombinant host cell. To direct a ZvWF1 polypeptide into the secretory pathway of a eukaryotic host cell, a secretory signal sequence (also known as a signal peptide, a leader sequence, prepro sequence or presequence) is provided in the ZvWF1 expression vector. While the secretory signal sequence may be derived from ZvWF1, a suitable signal sequence may also be derived from another secreted protein or synthesized de novo. The secretory signal sequence is operably linked to a ZvWF1-encoding sequence such that the two sequences are joined in the correct reading frame and positioned to direct the newly synthesized polypeptide into the secretory pathway of the host cell. Secretory signal sequences are commonly positioned 5' to the nucleotide sequence encoding the polypeptide of interest, although certain secretory signal sequences may be positioned elsewhere in the nucleotide sequence of interest (see, e.g., Welch et al., U.S. Patent No. 5,037,743; Holland et al., U.S. Patent No. 5,143,830).

Although the secretory signal sequence of ZvWF1 or another protein produced by mammalian cells (e.g., tissue-type plasminogen activator signal sequence, as described, for example, in U.S. Patent No. 5,641,655) is useful for expression of ZvWF1 in recombinant mammalian hosts, a yeast signal sequence can be used for expression in yeast cells. Examples of suitable yeast signal sequences are those derived from yeast mating pheromone α-factor (encoded by the MFα1 gene), invertase (encoded by the SUC2 gene), or acid phosphatase (encoded by the PHO5 gene). See, for

In bacterial cells, it is often desirable to express a heterologous protein as a fusion protein to decrease toxicity, increase stability, and to enhance recovery of the expressed protein. For example, Zvwf1 can be expressed as a fusion protein comprising a glutathione S-transferase polypeptide. Glutathione S-transferase fusion proteins are typically soluble, and easily purifiable from E. coli lysates on immobilized glutathione columns. In similar approaches, a Zvwf1 fusion protein comprising a maltose binding protein polypeptide can be isolated with an amylose resin column, while a fusion protein comprising the C-terminal end of a truncated Protein A gene can be purified using IgG-Sepharose. Established techniques for expressing a heterologous polypeptide as a fusion protein in a bacterial cell are described, for example, by Williams et al., “Expression of Foreign Proteins in E. coli Using Plasmid Vectors and Purification of Specific Polyclonal Antibodies,” in DNA Cloning 2: A Practical Approach, 2nd Edition, Glover and Hames (Eds.), pages 15-58 (Oxford University Press 1995). In addition, commercially available expression systems are available. For example, the PINPOINT Xa protein purification system (Promega Corporation; Madison, WI) provides a method for isolating a fusion protein comprising a polypeptide that becomes biotinylated during expression with a resin that comprises avidin.

Peptide tags that are useful for isolating heterologous polypeptides expressed by either prokaryotic or eukaryotic cells include polyHistidine tags (which have an affinity for nickel-chelating resin), c-myc tags, calmodulin binding protein (isolated with calmodulin affinity chromatography), substance P, the RYIRS tag (which binds with anti-RYIRS antibodies), the Glu-Glu tag, and the FLAG tag (which binds with anti-FLAG antibodies). See, for example, Luo et al., Arch. Biochem. Biophys. 329:215 (1996), Morganti et al., Biotechnol. Appl. Biochem. 23:67 (1996), and Zheng et al., Gene 186:55 (1997). Nucleic acid molecules encoding such peptide tags are available, for example, from Sigma-Aldrich Corporation (St. Louis, MO).

Another form of fusion protein comprises a Zvwf1 polypeptide and an immunoglobulin heavy chain constant region, typically an Fc fragment, which contains two constant region domains and a hinge region but lacks the variable region. As an illustration, Chang et al., U.S. Patent No. 5,723,125, describe a fusion protein comprising a human interferon and a human immunoglobulin Fc fragment. The C-terminal of the interferon is linked to the N-terminal of the Fc fragment by a peptide linker moiety. An example of a peptide linker is a peptide comprising primarily a T cell inert sequence, which is immunologically inert. An exemplary peptide linker has the
amino acid sequence: GGSGG SGGGG SGGGG S (SEQ ID NO:4). In this fusion protein, a preferred Fc moiety is a human γ4 chain, which is stable in solution and has little or no complement activating activity. Accordingly, the present invention contemplates a Zvwf1 fusion protein that comprises a Zvwf1 moiety and a human Fc fragment, wherein the C-terminus of the Zvwf1 moiety is attached to the N-terminus of the Fc fragment via a peptide linker, such as a peptide consisting of the amino acid sequence of SEQ ID NO:4. The Zvwf1 moiety can be a Zvwf1 molecule or a fragment thereof.

In another variation, a Zvwf1 fusion protein comprises an IgG sequence, a Zvwf1 moiety covalently joined to the amino terminal end of the IgG sequence, and a signal peptide that is covalently joined to the amino terminal of the Zvwf1 moiety, wherein the IgG sequence consists of the following elements in the following order: a hinge region, a CH2 domain, and a CH3 domain. Accordingly, the IgG sequence lacks a CH1 domain. The Zvwf1 moiety displays a Zvwf1 activity, as described herein, such as the ability to bind with a Zvwf1 receptor. This general approach to producing fusion proteins that comprise both antibody and nonantibody portions has been described by LaRochelle et al., EP 742830 (WO 95/21258).

Fusion proteins comprising a Zvwf1 moiety and an Fc moiety can be used, for example, as an in vitro assay tool. For example, the presence of a Zvwf1 receptor in a biological sample can be detected using a Zvwf1-antibody fusion protein, in which the Zvwf1 moiety is used to target the cognate receptor, and a macromolecule, such as Protein A or anti-Fc antibody, is used to detect the bound fusion protein-receptor complex. Moreover, such fusion proteins can be used to identify agonists and antagonists that interfere with the binding of Zvwf1 to its receptor. In addition, antibody-Zvwf1 fusion proteins, comprising antibody variable domains, are useful as therapeutic proteins, in which the antibody moiety binds with a target antigen, such as a tumor associated antigen.

Moreover, using methods described in the art, hybrid Zvwf1 proteins can be constructed using regions or domains of the inventive protein in combination with those of other proteins in the von Willebrand factor type A domain superfamily, or heterologous proteins (see, for example, Picard, Cur. Opin. Biology 5:511 (1994)). Such domains include, but are not limited to, the secretory signal sequence, and domains comprising at least one von Willebrand factor type A domain. These hybrids may be characterized by altered reaction kinetics, altered binding, limited or expanded substrate specificity, or altered tissue and cellular localization of a polypeptide.

Fusion proteins can be prepared by methods known to those skilled in the art by preparing each component of the fusion protein and chemically conjugating
them. Alternatively, a polynucleotide encoding both components of the fusion protein in the proper reading frame can be generated using known techniques and expressed by the methods described herein. General methods for enzymatic and chemical cleavage of fusion proteins are described, for example, by Ausubel (1995) at pages 16-19 to 16-25.

6. **Production of Zvwf1 Polypeptides**

The polypeptides of the present invention, including full-length polypeptides, functional fragments, and fusion proteins, can be produced in recombinant host cells following conventional techniques. To express a Zvwf1 gene, a nucleic acid molecule encoding the polypeptide must be operably linked to regulatory sequences that control transcriptional expression in an expression vector and then, introduced into a host cell. In addition to transcriptional regulatory sequences, such as promoters and enhancers, expression vectors can include translational regulatory sequences and a marker gene which is suitable for selection of cells that carry the expression vector.

Expression vectors that are suitable for production of a foreign protein in eukaryotic cells typically contain (1) prokaryotic DNA elements coding for a bacterial replication origin and an antibiotic resistance marker to provide for the growth and selection of the expression vector in a bacterial host; (2) eukaryotic DNA elements that control initiation of transcription, such as a promoter; and (3) DNA elements that control the processing of transcripts, such as a transcription termination/polyadenylation sequence. As discussed above, expression vectors can also include nucleotide sequences encoding a secretory sequence that directs the heterologous polypeptide into the secretory pathway of a host cell. For example, a Zvwf1 expression vector may comprise a Zvwf1 gene and a secretory sequence derived from a Zvwf1 gene or another secreted gene.

Zvwf1 proteins of the present invention may be expressed in mammalian cells. Examples of suitable mammalian host cells include African green monkey kidney cells (Vero; ATCC CRL 1587), human embryonic kidney cells (293-HEK; ATCC CRL 1573), baby hamster kidney cells (BHK-21, BHK-570; ATCC CRL 8544, ATCC CRL 10314), canine kidney cells (MDCK; ATCC CCL 34), Chinese hamster ovary cells (CHO-K1; ATCC CCL61; CHO DG44 [Chasin *et al.*, *Som. Cell. Molec. Genet.* 12:555 1986]), rat pituitary cells (GH1; ATCC CCL82), HeLa S3 cells (ATCC CCL2.2), rat hepatoma cells (H-4-II-E; ATCC CRL 1548) SV40-transformed monkey kidney cells (COS-1; ATCC CRL 1650) and murine embryonic cells (NIH-3T3; ATCC CRL 1658).
For a mammalian host, the transcriptional and translational regulatory signals may be derived from viral sources, such as adenovirus, bovine papilloma virus, simian virus, or the like, in which the regulatory signals are associated with a particular gene which has a high level of expression. Suitable transcriptional and translational regulatory sequences also can be obtained from mammalian genes, such as actin, collagen, myosin, and metallothionein genes.

Alternatively, a prokaryotic promoter, such as the bacteriophage T3 RNA polymerase promoter, can be used to control ZvWF1 gene expression in mammalian cells if the prokaryotic promoter is regulated by a eukaryotic promoter (Zhou et al., *Mol. Cell. Biol.* 10:4529 (1990), and Kaufman et al., *Nucl. Acids Res.* 19:4485 (1991)).

An expression vector can be introduced into host cells using a variety of standard techniques including calcium phosphate transfection, liposome-mediated transfection, microprojectile-mediated delivery, electroporation, and the like. The transfected cells can be selected and propagated to provide recombinant host cells that comprise the expression vector stably integrated in the host cell genome. Techniques for introducing vectors into eukaryotic cells and techniques for selecting such stable transformants using a dominant selectable marker are described, for example, by Ausubel (1995) and by Murray (ed.), *Gene Transfer and Expression Protocols* (Humana Press 1991).

For example, one suitable selectable marker is a gene that provides resistance to the antibiotic neomycin. In this case, selection is carried out in the presence of a neomycin-type drug, such as G-418 or the like. Selection systems can also be used to increase the expression level of the gene of interest, a process referred to as "amplification." Amplification is carried out by culturing transfecants in the presence of a low level of the selective agent and then increasing the amount of selective agent to select for cells that produce high levels of the products of the
introduced genes. A suitable amplifiable selectable marker is dihydrofolate reductase, which confers resistance to methotrexate. Other drug resistance genes (e.g., hygromycin resistance, multi-drug resistance, puromycin acetyltransferase) can also be used. Alternatively, markers that introduce an altered phenotype, such as green fluorescent protein, or cell surface proteins such as CD4, CD8, Class I MHC, placental alkaline phosphatase may be used to sort transfected cells from untransfected cells by such means as FACS sorting or magnetic bead separation technology.

Zwrf1 polypeptides can also be produced by cultured mammalian cells using a viral delivery system. Exemplary viruses for this purpose include adenovirus, herpesvirus, vaccinia virus and adeno-associated virus (AAV). Adenovirus, a double-stranded DNA virus, is currently the best studied gene transfer vector for delivery of heterologous nucleic acid (for a review, see Becker et al., Meth. Cell Biol. 43:161 (1994), and Douglas and Curiel, Science & Medicine 4:44 (1997)). Advantages of the adenovirus system include the accommodation of relatively large DNA inserts, the ability to grow to high-titer, the ability to infect a broad range of mammalian cell types, and flexibility that allows use with a large number of available vectors containing different promoters.

By deleting portions of the adenovirus genome, larger inserts (up to 7 kb) of heterologous DNA can be accommodated. These inserts can be incorporated into the viral DNA by direct ligation or by homologous recombination with a co-transfected plasmid. An option is to delete the essential E1 gene from the viral vector, which results in the inability to replicate unless the E1 gene is provided by the host cell. Adenovirus vector-infected human 293 cells (ATCC Nos. CRL-1573, 45504, 45505), for example, can be grown as adherent cells or in suspension culture at relatively high cell density to produce significant amounts of protein (see Garnier et al., Cytotechnol. 15:145 (1994)).

Zwrf1 genes may also be expressed in other higher eukaryotic cells, such as avian, fungal, insect, yeast, or plant cells. The baculovirus system provides an efficient means to introduce cloned Zwrf1 genes into insect cells. Suitable expression vectors are based upon the Autographa californica multiple nuclear polyhedrosis virus (AcMNPV), and contain well-known promoters such as Drosophila heat shock protein (hsp) 70 promoter, Autographa californica nuclear polyhedrosis virus immediate-early gene promoter (ie-1) and the delayed early 39K promoter, baculovirus p10 promoter, and the Drosophila metallothionein promoter. A second method of making recombinant baculovirus utilizes a transposon-based system described by Luckow (Luckow, et al., J. Virol. 67:4566 (1993)). This system, which utilizes transfer vectors, is sold in the BAC-to-BAC kit (Life Technologies, Rockville, MD). This system utilizes a transfer
vector, PFASTBAC (Life Technologies) containing a Tn7 transposon to move the DNA encoding the Zvwf1 polypeptide into a baculovirus genome maintained in E. coli as a large plasmid called a “bacmid.” See, Hill-Perkins and Possee, J. Gen. Virol. 71:971 (1990), Bonning, et al., J. Gen. Virol. 75:1551 (1994), and Chazenbalk, and Rapoport, J. Biol. Chem. 270:1543 (1995). In addition, transfer vectors can include an in-frame fusion with DNA encoding an epitope tag at the C- or N-terminus of the expressed Zvwf1 polypeptide, for example, a Glu-Glu epitope tag (Grussenmeyer et al., Proc. Nat’l Acad. Sci. 82:7952 (1985)). Using a technique known in the art, a transfer vector containing a Zvwf1 gene is transformed into E. coli, and screened for bacmids which contain an interrupted lacZ gene indicative of recombinant baculovirus. The bacmid DNA containing the recombinant baculovirus genome is then isolated using common techniques.

The illustrative PFASTBAC vector can be modified to a considerable degree. For example, the polyhedrin promoter can be removed and substituted with the baculovirus basic protein promoter (also known as Pcor, p6.9 or MP promoter), which is expressed earlier in the baculovirus infection, and has been shown to be advantageous for expressing secreted proteins (see, for example, Hill-Perkins and Possee, J. Gen. Virol. 71:971 (1990), Bonning, et al., J. Gen. Virol. 75:1551 (1994), and Chazenbalk and Rapoport, J. Biol. Chem. 270:1543 (1995). In such transfer vector constructs, a short or long version of the basic protein promoter can be used. Moreover, transfer vectors can be constructed which replace the native Zvwf1 secretory signal sequences with secretory signal sequences derived from insect proteins. For example, a secretory signal sequence from Ecdysteroid Glucosyltransferase (EGT), honey bee Melittin (Invitrogen Corporation; Carlsbad, CA), or baculovirus gp67 (Pharmingen: San Diego, CA) can be used in constructs to replace the native Zvwf1 secretory signal sequence.

The recombinant virus or bacmid is used to transfected host cells. Suitable insect host cells include cell lines derived from IPLB-Sf-21, a Spodoptera frugiperda pupal ovarian cell line, such as Sf9 (ATCC CRL 1711), Sf21AE, and Sf21 (Invitrogen Corporation; San Diego, CA), as well as Drosophila Schneider-2 cells, and the HIGH FIVEO cell line (Invitrogen) derived from Trichoplusia ni (U.S. Patent No. 5,300,435). Commercially available serum-free media can be used to grow and to maintain the cells. Suitable media are Sf900 II™ (Life Technologies) or ESF 921™ (Expression Systems) for the Sf9 cells; and Ex-cell405™ (JRH Biosciences, Lenexa, KS) or Express FiveO™ (Life Technologies) for the T. ni cells. When recombinant virus is used, the cells are typically grown up from an inoculation density of approximately 2-5
x 10^5 cells to a density of 1-2 x 10^6 cells at which time a recombinant viral stock is added at a multiplicity of infection (MOI) of 0.1 to 10, more typically near 3.

Fungal cells, including yeast cells, can also be used to express the genes described herein. Yeast species of particular interest in this regard include Saccharomyces cerevisiae, Pichia pastoris, and Pichia methanolica. Suitable promoters for expression in yeast include promoters from GAL1 (galactose), PGK (phosphoglycerate kinase), ADH (alcohol dehydrogenase), AOX1 (alcohol oxidase), HIS4 (histidinol dehydrogenase), and the like. Many yeast cloning vectors have been designed and are readily available. These vectors include YIp-based vectors, such as YIp5, YRp vectors, such as YRp17, YEp vectors such as YEp13 and YCp vectors, such as YCp19. Methods for transforming S. cerevisiae cells with exogenous DNA and producing recombinant polypeptides therefrom are disclosed by, for example, Kawasaki, U.S. Patent No. 4,599,311, Kawasaki et al., U.S. Patent No. 4,931,373, Brake, U.S. Patent No. 4,870,008, Welch et al., U.S. Patent No. 5,037,743, and Murray et al., U.S. Patent No. 4,845,075. Transformed cells are selected by phenotype determined by the selectable marker, commonly drug resistance or the ability to grow in the absence of a particular nutrient (e.g., leucine). A suitable vector system for use in Saccharomyces cerevisiae is the POT1 vector system disclosed by Kawasaki et al. (U.S. Patent No. 4,931,373), which allows transformed cells to be selected by growth in glucose-containing media. Additional suitable promoters and terminators for use in yeast include those from glycolytic enzyme genes (see, e.g., Kawasaki, U.S. Patent No. 4,599,311, Kingsman et al., U.S. Patent No. 4,615,974, and Bitter, U.S. Patent No. 4,977,092) and alcohol dehydrogenase genes. See also U.S. Patents Nos. 4,990,446, 5,063,154, 5,139,936, and 4,661,454.

Transformation systems for other yeasts, including Hansenula polymorpha, Schizosaccharomyces pombe, Kluyveromyces lactis, Kluyveromyces fragilis, Ustilago maydis, Pichia pastoris, Pichia methanolica, Pichia guilliermondii
and Candida maltosa are known in the art. See, for example, Gleeson et al., J. Gen. Microbiol. 132:3459 (1986), and Cregg, U.S. Patent No. 4,882,279. Aspergillus cells may be utilized according to the methods of McKnight et al., U.S. Patent No. 4,935,349. Methods for transforming Acremonium chrysogenum are disclosed by Sumino et al., U.S. Patent No. 5,162,228. Methods for transforming Neurospora are disclosed by Lambowitz, U.S. Patent No. 4,486,533.

For example, the use of Pichia methanolica as host for the production of recombinant proteins is disclosed by Raymond, U.S. Patent No. 5,716,808, Raymond, U.S. Patent No. 5,736,383, Raymond et al., Yeast 14:11-23 (1998), and in international publication Nos. WO 97/17450, WO 97/17451, WO 98/02536, and WO 98/02565. DNA molecules for use in transforming P. methanolica will commonly be prepared as double-stranded, circular plasmids, which are can be linearized prior to transformation. For polypeptide production in P. methanolica, the promoter and terminator in the plasmid can be that of a P. methanolica gene, such as a P. methanolica alcohol utilization gene (AUG1 or AUG2). Other useful promoters include those of the dihydroxyacetone synthase (DHAS), formate dehydrogenase (FMD), and catalase (CAT) genes. To facilitate integration of the DNA into the host chromosome, it is possible to have the entire expression segment of the plasmid flanked at both ends by host DNA sequences. A suitable selectable marker for use in Pichia methanolica is a P. methanolica ADE2 gene, which encodes phosphoribosyl-5-aminoimidazole carboxylase (AIRC; EC 4.1.1.21), and which allows ade2 host cells to grow in the absence of adenine. For large-scale, industrial processes where it is desirable to minimize the use of methanol, host cells can be used in which both methanol utilization genes (AUG1 and AUG2) are deleted. For production of secreted proteins, host cells deficient in vacuolar protease genes (PEP4 and PRB1) can be used. Electroporation is used to facilitate the introduction of a plasmid containing DNA encoding a polypeptide of interest into P. methanolica cells. P. methanolica cells can be transformed by electroporation using an exponentially decaying, pulsed electric field having a field strength of from 2.5 to 4.5 kV/cm, preferably about 3.75 kV/cm, and a time constant (t) of from 1 to 40 milliseconds, most preferably about 20 milliseconds.

Expression vectors can also be introduced into plant protoplasts, intact plant tissues, or isolated plant cells. Methods for introducing expression vectors into plant tissue include the direct infection or co-cultivation of plant tissue with Agrobacterium tumefaciens, microprojectile-mediated delivery, DNA injection, electroporation, and the like. See, for example, Horsch et al., Science 227:1229 (1985), Klein et al., Biotechnology 10:268 (1992), and Miki et al., "Procedures for Introducing

Alternatively, Zvwf1 genes can be expressed in prokaryotic host cells. Suitable promoters that can be used to express Zvwf1 polypeptides in a prokaryotic host are well-known to those of skill in the art and include promoters capable of recognizing the T4, T3, Sp6 and T7 polymerases, the P8 and P7 promoters of bacteriophage lambda, the trp, recA, heat shock, lacUV5, tac, lpp-lacSpr, phoA, and lacZ promoters of *E. coli*, promoters of *B. subtilis*, the promoters of the bacteriophages of *Bacillus*, *Streptomyces* promoters, the int promoter of bacteriophage lambda, the bla promoter of pBR322, and the CAT promoter of the chloramphenicol acetyl transferase gene. Prokaryotic promoters have been reviewed by Glick, *J. Ind. Microbiol.* 1:277 (1987), Watson *et al.*, *Molecular Biology of the Gene, 4th Ed.* (Benjamin Cummings 1987), and by Ausubel *et al.* (1995).

Illustrative prokaryotic hosts include *E. coli* and *Bacillus subtilis*. Suitable strains of *E. coli* include BL21(DE3), BL21(DE3)pLysS, BL21(DE3)pLysE, DH1, DH4I, DH5, DH5I, DH5IF, DH5IMCR, DH10B, DH10B/p3, DH11S, C600, HB101, JM101, JM105, JM109, JM110, K38, RR1, Y1088, Y1089, CSH18, ER1451, and ER1647 (see, for example, Brown (ed.), *Molecular Biology Labfax* (Academic Press 1991)). Suitable strains of *Bacillus subtilis* include BR151, YB886, MI119, MI120, and B170 (see, for example, Hardy, “Bacillus Cloning Methods,” in *DNA Cloning: A Practical Approach*, Glover (ed.) (IRL Press 1985)).

When expressing a Zvwf1 polypeptide in bacteria such as *E. coli*, the polypeptide may be retained in the cytoplasm, typically as insoluble granules, or may be directed to the periplasmic space by a bacterial secretion sequence. In the former case, the cells are lysed, and the granules are recovered and denatured using, for example, guanidine isothiocyanate or urea. The denatured polypeptide can then be refolded and dimerized by diluting the denaturant, such as by dialysis against a solution of urea and a combination of reduced and oxidized glutathione, followed by dialysis against a buffered saline solution. In the latter case, the polypeptide can be recovered from the periplasmic space in a soluble and functional form by disrupting the cells (by, for example, sonication or osmotic shock) to release the contents of the periplasmic space and recovering the protein, thereby obviating the need for denaturation and refolding.

Methods for expressing proteins in prokaryotic hosts are well-known to those of skill in the art (see, for example, Williams *et al.*, “Expression of foreign proteins in *E. coli* using plasmid vectors and purification of specific polyclonal antibodies,” in *DNA Cloning 2: Expression Systems, 2nd Edition*, Glover *et al.* (eds.), page 15 (Oxford University Press 1995), Ward *et al.*, “Genetic Manipulation and

Standard methods for introducing expression vectors into bacterial, yeast, insect, and plant cells are provided, for example, by Ausubel (1995).

Peptides and polypeptides of the present invention comprise at least six, at least nine, or at least 15 contiguous amino acid residues of SEQ ID NO:2. For example, polypeptides can comprise at least 15 contiguous amino acid residues of amino acid residues 1 to 64 of SEQ ID NO:2, amino acid residues 1 to 223 of SEQ ID NO:2, amino acid residues 5 to 186 of SEQ ID NO:2, or amino acids 96 to 129 of SEQ ID NO:2. Within certain embodiments of the invention, the polypeptides comprise 20,
30, 40, 50, 100, or more contiguous residues of SEQ ID NO:2. Nucleic acid molecules encoding such peptides and polypeptides are useful as polymerase chain reaction primers and probes.

In addition to the uses described above, polynucleotides and polypeptides of the present invention are useful as educational tools in laboratory practicum kits for courses related to genetics and molecular biology, protein chemistry, and antibody production and analysis. Due to its unique polynucleotide and polypeptide sequences, molecules of ZvWF1 can be used as standards or as "unknowns" for testing purposes. For example, ZvWF1 polynucleotides can be used as an aid, such as, for example, to teach a student how to prepare expression constructs for bacterial, viral, or mammalian expression, including fusion constructs, wherein ZvWF1 is the gene to be expressed; for determining the restriction endonuclease cleavage sites of the polynucleotides; determining mRNA and DNA localization of ZvWF1 polynucleotides in tissues (i.e., by northern and Southern blots as well as polymerase chain reaction); and for identifying related polynucleotides and polypeptides by nucleic acid hybridization. As an illustration, students will find that XhoII digestion of a nucleic acid molecule consisting of the nucleotide sequence of nucleotides 1 to 987 of SEQ ID NO:1 provides fragments of about 21 base pairs, 199 base pairs, and 767 base pairs, and that EcoRI digestion yields fragments of about 190 base pairs, and 797 base pairs.

ZvWF1 polypeptides can be used as an aid to teach preparation of antibodies; identifying proteins by western blotting; protein purification; determining the weight of expressed ZvWF1 polypeptides as a ratio to total protein expressed; identifying peptide cleavage sites; coupling amino and carboxyl terminal tags; amino acid sequence analysis, as well as, but not limited to monitoring biological activities of both the native and tagged protein (i.e., protease inhibition) in vitro and in vivo. For example, students will find that digestion of unglycosylated ZvWF1 with hydroxylamine yields six fragments having approximate molecular weights of 6272, 4649, 7209, 7236, 4718, and 6293, whereas digestion of unglycosylated ZvWF1 with BNPS or NCS/urea yields fragments having approximate molecular weights of 12644, 6675, 11706, and 5319.

ZvWF1 polypeptides can also be used to teach analytical skills such as mass spectrometry, circular dichroism, to determine conformation, especially of the four alpha helices, x-ray crystallography to determine the three-dimensional structure in atomic detail, nuclear magnetic resonance spectroscopy to reveal the structure of proteins in solution. For example, a kit containing the ZvWF1 can be given to the student to analyze. Since the amino acid sequence would be known by the instructor, the protein can be given to the student as a test to determine the skills or develop the
skills of the student, the instructor would then know whether or not the student has correctly analyzed the polypeptide. Since every polypeptide is unique, the educational utility of Zvwf1 would be unique unto itself.

The antibodies which bind specifically to Zvwf1 can be used as a teaching aid to instruct students how to prepare affinity chromatography columns to purify Zvwf1, cloning and sequencing the polynucleotide that encodes an antibody and thus as a practicum for teaching a student how to design humanized antibodies. The Zvwf1 gene, polypeptide, or antibody would then be packaged by reagent companies and sold to educational institutions so that the students gain skill in art of molecular biology. Because each gene and protein is unique, each gene and protein creates unique challenges and learning experiences for students in a lab practicum. Such educational kits containing the Zvwf1 gene, polypeptide, or antibody are considered within the scope of the present invention.

7. **Isolation of Zvwf1 Polypeptides**

The polypeptides of the present invention can be purified to at least about 80% purity, to at least about 90% purity, to at least about 95% purity, or even greater than 95% purity with respect to contaminating macromolecules, particularly other proteins and nucleic acids, and free of infectious and pyrogenic agents. The polypeptides of the present invention may also be purified to a pharmaceutically pure state, which is greater than 99.9% pure. In certain preparations, a purified polypeptide is substantially free of other polypeptides, particularly other polypeptides of animal origin.

Fractionation and/or conventional purification methods can be used to obtain preparations of Zvwf1 purified from natural sources (e.g., ovarian tissue), and recombinant Zvwf1 polypeptides and fusion Zvwf1 polypeptides purified from recombinant host cells. Numerous methods for purifying proteins are known in the art. In general, ammonium sulfate precipitation and acid or chaotrope extraction may be used for fractionation of samples. Exemplary purification steps may include hydroxyapatite, size exclusion, FPLC and reverse-phase high performance liquid chromatography. Suitable chromatographic media include derivatized dextrans, agarose, cellulose, polyacrylamide, specialty silicas, and the like. PEI, DEAE, QAE and Q derivatives are preferred. Exemplary chromatographic media include those media derivatized with phenyl, butyl, or octyl groups, such as Phenyl-Sepharose FF (Pharmacia), Toyopearl butyl 650 (Toso Haas, Montgomeryville, PA), Octyl-Sepharose (Pharmacia) and the like; or polyacrylic resins, such as Amberchrom CG 71 (Toso
Haas) and the like. Suitable solid supports include glass beads, silica-based resins, cellulosic resins, agarose beads, cross-linked agarose beads, polystyrene beads, cross-linked polyacrylamide resins and the like that are insoluble under the conditions in which they are to be used. These supports may be modified with reactive groups that allow attachment of proteins by amino groups, carboxyl groups, sulfhydryl groups, hydroxyl groups and/or carbohydrate moieties.

Examples of coupling chemistries include cyanogen bromide activation, N-hydroxysuccinimide activation, epoxide activation, sulfhydryl activation, hydrazide activation, and carboxyl and amino derivatives for carbodiimide coupling chemistries. These and other solid media are well known and widely used in the art, and are available from commercial suppliers. Selection of a particular method for polypeptide isolation and purification is a matter of routine design and is determined in part by the properties of the chosen support. See, for example, Affinity Chromatography: Principles & Methods (Pharmacia LKB Biotechnology 1988), and Doonan, Protein Purification Protocols (The Humana Press 1996).

Additional variations in Zwvf1 isolation and purification can be devised by those of skill in the art. For example, anti-Zwvf1 antibodies, obtained as described below, can be used to isolate large quantities of protein by immunoaffinity purification. Moreover, methods for binding ligands, such as Zwvf1, to receptor polypeptides bound to support media are well known in the art.

The polypeptides of the present invention can also be isolated by exploitation of particular properties. For example, immobilized metal ion adsorption (IMAC) chromatography can be used to purify histidine-rich proteins, including those comprising polyhistidine tags. Briefly, a gel is first charged with divalent metal ions to form a chelate (Sulkowski, Trends in Biochem. 3:1 (1985)). Histidine-rich proteins will be adsorbed to this matrix with differing affinities, depending upon the metal ion used, and will be eluted by competitive elution, lowering the pH, or use of strong chelating agents. Other methods of purification include purification of glycosylated proteins by lectin affinity chromatography and ion exchange chromatography (M. Deutscher, (ed.), Meth. Enzymol. 182:529 (1990)). Within additional embodiments of the invention, a fusion of the polypeptide of interest and an affinity tag (e.g., maltose-binding protein, an immunoglobulin domain) may be constructed to facilitate purification.

Zwvf1 polypeptides or fragments thereof may also be prepared through chemical synthesis, as described below. Zwvf1 polypeptides may be monomers or multimers; glycosylated or non-glycosylated; pegylated or non-pegylated; and may or may not include an initial methionine amino acid residue.
8. **Zwff1 Analogs and the Zwff1 Receptor**

The present invention contemplates the use of polypeptides comprising the Zwff1 von Willebrand factor type A domains as a ligand for a Zwff1 receptor. Either the complete Zwff1 polypeptide or fragments of the polypeptide can be used as a ligand.

One general class of Zwff1 analogs are variants having an amino acid sequence that is a mutation of the amino acid sequence disclosed herein. Another general class of Zwff1 analogs is provided by anti-idiotypic antibodies, and fragments thereof, as described below. Moreover, recombinant antibodies comprising anti-idiotypic variable domains can be used as analogs (see, for example, Monfardini et al., *Proc. Assoc. Am. Physicians* 108:420 (1996)). Since the variable domains of anti-idiotypic Zwff1 antibodies mimic Zwff1, these domains can provide either Zwff1 agonist or antagonist activity. As an illustration, Lim and Langer, *J. Interferon Res.* 13:295 (1993), describe anti-idiotypic interferon-α antibodies that have the properties of either interferon-α agonists or antagonists.

Zwff1 and its analogs can be used to identify and to isolate Zwff1 receptors. For example, proteins and peptides of the present invention can be immobilized on a column and used to bind receptor proteins from membrane preparations that are run over the column (Hermanson et al. (eds.), *Immobilized Affinity Ligand Techniques*, pages 195-202 (Academic Press 1992)). Radiolabeled or affinity labeled Zwff1 polypeptides can also be used to identify or to localize Zwff1 receptors in a biological sample (see, for example, Deutscher (ed.), *Methods in Enzymol.*, vol. 182, pages 721-37 (Academic Press 1990); Brunner et al., *Ann. Rev. Biochem.* 62:483 (1993); Fedan et al., *Biochem. Pharmacol.* 33:1167 (1984)). Also see, Varathakavi and Minocha, *J. Gen. Virol.* 77:1875 (1996), who describe the use of anti-idiotypic antibodies for receptor identification.

As a receptor ligand, the activity of Zwff1 can be measured by a silicon-based biosensor microphysiometer which measures the extracellular acidification rate or proton excretion associated with receptor binding and subsequent cellular responses. An exemplary device is the CYTOSENSOR Microphysiometer manufactured by Molecular Devices Corp. (Sunnyvale, CA). A variety of cellular responses, such as cell proliferation, ion transport, energy production, inflammatory response, regulatory and
receptor activation, and the like, can be measured by this method (see, for example, McConnell et al., Science 257:1906 (1992), Pitchford et al., Meth. Enzymol. 228:84 (1997), Arimilli et al., J. Immunol. Meth. 212:49 (1998), and Van Liefde et al., Eur. J. Pharmacol. 346:87 (1998)). Moreover, the microphysiometer can be used for assaying adherent or non-adherent eukaryotic cells.

Since energy metabolism is coupled with the use of cellular ATP, any event which alters cellular ATP levels, such as receptor activation and the initiation of signal transduction, will cause a change in cellular acid section. By measuring extracellular acidification changes in cell media over time, therefore, the microphysiometer directly measures cellular responses to various stimuli, including ZvWF1, its agonists, or antagonists. The microphysiometer can be used to measure responses of a ZvWF1-responsive eukaryotic cell, compared to a control eukaryotic cell that does not respond to ZvWF1 polypeptide. ZvWF1 responsive eukaryotic cells comprise cells into which a receptor for ZvWF1 has been transfected to create a cell that is responsive to ZvWF1, or cells that are naturally responsive to ZvWF1. ZvWF1 modulated cellular responses are measured by a change (e.g., an increase or decrease in extracellular acidification) in the response of cells exposed to ZvWF1, compared with control cells that have not been exposed to ZvWF1.

Accordingly, a microphysiometer can be used to identify cells, tissues, or cell lines which respond to a ZvWF1 stimulated pathway, and which express a functional ZvWF1 receptor. As an illustration, cells that express a functional ZvWF1 receptor can be identified by (a) providing test cells, (b) incubating a first portion of the test cells in the absence of ZvWF1, (c) incubating a second portion of the test cells in the presence of ZvWF1, and (d) detecting a change (e.g., an increase or decrease in extracellular acidification rate, as measured by a microphysiometer) in a cellular response of the second portion of the test cells, as compared to the first portion of the test cells, wherein such a change in cellular response indicates that the test cells express a functional ZvWF1 receptor. An additional negative control may be included in which a portion of the test cells is incubated with ZvWF1 and an anti-ZvWF1 antibody to inhibit the binding of ZvWF1 with its cognate receptor.

The microphysiometer also provides one means to identify ZvWF1 agonists. For example, agonists of ZvWF1 can be identified by a method, comprising the steps of (a) providing cells responsive to ZvWF1, (b) incubating a first portion of the cells in the absence of a test compound, (c) incubating a second portion of the cells in the presence of a test compound, and (d) detecting a change, for example, an increase or diminution, in a cellular response of the second portion of the cells as compared to the first portion of the cells, wherein such a change in cellular response indicates that the
test compound is a Zvwf1 agonist. An illustrative change in cellular response is a measurable change in extracellular acidification rate, as measured by a microphysiometer. Moreover, incubating a third portion of the cells in the presence of Zvwf1 and in the absence of a test compound can be used as a positive control for the Zvwf1 responsive cells, and as a control to compare the agonist activity of a test compound with that of Zvwf1. An additional control may be included in which a portion of the cells is incubated with a test compound (or Zvwf1) and an anti-Zvwf1 antibody to inhibit the binding of the test compound (or Zvwf1) with the Zvwf1 receptor.

A Zvwf1 variant gene product that lacks biological activity may be a Zvwf1 antagonist. These biologically-inactive Zvwf1 variants can be initially identified on the basis of hybridization analysis, sequence identity determination, or by the ability to specifically bind anti-Zvwf1 antibody. A Zvwf1 antagonist can be further characterized by its ability to inhibit the biological response induced by Zvwf1 or by a Zvwf1 agonist. This inhibitory effect may result, for example, from the competitive or non-competitive binding of the antagonist to the Zvwf1 receptor.

The microphysiometer provides one means to identify Zvwf1 antagonists. For example, Zvwf1 antagonists can be identified by a method, comprising the steps of (a) providing cells responsive to Zvwf1, (b) incubating a first portion of the cells in the presence of Zvwf1 and in the absence of a test compound, (c) incubating a second portion of the cells in the presence of both Zvwf1 and the test compound, and (d) comparing the cellular responses of the first and second cell portions, wherein a decreased response by the second portion, compared with the response of the first portion, indicates that the test compound is a Zvwf1 antagonist. An illustrative change in cellular response is a measurable change extracellular acidification rate, as measured by a microphysiometer.

Zvwf1, its agonists and antagonists are valuable in both in vivo and in vitro uses. For example, Zvwf1 and its agonists may be used to supplement serum-free media, while Zvwf1 antagonists are useful as research reagents for characterizing sites of interaction between Zvwf1 and its receptor. In a therapeutic setting, pharmaceutical compositions comprising Zvwf1 antagonists can be used to inhibit Zvwf1 activity.

9. **Production of Antibodies to Zvwf1 Proteins**

Antibodies to Zvwf1 can be obtained, for example, using the product of a Zvwf1 expression vector or Zvwf1 isolated from a natural source as an antigen. Particularly useful anti-Zvwf1 antibodies “bind specifically” with Zvwf1. Antibodies
are considered to be specifically binding if the antibodies exhibit at least one of the following two properties: (1) antibodies bind to Zw1f1 with a threshold level of binding activity, and (2) antibodies do not significantly cross-react with polypeptides known in the art, such as human polypeptides comprising one or more von Willebrand factor type A domains. With regard to the first characteristic, antibodies specifically bind if they bind to a Zw1f1 polypeptide, peptide or epitope with a binding affinity (K_d) of 10^5 M$^{-1}$ or greater, preferably 10^7 M$^{-1}$ or greater, more preferably 10^8 M$^{-1}$ or greater, and most preferably 10^9 M$^{-1}$ or greater. The binding affinity of an antibody can be readily determined by one of ordinary skill in the art, for example, by Scatchard analysis (Scatchard, *Ann. NY Acad. Sci.* 51:660 (1949)). Anti-Zw1f1 antibodies can be produced using antigenic Zw1f1 epitope-bearing peptides and polypeptides. Antigenic epitope-bearing peptides and polypeptides of the present invention contain a sequence of at least six, or between 15 to about 30 amino acids contained within SEQ ID NO:2. However, peptides or polypeptides comprising a larger portion of an amino acid sequence of the invention, containing from 30 to 50 amino acids, or any length up to and including the entire amino acid sequence of a polypeptide of the invention, also are useful for inducing antibodies that bind with Zw1f1. It is desirable that the amino acid sequence of the epitope-bearing peptide is selected to provide substantial solubility in aqueous solvents (i.e., the sequence includes relatively hydrophilic residues, while hydrophobic residues are preferably avoided). Moreover, amino acid sequences containing proline residues may be also desirable for antibody production.

As an illustration, potential antigenic sites in Zw1f1 were identified using the Jameson-Wolf method, Jameson and Wolf, *CABIOS* 4:181, (1988), as implemented by the PROTEAN program (version 3.14) of LASERGENE (DNASTAR; Madison, WI). Default parameters were used in this analysis.

The Jameson-Wolf method predicts potential antigenic determinants by combining six major subroutines for protein structural prediction. Briefly, the Hopp-Woods method, Hopp *et al.*, *Proc. Nat'l Acad. Sci. USA* 78:3824 (1981), was first used to identify amino acid sequences representing areas of greatest local hydrophilicity (parameter: seven residues averaged). In the second step, Emini's method, Emini *et al.*, *J. Virology* 55:836 (1985), was used to calculate surface probabilities (parameter: surface decision threshold (0.6) = 1). Third, the Karplus-Schultz method, Karplus and Schultz, *Naturwissenschaften* 72:212 (1985), was used to predict backbone chain flexibility (parameter: flexibility threshold (0.2) = 1). In the fourth and fifth steps of the analysis, secondary structure predictions were applied to the data using the methods of Chou-Fasman, Chou, "Prediction of Protein Structural Classes from Amino Acid
Composition,” in Prediction of Protein Structure and the Principles of Protein Conformation, Fasman (ed.), pages 549-586 (Plenum Press 1990), and Garnier-Robson, Garnier et al., J. Mol. Biol. 120:97 (1978) (Chou-Fasman parameters: conformation table = 64 proteins; \(\alpha \) region threshold = 103; \(\beta \) region threshold = 105; Garnier-Robson parameters: \(\alpha \) and \(\beta \) decision constants = 0). In the sixth subroutine, flexibility parameters and hydropathy/solvent accessibility factors were combined to determine a surface contour value, designated as the “antigenic index.” Finally, a peak broadening function was applied to the antigenic index, which broadens major surface peaks by adding 20, 40, 60, or 80% of the respective peak value to account for additional free energy derived from the mobility of surface regions relative to interior regions. This calculation was not applied, however, to any major peak that resides in a helical region, since helical regions tend to be less flexible.

The results of this analysis indicated that the following illustrative amino acid sequences of SEQ ID NO:2 would provide suitable antigenic molecules: amino acids 14 to 21 (“antigenic molecule 1”), amino acids 50 to 55 (“antigenic molecule 2”), amino acids 61 to 82 (“antigenic molecule 3”), amino acids 61 to 71 (“antigenic molecule 4”), amino acids 75 to 82 (“antigenic molecule 5”), amino acids 98 to 107 (“antigenic molecule 6”), amino acids 116 to 135 (“antigenic molecule 7”), amino acids 144 to 152 (“antigenic molecule 8”), amino acids 233 to 246 (“antigenic molecule 9”), amino acids 262 to 270 (“antigenic molecule 10”), amino acids 298 to 308 (“antigenic molecule 11”), and amino acids 313 to 321 (“antigenic molecule 12”). The present invention contemplates the use of any one of antigenic molecules 1 to 12 to generate antibodies to ZvWF1. The present invention also contemplates polypeptides comprising at least one of antigenic molecules 1 to 12.

Polyclonal antibodies to recombinant ZvWF1 protein or to ZvWF1 isolated from natural sources can be prepared using methods well-known to those of skill in the art. See, for example, Green et al., “Production of Polyclonal Antisera,” in Immunochemical Protocols (Manson, ed.), pages 1-5 (Humana Press 1992), and Williams et al., “Expression of foreign proteins in E. coli using plasmid vectors and purification of specific polyclonal antibodies,” in DNA Cloning: Expression Systems, 2nd Edition, Glover et al. (eds.), page 15 (Oxford University Press 1995). The immunogenicity of a ZvWF1 polypeptide can be increased through the use of an adjuvant, such as alum (aluminum hydroxide) or Freund’s complete or incomplete adjuvant. Polypeptides useful for immunization also include fusion polypeptides, such as fusions of ZvWF1 or a portion thereof with an immunoglobulin polypeptide or with maltose binding protein. The polypeptide immunogen may be a full-length molecule or a portion thereof. If the polypeptide portion is “hapten-like,” such portion may be
advantageously joined or linked to a macromolecular carrier (such as keyhole limpet hemocyanin (KLH), bovine serum albumin (BSA) or tetanus toxoid) for immunization.

Although polyclonal antibodies are typically raised in animals such as horses, cows, dogs, chicken, rats, mice, rabbits, guinea pigs, goats, or sheep, an anti-ZvWF1 antibody of the present invention may also be derived from a subhuman primate antibody. General techniques for raising diagnostically and therapeutically useful antibodies in baboons may be found, for example, in Goldenberg et al., international patent publication No. WO 91/11465, and in Losman et al., Int. J. Cancer 46:310 (1990).

Alternatively, monoclonal anti-ZvWF1 antibodies can be generated. Rodent monoclonal antibodies to specific antigens may be obtained by methods known to those skilled in the art (see, for example, Kohler et al., Nature 256:495 (1975), Coligan et al. (eds.), Current Protocols in Immunology, Vol. 1, pages 2.5.1-2.6.7 (John Wiley & Sons 1991) [“Coligan”], Picklesley et al., “Production of monoclonal antibodies against proteins expressed in E. coli,” in DNA Cloning 2: Expression Systems, 2nd Edition, Glover et al. (eds.), page 93 (Oxford University Press 1995)).

Briefly, monoclonal antibodies can be obtained by injecting mice with a composition comprising a ZvWF1 gene product, verifying the presence of antibody production by removing a serum sample, removing the spleen to obtain B-lymphocytes, fusing the B-lymphocytes with myeloma cells to produce hybridomas, cloning the hybridomas, selecting positive clones which produce antibodies to the antigen, culturing the clones that produce antibodies to the antigen, and isolating the antibodies from the hybridoma cultures.

In addition, an anti-ZvWF1 antibody of the present invention may be derived from a human monoclonal antibody. Human monoclonal antibodies are obtained from transgenic mice that have been engineered to produce specific human antibodies in response to antigenic challenge. In this technique, elements of the human heavy and light chain locus are introduced into strains of mice derived from embryonic stem cell lines that contain targeted disruptions of the endogenous heavy chain and light chain loci. The transgenic mice can synthesize human antibodies specific for human antigens, and the mice can be used to produce human antibody-secreting hybridomas. Methods for obtaining human antibodies from transgenic mice are described, for example, by Green et al., Nature Genet. 7:13 (1994), Lonberg et al., Nature 368:856 (1994), and Taylor et al., Int. Immun. 6:579 (1994).

Monoclonal antibodies can be isolated and purified from hybridoma cultures by a variety of well-established techniques. Such isolation techniques include affinity chromatography with Protein-A Sepharose, size-exclusion chromatography, and
ion-exchange chromatography (see, for example, Coligan at pages 2.7.1-2.7.12 and pages 2.9.1-2.9.3; Baines et al., "Purification of Immunoglobulin G (IgG)," in *Methods in Molecular Biology, Vol. 10*, pages 79-104 (The Humana Press, Inc. 1992)).

For particular uses, it may be desirable to prepare fragments of anti-Zwff1 antibodies. Such antibody fragments can be obtained, for example, by proteolytic hydrolysis of the antibody. Antibody fragments can be obtained by pepsin or papain digestion of whole antibodies by conventional methods. As an illustration, antibody fragments can be produced by enzymatic cleavage of antibodies with pepsin to provide a 5S fragment denoted F(ab')2. This fragment can be further cleaved using a thiol reducing agent to produce 3.5S Fab' monovalent fragments. Optionally, the cleavage reaction can be performed using a blocking group for the sulphydryl groups that result from cleavage of disulfide linkages. As an alternative, an enzymatic cleavage using pepsin produces two monovalent Fab fragments and an Fc fragment directly. These methods are described, for example, by Goldenberg, U.S. patent No. 4,331,647, Nisonoff et al., *Arch Biochem. Biophys.* 89:230 (1960), Porter, *Biochem. J.* 73:119 (1959), Edelman et al., in *Methods in Enzymology Vol. 1*, page 422 (Academic Press 1967), and by Coligan at pages 2.8.1-2.8.10 and 2.10.-2.10.4.

Other methods of cleaving antibodies, such as separation of heavy chains to form monovalent light-heavy chain fragments, further cleavage of fragments, or other enzymatic, chemical or genetic techniques may also be used, so long as the fragments bind to the antigen that is recognized by the intact antibody.

For example, Fv fragments comprise an association of VH and VL chains. This association can be noncovalent, as described by Inbar et al., *Proc. Nat'l Acad. Sci. USA* 69:2659 (1972). Alternatively, the variable chains can be linked by an intermolecular disulfide bond or cross-linked by chemicals such as glutaraldehyde (see, for example, Sandhu, *Crit. Rev. Biotech.* 12:437 (1992)).

The Fv fragments may comprise VH and VL chains which are connected by a peptide linker. These single-chain antigen binding proteins (scFv) are prepared by constructing a structural gene comprising DNA sequences encoding the VH and VL domains which are connected by an oligonucleotide. The structural gene is inserted into an expression vector which is subsequently introduced into a host cell, such as E. coli. The recombinant host cells synthesize a single polypeptide chain with a linker peptide bridging the two V domains. Methods for producing scFvs are described, for example, by Whitlow et al., *Methods: A Companion to Methods in Enzymology* 2:97 (1991) (also see, Bird et al., *Science* 242:423 (1988), Ladner et al., U.S. Patent No. 4,946,778, Pack et al., *Bio/Technology* 11:1271 (1993), and Sandhu, supra).
As an illustration, a scFv can be obtained by exposing lymphocytes to ZvWF1 polypeptide in vitro, and selecting antibody display libraries in phage or similar vectors (for instance, through use of immobilized or labeled ZvWF1 protein or peptide). Genes encoding polypeptides having potential ZvWF1 polypeptide binding domains can be obtained by screening random peptide libraries displayed on phage (phage display) or on bacteria, such as E. coli. Nucleotide sequences encoding the polypeptides can be obtained in a number of ways, such as through random mutagenesis and random polynucleotide synthesis. These random peptide display libraries can be used to screen for peptides which interact with a known target which can be a protein or polypeptide, such as a ligand or receptor, a biological or synthetic macromolecule, or organic or inorganic substances. Techniques for creating and screening such random peptide display libraries are known in the art (Ladner et al., U.S. Patent No. 5,223,409, Ladner et al., U.S. Patent No. 4,946,778, Ladner et al., U.S. Patent No. 5,403,484, Ladner et al., U.S. Patent No. 5,571,698, and Kay et al., Phage Display of Peptides and Proteins (Academic Press, Inc. 1996)) and random peptide display libraries and kits for screening such libraries are available commercially, for instance from CLONTECH Laboratories, Inc. (Palo Alto, CA), Invitrogen Inc. (San Diego, CA), New England Biolabs, Inc. (Beverly, MA), and Pharmacia LKB Biotechnology Inc. (Piscataway, NJ). Random peptide display libraries can be screened using the ZvWF1 sequences disclosed herein to identify proteins which bind to ZvWF1.

Another form of an antibody fragment is a peptide coding for a single complementarity-determining region (CDR). CDR peptides ("minimal recognition units") can be obtained by constructing genes encoding the CDR of an antibody of interest. Such genes are prepared, for example, by using the polymerase chain reaction to synthesize the variable region from RNA of antibody-producing cells (see, for example, Larrick et al., Methods: A Companion to Methods in Enzymology 2:106 (1991), Courtenay-Luck, "Genetic Manipulation of Monoclonal Antibodies," in Monoclonal Antibodies: Production, Engineering and Clinical Application, Ritter et al. (eds.), page 166 (Cambridge University Press 1995), and Ward et al., "Genetic Manipulation and Expression of Antibodies," in Monoclonal Antibodies: Principles and Applications, Birch et al., (eds.), page 137 (Wiley-Liss, Inc. 1995)).

Alternatively, an anti-ZvWF1 antibody may be derived from a "humanized" monoclonal antibody. Humanized monoclonal antibodies are produced by transferring mouse complementary determining regions from heavy and light variable chains of the mouse immunoglobulin into a human variable domain. Typical residues of human antibodies are then substituted in the framework regions of the murine counterparts. The use of antibody components derived from humanized

Polyclonal anti-idiotype antibodies can be prepared by immunizing animals with anti-Zwvf1 antibodies or antibody fragments, using standard techniques. See, for example, Green et al., “Production of Polyclonal Antisera,” in *Methods In Molecular Biology: Immunochemical Protocols*, Manson (ed.), pages 1-12 (Humana Press 1992). Also, see Coligan at pages 2.4.1-2.4.7. Alternatively, monoclonal anti-idiotype antibodies can be prepared using anti-Zwvf1 antibodies or antibody fragments as immunogens with the techniques, described above. As another alternative, humanized anti-idiotype antibodies or subhuman primate anti-idiotype antibodies can be prepared using the above-described techniques. Methods for producing anti-idiotype antibodies are described, for example, by Irie, U.S. Patent No. 5,208,146, Greene, *et al.*, U.S. Patent No. 5,637,677, and Varthakavi and Minocha, *J. Gen. Virol.* 77:1875 (1996).

10. Use of Zwvf1 Nucleotide Sequences to Detect Zwvf1 Gene Expression and to Examine the Zwvf1 Gene Locus

Nucleic acid molecules can be used to detect the expression of a *Zwvf1* gene in a biological sample. Such probe molecules include double-stranded nucleic acid molecules comprising the nucleotide sequence of SEQ ID NO:1, or a fragment thereof, as well as single-stranded nucleic acid molecules having the complement of the nucleotide sequence of SEQ ID NO:1, or a fragment thereof. Probe molecules may be DNA, RNA, oligonucleotides, and the like.

Certain probes bind with regions of the *Zwvf1* gene that have a low sequence similarity to comparable regions in other genes. As used herein, the term “portion” refers to at least eight nucleotides to at least 20 or more nucleotides.

In a basic assay, a single-stranded probe molecule is incubated with RNA, isolated from a biological sample, under conditions of temperature and ionic
strength that promote base pairing between the probe and target Zvwf1 RNA species. After separating unbound probe from hybridized molecules, the amount of hybrids is detected.

Well-established hybridization methods of RNA detection include northern analysis and dot/slot blot hybridization (see, for example, Ausubel (1995) at pages 4-1 to 4-27, and Wu et al. (eds.), “Analysis of Gene Expression at the RNA Level,” in Methods in Gene Biotechnology, pages 225-239 (CRC Press, Inc. 1997)). Nucleic acid probes can be detectably labeled with radioisotopes such as 32P or 35S. Alternatively, Zvwf1 RNA can be detected with a nonradioactive hybridization method (see, for example, Isaac (ed.), Protocols for Nucleic Acid Analysis by Nonradioactive Probes (Humana Press, Inc. 1993)). Typically, nonradioactive detection is achieved by enzymatic conversion of chromogenic or chemiluminescent substrates. Illustrative nonradioactive moieties include biotin, fluorescein, and digoxigenin.

Zvwf1 oligonucleotide probes are also useful for in vivo diagnosis. As an illustration, 18F-labeled oligonucleotides can be administered to a subject and visualized by positron emission tomography (Tavitian et al., Nature Medicine 4:467 (1998)).

Numerous diagnostic procedures take advantage of the polymerase chain reaction (PCR) to increase sensitivity of detection methods. Standard techniques for performing PCR are well-known (see, generally, Mathew (ed.), Protocols in Human Molecular Genetics (Humana Press, Inc. 1991), White (ed.), PCR Protocols: Current Methods and Applications (Humana Press, Inc. 1993), Cotter (ed.), Molecular Diagnosis of Cancer (Humana Press, Inc. 1996), Hanusek and Walaszek (eds.), Tumor Marker Protocols (Humana Press, Inc. 1998), Lo (ed.), Clinical Applications of PCR (Humana Press, Inc. 1998), and Meltzer (ed.), PCR in Bioanalysis (Humana Press, Inc. 1998)). Particular PCR primers are designed to amplify a portion of the Zvwf1 gene that has a low sequence similarity to a comparable region in other genes.

One variation of PCR for diagnostic assays is reverse transcriptase-PCR (RT-PCR). In the RT-PCR technique, RNA is isolated from a biological sample, reverse transcribed to cDNA, and the cDNA is incubated with Zvwf1 primers (see, for example, Wu et al. (eds.), “Rapid Isolation of Specific cDNAs or Genes by PCR,” in Methods in Gene Biotechnology, pages 15-28 (CRC Press, Inc. 1997)). PCR is then performed and the products are analyzed using standard techniques.

As an illustration, RNA is isolated from biological sample using, for example, the guanidinium-thiocyanate cell lysis procedure described above. Alternatively, a solid-phase technique can be used to isolate mRNA from a cell lysate. A reverse transcription reaction can be primed with the isolated RNA using random oligonucleotides, short homopolymers of dT, or Zvwf1 anti-sense oligomers. Oligo-dT
primers offer the advantage that various mRNA nucleotide sequences are amplified that can provide control target sequences. ZvWF1 sequences are amplified by the polymerase chain reaction using two flanking oligonucleotide primers that are typically 20 bases in length.

PCR amplification products can be detected using a variety of approaches. For example, PCR products can be fractionated by gel electrophoresis, and visualized by ethidium bromide staining. Alternatively, fractionated PCR products can be transferred to a membrane, hybridized with a detectably-labeled ZvWF1 probe, and examined by autoradiography. Additional alternative approaches include the use of digoxigenin-labeled deoxyribonucleic acid triphosphates to provide chemiluminescence detection, and the C-TRAK colorimetric assay.

Another approach for detection of ZvWF1 expression is cycling probe technology (CPT), in which a single-stranded DNA target binds with an excess of DNA-RNA-DNA chimeric probe to form a complex, the RNA portion is cleaved with RNAase H, and the presence of cleaved chimeric probe is detected (see, for example, Beggs et al., J. Clin. Microbiol. 34:2985 (1996), Bekkaoui et al., Biotechniques 20:240 (1996)). Alternative methods for detection of ZvWF1 sequences can utilize approaches such as nucleic acid sequence-based amplification (NASBA), cooperative amplification of templates by cross-hybridization (CATCH), and the ligase chain reaction (LCR) (see, for example, Marshall et al., U.S. Patent No. 5,686,272 (1997), Dyer et al., J. Virol. Methods 60:161 (1996), Ehrlich et al., Eur. J. Biochem. 243:358 (1997), and Chadwick et al., J. Virol. Methods 70:59 (1998)). Other standard methods are known to those of skill in the art.

ZvWF1 probes and primers can also be used to detect and to localize ZvWF1 gene expression in tissue samples. Methods for such in situ hybridization are well-known to those of skill in the art (see, for example, Choo (ed.), In Situ Hybridization Protocols (Humana Press, Inc. 1994), Wu et al. (eds.), “Analysis of Cellular DNA or Abundance of mRNA by Radioactive In Situ Hybridization (RISH),” in Methods in Gene Biotechnology, pages 259-278 (CRC Press, Inc. 1997), and Wu et al. (eds.), “Localization of DNA or Abundance of mRNA by Fluorescence In Situ Hybridization (RISH),” in Methods in Gene Biotechnology, pages 279-289 (CRC Press, Inc. 1997)). Various additional diagnostic approaches are well-known to those of skill in the art (see, for example, Mathew (ed.), Protocols in Human Molecular Genetics (Humana Press, Inc. 1991), Coleman and Tsongalis, Molecular Diagnostics (Humana Press, Inc. 1996), and Elles, Molecular Diagnosis of Genetic Diseases (Humana Press, Inc., 1996)). Suitable test samples include blood, urine, saliva, tissue biopsy, and autopsy material.
As described above, mutations in the A domains of von Willebrand factor are associated with bleeding disorders. In addition, ZvWF1 appears to be a paralog of the Coch-5B2 gene, and mutations of this gene are associated with several hearing disorders. Accordingly, nucleic acid molecules comprising ZvWF1 nucleotide sequences can be used to determine whether a subject’s chromosomes contain a mutation in the ZvWF1 gene. Detectable chromosomal aberrations at the ZvWF1 gene locus include, but are not limited to, aneuploidy, gene copy number changes, insertions, deletions, restriction site changes and rearrangements. Of particular interest are genetic alterations that inactivate the ZvWF1 gene.

Aberrations associated with the ZvWF1 locus can be detected using nucleic acid molecules of the present invention by employing molecular genetic techniques, such as restriction fragment length polymorphism analysis, short tandem repeat analysis employing PCR techniques, amplification-refractory mutation system analysis, single-strand conformation polymorphism detection, RNase cleavage methods, denaturing gradient gel electrophoresis, fluorescence-assisted mismatch analysis, and other genetic analysis techniques known in the art (see, for example, Mathew (ed.), Protocols in Human Molecular Genetics (Humana Press, Inc. 1991), Marian, Chest 108:255 (1995), Coleman and Tsongalis, Molecular Diagnostics (Human Press, Inc. 1996), Elles (ed.) Molecular Diagnosis of Genetic Diseases (Humana Press, Inc. 1996), Landegren (ed.), Laboratory Protocols for Mutation Detection (Oxford University Press 1996), Birren et al. (eds.), Genome Analysis, Vol. 2: Detecting Genes (Cold Spring Harbor Laboratory Press 1998), Dracopoli et al. (eds.), Current Protocols in Human Genetics (John Wiley & Sons 1998), and Richards and Ward, “Molecular Diagnostic Testing,” in Principles of Molecular Medicine, pages 83-88 (Humana Press, Inc. 1998)).

The protein truncation test is also useful for detecting the inactivation of a gene in which translation-terminating mutations produce only portions of the encoded protein (see, for example, Stoppa-Lyonnet et al., Blood 91:3920 (1998)). According to this approach, RNA is isolated from a biological sample, and used to synthesize cDNA. PCR is then used to amplify the ZvWF1 target sequence and to introduce an RNA polymerase promoter, a translation initiation sequence, and an in-frame ATG triplet. PCR products are transcribed using an RNA polymerase, and the transcripts are translated in vitro with a T7-coupled reticulocyte lysate system. The translation products are then fractionated by SDS-PAGE to determine the lengths of the translation products. The protein truncation test is described, for example, by Dracopoli et al. (eds.), Current Protocols in Human Genetics, pages 9.11.1 - 9.11.18 (John Wiley & Sons 1998).
The chromosomal location of the Zvwf1 gene can be determined using radiation hybrid mapping, which is a somatic cell genetic technique developed for constructing high-resolution, contiguous maps of mammalian chromosomes (Cox et al., Science 250:245 (1990)). Partial or full knowledge of a gene's sequence allows one to design PCR primers suitable for use with chromosomal radiation hybrid mapping panels. Radiation hybrid mapping panels are commercially available which cover the entire human genome, such as the Stanford G3 RH Panel and the GeneBridge 4 RH Panel (Research Genetics, Inc., Huntsville, AL). These panels enable rapid, PCR-based chromosomal localizations and ordering of genes, sequence-tagged sites (STSs), and other nonpolymorphic and polymorphic markers within a region of interest. This includes establishing directly proportional physical distances between newly discovered genes of interest and previously mapped markers.

The present invention also contemplates kits for performing a diagnostic assay for Zvwf1 gene expression or to examine the Zvwf1 locus. Such kits comprise nucleic acid probes, such as double-stranded nucleic acid molecules comprising the nucleotide sequence of SEQ ID NO:1, or a portion thereof, as well as single-stranded nucleic acid molecules having the complement of the nucleotide sequence of SEQ ID NO:1, or a portion thereof. As an illustration, a suitable probe comprises the nucleotide sequence of nucleotides 1 to 147 of SEQ ID NO:1, or nucleotides 1 to 669 of SEQ ID NO:1. Probe molecules may be DNA, RNA, oligonucleotides, and the like. Kits may comprise nucleic acid primers for performing PCR.

Such a kit can contain all the necessary elements to perform a nucleic acid diagnostic assay described above. A kit will comprise at least one container comprising a Zvwf1 probe or primer. The kit may also comprise a second container comprising one or more reagents capable of indicating the presence of Zvwf1 sequences. Examples of such indicator reagents include detectable labels such as radioactive labels, fluorochromes, chemiluminescent agents, and the like. A kit may also comprise a means for conveying to the user that the Zvwf1 probes and primers are used to detect Zvwf1 gene expression. For example, written instructions may state that the enclosed nucleic acid molecules can be used to detect either a nucleic acid molecule that encodes Zvwf1, or a nucleic acid molecule having a nucleotide sequence that is complementary to a Zvwf1-encoding nucleotide sequence. The written material can be applied directly to a container, or the written material can be provided in the form of a packaging insert.
11. Use of Anti-Zvwf1 Antibodies to Detect Zvwf1 Polypeptides

The present invention contemplates the use of anti-Zvwf1 antibodies to screen biological samples *in vitro* for the presence of Zvwf1. In one type of *in vitro* assay, anti-Zvwf1 antibodies are used in liquid phase. For example, the presence of Zvwf1 in a biological sample can be tested by mixing the biological sample with a trace amount of labeled Zvwf1 and an anti-Zvwf1 antibody under conditions that promote binding between Zvwf1 and its antibody. Complexes of Zvwf1 and anti-Zvwf1 in the sample can be separated from the reaction mixture by contacting the complex with an immobilized protein which binds with the antibody, such as an Fc antibody or *Staphylococcus* protein A. The concentration of Zvwf1 in the biological sample will be inversely proportional to the amount of labeled Zvwf1 bound to the antibody and directly related to the amount of free labeled Zvwf1.

Alternatively, *in vitro* assays can be performed in which anti-Zvwf1 antibody is bound to a solid-phase carrier. For example, antibody can be attached to a polymer, such as aminodextran, in order to link the antibody to an insoluble support such as a polymer-coated bead, a plate or a tube. Other suitable *in vitro* assays will be readily apparent to those of skill in the art.

In another approach, anti-Zvwf1 antibodies can be used to detect Zvwf1 in tissue sections prepared from a biopsy specimen. Such immunochemical detection can be used to determine the relative abundance of Zvwf1 and to determine the distribution of Zvwf1 in the examined tissue. General immunochemistry techniques are well established (see, for example, Ponder, "Cell Marking Techniques and Their Application," in *Mammalian Development: A Practical Approach*, Monk (ed.), pages 115-38 (IRL Press 1987), Coligan at pages 5.8.1-5.8.8, Ausubel (1995) at pages 14.6.1 to 14.6.13 (Wiley Interscience 1990), and Manson (ed.), *Methods In Molecular Biology, Vol.10: Immunochemical Protocols* (The Humana Press, Inc. 1992)).

Immunochemical detection can be performed by contacting a biological sample with an anti-Zvwf1 antibody, and then contacting the biological sample with a detectably labeled molecule which binds to the antibody. For example, the detectably labeled molecule can comprise an antibody moiety that binds to anti-Zvwf1 antibody. Alternatively, the anti-Zvwf1 antibody can be conjugated with avidin/streptavidin (or biotin) and the detectably labeled molecule can comprise biotin (or avidin/streptavidin). Numerous variations of this basic technique are well-known to those of skill in the art.

Alternatively, an anti-Zvwf1 antibody can be conjugated with a detectable label to form an anti-Zvwf1 immunoconjugate. Suitable detectable labels include, for example, a radioisotope, a fluorescent label, a chemiluminescent label, an enzyme label, a bioluminescent label or colloidal gold. Methods of making and detecting such detectably-
labeled immunoconjugates are well-known to those of ordinary skill in the art, and are described in more detail below.

The detectable label can be a radioisotope that is detected by autoradiography. Isotopes that are particularly useful for the purpose of the present invention are ^3H, ^{125}I, ^{131}I, ^{35}S and ^{14}C.

Anti-Zvwf1 immunoconjugates can also be labeled with a fluorescent compound. The presence of a fluorescently-labeled antibody is determined by exposing the immunoconjugate to light of the proper wavelength and detecting the resultant fluorescence. Fluorescent labeling compounds include fluorescein isothiocyanate, rhodamine, phycoerytherin, phycocyanin, allophycocyanin, o-phthaldehyde and fluorescamine.

Alternatively, anti-Zvwf1 immunoconjugates can be detectably labeled by coupling an antibody component to a chemiluminescent compound. The presence of the chemiluminescent-tagged immunoconjugate is determined by detecting the presence of luminescence that arises during the course of a chemical reaction. Examples of chemiluminescent labeling compounds include luminol, isoluminol, an aromatic acridinium ester, an imidazole, an acridinium salt and an oxalate ester.

Similarly, a bioluminescent compound can be used to label anti-Zvwf1 immunoconjugates of the present invention. Bioluminescence is a type of chemiluminescence found in biological systems in which a catalytic protein increases the efficiency of the chemiluminescent reaction. The presence of a bioluminescent protein is determined by detecting the presence of luminescence. Bioluminescent compounds that are useful for labeling include luciferin, luciferase and aequorin.

Alternatively, anti-Zvwf1 immunoconjugates can be detectably labeled by linking an anti-Zvwf1 antibody component to an enzyme. When the anti-Zvwf1-enzyme conjugate is incubated in the presence of the appropriate substrate, the enzyme moiety reacts with the substrate to produce a chemical moiety which can be detected, for example, by spectrophotometric, fluorometric or visual means. Examples of enzymes that can be used to detectably label polyclonal immunoconjugates include β-galactosidase, glucose oxidase, peroxidase and alkaline phosphatase.

Those of skill in the art will know of other suitable labels which can be employed in accordance with the present invention. The binding of marker moieties to anti-Zvwf1 antibodies can be accomplished using standard techniques known to the art. Typical methodology in this regard is described by Kennedy et al., *Clin. Chim. Acta* 70:1 (1976), Schurs et al., *Clin. Chim. Acta* 81:1 (1977), Shih et al., *Int’l J. Cancer* 46:1101 (1990), Stein et al., *Cancer Res.* 50:1330 (1990), and Coligan, *supra*.

Moreover, the convenience and versatility of immunochemical detection can be enhanced by using anti-Zvwf1 antibodies that have been conjugated with avidin,

In a related approach, biotin- or FITC-labeled ZvWF1 can be used to identify cells that bind ZvWF1. Such can binding can be detected, for example, using flow cytometry.

The present invention also contemplates kits for performing an immunological diagnostic assay for ZvWF1 gene expression. Such kits comprise at least one container comprising an anti-ZvWF1 antibody, or antibody fragment. A kit may also comprise a second container comprising one or more reagents capable of indicating the presence of ZvWF1 antibody or antibody fragments. Examples of such indicator reagents include detectable labels such as a radioactive label, a fluorescent label, a chemiluminescent label, an enzyme label, a bioluminescent label, colloidal gold, and the like. A kit may also comprise a means for conveying to the user that ZvWF1 antibodies or antibody fragments are used to detect ZvWF1 protein. For example, written instructions may state that the enclosed antibody or antibody fragment can be used to detect ZvWF1. The written material can be applied directly to a container, or the written material can be provided in the form of a packaging insert.

12. Therapeutic Uses of Polypeptides Having ZvWF1 Activity

The present invention contemplates the use of proteins, polypeptides, and peptides having ZvWF1 activity (such as ZvWF1 polypeptides, ZvWF1 variants, ZvWF1 anti-idiotypic antibodies, and ZvWF1 fusion proteins) to treat subjects, which lack sufficient ZvWF1 protein. Alternatively, anti-ZvWF1 antibodies can be administered to subjects, which produce an excess of ZvWF1 protein. These molecules can be administered to any subject in need of treatment, and the present invention
contemplates both veterinary and human therapeutic uses. Illustrative subjects include mammalian subjects, such as farm animals, domestic animals, and human patients.

Generally, the dosage of administered polypeptide, protein or peptide will vary depending upon such factors as the subject's age, weight, height, sex, general medical condition and previous medical history. Typically, it is desirable to provide the recipient with a dosage of a molecule having ZvWF1 activity which is in the range of from about 1 pg/kg to 10 mg/kg (amount of agent/body weight of subject), although a lower or higher dosage also may be administered as circumstances dictate.

Administration of a molecule having ZvWF1 activity to a subject can be intravenous, intraarterial, intraperitoneal, intramuscular, subcutaneous, intrapleural, intrathecal, by perfusion through a regional catheter, or by direct intralesional injection. When administering therapeutic proteins by injection, the administration may be by continuous infusion or by single or multiple boluses.

A pharmaceutical composition comprising a protein, polypeptide, or peptide having ZvWF1 activity can be formulated according to known methods to prepare pharmaceutically useful compositions, whereby the therapeutic proteins are combined in a mixture with a pharmaceutically acceptable carrier. A composition is said to be a "pharmaceutically acceptable carrier" if its administration can be tolerated by a recipient patient. Sterile phosphate-buffered saline is one example of a pharmaceutically acceptable carrier. Other suitable carriers are well-known to those in the art. See, for example, Gennaro (ed.), Remington's Pharmaceutical Sciences, 19th Edition (Mack Publishing Company 1995).

For purposes of therapy, molecules having ZvWF1 activity and a pharmaceutically acceptable carrier are administered to a patient in a therapeutically effective amount. A combination of a protein, polypeptide, or peptide having ZvWF1 activity and a pharmaceutically acceptable carrier is said to be administered in a "therapeutically effective amount" if the amount administered is physiologically significant. An agent is physiologically significant if its presence results in a detectable change in the physiology of a recipient patient.

A pharmaceutical composition comprising molecules having ZvWF1 activity can be furnished in liquid form, or in solid form. Liquid forms, including liposome-encapsulated formulations, are illustrated by injectable solutions and oral suspensions. Exemplary solid forms include capsules, tablets, and controlled-release forms, such as a miniosmotic pump or an implant. Other dosage forms can be devised by those skilled in the art, as shown, for example, by Ansel and Popovich, Pharmaceutical Dosage Forms and Drug Delivery Systems, 5th Edition (Lea & Febiger 1990), Gennaro (ed.), Remington's Pharmaceutical Sciences, 19th Edition (Mack

As an illustration, ZvWF1 pharmaceutical compositions may be supplied as a kit comprising a container that comprises ZvWF1. ZvWF1 can be provided in the form of an injectable solution for single or multiple doses, or as a sterile powder that will be reconstituted before injection. Such a kit may further comprise written information on indications and usage of the pharmaceutical composition. Moreover, such information may include a statement that the ZvWF1 composition is contraindicated in patients with known hypersensitivity to ZvWF1.

13. Therapeutic Uses of ZvWF1 Nucleotide Sequences

The present invention includes the use of ZvWF1 nucleotide sequences to provide ZvWF1 to a subject in need of such treatment. In addition, a therapeutic expression vector can be provided that inhibits ZvWF1 gene expression, such as an antisense molecule, a ribozyme, or an external guide sequence molecule.

There are numerous approaches to introduce a ZvWF1 gene to a subject, including the use of recombinant host cells that express ZvWF1, delivery of naked nucleic acid encoding ZvWF1, use of a cationic lipid carrier with a nucleic acid molecule that encodes ZvWF1, and the use of viruses that express ZvWF1, such as recombinant retroviruses, recombinant adeno-associated viruses, recombinant adenoviruses, and recombinant Herpes simplex viruses [HSV] (see, for example, Mulligan, Science 260:926 (1993), Rosenberg et al., Science 242:1575 (1988), LaSalle et al., Science 259:988 (1993), Wolff et al., Science 247:1465 (1990), Breakfield and Deluca, The New Biologist 3:203 (1991)). In an ex vivo approach, for example, cells are isolated from a subject, transfected with a vector that expresses a ZvWF1 gene, and then transplanted into the subject.

In order to effect expression of a ZvWF1 gene, an expression vector is constructed in which a nucleotide sequence encoding a ZvWF1 gene is operably linked to a core promoter, and optionally a regulatory element, to control gene transcription. The general requirements of an expression vector are described above.

As an illustration of one system, adenovirus, a double-stranded DNA virus, is a well-characterized gene transfer vector for delivery of a heterologous nucleic acid molecule (for a review, see Becker et al., *Meth. Cell Biol. 43*:161 (1994); Douglas and Curiel, *Science & Medicine 4*:44 (1997)). The adenovirus system offers several advantages including: (i) the ability to accommodate relatively large DNA inserts, (ii) the ability to be grown to high-titer, (iii) the ability to infect a broad range of mammalian cell types, and (iv) the ability to be used with many different promoters including ubiquitous, tissue specific, and regulatable promoters. In addition, adenoviruses can be administered by intravenous injection, because the viruses are stable in the bloodstream.

Using adenovirus vectors where portions of the adenovirus genome are deleted, inserts are incorporated into the viral DNA by direct ligation or by homologous recombination with a co-transfected plasmid. In an exemplary system, the essential E1 gene is deleted from the viral vector, and the virus will not replicate unless the E1 gene is provided by the host cell. When intravenously administered to intact animals, adenovirus primarily targets the liver. Although an adenoviral delivery system with an E1 gene deletion cannot replicate in the host cells, the host’s tissue will express and process an encoded heterologous protein. Host cells will also secrete the heterologous protein if the corresponding gene includes a secretory signal sequence. Secreted proteins will enter the circulation from tissue that expresses the heterologous gene (e.g., the highly vascularized liver).

Moreover, adenoviral vectors containing various deletions of viral genes can be used to reduce or eliminate immune responses to the vector. Such adenoviruses are E1-deleted, and in addition, contain deletions of E2A or E4 (Lusky et al., *J. Virol.*
72:2022 (1998); Raper et al., Human Gene Therapy 9:671 (1998)). The deletion of E2b has also been reported to reduce immune responses (Amalfitano et al., J. Virol. 72:926 (1998)). By deleting the entire adenovirus genome, very large inserts of heterologous DNA can be accommodated. Generation of so called "gutless" adenoviruses, where all viral genes are deleted, are particularly advantageous for insertion of large inserts of heterologous DNA (for a review, see Yeh. and Perricaudet, FASEB J. 11:615 (1997)).

Alternatively, an expression vector comprising a Zvwf1 gene can be introduced into a subject's cells by lipofection in vivo using liposomes. Synthetic cationic lipids can be used to prepare liposomes for in vivo transfection of a gene encoding a marker (Felgner et al., Proc. Nat'l Acad. Sci. USA 84:7413 (1987); Mackey et al., Proc. Nat'l Acad. Sci. USA 85:8027 (1988)). The use of lipofection to introduce exogenous genes into specific organs in vivo has certain practical advantages. Liposomes can be used to direct transfection to particular cell types, which is particularly advantageous in a tissue with cellular heterogeneity, such as the pancreas, liver, kidney, and brain. Lipids may be chemically coupled to other molecules for the purpose of targeting. Targeted peptides (e.g., hormones or neurotransmitters), proteins such as antibodies, or non-peptide molecules can be coupled to liposomes chemically.

Electroporation is another alternative mode of administration of a Zvwf1 nucleic acid molecules. For example, Aihara and Miyazaki, Nature Biotechnology 16:867 (1998), have demonstrated the use of in vivo electroporation for gene transfer into muscle.

In an alternative approach to gene therapy, a therapeutic gene may encode a Zvwf1 anti-sense RNA that inhibits the expression of Zvwf1. Suitable sequences for Zvwf1 anti-sense molecules can be derived from the nucleotide sequences of Zvwf1 disclosed herein.

Alternatively, an expression vector can be constructed in which a regulatory element is operably linked to a nucleotide sequence that encodes a ribozyme. Ribozymes can be designed to express endonuclease activity that is directed to a certain target sequence in a mRNA molecule (see, for example, Draper and Macejak, U.S. Patent No. 5,496,698, McSwiggen, U.S. Patent No. 5,525,468, Chowrrira and
McSwiggen, U.S. Patent No. 5,631,359, and Robertson and Goldberg, U.S. Patent No. 5,225,337). In the context of the present invention, ribozymes include nucleotide sequences that bind with Zvwf1 mRNA.

In another approach, expression vectors can be constructed in which a regulatory element directs the production of RNA transcripts capable of promoting RNase P-mediated cleavage of mRNA molecules that encode a Zvwf1 gene. According to this approach, an external guide sequence can be constructed for directing the endogenous ribozyme, RNase P, to a particular species of intracellular mRNA, which is subsequently cleaved by the cellular ribozyme (see, for example, Altman et al., U.S. Patent No. 5,168,053, Yuan et al., Science 263:1269 (1994), Pace et al., international publication No. WO 96/18733, George et al., international publication No. WO 96/21731, and Werner et al., international publication No. WO 97/33991). Preferably, the external guide sequence comprises a ten to fifteen nucleotide sequence complementary to Zvwf1 mRNA, and a 3′-NCCA nucleotide sequence, wherein N is preferably a purine. The external guide sequence transcripts bind to the targeted mRNA species by the formation of base pairs between the mRNA and the complementary external guide sequences, thus promoting cleavage of mRNA by RNase P at the nucleotide located at the 5′-side of the base-paired region.

In general, the dosage of a composition comprising a therapeutic vector having a Zvwf1 nucleotide acid sequence, such as a recombinant virus, will vary depending upon such factors as the subject's age, weight, height, sex, general medical condition and previous medical history. Suitable routes of administration of therapeutic vectors include intravenous injection, intraarterial injection, intraperitoneal injection, intramuscular injection, intratumoral injection, and injection into a cavity that contains a tumor.

A composition comprising viral vectors, non-viral vectors, or a combination of viral and non-viral vectors of the present invention can be formulated according to known methods to prepare pharmaceutically useful compositions, whereby vectors or viruses are combined in a mixture with a pharmaceutically acceptable carrier. As noted above, a composition, such as phosphate-buffered saline is said to be a “pharmaceutically acceptable carrier” if its administration can be tolerated by a recipient subject. Other suitable carriers are well-known to those in the art (see, for example, Remington's Pharmaceutical Sciences, 19th Ed. (Mack Publishing Co. 1995), and Gilman's the Pharmacological Basis of Therapeutics, 7th Ed. (MacMillan Publishing Co. 1985)).

For purposes of therapy, a therapeutic gene expression vector, or a recombinant virus comprising such a vector, and a pharmaceutically acceptable carrier
are administered to a subject in a therapeutically effective amount. A combination of an expression vector (or virus) and a pharmaceutically acceptable carrier is said to be administered in a “therapeutically effective amount” if the amount administered is physiologically significant. An agent is physiologically significant if its presence results in a detectable change in the physiology of a recipient subject.

When the subject treated with a therapeutic gene expression vector or a recombinant virus is a human, then the therapy is preferably somatic cell gene therapy. That is, the preferred treatment of a human with a therapeutic gene expression vector or a recombinant virus does not entail introducing into cells a nucleic acid molecule that can form part of a human germ line and be passed onto successive generations (i.e., human germ line gene therapy).

14. Production of Transgenic Mice

Transgenic mice can be engineered to over-express the ZvWF1 gene in all tissues or under the control of a tissue-specific or tissue-preferred regulatory element. These over-producers of ZvWF1 can be used to characterize the phenotype that results from over-expression, and the transgenic animals can serve as models for human disease caused by excess ZvWF1. Transgenic mice that over-express ZvWF1 also provide model bioreactors for production of ZvWF1 in the milk or blood of larger animals.

For example, a method for producing a transgenic mouse that expresses a ZvWF1 gene can begin with adult, fertile males (studs) (B6C3F1, 2-8 months of age (Taconic Farms, Germantown, NY)), vasectomized males (duds) (B6D2F1, 2-8 months, (Taconic Farms)), prepubescent fertile females (donors) (B6C3F1, 4-5 weeks, (Taconic Farms)) and adult fertile females (recipients) (B6D2F1, 2-4 months, (Taconic Farms)). The donors are acclimated for one week and then injected with approximately 8 IU/mouse of Pregnant Mare’s Serum gonadotrophin (Sigma Chemical Company; St. Louis, MO) I.P., and 46-47 hours later, 8 IU/mouse of human Chorionic Gonadotropin (hCG (Sigma)) I.P. to induce superovulation. Donors are mated with studs subsequent
to hormone injections. Ovulation generally occurs within 13 hours of hCG injection. Copulation is confirmed by the presence of a vaginal plug the morning following mating.

Fertilized eggs are collected under a surgical scope. The oviducts are collected and eggs are released into urinanalysis slides containing hyaluronidase (Sigma). Eggs are washed once in hyaluronidase, and twice in Whitten’s W640 medium (described, for example, by Menino and O’Claray, *Biol. Reprod. 77*:159 (1986), and Dienhart and Downs, *Zygote 4*:129 (1996)) that has been incubated with 5% CO₂, 5% O₂, and 90% N₂ at 37°C. The eggs are then stored in a 37°C/5% CO₂ incubator until microinjection.

Ten to twenty micrograms of plasmid DNA containing a *Zwfl* encoding sequence is linearized, gel-purified, and resuspended in 10 mM Tris-HCl (pH 7.4), 0.25 mM EDTA (pH 8.0), at a final concentration of 5-10 nanograms per microliter for microinjection. For example, the *Zwfl* encoding sequences can encode a polypeptide comprising amino acid residues 1 to 49 of SEQ ID NO:2.

Plasmid DNA is microinjected into harvested eggs contained in a drop of W640 medium overlaid by warm, CO₂-equilibrated mineral oil. The DNA is drawn into an injection needle (pulled from a 0.75mm ID, 1mm OD borosilicate glass capillary), and injected into individual eggs. Each egg is penetrated with the injection needle, into one or both of the haploid pronuclei.

Picoliters of DNA are injected into the pronuclei, and the injection needle withdrawn without coming into contact with the nucleoli. The procedure is repeated until all the eggs are injected. Successfully microinjected eggs are transferred into an organ tissue-culture dish with pre-gassed W640 medium for storage overnight in a 37°C/5% CO₂ incubator.

The following day, two-cell embryos are transferred into pseudopregnant recipients. The recipients are identified by the presence of copulation plugs, after copulating with vasectomized duds. Recipients are anesthetized and shaved on the dorsal left side and transferred to a surgical microscope. A small incision is made in the skin and through the muscle wall in the middle of the abdominal area outlined by the ribcage, the saddle, and the hind leg, midway between knee and spleen. The reproductive organs are exteriorized onto a small surgical drape. The fat pad is stretched out over the surgical drape, and a baby serrefine (Roboz, Rockville, MD) is attached to the fat pad and left hanging over the back of the mouse, preventing the organs from sliding back in.

With a fine transfer pipette containing mineral oil followed by alternating W640 and air bubbles, 12-17 healthy two-cell embryos from the previous
day's injection are transferred into the recipient. The swollen ampulla is located and holding the oviduct between the ampulla and the bursa, a nick in the oviduct is made with a 28 g needle close to the bursa, making sure not to tear the ampulla or the bursa.

The pipette is transferred into the nick in the oviduct, and the embryos are blown in, allowing the first air bubble to escape the pipette. The fat pad is gently pushed into the peritoneum, and the reproductive organs allowed to slide in. The peritoneal wall is closed with one suture and the skin closed with a wound clip. The mice recuperate on a 37°C slide warmer for a minimum of four hours.

The recipients are returned to cages in pairs, and allowed 19-21 days gestation. After birth, 19-21 days postpartum is allowed before weaning. The weanlings are sexed and placed into separate sex cages, and a 0.5 cm biopsy (used for genotyping) is snipped off the tail with clean scissors.

Genomic DNA is prepared from the tail snips using, for example, a QIAGEN DNEASY kit following the manufacturer's instructions. Genomic DNA is analyzed by PCR using primers designed to amplify a Zvwf1 gene or a selectable marker gene that was introduced in the same plasmid. After animals are confirmed to be transgenic, they are back-crossed into an inbred strain by placing a transgenic female with a wild-type male, or a transgenic male with one or two wild-type female(s). As pups are born and weaned, the sexes are separated, and their tails snipped for genotyping.

To check for expression of a transgene in a live animal, a partial heparatectomy is performed. A surgical prep is made of the upper abdomen directly below the zyphoid process. Using sterile technique, a small 1.5-2 cm incision is made below the sternum and the left lateral lobe of the liver exteriorized. Using 4-0 silk, a tie is made around the lower lobe securing it outside the body cavity. An atraumatic clamp is used to hold the tie while a second loop of absorbable Dexon (American Cyanamid; Wayne, N.J.) is placed proximal to the first tie. A distal cut is made from the Dexon tie and approximately 100 mg of the excised liver tissue is placed in a sterile petri dish. The excised liver section is transferred to a 14 ml polypropylene round bottom tube and snap frozen in liquid nitrogen and then stored on dry ice. The surgical site is closed with suture and wound clips, and the animal's cage placed on a 37°C heating pad for 24 hours post operatively. The animal is checked daily post operatively and the wound clips removed 7-10 days after surgery. The expression level of Zvwf1 mRNA is examined for each transgenic mouse using an RNA solution hybridization assay or polymerase chain reaction.

In addition to producing transgenic mice that over-express Zvwf1, it is useful to engineer transgenic mice with either abnormally low or no expression of the
gene. Such transgenic mice provide useful models for diseases associated with a lack of Zvwf1. As discussed above, Zvwf1 gene expression can be inhibited using anti-sense genes, ribozyme genes, or external guide sequence genes. To produce transgenic mice that under-express the Zvwf1 gene, such inhibitory sequences are targeted to Zvwf1 mRNA. Methods for producing transgenic mice that have abnormally low expression of a particular gene are known to those in the art (see, for example, Wu et al., “Gene Underexpression in Cultured Cells and Animals by Antisense DNA and RNA Strategies,” in Methods in Gene Biotechnology, pages 205-224 (CRC Press 1997)).

An alternative approach to producing transgenic mice that have little or no Zvwf1 gene expression is to generate mice having at least one normal Zvwf1 allele replaced by a nonfunctional Zvwf1 gene. One method of designing a nonfunctional Zvwf1 gene is to insert another gene, such as a selectable marker gene, within a nucleic acid molecule that encodes Zvwf1. Standard methods for producing these so-called “knockout mice” are known to those skilled in the art (see, for example, Jacob, “Expression and Knockout of Interferons in Transgenic Mice,” in Overexpression and Knockout of Cytokines in Transgenic Mice, Jacob (ed.), pages 111-124 (Academic Press, Ltd. 1994), and Wu et al., “New Strategies for Gene Knockout,” in Methods in Gene Biotechnology, pages 339-365 (CRC Press 1997)).
CLAIMS

What is claimed is:

1. An isolated polypeptide, comprising an amino acid sequence that is at least 70% identical to a reference amino acid sequence selected from the group consisting of: the amino acid sequence of SEQ ID NO:2, amino acid residues 1 to 49 of SEQ ID NO:2, amino acid residues 5 to 186 of SEQ ID NO:2, amino acid residues 1 to 223 of SEQ ID NO:2, and amino acid residues 207 to 328 of SEQ ID NO:2, wherein the isolated polypeptide specifically binds with an antibody that specifically binds with a polypeptide consisting of the amino acid sequence of SEQ ID NO:2.

2. The isolated polypeptide of claim 1, wherein the isolated polypeptide comprises an amino acid sequence that is at least 80% identical to the reference amino acid sequence.

3. The isolated polypeptide of claim 1, wherein the isolated polypeptide has an amino acid sequence that is at least 90% identical to the reference amino acid sequence.

4. The isolated polypeptide of claim 1, comprising either amino acid residues 1 to 49 of SEQ ID NO:2, or amino acid residues 1 to 223 of SEQ ID NO:2.

5. The isolated polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:2.

6. An isolated nucleic acid molecule, wherein the nucleic acid molecule is selected from the group consisting of (a) a nucleic acid molecule comprising the nucleotide sequence of SEQ ID NO:3, (b) a nucleic acid molecule that remains hybridized following stringent wash conditions to a nucleic acid molecule consisting of a nucleotide sequence selected from the group consisting of: (i) nucleotides 1 to 147 of SEQ ID NO:1, (ii) nucleotides 1 to 669 of SEQ ID NO:1, (iii) nucleotides 1 to 987 of SEQ ID NO:1, and (iv) a nucleotide sequence that is the complement of the nucleotide sequence of (i), (ii), or (iii).

7. The isolated nucleic acid molecule of claim 6, wherein any difference between the amino acid sequence encoded by the nucleic acid molecule and the
corresponding amino acid sequence of SEQ ID NO:2 is due to a conservative amino acid substitution.

8. The isolated nucleic acid molecule of claim 6, comprising the nucleotide sequence of SEQ ID NO:1.

9. The isolated nucleic acid molecule of claim 6, wherein the nucleic acid molecule comprises a nucleotide sequence consisting of either nucleotides 1 to 147 of SEQ ID NO:1, or nucleotides 13 to 441 of SEQ ID NO:1.

10. A vector, comprising the isolated nucleic acid molecule of claim 8.

11. An expression vector, comprising the isolated nucleic acid molecule of claim 8, a transcription promoter, and a transcription terminator, wherein the promoter is operably linked with the nucleic acid molecule, and wherein the nucleic acid molecule is operably linked with the transcription terminator.

12. A recombinant host cell comprising the expression vector of claim 11, wherein the host cell is selected from the group consisting of bacterium, avian cell, yeast cell, fungal cell, insect cell, mammalian cell, and plant cell.

13. A method of using the expression vector of claim 11 to produce ZvWF1 protein, comprising culturing recombinant host cells that comprise the expression vector and that produce the ZvWF1 protein.

14. The method of claim 13, further comprising isolating the ZvWF1 protein from the cultured recombinant host cells.

15. An antibody or antibody fragment that specifically binds with the polypeptide of claim 5.

16. The antibody of claim 15, wherein the antibody is selected from the group consisting of: (a) polyclonal antibody, (b) murine monoclonal antibody, (c) humanized antibody derived from (b), and (d) human monoclonal antibody.
17. An anti-idiotypic antibody that specifically binds with the antibody or antibody fragment of claim 15.

18. A method of detecting the presence of Zvwf1 gene expression in a biological sample, comprising:
 (a) contacting a Zvwf1 nucleic acid probe under hybridizing conditions with either (i) test RNA molecules isolated from the biological sample, or (ii) nucleic acid molecules synthesized from the isolated RNA molecules, wherein the probe consists of a nucleotide sequence comprising a portion of the nucleotide sequence of the nucleic acid molecule of claim 8, or complements thereof, and
 (b) detecting the formation of hybrids of the nucleic acid probe and either the test RNA molecules or the synthesized nucleic acid molecules, wherein the presence of the hybrids indicates the presence of Zvwf1 RNA in the biological sample,
 or,
 (a') contacting the biological sample with an antibody, or an antibody fragment, which specifically binds with a polypeptide consisting of the amino acid sequence of SEQ ID NO:2, wherein the contacting is performed under conditions that allow the binding of the antibody or antibody fragment to the biological sample, and
 (b') detecting any of the bound antibody or bound antibody fragment.

19. An isolated polypeptide, comprising an amino acid sequence selected from the group consisting of: the amino acid sequence of SEQ ID NO:2, amino acid residues 1 to 49 of SEQ ID NO:2, amino acid residues 1 to 223 of SEQ ID NO:2, amino acid residues 5 to 186 of SEQ ID NO:2, and amino acid residues 207 to 328 of SEQ ID NO:2.

SEQUENCE LISTING

<110> ZymoGenetics. Inc.

<120> ZvWF1: A Member of the Von Willebrand Factor Type A Domain Superfamily

<130> 99-99PC

<160> 4

<170> FastSEQ for Windows Version 3.0

<210> 1
<211> 1616
<212> DNA
<213> Homo sapiens

<220>
<221> CDS
<222> (1)...(907)

<400> 1

\n
gac tgc aaa att gac ttg tgc ttt tta att gat ggg agc acc agc att
Asp Cys Ile Asp Leu Ser Phe Leu Ile Asp Gly Ser Thr Ser Ile

1 5 10 15
ggc aaa cgg cga ttc cga atc cag aag cag ctc ctg gct gat gtt gcc
Gly Lys Arg Arg Phe Arg Ile Gln Lys Gln Leu Leu Ala Asp Val Ala
20 25 30

caa gct ctt gac att ggc cct gcc ggt cca ctg atg ggt gtt gtc cag
Gln Ala Leu Asp Ile Gly Pro Ala Gly Pro Leu Met Gly Val Val Gln
35 40 45

tat ggg gac aac cct gct act cac ttt aac ctc aag aca cac acg aat
Tyr Gly Asp Asn Pro Ala Thr His Phe Asn Leu Lys Thr His Thr Asn
50 55 60

tct cga gat ctg aag aca gcc ata gag aaa att act cag aga gga gga
Ser Arg Asp Leu Lys Thr Ala Ile Glu Lys Ile Thr Gln Arg Gly Gly
65 70 75 80

ctt tct aat gta ggt cgg gcc atc tcc ttt gtg acc aag aac ttc ttt
Leu Ser Asn Val Gly Arg Ala Ile Ser Phe Val Thr Lys Asn Phe Phe
85 90 95

tcc aaa gcc aat gga aac aga agc ggg gct ccc aat gtg gtg gtg gtg
Ser Lys Ala Asn Gly Asn Arg Ser Gly Ala Pro Asn Val Val Val Val
100 105 110

atg gtt gat ggc tgg ccc acg gac aaa gtg gag gag gct tca aga ctt
Met Val Asp Gly Trp Pro Thr Asp Lys Val Glu Glu Ala Ser Arg Leu
115 120 125
<table>
<thead>
<tr>
<th>GCG</th>
<th>AGA</th>
<th>GAG</th>
<th>TCA</th>
<th>GGA</th>
<th>ATC</th>
<th>AAC</th>
<th>ATT</th>
<th>TTC</th>
<th>TTC</th>
<th>ATC</th>
<th>ACC</th>
<th>ACC</th>
<th>ATT</th>
<th>GAA</th>
<th>GGT</th>
<th>GCT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ala</td>
<td>Arg</td>
<td>Glu</td>
<td>Ser</td>
<td>Gly</td>
<td>Ile</td>
<td>Ile</td>
<td>Phe</td>
<td>Phe</td>
<td>Ile</td>
<td>Thr</td>
<td>Ile</td>
<td>Glu</td>
<td>Gly</td>
<td>Ala</td>
<td></td>
<td></td>
</tr>
<tr>
<td>130</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>GCT</th>
<th>GAA</th>
<th>AAT</th>
<th>GAG</th>
<th>AAG</th>
<th>CAG</th>
<th>TAT</th>
<th>GTG</th>
<th>GTG</th>
<th>GAG</th>
<th>CCC</th>
<th>AAC</th>
<th>TTT</th>
<th>GCA</th>
<th>AAC</th>
<th>AAG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ala</td>
<td>Glu</td>
<td>Asn</td>
<td>Glu</td>
<td>Lys</td>
<td>Tyr</td>
<td>Val</td>
<td>Val</td>
<td>Glu</td>
<td>Pro</td>
<td>Asn</td>
<td>Phe</td>
<td>Ala</td>
<td>Asn</td>
<td>Lys</td>
<td></td>
</tr>
<tr>
<td>145</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>GCC</th>
<th>GTG</th>
<th>TGC</th>
<th>AGA</th>
<th>ACA</th>
<th>AAC</th>
<th>GGC</th>
<th>TTC</th>
<th>TAC</th>
<th>TCG</th>
<th>CTC</th>
<th>CAC</th>
<th>GTG</th>
<th>CAG</th>
<th>AGC</th>
<th>TGG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ala</td>
<td>Val</td>
<td>Cys</td>
<td>Arg</td>
<td>Thr</td>
<td>Asn</td>
<td>Gly</td>
<td>Phe</td>
<td>Tyr</td>
<td>Ser</td>
<td>Leu</td>
<td>His</td>
<td>Val</td>
<td>Gln</td>
<td>Ser</td>
<td>Trp</td>
</tr>
<tr>
<td>165</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TTT</th>
<th>GGC</th>
<th>CTC</th>
<th>CAC</th>
<th>AAC</th>
<th>ACC</th>
<th>CTG</th>
<th>CAG</th>
<th>CCT</th>
<th>CTG</th>
<th>GTG</th>
<th>AAG</th>
<th>CCG</th>
<th>GTC</th>
<th>TGC</th>
<th>GAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phe</td>
<td>Gly</td>
<td>Leu</td>
<td>His</td>
<td>Lys</td>
<td>Thr</td>
<td>Leu</td>
<td>Gln</td>
<td>Pro</td>
<td>Leu</td>
<td>Val</td>
<td>Lys</td>
<td>Arg</td>
<td>Val</td>
<td>Cys</td>
<td>Asp</td>
</tr>
<tr>
<td>180</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ACT</th>
<th>GAC</th>
<th>CGC</th>
<th>CTG</th>
<th>GCC</th>
<th>TGC</th>
<th>AGC</th>
<th>AAG</th>
<th>ACC</th>
<th>TAC</th>
<th>TGC</th>
<th>ATT</th>
<th>AAC</th>
<th>TCG</th>
<th>GCT</th>
<th>GAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thr</td>
<td>Asp</td>
<td>Arg</td>
<td>Leu</td>
<td>Ala</td>
<td>Cys</td>
<td>Ser</td>
<td>Lys</td>
<td>Thr</td>
<td>Cys</td>
<td>Leu</td>
<td>Asn</td>
<td>Ser</td>
<td>Ala</td>
<td>Asp</td>
<td>Ile</td>
</tr>
<tr>
<td>195</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>GGC</th>
<th>TTC</th>
<th>GTG</th>
<th>ATC</th>
<th>GAC</th>
<th>GCC</th>
<th>TCC</th>
<th>AGC</th>
<th>A GT</th>
<th>GTG</th>
<th>GGG</th>
<th>AC G</th>
<th>GGC</th>
<th>AAC</th>
<th>TTC</th>
<th>CGC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gly</td>
<td>Phe</td>
<td>Val</td>
<td>Ile</td>
<td>Asp</td>
<td>Gly</td>
<td>Ser</td>
<td>Ser</td>
<td>Ser</td>
<td>Val</td>
<td>Gly</td>
<td>Thr</td>
<td>Gly</td>
<td>Asn</td>
<td>Phe</td>
<td>Arg</td>
</tr>
<tr>
<td>210</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ACC</th>
<th>GTC</th>
<th>CTC</th>
<th>CAG</th>
<th>TTT</th>
<th>GTG</th>
<th>ACC</th>
<th>AAC</th>
<th>CTC</th>
<th>ACC</th>
<th>ACC</th>
<th>AAA</th>
<th>GAG</th>
<th>TTT</th>
<th>GAG</th>
<th>ATT</th>
<th>TCC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thr</td>
<td>Val</td>
<td>Leu</td>
<td>Gln</td>
<td>Phe</td>
<td>Val</td>
<td>Thr</td>
<td>Asn</td>
<td>Leu</td>
<td>Thr</td>
<td>Lys</td>
<td>Glu</td>
<td>Phe</td>
<td>Glu</td>
<td>Ile</td>
<td>Ser</td>
<td></td>
</tr>
<tr>
<td>225</td>
<td></td>
</tr>
</tbody>
</table>
gcacgcacgg tgcatcaagt ctgggcagg gcagtagaag acaaatgtct tgttattatt 1307
ccttgcccatc atgcttttct atattccaa aacttgagtt acaagatga tcacaaaccg 1367
atagaatgac cccaaaaagct acatcatgtt gaggtgtctg gagattttac attttgaca 1427
ttttttccaa aataaatggtt cggaatacag tgcagccctt acgacaggct tagttagacg 1487
tttgtgaga tttttaaggtt tgtattttctg attagaactc tgtaaccctc agcaagtttc 1547
attttttgca tgcaaatgta ggaattgctg aatmaatgt tttaagggat gcacaaaaa 1607
aaaaaaaaaa 1616

<210> 2
<211> 329
<212> PRT
<213> Homo sapiens

<400> 2
Asp Cys Lys Ile Asp Leu Ser Phe Leu Ile Asp Gly Ser Thr Ser Ile
1 5 10 15.
Gly Lys Arg Arg Phe Arg Ile Glu Leu Leu Ala Asp Val Ala
20 25 30
Glu Ala Leu Asp Ile Gly Pro Ala Gly Pro Leu Met Gly Val Val Glu
35 40 45
Tyr Gly Asp Asn Pro Ala Thr His Phe Asn Leu Lys Thr His Thr Asn
50 55 60
Ser Arg Asp Leu Lys Thr Ala Ile Glu Lys Ile Thr Glu Arg Gly Gly
65 70 75 80
Leu Ser Asn Val Gly Arg Ala Ile Ser Phe Val Thr Lys Asn Phe Phe
85 90 95
Ser Lys Ala Asn Gly Asn Arg Ser Gly Ala Pro Asn Val Val Val Val
100 105 110
Met Val Asp Gly Trp Pro Thr Asp Lys Val Glu Glu Ala Ser Arg Leu
115 120 125
Ala Arg Glu Ser Gly Ile Asn Ile Phe Phe Ile Thr Ile Glu Gly Ala
130 135 140
Ala Glu Asn Glu Lys Gln Tyr Val Val Glu Pro Asn Phe Ala Asn Lys
145 150 155 160
Ala Val Cys Arg Thr Asn Gly Phe Tyr Ser Leu His Val Gln Ser Trp
165 170 175
Phe Gly Leu His Lys Thr Leu Gln Pro Leu Val Lys Arg Val Cys Asp
180 185 190
Thr Asp Arg Leu Ala Cys Ser Lys Thr Cys Leu Asn Ser Ala Asp Ile
195 200 205
Gly Phe Val Ile Asp Gly Ser Ser Ser Val Gly Thr Gly Asn Phe Arg
210 215 220
Thr Val Leu Gln Phe Val Thr Asn Leu Thr Lys Glu Phe Glu Ile Ser
225 230 235 240
Asp Thr Asp Thr Arg Ile Gly Ala Val Gln Tyr Thr Tyr Glu Gln Arg
245 250 255
Leu Glu Phe Gly Phe Asp Lys Tyr Ser Ser Lys Pro Asp Ile Leu Asn
260 265 270
Ala Ile Lys Arg Val Gly Tyr Trp Ser Gly Gly Thr Ser Thr Gly Ala
275 280 285
Ala Ile Asn Phe Ala Leu Glu Gln Leu Phe Lys Lys Ser Lys Pro Asn
290 295 300
Lys Arg Lys Leu Met Ile Leu Ile Thr Asp Gly Arg Ser Tyr Asp Asp
305 310 315 320
Val Arg Ile Pro Ala Met Ala Ala His
325
<210> 3
<211> 987
<212> DNA
<213> Artificial Sequence

<220>
<223> This degenerate nucleotide sequence encodes the amino acid sequence of SEQ ID NO:2.

<221> variation
<222> (1)...(987)
<223> N is any nucleotide.

<400> 3

hygtgaara thgaytnws nttttytnath gayggnwsna cnwsnathgg naarmgnmg 60
tymgnathc araarcaryt nytnngcngay tngcncarg cnytnngayt hgnccngcn 120
gnccnrytna tggngntngt ncartaygnn gayaayccng cnacncaytt yaaytnaar 180
acncayacna aywsmgnnga ytnaracnc gnathgara arathacnca rmngnggn 240
ynwsmnaayg tngcngmngc nathwsntty gtnacnaara aytyttyws naargnaay 300
gnaaymgnw sngngncncc naygtnngtn tngtnatgg tngaygngntg gcccncngay 360
aargtnagc argcncsmng gnycngcnnmg garwngngna thayathht yttthachcn 420
athgargggng cngcngaraa ygaraacar taygtngtn grcncnaayt ygcnanaaary 480
gngtntgym gnacnaaygg ntttyaywsn ytncaagtncc arwsntgttt ygggtyncay 540
aarracnyyncc rccynntngt naarmgnngtn tngyacngc aymgnynngc nttgywna 600
acntgyngt ywssngcngna yathgngntty gtnathgayg gnwsnwsnwgs ngtnnggnac 660
gnaytynaygn aacngtnayt ncarttygtn acnaaytyna cnaargartt ygarathwn 720
gayacnagya cnmognathng ngcngtnccr tncyntayg arcarmgnyn ganrttyggn 780
ttygayaarti aywsmwsnaa arccngayath ytnaygncna thamngnnt nggtayttg 840
wsnggnggna cnwsnacngg ngcngcnath aayttygcny tngarcaryt nttyaaraar 900
wsnaarccna ayaarmgnaa rytnatgath ytnathacng ayggnmgnws ntaygaygay 960
gtnmgnathc cngcnatggc ngcnecay 987

<210> 4
<211> 16
<212> PRT
<213> Artificial Sequence

<220>
<223> Peptide linker.

<400> 4
1 5 10 15