TRISPECIFIC THERAPEUTICS AGAINST ACUTE MYELOID LEUKAEMIA

A

CD123 scFv

CD16 scFv

CD33 scFv

B

kD

250
100
75
37
25

C

kD

250
100
75
37
25

Figure 1
TRISPECIFIC THERAPEUTICS AGAINST ACUTE MYELOID LEUKAEMIA

The present invention relates to a molecule having binding specificities for (a) CD123; (b) CD16 and (c) CD33. The present invention further relates to the molecule of the invention, wherein the molecule comprises a first immunoglobulin domain comprising a V_L domain linked to a V_H domain, wherein the immunoglobulin domain specifically binds to CD123; a second immunoglobulin domain comprising a V_L domain linked to a V_H domain, wherein the immunoglobulin domain specifically binds to CD16; and a third immunoglobulin domain comprising a V_L domain linked to a V_H domain, wherein the immunoglobulin domain specifically binds to CD33. The present invention furthermore relates to a nucleic acid molecule encoding the molecule of the invention. In addition, the present invention relates to diagnostic and pharmaceutical compositions and the use of the molecule or the nucleic acid molecule of the invention in the treatment of acute myeloid leukaemia and/or myelodysplastic syndrome.

In this specification, a number of documents including patent applications and manufacturer's manuals is cited. The disclosure of these documents, while not considered relevant for the patentability of this invention, is herewith incorporated by reference in its entirety. More specifically, all referenced documents are incorporated by reference to the same extent as if each individual document was specifically and individually indicated to be incorporated by reference.

Acute myeloid leukaemia (AML) is the second most common acute leukaemia with approximately 13,300 new cases per year in the United States and 8,800 annual deaths (Jemal et al, 2008). The commonly applied therapy of leukaemic diseases includes irradiation and/or chemotherapy. Furthermore, under certain circumstances, the additional possibility of bone marrow transplantation is regarded suitable. However, these therapies are relatively toxic to the patient and very often do not lead to a complete cure from the disease. Thus, although a complete remission can be achieved for 65-80% of all patients receiving chemotherapy (Cros et al, 2004, Kern and Estey 2006), most of these patients relapse (Cros et al, 2004). In the remission phase after an initial course of conventional chemotherapy the
blast counts are reduced in the patient's bone marrow to approximately 5% or less of total bone marrow leukocytes, and the cells that survived the chemotherapy are referred to as "minimal residual disease" (MRD) cells. These cells are enriched in AML leukaemia stem cells (AML-LSCs), which are particularly resistant to chemotherapy, and they constitute a particularly dangerous reservoir of cells capable of re-expanding and causing a relapse. Leukaemia stem cells have been particularly well characterized for acute myeloid leukaemia (Lapidot et al, 1994, Bonnet and Dick 1997, Hope et al, 2004). AML-LSCs express a characteristic set of cell-surface antigens including among others CD123, C-type lectin-like molecule-1 (CLL-1), CD44, CD33 and for a subset of AML cases CD96 (Jordan et al, 2000, Bakker et al, 2004, Jin et al, 2006, Hauswirth et al, 2007, Hosen et al, 2007, Misaghian et al, 2009). These distinguished cells exhibit unique biological properties, including infrequent entrance into the cell cycle, self-renewal potential, and an enhanced resistance to chemotherapeutic agents and DNA damage. They are therefore likely to contribute significantly to the population of minimal residual disease (MRD) cells and are responsible for relapse in conventionally treated AML-patients (Ravandi and Estrov 2006). The 4-year disease-free survival of patients that are younger than 60 years and who receive a standard chemotherapy only reaches approximately 40%. Furthermore, patients older than 60 years have a poor prognosis with only 10% to 15% of 4-year disease-free survival (Mayer et al, 1994, Gardin et al, 2007). This high relapse rate for AML patients and the poor prognosis for older patients highlight the urgent need for novel therapeutics preferentially targeting the AML-LSCs.

An FDA approved drug for the treatment of AML is Gemtuzumab Ozogamicin (GO, Mylotarg™, Wyeth, Madison, NJ, USA), which is a CD33-specific drug. The use of this agent is restricted to patients older than 60 years in first relapse and to patients resistant against standard chemotherapy (Bross et al, 2001, Sievers 2001). GO consists of a humanized anti-CD33 IgG-antibody, chemically coupled to the cytotoxic agent calicheamicin (Hamann et al, 2002). In a phase II clinical trial, 30% of relapsed AML patients responded to GO (Sievers 2001, Larson et al, 2002). However, side effects were found to include hepatic veno-occlusive disease, pulmonary toxicity and severe hypersensitivity reactions. Furthermore, in vitro studies revealed antigen-independent cytotoxicities towards CD33 negative cell lines (Bross et al, 2001, Jedema et al, 2004, Schwemmlein et al, 2006).

In the past, different approaches have been used to develop unconjugated monoclonal antibodies with improved antitumor activity. One of these approaches was the generation of bispecific antibodies by a variety of methods. In general, these molecules consist of one
binding site for a target antigen on tumor cells and a second binding side for an activating trigger molecule on an effector cell, such as CD3 on T-cells, CD16 (FcyRIII) on natural killer (NK) cells, monocytes and macrophages, CD89 (FcaRI) and CD64 (FcyRI) on neutrophils and monocytes/macrophages, and DEC-205 on dendritic cells (Peipp and Valerius 2002, Wang et al., 2005). Apart from the specific recruitment of the preferred effector cell population, bispecific antibodies avoid competition with endogenous immunoglobulin G (IgG) when the selected binding site for the trigger molecule on the effector cell does not overlap with Fc-binding epitopes. In addition, the use of single-chain Fv fragments instead of full-length immunoglobulin prevents the molecules from binding to Fc-receptors on non-cytotoxic cells, such as FcyRII on platelets and B-cells, to Fc-receptors that do not activate cytotoxic cells, including FcyRIIib on polymorphonuclear leukocytes (PMN), and to inhibitory Fc-receptors, such as FcyRIIib on monocytes/macrophages (Daeron 1997).

A number of bispecific single-chain Fv (bsscFv) fusion proteins are known in the art with cytolytic activity for leukaemia-derived cells, including bispecific diabodies directed against CD19 and CD16 (Kipriyanov et al., 2002), tandem bsscFvs directed against CD19 and CD16 (Bruenke et al., 2005) and Human Leukocyte Antigen class II and CD16 (Bruenke et al., 2004). These proteins recruit CD16 positive NK-cells and monocytes/macrophages as effector cells, both important effector cell populations in vivo (Uchida et al., 2004). Another group of molecules, including an MCSP (Melanoma-associated Chondroitin Sulfate Proteoglycan) x CD28 (Otz et al., 2009) as well as a CD19 x CD3 (Bargou et al., 2008) construct, recruit cytolytic T-cells as effectors. The CD19 x CD3 molecule is the first recombinant bispecific single chain Fv to have produced promising results in clinical phase I and ongoing phase II studies (Nagorsen et al., 2009).

Although bsscFvs and some of the alternative formats offer distinct advantages, they still require further improvement. The critical parameters determining the therapeutic efficacy of bispecific proteins are affinity, valence, stability, and size. Many scFv fragments display lower affinity than the corresponding parental monoclonal antibodies (mAbs) owing to losses incurred during the conversion to the recombinant scFv format (Huston et al., 1988). Also, scFvs often show characteristically reduced thermal stability, owing to a tendency to unfold and aggregate, which is a concern for drug approval and clinical applications (Willuda et al., 1999). In addition, bsscFvs in their simplest format, consisting of two scFvs connected by a flexible linker of approximately 10 to 20 amino acids, have a relative molecular mass (Mr) of only about 50 to 60 kDa, and proteins with Mr <65 kDa are rapidly cleared from the bloodstream by the kidneys (Kipriyanov et al., 1999, Huhalov and Chester 2004). Finally, as bsscFvs are devoid of an Fc portion, they also lack the interaction domain for the neonatal
FcR, which is embedded in the Fc domain. The neonatal FcR facilitates recirculation of intact IgG (Raghavan et al., 1994). Rapid clearance from the blood results in poor retention at the tumor site (Hu et al., 1996).

To overcome these problems, a number of improvements have been made. One was the addition of an artificial intramolecular disulphide bond between the V_h chains and V_L chains of an scFv by in vitro mutagenesis, termed "disulphide stabilization" (Reiter et al., 1994, Bruenke et al., 2005). The extra bond prevents unfolding and denaturation of the scFv and results in a significant gain in stability (Reiter et al., 1994). The size of the bispecific proteins has been increased by various modifications, including PEGylation (Kubetzko et al., 2006); the addition of further protein domains, such as human serum albumin (Huhalov and Chester 2004, Muller et al., 2007); or the addition of an extra scFv component (Schoonjans et al., 2000). These modifications resulted in improved plasma and body retention times in vivo (Kontermann 2005). A further improvement was achieved through in vitro affinity maturation of the scFv components of a bispecific protein (McCall et al., 2001). An increase in affinity can increase the cytotoxic potential of intact antibodies and bispecific antibodies in vitro (McCall et al., 2001, Tang et al., 2007) and favors the specific tumor retention of scFvs in vivo (Adams et al., 1998). Finally, an important improvement in the cytolytic potential of bispecific proteins has been achieved by increasing their valence by including a second or further binding sites for target antigens on the tumor cell (Shahied et al., 2004). A number of different formats of antibody-derived proteins with increased valence and increased mass have been described, including antibody-scFv fusions (Coloma and Morrison 1997), minibodies (Hu et al., 1996, Shahied et al., 2004), Fab-scFv fusions (Schoonjans et al., 2000), multimeric scFvs such as triabodies and tetrabodies (Todorovska et al., 2001), tandem scFv diabodies (Kipriyanov et al., 1999) and di-diabodies (Lu et al., 2003, Muller and Kontermann 2007).

WO 2009/007124 describes an additional format to overcome the limitations of bsscFv by providing a novel single-chain construct. This molecule consists of three scFvs covalently linked in tandem, two with specificity for target antigens on the tumor cells and one for the trigger molecule on the effector cells. This format, termed single-chain Fv triplebody (sctb) differs from the multimeric scFvs, triabodies, and tetrabodies, which are multichain constructs, by being a single-chain polypeptide.

Despite the above described advances in the development of therapeutically relevant antibody constructs, no satisfying therapeutic is at present available for the treatment of acute myeloid leukaemia as well as myelodysplasia syndrome.
This need is addressed by the provision of the embodiments characterized in the claims.

Accordingly, the present invention relates in a first embodiment to a molecule having binding specificities for (a) CD123; (b) CD16 and (c) CD33.

In accordance with the invention, it is to be understood that the binding specificities are conferred by different portions of the molecule, which preferably are of modular form. In a preferred embodiment, those portions of the molecule having binding specificities for CD123, CD16 and CD33 are of proteinaceous nature, e.g. polypeptides or amino acid sequences within such polypeptides. These amino acid sequences may be consecutive amino acid sequences within the polypeptide. Alternatively, amino acids or stretches of amino acids from different portions of the polypeptide may confer binding specificity to the molecule. More preferably, the entire molecule of the invention is a polypeptide.

The term "polypeptide" as used herein describes linear molecular chains of amino acids, including single chain proteins or their fragments, containing more than 30 amino acids. Accordingly, the term "peptide" as used in the present invention describes linear chains of amino acids containing up to 30 amino acids. The term "(poly)peptide" as used in accordance with the present invention refers to a group of molecules which comprises the group of peptides, consisting of up to 30 amino acids, as well as the group of polypeptides, consisting of more than 30 amino acids.

Furthermore, peptidomimetics of such proteins/polypeptides are also encompassed by the present invention, wherein amino acid(s) and/or peptide bond(s) have been replaced by functional analogues. Such functional analogues include all known amino acids other than the 20 gene-encoded amino acids, such as selenocysteine. The terms "polypeptide" and "protein", which are used interchangeably, also refer to naturally modified polypeptides/proteins where the modification is effected e.g. by glycosylation, acetylation, phosphorylation and similar modifications which are well known in the art.

The term "having binding specificities" in accordance with the present invention means that parts of the molecule of the invention (i.e. the binding portions thereof) bind to their respective targets, i.e. the antigens CD123, CD16 and CD33. It is particularly preferred that they bind their respective targets specifically. The terms "specifically binds" and "specifically binding" (having the same meaning as "specifically interacting") as used in accordance with the present invention mean that these binding portions do not or essentially do not cross-react
with an epitope with a structure similar to that of the target antigen. Cross-reactivity of a panel of molecules under investigation may be tested, for example, by assessing binding of said panel of molecules under conventional conditions to the epitope of interest as well as to a number of more or less (structurally and/or functionally) closely related epitopes. Only those molecules that bind to the epitope of interest in its relevant context (e.g. a specific motif in the structure of a protein) but do not or do not essentially bind to any of the other epitopes are considered specific for the epitope of interest and thus to be molecules in accordance with this invention. Corresponding methods are described e.g. in Harlow and Lane "Antibodies, A Laboratory Manual", Cold Spring Harbor Laboratory Press, 1988 and Harlow and Lane "Using Antibodies: A Laboratory Manual" Cold Spring Harbor Laboratory Press, 1999. One exemplary molecule in accordance with the present invention is a molecule that binds CD16 and specifically binds CD123 and CD33. Thus, this preferred molecule binds CD123 and CD33 without any cross-reactivity for other target antigens while the molecule may comprise a CD16-binding portion that is capable of binding other target antigens. Such a CD16-binding portion can be, for example, the Fc portion of immunoglobulin G which is known to bind other target antigens, such as for example CD32, CD64 or the neonatal Fc receptor FcRn. A more preferred molecule in accordance with the present invention is a molecule that specifically binds all of CD16, CD123 and CD33 and does not cross-react with any other antigen. Methods for achieving specific binding also for CD16 are well known in the art and are, for example, described in the examples below.

The binding portions of the molecule of the invention having binding specificities for the antigens listed in (a) to (c) of the molecule of the invention may be arranged in any order within said molecule, such as for example (a)-(b)-(c), (b)-(c)-(a), (c)-(a)-(b), (b)-(a)-(c) etc. More preferably, the binding portions of (a) to (c) are arranged in the recited order (e.g. for proteinaceous sequences they would be arranged in the order (a)-(b)-(c)) either in the N-terminus to C-terminus direction or, alternatively, in the C-terminus to N-terminus direction).

As detailed above, in the remission phase after an initial course of conventional chemotherapy the blast counts are reduced in the patient's bone marrow to approximately 5% or less of total bone marrow leukocytes. The cells that survived the chemotherapy, the "minimal residual disease" cells, are enriched in AML leukaemia stem cells (AML-LSCs). The ineffective elimination of these critical tumor progenitor cells is considered to be the cause for the high number of relapses seen in AML patients after chemotherapy. The discovery of these tumor-repopulating cells therefore has important clinical implications, because their specific elimination promises to offer a most favorable opportunity to improve AML-treatment. AML stem cells express a characteristic set of cell-surface antigens including among others

CD123, the alpha subunit of the interleukin-3 receptor (IL-3Ra), is expressed on a variety of hematopoietic cells, including mostly myeloid cells, but also on a subpopulation of B lymphocytes. It is not expressed on peripheral T-cells, natural killer cells (NK-cells), platelets and red blood cells (Moretti et al, 2001). CD123 is widely expressed in hematopoietic malignancies and has also been detected on AML-LSCs (Jordan et al, 2000, Munoz et al, 2001, Testa et al, 2004, Taussig et al, 2005, Jin et al, 2009), while it is present only in lower density on normal hematopoietic stem cells (Huang et al, 1999, Jin et al, 2009). Thus, CD123 shows a 4-fold increased expression on AML-LSCs in comparison to normal HSCs which makes it a particular interesting target for therapeutics (Jin et al, 2009).

CD33 is a 67 kDa cell surface glycoprotein present on blasts of more than 80% of AML patients and on normal myeloid cells. The antigen is not found on tissues outside the hematopoietic system but it is discussed to be expressed on a subset of normal hematopoietic stem cells (HSC) (Dinndorf et al, 1986, Grossbard et al, 1992, Legrand et al, 2000, Sievers 2001, Taussig et al, 2005).

CD16 is the low affinity receptor for IgG (FcyRIII), which is constitutively expressed as a transmembrane isoform on the surface of NK cells and macrophages (CD16a), and as a glycosyl phosphatidyl inositol (GPI)-anchored molecule on the surface of neutrophils (GDI 6b) (Ravetch and Kinet, 1991; van deWinkel and Anderson, 1991). For intracellular signalling, CD16a requires association with the FcRy chain containing the immunoreceptor tyrosine-based activation motif (ITAM), which triggers downstream signalling. Studies with conventionally coupled bi-specific antibodies redirecting NK cells via CD16 demonstrated potent cytolysis of cultured malignant cells and in animal models (de Palazzo et al, 1992; Hombach et al, 1993; Kipriyanov et al, 2002). Therefore, clinical trials with CD16-directed bi-specific antibodies were initiated (Weiner et al, 1995; Hartmann et al, 1997). However, immunogenicity of hybrid-hybridoma antibodies, as well as undesired side effects caused by the presence of Fc-domains, and difficulties in producing sufficient amounts of clinical-grade material limited these clinical trials.
The molecule of the present invention enables the preferential targeting of AML-LSCs by using a dual targeting approach with CD123 as the main target and CD33 serving as an additional validated target antigen for the treatment of AML. Specific binding of the molecule of the invention to CD16 furthermore allows the recruitment of effector cells, which are able to eliminate the AML leukaemia stem cells targeted by the molecule of the invention. The therapeutic effect achieved is both the result of direct elimination of the tumor cell by antibody dependant cellular cytotoxicity (ADCC, also referred to as "redirected lysis") as well as the generation of apoptotic fragments of AML cells resulting from their lysis. These fragments are subsequently taken up by phagocytes and are processed and presented again by CD4⁺ and CD8⁺ T-lymphocytes. Both mechanisms help to build up a secondary titer of humoral anti-tumor antibodies and a cellular anti-tumor response by CD8⁺ cytotoxic T-lymphocytes.

WO 2009/007124 describes the general concept of providing triplebodies. However, this document does not disclose the particular combination of CD123, CD33 and CD16 to achieve the targeted elimination of AML-LSCs for the treatment of AML and myelodysplastic syndrome. To the inventors best knowledge, neither trispecific antibodies nor recombinant trispecific antibody derivatives connecting CD123 and CD33 on AML cells and CD16 on effector cells have so far been reported and it could not be expected that this particular combination would result in the successful targeting of AML-LSCs in the treatment of AML and myelodysplastic syndrome. Nonetheless, the triplebody of the present invention provides superior elimination of target cells, as shown in example 6 below.

The ratio of at least 2:1 of binding specificities to antigens expressed on AML tumor cells (i.e. CD123 and CD33) and binding specificity to effector cell antigens (i.e. CD16) is an advantageous feature of the present invention. The higher fraction of binding specificities to antigens expressed on leukaemic tumor cells has the effect that the affinity for the tumor cells is increased. Thus, the higher number of antigen binding moieties targeted to antigen expressed on leukaemic tumor cells increases the probability that the molecule of the invention binds to a leukaemic tumor cell before it binds to an effector cell. The recruitment of leukaemic tumor cells prior to the effector cells is advantageous for the following reason: in a therapeutic context, immune responses are generally induced upon binding of an immunoglobulin with one or two specificities or a natural trigger molecule to a respective antigen expressed on the surface of effector cells mediating an immune response. Thereby, the effector cells cannot distinguish whether an antibody molecule is bound to a tumor cell or not, thus leading to an unspecific immune response in case the antibody derivative is not bound to a leukaemic tumor cell. In contrast, the 2:1 ratio of antigen binding sites specific for
leukaemic tumor antigens and those specific for effector cells enhance the probability that the molecule of the present invention binds to a leukaemic tumor cell before it binds to an antigen of an effector cell. As a consequence of the enhanced avidity to the leukaemic tumor cells the cell surface retention time on the tumor cells is prolonged, thus resulting in an improved targeting potential. This greatly reduces the amount of unspecific immune responses and may thus decrease adverse side-effects of previously known molecules.

In a preferred embodiment of the molecule of the invention, the binding specificities are conferred by \(V_H \) and \(V_L \) domains.

The terms "\(V_H \) domain" and "\(V_L \) domain" are used according to the definitions provided in the art. Thus, they refer to the variable region of the heavy chain (\(V_H \)) and the variable region of the light chain (\(V_L \)) of immunoglobulins, respectively. Generally, \(V_H \) and \(V_L \) domains comprise three complementarity determining regions (CDRs) each, wherein CDRs are highly variable regions mainly responsible for the binding of the antigen. In accordance with the present invention, a \(V_L \) or \(V_H \) domain may consist of at least one CDR per domain, preferably at least two or preferably all three CDRs, as long as the resulting immunoglobulin domain exerts the desired function, i.e. specifically binds to its target antigen. Preferably, the target antigens are human antigens, i.e. human CD123, human CD33 and human CD16.

It will be understood that binding specificities may independently be conferred by only a \(V_H \) or only a \(V_L \) domain, or by a combination of both \(V_H \) and \(V_L \) domains, for each binding specificity to (a), (b) and (c). Preferably, the binding specificities conferred by \(V_H \) and \(V_L \) domains are conferred by a combination, i.e. both \(V_H \) and \(V_L \) domains, for each binding specificity to (a), (b) and (c).

In another preferred embodiment of the molecule of the invention, the binding specificities are conferred by ligands, anticalins, adnectins, affibodies, or DARPin.

In accordance with the present invention, the term "ligands" refers to molecules that are able to bind to and form a complex with the respective targets, i.e. CD123, CD16 or CD33. The term also refers to fragments and/or derivatives thereof. The naturally occurring ligand for CD123 is interleukin-3 (IL-3), while the naturally occurring ligand for CD16 is the Fc portion of immunoglobulin G and the naturally occurring ligand for CD33 is sialic acid, preferably N-acetylmuraminic acid-a6-galactose-p4-N-acetylglicosamine.

The term "fragments and/or derivatives thereof" in connection with the present invention refers to fragments of the molecules and/or modified versions of the molecules still having one or
more of the biological functions of the full-length molecules. In particular, the fragments and/or derivatives of ligands as envisaged in this embodiment are capable of binding the respective antigen CD123, CD16 or CD33. Most preferably the fragments and/or derivatives of ligands are capable of specifically binding the respective antigen CD123, CD16 or CD33.

It is well known in the art that functional molecules, such as for examples (poly)peptides or saccharides may be cleaved to yield fragments with unaltered or substantially unaltered function. Such cleavage may include the removal of a given number of N- and/or C-terminal amino acids from (poly)peptides. Additionally or alternatively, a number of internal (non-terminal) amino acids may be removed, provided the obtained (poly)peptide has the function of the full length (poly)peptide. Said number of amino acids to be removed from the termini and/or internal regions may be one, two, three, four, five, six, seven, eight, nine, ten, 15, 20, 25, 30, 40, 50 or more than 50. Any other number between one and 50 is also deliberately envisaged in accordance with this invention. Similarly, fragments of saccharides include those having deletions at the end as well as those having internal deletions.

Means and methods for determining such functional domains of (poly)peptides or saccharides are well known in the art and include experimental and bioinformatic means. Experimental means include the systematic generation of deletion mutants and their assessment in assays for the desired functions above known in the art. Bioinformatic means include database searches. Suitable databases included protein sequence databases as well as databases for glycobiology, as for example described in von der Lieth (2003). In this case a multiple sequence alignment of significant hits is indicative of domain boundaries, wherein the domain(s) is/are comprised of the/those sub-sequences exhibiting an elevated level of sequence conservation as compared to the remainder of the sequence. Further suitable databases include databases of statistical models of conserved protein domains such as Pfam maintained by the Sanger Institute, UK (www.sanger.ac.uk/Software/Pfam).

It is furthermore known in the art that molecules may be modified in order to obtain derivatives. Such modifications include, without being limiting, (i) esterification of carboxyl groups, or (ii) esterification of hydroxyl groups with carboxylic acids, or (iii) esterification of hydroxyl groups to, e.g. phosphates, pyrophosphates or sulfates or hemi-succinates, or (iv) formation of pharmaceutically acceptable salts, or (v) introduction of hydrophilic moieties, or (vi) introduction/exchange of substituents on aromates or side chains, change of substituent pattern, or (vii) modification by introduction of isosteric or bioisosteric moieties, or (viii) synthesis of homologous compounds, or (ix) introduction of branched side chains, or (x) conversion of alkyl substituents to cyclic analogues, or (xi) derivatisation of hydroxyl group to ketales, acetales, or (xii) N-acetylation to amides, phenylcarbamates, or (xiii) synthesis of
Mannich bases, imines, or (xiv) transformation of ketones or aldehydes to Schiff's bases, oximes, acetales, ketales, enolesters, oxazolidines, thiazolidines or combinations thereof.

The various steps recited above are generally known in the art. They include or rely on quantitative structure-action relationship (QSAR) analyses (Kubinyi, "Hausch-Analysis and Related Approaches", VCH Verlag, Weinheim, 1992), combinatorial biochemistry, classical chemistry and others (see, for example, Holzgrabe and Bechtold, Deutsche Apotheker Zeitung 140(8), 813-823, 2000).

The term "anticalins" as used herein refers to engineered proteins derived from lipocalins (Beste ef a/. 1999; Gebauer and Skerra, 2009). Anticalins possess an eight-stranded \(\beta \)-barrel which forms a highly conserved core unit among the lipocalins and naturally forms binding sites for ligands by means of four structurally variable loops at the open end. Anticalins, although not homologous to the IgG superfamily, show features that so far have been considered typical for the binding sites of antibodies: (i) high structural plasticity as a consequence of sequence variation and (ii) elevated conformational flexibility, allowing induced fit to targets with differing shape.

"Adnectins" (also referred to as monobodies) in accordance with the present invention, are based on the 10th extracellular domain of human fibronectin \(\text{III} \) (10Fn3), which adopts an Ig-like b-sandwich fold of 94 residues with 2 to 3 exposed loops, but lacks the central disulphide bridge (Gebauer and Skerra, 2009).

"Affibodies", in accordance with the present invention, are based on the Z-domain of staphylococcal protein A, a three-helix bundle of about 58 residues providing an interface on two of its a-helices (Gebauer and Skerra, 2009).

In accordance with the present invention, the term "DARPins" refers to designed ankyrin repeat domains (166 residues), which provide a rigid interface arising from typically three repeated b-turns. DARPins usually carry three repeats corresponding to an artificial consensus sequence, whereby six positions per repeat are randomized. Consequently, DARPins lack structural flexibility (Gebauer and Skerra, 2009).

All of the above described binding molecules are well known to the skilled person and are defined in accordance with the prior art and the common general knowledge of the skilled person.
In a preferred embodiment of the molecule of the invention, the binding portions conferring the specificities to (a), (b) and (c) are polypeptides.

In a more preferred embodiment, the molecule of the invention is a single polypeptide chain.

In another preferred embodiment of the molecule of the invention, the binding portions of the molecule conferring the specificities to (a), (b) and (c) are linked by a linker.

The term "linker" as used in accordance with the present invention relates to a sequel of amino acids (i.e. peptide linkers) as well as to non-peptide linkers, which separate the binding portions of the molecule of the invention conferring the specificities to (a) CD123, (b) CD16 and (c) CD33.

Peptide linkers as envisaged by the present invention are (poly)peptide linkers of at least 1 amino acid in length. Preferably, the linkers are 1 to 100 amino acids in length. More preferably, the linkers are 5 to 50 amino acids in length and even more preferably, the linkers are 10 to 20 amino acids in length. The linkers separating the three binding portions of the molecule of the invention can have the same or different lengths and may comprise the same or a different amino acid sequence. In one preferred embodiment, the linkers have the same length and the same amino acid sequence.

In another preferred embodiment, the linkers separating the three binding portions of the molecule of the invention differ in length and/or amino acid sequence from each other. Furthermore, the nature, i.e. the length and/or amino acid sequence of the linker may modify or enhance the stability and/or solubility of the molecule. The length and sequence of a linker depends on the composition of the respective binding portions of the molecule of the invention.

The skilled person is well aware of methods to test the suitability of different linkers. For example, the properties of the molecule can easily be tested by comparing the binding affinity of the binding portions of the molecule of the invention. In case of the tri-specific molecule of the invention, the respective measurements for each binding portion may be carried out. The stability of the resulting molecule can be measured using a flow cytometry based method to determine the residual binding capacity of the molecule after incubation in human serum at 37°C for several time periods. Other suitable tests can e.g. be found in Bruenke et al. (2005).
In a preferred embodiment, the linker is a flexible linker using e.g. the amino acids alanine and serine or glycine and serine. Preferably the linker sequences are (Gly_Ser)_n or (Gly_Ser)_m.

It will be appreciated by the skilled person that when the molecule of the invention is a single polypeptide chain, the linker is a peptide linker.

The term "non-peptide linker", as used in accordance with the present invention, refers to linkage groups having two or more reactive groups but excluding peptide linkers as defined above. For example, the non-peptide linker may be a polymer having reactive groups at both ends, which individually bind to reactive groups of the binding portions of the molecule of the invention, for example, an amino terminus, a lysine residue, a histidine residue or a cysteine residue. The reactive groups of the polymer include an aldehyde group, a propionic aldehyde group, a butyl aldehyde group, a maleimide group, a ketone group, a vinyl sulfone group, a thiol group, a hydrazide group, a carbonyldimidazole (CDI) group, a nitrophenyl carbonate (NPC) group, a trisylate group, an isocyanate group, and succinimide derivatives. Examples of succinimide derivatives include succinimidyl propionate (SPA), succinimidyl butanoic acid (SBA), succinimidyl carboxymethylate (SCM), succinimidyl succinamide (SSA), succinimidyl succinate (SS), succinimidyl carbonate, and N-hydroxy succinimide (NHS). The reactive groups at both ends of the non-peptide polymer may be the same or different. For example, the non-peptide polymer may have a maleimide group at one end and an aldehyde group at another end.

In a further preferred embodiment, the linker is a peptide linker.

The present invention relates in a further preferred embodiment to a molecule of the invention, wherein the molecule comprises a first immunoglobulin domain comprising a V Latino domain linked to a V_{H_3} domain, wherein the immunoglobulin domain specifically binds to CD123; a second immunoglobulin domain comprising a V Latino domain linked to a V_{H_3} domain, wherein the immunoglobulin domain specifically binds to CD16; and a third immunoglobulin domain comprising a V Latino domain linked to a V_{H_3} domain, wherein the immunoglobulin domain specifically binds to CD33.

It will be understood by one of skill in the art that said first immunoglobulin domain that specifically binds to GD123 relates to the binding specificity recited in (a) of the molecule of the invention above. Similarly, said second immunoglobulin domain that specifically binds to CD16 relates to the binding specificity recited in (b) of the molecule of the invention above and
said third immunoglobulin domain that specifically binds to CD33 relates to the binding specificity recited in (c) of the molecule of the invention above.

The term "immunoglobulin domain comprising a V_L domain linked to a V_H domain" as used in accordance with the present invention refers to single-chain fragment variable domains of immunoglobulins (scFv), which have been shown to be necessary and sufficient to bind their antigen. The V_L domains are linked to the V_H domains, i.e. they are connected with each other either directly or via a linker.

In accordance with the present invention, the molecule of the invention may comprise immunoglobulin domains derived from a single species, but may also be a chimeric or humanized molecule.

The immunoglobulin domains of (a) to (c) of the molecule of the invention may be arranged in any order, such as for example (a)-(b)-(c), (b)-(c)-(a), (c)-(a)-(b), (b)-(a)-(c) etc. More preferably, the immunoglobulin domains of (a) to (c) are arranged in the recited order (i.e. (a)-(b)-(c)) either in the N-terminus to C-terminus direction or, alternatively, in the C-terminus to N-terminus direction. Preferably, the immunoglobulin domains of (a) to (c) are arranged in the recited order in the N-terminus to C-terminus direction. The V_L and V_H domain may be arranged within the immunoglobulin domain such that the V_L domain is positioned N- or C-terminal of the V_H domain. Accordingly, in a nucleic acid molecule encoding the molecule of the present invention, the nucleic acid sequence encoding the V_L domain may be positioned 5' or 3' of the nucleic acid sequence encoding the V_H domain. The skilled person is able to determine which arrangement of the V_H and V_L domains is more suitable for a specific scFv. Preferably, the V_L domain is positioned N-terminal of the V_H domain.

In a preferred embodiment of the invention, at least one immunoglobulin domain comprises at least two cysteine residues capable of forming intramolecular disulfide bridges.

In accordance with the present invention, immunoglobulin domains binding to antigens of interest may be stabilized by the formation of at least one intramolecular disulfide bridge. Suitable cysteine residues may be naturally occurring in the immunoglobulin domains or may be introduced into the immunoglobulin domains by mutating appropriate amino acids to cysteine. The following prerequisites have to be met when designing a modified antibody with artificial cysteine bridges. First, the disulfide bridge should connect amino acids in structurally conserved regions of the Fv, i.e. in the V_H and V_L regions of immunoglobulins. In other words,
the disulfide bridge forms between a cysteine in \(V_H \) and a cysteine in \(V_L \) within one of the immunoglobulin domains (a) to (c) according to the method of the invention. A disulfide bridge may be formed in more than one of these immunoglobulin domains, however, not between different immunoglobulin domains. Furthermore, the distance between the \(V_H \) and the \(V_L \) domain should be small enough to enable the formation of a disulfide bridge without the generation of adverse strain in the Fv molecule. Finally, the disulfide bridge should be distant enough from the CDRs to not interfere with antigen binding. As a consequence, cysteines introduced to form the disulfide bridge should be in the framework regions of the Fv which connect the CDRs of the \(V_H \) and \(V_L \) regions at positions that are structurally conserved in most antibodies. Glockshuber et al. (1990), Brinkmann et al. (1993) and Reiter et al. (1994) set out these criteria and successfully established the first disulfide stabilized Fv antibodies. Mutations in the amino acid sequence of the molecule of the invention can e.g. be introduced according to Reiter et al. (1994) in a nucleic acid molecule encoding said molecule at base triplets at position 100 in the \(V_L \) domain or at position 44 in the \(V_H \) domain, so that they encode a cysteine residue. All positions are according to the Kabat numbering (Kabat et al., 1991). Means to introduce mutations into a nucleic acid molecule are known to the skilled person and can e.g. be retrieved from Sambrook and Russell "Molecular Cloning, A Laboratory Manual", Cold Spring Harbor Laboratory, N.Y. (2001) and Ausubel, Current Protocols in Molecular Biology, Green Publishing Associates and Wiley Interscience, N.Y. (2001). Preferably, a disulfide bridge forms between a cysteine in the \(V_H \) and a cysteine in the \(V_L \) region of the immunoglobulin domain of (b) according to the molecule of the invention.

As has been disclosed in WO 2009/007124, it was previously shown that the introduction of disulfide bridges into immunoglobulin domains of scFvs greatly enhances the stability of these molecules, without affecting their specificity or reducing their affinity and functionality and without a loss of solubility of the molecule.

In a further preferred embodiment, the molecule of the invention comprises at least one linker which separates at least one \(V_H \) from a \(V_L \) domain or at least one \(V_L \) from a \(V_H \) domain.

The linkers separating the \(V_H \) and \(V_L \) domains of one immunoglobulin domain and the linkers separating different immunoglobulin domains can have the same or different lengths and may be selected to comprise the same or a different composition, for example they may comprise the same or a different amino acid sequence or non-peptide polymer. In one preferred embodiment, the linkers have the same length and the same composition.
In another preferred embodiment, the linkers separating different immunoglobulin domains differ in length and/or composition from the linkers separating the \(V_H \) and \(V_L \) regions within an immunoglobulin domain. For example, the former could be longer and designed in order to promote the flexibility of the immunoglobulin domains towards each other or to facilitate correct folding of the molecule and/or enhance the affinity of one immunoglobulin domain to its target antigen. Furthermore, the nature, i.e. the length and/or composition of the linker may modify or enhance the stability and/or solubility of the molecule.

As mentioned above, the length and sequence of a linker depends on the composition of the respective \(V_H \) and \(V_L \) domains forming an immunoglobulin domain. For example, starting from the N-terminus of the polypeptide of the invention, if the \(V_L \) domain is followed by the \(V_H \) domain, linkers of 20 amino acid separating the V regions of one immunoglobulin domain may be optimal. In contrast, if the \(V_H \) domain is followed by the \(V_L \) domain, the respective linker may have an optimal length of 15 amino acids. Without wishing to be bound by any scientific theory, it is believed that these differences may be due to sterical reasons leading to linkers of different lengths promoting the correct folding of immunoglobulin domains having a different arrangement of V domains.

The skilled person is well aware of methods to test the suitability of different linkers within or between immunoglobulin domains, for example by employing any of the methods described above.

In a preferred embodiment, at least two variable domains are fused by a flexible linker using e.g. the amino acids alanine and serine or glycine and serine. Preferably the linker sequences are \((\text{Gly}_2\text{Ser})_4\) or \((\text{Gly}_4\text{Ser})_3\).

In another preferred embodiment no linker is present between at least one \(V_H \) and \(V_L \) domain or \(V_L \) and \(V_H \) domain within or between immunoglobulin domains.

In another preferred embodiment, all variable domains are fused by a linker.

In another preferred embodiment, the molecule of the invention further comprises at least one additional (poly)peptide.

Preferably, the additional (poly)peptide is unrelated to immunoglobulin domains and can be, for example, a tag or a functional (poly)peptide suitable to improve the performance of the polypeptide of the invention. The tag can e.g. be a Strep-tag, a His-tag, a Myc-tag or a Flag-
tag. Functional (poly)peptides are e.g. a kappa secretion leader, human serum albumin (hsa) or fragments thereof, (poly)peptides capable of binding to hsa or other serum proteins; (poly)peptides capable of binding to neonatal Fc receptor (FcRn), human muscle aldolase (hma) or fragments thereof, CD8 hinge region, immunoglobulin constant regions, Interleukin-2, Interleukin-15 and Interleukin-18, Granulocyte-Macrophage-Colony Stimulating Factor (GM-CSF), Granulocyte Stimulating Factor (G-CSF) or a (poly)peptide providing at least one N-glycosylation site.

The term "fragments thereof" is as defined above. In particular, the fragments of (poly)peptides as envisaged in this embodiment are capable of increasing the stability and/or the serum half-life of the antibody derivative of the present invention.

Some of the (poly)peptides to be further encoded by the nucleic acid molecule of the present invention may facilitate the purification of the recombinantly expressed polypeptide, e.g. various tags. Methods to add tags and/or other (poly)peptides to the polypeptide encoded by the nucleic acid molecule of the present invention are well known to the skilled person and described e.g. in Sambrook, 2001, loc. cit.

In a preferred embodiment of the invention, the first immunoglobulin domain comprises an amino acid sequence selected from the group consisting of SEQ ID NOs: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24 and 26.

In a further preferred embodiment of the invention, the first immunoglobulin domain comprises the amino acid sequence of SEQ ID NO: 2, representing a preferred form of the CD123-specific scFv.

In another preferred embodiment of the invention, the molecule of the invention has the amino acid sequence shown in SEQ ID NO: 28.

The present invention further relates to a nucleic acid molecule encoding the molecule of the invention.

The nucleic acid molecule may encode the entire molecule, i.e. where the molecule is a single-chain polypeptide or, alternatively, may encode the individual binding portions of the molecule of the invention, where these binding portions are of a proteinaceous nature. Upon expression of these binding portions, they may form the molecule of the invention via non-
covalent bonds such as for example hydrogen bonds, ionic bonds, van der Waals forces or hydrophobic interacts or via covalent bonds such as for example disulfide bonds.

Preferably, the polypeptide encoded by the nucleic acid molecule of the invention is a single-chain polypeptide.

In accordance with the present invention the term "nucleic acid molecule" defines a linear molecular chain consisting of more than 30 nucleotides. The group of molecules designated herein as "nucleic acid molecules" also comprises complete genes.

"Nucleic acid molecules", in accordance with the present invention, include DNA, such as for example cDNA or genomic DNA, and RNA, for example mRNA. Further included are nucleic acid mimicking molecules known in the art such as for example synthetic or semi-synthetic derivatives of DNA or RNA and mixed polymers. Such nucleic acid mimicking molecules or nucleic acid derivatives according to the invention include phosphorothioate nucleic acid, phosphoramidate nucleic acid, 2′-0-methoxyethyl ribonucleic acid, morpholino nucleic acid, hexitol nucleic acid (HNA) and locked nucleic acid (LNA) (see Braasch and Corey, Chem Biol 2001, 8:1). LNA is an RNA derivative in which the ribose ring is constrained by a methylene linkage between the 2′-oxygen and the 4′-carbon. They may contain additional non-natural or derivative nucleotide bases, as will be readily appreciated by those skilled in the art.

The present invention furthermore contemplates nucleic acid molecules complementary to the above-defined nucleic acid molecule as well as nucleic acid molecules hybridizing thereto under stringent conditions.

It is well known in the art how to perform hybridization experiments with nucleic acid molecules. Correspondingly, the person skilled in the art knows what hybridization conditions he/she has to use to allow for successful hybridization. The establishment of suitable hybridization conditions is referred to in standard text books such as Sambrook, Russell "Molecular Cloning, A Laboratory Manual", Cold Spring Harbor Laboratory, N.Y. (2001); Ausubel, "Current Protocols in Molecular Biology", Green Publishing Associates and Wiley Interscience, N.Y. (1989), or Higgins and Hames (Eds.) "Nucleic acid hybridization, a practical approach" IRL Press Oxford, Washington DC, (1985).

"Stringent conditions" refer to hybridization conditions which allow nucleic acid molecules capable of hybridizing to the nucleic acid molecules of the invention or parts thereof to hybridize to these target sequences to a detectably greater degree than to other sequences (e.g. at least 2-fold over background). Stringent conditions are sequence-dependent and will
differ depending on the circumstances. By controlling the stringency of the hybridization and/or washing conditions, target sequences that have at least 90% sequence identity, more preferably 95%, such as 98% and more preferably 100% sequence identity to the respective probe, i.e. the nucleic acid molecule of the invention, can be identified (highly stringent hybridization conditions). Alternatively, stringency conditions can be adjusted to allow a higher degree of mismatching in sequences (low stringency conditions of hybridization). Such highly stringent and low stringent conditions for hybridization are well known to the person skilled in the art. The embodiment recited herein above preferably refers to highly stringent conditions.

For example, highly stringent conditions for hybridization comprise e.g. an overnight incubation at 65°C in 4x SSC (600 mM NaCl, 60 mM sodium citrate) followed by washing at 65°C in 0.1x SSC for one hour. Alternatively, highly stringent hybridization conditions can comprise an overnight incubation at 42°C in a solution comprising 50% formamide, 5x SSC (750 mM NaCl, 75 mM sodium citrate), 50 mM sodium phosphate (pH 7.6), 5x Denhardt's solution, 10% dextran sulphate, and 20 pg/ml denatured, sheared salmon sperm DNA, followed by washing in e.g. 0.1-0.5x SSC at about 55-65°C for about 5 to 20 min.

Changes in the stringency of hybridization are primarily accomplished through the manipulation of formamide concentration (lower percentages of formamide result in lowered stringency), salt conditions, or temperature. For example, lower stringency conditions include an overnight incubation at 50°C in 4x SSC or an overnight incubation at 37°C in a solution comprising 6x SSPE (20x SSPE = 3M NaCl; 0.2M NaH₂PO₄; 0.02M EDTA, pH 7.4), 0.5% SDS, 30% formamide, 100 mg/ml salmon sperm blocking DNA; followed by washes at 50°C with 1x SSPE, 0.1% SDS. In addition, to achieve an even lower stringency, washes performed following stringent hybridization can be done at higher salt concentrations (e.g. 5x SSC). It is of note that variations in the above conditions may be accomplished through the inclusion and/or substitution of alternate blocking reagents. Typical blocking reagents include Denhardt's reagent, BLOTTO, heparin, denatured salmon sperm DNA, and commercially available proprietary formulations. The inclusion of specific blocking reagents may require modification of the hybridization conditions described above, due to problems with compatibility. Such modifications can generally be effected by the skilled person without further ado. A hybridization complex may be formed in solution (e.g., Cot or Rot analysis) or between one nucleic acid sequence present in solution and another nucleic acid sequence immobilized on a solid support (e.g., membranes, filters, chips, pins or glass slides to which, e.g., cells have been fixed).

In a preferred embodiment of the nucleic acid molecule of the invention, the nucleic acid molecule comprises (i) the nucleic acid sequence as shown in SEQ ID NO: 27; (ii) a nucleic
acid sequence encoding the amino acid sequence shown in SEQ ID NO: 28; or (iii) a nucleic acid sequence that is degenerate with respect to the nucleic acid molecule of (i) or (ii).

The present invention also relates to a vector comprising the nucleic acid molecule of the invention.

Preferably, the vector is a plasmid, cosmid, virus, bacteriophage or another vector used e.g. conventionally in genetic engineering.

The nucleic acid molecule of the present invention may be inserted into several commercially available vectors. Non-limiting examples include prokaryotic plasmid vectors, such as the pUC-series, pBluescript (Stratagene), the pET-series of expression vectors (Novagen) or pCRTPO (Invitrogen) and vectors compatible with expression in mammalian cells like pREP (Invitrogen), pSecTag2HygroC (Invitrogen), pcDNA3 (Invitrogen), pCEP4 (Invitrogen), pMC1neo (Stratagene), pXT1 (Stratagene), pSG5 (Stratagene), EBO-pSV2neo, pBPV-1, pdBPVMMTneo, pRSVgpt, pRSVneo, pSV2-dhfr, pIZD35, pLXIN, pSIR (Clontech), pRES-EGFP (Clontech), pEAK-10 (Edge Biosystems) pTriEx-Hygro (Novagen) and pCINeo (Promega). Examples for plasmid vectors suitable for Pichia pastoris comprise e.g. the plasmids pA0815, pPIC9K and pPIC3.5K (all Invitrogen).

The nucleic acid molecule of the present invention referred to above may also be inserted into vectors such that a translational fusion with another nucleic acid molecule is generated. The other nucleic acid molecules may encode a (poly)peptide which can e.g. increase the solubility and/or facilitate the purification of the protein encoded by the nucleic acid molecule of the invention. Non-limiting examples include pET32, pET41, pET43 (Novagen). The vectors may also contain an additional expressible polynucleotide coding for one or more chaperones to facilitate correct protein folding. Suitable bacterial expression hosts comprise e.g. strains derived from BL21 (such as BL21(DE3), BL21(DE3)PlysS, BL21 (DE3)RIL, BL21 (DE3)PRARE) or Rosetta®.

For vector modification techniques, see Sambrook and Russel, 2001, loc. cit. Generally, vectors can contain one or more origin of replication (ori) and inheritance systems for cloning or expression, one or more markers for selection in the host, e.g., antibiotic resistance, and one or more expression cassettes. Suitable origins of replication (ori) include, for example, the Col E1, the SV40 viral and the M 13 origins of replication.

A typical mammalian expression vector contains the promoter element, which mediates the initiation of transcription of mRNA, the protein coding sequence, and signals required for the termination of transcription and polyadenylation of the transcript. Moreover, elements such as origin of replication, drug resistance gene, regulators (as part of an inducible promoter) may
also be included. The *lac* promoter is a typical inducible promoter, useful for prokaryotic cells, which can be induced using the lactose analogue *isopropylthiol-b-D-galactoside* ("IPTG"). For recombinant expression, the antibody fragment may be ligated between e.g. the PelB leader signal, which directs the recombinant protein in the periplasm and the gene III in a phagemid called pHEN4 (described in Ghahroudi et al., 1997). Additional elements might include enhancers, Kozak sequences and intervening sequences flanked by donor and acceptor sites for RNA splicing. Highly efficient transcription can be achieved with the early and late promoters from SV40, the long terminal repeats (LTRs) from retroviruses, e.g., RSV, HTLVI, HIVI, and the early promoter of the cytomegalovirus (CMV). However, cellular elements can also be used (e.g., the human actin promoter). Suitable expression vectors for use in practicing the present invention include, for example, vectors such as pSVL and pMSG (Pharmacia, Uppsala, Sweden), pRSVcat (ATCC 37152), pSV2dhfr (ATCC 37146) and pBC12MI (ATCC 67109). The co-transfection with a selectable marker such as dhfr, gpt, neomycin, hygromycin genes for eukaryotic cells or tetracycline, kanamycin or ampicillin resistance genes for culturing in *E. coli* and other bacteria allows the identification and isolation of the transfected cells. The transfected nucleic acid can also be amplified to express large amounts of the encoded (poly)peptide. The DHFR (dihydrofolate reductase) marker is useful to develop cell lines that carry several hundred or even several thousand copies of the gene of interest. Another useful selection marker is the enzyme glutamine synthase (GS) (Murphy et al. 1991; Bebbington et al. 1992). Using these markers, the mammalian cells are grown in selective medium and the cells with the highest resistance are selected.

Possible regulatory elements permitting expression in prokaryotic host cells comprise, e.g., the *lac*, *trp* or *tac* promoter, the *lacUV5* or the *trp* promoter in *E. coli*, and examples for regulatory elements permitting expression in eukaryotic host cells (the more preferred embodiment) are the *AOX1* or *GAL1* promoter in yeast or the CMV- (Cytomegalovirus), SV40-, RSV-promoter (Rous sarcoma virus), the gai10 promoter, human elongation factor la-promoter, CMV enhancer, CaM-kinase promoter, the Autographa californica multiple nuclear polyhedrosis virus (AcMNPV) polyhedral promoter or a globin intron in mammalian and other animal cells. Preferred promoters are natural immunoglobulin promoters. Besides elements which are responsible for the initiation of transcription such regulatory elements may also comprise transcription termination signals, such as the SV40-poly-A site or the tk-poly-A site or the SV40, *lacZ* and AcMNPV polyhedral polyadenylation signals, downstream of the polynucleotide.

The coding sequences inserted in the vector can e.g. be synthesized by standard methods, or isolated from natural sources or produced semi-synthetically, i.e. by combining chemical
synthesis and recombinant techniques. Ligation of the coding sequences to transcriptional regulatory elements and/or to other amino acid encoding sequences can be carried out using established methods. Transcriptional regulatory elements (parts of an expression cassette) ensuring expression in prokaryotes or eukaryotic cells are well known to those skilled in the art. These elements comprise regulatory sequences ensuring the initiation of the transcription (e.g., translation initiation codon, promoters, enhancers, and/or insulators), internal ribosomal entry sites (IRES) (Owens et al., 2001) and optionally poly-A signals ensuring termination of transcription and stabilization of the transcript. Additional regulatory elements may include transcriptional as well as translational enhancers, and/or naturally-associated or heterologous promoter regions. Preferably, the nucleic acid molecule of the invention is operably linked to such expression control sequences allowing expression in prokaryotes or eukaryotic cells. The vector may further comprise nucleotide sequences encoding secretion signals as further regulatory elements. Such sequences are well known to the person skilled in the art. Furthermore, depending on the expression system used, leader sequences capable of directing the expressed polypeptide to a cellular compartment may be added to the coding sequence of the polynucleotide of the invention. Such leader sequences are well known in the art.

Specifically-designed vectors allow the shuttling of DNA between different hosts, such as bacteria-fungal cells or bacteria-animal cells.

An expression vector according to this invention is capable of directing the replication, and the expression, of the polynucleotide and encoded enzyme of this invention. Suitable expression vectors which comprise the described regulatory elements are known in the art such as Okayama-Berg cDNA expression vector pcDV1 (Pharmacia), pRc/CMV, pcDNAI, pcDNA3, pSecTag2HygroC (Invitrogen, as used, inter alia in the appended examples), pSPORTI (GIBCO BRL) or pGEMHE (Promega), or prokaryotic expression vectors, such as lambda gt1, pJOE, the pBBR1-MCS-series, pJB861, pBSMuL, pBC2, pUCPKS, pTACTI or, preferably, the pET vector (Novagen).

The nucleic acid molecules of the invention as described herein above may be designed for direct introduction or for introduction via liposomes, phage vectors or viral vectors (e.g. adenoviral, retroviral) into the cell. Additionally, baculoviral systems or systems based on Vaccinia Virus or Semliki Forest Virus can be used as eukaryotic expression system for the nucleic acid molecules of the invention. Expression vectors derived from viruses such as retroviruses, vaccinia virus, adeno-associated virus, herpes viruses, or bovine papilloma virus, may be used for delivery of the polynucleotides or vector into targeted cell population. Methods which are well known to those skilled in the art can be used to construct recombinant
viral vectors; see, for example, the techniques described in Sambrook, 2001 and Ausubel, 2001, loc. cit.

In another preferred embodiment the present invention relates to a non-human host transformed with the vector of the invention.

Said host may be produced by introducing the vector of the invention into a host, which upon its presence mediates the expression of the polypeptide encoded by the vector.

In accordance with the present invention, the host may be a transgenic non-human animal transfected with and/or expressing the vector of the present invention. In a preferred embodiment, the transgenic animal is a mammal, e.g. a hamster, cow, cat, pig, dog or horse.

In a preferred embodiment, the host is a cell, such as an isolated cell which may be part of a cell culture.

Suitable prokaryotic host cells comprise e.g. bacteria of the species Escherichia, Bacillus, Streptomyces and Salmonella typhimurium. Suitable eukaryotic host cells are e.g. fungal cells, inter alia, yeasts such as Saccharomyces cerevisiae or Pichia pastoris or insect cells such as Drosophila S2 and Spodoptera Sf9 cells and plant cells as well as mammalian cells. Appropriate culture mediums and conditions for the above-described host cells are known in the art.

Mammalian host cells include without being limiting human Hela, HEK293, H9 and Jurkat cells, mouse NIH3T3 and C127 cells, COS 1, COS 7 and CV1, quail QC1-3 cells, mouse L cells, Chinese hamster ovary (CHO) cells and Bowes melanoma cells. Alternatively, the recombinant polypeptide of the invention can be expressed in stable cell lines that contain the gene construct encompassing the nucleic acid molecule or the vector of the invention integrated into a chromosome.

In a more preferred embodiment, said cell is a primary cell or primary cell line. Primary cells are cells which are directly obtained from an organism. Suitable primary cells are, for example, mouse embryonic fibroblasts, mouse primary hepatocytes, cardiomyocytes and neuronal cells as well as mouse muscle stem cells (satellite cells) and stable, immortalized cell lines derived thereof.

The present invention also relates to a method for the production of a polypeptide comprising culture of the host cell of the invention under suitable conditions and isolation of the recombinant polypeptide produced.
Suitable conditions for culturing a prokaryotic or eukaryotic host are well known to the person skilled in the art. For example, suitable conditions for culturing bacteria are growing them under aeration in Luria Bertani (LB) medium. To increase the yield and the solubility of the expression product, the medium can be buffered or supplemented with suitable additives known to enhance or facilitate both. *E. coli* can be cultured from 4 to about 37 °C, the exact temperature or sequence of temperatures depends on the molecule to be over-expressed. In general, the skilled person is also aware that these conditions may have to be adapted to the needs of the host and the requirements of the polypeptide expressed. In case an inducible promoter controls the nucleic acid molecule of the invention in the vector present in the host cell, expression of the polypeptide can be induced by addition of an appropriate inducing agent. Suitable expression protocols and strategies are known to the skilled person.

Depending on the cell type and its specific requirements, mammalian cell cultures can e.g. be carried out in RPMI or DMEM medium containing 10% (v/v) FCS, 2mM L-glutamine and 100 U/ml penicillin/streptomycin. The cells can be kept at 37 °C in a 5% CO₂, water saturated atmosphere.

Suitable media for insect cell culture is e.g. TNM + 10% FCS or SF900 medium. Insect cells are usually grown at 27 °C as adhesion or suspension culture.

Suitable expression protocols for eukaryotic cells are well known to the skilled person and can be retrieved e.g. from in Sambrook, 2001, loc cit.

Methods of isolating the polypeptide produced are well-known in the art and comprise without being limiting method steps such as ion exchange chromatography, gel filtration chromatography (size exclusion chromatography), affinity chromatography, high pressure liquid chromatography (HPLC), reversed phase HPLC, disc gel electrophoresis or immunoprecipitation, see, for example, in Sambrook, 2001, loc. cit.

The present invention also relates to a diagnostic composition comprising at least one of the molecule of the invention, preferably a polypeptide, the nucleic acid molecule of the invention or the vector of the invention.

The enhanced affinity and/or avidity of the molecule of the invention enables its use in diagnostic assays. For example, the molecule can be used as a sensitive detection agent for the detection of AML-LSCs, as these express CD123 and CD33 on the cell surface. Especially the high stability of the disulfide stabilized CD16-specific scFv (also referred to
herein as ds16) and the naturally highly stable CD123- and CD33-specific scFvs, which are incorporated in this format, allow a long time storage, which is desirable for diagnostic agents.

Furthermore, the present invention relates to a pharmaceutical composition comprising at least one of the molecule of the invention, preferably a polypeptide, the nucleic acid molecule of the invention or the vector of the invention.

In accordance with the present invention, the term "pharmaceutical composition" relates to a composition for administration to a patient, preferably a human patient. The pharmaceutical composition of the invention comprises the compounds recited above (wherein the term "compound" refers to the mentioned molecule, nucleic acid molecule, and the vector as well as fragments or derivatives or modifications thereof), alone or in combination. It may, optionally, comprise further molecules capable of altering the characteristics of the compounds of the invention thereby, for example, stabilizing, modulating and/or activating their function. The composition may be in solid, liquid or gaseous form and may be, inter alia, in the form of (a) powder(s), (a) tablet(s), (a) solution(s) or (an) aerosol(s). The pharmaceutical composition of the present invention may, optionally and additionally, comprise a pharmaceutically acceptable carrier. By "pharmaceutically acceptable carrier" is meant a non-toxic solid, semisolid or liquid filler, diluent, encapsulating material or formulation auxiliary of any type. Examples of suitable pharmaceutically acceptable carriers are well known in the art and include phosphate buffered saline solutions, water, emulsions, such as oil/water emulsions, various types of wetting agents, sterile solutions, organic solvents including DMSO etc. Compositions comprising such carriers can be formulated by well known conventional methods. The term "parenteral" as used herein refers to modes of administration, which include intravenous, intramuscular, intraperitoneal, intrasternal, subcutaneous and intraarticular injection and infusion. These pharmaceutical compositions can be administered to the subject at a suitable dose. The dosage regimen will be determined by the attending physician and clinical factors. As is well known in the medical arts, dosages for any one patient depend upon many factors, including the patient's size, body surface area, age, the particular compound to be administered, sex, time and route of administration, general health, and other drugs being administered concurrently. The therapeutically effective amount for a given situation will readily be determined by routine experimentation and is within the skills and judgement of the ordinary clinician or physician. Generally, the regimen as a regular administration of the pharmaceutical composition should be in the range of 1 pg to 5 g
units per day. However, a more preferred dosage might be in the range of 0.01 mg to 100 mg, even more preferably 0.01 mg to 50 mg and most preferably 0.01 mg to 10 mg per day.

As mentioned above, the nucleic acid molecule of the invention may be formulated into a pharmaceutical composition. The nucleic acid molecule is eventually to be introduced into the desired cells. Appropriate formulations include those wherein \(10^6\) to \(10^{12}\) copies of the DNA molecule, advantageously comprised in an appropriate vector are administered per dose. The vector may be, for example, a phage, plasmid, viral or retroviral vector. Retroviral vectors may be replication competent or replication defective. In the latter case, viral propagation generally will occur only in complementing host/cells.

The invention also relates to the molecule of the invention, preferably a polypeptide, the nucleic acid molecule of the invention or the vector of the invention for use in the treatment of acute myeloid leukaemia and/or myelodysplasia syndrome.

The term "acute myeloid leukaemia" (AML) is used in accordance with the definitions provided in the art. Thus, it refers to a cancer of the myeloid line of blood cells, characterized by the rapid growth of abnormal white blood cells that accumulate in the bone marrow and interfere with the production of normal blood cells. In later stages, abnormal white blood cells also accumulate in the blood stream.

The term "myelodysplastic syndrome" (MDS) is used in accordance with the definitions provided in the art. Thus, it refers to a bone marrow stem cell disorder resulting in disorderly and ineffective hematopoiesis manifested by irreversible quantitative and qualitative defects in hematopoietic cells. In a majority of cases, the course of disease is chronic with gradually worsening cyopenias due to progressive bone marrow failure. Approximately one-third of patients with MDS progress to AML within months to a few years.

The molecule of the invention, the nucleic acid molecule of the invention or the vector of the invention can be used for the treatment of acute myeloid leukaemia and/or myelodysplastic syndrome. Therefore, the present invention also relates to a method of treating acute myeloid leukaemia and/or myelodysplastic syndrome comprising the administration of an amount of the molecule of the invention, preferably a polypeptide, the nucleic acid of the invention or the vector of the invention that is effective to exert the desired effect to a patient in need thereof. The desired effect in connection with methods of treatment is inducing an immune response
against cells expressing the CD123 and CD33 antigens, especially AML leukaemia stem cells (AML-LSCs).

The invention further relates to the molecule of the invention, preferably a polypeptide, the nucleic acid molecule of the invention or the vector of the invention for use in the treatment of acute myeloid leukaemia and/or myelodysplastic syndrome, wherein the nucleic acid molecule, vector or polypeptide is to be administered in a remission phase for acute myeloid leukaemia or after diagnosis of myelodysplastic syndrome.

The term "remission" is used in accordance with the definitions provided in the art. Thus, it refers to the state of absence of disease activity in patients with a chronic illness, when it may be expected that the illness will manifest again in the future. In accordance with the present invention, it is used to refer to the absence of acute myeloid leukaemia after treatment thereof.

As outlined above, in remission after an initial course of conventional chemotherapy, the blast counts are reduced in the patients bone marrow to approximately 5% or less of total bone marrow leukocytes, and the cells that survived the chemotherapy are referred to as "minimal residual disease" (MRD) cells. These cells are enriched in AML leukaemia stem cells (AML-LSCs), which are particularly resistant to chemotherapy, and constitute a particularly dangerous reservoir of cells capable of re-expanding and causing a relapse, as described above. In the remission stage, normal healthy leukocytes are initially few in numbers, because most have been eliminated by the chemotherapy. However, after a few weeks normal myelopoiesis resumes and the first normal leukocytes to be reconstituted from the surviving healthy hematopoietic stem cells (HSCs) are the granulocytes (PMNs, polymorphonuclear granulocytes) followed by natural killer (NK-) cells, monocytes/macrophages, B-lymphocytes and the last to re-appear are the T-lymphocytes. Granulocytes become quickly available in sufficient numbers, as is evident because patients do not typically show a significantly increased risk for bacterial infections. As granulopoiesis and the reconstitution of other myeloid effector cells occur in a dose-temporal correlation, NK-cells, monocytes and macrophages become available. Therefore, CD16-positive effector cells are available at this stage in sufficient numbers to be recruited by the molecule of the present invention (sctb [123 x disulfide stabilized ds16 x 33] for the elimination of AML-MRD (i.e. AML-LSC) cells.

In a mouse model of human Non-Hodgkin lymphoma (NHL), treated with CD20 and CD19 antibodies, monocytes were reported to be the most relevant population of effector cells
(Tedder et al, 2006). In addition, the in vitro studies provided in the Examples below provide clear evidence that the polypeptide of the present invention activates NK-cells to eliminate AML cells. Nonetheless, it is expected that in a human patient all of the above recited populations of effector cells will contribute to the overall therapeutic effect. This overall effect is not only the result of direct elimination of the tumor cell by antibody dependant cellular cytotoxicity (ADCC, also referred to as "redirected lysis"), but the apoptotic fragments of AML cells resulting from their lysis are taken up by phagocytes and are processed and presented again by CD4+ and CD8+ T-lymphocytes. Both mechanisms help to build up a secondary titer of humoral anti-tumor antibodies and a cellular anti-tumor response by CD8+ cytotoxic T-lymphocytes.

The molecule, the nucleic acid molecule or the vector of the invention are thus considered to contribute a significant therapeutic effect, well beyond the effects possible by previous compounds such as Mylotarg and conventional chemotherapy, while at the same time being accompanied by far fewer side effects, as no chemical, bacterial or plant toxins are involved.

The figures show:

Figure 1. Construction and expression of the single chain triplebodie (sctb) [123 x ds16 x 33].

(A) Design of the sctb [123 x ds16 x 33]. The two distal scFvs are specific for the tumor antigens CD123 and CD33, the central scFv is directed against the activating trigger molecule CD16. IgK, secretion leader sequence from the murine Ig kappa L chain; V_L, V_H, cDNA sequences coding for the V regions of Ig L-or H-chains; L, cDNA coding for a 20 amino acid flexible linker, e.g. (Gly_xSer)_4; S, H, M, STREP-, hexahistidine- and myc-tag; S-S, stabilizing disulphide bond. Integrity and purity of the sctb [123 x ds16 x 33] after affinity chromatography with Ni-NTA agarose beads as evaluated by reducing SDS-PAGE and staining with Coomassie blue (B) and Western Blot analysis using an anti-His antibody for detection (C).

Figure 2. Specific antigen binding of the sctb [123 x ds16 x 33].

FACS analysis of specific binding of the sctb to U937 cells (I), CD123-transfected 293 cells (II), untransfected 293 cells (III), CD16 transfected CHO cells (IV), and untransfected CHO cells (V). White: control sctb; black: sctb [123 x ds16 x 33].

Figure 3. Simultaneous antigen binding of the sctb [123 x ds16 x 33].

U937 cells were incubated with the sctb and simultaneous binding was revealed by addition of the soluble proteins consisting of the extracellular domain of CD16 and GFP (CD16ex-GFP)
(I, measured in the FL1 channel) and the extracellular domain of CD123 and RFP (CD123ex-RFP) (II, measured in the FL2 channel).

Figure 4. Dose dependent induction of ADCC of different tumor cell lines by the sctb [123 x ds16 x 33].

The CD123/CD33 double-positive tumor cell lines MOLM-13 (A) and THP-1 (B) were used as targets to compare the efficacy of the sctb at a constant E:T cell ratio of 40:1. The sctb [123 x ds16 x 33] (filled triangle) triggered ADCC in a dose-dependent manner. The non-relevant control sctb (open black triangle) did not induce significant killing. Data points represent mean percentage of lysis + SEM obtained with isolated MNCs from at least four different healthy donors. *Statistically significant differences in ADCC compared to the control sctb.

Figure 5. Lysis of primary AML cells by sctbs [123 x ds16 x 33], [123 x ds16 x 123] and [33 x ds16 x 33]. Sctbs [123 x ds16 x 33] (closed triangle), [123 x ds16 x 123] (open circle) and [33 x ds16 x 33] (open triangle) mediated dose-dependent ADCC of primary AML cells, whereas a control sctb (closed square) failed to induce cellular lysis. (A and B) Induction of ADCC by sctbs of purified primary AML cells isolated from peripheral blood (patient 1 and 2). (C and D) Induction of ADCC by sctbs of purified primary AML cells isolated from bone marrow (patient 6 and 7). Data points represent percentage of specific lysis obtained with isolated MNCs from one healthy donor at an E:T ratio of 40:1. (E) Induction of ADCC by sctbs of purified AML cells from peripheral blood of 6 different patients (patient 1-6), combined data. Data points represent mean percentage of specific lysis averaged over the 6 patients obtained with isolated MNCs from one healthy donor per patient sample at an E:T ratio of 40:1. Specific lysis is total lysis minus spontaneous lysis.

The examples illustrate the invention:

Example 1: Cell lines and hybridomas

Chinese hamster ovary (CHO) cells, stably transfected with a human CD16 cDNA expression vector, were provided by Dr. J. van de Winkel (University Medical Centre, Utrecht, the Netherlands). The hybridoma 3G8; FcYRII, CD16; IgG1, (Fleit *et al.*, 1982) and the human 293T cells were from the American Type Cell Culture Collection (ATCC, Manassas, VA, USA). The human AML cell lines MOLM-13, THP-1 (t(9;11)(p22;q23), expressing MLL-AF9) and U937 were from the German Collection of Microorganisms and Cell Cultures (DSMZ,
Braunschweig, Germany). CHO, THP-1, U937 and the 3G8 hybridoma cells were cultured in Roswell Park Memorial Institute (RPMI) 1640 Glutamax-I medium (Invitrogen, Karlsruhe, Germany) containing 10% fetal calf serum (FCS; Invitrogen), 100 units/ml penicillin (Invitrogen), and 100 pg/ml streptomycin (Invitrogen). MOLM-13 were cultured in RPMI 1640 Glutamax-I medium containing 20% FCS, 100 units/ml penicillin and 100 Mg/ml streptomycin (Invitrogen). Human 293, 293T (ATCC) and 293 cells stably transfected with CD123 were maintained in DMEM (Invitrogen) Glutamax-I medium containing 10% FCS, 100 units/ml penicillin and 100 μg/ml streptomycin (Invitrogen). The medium for the CD123 expressing cells further contained 400 Mg/ml Geneticin (Invitrogen).

Example 2: Generation and characterization of CD123-specific scFvs

Four new CD123-specific scFv antibody fragments were generated by immunization of BALB/c mice with a recombinant fusion protein consisting of the extracellular part of human CD123 and the Fc portion of a human IgG1. This was performed in accordance with the procedure for generating CD33-specific scFvs (Schwemmllein et al, 2006). The Fc portion was used to assure solubility and native conformation of the fusion protein as well as prolonged serum half life due to recycling via the neonatal Fc receptor (FcRn). Spleen RNA of immunized mice was prepared and used to generate a phage display library. This library was panned for CD123-binding phages with intact CD123⁺ cells. The cDNA from reactive phages was subcloned into the prokaryotic expression vector pAK400. Four different clones were expressed in E.coli and purified from periplasmic extracts under native conditions by affinity chromatography. All four scFvs were strongly enriched with yields between 0.65 and 2.75 mg/l E.coli culture (Table 1) and reacted in Western blot experiments with antibodies specific for the hexahistidine-tag. All four scFvs bound to CD123⁺ human acute myeloid leukaemia-derived MOLM-13 cells and to CD123-transfected 293 cells, as visualized by flow cytometry. The scFvs failed to react with CD123⁻ 293 cells, indicating that binding was CD123-specific. In calibrated flow cytometry analysis the equilibrium binding constants (Kₐ) of the scFvs were determined and ranged between 4.5 and 101 nM (Table 1). The scFv with the highest affinity, clone 43 (SEQ ID NOs: 1 and 2), was used for the generation of the scFv [123 x ds16 x 33]. Recently a fifth scFv (clone 52; SEQ ID NOs: 9 and 10) was isolated, which is currently characterized.
Table 1: Expression yields and equilibrium binding constants (K_D) of the CD123 scFvs.

<table>
<thead>
<tr>
<th></th>
<th>19</th>
<th>26</th>
<th>43</th>
<th>48</th>
<th>52*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yield (mg/1 E.coli culture)</td>
<td>0.75</td>
<td>2.75</td>
<td>0.65</td>
<td>0.72</td>
<td>-</td>
</tr>
<tr>
<td>K_D (nM)</td>
<td>19.8 ± 3.1</td>
<td>101 ± 7.1</td>
<td>4.5 ± 0.6</td>
<td>56.1 ± 3.8</td>
<td>-</td>
</tr>
</tbody>
</table>

* characterization in progress

Example 3: Construction, expression and binding characteristics of sctb [123 x ds16 x 33]

For the construction of the sctb [123 x ds16 x 33] expression vector the already existing vector pSecTag2HygroC- STREP-His-CD33xdsCD16xCD33 was used. To generate the expression vector for the sctb [33 x ds16 x 33], the coding sequence for the CD33-specific scFv was excised from the vector pet27b(+)-Strep-His-CD33-ETA-KDEL (Schwemmlein et al, 2006) and cloned as an SfiI cassette into the vector pSecTag2HygroC- STREP-His-dsCD19xdsCD16xdsCD19 (Kellner et al, 2008), replacing the coding sequences for the N-terminal dsCD19-specific scFv, and thus generating pSecTag2HygroC- STREP-His-CD33xdsCD16xCD33. To produce the vector pSecTag2HygroC- STREP-His-CD33xdsCD16xCD33, the sequence coding for the CD33-specific scFv was amplified by PCR from pet27b(+)-Strep-His-CD33-ETA-KDEL and ligated into pSecTag2HygroC- STREP-His-CD33xdsCD16xCD319, using Xhol/EcoRV restriction sites, and replacing the coding sequences for the C-terminal dsCD19-specific scFv. The sequence coding for the CD123-specific scFv was excised from the pAK400-CD123scFv expression construct and cloned as a SfiI-cassette into the vector pSecTag2HygroC- STREP-His-CD33xdsCD16xCD33. Thereby the vector pSecTag2HygroC- STREP-His-CD123xdsCD16xCD33 was produced (comprising the nucleic acid sequence as shown in SEQ ID NO:27). Correct construction of the final constructs was confirmed by DNA sequence analysis on an AppliedBiosystems automated DNA sequencer (ABI Prism 310 Genetic Analyzer; Perkin-Elmer, Ueberlingen, Germany).

For expression of the recombinant sctb [123 x ds16 x 33], 293T cells were transfected with the respective expression vector using the calcium phosphate technique including chloroquine. After 10 h, the transfection medium was replaced by fresh culture medium. Supernatants were collected every day for 5 d and combined. Supernatants were analyzed for the presence of antibody fragments by flow cytometry. For expression of the control sctb
ds[19 x 16 x 19] specific for the cell surface antigen CD 19, 293T cells were stably transfected with the respective expression vector and cultured under permanent selection with hygromycin C in a mini-PERM bioreactor (Greiner Bio-One, Frickenhausen, Germany) with a dialysis membrane of 12.5 kDa in accordance with the manufacturer's instructions. The medium containing recombinant protein was usually collected 4 times in a period of two weeks. The recombinant His-tagged proteins were enriched by affinity chromatography with nickel-nitrilotriacetic acid agarose (NTA) beads (Qiagen, Hilden, Germany) and finally dialyzed against phosphate-buffered saline (PBS). The average yield of the purified sctb [123 x ds16 x 33] was 0.1 mg per liter of culture medium.

Eluted protein was analyzed by reducing sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) using standard procedures (Laemmli, 1970). Gels were stained with Coomassie brilliant blue R250 (Sigma-Aldrich, Taufkirchen, Germany). In Western blot experiments, the recombinant protein was detected with an unconjugated penta-His antibody (Qiagen) and a secondary horseradish peroxidase-coupled goat anti-mouse IgG antibody (Dianova, Hamburg, Germany). Western Blots were developed using enhanced chemiluminescence reagents (Amersham Pharmacia Biotech, Freiburg, Germany). The electrophoretic mobility of the sctb [123 x ds16 x 33] corresponded to the mass of 89.4 kDa calculated from the sequence (Fig. 1A/B).

Immunofluorescence analysis was performed on a FACSCalibur instrument using CellQuest software (Becton Dickinson, Heidelberg, Germany) as described (Schwemmlein et al, 2006). Briefly, 1 x 10⁴ events were collected for each sample, and whole cells were analyzed using appropriate scatter gates to exclude cellular debris and aggregates. The recombinant protein sctb [123 x ds16 x 33] was detected using a penta-His antibody and a PE-conjugated goat anti-mouse-IgG antibody (DAKO Diagnostica GmbH, Hamburg, Germany). Sctb [123 x ds16 x 33] specifically reacted with CD1237CD167CD33⁺ U937 cells, CD123-transfected CD16⁻ /CD33⁻ 293 cells and CD16-transfected CD1237CD33⁻ CHO cells and showed no reaction with untransfected 293 or CHO cells (Fig. 2C). The sctb [123 x ds16 x 33] bound to U937, CD123-transfected 293 and CD16-transfected CHO cells with K_D-values of 17.8 ± 2.2, 18.8 ± 0.9 and 21.7 ± 1.8 nM, respectively (Table 2). The avidity of sctb [123 x ds16 x 33] to CD123 and CD33 double positive MOLM-13 cells was 13.5 ± 0.6 nM (Table 2). K_D values were determined by calibrated flow cytometry, as described (Benedict et al, 1997). The highest mean fluorescence value was set to 100%, and all data points were normalized to this value. The experiments were repeated 6 times. The K_D values were calculated using a nonlinear regression curve fit.

The ability of sctb [123 x ds16 x 33] to simultaneously bind all three antigens was tested in flow cytometry analyses. In this experimental setup CD1237CD167CD33⁺ U937 cells were
incubated with sctb [123 x ds16 x 33] and stained in parallel with the recombinant fusion proteins CD123ex-RFP and CD16ex-GFP. These proteins contain the extracellular domain (ex) of the cell surface antigens CD123 and CD16, genetically fused to the red fluorescence protein (RFP) and the green fluorescence protein (GFP), respectively. After extensive washing and removing unbound sctb, CD123ex-RFP and CD16ex-GFP, RFP and GFP double positive cells were detected. This result proved the simultaneous binding of all three scFvs to their respective target antigens.

To determine the in vitro serum stability of sctb [123 x ds16 x 33], aliquots of the recombinant protein at a sub-saturating concentration of 2 pg/ml were incubated at 37°C (day 5) in human serum or stored at -20°C and thawed up at defined time points (day 0-4). The residual binding activity was measured by flow cytometry (as described above). The experiment was repeated four times and results were fitted to a monoexponential decay.

<table>
<thead>
<tr>
<th></th>
<th>CD 16</th>
<th>CD33</th>
<th>CD 123</th>
<th>CD33/CD123</th>
</tr>
</thead>
<tbody>
<tr>
<td>K_D (nM)</td>
<td>21.7 ± 1.8</td>
<td>17.8 ± 2.2</td>
<td>18.8 ± 0.9</td>
<td>13.5 ± 0.6</td>
</tr>
<tr>
<td>Stable in human serum at 37°C</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
</tbody>
</table>

Table 2: Equilibrium binding constants (K_D) and stability in human serum at 37°C for 5 days of the scFvs CD123, CD33 and CD16 in the sctb [123 x ds16 x 33].

Example 4: ADCC of established acute myeloid leukaemia-derived cell-lines mediated by sctb [123 x ds16 x 33]

To determine the ability of sctb [123 x ds16 x 33] in mediating ADCC, AML-derived cell-lines were incubated with the sctb and with freshly prepared unstimulated MNCs from unrelated healthy donors (Fig. 4).

For this, citrate buffered peripheral blood from healthy volunteers was obtained after receiving informed consent and with the approval of the Ethics Committee of the University of Erlangen-Nuremberg. MNCs were enriched by Lymphoflot (Biotest, Dreieich, Germany) Ficoll density centrifugation in Leukosep tubes (Greiner, Frickenhausen, Germany) according to manufacturers’ instructions, and suspended in RPMI 1640 Glutamax-I medium containing 10% FCS and penicillin and streptomycin at 100 units/mL and 100 mg/mL, respectively. Viability was verified by Trypan blue exclusion and exceeded 95%.

ADCC assays, using MNCs from healthy donors as effector cells, were performed in triplicate using a 3-hour 51Cr release assay as described (Elsasser *et al.*, 1996). Dose-response curves
were recorded using several equimolar 5-fold serial dilutions of the respective antibody fragments at a constant effector to target (E:T) cell ratio of 40:1 MNCs to target cells. Background lysis induced by MNCs alone was subtracted from each data point, and EC₅₀ values (concentration of an antibody fragment producing 50% of maximum specific lysis) were calculated by using a sigmoidal dose-response curve fit. The experiments were repeated 4 times and mean values are reported.

In these ADCC reactions the sctb [123 x ds16 x 33] mediated effective tumor cell lysis at low picomolar concentrations with EC₅₀-values of 13 pM for MOLM-13 (Fig. 4A) and 201 pM for THP-1 (Fig. 4B) whereas a control sctb was ineffective. The maximal specific lysis observed for MOLM-13 cells was greater than 50 % and for THP-1 greater than 30 % in a 3 h assay.

Example 5: Graphical and statistical analysis

Graphical and statistical analyses were performed using Graph Pad Prism Software (Graph Pad Software Inc, San Diego, CA) and Microsoft EXCEL. Group data were reported as means ± standard error of the mean (SEM). Differences between groups were analyzed using unpaired Student t test. P values < 0.05 were considered significant.

Example 6: ADCC of primary leukaemia cells from patients mediated by sctbs [123 x ds16 x 33], [123 x ds16 x 123] and [33 x ds16 x 33]

For these experiments, isolated MNCs from either peripheral blood or bone marrow of seven patients were used in ADCC reactions. Overall, six peripheral blood and two bone marrow samples were studied. MNCs from one unrelated healthy donor per AML patient sample were used as effector cells. ADCC assays were performed as described above (Example 4). For direct comparison of the potencies of the dual targeting and mono targeting sctbs in ADCC of primary leukaemia cells, the previously published sctbs [33 x ds16 x 33] (Singer et al., 2010) and [123 x ds16 x 123] (Kugler et al. 2010) were also carried along. All three sctbs showed potent lysis of primary AML cells in a concentration-dependent manner (Fig. 5). Four representative ADCC reactions of samples from patients 1 and 2 (peripheral blood; Fig 5A+B) and patients 6 and 7 (bone marrow; Fig 5C+D) are depicted. At a concentration of 5 nM, all three recombinant proteins produced potent specific lysis, however, in 4/8 samples, the dual targeting sctb [123 x ds16 x 33] reached the highest extent of lysis at this particular concentration. This finding was confirmed when ADCC data from all six peripheral blood samples were combined (Fig 5E). The EC₅₀ values derived from this data set were -250, -130, and -250 pM for the sctbs [123 x ds16 x 33], [123 x ds16 x 123] and [33 x ds16 x 33], respectively. Maximum specific lysis was -25%, -19% and -19% of input cells, respectively.
References:

Brinkmann U, Lee BK and Pastan I. Recombinant Immunotoxins Containing the VH or VL Domain of Monoclonal Antibody B3 fused to Pseudomonas Exotoxin. J. Immunology. 1993; 150:2774-2782.

CLAIMS

1. A molecule having binding specificities for
 (a) CD123;
 (b) CD16; and
 (c) CD33.

2. The molecule according to claim 1, wherein the binding specificities are conferred by
 \(V_H \) and/or \(V_L \) domains.

3. The molecule according to claim 1, wherein the binding specificities are conferred by
 ligands, anticalins, adnectins, affibodies or DARPs.

4. The molecule according to any one of claims 1 to 3, wherein the binding portions of
 the molecule conferring the specificities to (a), (b) and (c) are polypeptides.

5. The molecule according to any one of claims 1 to 4, which is a single polypeptide
 chain.

6. The molecule according to any one of claims 1 to 5, wherein the binding portions of
 the molecule conferring the specificities to (a), (b) and (c) are linked by a linker.

7. The molecule according to any one of claims 1 to 6, wherein the molecule comprises
 (d) a first immunoglobulin domain comprising a \(V_L \) domain linked to a \(V_H \) domain,
 wherein the immunoglobulin domain specifically binds to CD123;
 (e) a second immunoglobulin domain comprising a \(V_L \) domain linked to a \(V_H \) domain,
 wherein the immunoglobulin domain specifically binds to CD16; and
 (f) a third immunoglobulin domain comprising a \(V_L \) domain linked to a \(V_H \) domain,
 wherein the immunoglobulin domain specifically binds to CD33.

8. The molecule of claim 7, wherein at least one immunoglobulin domain comprises at
 least two cysteine residues capable of forming intramolecular disulfide bridges.

9. The molecule of any one of claims 1 to 8, further comprising at least one additional
 (poly)peptide.
10. The molecule of any one of claims 7 to 9, wherein the first immunoglobulin domain comprises the amino acid sequence of SEQ ID NO: 2.

11. A nucleic acid molecule encoding the molecule of any one of claims 4 to 10.

12. A diagnostic composition comprising at least one of
 (g) the molecule of any one of claims 1 to 10; or
 (h) the nucleic acid molecule of claim 11.

13. A pharmaceutical composition comprising at least one of
 (i) the molecule of any one of claims 1 to 10; or
 (j) the nucleic acid molecule of claim 11.

14. The molecule of any one of claims 1 to 10 or the nucleic acid molecule of claim 11 for use in the treatment of acute myeloid leukaemia and/or myelodysplastic syndrome.

15. The molecule of any one of claims 1 to 10 or the nucleic acid molecule of claim 11 for use in the treatment of acute myeloid leukaemia and/or myelodysplastic syndrome, wherein the nucleic acid molecule or polypeptide is to be administered in a remission phase for acute myeloid leukaemia or after diagnosis of myelodysplastic syndrome.
Figure 1
Figure 2
Figure 4
Figure 5
<table>
<thead>
<tr>
<th>Box No. I</th>
<th>Nucleotide and/or amino acid sequence(s) (Continuation of item 1.b of the first sheet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>With regard to any nucleotide and/or amino acid sequence disclosed in the international application and necessary to the claimed invention, the international search was carried out on the basis of:</td>
</tr>
<tr>
<td>a.</td>
<td>(means)</td>
</tr>
<tr>
<td></td>
<td>□ on paper</td>
</tr>
<tr>
<td></td>
<td>□ in electronic form</td>
</tr>
<tr>
<td>b.</td>
<td>(time)</td>
</tr>
<tr>
<td></td>
<td>□ in the international application as filed</td>
</tr>
<tr>
<td></td>
<td>□ together with the international application in electronic form</td>
</tr>
<tr>
<td></td>
<td>□ subsequently to this Authority for the purpose of search</td>
</tr>
<tr>
<td>2.</td>
<td>□ In addition, in the case that more than one version or copy of a sequence listing and/or table relating thereto has been filed or furnished, the required statements that the information in the subsequent or additional copies is identical to that in the application as filed or does not go beyond the application as filed, as appropriate, were furnished.</td>
</tr>
<tr>
<td>3.</td>
<td>Additional comments:</td>
</tr>
</tbody>
</table>
INTERNATIONAL SEARCH REPORT

PCT/EP2010/069271

A. CLASSIFICATION OF SUBJECT MATTER

INV. C07K16/28 C07K16/46

ADD.

According to International Patent Classification (IPC) or to both national classification and IPC.

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

- C07K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched.

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

- EPO-Internal
- EMBASE

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>Wo 2009/007124 Al (FRIEDRICH ALEXANDER UNI [DE]; KELLNER CHRISTIAN [DE]; SINGER HEI KO [DE]) 15 January 2009 (2009-01-15) cited in the application example 16 claims 1.5-6</td>
<td>1-9, II-15</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:
 - "X" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 - "Y" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 - "A" document member of the same patent family

Date of the actual completion of the international search: 24 January 2011

Date of mailing of the international search report: 07/02/2011

Name and mailing address of the ISA:

European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Fax: (+31-70) 340-3016

Authorized officer: Bumb, Peter

Form PCT/ISA/210 (second sheet) (April 2005)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>--</td>
<td>-----------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>WO 2009007124 Al</td>
<td>15-01-2009</td>
<td>AU 2008274494 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2694721 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 101802010 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2014680 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2185595 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2010291112 Al</td>
</tr>
<tr>
<td>WO 2009070844 Al</td>
<td>11-06-2009</td>
<td>AU 2008331436 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2706337 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 101896200 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2231187 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20100094527 A</td>
</tr>
</tbody>
</table>