Title: HIV INHIBITING 5-HETEROCYCLYL PYRIMIDINES

Cₖ₁,alkyloxy carbonyl; R² is OH; halo; optionally substituted Cₖ₁,alkyl; C₂,alkenyl or C₂,alkynyl; substituted carbonyl; carboxyl; CN; nitro; amino; substituted amino; polyhalomethyl; polyhalomethylthio; -S(O)₃R²; Cₖ₁=NHOR; R² is CN; amino; substituted amino; optionally substituted C₁,alkyl; halo; optionally substituted C₁,alkoxy; substituted carbonyl; -CH₂-NH-C(O)-R²; optionally substituted C₁,alkoxy- s(C₁,alkyl); substituted Cₖ₂,alkenyl or C₂,₆ alkynyl; -C(C-N=O)-R; C₁,alkyl; R² or -X₁-R²; X₁ is -NR², -O-, C(O)-, CHO-, C(OH)-, ₅₋₅-
HIV INHIBITING 5-HETEROXYCLYL PYRIMIDINES

The present invention is concerned with pyrimidine derivatives having HIV (Human Immunodeficiency Virus) replication inhibiting properties. The invention further relates to methods for their preparation and pharmaceutical compositions comprising them. The invention also relates to the use of said compounds in the prevention or the treatment of HIV infection.

Resistance of the HIV virus against currently available HIV drugs continues to be a major cause of therapy failure. This has led to the introduction of combination therapy of two or more anti-HIV agents usually having a different activity profile. Significant progress was made by the introduction of HAART therapy (Highly Active Anti-Retroviral Therapy), which has resulted in a significant reduction of morbidity and mortality in HIV patient populations treated therewith. HAART involves various combinations of nucleoside reverse transcriptase inhibitors (NRTIs), non-nucleoside reverse transcriptase inhibitors (NNRTIs) and protease inhibitors (PIs). Current guidelines for antiretroviral therapy recommend such triple combination therapy regimen for initial treatment. However, these multidrug therapies do not completely eliminate HIV and long-term treatment usually results in multidrug resistance. In particular, half of the patients receiving anti-HIV combination therapy do not respond fully to the treatment, mainly because of resistance of the virus to one or more drugs used. It also has been shown that resistant virus is carried over to newly infected individuals, resulting in severely limited therapy options for these drug-naive patients.

Therefore there is a continued need for new combinations of active ingredients that are effective against HIV. New types of anti-HIV effective active ingredients, differing in chemical structure and activity profile are useful in new types of combination therapy. Finding such active ingredients therefore is a highly desirable goal to achieve.

The present invention is aimed at providing particular novel series of pyrimidine derivatives having HIV replication inhibiting properties. WO 99/50250, WO 00/27825 and WO 01/85700 disclose certain substituted aminopyrimidines and WO 99/50256 and EP-834 507 disclose aminotriazines having HIV replication inhibiting properties.

The compounds of the invention differ from prior art compounds in structure, pharmacological activity and/or pharmacological potency. It has been found that the introduction of a heterocyclyl group in the 5-position of specifically substituted pyrimidines results in compounds the compounds not only acting favorably in terms of their capability to inhibit the replication of Human Immunodeficiency Virus (HIV), but
also by their improved ability to inhibit the replication of mutant strains, in particular strains which have become resistant to one or more known NNRTI drugs (Non Nucleoside Reverse Transcriptase Inhibitor drugs), which strains are referred to as drug or multidrug resistant HIV strains.

Thus in one aspect, the present invention concerns compounds of formula

![Chemical Structure](image)

the N-oxides, pharmaceutically acceptable addition salts, quaternary amines or stereochemically isomeric forms thereof, wherein

- \(-a^1=-a^2=a^3=a^4\) represents a bivalent radical of formula
 - \(-\text{CH}=\text{CH}-\) (a-1);
 - \(-\text{N}=\text{CH}-\) (a-2);
 - \(-\text{N}=\text{CH}=\text{N}-\) (a-3);
 - \(-\text{N}=\text{CH}=\text{N}=\) (a-4);
 - \(-\text{N}=\text{N}=\text{CH}=\text{CH}-\) (a-5);

- \(-b^1=b^2=b^3=b^4\) represents a bivalent radical of formula
 - \(-\text{CH}=\text{CH}=\text{CH}-\) (b-1);
 - \(-\text{N}=\text{CH}=\text{CH}-\) (b-2);
 - \(-\text{N}=\text{CH}=\text{N}=\) (b-3);
 - \(-\text{N}=\text{CH}=\text{N}=\) (b-4);
 - \(-\text{N}=\text{N}=\text{CH}=\text{CH}-\) (b-5);

n is 0, 1, 2, 3 and in case \(-a^1=-a^2=a^3=a^4\) is (a-1), then n may also be 4;
m is 0, 1, 2, 3 and in case \(-b^1=b^2=b^3=b^4\) is (b-1), then m may also be 4;
each \(R^1\) independently is hydrogen; aryl; formyl; \(C_{1-6}\)alkylcarbonyl; \(C_{1-6}\)alkyl;

\(C_{1-6}\)alkyloxyacyarbonyl; \(C_{1-6}\)alkyl substituted with formyl, \(C_{1-6}\)alkyloxyacyarbonyl, \(C_{1-6}\)alkyloxyacyarbonyl, or with \(C_{1-6}\)alkyloxyacyarbonyloxy;
each \(R^2\) independently is hydroxy; halo; \(C_{1-6}\)alkyl optionally substituted with one, two or three substituents each independently selected from halo, cyano or \(-\text{C}(=\text{O})\text{R}^6\); \(C_3\)-cycloalkyl; \(C_{2-6}\)alkenyl optionally substituted with one, two or three substituents each independently selected from halo, cyano or \(-\text{C}(=\text{O})\text{R}^6\); \(C_{1-6}\)alkynyl optionally substituted with one, two or three substituents each independently selected from halo, cyano or \(-\text{C}(=\text{O})\text{R}^6\); \(C_{1-6}\)alkyloxyacyarbonyl; carboxyl; cyano; nitro; amino;
mono- or di(C₁₋₆alkyl)amino; polyhalomethyl; polyhalomethylthio; -S(=O)₂R⁶;
-NH-S(=O)₂R⁶; -C(=O)R⁶; H⁺; C(=O)NH₂H₃; NH₂C(=O)R⁶; C(=NH)R⁶;
R² is cyano; aminocarbonyl; amino; C₁₋₆alkyl; halo; C₁₋₆alkyloxy wherein C₁₋₆alkyl
may optionally be substituted with cyano; NHR¹₃; NR¹₃R¹₄; -C(=O)-NHR¹₃;
-C(=O)-NR¹₃R¹₄; -C(=O)-R¹₅; -CH=N-NH-C(=O)-R¹₆; C₁₋₆alkyl substituted with one,
two or three substituents each independently selected from halo, cyano, NR⁹R¹₀;
-C(=O)-NR⁹R¹₀; -C(=O)-C₁₋₆alkyl or R⁷; C₁₋₆alkyl substituted with hydroxy and a
second substituent selected from halo, cyano, NR⁹R¹₀; -C(=O)-NR⁹R¹₀;
-C(=O)-C₁₋₆alkyl or R⁷; C₁₋₆alkyloxyC₁₋₆alkyl optionally substituted with one, two or
three substituents each independently selected from halo, cyano, NR⁹R¹₀;
-C(=O)-NR⁹R¹₀; -C(=O)-C₁₋₆alkyl or R⁷; C₂₋₆alkenyl substituted with one, two or
three substituents each independently selected from halo, cyano, NR⁹R¹₀;
-C(=O)-NR⁹R¹₀; -C(=O)-C₁₋₆alkyl or R⁷; C₂₋₆alkynyl substituted with one, two or
three substituents each independently selected from halo, cyano, NR⁹R¹₀;
-C(=O)-NR⁹R¹₀; -C(=O)-C₁₋₆alkyl or R⁷; -C(=N-O-R⁸)-C₁₋₆alkyl; R⁷ or -X₃-R⁷;
X₁ is -NR¹⁻¹; -O⁻; -C(=O); -OH; -CHO⁻; -S⁻; -S(=O)₂R⁻; ;
R³ is cyano; aminocarbonyl; amino; C₁₋₆alkyl; halo; C₁₋₆alkyloxy wherein C₁₋₆alkyl
may optionally be substituted with cyano; NHR¹₃; NR¹₃R¹₄; -C(=O)-NHR¹₃;
-C(=O)-NR¹₃R¹₄; -C(=O)-R¹₅; -CH=N-NH-C(=O)-R¹₆; C₁₋₆alkyl substituted with one,
two or three substituents each independently selected from halo, cyano, NR⁹R¹₀;
-C(=O)-NR⁹R¹₀; -C(=O)-C₁₋₆alkyl or R⁷; C₁₋₆alkyl substituted with hydroxy and a second substituent selected from halo, cyano, NR⁹R¹₀;
-C(=O)-NR⁹R¹₀; -C(=O)-C₁₋₆alkyl or R⁷; C₁₋₆alkyloxyC₁₋₆alkyl optionally
substituted with one, two or three substituents each independently selected from
halo, cyano, NR⁹R¹₀; -C(=O)-NR⁹R¹₀; -C(=O)-C₁₋₆alkyl or R⁷; C₂₋₆alkenyl
substituted with one, two or three substituents each independently selected from
halo, cyano, NR⁹R¹₀; -C(=O)-NR⁹R¹₀; -C(=O)-C₁₋₆alkyl or R⁷; C₂₋₆alkynyl
substituted with one, two or three substituents each independently selected from
halo, cyano, NR⁹R¹₀; -C(=O)-NR⁹R¹₀; -C(=O)-C₁₋₆alkyl or R⁷; -C(=N-O-R⁸)-C₁₋₆alkyl; R⁷ or -X₃-R⁷;
X₂ is -NR¹⁻¹; -O⁻; -C(=O); -OH; -CHO⁻; -S⁻; -S(=O)₂R⁻; ;
R⁴ is halo; hydroxy; C₁₋₆alkyl optionally substituted with one, two or three substituents
each independently selected from halo, cyano or -C(=O)R⁶; C₂₋₆alkenyl
optionally substituted with one, two or three substituents each independently
selected from halo, cyano or -C(=O)R⁶; C₂₋₆alkynyl optionally substituted with one,
two or three substituents each independently selected from halo, cyano or
-C(=O)R⁶; C₃₋₇cycloalkyl; C₁₋₆alkyloxy; cyano; nitro; polyhaloC₁₋₆alkyl;
polyhaloC₁₋₆alkyloxy; aminocarbonyl; mono- or di(C₁₋₆alkyl)aminocarbonyl;
C₄₋₆alkyloxycarbonyl; C₄₋₆alkylcarbonyl; formyl; amino; mono- or di(C₄₋₆alkyl)amino or R²;

R⁵ is a 5- or 6-membered completely unsaturated ring system wherein one, two, three or four ring members are hetero atoms each independently selected from the group consisting of nitrogen, oxygen and sulfur, and wherein the remaining ring members are carbon atoms; and, where possible, any nitrogen ring member may optionally be substituted with C₁₋₄alkyl; which ring system may optionally be annelated with a benzene ring; and wherein any ring carbon atom, including any carbon of an optionally annelated benzene ring, may, each independently, optionally be substituted with a substituent selected from halo, hydroxy, mercapto, cyano, C₁₋₄alkyl, hydroxyC₁₋₄alkyl, carboxyC₁₋₄alkyl, C₁₋₄alkyloxyC₁₋₄alkyl, cyanoC₁₋₄alkyl, di(C₁₋₄alkyl)aminoC₁₋₄alkyl, Het-C₁₋₄alkyl, ary(C₁₋₄alkyl), polyhaloC₁₋₄alkyl, C₃₋₇cycloalkyl, C₂₋₆alkenyl, arylC₂₋₆alkenyl, C₄₋₆alkyloxy, -OCONH₂, polyhaloC₁₋₆alkyloxy, aryloxy, amino, mono- and di-C₁₋₄alkylaminocarbonyl, C₁₋₄alkyloxycarbonyl, aminocarbonyl, mono- and diC₁₋₆alkylaminocarbonyl, aryl, Het;

wherein Het is pyridyl, thienyl, furanyl, oxazolyl, isoxazolyl, imidazolyl, pyrazolyl, thiazolyl, thiadiazolyl, oxadiazolyl, quinolinyl, benzothiényl, benzo-furanyl; which each may optionally be substituted with one or two C₁₋₄alkyl radicals;

Q is hydrogen, C₁₋₄alkyl, halo, polyhaloC₁₋₄alkyl, or -NR₉R₁₀;
R⁶ is C₁₋₄alkyl, amino, mono- or di(C₁₋₄alkyl)amino or polyhaloC₁₋₄alkyl;
R⁷ is a monocyclic, bicyclic or tricyclic saturated, partially saturated or aromatic carbocycle or a monocyclic, bicyclic or tricyclic saturated, partially saturated or aromatic heterocycle, wherein each of said carbocyclic or heterocyclic ring systems may optionally be substituted with one, two, three, or four substituents each independently selected from halo, hydroxy, mercapto, C₁₋₄alkyl, hydroxyC₁₋₄alkyl, aminoC₁₋₄alkyl, mono or di(C₁₋₄alkyl)aminoC₁₋₄alkyl, formyl, C₁₋₄alkylcarbonyl, C₃₋₇cycloalkyl, C₁₋₄alkyloxy, C₁₋₄alkyloxycarbonyl, C₁₋₄alkylthio, cyano, nitro, polyhaloC₁₋₄alkyl, polyhaloC₁₋₄alkyloxy, aminocarbonyl, -CH(=N-O-R³), R⁷ᵃ, -X₃⁻R⁷ᵃ or R⁷ⁿ⁻C₁₋₄alkyl;
R⁷ᵃ is a monocyclic, bicyclic or tricyclic saturated, partially saturated or aromatic carbocycle or a monocyclic, bicyclic or tricyclic saturated, partially saturated or aromatic heterocycle, wherein each of said carbocyclic or heterocyclic ring systems may optionally be substituted with one, two, three, or four substituents each independently selected from halo, hydroxy, mercapto, C₁₋₄alkyl, hydroxy C₁₋₄alkyl, aminoC₁₋₄alkyl, mono or di(C₁₋₄alkyl)aminoC₁₋₄alkyl, formyl, C₁₋₄alkylcarbonyl,
C₃₋₇cycloalkyl, C₁₋₈alkyloxy, C₁₋₈alkyloxy carbonyl, C₁₋₈alkylthio, cyano, nitro, polyhaloC₁₋₈alkyl, polyhaloC₁₋₈alkyloxy, aminocarboxyl, -CH(=N-O-R⁸); R⁸ is hydrogen, C₁₋₈alkyl, aryl or arylC₁₋₈alkyl;
R⁹ and R¹⁰ each independently are hydrogen; C₁₋₈alkyl; C₁₋₈alkylcarboxyl;
C₁₋₈alkyloxy carbonyl; amino; mono- or di(C₁₋₈alkyl) aminocarboxyl; -CH(=NR¹¹) or R⁷, wherein each of the aforementioned C₁₋₈alkyl groups may optionally and each individually be substituted with one or two substituents each independently selected from hydroxy, C₁₋₈alkyloxy, hydroxyC₁₋₈alkyloxy, carboxyl, C₁₋₈alkyloxy carbonyl, cyano, amino, imino, mono- or di(C₁₋₄alkyl) amino, polyhalomethyl, polyhalomethoxy, polyhalomethylthio, -S(=O)ᵢR⁶, -NH-S(=O)ᵢR⁶, -C(=O)R⁶, -NH(C(=O)H, -C(=O)NHNH₂, -NHC(=O)R⁶, -C(=NH)R⁶, R⁷; or R⁹ and R¹⁰ may be taken together to form a bivalent or trivalent radical of formula

-CH₂-CH₂-CH₂-CH₂- (d-1)
-CH₂-CH₂-CH₂-CH₂- (d-2)
-CH₂-CH₂-O-CH₂-CH₂- (d-3)
-CH₂-CH₂-S-CH₂-CH₂- (d-4)
-CH₂-CH₂-NR¹²-CH₂-CH₂- (d-5)
-CH₂-CH=CH-CH₂- (d-6)
=CH-CH=CH-CH=CH- (d-7)
R¹¹ is cyano; C₁₋₄alkyl optionally substituted with C₁₋₄alkyloxy, cyano, amino, mono- or di(C₁₋₄alkyl) amino or aminocarboxyl; C₁₋₄alkyl carbonyl; C₁₋₄alkyloxy carbonyl; aminocarboxyl; mono- or di(C₁₋₄alkyl) aminocarboxyl;
R¹² is hydrogen or C₁₋₄alkyl;
R¹³ and R¹⁴ each independently are C₁₋₄alkyl optionally substituted with cyano or aminocarboxyl, C₂₋₆alkenyl optionally substituted with cyano or aminocarboxyl, C₂₋₆alkynyl optionally substituted with cyano or aminocarboxyl;
R¹⁵ is C₁₋₄alkyl substituted with cyano or aminocarboxyl;
R¹⁶ is C₁₋₈alkyl optionally substituted with cyano or aminocarboxyl, or R⁷;
each p is 1 or 2;
each aryl is phenyl or phenyl substituted with one, two, three, four or five substituents each independently selected from halo, hydroxy, mercapto, C₁₋₆alkyl, hydroxy-C₁₋₆alkyl, aminoC₁₋₆alkyl, mono or di(C₁₋₆alkyl) aminoC₁₋₆alkyl, C₁₋₆alkyl carbonyl, C₃₋₇cycloalkyl, C₁₋₆alkyloxy, C₁₋₆alkyloxy carbonyl, C₁₋₆alkylthio, cyano, nitro, polyhaloC₁₋₆alkyl, polyhaloC₁₋₆alkyloxy, aminocarboxyl, Het or

-X₃-Het.

The present invention also relates to the use of a compound for the manufacture of a medicament for the treatment or prevention of HIV infection, wherein the compound has the formula (I) as specified herein.
As used hereinbefore or hereinafter C_{1-4}alkyl as a group or part of a group defines straight or branched chain saturated hydrocarbon radicals having from 1 to 4 carbon atoms such as methyl, ethyl, propyl, 1-methylethyl, butyl; C_{1-4}alkyl as a group or part of a group defines straight or branched chain saturated hydrocarbon radicals having from 1 to 6 carbon atoms such as the group defined for C_{1-4}alkyl and pentyl, hexyl, 2-methylbutyl and the like; C_{2-6}alkyl as a group or part of a group defines straight or branched chain saturated hydrocarbon radicals having from 2 to 6 carbon atoms such as ethyl, propyl, 1-methylethyl, butyl, pentyl, hexyl, 2-methylbutyl and the like; C_{3-7}cycloalkyl is generic to cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl and cycloheptyl; C_{2-6}alkenyl defines straight and branched chain hydrocarbon radicals having from 2 to 6 carbon atoms containing a double bond such as ethenyl, propenyl, butenyl, pentenyl, hexenyl and the like; C_{2-6}alkynyl defines straight and branched chain hydrocarbon radicals having from 2 to 6 carbon atoms containing a triple bond such as ethynyl, propynyl, butynyl, pentynyl, hexynyl and the like. Preferred amongst C_{2-6}alkenyl and C_{2-6}alkynyl are the unsaturated analogs having from 2 to 4 carbon atoms, i.e. C_{2-4}alkenyl and C_{2-4}alkynyl respectively.

In a number of instances the radicals C_{1-6}alkyl, C_{2-6}alkenyl, C_{2-6}alkynyl or C_{1-6}alkyl-oxoC_{1-6}alkyl may be substituted with one, two or three substituents. Preferably, said radicals are substituted with up to 2 substituents, more preferably with one substituent.

A monocyclic, bicyclic or tricyclic saturated carbocycle represents a ring system consisting of 1, 2 or 3 rings, said ring system being composed of only carbon atoms and said ring system containing only single bonds; a monocyclic, bicyclic or tricyclic partially saturated carbocycle represents a ring system consisting of 1, 2 or 3 rings, said ring system being composed of only carbon atoms and comprising at least one double bond provided that the ring system is not an aromatic ring system; a monocyclic, bicyclic or tricyclic aromatic carbocycle represents an aromatic ring system consisting of 1, 2 or 3 rings, said ring system being composed of only carbon atoms; the term aromatic is well known to a person skilled in the art and designates cyclically conjugated systems of 4n + 2 electrons, that is with 6, 10, 14 etc. \pi-electrons (rule of Hückel); a monocyclic, bicyclic or tricyclic saturated heterocycle represents a ring system consisting of 1, 2 or 3 rings and comprising at least one heteroatom selected from O, N or S, said ring system containing only single bonds; a monocyclic, bicyclic or tricyclic partially saturated heterocycle represents a ring system consisting of 1, 2 or 3 rings and comprising at least one heteroatom selected from O, N or S, and at least one double bond provided that the ring system is not an aromatic ring system; a monocyclic, bicyclic or tricyclic aromatic heterocycle represents an aromatic ring
system consisting of 1, 2 or 3 rings and comprising at least one heteroatom selected from O, N or S.

Particular examples of monocyclic, bicyclic or tricyclic saturated carbocycles are cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, bicyclo[4,2,0]octanyl, cyclononanyl, cyclodecanyl, decahydronaphthalenyl, tetradecahydroanthracenyl and the like. Preferred are cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl; more preferred are cyclopentyl, cyclohexyl, cycloheptyl.

Particular examples of monocyclic, bicyclic or tricyclic partially saturated carbocycles are cyclopropenyl, cyclobutenyl, cyclopentenyl, cyclohexenyl, cycloheptenyl, cyclooctenyl, bicyclo[4,2,0]octenyl, cyclononenyl, cyclodecenyl, octahydronaphthalenyl, 1,2,3,4-tetrahydronaphthalenyl, 1,2,3,4,4a,9,9a,10-octahydro-anthracenyl and the like.

Particular examples of monocyclic, bicyclic or tricyclic aromatic carbocycles are phenyl, naphthalenyl, anthracenyl. Preferred is phenyl.

Particular examples of monocyclic, bicyclic or tricyclic saturated heterocycles are tetrahydrofuranyl, pyrrolidinyl, dioxolanyl, imidazolidinyl, thiazolidinyl, tetrahydrothienyl, dihydrooxazolyl, isothiazolidinyl, isoxazolidinyl, oxadiazolidinyl, triazolidinyl, thiadiazolidinyl, pyrazolidinyl, piperidinyl, hexahydropyrimidinyl, hexahydropyrazinyl, dioxanyl, morpholinyl, dithianyl, thiomorpholinyl, piperezinyl, thiprazinyl, decahydroquinolinyl, octahydroindolyl and the like. Preferred are tetrahydrofuranyl, pyrrolidinyl, dioxolanyl, imidazolidinyl, dihydrooxazolyl, triazolidinyl, piperidinyl, dioxanyl, morpholinyl, thiomorpholinyl, piperezinyl. Particularly preferred are tetrahydrofuranyl, pyrrolidinyl, dioxolanyl, piperidinyl, dioxanyl, morpholinyl, thiomorpholinyl, piperezinyl.

Particular examples of monocyclic, bicyclic or tricyclic partially saturated heterocycles are pyrrolyl, imidazolyl, pyrazolyl, 2,3-dihydrobenzofuranyl, 1,3-benzodioxolyl, 2,3-dihydro-1,4-benzodioxinyl, indolyl and the like. Preferred are pyrrolyl, imidazolyl, 2,3-dihydrobenzofuranyl, 1,3-benzodioxolyl, indolyl.

Particular examples of monocyclic, bicyclic or tricyclic aromatic heterocycles are azetyl, oxetylidenyl, pyrrolyl, furyl, thiyl, imidazolyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, pyrazolyl, triazolyl, thiadiazolyl, oxadiazolyl, tetrazolyl, pyridyl, pyrimidinyl, pyrazinyl, pyridazinyl, triazinyl, pyranyl, benzofuranyl, isobenzofuranyl, benzothienyl, isobenzothienyl, indolizinyl, indolyl, isoindolyl, benzoxazolyl, benzimidazolyl, indazolyl, benzisoxazolyl, benzothiazolyl, benzopyrazolyl, benzoxadiazolyl, benzothiadiazolyl, benzotriazolyl, purinyl, quinolinyl, isoquinolinyl,
cinnolinyl, quinolizinyl, phthalazinyl, quinoxaliny1, quinazolinyl, naphthridinyl, 5
pteridinyl, benzopyranyl, pyrrolopyridyl, thienopyridyl, furopyridyl, isothiazolopyridyl,
thiazolopyridyl, isoxazolopyridyl, oxazolopyridyl, pyrazolopyridyl, imidazopyridyl,
pyrrolopyrazinyl, thienopyrazinyl, furopyrazinyl, isothiazolopyrazinyl, thiazolo-
pyrazinyl, isoxazolopyrazinyl, oxazolopyrazinyl, pyrazolopyrazinyl, imidazopyrazinyl,
pyrrolopyrimidinyl, thienopyrimidinyl, furopyrimidinyl, isothiazolopyrimidinyl,
thiazolopyrimidinyl, isoxazolopyrimidinyl, oxazolopyrimidinyl, pyrazolopyrimidinyl,
imidazopyrimidinyl, pyrrolopyridazinyl, thienopyridazinyl, furopyridazinyl,
isothiazolopyridazinyl, thiazolopyridazinyl, isoxazolopyridazinyl, oxazolopyridazinyl,
pyrazolopyridazinyl, imidazopyridazinyl, oxadiazolopyridyl, thiadiazolopyridyl,
triazolopyridyl, oxadiazolopyrazinyl, thiadiazolopyrazinyl, triazolopyrazinyl,
oxadiazolopyrimidinyl, thiadiazolopyrimidinyl, triazolopyrimidinyl, oxadiazolo-
pyridazinyl, thiadiazolopyridazinyl, triazolopyridazinyl, imidazo-
thiazolyl, imidazothiazolyl, isoxazolotriazinyl, isothiazolotriazinyl, pyrazolotriazinyl,
oxazolotriazinyl, thiazolotriazinyl, imidazotriazinyl, oxadiazolotriazinyl, thiadiazolo-
triazinyl, triazolotriazinyl, carbazolyl, acridinyl, phenazinyl, phenothiazinyl,
phenoxazinyl and the like.

Preferred aromatic heterocycles are monocyclic or bicyclic aromatic heterocycles.

Interesting monocyclic, bicyclic or tricyclic aromatic heterocycles are pyrrolyl, furyl,
thienyl, imidazolyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, pyrazolyl, triazolyl,

thiadiazolyl, oxadiazolyl, tetrazolyl, pyridyl, pyrimidinyl, pyrazinyl, pyridazinyl,

triazinyl, pyranyl, benzofuryl, isobenzofuryl, benzothienyl, isobenzothienyl, indolyl,
isoindolyl, benzoxazolyl, benzimidazolyl, indazolyl, benzisoxazolyl, benzisothiazolyl,
benzopyrazolyl, benzoazadiazolyl, benzothiadiazolyl, benzotriazolyl, purinyl,
quinolinyl, isoquinolinyl, phthalazinyl, quinoxalinyl, quinazolinyl, benzopyranyl,
pyrrolopyridyl, thienopyridyl, furopyridyl, isothiazolopyridyl, thiazolopyridyl,
isoxazolopyridyl, oxazolopyridyl, pyrazolopyridyl, imidazopyridyl, pyrrolopyrazinyl,
thienopyrazinyl, furropyrazinyl, isothiazolopyrazinyl, thiazolopyrazinyl, isoxazolo-
pyrazinyl, oxazolopyrazinyl, pyrazolopyrazinyl, imidazopyrazinyl, pyrrolopyrimidinyl,
thienopyrimidinyl, furropyrimidinyl, isothiazolopyrimidinyl, thiazolopyrimidinyl,
isoxazolopyrimidinyl, oxazolopyrimidinyl, pyrazolopyrimidinyl, imidazopyrimidinyl,
oxadiazolopyridyl, thiadiazolopyridyl, triazolopyridyl, oxadiazolopyrazinyl,
thiadiazolopyrazinyl, triazolopyrazinyl, oxadiazolopyrimidinyl, thiadiazolopyrimidinyl,

triazolopyrimidinyl, carbazolyl, acridinyl, phenazinyl, phenothiazinyl, phenoxazinyl and the like.

Particularly interesting aromatic heterocycles are pyrrolyl, furyl, thienyl, imidazolyl,

oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, pyrazolyl, triazolyl, thiadiazolyl,
oxadiazolyl, tetrazolyl, pyridyl, pyrimidinyl, pyrazinyl, pyridazinyl, triazinyl, pyranyl,
benzofuryl, isobenzofuryl, benzothienyl, isobenzothienyl, indolyl, isoindolyl,
benzoxazolyl, benzimidazolyl, indazolyl, benzisoxazolyl, benzisothiazolyl,
benzopyrazolyl, benzoaxadiazolyl, benzothiadiazolyl, benzotriazolyl, purinyl,
quinolinyl, isoquinolinyl, phthalazinyl, quinoxalinyl, quinazolinyl, and the like.

As used herein before, the term (=O) forms a carbonyl moiety when attached to a
carbon atom, a sulfoxide moiety when attached to a sulfur atom and a sulfonyl moiety
when two of said terms are attached to a sulfur atom.

The term carboxyl, carboxy or hydroxycarbonyl refer to a group –COOH.

The term halo is generic to fluoro, chloro, bromo and iodo. As used in the foregoing
and hereinafter, polyhalomethyl as a group or part of a group is defined as mono- or
polyhalosubstituted methyl, in particular methyl with one or more fluoro atoms, for
example, difluoromethyl or trifluoromethyl; polyhaloC₁₋₄alkyl or polyhaloC₁₋₆alkyl as a
group or part of a group is defined as mono- or polyhalosubstituted C₁₋₄alkyl or
C₁₋₆alkyl, for example, the groups defined in halomethyl, 1,1-difluoro-ethyl and the
like. In case more than one halogen atoms are attached to an alkyl group within the
definition of polyhalomethyl, polyhaloC₁₋₄alkyl or polyhaloC₁₋₆alkyl, they may be the
same or different.

R² is a 5- or 6-membered completely unsaturated ring system as specified herein. The
term completely unsaturated as used in this definition means that the ring contains the
maximum number of double bonds. In many instances the 5- or 6-membered ring
system will be aromatic. Particular subgroups of compounds in accordance with the
present invention therefore are those groups or subgroups as defined herein wherein R²
is a 5- or 6-membered aromatic ring system as specified herein. The radical Het in
particular may be any of the heterocycles mentioned in the groups of monocyclic,
bicyclic or tricycles specified above, that are covered by the general definition of Het,
e.g. pyrrolyl, furyl, thienyl, imidazolyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl,
pyrazolyl, triazolyl, thiadiazolyl, oxadiazolyl, tetrazolyl, pyridyl, pyrimidinyl,
pyrazinyl, pyridazinyl, triazinyl, pyrimidinyl, benzofuryl, isobenzofuryl, benzothienyl,
isobenzothienyl, indolyl, isoindolyl, benzoazolyl, benzimidazolyl, indazolyl,
benzisoxazolyl, benzothiaziazolyl, benzopyrazolyl, benzoxadiazolyl, benzothiadiazolyl,
benzotriazolyl, quinolinyl, isoquinolinyl, cinnolinyl, phthalazinyl, quinoxalinyl,
quinoxolinyl, naphthridinyl, benzopyranyl.

Whenever it occurs in the definition of the compounds of formula (I) or in any of the
subgroups specified herein, each aryl independently is as defined above in the
definition of the compounds of formulas (I) or each aryl can have any of the meanings specified hereinafter.

The term heterocycle in the definition of R⁷ or R⁷a is meant to include all the possible isomeric forms of the heterocycles, for instance, pyrrolyl comprises 1H-pyrrolyl and 2H-pyrrolyl.

The carbocycle or heterocycle in the definition of R⁷ or R⁷a may be attached to the remainder of the molecule of formula (I) through any ring carbon or heteroatom as appropriate, if not otherwise specified. Thus, for example, when the heterocycle is imidazolyl, it may be 1-imidazolyl, 2-imidazolyl, 4-imidazolyl and the like, or when the carbocycle is naphthalenyl, it may be 1-naphthalenyl, 2-naphthalenyl and the like.

When any variable (e.g. R⁷, X₃) occurs more than one time in any constituent, each definition of such variable is independent.

Any of the restrictions in the definitions of the radicals herein are meant to be applicable to the group of compounds of formula (I) as well as to any subgroup defined or mentioned herein.

Lines drawn from substituents into ring systems indicate that the bond may be attached to any of the suitable ring atoms.

For therapeutic use, salts of the compounds of formula (I) are those wherein the counter ion is pharmaceutically acceptable. However, salts of acids and bases which are non-pharmaceutically acceptable may also find use, for example, in the preparation or purification of a pharmaceutically acceptable compound. All salts, whether pharmaceutically acceptable or not are included within the ambit of the present invention.

The pharmaceutically acceptable addition salts as mentioned hereinafore are meant to comprise the therapeutically active non-toxic acid addition salt forms which the compounds of formula (I) are able to form. The latter can conveniently be obtained by treating the base form with such appropriate acids as inorganic acids, for example, hydrohalic acids, e.g. hydrochloric, hydrobromic and the like; sulfuric acid; nitric acid; phosphoric acid and the like; or organic acids, for example, acetic, propanoic, hydroxyacetic, 2-hydroxypropanoic, 2-oxopropanoic, oxalic, malonic, succinic, maleic, fumaric, malic, tartaric, 2-hydroxy-1,2,3-propanetricarboxylic, methanesulfonic, ethanesulfonic, benzenesulfonic, 4-methylbenzenesulfonic, cyclohexanesulfamic, 2-hydroxybenzoic, 4-amino-2-hydroxybenzoic and the like acids. Conversely the salt form can be converted by treatment with alkali into the free base form.
The compounds of formula (I) containing acidic protons may be converted into their therapeutically active non-toxic metal or amine addition salt forms by treatment with appropriate organic and inorganic bases. Appropriate base salt forms comprise, for example, the ammonium salts, the alkali and earth alkaline metal salts, e.g. the lithium, sodium, potassium, magnesium, calcium salts and the like, salts with organic bases, e.g. primary, secondary and tertiary aliphatic and aromatic amines such as methylamine, ethylamine, propylamine, isopropylamine, the four butylamine isomers, dimethylamine, diethylamine, diethanolamine, dipropylamine, diisopropylamine, di-n-butylamine, pyrrolidine, piperidine, morpholine, trimethylamine, triethylamine, tripropyamine, quinuclidine, pyridine, quinoline and isoquinoline, the benzathine, N-methyl-D-glucamine, 2-amino-2-(hydroxymethyl)-1,3-propanediol, hydabamine salts, and salts with amino acids such as, for example, arginine, lysine and the like. Conversely the salt form can be converted by treatment with acid into the free acid form. The term addition salt also comprises the hydrates and solvent addition forms which the compounds of formula (I) are able to form. Examples of such forms are e.g. hydrates, alcohohalates and the like.

The term “quaternary amine” as used hereinbefore defines the quaternary ammonium salts which the compounds of formula (I) are able to form by reaction between a basic nitrogen of a compound of formula (I) and an appropriate quaternizing agent, such as, for example, an optionally substituted alkylhalide, arylhalide or arylalkylhalide, e.g. methylbromide or benzylbromide. Other reactants with good leaving groups may also be used, such as alkyl trifluoromethanesulfonates, alkyl methanesulfonates, and alkyl p-toluenesulfonates. A quaternary amine has a positively charged nitrogen. Pharmaceutically acceptable counterions include chloro, bromo, iodo, trifluoroacetate and acetate. The counterion of choice can be introduced using ion exchange resins.

The N-oxide forms of the present compounds are meant to comprise the compounds of formula (I) wherein one or several tertiary nitrogen atoms are oxidized to the so-called N-oxide.

It will be appreciated that some of the compounds of formula (I) and their N-oxides, addition salts, quaternary amines and stereochemically isomeric forms may contain one or more centers of chirality and exist as stereochemically isomeric forms.

The term “stereochemically isomeric forms” as used hereinbefore defines all the possible stereoisomeric forms which the compounds of formula (I), and their N-oxides, addition salts, quaternary amines or physiologically functional derivatives may possess. Unless otherwise mentioned or indicated, the chemical designation of compounds
denotes the mixture of all possible stereochemically isomeric forms, said mixtures containing all diastereomers and enantiomers of the basic molecular structure as well as each of the individual isomeric forms of formula (I) and their N-oxides, salts, solvates or quaternary amines substantially free, i.e. associated with less than 10%, preferably less than 5%, in particular less than 2% and most preferably less than 1% of the other isomers. Thus, when a compound of formula (I) is for instance specified as (E), this means that the compound is substantially free of the (Z) isomer. In particular, stereogenic centers may have the R- or S-configuration; substituents on bivalent cyclic (partially) saturated radicals may have either the cis- or trans-configuration.

Compounds encompassing double bonds can have an E (entgegen) or Z (zusammen) stereochemistry at said double bond. The terms cis, trans, R, S, E and Z are well known to a person skilled in the art. Stereochemically isomeric forms of the compounds of formula (I) are intended to be embraced within the scope of this invention.

Some of the compounds of formula (I) may also exist in their tautomeric form. Such forms although not explicitly indicated in the above formula are intended to be included within the scope of the present invention.

Whenever used hereinafter, the term "compounds of formula (I)" is meant to also include their N-oxide forms, their salts, their quaternary amines and their stereochemically isomeric forms. Of special interest are those compounds of formula (I), which are stereochemically pure.

Particular subgroups of compounds of formula (I) or any of the subgroups of compounds of formula (I) specified herein which are the non-salt-forms, the salts, the N-oxide forms and stereochemically isomeric forms. Of interest amongst these are the non-salt-forms, the salts and stereochemically isomeric forms. As used herein, the term 'non-salt-form' refers to the form of a compound which is not a salt, which in most cases will be the free base form.

Whenever mention is made hereinbefore or hereinafter, that substituents can be selected each independently out of a list of numerous definitions, such as for example for R⁹ and R¹⁰, all possible combinations are intended which are chemically possible or which lead to chemically stable molecules.

It is to be understood that any of the subgroups of compounds of formulae (I) as defined herein, are meant to also comprise any prodrugs, N-oxides, addition salts,
quaternary amines, metal complexes and stereochemically isomorphic forms of such compounds.

Particular subgroups of the compounds of formula (I) are those compounds of formula (I), or any subgroup of compounds of formula (I) specified herein, wherein \(-a^1 = a^2 = a^3 = a^4\) is \(-\text{CH-CH=CH=CH-}\) (a-1).

Further subgroups of the compounds of formula (I) are those compounds of formula (I), or any subgroup of compounds of formula (I) specified herein, wherein \(-b^1 = b^2 = b^3 = b^4\) is \(-\text{CH=CH=CH=CH-}\) (b-1).

Further subgroups of the compounds of formula (I) are those compounds of formula (I), or any subgroup of compounds of formula (I) specified herein, wherein (a) \(n\) is 0, 1, 2, 3; or wherein (b) \(n\) is 0, 1 or 2; or (c) \(n\) is 0.

Other subgroups of the compounds of formula (I) are those compounds of formula (I), or any subgroup of compounds of formula (I) specified herein, wherein (a) \(m\) is 0, 1, 2, 3; or wherein (b) \(m\) is 0, 1 or 2; or (c) \(m\) is 2.

Still further subgroups of the compounds of formula (I) are those compounds of formula (I), or any subgroup of compounds of formula (I) specified herein, wherein (a) \(R^1\) is hydrogen; formyl; \(\text{C}_1\text{-alkylcarbonyl}\); \(\text{C}_1\text{-alkyl}\); \(\text{C}_1\text{-alkyloxycarbonyl}\); or (b) \(R^1\) is hydrogen; \(\text{C}_1\text{-alkyl}\); or (c) \(R^1\) is hydrogen.

Still further subgroups of the compounds of formula (I) are those compounds of formula (I), or any subgroup of compounds of formula (I) specified herein, wherein

(a) \(R^2\) is hydroxy; halo; \(\text{C}_1\text{-alkyl}\) optionally substituted with one substituent selected from halo, cyano or \(-\text{C}(=\text{O})\text{R}^6\); \(\text{C}_3\text{-cycloalkyl}\); \(\text{C}_2\text{-alkenyl}\) optionally substituted with one substituent selected from halo, cyano or \(-\text{C}(=\text{O})\text{R}^6\); \(\text{C}_1\text{-alkynyl}\) optionally substituted with one substituent selected from halo, cyano or \(-\text{C}(=\text{O})\text{R}^6\); \(\text{C}_1\text{-alkyloxycarbonyl}\); carboxyl; cyano; nitro; amino; mono- or di(\(\text{C}_1\text{-alkyl})\) amino; polyhalomethyl; polyhalomethylthio; \(-\text{S}(=\text{O})\text{R}^6\); \(-\text{NH-S}(=\text{O})\text{R}^6\); \(-\text{C}(=\text{O})\text{R}^6\); \(-\text{NHC}(=\text{O})\text{H}\); \(-\text{C}(=\text{O})\text{NH}_{\text{H}}\text{H}_2\); \(\text{NHC}(=\text{O})\text{R}^6\); \(\text{C}(=\text{NH})\text{R}^6\);

(b) \(R^2\) is hydroxy; halo; \(\text{C}_1\text{-alkyl}\) optionally substituted with one substituent selected from halo, cyano or \(-\text{C}(=\text{O})\text{R}^6\); \(\text{C}_2\text{-alkenyl}\) optionally substituted with one substituent selected from halo, cyano or \(-\text{C}(=\text{O})\text{R}^6\); \(\text{C}_2\text{-alkynyl}\) optionally substituted with one substituent selected from halo, cyano or \(-\text{C}(=\text{O})\text{R}^6\); \(\text{C}_1\text{-alkyloxycarbonyl}\); carboxyl; cyano; nitro; amino; mono- or di(\(\text{C}_1\text{-alkyl})\) amino; trifluoromethyl;
(c) \(R^2 \) is halo, C\(_{1-6}\)alkyl optionally substituted with cyano, C\(_{2-6}\)alkenyl optionally substituted with cyano, C\(_{1-6}\)alkynyl optionally substituted with cyano, C\(_{1-6}\)alkylcarboxyl, carboxyl, cyano, amino, mono(C\(_{1-6}\)alkyl)amino, di(C\(_{1-6}\)alkyl)amino;

(d) \(R^2 \) is halo, cyano, aminocarbonyl, C\(_{1-6}\)alkyloxy, C\(_{1-6}\)alkyl, C\(_{1-6}\)alkyl substituted with cyano or C\(_{2-6}\)alkenyl substituted with cyano;

(e) \(R^2 \) is halo, cyano, aminocarbonyl, C\(_{1-6}\)alkyl substituted with cyano or C\(_{2-6}\)alkenyl substituted with cyano;

(f) \(R^2 \) is cyano, aminocarbonyl; or (g) \(R^2 \) is cyano.

Still further subgroups of the compounds of formula (I) are those compounds of formula (I), or any subgroup of compounds of formula (I) specified herein, wherein

(a) \(R^{2a} \) is cyano; aminocarbonyl; amino; C\(_{1-6}\)alkyl; halo; C\(_{1-6}\)alkyloxy wherein C\(_{1-6}\)alkyl may optionally be substituted with cyano; NHR\(^{13} \); NR\(_{13-14}\); -C(H)NR\(_{13}\); C(=O)-NR\(_{13-14}\); -C(=O)-R\(^{15}\); -CH=NH-C(=O)-R\(^{16}\); C\(_{1-6}\)alkyl substituted with one substituent selected from halo, cyano, NR\(^{10}\); -C(=O)-NR\(^{9}\)R\(^{10}\); -C(=O)-C\(_{1-6}\)alkyl or R\(^{2}\); C\(_{1-6}\)alkyl substituted with hydroxy and a second substituent selected from halo, cyano, NR\(^{10}\); -C(=O)-NR\(^{9}\)R\(^{10}\); -C(=O)-C\(_{1-6}\)alkyl or R\(^{2}\); C\(_{1-6}\)alkyloxyC\(_{1-6}\)alkyl optionally substituted with one substituent selected from halo, cyano, NR\(^{9}\); -C(=O)-NR\(^{9}\)R\(^{10}\); -C(=O)-C\(_{1-6}\)alkyl or R\(^{2}\); C\(_{2-6}\)alkenyl substituted with one substituent selected from halo, cyano, NR\(^{9}\); -C(=O)-NR\(^{9}\)R\(^{10}\); -C(=O)-C\(_{1-6}\)alkyl or R\(^{2}\); C\(_{2-6}\)alkynyl substituted with one substituent selected from halo, cyano, NR\(^{9}\); -C(=O)-NR\(^{9}\)R\(^{10}\); -C(=O)-C\(_{1-6}\)alkyl or R\(^{2}\); C\(_{1-6}\)alkyl substituted with hydroxy and a second substituent selected from halo, cyano, -C(=O)-NR\(^{9}\)R\(^{10}\); C\(_{1-6}\)alkyl substituted with hydroxy and a second substituent selected from halo, cyano, -C(=O)-NR\(^{9}\)R\(^{10}\); C\(_{1-6}\)alkyl substituted with hydroxy and a second substituent selected from halo, cyano, -C(=O)-NR\(^{9}\)R\(^{10}\); C\(_{1-6}\)alkyl substituted with hydroxy and a second substituent selected from halo, cyano, -C(=O)-NR\(^{9}\)R\(^{10}\);

(b) \(R^{2a} \) is cyano; aminocarbonyl; amino; C\(_{1-6}\)alkyl; halo; C\(_{1-6}\)alkyloxy wherein C\(_{1-6}\)alkyl may optionally be substituted with cyano; NHR\(^{13} \); NR\(_{13-14}\); -C(H)NR\(_{13}\); C(=O)-NR\(_{13-14}\); -C(=O)-R\(^{15}\); -CH=NH-C(=O)-R\(^{16}\); C\(_{1-6}\)alkyl substituted with one substituent selected from halo, cyano, -C(=O)-NR\(^{9}\)R\(^{10}\); C\(_{1-6}\)alkyl substituted with hydroxy and a second substituent selected from halo, cyano, -C(=O)-NR\(^{9}\)R\(^{10}\); C\(_{1-6}\)alkyl substituted with hydroxy and a second substituent selected from halo, cyano, -C(=O)-NR\(^{9}\)R\(^{10}\);

(c) \(R^{2a} \) is halo, cyano, aminocarbonyl, C\(_{1-6}\)alkyl optionally substituted with cyano or aminocarbonyl, C\(_{2-6}\)alkenyl optionally substituted with cyano or aminocarbonyl;

(d) \(R^{2a} \) is halo, cyano, aminocarbonyl, C\(_{1-6}\)alkyl substituted with cyano or aminocarbonyl, or C\(_{2-6}\)alkenyl substituted with cyano or aminocarbonyl;
(e) R^{2a} is cyano, aminocarbonyl, C$_{1,4}$alkyl substituted with cyano or C$_{2,4}$alkenyl substituted with cyano;

(f) R^{2a} is cyano, aminocarbonyl, C$_{1,4}$alkyl substituted with cyano or C$_{2,4}$alkenyl substituted with cyano;

(g) R^{2a} is cyano, C$_{1,4}$alkyl substituted with cyano or C$_{2,4}$alkenyl substituted with cyano; or (h) R^{2a} is cyano.

Still further subgroups of the compounds of formula (I) are those compounds of formula (I), or any subgroup of compounds of formula (I) specified herein, wherein

(a) X_1 is $-\text{NR}^1$-, $-\text{O}$-, $-\text{S}$-, $-\text{S}(-\text{O})\text{R}^1$;

(b) X_1 is $-\text{NH}$-, $-\text{N(C$_{1,4}$alkyl)}$-, $-\text{O}$-, $-\text{S}$-, $-\text{S}(-\text{O})\text{R}^1$;

(c) X_1 is $-\text{NH}$-, $-\text{N(CH$_3$)$_2$}$-, $-\text{O}$-, $-\text{S}$-; (d) X_1 is $-\text{NH}$-, $-\text{O}$-, $-\text{S}$-;

(d) X_1 is $-\text{NH}$-, $-\text{O}$-; or (f) X_1 is $-\text{NH}$-.

Still other subgroups of the compounds of formula (I) are those compounds of formula (I), or any subgroup of compounds of formula (I) specified herein, wherein

(a) R^3 is cyano; aminocarbonyl; amino; C$_{1,4}$alkyl; halo; C$_{1,4}$alkyloxy wherein C$_{1,4}$alkyl may optionally be substituted with cyano; NHR13; NR13R14; -C(=O)-NHR13; -C(=O)-NR13R14; -C(=O)-R15; -CH=N-NH-C(=O)-R16; C$_{1,4}$alkyl substituted with one substituent selected from halo, cyano, NR9R10; -C(=O)-NR9R10; -C(=O)-C$_{1,4}$alkyl or R7; C$_{1,4}$alkyl substituted with hydroxy and a second substituent selected from halo, cyano, NR9R10; -C(=O)-NR9R10; -C(=O)-C$_{1,4}$alkyl or R7; C$_{1,4}$alkyloxyC$_{1,4}$alkyl optionally substituted with one substituent selected from halo, cyano, NR9R10; -C(=O)-NR9R10; -C(=O)-C$_{1,4}$alkyl or R7; C$_{2,6}$alkenyl substituted with one substituent selected from halo, cyano, NR9R10; -C(=O)-NR9R10; -C(=O)-C$_{1,4}$alkyl or R7; -C(=N-O-R8)-C$_{1,4}$alkyl; R7 or $-X_3$-R7; in particular

(b) R^3 is cyano; aminocarbonyl; amino; C$_{1,4}$alkyl; halo; C$_{1,4}$alkyloxy wherein C$_{1,4}$alkyl may optionally be substituted with cyano; NHR13; NR13R14; -C(=O)-NHR13; -C(=O)-NR13R14; -C(=O)-R15; -CH=N-NH-C(=O)-R16; C$_{1,4}$alkyl substituted with one substituent selected from halo, cyano, -C(=O)-NR9R10; C$_{1,4}$alkyl substituted with hydroxy and a second substituent selected from halo, cyano, -C(=O)-NR9R10; C$_{1,4}$alkyloxyC$_{1,4}$alkyl optionally substituted with one substituent selected from halo, cyano, -C(=O)-NR9R10; C$_{2,6}$alkenyl substituted with one substituent selected from halo, cyano, -C(=O)-NR9R10; C$_{2,6}$alkynyl substituted with one substituent selected from halo, cyano, -C(=O)-NR9R10;
(c) \(R^3 \) is halo, cyano, aminocarbonyl, \(C_{1,4} \),alkyl optionally substituted with cyano or aminocarbonyl, \(C_{2,4} \)alkenyl optionally substituted with cyano or aminocarbonyl;

(d) \(R^3 \) is halo, cyano, aminocarbonyl, \(C_{1,4} \)alkyl substituted with cyano or aminocarbonyl, or \(C_{2,4} \)alkenyl substituted with cyano or aminocarbonyl;

(e) \(R^3 \) is cyano, \(C_{1,4} \)alkyl substituted with cyano or \(C_{2,4} \)alkenyl substituted with cyano;

(f) \(R^3 \) is \(C_{1,4} \)alkyl substituted with cyano or \(C_{2,4} \)alkenyl substituted with cyano;

(g) \(R^3 \) is \(C_{2,4} \)alkyl substituted with cyano or \(C_{2,4} \)alkenyl substituted with cyano;

(h) \(R^3 \) is \(C_{2,4} \)alkenyl substituted with cyano;

(i) \(R^3 \) is ethenyl substituted with cyano;

(j) \(R^3 \) is (E)-2-cyanoethenyl

Still further subgroups of the compounds of formula (I) are those compounds of formula (I), or any subgroup of compounds of formula (I) specified herein, wherein

(a) \(R^4 \) is halo; hydroxy; \(C_{1,4} \)alkyl optionally substituted with one substituent selected from halo, cyano or \(-\text{C}(=\text{O})\text{R}^6 \); \(C_{2,4} \)alkenyl optionally substituted with one substituent selected from halo, cyano or \(-\text{C}(=\text{O})\text{R}^6 \); \(C_{2,4} \)alkynyl optionally substituted with one substituent selected from halo, cyano or \(-\text{C}(=\text{O})\text{R}^6 \); \(C_{3,7} \)alkycycloalkyl; \(C_{1,4} \)alkyloxy; cyano; nitro; polyhalo\(C_{1,4} \)alkyl; polyhalo\(C_{1,4} \)alkyl- oxy; aminocarbonyl; mono- or di(\(C_{1,4} \)alkyl)aminocarbonyl; \(C_{1,4} \)alkyloxy carbonyl; \(C_{1,4} \)alkylcarbonyl; formyl; amino; mono- or di(\(C_{1,4} \)alkyl)amino or \(R^7 \);

(b) \(R^4 \) is halo; hydroxy; \(C_{1,4} \)alkyl optionally substituted with one substituent selected from cyano; \(C_{2,4} \)alkenyl optionally substituted with cyano; \(C_{2,4} \)alkynyl optionally substituted with cyano; \(C_{3,7} \)cycloalkyl; \(C_{1,4} \)alkyloxy; cyano; nitro; trifluoromethyl; aminocarbonyl; mono- or di(\(C_{1,4} \)alkyl)aminocarbonyl; \(C_{1,4} \)alkyloxy carbonyl; \(C_{1,4} \)alkylcarbonyl; formyl; amino; mono- or di(\(C_{1,4} \)alkyl)amino or \(R^7 \);

(c) \(R^4 \) is halo; hydroxy; \(C_{1,4} \)alkyl optionally substituted with cyano; \(C_{2,4} \)alkenyl optionally substituted with cyano; \(C_{3,7} \)alkycycloalkyl; \(C_{1,4} \)alkyloxy; cyano; nitro; trifluoromethyl; aminocarbonyl; mono- or di(\(C_{1,4} \)alkyl)aminocarbonyl; \(C_{1,4} \)alkyloxy carbonyl; \(C_{1,4} \)alkylcarbonyl; formyl; amino; mono- or di(\(C_{1,4} \)alkyl)amino;

(d) \(R^4 \) is halo, hydroxy, \(C_{1,4} \)alkyl, \(C_{2,4} \)alkenyl, \(C_{2,4} \)alkynyl, \(C_{1,4} \)alkyloxy, cyano, nitro, amino;

(e) \(R^4 \) is halo, hydroxy, \(C_{1,4} \)alkyl, \(C_{1,4} \)alkyloxy, cyano; or (f) \(R^4 \) is halo, \(C_{1,4} \)alkyl, \(C_{1,4} \)alkyloxy.
(a) \(R^5 \) is a 5- or 6-membered completely unsaturated ring system wherein one, two, three or four ring members are hetero atoms each independently selected from the group consisting of nitrogen, oxygen and sulfur, and wherein the remaining ring members are carbon atoms; and, where possible, any nitrogen ring member may optionally be substituted with \(C_{1-4} \)alkyl; which ring system may optionally be annelated with a benzene ring; and wherein any ring carbon atom, including any carbon of an optionally annelated benzene ring, may, each independently, optionally be substituted with a substituent selected from halo, hydroxy, mercapto, cyano, \(C_{1-4} \)alkyl, hydroxyC\(_{1-4}\)alkyl, carboxyC\(_{1-4}\)alkyl, C\(_{1-4}\)alkoxyC\(_{1-4}\)alkyl, cyanoC\(_{1-4}\)alkyl, di(C\(_{1-4}\)alkyl)aminoC\(_{1-4}\)alkyl, Het-C\(_{1-4}\)alkyl, aryl-C\(_{1-4}\)alkyl, polyhaloC\(_{1-4}\)alkyl, C\(_3-7\)cycloalkyl, arylC\(_2-4\)alkeny1, C\(_{1-4}\)alkyloxy, -OCONH\(_2\), polyhaloC\(_{1-4}\)alkyloxy, aryloxy, amino, mono- and di-C\(_{1-4}\)alkylamino, C\(_{1-4}\)alkylcarbonylamino, formyl, C\(_{1-4}\)alkylcarbonyl, aryl, Het;

(b) \(R^5 \) is a heterocycle selected from pyrrolyl, furanyl, thienyl, pyrazolyl, imidazolyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, triazolyl, tetrazolyl, thiatriazolyl, thiadiazolyl, oxadiazolyl, pyridyl, pyrimidinyl, pyrazinyl, pyridazinyl, benzofuranyl, benzothienyl, benzimidazolyl, benzoazolyl, benzothiazolyl, benzotriazolyl, indolyl, benzothiadiazolyl, benzofurazanyl, benzoxadiazolyl, indazolyl, quinolinyl, said heterocycle optionally being substituted on its carbon atoms with one, two or three substituents each independently selected from halo, hydroxy, mercapto, cyano, \(C_{1-4} \)alkyl, hydroxyC\(_{1-4}\)alkyl, carboxyC\(_{1-4}\)alkyl, C\(_{1-4}\)alkoxyC\(_{1-4}\)alkyl, cyanoC\(_{1-4}\)alkyl, di(C\(_{1-4}\)alkyl)aminoC\(_{1-4}\)alkyl, Het-C\(_{1-4}\)alkyl, arylC\(_{1-4}\)alkyl, polyhaloC\(_{1-4}\)alkyl, C\(_3-7\)cycloalkyl, arylC\(_2-4\)alkeny1, C\(_{1-4}\)alkyloxy, -OCONH\(_2\), polyhaloC\(_{1-4}\)alkyloxy, aryloxy, amino, mono- and di-C\(_{1-4}\)alkylamino, C\(_{1-4}\)alkylcarbonylamino, formyl, C\(_{1-4}\)alkylcarbonyl, C\(_{1-4}\)alkylxycarbonyl, aminocarbonyl, mono- and diC\(_{1-4}\)alkylaminocarbonyl, aryl, Het;

(c) \(R^5 \) is a heterocycle selected from pyrrolyl, furanyl, thienyl, pyrazolyl, imidazolyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, triazolyl, tetrazolyl, thiatriazolyl, thiadiazolyl, oxadiazolyl, pyridyl, pyrimidinyl, pyrazinyl, pyridazinyl, benzofuranyl, indolyl, benzothiadiazolyl, quinolinyl, said heterocycle optionally being substituted on its carbon atoms with one, two or three substituents each independently selected from halo, hydroxy, cyano, \(C_{1-4} \)alkyl, amino, mono- and di- C\(_{1-4}\)alkylamino, C\(_{1-4}\)alkylcarbonylamino, aminocarbonyl, mono- and diC\(_{1-4}\)alkylaminocarbonyl, aryl, Het;

(d) \(R^5 \) is a heterocycle selected from pyrrolyl, furanyl, thienyl, isothiazolyl, thiatriazolyl, thiadiazolyl, oxadiazolyl, pyridyl, pyrimidinyl, benzofuranyl, quinolinyl, said heterocycle optionally being substituted on its carbon atoms with one, two or three substituents each independently selected from halo, hydroxy,
cyano, C_{1-6}alkyl, amino, mono- and di-C_{1-4}alkylamino, C_{1-4}alkylcarbonylamino, aminocarbonyl, aryl (the latter in particular being phenyl), Het;

(e) \(R^5 \) is a heterocycle selected from pyrrolyl, furanyl, thienyl, isothiazolyl, thiatiazolyl, thiadiazolyl, oxadiazolyl, pyridyl, pyrimidinyl, benzofuranyl, quinoliny1, said heterocycle optionally being substituted on its carbon atoms with one, two or three substituents each independently selected from halo, hydroxy, cyano, C_{1-6}alkyl, amino, mono- and di-C_{1-4}alkylamino, C_{1-4}alkylcarbonylamino, aryl (the latter in particular being phenyl), Het;

(f) \(R^5 \) is a heterocycle selected from pyrrolyl, furanyl, thienyl, oxadiazolyl, pyridyl, said heterocycle optionally being substituted on its carbon atoms with one, two or three substituents each independently selected from halo, hydroxy, C_{1-6}alkyl, aryl (the latter in particular being phenyl), Het;

(g) \(R^5 \) is a heterocycle selected from pyrrolyl, furanyl, thienyl, thiazolyl, oxadiazolyl, pyridyl, benzofuranyl, quinoliny1, said heterocycle optionally being substituted on its carbon atoms with one, two or three substituents each independently selected from C_{1-6}alkyl, amino, aminocarbonyl, phenyl, Het.

Still further subgroups of the compounds of formula (I) are those compounds of formula (I), or any subgroup of compounds of formula (I) specified herein, wherein

(a) Het is pyridyl, thienyl, furanyl, oxazolyl, isoxazolyl, imidazolyl, pyrazolyl, thiazolyl, thiadiazolyl, oxadiazolyl; which each may optionally be substituted with one or two C_{1-4}alkyl radicals;

(b) Het is pyridyl, thienyl, furanyl; which each may optionally be substituted with one or two C_{1-4}alkyl radicals; or

(c) Het is pyridyl, thienyl, furanyl;

(d) Het is pyridyl.

Still further subgroups of the compounds of formula (I) are those compounds of formula (I), or any subgroup of compounds of formula (I) specified herein, wherein

(a) Q is hydrogen, C_{1-6}alkyl or -NR^8R^{10}; (b) Q is hydrogen or -NR^9R^{10};

(c) Q is hydrogen, amino, mono- or di-C_{1-4}alkylamino; or (d) Q is hydrogen.

Other subgroups of the compounds of formula (I) are those compounds of formula (I), or any subgroup of compounds of formula (I) specified herein, wherein

(a) \(R^6 \) is C_{1-4}alkyl, amino, mono- or di(C_{1-4}alkyl)amino; in particular

(b) \(R^6 \) is C_{1-4}alkyl or amino; or (c) \(R^6 \) is C_{1-4}alkyl.

Still further subgroups of the compounds of formula (I) are those compounds of formula (I), or any subgroup of compounds of formula (I) specified herein, wherein
(a) \(R^2 \) is a monocyclic or bicyclic, partially saturated or aromatic carbocycle or a monocyclic or bicyclic, partially saturated or aromatic heterocycle, wherein each of said carbocyclic or heterocyclic ring systems may optionally be substituted with one, two or three substituents each independently selected from halo, hydroxy, mercapto, \(\text{C}_1\text{.}_6\text{alkyl} \), hydroxy\(\text{C}_1\text{.}_6\text{alkyl} \), amino\(\text{C}_1\text{.}_6\text{alkyl} \), \(\text{C}_1\text{.}_6\text{alkylcarbonyl} \), \(\text{C}_1\text{.}_6\text{alkoxy} \), \(\text{C}_1\text{.}_6\text{alkoxy carbonyl} \), \(\text{C}_1\text{.}_6\text{alkylthio} \), cyano, nitro, polyhalo\(\text{C}_1\text{.}_6\text{alkyl} \), polyhalo\(\text{C}_1\text{.}_6\text{alkyloxy} \) or aminocarbonyl; in particular

(b) \(R^2 \) is any of the specific monocyclic or bicyclic, partially saturated or aromatic carbocycles or monocyclic or bicyclic, partially saturated or aromatic heterocycles specifically mentioned in this specification, wherein each of said carbocyclic or heterocyclic ring systems may optionally be substituted with one, two or three substituents each independently selected from halo, hydroxy, mercapto, \(\text{C}_1\text{.}_6\text{alkyl} \), hydroxy\(\text{C}_1\text{.}_6\text{alkyl} \), amino\(\text{C}_1\text{.}_6\text{alkyl} \), \(\text{C}_1\text{.}_6\text{alkylcarbonyl} \), \(\text{C}_1\text{.}_6\text{alkoxy} \), \(\text{C}_1\text{.}_6\text{alkoxy carbonyl} \), \(\text{C}_1\text{.}_6\text{alkylthio} \), cyano, nitro, polyhalo\(\text{C}_1\text{.}_6\text{alkyl} \), polyhalo\(\text{C}_1\text{.}_6\text{alkyloxy} \) or aminocarbonyl;

(c) \(R^{2a} \) is a monocyclic or bicyclic, partially saturated or aromatic carbocycle or a monocyclic or bicyclic, partially saturated or aromatic heterocycle, wherein each of said carbocyclic or heterocyclic ring systems may optionally be substituted with one, two or three substituents each independently selected from halo, hydroxy, mercapto, \(\text{C}_1\text{.}_6\text{alkyl} \), hydroxy\(\text{C}_1\text{.}_6\text{alkyl} \), amino\(\text{C}_1\text{.}_6\text{alkyl} \), \(\text{C}_1\text{.}_6\text{alkylcarbonyl} \), \(\text{C}_1\text{.}_6\text{alkoxy} \), \(\text{C}_1\text{.}_6\text{alkoxy carbonyl} \), \(\text{C}_1\text{.}_6\text{alkylthio} \), cyano, nitro, polyhalo\(\text{C}_1\text{.}_6\text{alkyl} \), polyhalo\(\text{C}_1\text{.}_6\text{alkyloxy} \) or aminocarbonyl; in particular

(d) \(R^{2a} \) is any of the specific monocyclic or bicyclic, partially saturated or aromatic carbocycles or monocyclic or bicyclic, partially saturated or aromatic heterocycles specifically mentioned in this specification, wherein each of said carbocyclic or heterocyclic ring systems may optionally be substituted with one, two or three substituents each independently selected from halo, hydroxy, mercapto, \(\text{C}_1\text{.}_6\text{alkyl} \), hydroxy\(\text{C}_1\text{.}_6\text{alkyl} \), amino\(\text{C}_1\text{.}_6\text{alkyl} \), \(\text{C}_1\text{.}_6\text{alkylcarbonyl} \), \(\text{C}_1\text{.}_6\text{alkoxy} \), \(\text{C}_1\text{.}_6\text{alkoxy carbonyl} \), \(\text{C}_1\text{.}_6\text{alkylthio} \), cyano, nitro, polyhalo\(\text{C}_1\text{.}_6\text{alkyl} \), polyhalo\(\text{C}_1\text{.}_6\text{alkyloxy} \) or aminocarbonyl.

Further subgroups of the compounds of formula (I) are those compounds of formula (I), or any subgroup of compounds of formula (I) specified herein, wherein

(a) \(X_3 \) is \(-\text{NR}^1\text{-}, -\text{O-or -S-}; \) (b) \(X_3 \) is \(-\text{NR}^1\text{-or-O-}; \) (c) \(X_3 \) is \(-\text{NH-}, -\text{N(C}_1\text{.}_6\text{alkyl})-; -\text{O-}; \)

(d) \(X_3 \) is \(-\text{NH-}, -\text{N(CH}_3)_2\text{-, -O-}; \) or (e) \(X_3 \) is \(-\text{NH-}, -\text{O-}. \)
Other subgroups of the compounds of formula (I) are those compounds of formula (I), or any subgroup of compounds of formula (I) specified herein, wherein (a) \(R^8 \) is hydrogen, \(C_{1-4}\text{-alkyl} \) or aryl\(C_{1-4}\text{-alkyl} \); or (b) \(R^8 \) is hydrogen or \(C_{1-4}\text{-alkyl} \).

5 Other subgroups of the compounds of formula (I) are those compounds of formula (I), or any subgroup of compounds of formula (I) specified herein, wherein

(a) \(R^9 \) and \(R^{10} \) each independently are hydrogen; \(C_{1-6}\text{-alkyl} \); \(C_{1-4}\text{-alkylcarbonyl} \); \(C_{1-4}\text{-alkyloxy carbonyl} \); mono- or di(\(C_{1-4}\text{-alkyl})\text{aminocarbonyl} \); \(-\text{CH}(=\text{NR}^1)\), wherein each of the aforementioned \(C_{1-4}\text{-alkyl} \) groups may optionally be substituted with one or two substituents each independently selected from hydroxy, \(\text{C}_{1-4}\text{-alkyloxy} \); \(\text{hydroxyC}_{1-4}\text{-alkyloxy} \); \(\text{carboxyl} \); \(\text{C}_{1-4}\text{-alkyloxy carbonyl} \); cyan, amino, mono- or di(\(C_{1-4}\text{-alkyl} \)) amino, polyhalomethyl, polyhalo-methoxy;
(b) \(R^9 \) and \(R^{10} \) each independently are hydrogen; \(C_{1-6}\text{-alkyl} \); \(C_{1-4}\text{-alkylcarbonyl} \) or \(C_{1-4}\text{-alkyloxy carbonyl} \);
(c) \(R^9 \) and \(R^{10} \) each independently are hydrogen or \(C_{1-4}\text{-alkyl} \);
(d) \(R^9 \) and \(R^{10} \) are hydrogen.

Still other subgroups of the compounds of formula (I) are those compounds of formula (I), or any subgroup of compounds of formula (I) specified herein, wherein

20 (a) \(R^{13} \) and \(R^{14} \) each independently are \(C_{1-4}\text{-alkyl} \) optionally substituted with cyan, \(C_{2-6}\text{-alkenyl} \) optionally substituted with cyan, \(C_{2-6}\text{-alkynyl} \) optionally substituted with cyan;
(b) \(R^{13} \) and \(R^{14} \) each independently are hydrogen or \(C_{1-4}\text{-alkyl} \);
(c) \(R^{13} \) and \(R^{14} \) are hydrogen.

Still other subgroups of the compounds of formula (I) are those compounds of formula (I), or any subgroup of compounds of formula (I) specified herein, wherein \(R^{15} \) is \(C_{1-6}\text{-alkyl} \) optionally substituted with cyan.

Still other subgroups of the compounds of formula (I) are those compounds of formula (I), or any subgroup of compounds of formula (I) specified herein, wherein

30 (a) \(R^{16} \) is \(C_{1-4}\text{-alkyl} \) optionally substituted with cyan or aminocarbonyl; or wherein
(b) \(R^{16} \) is \(C_{1-4}\text{-alkyl} \) optionally substituted with cyan.

Still other subgroups of the compounds of formula (I) are those compounds of formula (I), or any subgroup of compounds of formula (I) specified herein, wherein

35 (a) aryl is phenyl or phenyl substituted with one, two or three substituents each independently selected from halo, hydroxy, mercapto, \(C_{1-6}\text{-alkyl} \); hydroxy-\(C_{1-4}\text{-alkyl} \); amino\(C_{1-4}\text{-alkyl} \); mono or di(\(C_{1-4}\text{-alkyl})\text{aminocarbonyl} \); \(C_{1-4}\text{-alkyl} \)-
carbonyl, C₃₋₇cycloalkyl, C₁₋₆alkyloxy, C₁₋₆alkyloxy carbonyl, C₁₋₆alkythio, cyano, nitro, polyhaloC₁₋₆alkyl, polyhaloC₁₋₆alkyloxy, aminocarbonyl, phenyl, thienyl or pyridyl;
(b) aryl is phenyl or phenyl substituted with one, two or three substituents each independently selected from halo, hydroxy, mercapto, C₁₋₆alkyl, hydroxy-C₁₋₆alkyl, aminoC₁₋₆alkyl, mono or di(C₁₋₆alkyl)amino C₁₋₆alkyl, C₁₋₆alkycarbonyl, C₁₋₆alkyloxy, C₁₋₆alkyloxy carbonyl, C₁₋₆alkylthio, cyano, nitro, trifluoromethyl, trifluoromethoxy, aminocarbonyl, phenyl;
(c) aryl is phenyl or phenyl substituted with one, two or three substituents each independently selected from halo, hydroxy, C₁₋₆alkyl, hydroxyC₁₋₆alkyl, amino C₁₋₆alkyl, mono or di(C₁₋₆alkyl)amino C₁₋₆alkyl, C₁₋₆alkycarbonyl, C₁₋₆alkyloxy, C₁₋₆alkyloxy carbonyl, cyano, nitro, trifluoromethyl;
(d) aryl is phenyl or phenyl substituted with one, two or three substituents each independently selected from halo, hydroxy, C₁₋₆alkyl, C₁₋₆alkyloxy, cyano, nitro, trifluoromethyl.

One embodiment comprises a subgroup of compounds of formula (I) having the formula:

![Chemical structure I](image)

the N-oxides, the pharmaceutically acceptable addition salts, the quaternary amines or the stereochemically isomeric forms thereof, wherein \(-b¹=b²+b³=b⁴\), \(R¹\), \(R²\), \(R²ᵃ\), \(R³\), \(R⁴\), \(R⁵\), \(m\), \(n\) and \(X₁\) are as defined hereinabove in the general definitions of the compounds of formula (I) or in the various subgroups thereof.

Yet another embodiment concerns a subgroup of compounds of formula (I) having the formula:

![Chemical structure I'](image)

the N-oxides, the pharmaceutically acceptable addition salts, the quaternary amines or the stereochemically isomeric forms thereof, wherein \(-a¹=a²=a³=a⁴\), \(R¹\), \(R²\), \(R²ᵃ\), \(R³\), \(R⁴\), \(R⁵\), \(a¹=a²\), \(a²=a³\), \(a³=a⁴\), \(a⁴=a¹\), \(R²ⁿ\), \(n\).
R⁵, m, n and X₁ are as defined hereinabove in the general definitions of the compounds of formula (I) or in the various subgroups thereof.

Another embodiment concerns a subgroup of compounds of formula (I) having the formula:

\[
\begin{align*}
(R_a m) & \quad X_1 \quad N \quad N \quad (R_{3a}) \quad (I'') \\
R^3 & \quad R^3 & \quad R^3 & \quad Q & \quad R^2a
\end{align*}
\]

the N-oxides, the pharmaceutically acceptable addition salts, the quaternary amines or the stereochemically isomeric forms thereof, wherein R¹, R², R^{2a}, R³, R⁴, R⁵, m, n and X₁ are as defined hereinabove in the general definitions of the compounds of formula (I) or in the various subgroups thereof.

A further embodiment encompasses a subgroup of compounds of formula (I) having the formula:

\[
\begin{align*}
R^4 & \quad X_1 \quad N \quad N \quad (I''') \\
R^3 & \quad R^3 & \quad R^3 & \quad Q & \quad R^2a
\end{align*}
\]

the N-oxides, the pharmaceutically acceptable addition salts, the quaternary amines or the stereochemically isomeric forms thereof, wherein R¹, R^{2a}, R³, R⁴, R⁵ and X₁ are as defined hereinabove in the general definition of the compounds of formula (I) or in the various subgroups thereof.

Also an interesting embodiment encompasses a subgroup of compounds of formula (I) having the formula:

\[
\begin{align*}
R^3 & \quad X_1 \quad N \quad N \quad (I'''') \\
R^3 & \quad R^3 & \quad R^3 & \quad Q & \quad R^2a
\end{align*}
\]

the N-oxides, the pharmaceutically acceptable addition salts, the quaternary amines or the stereochemically isomeric forms thereof, wherein R¹, R², R^{2a}, R³, R⁵ and X₁ are as defined hereinabove in the general definition of the compounds of formula (I) or in the various subgroups thereof.
The compounds of formula (I) can be prepared by reacting an intermediate of formula (II) wherein W_1 represents a suitable leaving group, such as for example halogen, e.g. chloro and the like, with an intermediate of formula (III).

The reaction of the pyrimidine derivative (II) with the amine (III) is typically conducted in the presence of a suitable solvent. Suitable solvents are for example an alcohol, such as for example ethanol, 2-propanol; a dipolar aprotic solvent such as acetonitrile, N,N-dimethylformamide; N,N-dimethylacetamide, 1-methyl-2-pyrrolidinone; an ether such as tetrahydrofuran, 1,4-dioxane, propylene glycol monomethyl ether. The reaction may be done under acid conditions which may be obtained by adding amounts of a suitable acid, e.g. camphor sulfonic acid, and a suitable solvent, such as for example tetrahydrofuran or an alcohol, e.g. 2-propanol, or by using acidified solvents, e.g. hydrochloric acid dissolved in an alkanol such as 1- or 2-propanol.

The compounds of formula (I) can also be prepared by forming the X_1 linkage by either reacting (IV-a) with (V-a) or (IV-b) with (V-b) as outlined in the following scheme.

In this reaction scheme W_2 represents an appropriate functional group, which combined with the $-X_1H$ group can be transformed into an X_1 link. This procedure is most convenient for the preparation of compounds of formula (I) wherein X_1 is a heteroatom such as $-NR^1\cdot$, $-O\cdot$, $-S\cdot$.

-23-
In particular, compounds of formula (I) wherein X_1 represents NR$_1^1$, said compounds being represented by formula (I-a), can be prepared by reacting an intermediate of formula (IV-c), wherein W_1 is an appropriate leaving group, e.g. chloro or bromo, with an intermediate of formula (V-c). The leaving group W_1 may also be introduced in situ, e.g. by converting the corresponding hydroxy function into a leaving group for example by POCl$_3$. The reaction of (IV-c) with (V-c) preferably is conducted in a suitable solvent in the presence of a base, e.g. triethylamine. Suitable solvents are for example acetonitrile, alcohols, such as for example ethanol, 2-propanol, ethylene glycol, propylene glycol, polar aprotic solvents such as N,N-dimethyl-formamide; N,N-dimethylacetamide, dimethylsulfoxide, 1-methyl-2-pyrrolidinone, [bmim]PF$_3$; ethers such as 1,4-dioxane, propylene glycol monomethylether.

This conversion is also suited in the instance where X_1 is -O- or -S-. In particular, compounds of formula (I) wherein X_1 represents O, said compounds being represented by formula (I-b), can be prepared by reacting an intermediate of formula (VI) wherein W_1 represents a suitable leaving group, such as for example halo, e.g. chloro and the like, with an intermediate of formula (VII) in the presence of a suitable base, such as for example K_2CO$_3$ or potassium t-butoxide (KO t-Bu), and a suitable solvent, such as for example acetone or tetrahydrofuran. In a particular execution, intermediate (VII) is first reacted under stirring at room temperature with a suitable metal hydride in an organic solvent. Subsequently, an intermediate (VI), wherein $-W_1$ is a suitable leaving group, is added.
Compounds of formula (I-b) can also be prepared by reacting an intermediate of formula (IV-b) wherein \(-X^1H\) is \(-\text{OH}\), said intermediates being represented by (IV-d), with an intermediate of formula (VII) in the presence of POCl₃, a suitable base, such as for example K₂CO₃ or potassium t-butoxide (KO t-Bu), and a suitable solvent, such as for example acetone or tetrahydrofuran.

The thio-compounds \((X_1 \text{ is } -\text{S}-)\) can be obtained in a similar manner and can conveniently be transferred to the corresponding sulfoxide or sulfone using art-known oxidation procedures.

Compounds of formula (I) wherein \(X_1\) is other than a heteroatom can be prepared by reacting (IV-a) with (V-a) or (IV-b) with (V-b), as outlined in the above scheme, by selecting the appropriate functional groups \(-X_1H\) and \(-W_2\).

In particular, where \(X_1\) is \(-\text{C}(=\text{O})\)- a starting material (V-a) or (IV-b) wherein the group \(-X_1H\) is a Grignard type of group \((-\text{Mg-halo})\) or lithium is reacted with a starting material (IV-a) or (V-b) wherein \(W_2\) is an ester \((-\text{COOalkyl})\). The latter ester may also be reduced to an alcohol with e.g. LiAlH₄ and subsequently oxidized with a mild oxidant such as MnO₂ to the corresponding aldehyde which subsequently is reacted with the appropriate starting material wherein the group \(-X_1H\) is a Grignard type of group \((-\text{Mg-halo})\) or lithium. The compounds wherein \(-X_1\) is \(-\text{C}(=\text{O})\)- can be converted to the \(-\text{CHOH}-\) analogs by a suitable reduction reaction e.g. with LiAlH₄.

Where \(X_1\) is \(-\text{CH}_2-\) this linkage can be introduced by a Grignard reaction, e.g. by reacting a starting material (V-a) or (IV-b) wherein the \(-X_1H\) group is \(-\text{CH}_2\text{-Mg-halo}\) with an intermediate (IV-a) or (V-b) wherein \(W_2\) is a halo group. The methylene group can be oxidized to a \(-\text{C}(=\text{O})\)- group \((X_1 \text{ is } -\text{C}(=\text{O})-)\) e.g. with selenium dioxide. The
-C(=O)- group in turn can be reduced with a suitable hydride such as LiAlH₄ to a -CHOH- group.

The compounds of formula (I) can also be prepared by reacting an intermediate (VIII) wherein W₁ represents a suitable leaving group, such as for example halogen, e.g. chloro, bromo, with a heterocycle with special groups such as boronic acid (i.e. -B(OH)₂) or borate esters (i.e. -B(OR)₂ wherein R is alkyl or alkenylene, e.g. R is methyl, ethyl or ethylene). This type of reaction can be typically conducted in the presence of a copper salt, in particular copper(II) acetate, and a suitable quencher like pyridine may be added to the reaction mixture. The introduction of a heterocyclyl group can also be done by other boron derivatives such as bis(pinacolato)diboron. The diboron ester bis(pinacolato)diboron reacts with heterocyclyl halides in the presence of palladium catalysts to give heterocyclylboronic esters, which are readily converted to heterocyclyl boronic acids which react with (VIII). This reaction can be done as a one-pot procedure; it can be conducted under mild reaction conditions, e.g. in a dipolar aprotic solvent such as DMF, or any other of such solvents mentioned above.

\[
\text{(VIII)} \quad \rightarrow \quad \text{(I)}
\]

The intermediates (VIII) can be prepared by halogenating a starting material (X) e.g. with N-chloro or N-bromo succinimide or with other iodine chlorides. Other leaving groups can be introduced by replacing the halo group using suitable reagents.

\[
\text{(X)} \quad \rightarrow \quad \text{(VIII)}
\]

The compounds of formula (I) wherein R is pyrrolyl can also be prepared by reacting an intermediate (IX) with a suitable 1,2-ethanedial derivative, e.g. an acetal derivative thereof such as 2,5-dimethoxytetrahydrofuran.
The intermediates (IX) can be prepared by aminating a corresponding starting material (VIII).

The compounds of formula (I) may further be prepared by converting compounds of formula (I) into each other according to art-known group transformation reactions.

The compounds of formula (I) may be converted to the corresponding N-oxide forms following art-known procedures for converting a tertiary nitrogen into its N-oxide form. Said N-oxidation reaction may generally be carried out by reacting the starting material of formula (I) with an appropriate organic or inorganic peroxy. Appropriate inorganic peroxides comprise, for example, hydrogen peroxy, alkali metal or earth alkaline metal peroxides, e.g. sodium peroxy, potassium peroxy; appropriate organic peroxides may comprise peroxy acids such as, for example, benzenecarboperoxoic acid or halo substituted benzenecarboperoxoic acid, e.g. 3-chlorobenzenecarboxoxylic acid, peroxyalkanoic acids, e.g. peroxyacetic acid, alkylhydroperoxides, e.g. tert.butyl hydro-peroxide. Suitable solvents are, for example, water, lower alcohols, e.g. ethanol and the like, hydrocarbons, e.g. toluene, ketones, e.g. 2-butane, halogenated hydrocarbons, e.g. dichloromethane, and mixtures of such solvents.

Compounds of formula (I) wherein R^2, R^{2a}, R^3 or R^4 is C$_2$-alkenyl substituted with aminocarbonyl, can be converted into a compound of formula (I) wherein R^2, R^{2a}, R^3 or R^4 is C$_2$-alkenyl substituted with cyano by reaction with POCl$_3$.

Compounds of formula (I) wherein m is zero, can be converted into a compound of formula (I) wherein m is other than zero and R^4 represents halo, by reaction with a suitable halo-introducing agent, such as for example N-chlorosuccinimide or N-bromo-succinimide, or a combination thereof, in the presence of a suitable solvent, such as for example acetic acid.

Compounds of formula (I) wherein R^3 represents halo, may be converted into a compound of formula (I) wherein R^3 represents C$_2$-alkenyl substituted with one or more substituents each independently selected from halo, cyano, NR$_3$R$_{10}$,
-C(=O)-NR₉R¹⁰, -C(=O)-C₁₋₆alkyl or R⁷, by reaction with the corresponding C₂₋₆alkene substituted with one or more substituents each independently selected from halo, cyano, NR₉R¹⁰, -C(=O)-NR₉R¹⁰, -C(=O)-C₁₋₆alkyl or R⁷ in the presence of a suitable base, such as for example N,N-diethyl-ethanamine, a suitable catalyst, such as for example palladium acetate in the presence of triphenylphosphine, and a suitable solvent, such as for example N,N-dimethylformamide.

Compounds of formula (I) wherein R²⁹ represents halo, may be converted into a compound of formula (I) wherein R²⁹ represents C₂₋₆alkenyl substituted with one or more substituents each independently selected from halo, cyano, NR₉R¹⁰, -C(=O)-NR₉R¹⁰, -C(=O)-C₁₋₆alkyl or R⁷, by reaction with the corresponding C₂₋₆alkene substituted with one or more substituents each independently selected from halo, cyano, NR₉R¹⁰, -C(=O)-NR₉R¹⁰, -C(=O)-C₁₋₆alkyl or R⁷ in the presence of a suitable base, such as for example N,N-diethyl-ethanamine, a suitable catalyst, such as for example palladium acetate in the presence of triphenylphosphine, and a suitable solvent, such as for example N,N-dimethylformamide.

Compounds of formula (I) wherein R¹ represents C₁₋₆alkyloxy carbonyl, can be converted into a compound of formula (I) wherein R¹ represents hydrogen, by reaction with a suitable base, such as for example sodium hydroxide or methoxide. Where R¹ is t.butoxy carbonyl, the corresponding compounds wherein R¹ is hydrogen can be made by treatment with trifluoroacetic acid.

Some of the compounds of formula (I) and some of the intermediates in the present invention may contain an asymmetric carbon atom. Pure stereochemically isomeric forms of said compounds and said intermediates can be obtained by the application of art-known procedures. For example, diastereoisomers can be separated by physical methods such as selective crystallization or chromatographic techniques, e.g. counter current distribution, liquid chromatography and the like methods. Enantiomers can be obtained from racemic mixtures by first converting said racemic mixtures with suitable resolving agents such as, for example, chiral acids, to mixtures of diastereomeric salts or compounds; then physically separating said mixtures of diastereomeric salts or compounds by, for example, selective crystallization or chromatographic techniques, e.g. liquid chromatography and the like methods; and finally converting said separated diastereomeric salts or compounds into the corresponding enantiomers. Pure stereochemically isomeric forms may also be obtained from the pure stereochemically isomeric forms of the appropriate intermediates and starting materials, provided that the intervening reactions occur stereospecifically.
An alternative manner of separating the enantiomeric forms of the compounds of formula (I) and intermediates involves liquid chromatography, in particular liquid chromatography using a chiral stationary phase.

Some of the intermediates and starting materials are known compounds and may be commercially available or may be prepared according to art-known procedures.

Intermediates of formula (II) can be prepared by reacting an intermediate of formula (XI) wherein \(W_1 \) is defined as hereinabove, with an intermediate of formula (XII) in the presence of a suitable solvent, such as for example tetrahydrofuran, and optionally in the presence of a suitable base, such as for example \(\text{Na}_2\text{CO}_3 \).

Intermediates of formula (XI) can be prepared in accordance with art-known procedures.

Intermediates of formula (III) wherein \(R^1 \) is hydrogen, said intermediates being represented by formula (III-a), or intermediates (V-a-1), which are intermediates (V-a) wherein \(-X^1 H=-\text{NH}_2\), can be prepared by reacting an intermediate of formula (XIII) or (XIV) with a suitable reducing agent, such as \(\text{Fe} \), in the presence of \(\text{NH}_4\text{Cl} \) and a suitable solvent, such as for example tetrahydrofuran, \(\text{H}_2\text{O} \) and an alcohol, e.g. methanol and the like.
Intermediates of formula (III-a) or (V-a-1) wherein \(R^{2a} \) respectively \(R^3 \) represents \(\text{C}_2\text{.alkyl substituted with cyano} \), said intermediates being represented by formula (III-a-1) and (V-a-2), can be prepared by reacting an intermediate of formula (XIII-a) respectively (XIV-a) with \(\text{Pd/C} \) in the presence of a suitable solvent, such as for example an alcohol, e.g. ethanol and the like.

\[
\begin{align*}
\text{O}_2\text{N} & \quad \text{C}_2\text{.alkenyl-CN} \quad \text{reduction} \quad \text{H}_2\text{N} & \quad \text{C}_2\text{.alkenyl-CN} \\
& \quad \text{a}^4 \quad \text{a}^3 \quad \text{a}^2 \quad \text{a}^1 \quad \text{(R)}^2_h & \quad \text{a}^4 \quad \text{a}^3 \quad \text{a}^2 \quad \text{a}^1 \quad \text{(R)}^2_h \\
\text{(XIII-a)} & \quad \text{(III-a-1)}
\end{align*}
\]

\[
\begin{align*}
\text{C}_2\text{.alkenyl-CN} & \quad \text{reduction} \quad \text{NH}_2 \\
& \quad \text{b}^4 \quad \text{b}^3 \quad \text{b}^2 \quad \text{b}^1 \quad \text{(R)}^4_m & \quad \text{b}^4 \quad \text{b}^3 \quad \text{b}^2 \quad \text{b}^1 \quad \text{(R)}^4_m \\
\text{(XIV-a)} & \quad \text{(V-a-2)}
\end{align*}
\]

Intermediates of formula (III), (V-a) or (VII) wherein \(R^{2a} \) respectively \(R^3 \) is halo, said intermediates being represented by formula (III-b), (V-b) and (VII-a), may be converted into an intermediate of formula (III) respectively (V) or (VII) wherein \(R^{2a} \) respectively \(R^3 \) is \(\text{C}_2\text{.alkenyl substituted with C}(\text{=O})\text{NR}^9\text{R}^{10} \), said intermediates being represented by formula (III-c), (V-c) and (VII-b) by reaction with an intermediate of formula (XIII) in the presence of \(\text{Pd(OAc)}_2, \text{P(o-Tol)}_3 \), a suitable base, such as for example \(N, N\text{-diethylethanamine} \), and a suitable solvent, such as for example \(\text{CH}_3\text{-CN} \).

\[
\begin{align*}
\text{HN} & \quad \text{a}^4 \quad \text{a}^3 \quad \text{a}^2 \quad \text{a}^1 \quad \text{(R)}^2_h & \quad \text{H-C}_2\text{.alkenyl-C}(\text{=O})\text{-NR}^9\text{R}^{10} \\
& \quad \text{halo} \quad \text{(III-b)} & \quad \text{halo} \quad \text{(III-c)}
\end{align*}
\]

\[
\begin{align*}
\text{b}^1 \quad \text{b}^2 \quad \text{b}^3 \quad \text{b}^4 \quad \text{(R)}^4_m & \quad \text{NHR}^1 \\
& \quad \text{halo} \quad \text{(V-b)}
\end{align*}
\]
Intermediates of formula (III-c), (V-c) and (VII-b) can also be prepared by reacting an intermediate of formula (III-f), (V-f) and (VII-c) with H-NR$_9^9$R$_{10}^10$ in the presence of oxalyl chloride and in the presence of a suitable solvent, such as for example N,N-dimethylformamide, CH$_2$Cl$_2$ and tetrahydrofuran.

Intermediates of formula (III-d), (V-d) and (VII-c) can be prepared by reacting an intermediate of formula (III-b), (V-b) and (VII-a), with H-C$_{2,6}$alkenyl-C(=O)-OH in the presence of Pd(OAc)$_2$, P(o-Tol)$_3$, a suitable base, such as for example N,N-diethyl-ethanamine, and a suitable solvent, such as for example CH$_3$-CN.
Intermediates of formula (III-b), (V-b) and (VII-a), may also be converted into an intermediate of formula (III) respectively (V) or (VII) wherein R^{2a} respectively R^{3} is C_{2,6}alkenyl substituted with CN, said intermediates being represented by formula (III-e), (V-e) and (VII-d) by reaction with H-C_{2,6}alkenyl-CN in the presence of Pd(OAc)$_2$, P(α-Tol)$_3$, a suitable base, such as for example N$_2$N-diethylethanamine, and a suitable solvent, such as for example CH$_3$-CN.
Intermediates of formula (XV) can be prepared by reacting an intermediate of formula (XVI) wherein W₃ represents a suitable leaving group, such as for example halogen, e.g. chloro, with H-NR₈R¹⁰ in the presence of a suitable solvent, such as for example diethyl ether and tetrahydrofuran.

\[\text{H-C_2H_4alkenyl-C(=O)-W}_3 + \text{H-NR}_8\text{R}^{10} \rightarrow \text{H-C_2H_4alkenyl-C(=O)-NR}_8\text{R}^{10} \]

Intermediates of formula (XIII) or (XIV) wherein R²⁷ respectively R³ represents cyanovinyl, said intermediates being represented by formula (XIII-b) and (XIV-b), can be prepared by reacting an intermediate of formula (XVIII) respectively (XIX) with diethylcyanomethylphosphonate in the presence of a suitable base, such as for example NaOCH₃, and a suitable solvent, such as for example tetrahydrofuran.

Intermediates of formula (XIII) or (XIV) wherein R²⁷ respectively R³ represents -C(CH₃)≡CH-CN, said intermediates being represented by formula (XIII-c) and (XIII-c), can be prepared by reacting an intermediate of formula (XX) respectively (XXI)
with diethylcyanomethylphosphonate in the presence of a suitable base, such as for example NaOCH₃, and a suitable solvent, such as for example tetrahydrofuran.

Intermediates of formula (XVIII) and (XIX) can be prepared by reacting an intermediate of formula (XXII) respectively (XXIII) with a suitable oxidizing agent, such as for example MnO₂, in the presence of a suitable solvent, such as for example acetone.

Intermediates of formula (XXII) and (XXIII) can be prepared by reacting an intermediate of formula (XXIV) respectively (XXV) with NaBH₄ in the presence of ethylchloroformate, a suitable base, such as for example N,N-diethylethanamine, and a suitable solvent, such as for example tetrahydrofuran.
Intermediates of formula (XIII) and (XIV) wherein \(R^{2a} \) respectively \(R^3 \) represent hydroxy, said intermediates being represented by formula (XIII-d) respectively (XIV-d), can be converted into an intermediate of formula (XIII) respectively (XIV) wherein \(R^{2a} \) respectively \(R^3 \) represent \(C_{1-6} \)-alkyloxy wherein the \(C_{1-6} \)-alkyl may optionally be substituted with cyano, said \(R^{2a} \) respectively \(R^3 \) being represented by \(P \) and said intermediates being represented by formula (XIII-e) respectively (XIV-e), by reaction with an intermediate of formula (XXV) wherein \(W_4 \) represents a suitable leaving group, such as for example halogen, e.g. chloro and the like, in the presence of \(\text{NaI} \), a suitable base, such as for example \(\text{K}_2\text{CO}_3 \), and a suitable solvent, such as for example acetone.

Intermediates of formula (XIII) and (XIV) can be prepared by reacting an intermediate of formula (XXVI) respectively (XXVII) with \(\text{NaNO}_3 \) in the presence of \(\text{CH}_3\text{SO}_3\text{H} \).
The intermediates of formula (IV-d) can be prepared as follows:

Intermediates of formula (XXX) can be converted into intermediates of formula (IV-e) which are intermediates of formula (IV-d) wherein R^5 represents bromo by reaction with Br_2 in the presence of a suitable base, such as for example N,N-diethylethanamine, and a suitable solvent, such as for example dimethylsulfoxide.

Intermediates of formula (IV-e) can be converted into intermediates of formula (VI) wherein R^5 and W_2 represent chloro, said intermediate being represented by formula (VI-a), by reaction with POCl_3.
The compounds of formula (I) have antiretroviral properties (reverse transcriptase inhibiting properties), in particular against Human Immunodeficiency Virus (HIV), which is the aetiological agent of Acquired Immune Deficiency Syndrome (AIDS) in humans. The HIV virus preferentially infects human T-4 cells and destroys them or changes their normal function, particularly the coordination of the immune system. As a result, an infected patient has an ever decreasing number of T-4 cells, which moreover behave abnormally. Hence, the immunological defense system is unable to combat infections and neoplasms and the HIV infected subject usually dies by opportunistic infections such as pneumonia, or by cancers. Other conditions associated with HIV infection include thrombocytopenia, Kaposi's sarcoma and infection of the central nervous system characterized by progressive demyelination, resulting in dementia and symptoms such as, progressive dysarthria, ataxia and disorientation. HIV infection further has also been associated with peripheral neuropathy, progressive generalized lymphadenopathy (PGL) and AIDS-related complex (ARC).

The present compounds also show activity against (multi) drug resistant HIV strains, in particular (multi) drug resistant HIV-1 strains, more in particular the present compounds show activity against HIV strains, especially HIV-1 strains that have acquired resistance to one or more art-known non-nucleoside reverse transcriptase inhibitors. Art-known non-nucleoside reverse transcriptase inhibitors are those non-nucleoside reverse transcriptase inhibitors other than the present compounds and known to the person skilled in the art, in particular commercial non-nucleoside reverse transcriptase inhibitors. The present compounds also have little or no binding affinity to human α-1 acid glycoprotein; human α-1 acid glycoprotein does not or only weakly affect the anti HIV activity of the present compounds.

Due to their antiretroviral properties, particularly their anti-HIV properties, especially their anti-HIV-1-activity, the compounds of formula (I), their N-oxides, pharmaceutically acceptable addition salts, quaternary amines and stereochemically isomeric forms thereof, are useful in the treatment of individuals infected by HIV and for the prophylaxis of these infections. In general, the compounds of the present invention may be useful in the treatment of warm-blooded animals infected with viruses whose existence is mediated by, or depends upon, the enzyme reverse
transcriptase. Conditions which may be prevented or treated with the compounds of the present invention, especially conditions associated with HIV and other pathogenic retroviruses, include AIDS, AIDS-related complex (ARC), progressive generalized lymphadenopathy (PGL), as well as chronic Central Nervous System diseases caused by retroviruses, such as, for example HIV mediated dementia and multiple sclerosis.

The compounds of the present invention or any subgroup thereof may therefore be used as medicines against above-mentioned conditions. Said use as a medicine or method of treatment comprises the administration to HIV-infected subjects of an amount effective to combat the conditions associated with HIV and other pathogenic retroviruses, especially HIV-1. In particular, the compounds of formula (I) may be used in the manufacture of a medicament for the treatment or the prevention of HIV infections.

In view of the utility of the compounds of formula (I), there is provided a method of treating warm-blooded animals, including humans, suffering from or a method of preventing warm-blooded animals, including humans, to suffer from viral infections, especially HIV infections. Said method comprises the administration, preferably oral administration, of an effective amount of a compound of formula (I), a N-oxide form, a pharmaceutically acceptable addition salt, a quaternary amine or a possible stereoisomeric form thereof, to warm-blooded animals, including humans.

The present invention also provides compositions for treating viral infections comprising a therapeutically effective amount of a compound of formula (I) and a pharmaceutically acceptable carrier or diluent.

The compounds of the present invention or any subgroup thereof may be formulated into various pharmaceutical forms for administration purposes. As appropriate compositions there may be cited all compositions usually employed for systemically administering drugs. To prepare the pharmaceutical compositions of this invention, an effective amount of the particular compound, optionally in addition salt form, as the active ingredient is combined in intimate admixture with a pharmaceutically acceptable carrier, which carrier may take a wide variety of forms depending on the form of preparation desired for administration. These pharmaceutical compositions are desirable in unitary dosage form suitable, particularly, for administration orally, rectally, percutaneously, or by parenteral injection. For example, in preparing the compositions in oral dosage form, any of the usual pharmaceutical media may be employed such as, for example, water, glycols, oils, alcohols and the like in the case of oral liquid preparations such as suspensions, syrups, elixirs, emulsions and solutions; or solid carriers such as starches, sugars, kaolin, diluents, lubricants, binders,
disintegrating agents and the like in the case of powders, pills, capsules, and tablets. Because of their ease in administration, tablets and capsules represent the most advantageous oral dosage unit forms, in which case solid pharmaceutical carriers are obviously employed. For parenteral compositions, the carrier will usually comprise sterile water, at least in large part, though other ingredients, for example, to aid solubility, may be included. Injectable solutions, for example, may be prepared in which the carrier comprises saline solution, glucose solution or a mixture of saline and glucose solution. Injectable suspensions may also be prepared in which case appropriate liquid carriers, suspending agents and the like may be employed. Also included are solid form preparations which are intended to be converted, shortly before use, to liquid form preparations. In the compositions suitable for percutaneous administration, the carrier optionally comprises a penetration enhancing agent and/or a suitable wetting agent, optionally combined with suitable additives of any nature in minor proportions, which additives do not introduce a significant deleterious effect on the skin. Said additives may facilitate the administration to the skin and/or may be helpful for preparing the desired compositions. These compositions may be administered in various ways, e.g., as a transdermal patch, as a spot-on, as an ointment. The compounds of the present invention may also be administered via inhalation or insufflation by means of methods and formulations employed in the art for administration via this way. Thus, in general the compounds of the present invention may be administered to the lungs in the form of a solution, a suspension or a dry powder. Any system developed for the delivery of solutions, suspensions or dry powders via oral or nasal inhalation or insufflation are suitable for the administration of the present compounds. To aid solubility of the compounds of formula (I), suitable ingredients, e.g. cyclodextrins, may be included in the compositions. Appropriate cyclodextrins are \(\alpha \)-, \(\beta \)-, \(\gamma \)-cyclodextrins or others and mixed ethers thereof wherein one or more of the hydroxy groups of the anhydroglucose units of the cyclodextrin are substituted with C\(_{1-6}\)alkyl, particularly methyl, ethyl or isopropyl, e.g. randomly methylated \(\beta \)-CD; hydroxy-C\(_{1-6}\)alkyl, particularly hydroxyethyl, hydroxy-propyl or hydroxybutyl; carboxy-C\(_{1-6}\)alkyl, particularly carboxymethyl or carboxy-ethyl; C\(_{1-6}\)alkylcarbonyl, particularly acetyl. Especially noteworthy as complexants and/or solubilizers are \(\beta \)-CD, randomly methylated \(\beta \)-CD, 2,6-dimethyl-\(\beta \)-CD, 2-hydroxyethyl-\(\beta \)-CD, 2-hydroxyethyl-\(\beta \)-CD, 2-hydroxypropyl-\(\beta \)-CD and (2-carboxymethoxy)propyl-\(\beta \)-CD, and in particular 2-hydroxypropyl-\(\beta \)-CD (2-HP-\(\beta \)-CD).
The term mixed ether denotes cyclodextrin derivatives wherein at least two cyclo-
dextrin hydroxy groups are etherified with different groups such as, for example,
hydroxy-propyl and hydroxyethyl.

The average molar substitution (M.S.) is used as a measure of the average number of
moles of alkoxy units per mole of anhydroglucose. The average substitution degree
(D.S.) refers to the average number of substituted hydroxyls per anhydroglucose unit.
The M.S. and D.S. value can be determined by various analytical techniques such as
nuclear magnetic resonance (NMR), mass spectrometry (MS) and infrared
spectroscopy (IR). Depending on the technique used, slightly different values may be
obtained for one given cyclodextrin derivative. Preferably, as measured by mass
spectrometry, the M.S. ranges from 0.125 to 10 and the D.S. ranges from 0.125 to 3.

Other suitable compositions for oral or rectal administration comprise particles
consisting of a solid dispersion comprising a compound of formula (I) and one or more
appropriate pharmaceutically acceptable water-soluble polymers.

The term "a solid dispersion" used hereinafter defines a system in a solid state (as
opposed to a liquid or gaseous state) comprising at least two components, in casu the
compound of formula (I) and the water-soluble polymer, wherein one component is
dispersed more or less evenly throughout the other component or components (in case
additional pharmaceutically acceptable formulating agents, generally known in the art,
are included, such as plasticizers, preservatives and the like). When said dispersion of
the components is such that the system is chemically and physically uniform or
homogenous throughout or consists of one phase as defined in thermo-dynamics, such a
solid dispersion will be called "a solid solution". Solid solutions are preferred physical
systems because the components therein are usually readily bioavailable to the
organisms to which they are administered. This advantage can probably be explained
by the ease with which said solid solutions can form liquid solutions when contacted
with a liquid medium such as the gastro-intestinal juices. The ease of dissolution may
be attributed at least in part to the fact that the energy required for dissolution of the
components from a solid solution is less than that required for the dissolution of
components from a crystalline or microcrystalline solid phase.

The term "a solid dispersion" also comprises dispersions, which are less homogenous
throughout than solid solutions. Such dispersions are not chemically and physically
uniform throughout or comprise more than one phase. For example, the term "a solid
dispersion" also relates to a system having domains or small regions wherein
amorphous, microcrystalline or crystalline compound of formula (I), or amorphous,
microcrystalline or crystalline water-soluble polymer, or both, are dispersed more or less evenly in another phase comprising water-soluble polymer, or compound of formula (I), or a solid solution comprising compound of formula (I) and water-soluble polymer. Said domains are regions within the solid dispersion distinctly marked by some physical feature, small in size, and evenly and randomly distributed throughout the solid dispersion.

Various techniques exist for preparing solid dispersions including melt-extrusion, spray-drying and solution-evaporation.

The solution-evaporation process comprises the following steps:

a) dissolving the compound of formula (I) and the water-soluble polymer in an appropriate solvent, optionally at elevated temperatures;

b) heating the solution resulting under point a), optionally under vacuum, until the solvent is evaporated. The solution may also be poured onto a large surface so as to form a thin film, and evaporating the solvent therefrom.

In the spray-drying technique, the two components are also dissolved in an appropriate solvent and the resulting solution is then sprayed through the nozzle of a spray dryer followed by evaporating the solvent from the resulting droplets at elevated temperatures.

The preferred technique for preparing solid dispersions is the melt-extrusion process comprising the following steps:

a) mixing a compound of formula (I) and an appropriate water-soluble polymer,

b) optionally blending additives with the thus obtained mixture,

c) heating and compounding the thus obtained blend until one obtains a homogenous melt,

d) forcing the thus obtained melt through one or more nozzles; and

e) cooling the melt until it solidifies.

The terms "melt" and "melting" should be interpreted broadly. These terms not only mean the alteration from a solid state to a liquid state, but can also refer to a transition to a glassy state or a rubbery state, and in which it is possible for one component of the mixture to get embedded more or less homogeneously into the other. In particular cases, one component will melt and the other component(s) will dissolve in the melt thus forming a solution, which upon cooling may form a solid solution having advantageous dissolution properties.
After preparing the solid dispersions as described hereinabove, the obtained products can be optionally milled and sieved.

The solid dispersion product may be milled or ground to particles having a particle size of less than 600 μm, preferably less than 400 μm and most preferably less than 125 μm.

The particles prepared as described hereinabove can then be formulated by conventional techniques into pharmaceutical dosage forms such as tablets and capsules.

It will be appreciated that a person of skill in the art will be able to optimize the parameters of the solid dispersion preparation techniques described above, such as the most appropriate solvent, the working temperature, the kind of apparatus being used, the rate of spray-drying, the throughput rate in the melt-extruder.

The water-soluble polymers in the particles are polymers that have an apparent viscosity, when dissolved at 20°C in an aqueous solution at 2 % (w/v), of 1 to 5000 mPa.s more preferably of 1 to 700 mPa.s, and most preferred of 1 to 100 mPa.s. For example, suitable water-soluble polymers include alkylcelluloses, hydroxyalkylcelluloses, hydroxyalkyl alkylcelluloses, carboxyalkylcelluloses, alkali metal salts of carboxyalkylcelluloses, carboxyalkylalkylcelluloses, carboxyalkylcellulose esters, starches, pectines, chitin derivates, di-, oligo- and polysaccharides such as trehalose, alginic acid or alkali metal and ammonium salts thereof, carrageenans, galactomannans, tragacanth, agar-agar, gummi arabicum, guar gummi and xanthan gummi, polyacrylic acids and the salts thereof, polymethacrylic acids and the salts thereof, methacrylate copolymers, polyvinylalcohol, polyvinylpyrrolidone, copolymers of polyvinylpyrrolidone with vinyl acetate, combinations of polyvinylalcohol and polyvinylpyrrolidone, polyalkylene oxides and copolymers of ethylene oxide and propylene oxide. Preferred water-soluble polymers are hydroxypropyl methylcelluloses.

Also one or more cyclodextrins can be used as water-soluble polymer in the preparation of the above-mentioned particles as is disclosed in WO 97/18839. Said cyclodextrins include the pharmaceutically acceptable unsubstituted and substituted cyclodextrins known in the art, more particularly α, β or γ cyclodextrins or the pharmaceutically acceptable derivatives thereof.

Substituted cyclodextrins which can be used to prepare the above described particles include polyethers described in U.S. Patent 3,459,731. Further substituted cyclodextrins are ethers wherein the hydrogen of one or more cyclodextrin hydroxy groups is replaced by C1-6alkyl, hydroxy C1-6alkyl, carboxy-C1-6alkyl or C1-6alkyloxycarbonyl-C1-6alkyl or mixed ethers thereof. In particular such substituted cyclodextrins are ethers
wherein the hydrogen of one or more cyclodextrin hydroxy groups is replaced by C₁-alkyl, hydroxyC₂-alkyl or carboxyC₂-alkyl or more in particular by methyl, ethyl, hydroxyethyl, hydroxypropyl, hydroxybutyl, carboxy-methyl or carboxyethyl.

Of particular utility are the β-cyclodextrin ethers, e.g. dimethyl-β-cyclodextrin as described in Drugs of the Future, Vol. 9, No. 8, p. 577-578 by M. Nogradi (1984) and polyethers, e.g. hydroxypropyl β-cyclodextrin and hydroxyethyl β-cyclodextrin, being examples. Such an alkyl ether may be a methyl ether with a degree of substitution of about 0.125 to 3, e.g. about 0.3 to 2. Such a hydroxypropyl cyclodextrin may for example be formed from the reaction between β-cyclodextrin an propylene oxide and may have a MS value of about 0.125 to 10, e.g. about 0.3 to 3.

Another type of substituted cyclodextrins is sulfobutylcyclodextrines.

The ratio of the compound of formula (I) over the water soluble polymer may vary widely. For example ratios of 1/100 to 100/1 may be applied. Interesting ratios of the compound of formula (I) over cyclodextrin range from about 1/10 to 10/1. More interesting ratios range from about 1/5 to 5/1.

It may further be convenient to formulate the compounds of formula (I) in the form of nanoparticles which have a surface modifier adsorbed on the surface thereof in an amount sufficient to maintain an effective average particle size of less than 1000 nm. Useful surface modifiers are believed to include those which physically adhere to the surface of the compound of formula (I) but do not chemically bond to said compound.

Suitable surface modifiers can preferably be selected from known organic and inorganic pharmaceutical excipients. Such excipients include various polymers, low molecular weight oligomers, natural products and surfactants. Preferred surface modifiers include nonionic and anionic surfactants.

Yet another interesting way of formulating the compounds of formula (I) involves a pharmaceutical composition whereby the compounds of formula (I) are incorporated in hydrophilic polymers and applying this mixture as a coat film over many small beads, thus yielding a composition which can conveniently be manufactured and which is suitable for preparing pharmaceutical dosage forms for oral administration.

Said beads comprise a central, rounded or spherical core, a coating film of a hydrophilic polymer and a compound of formula (I) and optionally a seal-coating layer.
Materials suitable for use as cores in the beads are manifold, provided that said materials are pharmaceutically acceptable and have appropriate dimensions and firmness. Examples of such materials are polymers, inorganic substances, organic substances, and saccharides and derivatives thereof.

It is especially advantageous to formulate the aforementioned pharmaceutical compositions in unit dosage form for ease of administration and uniformity of dosage. Unit dosage form as used herein refers to physically discrete units suitable as unitary dosages, each unit containing a predetermined quantity of active ingredient calculated to produce the desired therapeutic effect in association with the required pharmaceutical carrier. Examples of such unit dosage forms are tablets (including scored or coated tablets), capsules, pills, powder packets, wafers, suppositories, injectable solutions or suspensions and the like, and segregated multiples thereof.

Those of skill in the treatment of HIV-infection could determine the effective daily amount from the test results presented here. In general it is contemplated that an effective daily amount would be from 0.01 mg/kg to 50 mg/kg body weight, more preferably from 0.1 mg/kg to 10 mg/kg body weight. It may be appropriate to administer the required dose as two, three, four or more sub-doses at appropriate intervals throughout the day. Said sub-doses may be formulated as unit dosage forms, for example, containing 1 to 1000 mg, and in particular 5 to 200 mg of active ingredient per unit dosage form.

The exact dosage and frequency of administration depends on the particular compound of formula (I) used, the particular condition being treated, the severity of the condition being treated, the age, weight and general physical condition of the particular patient as well as other medication the individual may be taking, as is well known to those skilled in the art. Furthermore, it is evident that said effective daily amount may be lowered or increased depending on the response of the treated subject and/or depending on the evaluation of the physician prescribing the compounds of the instant invention. The effective daily amount ranges mentioned herein above are therefore only guidelines and are not intended to limit the scope or use of the invention to any extent.

The present compounds of formula (I) can be used alone or in combination with other therapeutic agents, such as anti-virals, antibiotics, immunomodulators or vaccines for the treatment of viral infections. They may also be used alone or in combination with other prophylactic agents for the prevention of viral infections. The present compounds may be used in vaccines and methods for protecting individuals against viral infections over an extended period of time. The compounds may be employed in such vaccines
either alone or together with other compounds of this invention or together with other anti-viral agents in a manner consistent with the conventional utilization of reverse transcriptase inhibitors in vaccines. Thus, the present compounds may be combined with pharmaceutically acceptable adjuvants conventionally employed in vaccines and administered in prophylactically effective amounts to protect individuals over an extended period of time against HIV infection.

Also, the combination of one or more additional antiretroviral compounds and a compound of formula (I) can be used as a medicine. Thus, the present invention also relates to a product containing (a) a compound of formula (I), and (b) one or more additional antiretroviral compounds, as a combined preparation for simultaneous, separate or sequential use in anti-HIV treatment. The different drugs may be combined in a single preparation together with pharmaceutically acceptable carriers. Said other antiretroviral compounds may be known antiretroviral compounds such as suramine, pentamidine, thymopentin, castanospermine, dextran (dextran sulfate), foscarnet-sodium (trisodium phosphono formate); nucleoside reverse transcriptase inhibitors, e.g. zidovudine (3'-azido-3'-deoxythymidine, AZT), didanosine (2',3'-dideoxyinosine; ddI), zalcitabine (dideoxycytidine, ddC) or lamivudine (2'-3'-dideoxy-3'-thiacytidine, 3TC), stavudine (2',3'-didehydro-3'-deoxythymidine, d4T), abacavir and the like; non-nucleoside reverse transcriptase inhibitors such as nevirapine (11-cyclopropyl-5,11-dihydro-4-methyl-6H-dipyrido-[3,2-b : 2',3'-e][1,4]diazepin-6-one), efavirenz, delavirdine, TMC-120, TMC-125 and the like; phosphonate reverse transcriptase inhibitors, e.g. tenofovir and the like; compounds of the TIBO (tetrahydroimidazo-[4,5,1-jk][1,4]benzodiazepine-2(1H)-one and thione)-type e.g. (S)-8-chloro-4,5,6,7-tetrahydro-5-methyl-6-(3-methyl-2-butenyl)imidazo-[4,5,1-jk][1,4]benzodiazepine-2(1H)-thione; compounds of the α-APA (α-anilino phenyl acetamide) type e.g. α-[(2-nitrophenyl)amino]-2,6-dichlorobenzene-acetamide and the like; inhibitors of trans-activating proteins, such as TAT-inhibitors, e.g. RO-5-3335, or REV inhibitors, and the like; protease inhibitors e.g. indinavir, ritonavir, saquinavir, lopinavir (ABT-378), nelfinavir, amprenavir, TMC-126, BMS-232632, VX-175 and the like; fusion inhibitors, e.g. T-20, T-1249 and the like; CXCR4 receptor antagonists, e.g. AMD-3100 and the like; inhibitors of the viral integrase; nucleotide-like reverse transcriptase inhibitors, e.g. tenofovir and the like; ribonucleotide reductase inhibitors, e.g. hydroxyurea and the like.

By administering the compounds of the present invention with other anti-viral agents which target different events in the viral life cycle, the therapeutic effect of these compounds can be potentiated. Combination therapies as described above exert a synergistic effect in inhibiting HIV replication because each component of the
combination acts on a different site of HIV replication. The use of such combinations may reduce the dosage of a given conventional anti-retroviral agent which would be required for a desired therapeutic or prophylactic effect as compared to when that agent is administered as a monotherapy. These combinations may reduce or eliminate the side effects of conventional single anti-retroviral therapy while not interfering with the anti-viral activity of the agents. These combinations reduce potential of resistance to single agent therapies, while minimizing any associated toxicity. These combinations may also increase the efficacy of the conventional agent without increasing the associated toxicity.

The compounds of the present invention may also be administered in combination with immunomodulating agents, e.g. levamisole, bropiramine, anti-human alpha interferon antibody, interferon alpha, interleukin 2, methionine enkephalin, diethyldithiocarbamate, tumor necrosis factor, naltrexone and the like; antibiotics, e.g. pentamidine isethionate and the like; cholinergic agents, e.g. tacrine, rivastigmine, donepezil, galantamine and the like; NMDA channel blockers, e.g. memantine to prevent or combat infection and diseases or symptoms of diseases associated with HIV infections, such as AIDS and ARC, e.g. dementia. A compound of formula (I) can also be combined with another compound of formula (I).

Although the present invention focuses on the use of the present compounds for preventing or treating HIV infections, the present compounds may also be used as inhibitory agents for other viruses which depend on similar reverse transcriptases for obligatory events in their life cycle.

The following examples are intended to illustrate the present invention.

Examples

Hereinafter, "DMSO" is defined as dimethylsulfoxide, "TFA" is defined as trifluoroacetic acid, "DMF" is defined as N,N-dimethylformamide and "THF" is defined as tetrahydrofuran.
A. Preparation of the intermediate compounds

Example A1: Preparation of intermediate 2

![Intermediate 1](image1.png) \rightarrow ![Intermediate 2](image2.png)

N-bromosuccinimide (0.0393 mol) was added portion wise at room temperature to Intermediate 1 (0.0327 mol), the preparation of which has been described in WO-03/016306, in CH$_3$CN (100 ml). The mixture was stirred at room temperature for 4 hours. The precipitate was filtered off, washed with CH$_3$CN and dried yielding 10.08 g of the desired end product. The filtrate was evaporated and purified by column chromatography (eluent: CH$_2$Cl$_2$ 100; 35-70 μm). The pure fractions were collected, the solvent was evaporated and the residue was crystallized from CH$_3$CN. Yielding: 2.4 g of Intermediate 2. The two fractions were collected. Total yield: 12.48 g of Intermediate 2 (86 %, melting point: > 250°C).

Example A2: Preparation of intermediate 3

![Intermediate 3](image3.png)

N-chlorosuccinimide (0.000327 mol) was added portion wise at room temperature to Intermediate 1 (0.000273 mol) in CH$_3$CN (5 ml). The mixture was stirred at room temperature for 4 hours. The precipitate was filtered, washed with CH$_3$CN and dried. Yield: 0.065 g of intermediate 3 (59 %, melting point: > 250°C).
Example A3: Preparation of intermediate 4

![Intermediate 4](image)

The same procedure as in example A1 was used, starting from the 2-fluoro-6-chloro analog of Intermediate 1 (0.000128 mol) and N-bromosuccinimide (0.000154 mol) in CH$_3$CN (5 ml); yield: 0.037 g of Intermediate 4 (62%, melting point: 236°C)

Example A4: Preparation of intermediate 5

![Intermediate 5](image)

A suspension of CaCO$_3$ (1.64 g) in water (30 ml) was added to a suspension of intermediate 1 (0.0273 mol) in EtOH (180 ml). Iodine chloride (ICl) in CH$_2$Cl$_2$ (1N) (22.5 ml) was added dropwise. The mixture was stirred at room temperature for 24 hours, then cooled to 0°C and filtered. The filtrate was dried under vacuo, then taken up in EtOH (180 ml), filtered, washed with EtOH and CH$_3$CN and dried. Yield: 8.5 g. Part of the filtrate was evaporated. The residue was crystallized from hot CH$_3$CN. The precipitate was filtered off and dried. Yielding: 1.54 g of intermediate 5 (total yield 78%).
Example A5: Preparation of intermediates 6, 7 and 8

\[\text{Cl} - \text{N} - \text{Cl} \rightarrow \text{NC} - \text{C} - \text{N} \rightarrow \text{NC} - \text{C} - \text{N} \rightarrow \text{NC} - \text{C} - \text{N} \]

\[\text{Intermediate 6} \]

\[\text{HN} - \text{N} - \text{NH} \rightarrow \text{HN} - \text{N} - \text{NH} \rightarrow \text{HN} - \text{N} - \text{NH} \]

\[\text{Intermediate 7} \quad \text{Intermediate 8} \]

A mixture of 2,4-dichloro-5-nitro-pyrimidine (0.0516 mol) and 4-(2-cyanoethenyl)-2,6-dimethylphenylamine (0.0516 mol) were stirred at 140°C in an oil bath for 45 minutes, then poured in a mixture of water and K₂CO₃ 10%. The precipitate was filtered off and the filtrate extracted with CH₂Cl₂. The organic layer was dried over magnesium sulfate, filtered and the solvent evaporated. The residue was purified by column chromatography over silica gel (eluent: CH₂Cl₂100; 35-70 µm). The pure fractions were collected and the solvent evaporated, yielding 6.0 g of Intermediate 6 (35%, melting point: >250°C).

Preparation of intermediate 7

A mixture of Intermediate 6 (0.0182 mol) and 4-cyanoaniline (0.0182 mol) were heated at fusion for 5 minutes, then poured into a mixture of water and K₂CO₃ 10%. CH₂Cl₂ and a small quantity of MeOH were added and the precipitate was filtered and dried. Yield: 7.4 g of Intermediate 7 (95%, melting point: >250°C)

Preparation of intermediate 8

A mixture of Intermediate 7 (0.0180 mol) and tin (II) chloride dihydrate (0.125 mol) in ethanol (100 ml) were stirred at 70°C overnight, then poured in a mixture of water and K₂CO₃ 10%. The precipitate was filtered over celite. The filtrate was removed and the
precipitate was washed with CH₂Cl₂ and THF. The solvent was evaporated. Yield: 6.0 g of Intermediate 8 (87 %, melting point: > 250°C).

Example A6

Preparation of the 2-fluoro-6-chloro-phenyl analogs of Intermediates 6, 7 and 8.
A mixture of 2,4-dichloro-5-nitro-pyrimidine (0.0153 mol) and 4-(2-cyanoethenyl)-2-fluoro-6-chloro-phenylamine (0.0153 mol) were heated at fusion for 5 minutes, then poured into a mixture of water and K₂CO₃ 10 % and extracted with CH₂Cl₂. The organic layer was dried over magnesium sulfate, filtered and the solvent evaporated.

The residue was purified by column chromatography over silica gel (eluent: CH₂Cl₂100; 35-70 μm). The pure fractions were collected and the solvent evaporated. Yield: 1.9 g of 2-chloro-4-[4-(2-cyanoethenyl)-2-fluoro-6-chloro-phenylamino]-5-nitro-pyrimidine, Intermediate 9 (35 %, melting point : 217°C).

A mixture of Intermediate 9 (0.000424 mol) and 4-cyanoaniline (0.000424 mol) were heated at fusion for 5 minutes, then poured in a mixture of water and K₂CO₃ 10 %. CH₂Cl₂ and a small quantity of MeOH were added and the precipitate was filtered and dried. Yield : 1.34 g of 4-[4-[4-(2-cyanoethenyl)-2-fluoro-6-chloro-phenylamino]-5-nitro-pyrimidine]amino]benzonitrile, Intermediate 10 (73 %, melting point: > 250°C)

A mixture of Intermediate 10 (0.00306 mol) and tin (II) chloride dihydrate (0.0214 mol) in ethanol (20 ml) were stirred at 70°C overnight, then poured into a mixture of water and K₂CO₃ 10 %. The precipitate was filtered over celite. The filtrate was removed and the precipitate was washed with CH₂Cl₂ and THF. The solvent was evaporated. Yield: 1.1 g of 4-[4-[4-(2-cyanoethenyl)-2-fluoro-6-chloro-phenylamino]-5-aminopyrimidine]amino]benzonitrile, Intermediate 11 (89 %, melting point: > 250°C).

Example A7 : preparation of intermediate 12

![Diagram](Image)
A mixture of intermediate 2 (0.0247 mol), dichlorobis(triphenylphosphine)-palladium(II) (0.00494 mol) and triethylamine (0.107 mol) in ethanol (100 ml) were stirred at 100°C for 72 hours under 15 bars pressure of carbon monoxide. The mixture was poured into water. The precipitate was filtered off, yielding 6 g of intermediate 12. The filtrate was extracted with CH₂Cl₂. The organic layer was dried over magnesium sulfate, filtered and the solvent was evaporated. The residue was purified by column chromatography over silica gel (eluent: CH₂Cl₂/MeOH 99.5/0.5; 15-40 μm). The pure fractions were collected and the solvent evaporated, yielding 1.9 g of intermediate 12. The two portions of intermediate 12 were combined giving a total yield of 7.9 g (73 %, melting point: > 250°C).

Example B1: Preparation of compound 1

![Chemical structure](attachment:image.png)

2,5-dimethoxytetrahydrofuran (0.00157 mol) was added at room temperature to Intermediate 8 (0.00524 mol) in acetic acid (5 ml). The mixture was stirred at 90°C for 50 minutes. After cooling, the mixture was poured into water, K₂CO₃ 10 % was added and the mixture was extracted with CH₂Cl₂. The organic layer was dried over magnesium sulfate, filtered and the solvent evaporated. The residue was purified by column chromatography over silica gel (eluent: CH₂Cl₂ 100; 35-70 μm). The pure fractions were collected and the solvent evaporated, yielding 0.145 g (64 %, melting point: 163°C) of Compound 1.
Example B2: Compound 2

Intermediate 2 (0.449 mmol) was added to a solution of tetrakis(triphenylphosphine)-palladium(0) (0.0449 mmol) in 1,2-dimethoxyethane at room temperature. A solution of pyridine-3-boronic acid 1,3-propanediol cyclic ester (0.135 mmol) in methanol (3 ml) was added at room temperature. The mixture was stirred at 95°C for 20h and was then poured in water, extracted with ethyl acetate. The organic layer was washed with a brine solution and dried over magnesium sulfate, filtered and evaporated. The residue was purified by column chromatography over silica gel (eluent: CH₂Cl₂/MeOH 98/2; 10 μm). The pure fractions were collected and the solvent evaporated, yielding 0.130 g (65 %, melting point : 238 °C) of Compound 2.

Example B3: Compound 3 and 22

10 % Palladium on charcoal (0.069 mmol) was added under argon to a solution of Compound 3 (0.347 mmol) in THF (50 ml) and methanol (30 ml). Compound 3 was prepared following the procedures of example B2 starting from furan-2-yl boronic acid 1,3-propanediol cyclic ester. This mixture was introduced into a hydrogenation apparatus under pressure of hydrogen (3 bars) and stirred at room temperature for 1.5 h. The mixture was then filtered over celite, rinsed with THF and the solvent was evaporated. The residue was taken up in ethyl acetate and washed with water and with a saturated solution of brine. It was then dried over magnesium sulfate, filtered, evaporated and the residue was purified by column chromatography over silica gel.
(eluent: CH₂Cl₂/AcOEt 90/10; 35-70 μm). The pure fractions were collected and the solvent evaporated. Yield: 0.149 g (98 %, melting point: 211-212°C) of Compound 22.

Example B4

![Chemical structure](image)

Intermediate 11

Compound 4

2,5-dimethoxytetrahydrofuran (0.000739 mol) was added at room temperature to Intermediate 11 (0.000246 mol) in acetic acid (3 ml). The mixture was stirred at 90°C for 50 minutes. After cooling, the mixture was poured in water, K₂CO₃ 10 % was added and the mixture was extracted with CH₂Cl₂. The organic layer was dried over magnesium sulfate, filtered and the solvent evaporated. The residue was purified by column chromatography over silica gel (eluent: CH₂Cl₂/MeOH 99/1; 35-70 μm). The pure fractions were collected and the solvent evaporated. Yield: 0.050 g (45%, melting point: 211°C) of compound 4.

Example B5

![Chemical structure](image)

Compound 5

A mixture of intermediate 12 (0.00057 mol), 2-pyridylamidoxime (0.00171 mol) sodium hydride 60% (0.00285 mol) in DMF (15 ml) was stirred at 0°C for 15 min. Then the mixture was introduced in a micro-wave (MW) apparatus and irradiated at
300 W during 15 min (T=142°C). The mixture was poured in water and extracted with ethyl acetate. The organic layer was washed with a saturated solution of NaCl, then dried over magnesium sulfate, filtered and the solvent was evaporated. The residue was purified by column chromatography over silica gel (eluent: CH₂Cl₂/MeOH 99/1; 10 µm, then eluent: MeOH/NH₄HCO₃ 0.5%/THF: 45/35/20; Hyperprep HS-C18 8µm). The pure fractions were collected and the solvent evaporated. Yield : 0.021 g. (7 %, melting point: > 250°C) of Compound 5.

Example B6

A mixture of intermediate 5 (0.002 mol), PdCl₂(dppf) (0.0004 mol), Bis(pinacolato) diboron (0.0024mol) and AcOK (0.006mol) in DMF (10ml) was stirred at 85°C for 18 hours under N₂ flow. A mixture of 4-amino-3-bromopyridine (0.004 mol), PdCl₂(dppf) (0.0004 mol) and K₂CO₃ 2N (0.01 mol) in DMF (10ml) was added. The mixture was stirred at 85°C for 3 days. H₂O was added. The mixture was extracted twice with CH₂Cl₂/THF. The organic layer was washed with saturated NaCl, dried (MgSO₄), filtered and the solvent was evaporated. The residue was purified by column chromatography over kromasil (eluent: CH₂Cl₂/CH₂OH/ NH₄OH 98/2/0.2 to 90/10/0.1; 5µm). The pure fractions were collected and the solvent was evaporated. Yield : 0.075g (8%) (melting point: 188°C) of compound 6 (structure: see table).

Table 1 lists the compounds that were prepared according to one of the above Examples (Ex.No.).

![Chemical Structure]

<table>
<thead>
<tr>
<th>Comp. nr</th>
<th>Example</th>
<th>R⁴</th>
<th>R⁴a</th>
<th>R⁵</th>
<th>Phys. Data and stereo-chemistry</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>B1</td>
<td>CH₃</td>
<td>CH₃</td>
<td></td>
<td>(E) 163°C</td>
</tr>
<tr>
<td>2</td>
<td>B2</td>
<td>CH₃</td>
<td>CH₃</td>
<td></td>
<td>(E) 238°C</td>
</tr>
<tr>
<td>3</td>
<td>B2</td>
<td>CH₃</td>
<td>CH₃</td>
<td></td>
<td>(E) > 250°C</td>
</tr>
<tr>
<td>Comp. nr</td>
<td>Example</td>
<td>R<sup>4</sup></td>
<td>R<sup>4a</sup></td>
<td>R<sup>5</sup></td>
<td>Phys. Data and stereo-chemistry</td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
<td>--------------</td>
<td>----------------</td>
<td>--------------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>4</td>
<td>B4</td>
<td>F</td>
<td>Cl</td>
<td></td>
<td>211°C</td>
</tr>
<tr>
<td>5</td>
<td>B5</td>
<td>CH<sub>3</sub></td>
<td>CH<sub>3</sub></td>
<td></td>
<td>> 250°C</td>
</tr>
<tr>
<td>6</td>
<td>B6</td>
<td>CH<sub>3</sub></td>
<td>CH<sub>3</sub></td>
<td></td>
<td>(E) 188°C</td>
</tr>
<tr>
<td>7</td>
<td>B2</td>
<td>CH<sub>3</sub></td>
<td>CH<sub>3</sub></td>
<td></td>
<td>(E) 226°C</td>
</tr>
<tr>
<td>8</td>
<td>B2</td>
<td>CH<sub>3</sub></td>
<td>CH<sub>3</sub></td>
<td></td>
<td>(E) > 250°C</td>
</tr>
<tr>
<td>9</td>
<td>B2</td>
<td>CH<sub>3</sub></td>
<td>CH<sub>3</sub></td>
<td></td>
<td>(E) 250°C</td>
</tr>
<tr>
<td>10</td>
<td>B2</td>
<td>CH<sub>3</sub></td>
<td>CH<sub>3</sub></td>
<td></td>
<td>(E) 245°C</td>
</tr>
<tr>
<td>11</td>
<td>B2</td>
<td>CH<sub>3</sub></td>
<td>CH<sub>3</sub></td>
<td></td>
<td>(E) 235°C</td>
</tr>
<tr>
<td>12</td>
<td>B2</td>
<td>CH<sub>3</sub></td>
<td>CH<sub>3</sub></td>
<td></td>
<td>(E) > 250°C</td>
</tr>
<tr>
<td>13</td>
<td>B5</td>
<td>CH<sub>3</sub></td>
<td>CH<sub>3</sub></td>
<td></td>
<td>(E/Z:40/60) > 250°C</td>
</tr>
<tr>
<td>14</td>
<td>B5</td>
<td>CH<sub>3</sub></td>
<td>CH<sub>3</sub></td>
<td></td>
<td>(E) > 250°C</td>
</tr>
<tr>
<td>15</td>
<td>B5</td>
<td>CH<sub>3</sub></td>
<td>CH<sub>3</sub></td>
<td></td>
<td>(E) > 250°C</td>
</tr>
<tr>
<td>16</td>
<td>B5</td>
<td>CH<sub>3</sub></td>
<td>CH<sub>3</sub></td>
<td></td>
<td>(E) > 250°C</td>
</tr>
</tbody>
</table>
Table 2 lists compounds that were prepared according to one of the above Examples (Ex.No.).

<table>
<thead>
<tr>
<th>Comp. nr</th>
<th>Example</th>
<th>R⁴</th>
<th>R⁴a</th>
<th>R⁵</th>
<th>Phys. Data and stereochemistry</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>B5</td>
<td>CH₃</td>
<td>CH₃</td>
<td></td>
<td>(E) > 250°C</td>
</tr>
<tr>
<td>18</td>
<td>B6</td>
<td>CH₃</td>
<td>CH₃</td>
<td></td>
<td>(E) > 250°C</td>
</tr>
<tr>
<td>19</td>
<td>B6</td>
<td>CH₃</td>
<td>CH₃</td>
<td></td>
<td>(E) 156°C</td>
</tr>
<tr>
<td>20</td>
<td>B6</td>
<td>CH₃</td>
<td>CH₃</td>
<td></td>
<td>(E) > 250°C</td>
</tr>
<tr>
<td>21</td>
<td>B6</td>
<td>CH₃</td>
<td>CH₃</td>
<td></td>
<td>> 250°C</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Comp. No.</th>
<th>Example</th>
<th>R⁴</th>
<th>R⁴a</th>
<th>R⁵</th>
<th>Phys. Data and stereochemistry</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>B3</td>
<td>CH₃</td>
<td>CH₃</td>
<td></td>
<td>211-212 °C</td>
</tr>
</tbody>
</table>

10 Formulation examples

Capsules

A compound of formula (I) is dissolved in organic solvent such as ethanol, methanol or methylene chloride, preferably, a mixture of ethanol and methylene chloride. Polymers such as polyvinylpyrrolidone copolymer with vinyl acetate (PVP-VA) or hydroxypropylmethylcellulose (HPMC), typically 5 mPa.s, are dissolved in organic solvents such as ethanol, methanol methylene chloride. Suitably the polymer is dissolved in ethanol. The polymer and compound solutions are mixed and subsequently spray dried. The ratio of compound/polymer is selected from 1/1 to 1/6. Intermediate
ranges can be 1/1.5 and 1/3. A suitable ratio can be 1/6. The spray-dried powder, a solid dispersion, is subsequently filled in capsules for administration. The drug load in one capsule ranges between 50 and 100 mg depending on the capsule size used.

5 Film-coated Tablets

Preparation of Tablet Core

A mixture of 100 g of a compound of formula (I), 570 g lactose and 200 g starch is mixed well and thereafter humidified with a solution of 5 g sodium dodecyl sulfate and 10 g polyvinylpyrrolidone in about 200 ml of water. The wet powder mixture is sieved, dried and sieved again. Then there is added 100 g microcrystalline cellulose and 15 g hydrogenated vegetable oil. The whole is mixed well and compressed into tablets, giving 10,000 tablets, each comprising 10 mg of the active ingredient.

Coating

To a solution of 10 g methylcellulose in 75 ml of denaturated ethanol there is added a solution of 5 g of ethylcellulose in 150 ml of dichloromethane. Then there is added 75 ml of dichloromethane and 2.5 ml 1,2,3-propanetriol. 10 g of polyethylene glycol is molten and dissolved in 75 ml of dichloromethane. The latter solution is added to the former and then there is added 2.5 g of magnesium octadecanoate, 5 g of polyvinylpyrrolidone and 30 ml of concentrated color suspension and the whole is homogenized. The tablet cores are coated with the thus obtained mixture in a coating apparatus.

Antiviral spectrum:

Because of the increasing emergence of drug resistant HIV strains, the present compounds were tested for their potency against clinically isolated HIV strains harboring several mutations. These mutations are associated with resistance to reverse transcriptase inhibitors and result in viruses that show various degrees of phenotypic cross-resistance to the currently commercially available drugs such as for instance AZT and delavirdine.

The antiviral activity of the compound of the present invention has been evaluated in the presence of wild type HIV and HIV mutants bearing mutations at the reverse transcriptase gene. The activity of the compounds is evaluated using a cellular assay and the residual activity is expressed in pEC_{50} values. The columns IIIB and A–G in the table list the pEC_{50} values against various strains IIIB, A–G.

Strain IIIB is wild type HIV-LAI strain

Strain A contains mutation Y181C in HIV reverse transcriptase,
Strain B contains mutation K103N in HIV reverse transcriptase,
Strain C contains mutation L100I in HIV reverse transcriptase,
Strain D contains mutation Y188L in HIV reverse transcriptase,

<table>
<thead>
<tr>
<th>Compound number</th>
<th>IIIB</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9</td>
<td>8</td>
<td>9.1</td>
<td>9</td>
<td>8.2</td>
<td>8.4</td>
<td>8.1</td>
<td>5.8</td>
</tr>
<tr>
<td>2</td>
<td>9.2</td>
<td>8.3</td>
<td>9.2</td>
<td>9.7</td>
<td>4</td>
<td>8.7</td>
<td>7.9</td>
<td>5.1</td>
</tr>
<tr>
<td>3</td>
<td>9.2</td>
<td>8.5</td>
<td>9.1</td>
<td>9.2</td>
<td>8.6</td>
<td>8.5</td>
<td>8.4</td>
<td>6.2</td>
</tr>
<tr>
<td>4</td>
<td>9</td>
<td>8.3</td>
<td>9</td>
<td>9.1</td>
<td>7.9</td>
<td>8.5</td>
<td>8.5</td>
<td>5.6</td>
</tr>
<tr>
<td>6</td>
<td>8.0</td>
<td>6.9</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>6.3</td>
<td>6.3</td>
</tr>
<tr>
<td>7</td>
<td>8.9</td>
<td>8.1</td>
<td>8.6</td>
<td>8.7</td>
<td>8.1</td>
<td>8.1</td>
<td>8</td>
<td>5.6</td>
</tr>
<tr>
<td>8</td>
<td>7.8</td>
<td>7.2</td>
<td>8</td>
<td>8.1</td>
<td>7.1</td>
<td>7.3</td>
<td>7.3</td>
<td>4.6</td>
</tr>
<tr>
<td>9</td>
<td>9.2</td>
<td>8.5</td>
<td>9.1</td>
<td>9.2</td>
<td>8.5</td>
<td>8.8</td>
<td>8.6</td>
<td>5.9</td>
</tr>
<tr>
<td>10</td>
<td>8.5</td>
<td>7.7</td>
<td>8.5</td>
<td>8.4</td>
<td>7.7</td>
<td>7.7</td>
<td>7.7</td>
<td>4.6</td>
</tr>
<tr>
<td>11</td>
<td>8.1</td>
<td>6.7</td>
<td>7.5</td>
<td>6.5</td>
<td>6.1</td>
<td>-</td>
<td>6.5</td>
<td>4.6</td>
</tr>
<tr>
<td>12</td>
<td>8.9</td>
<td>7.9</td>
<td>8.6</td>
<td>8.1</td>
<td>7.7</td>
<td>7.6</td>
<td>7.8</td>
<td>4.6</td>
</tr>
<tr>
<td>13</td>
<td>7.8</td>
<td>7.1</td>
<td>7.7</td>
<td>7.8</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>4.6</td>
</tr>
<tr>
<td>14</td>
<td>8.3</td>
<td>7.1</td>
<td>7.8</td>
<td>7.3</td>
<td>6.7</td>
<td>7</td>
<td>6.9</td>
<td>5.3</td>
</tr>
<tr>
<td>15</td>
<td>7.6</td>
<td>6.9</td>
<td>-</td>
<td>6.7</td>
<td>6.2</td>
<td>4.6</td>
<td>6.6</td>
<td>4.6</td>
</tr>
<tr>
<td>16</td>
<td>8.3</td>
<td>7.8</td>
<td>-</td>
<td>8.4</td>
<td>7.8</td>
<td>7.7</td>
<td>8.0</td>
<td>5.5</td>
</tr>
<tr>
<td>17</td>
<td>7.0</td>
<td>6.3</td>
<td>-</td>
<td>6.0</td>
<td>5.7</td>
<td>5.0</td>
<td>5.9</td>
<td>4.6</td>
</tr>
<tr>
<td>18</td>
<td>8.0</td>
<td>7.7</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>7.7</td>
<td>7.3</td>
<td>6.1</td>
</tr>
<tr>
<td>19</td>
<td>8.4</td>
<td>8.1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>8.3</td>
<td>7.8</td>
<td>6.2</td>
</tr>
<tr>
<td>20</td>
<td>8.7</td>
<td>7.9</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>7.1</td>
<td>7.0</td>
<td>4.9</td>
</tr>
<tr>
<td>21</td>
<td>7.5</td>
<td>6.9</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>6.2</td>
<td>6.3</td>
<td>5.6</td>
</tr>
</tbody>
</table>
Claims

1. A compound of formula

\[
\text{(I)}
\]

an N-oxide, a pharmaceutically acceptable addition salt, a quaternary amine or a stereochemically isomorphic form thereof, wherein

\[-a^1=a^2-a^3=a^4-\] represents a bivalent radical of formula

\[-\text{CH=CH-CH=CH-} \quad \text{(a-1)};\]
\[-\text{N=CH=CH-} \quad \text{(a-2)};\]
\[-\text{N=CH-N=CH-} \quad \text{(a-3)};\]
\[-\text{N=CH-CH=N-} \quad \text{(a-4)};\]
\[-\text{N=N-CH=CH-} \quad \text{(a-5)};\]

\[-b^1=b^2-b^3=b^4-\] represents a bivalent radical of formula

\[-\text{CH=CH-CH=CH-} \quad \text{(b-1)};\]
\[-\text{N=CH=CH-} \quad \text{(b-2)};\]
\[-\text{N=CH-N=CH-} \quad \text{(b-3)};\]
\[-\text{N=CH-CH=N-} \quad \text{(b-4)};\]
\[-\text{N=N-CH=CH-} \quad \text{(b-5)};\]

n is 0, 1, 2, 3 and in case \[-a^1=a^2-a^3=a^4-\] is (a-1), then n may also be 4;
m is 0, 1, 2, 3 and in case \[-b^1=b^2-b^3=b^4-\] is (b-1), then m may also be 4;
each \(R^1\) independently is hydrogen; aryl; formyl; \(\text{C}_1\text{-alkyloxy carbonyl}\); \(\text{C}_1\text{-alkyl}\);
\(\text{C}_1\text{-alkyloxy carbonyl}\); \(\text{C}_1\text{-alkyl substituted with formyl, C}_1\text{-alkyloxy carbonyl,}\)
\(\text{C}_1\text{-alkyloxy carbonyl, or with C}_1\text{-alkylcarboxyloxy}\);
each \(R^2\) independently is hydroxy; halo; \(\text{C}_1\text{-alkyl}\) optionally substituted with one, two
or three substituents each independently selected from halo, cyano or \(-\text{C}(=\text{O})\text{R}^6;\)
\(\text{C}_3\text{-cycloalkyl}\); \(\text{C}_2\text{-alkenyl}\) optionally substituted with one, two or three substituents each independently selected from halo, cyano or \(-\text{C}(=\text{O})\text{R}^6;\)
\(\text{C}_2\text{-alkynyl}\) optionally substituted with one, two or three substituents each independently selected from halo, cyano or \(-\text{C}(=\text{O})\text{R}^6;\)
\(\text{C}_1\text{-alkyloxy carbonyl; carboxylic; cyano; nitro; amino;}\)
mono- or di(\(\text{C}_1\text{-alkyl})\)amino; polyhalomethyl; polyhalomethylthio; \(-\text{S}(=\text{O})\text{R}^6;\)
\(-\text{NH}-\text{S}(=\text{O})\text{R}^6;\) \(-\text{C}(=\text{O})\text{R}^6;\) \(-\text{NHC}(=\text{O})\text{H};\)
\(-\text{C}(=\text{O})\text{NHNH}_2;\) \(\text{NHC}(=\text{O})\text{R}^6;\) \(\text{C}(=\text{NH})\text{R}^6;\)
(8) R²a is cyano; aminocarbonyl; amino; C₁₆alkyl; halo; C₁₆alkyloxy wherein C₁₆alkyl may optionally be substituted with cyano; NH₃; NR₃R¹⁴; -(=O)-NHR¹³; -C(=O)-NR₃R¹⁴; -C(=O)-R¹⁵; -CH=N-NH-C(=O)-R¹⁶; C₁₆alkyl substituted with one, two or three substituents each independently selected from halo, cyano, NR³R¹⁰, -C(=O)-NR³R¹⁰; -C(=O)-C₁₆alkyl or R⁷; C₁₆alkyl substituted with hydroxy and a second substituent selected from halo, cyano, NR³R¹⁰, -C(=O)-NR³R¹⁰; -C(=O)-C₁₆alkyl or R⁷; C₁₆alkyloxyC₁₆alkyl optionally substituted with one, two or three substituents each independently selected from halo, cyano, NR³R¹⁰, -C(=O)-NR³R¹⁰; -C(=O)-C₁₆alkyl or R⁷; C₂₆alkenyl substituted with one, two or three substituents each independently selected from halo, cyano, NR³R¹⁰, -C(=O)-NR³R¹⁰; -C(=O)-C₁₆alkyl or R⁷; C₂₆alkynyl substituted with one, two or three substituents each independently selected from halo, cyano, NR³R¹⁰, -C(=O)-NR³R¹⁰; -C(=O)-C₁₆alkyl or R⁷; -C(=N-O-R⁸)-C₁₆alkyl; R⁷ or -X₃-R⁷; X₁ is -NR¹⁻, -O⁻, -C(O)⁻, -CH₂⁻, -CHOH⁻, -S⁻, -S(=O)ₖ⁻;

R³ is cyano; aminocarbonyl; amino; C₁₆alkyl; halo; C₁₆alkyloxy wherein C₁₆alkyl may optionally be substituted with cyano; NH₃; NR₃R¹⁴; -(=O)-NHR¹³; -C(=O)-NR₃R¹⁴; -C(=O)-R¹⁵; -CH=N-NH-C(=O)-R¹⁶; C₁₆alkyl substituted with one, two or three substituents each independently selected from halo, cyano, NR³R¹⁰, -C(=O)-NR³R¹⁰; -C(=O)-C₁₆alkyl or R⁷; C₁₆alkyl substituted with hydroxy and a second substituent selected from halo, cyano, NR³R¹⁰, -C(=O)-NR³R¹⁰; -C(=O)-C₁₆alkyl or R⁷; C₁₆alkyloxyC₁₆alkyl optionally substituted with one, two or three substituents each independently selected from halo, cyano, NR³R¹⁰, -C(=O)-NR³R¹⁰; -C(=O)-C₁₆alkyl or R⁷; C₁₆alkyloxyC₁₆alkyl optionally substituted with one, two or three substituents each independently selected from halo, cyano, NR³R¹⁰, -C(=O)-NR³R¹⁰; -C(=O)-C₁₆alkyl or R⁷; C₂₆alkenyl substituted with one, two or three substituents each independently selected from halo, cyano, NR³R¹⁰, -C(=O)-NR³R¹⁰; -C(=O)-C₁₆alkyl or R⁷; C₂₆alkynyl substituted with one, two or three substituents each independently selected from halo, cyano, NR³R¹⁰, -C(=O)-NR³R¹⁰; -C(=O)-C₁₆alkyl or R⁷; -C(=N-O-R⁸)-C₁₆alkyl; R⁷ or -X₃-R⁷; X₃ is -NR¹⁻, -O⁻, -C(O)⁻, -S⁻, -S(=O)ₖ⁻;

R⁴ is halo; hydroxy; C₁₆alkyl optionally substituted with one, two or three substituents each independently selected from halo, cyano or -C(=O)R⁶; C₂₆alkenyl optionally substituted with one, two or three substituents each independently selected from halo, cyano or -C(=O)R⁶; C₂₆alkynyl optionally substituted with one, two or three substituents each independently selected from halo, cyano or -C(=O)R⁶; C₃₋₇cycloalkyl; C₁₆alkyloxy; cyano; nitro; polyhaloC₁₆alkyl; polyhaloC₁₆alkyloxy; aminocarbonyl; mono- or di(C₁₆alkyl)aminocarbonyl; C₁₆alkyloxycarbonyl; C₁₆alkylcarbonyl; formyl; amino; mono- or di(C₁₆alkyl)amino or R⁷;
R^5 is a 5- or 6-membered completely unsaturated ring system wherein one, two, three or four ring members are hetero atoms each independently selected from the group consisting of nitrogen, oxygen and sulfur, and wherein the remaining ring members are carbon atoms; and, where possible, any nitrogen ring member may optionally be substituted with $C_{1,6}$alkyl; which ring system may optionally be annelated with a benzene ring; and wherein any ring carbon atom, including any carbon of an optionally annelated benzene ring, may, each independently, optionally be substituted with a substituent selected from halo, hydroxy, mercapto, cyano, $C_{1,6}$alkyl, hydroxycetaalkyl, carboxy$C_{1,4}$alkyl, $C_{1,4}$alkyloxy$C_{1,4}$alkyl, cyano$C_{1,4}$alkyl, di$(C_{1,4}$alkyl)amino$C_{1,4}$alkyl, Het-$C_{1,4}$alkyl, ari$C_{1,4}$alkyl, polyhalo$C_{1,4}$alkyl, $C_{3,7}$cycloalkyl, $C_{2,6}$alkenyl, ari$C_{2,4}$alkenyl, $C_{1,4}$alkyloxy, -OCONH$_2$, polyhalo$C_{1,4}$alkyloxy, ariyloxy, amino, mono- and di-$C_{1,4}$alkylamino, $C_{1,4}$alkylcarbonylamino, formyl, $C_{1,4}$alkylcarbonyl, $C_{1,4}$alkyloxy carbonyl, aminocarbonyl, mono- and di$C_{1,4}$alkylaminocarbonyl, ariy, Het;

wherein Het is pyridyl, thienyl, furanyl, oxazolyl, isoxazolyl, imidazolyl, pyrazolyl, thiazolyl, thiadiazolyl, oxadiazolyl, quinolinyln, benzothenyl, benzofuranyl; which each may optionally be substituted with one or two $C_{1,4}$alkyl radicals;

Q is hydrogen, $C_{1,4}$alkyl, halo, polyhalo$C_{1,4}$alkyl, or -NR$_2$R$_4$;

R^6 is $C_{1,4}$alkyl, amino, mono- or di$(C_{1,4}$alkyl)amino or polyhalo$C_{1,4}$alkyl;

R^7 is a monocyclic, bicyclic or tricyclic saturated, partially saturated or aromatic carbocycle or a monocyclic, bicyclic or tricyclic saturated, partially saturated or aromatic heterocycle, wherein each of said carbocyclic or heterocyclic ring systems may optionally be substituted with one, two, three, four or five substituents each independently selected from halo, hydroxy, mercapto, $C_{1,4}$alkyl, hydroxycetaalkyl, amino$C_{1,4}$alkyl, mono or di$(C_{1,4}$alkyl)amino$C_{1,4}$alkyl, formyl, $C_{1,4}$alkylcarbonyl, $C_{3,7}$cycloalkyl, $C_{1,4}$alkyloxy, $C_{1,4}$alkyloxy carbonyl, $C_{1,4}$alkylthio, cyano, nitro, polyhalo$C_{1,4}$alkyl, polyhalo$C_{1,4}$alkyloxy, aminocarbonyl, -CH($=N$O-R$_3$), R^7a, $-X_3$-R^7a or R^7a-$C_{1,4}$alkyl;

R^7a is a monocyclic, bicyclic or tricyclic saturated, partially saturated or aromatic carbocycle or a monocyclic, bicyclic or tricyclic saturated, partially saturated or aromatic heterocycle, wherein each of said carbocyclic or heterocyclic ring systems may optionally be substituted with one, two, three, four or five substituents each independently selected from halo, hydroxy, mercapto, $C_{1,4}$alkyl, hydroxycetaalkyl, amino$C_{1,4}$alkyl, mono or di$(C_{1,4}$alkyl)amino$C_{1,4}$alkyl, formyl, $C_{1,4}$alkylcarbonyl, $C_{3,7}$cycloalkyl, $C_{1,4}$alkyloxy, $C_{1,4}$alkyloxy carbonyl, $C_{1,4}$alkylthio, cyano, nitro, polyhalo$C_{1,4}$alkyl, polyhalo$C_{1,4}$alkyloxy, aminocarbonyl, -CH($=N$O-R$_3$);

R^8 is hydrogen, $C_{1,4}$alkyl, ariy or ariy$C_{1,4}$alkyl;
R^9 and R^10 each independently are hydrogen; C_{1-6}alkyl; C_{1-6}alkylcarbonyl;
C_{1-6}alkyloxy carbonyl; amino; mono- or di(C_{1-6}alkyl)aminocarbonyl; -CH(=NR^{11}) or
R^7, wherein each of the aforementioned C_{1-6}alkyl groups may optionally and each
individually be substituted with one or two substituents each independently selected
from hydroxy, C_{1-6}alkoxy, hydroxyC_{1-6}alkoxy, carboxyl, C_{1-6}alkyloxy carbonyl,
cyano, amino, imino, mono- or di(C_{1-4}alkyl)amino, polyhalomethyl,
polyhalomethyloxy, polyhalomethylthio, -S(=O)_{p}R^6, -NH-S(=O)_{p}R^6, -C(=O)R^6,
-NHC(=O)H, -C(=O)HNHNH_{2}, -NHC(=O)R^6, -C(=NH)R^6, R^7; or
R^9 and R^10 may be taken together to form a bivalent or trivalent radical of formula

\[
\begin{align*}
&\text{-CH}_2\text{-CH}_2\text{-CH}_2\text{-CH}_2- & \text{(d-1)} \\
&\text{-CH}_2\text{-CH}_2\text{-CH}_2\text{-CH}_2- & \text{(d-2)} \\
&\text{-CH}_2\text{-CH}_2\text{-O-CH}_2\text{-CH}_2- & \text{(d-3)} \\
&\text{-CH}_2\text{-CH}_2\text{-S-CH}_2\text{-CH}_2- & \text{(d-4)} \\
&\text{-CH}_2\text{-CH}_2\text{-NR^{12}-CH}_2\text{-CH}_2- & \text{(d-5)} \\
&\text{-CH}_2\text{-CH=CH-CH}_2- & \text{(d-6)} \\
&\text{-CH=CH=CH=CH=CH-} & \text{(d-7)} \\
\end{align*}
\]

R^{11} is cyano; C_{1-4}alkyl optionally substituted with C_{1-4}alkyloxy, cyano, amino, mono-
or di(C_{1-4}alkyl)amino or aminocarbonyl; C_{1-4}alkylcarbonyl; C_{1-4}alkyloxy carbonyl;
aminocarbonyl; mono- or di(C_{1-4}alkyl)aminocarbonyl;
R^{12} is hydrogen or C_{1-4}alkyl;
R^{13} and R^{14} each independently are C_{1-6}alkyl optionally substituted with cyano or
aminocarbonyl, C_{2-6}alkenyl optionally substituted with cyano or aminocarbonyl,
C_{2-6}alkynyl optionally substituted with cyano or aminocarbonyl;
R^{15} is C_{1-6}alkyl substituted with cyano or aminocarbonyl;
R^{16} is C_{1-6}alkyl optionally substituted with cyano or aminocarbonyl, or R^7;
each p is 1 or 2;
each aryl is phenyl or phenyl substituted with one, two, three, four or five substituents
each independently selected from halo, hydroxy, mercapto, C_{1-6}alkyl, hydroxy-
C_{1-6}alkyl, aminoC_{1-6}alkyl, mono or di(C_{1-6}alkyl)aminoC_{1-6}alkyl, C_{1-6}alkyl-
carbonyl, C_{3-7}cycloalkyl, C_{1-6}alkyloxy, C_{1-6}alkyloxy carbonyl, C_{1-6}alkylthio,
cyano, nitro, polyhaloC_{1-6}alkyl, polyhaloC_{1-6}alkyloxy, aminocarbonyl, Het or
-X_3-Het.

2. A compound according to claim 1 wherein R^5 is a heterocycle selected from
pyrrolyl, furanyl, thiényl, pyrazolyl, imidazolyl, oxazolyl, isoxazolyl, thiazolyl,
isothiazolyl, triazolyl, tetrazolyl, thiatriazolyl, thiadiazolyl, oxadiazolyl, pyridyl,
pyrimidinyl, pyrazinyl, pyridazinyl, benzofuranyl, benzothienyl, benzimidazolyl,
benzoxazolyl, benzothiazolyl, indolyl, benzothiadiazolyl,
benzofurazanyl, benzoxadiazolyl, indazolyl, quinolinyl, said heterocycle optionally being substituted on its carbon atoms with one, two or three substituents each independently selected from halo, hydroxy, mercapto, cyano, C₁₋₆alkyl, hydroxyc₄₋₆alkyl, carboxyC₄₋₆alkyl, C₄₋₆alkyloxyC₄₋₆alkyl, cyanoC₄₋₆alkyl, di(C₄₋₆alkyl)aminoC₄₋₆alkyl, Het-C₄₋₆alkyl, arylC₄₋₆alkyl, polyhaloC₄₋₆alkyl, C₃₋₇cycloalkyl, arylC₂₋₄alkenyl, C₄₋₆alkyloxy, -OCONH₂, polyhaloC₄₋₆alkyloxy, arylxox, amino, mono- and di-C₄₋₆alkylaminobenzofuranyl, C₄₋₆alkylcarbonylamino, formyl, C₄₋₆alkyloxycarbonyl, C₄₋₆alkyloxycarbonyl, aminocarbonyl, mono- and di-C₄₋₆alkylaminocarbonyl, aryl, Het.

3. A compound according to claim 1 wherein R₅ is a heterocycle selected from pyrrolyl, furanyl, thiienyl, isothiazolyl, thiatiazolyl, thiadiazolyl, oxadiazolyl, pyridyl, pyrimidinyl, benzofuranyl, quinolinyl, said heterocycle optionally being substituted on its carbon atoms with one, two or three substituents each independently selected from halo, hydroxy, cyano, C₁₋₆alkyl, amino, mono- and di-C₄₋₆alkylaminobenzofuranyl, aminocarbonyl, aryl, Het.

4. A compound according to claim 1 wherein R₅ is a heterocycle selected from pyrrolyl, furanyl, thiienyl, thiazolyl, oxadiazolyl, pyridyl, benzofuranyl, quinolinyl, said heterocycle optionally being substituted on its carbon atoms with one, two or three substituents each independently selected from C₁₋₆alkyl, amino, aminocarbonyl, aryl, Het.

5. A compound according to claims 1-4 wherein
 \(-a^1=a^2-a^3=a^4\) is \(-CH=CH-CH=CH-\) (a-1);
 \(-b^1=b^2-b^3=b^4\) is \(-CH=CH-CH=CH-\) (b-1);
 \(n\) is 0, 1 or 2; or preferably \(n\) is 0;
 \(m\) is 0, 1 or 2; or preferably \(m\) is 2;
 \(R^1\) is hydrogen; C₁₋₆alkyl; or preferably \(R^1\) is hydrogen;
 \(X_1\) is \(-NR^1\), \(-O\), \(-S\), \(-S(=O)p\); wherein in \(-NR^1\) \(R^1\) preferably is hydrogen.

6. A compound according to claims 1-5 wherein
 \(R^2\) is hydroxy, halo; C₁₋₆alkyl optionally substituted with one substituent selected from halo, cyano or \(-C(=O)R^6\); C₂₋₆alkenyl optionally substituted with one substituent selected from halo, cyano or \(-C(=O)R^6\); C₂₋₆alkynyl optionally substituted with one substituent selected from halo, cyano or \(-C(=O)R^6\);
C_{1-6}alkyloxycarbonyl; carboxyl; cyano; nitro; amino; mono- or di(C_{1-6}alkyl)-amino; trifluoromethyl;

R^{2a} is cyano; aminocarbonyl; amino; C_{1-6}alkyl; halo; C_{1-6}alkyloxy wherein
C_{1-6}alkyl may optionally be substituted with cyano; NHR^{13}; NR^{13}R^{14};
-C(=O)-NHR^{13}; -C(=O)-NR^{13}R^{14}; -C(=O)-R^{15}; -CH=NNH-C(=O)-R^{16};
C_{1-6}alkyl substituted with one substituent selected from halo, cyano,
-C(=O)-NR^{9}R^{10}; C_{1-6}alkyl substituted with hydroxy and a second substituent
selected from halo, cyano, -C(=O)-NR^{9}R^{10}; C_{1-6}alkyloxyC_{1-6}alkyl optionally
substituted with one substituent selected from halo, cyano, -C(=O)-NR^{9}R^{10};
C_{2-6}alkenyl substituted with one substituent selected from halo, cyano,
-C(=O)-NR^{9}R^{10}; C_{2-6}alkynyl substituted with one substituent selected from halo,
cyano, -C(=O)-NR^{9}R^{10};

R^{3} is cyano; aminocarbonyl; amino; C_{1-6}alkyl; halo; C_{1-6}alkyloxy wherein
C_{1-6}alkyl may optionally be substituted with cyano; NHR^{13}; NR^{13}R^{14};
-C(=O)-NHR^{13}; -C(=O)-NR^{13}R^{14}; -C(=O)-R^{15}; -CH=NNH-C(=O)-R^{16};
C_{1-6}alkyl substituted with one substituent selected from halo, cyano,
-C(=O)-NR^{9}R^{10}; C_{1-6}alkyl substituted with hydroxy and a second substituent
selected from halo, cyano, -C(=O)-NR^{9}R^{10}; C_{1-6}alkyloxyC_{1-6}alkyl optionally
substituted with one substituent selected from halo, cyano, -C(=O)-NR^{9}R^{10};
C_{2-6}alkenyl substituted with one substituent selected from halo, cyano,
-C(=O)-NR^{9}R^{10}; C_{2-6}alkynyl substituted with one substituent selected from halo,
cyano, -C(=O)-NR^{9}R^{10};

R^{4} is halo; hydroxy; C_{1-6}alkyl optionally substituted with one substituent selected
from cyano; C_{2-6}alkenyl optionally substituted with cyano; C_{2-6}alkynyl
optionally substituted with cyano; C_{3-7}cycloalkyl; C_{1-6}alkyloxy; cyano; nitro;
trifluoromethyl; aminocarbonyl; mono- or di(C_{1-4}alkyl)aminocarbonyl;
C_{1-6}alkyloxycarbonyl; C_{1-6}alkylcarboxyl; formyl; amino; mono- or
di(C_{1-4}alkyl)amino or R^{7};

Q is hydrogen or -NR^{9}R^{10}.

7. A compound according to claims 1 – 5 wherein
R^{2} is halo, C_{1-6}alkyl optionally substituted with cyano, C_{2-6}alkenyl optionally
substituted with cyano, C_{2-6}alkynyl optionally substituted with cyano,
C_{1-6}alkyloxycarbonyl, carboxyl, cyano, amino, mono(C_{1-6}alkylamino,
di(C_{1-6}alkyl)amino;

R^{2a} is halo, cyano, aminocarbonyl, C_{1-6}alkyl optionally substituted with cyano
or aminocarbonyl, C_{2-6}alkenyl optionally substituted with cyano or amine-
carbonyl;
R³ is halo, cyano, aminocarbonyl, C₁₋₄ alkyl optionally substituted with cyano or aminocarbonyl, C₂₋₄ alkenyl optionally substituted with cyano or aminocarbonyl;

R⁴ is halo, hydroxy, C₁₋₄ alkyl, C₂₋₄ alkenyl, C₂₋₄ alkynyl, C₁₋₄ alkyloxy, cyano, nitro, amino;

Q is hydrogen, amino, mono- or di-C₁₋₄ alkylamino.

8. A compound according to claims 1 - 7 wherein the compound has the formula

9. A compound according to claims 1 - 7 wherein the compound has the formula

10. A compound according to claims 1 - 7 wherein the compound has the formula

11. A compound according to claims 1 - 7 wherein the compound has the formula
12. A pharmaceutical composition comprising a pharmaceutically acceptable carrier and as active ingredient a therapeutically effective amount of a compound as claimed in any one of claims 1 to 8.

13. A compound according to claims 1-10 for use as a medicine.