woO 2007/070073 A2 |00 00O O

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

‘ﬂ[l A0 0O O

(10) International Publication Number

WO 2007/070073 A2

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
21 June 2007 (21.06.2007)

(51) International Patent Classification: Marcus [SE/SE]; Rorstrandsgatan 16, S-11340 Stockholm
GOGF 9/45 (2006.01) (SE).
(21) International Application Number: (74) Agents: MEYER, Sheldon, R. et al.; Fliesler Meyer LLP,
PCT/US2006/012639 650 California Street, Fourteenth Floor, San Francisco, CA
94108 (US).

22) Int tional Filing Date: 5 April 2006 (05.04.2006
(22) International Filing Date br () (81) Designated States (unless otherwise indicated, for every

(25) Filing Language: English kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ,BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
(26) Publication Language: English CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
(30) Priority Data: KG, KM, KN, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV,
60/748,763 9 December 2005 (09.12.2005) US LY, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI,
11/397,212 4 April 2006 (04.04.2006) US NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG,
SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US,
(71) Applicant (for all designated States except US): BEA UZ, VC, VN, YU, ZA, 7ZM, ZW.
SYSTEMS, INC. [US/US]; 2315 North First Street, San
Jose, California 95131 (US). (84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
(72) Inventor; and GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
(75) Inventor/Applicant (for US only): LAGERGREN, 7ZW), Burasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),

[Continued on next page]

(54) Title: SYSTEM AND METHOD FOR EFFICIENTLY GENERATING NATIVE CODE CALLS FROM BYTE CODE IN
VIRTUAL MACHINES

(57) Abstract: A system and method for generation of effi-
cient calls from compiled byte code within a virtual machine
(VM) or Java Virtual Machine (JVM) environment. Cur-
rent techniques used to interface dynamically compiled byte

WM 106 code with native libraries using stubs are unsatisfactory due
Byte Code 107 to non-optimal performance and the large amount of man-

Jova Application Java Standard Library Java SWT Library ual work needed to maintain the stub generation code. An
embodiment of the present invention addresses this by pro-

Byte Code Compller 108 viding a system and a method for automatic stub generation
l Calling Convention Adaptor 109 | Paraminfo structures 110] based on a small set of parameters stored in a ParamlInfo
structure. In accordance with an embodiment, the system

Storage for generated native code 111 comprises a computer with native libraries; a virtual ma-
m,\C] Java Application 112 ' chine for executing a software application; a memory space

for the compiled byte code; and a compiler with a calling

|Java Standard Library 113J ‘ Java SWT Library 114 | convention adaptor that integrates native calls into the high
117/\,{ 17 117~ level analysis step of the compilation of byte codes, so that

~ the overhead for the native call is reduced.

l Native SWT Library 11ﬂ

l System Libraries for OS and Ul access 105 |

Native Application Library 115’

[Operating System 104 |

[Computer Hardware 103 |

Computer (Server) 102

101

WO 2007/070073 A2 |00 0T 0000 00 O

European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, For two-letter codes and other abbreviations, refer to the "Guid-
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT, ance Notes on Codes and Abbreviations" appearing at the begin-
RO, SE, SI, SK, TR), OAPI (BF, BJ, CE, CG, CI, CM, GA, ning of each regular issue of the PCT Gazette.
GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

— without international search report and to be republished
upon receipt of that report

10

15

20

25

30

WO 2007/070073 PCT/US2006/012639

SYSTEM AND METHOD FOR EFFICIENTLY GENERATING NATIVE
CODE CALLS FROM BYTE CODE IN VIRTUAL MACHINES

Claim of Priority:

U.S. Provisional Patent Application No. 60/748,763 entitled “SYSTEM AND
METHOD FOR EFFICIENTLY GENERATING NATIVE CODE CALLS FROM
BYTE CODE IN VIRTUAL MACHINES”, by Marcus Lagergren et al., filed
December 9, 2005 (Attorney Docket No. BEAS-02013US0); and

U.S. Patent Application No. 11/___, entitled “SYSTEM AND METHOD
FOR EFFICIENTLY GENERATING NATIVE CODE CALLS FROM BYTE CODE
IN VIRTUAL MACHINES”, by Marcus Lagergren, filed April 4, 2006 (Attorney
Docket No.: BEAS-02013US1).

Field of the Invention:
The invention is generally related to virtual machine environments and other
run-time environments, and particularly to a system and method for improving

generation of native code calls from byte code.

Background:

Virtual machines are abstract computers that allow for portability of software
applications, typically between different underlying computer architectures. A
virtual machine (VM) is generally a complex software product that is implemented
upon a particular computer hardware platform and/or operating system. The VM
then provides a uniform layer of abstraction between the hardware platform and
any compiled software applications that will run thereon. Virtual machines are
essential for the portability of certain technologies, including Java. The Java
Virtual Machine (JVM) allows compiled Java programs to be run on the JVM,
independently of whatever hardware or operating system may be underneath.
The JVM is described in further detail in the book "The Java™ Virtual Machine
Specification (2nd Edition)” by Tim Lindholm, published by Sun Microsystems, and

10

15

20

25

30

WO 2007/070073 PCT/US2006/012639

incorporated herein by reference. Examples of commercially available JVMs
include the Sun Java Virtual Machine from Sun Microsystems, Inc., and the
JRockit Virtual Machine from BEA Systems, Inc.

A real CPU understands and executes instructions native to that CPU
(commonly called native code) in comparison a virtual machine understands and
executes virtual machine instructions (commonly called byte code). A virtual
machine almost always run on a real CPU executing native code. The core of a
virtual machine is normally implemented in a programming language such as C,

that is always compiled to native code using an OS/CPU compatible compiler.

A virtual machine can implement different strategies of how to execute the
byte codes. If the virtual machine analyzes each byte code separately and does
this every time the same byte code is executed, then the the virtual machine is
said to be an "interpreter”. If the virtual machine translates the byte code into
native code once and then the native code is used every time the same byte code
is executed, then the virtual machine is said to be a “just in time compiler”

(commonly called a JIT).

Some virtual machines contain both an interpreter and a JIT. In the case of
Java Virtual Machines, the Sun Java Virtual Machine will initially use the
interpreter when executing Java byte code. When the Sun JVM detects byte code
that is executed often (commonly called a hot spot in the program), then it will
compile that part of the byte code into native code. By contrast, the JRockit Virtual
Machine from BEA will never interpret the Java byte code. It will always compile it
to native code before executing it. If JRockit detects a hot spot in the program it
will recompile that part of the byte code again, but with more code optimizations.

A Java Virtual Machine always needs to call native code to access
operating system resources. Since the core of the Java Virtual Machine is written
in a language such as C that can be compiled and linked to the operating system
libraries, accessing operating system resources is simply a native function call

following the platform calling conventions.

A JIT tries to optimize function calls between Java functions to use the most
efficient way of calling on the particular CPU. One way to do this is to use

10

15

20

25

30

WO 2007/070073 PCT/US2006/012639

registers as much as possible for arguments to functions. Due to several reasons
this is usually not the same as the platform calling convention. For example, a JIT
for a language with garbage collecting (like Java) needs to take care which
registers contain pointers to live objects, the Java-to-Java calling convention can
therefore declare that certain registers always contain object pointers and not
temporary results from arithmetic calculations. Such care is not needed for the
native calling convention. On a register-starved architecture like the Intel x86
processors, the JIT can also use fewer callee save registers than the platform

calling convention and instead use the remaining registers for function arguments.

However, often byte code needs to make use of native libraries. These
libraries can be used for a variety of purposes, including: low level graphics (like
the implementation of the Standard Widget Library (SWT) from the Eclipse
project); database access (native drivers are sometimes required to speed up

access to databases); or large amounts of legacy code that cannot be ported.

In the Java language this is solved using the standardized Java Native
Interface (JNI). The JNI specifies that the native code should be called using the
platform calling convention, and also specifies how the Java arguments are
translated to a format that native code can use. JNI is described in further detail in
the book "Java™ Native Interface: Programmer's Guide and Specification” by

Sheng Liang, which is incorporated herein by reference.

Traditionally, a call from compiled Java code to native code is redirected
through a short piece of native code (a stub), and the stubs are generated by a
stub generator. The stub performs the translation of the arguments, sets up the
call to conform to the platform calling convention and finally calls the native code.
Depending on the JIT strategy, some arguments, such as numbers need not be
translated. In those cases the overhead introduced by the extra function calls are
more noticeable than when several necessary argument translations are part of
the call. If the native function that is called is very short, then the overhead of the

native call setup can be significant.

WO 2007/070073

PCT/US2006/012639

Platform/Environment

A Java call

A native call

x86_64/Windows

Ptr args: rsi,rdi
Inte args: rax,rdx

Stack used for more args.

Calle save: rbx,rbp

Args: rex,rdx,r8,r9
Stack used for more args.

| x86_64/Linux

Same as above

Args: rdi,rsi,rcx,rdx,r8,r9
Stack used for more args.

x86/Windows & Linux

Pir args: esi,edi
Inte args: eax,edx

Stack used for more args.

Calle save: ebx,ebp

Stack used for all args.

jab4/Windows & Linux

Same as right.

Variable sized stack frame on
register stack.
Args: r32,r33,...

Table 1

It is also a significant amount of work to write the stub generators given the

5 number of common operating systems, for example AIX, Linux, Solaris and

Windows NT/2k/XP, and their respective calling conventions. Table 1 shows that

Windows NT/2k/XP and Linux use the same calling convention on Intel x86 and

ia64 processors. However Windows and Linux use different calling conventions

on Intel EM64T compatible processors (x86_64).

Other calling conventions

10 include AIX on IBM PowerPC processors, and Solaris on SPARC processors.

public class HelloWorld

{

native void printHelloWorld(int a);

15 static { System.loadLibrary(“nativelib”); }
public static void main(Stringl] args)
HelloWorld h = new HelloWorld() ;

20

25

gl = = g o M s i o

.helloWorld (0x1111) ;
.helloWorld (0x2222) ;
.helloWorld (0x3333);
.helloWorld (0x4444) ;
.helloWorld (0x5555) ;
.helloWorld (0x6666) ;

Listing 1

Listing 1 demonstrates an example of a Java-program that calls a native

library. A class-file, such as that shown in Listing 2, is generated when the

10

15

20

25

30

35

40

45

WO 2007/070073 PCT/US2006/012639

5
program is compiled with javac.
0 new #2; //class HelloWorld
3: dup
4: invokespecial #3; //Method "<inits":()V
7: astore_1
8: aload 1
9: sipush 4369

12: invokevirtual#4; //Method printHelloWorld: (I)V
15: aload_1

16: sipush 8738

19: invokevirtual#4; //Method printHelloWorld: (I)V
22: alocad 1

23: sipush 13107

26: invokevirtual#4; //Method printHelloWorld: (I)V
29: alcad 1

30: sipush 17476

33: invokevirtual#4; //Method printHelloWorld: (T)V
36: aload_1

37: sipush 21845

40: invokevirtual#4; //Method printHelloWorld: (I)V
43: alcad 1

44: sipush 26214

47: invokevirtual#4; //Method printHelloWorld: (I)V
50: return

Listing 2

Some virtual machines, including versions of the JRockit Virtual Machine
from BEA will compile this bytcode using standard compilation techniques. Some
of these techniques are described in the books "Advanced Compiler Design and
Implementation” by Steven S. Muchnik; "Crafting a Compiler with C" by Charles N.
Fischer and Richard J. LeBlanc, Jr.; and "Compilers" by Alfred V. Aho, Ravi Sethi,
Jeffrey D. Uliman, all of which are incorporated herein by reference. The process
is typically to translate the bytecode first into a high level intermediate
representation (HIR); then to a medium level intermediate representation (MIR);
and then to a low level intermediate level representation (LIR).

0x100080bcO: push $rbx
0x100080bcl: mov $0x140c2c0, %rax
0x100080bchb: callg 0x100005410
0x100080bdo0: mov ¥rsi, ¥rbx
0x100080bd3: callg 0x100080720
0x100080bds: mov $0x1111, %eax
0x100080bdd : mov $rbx, $rsi

0x100080be0: mov (%rbx) , %ecx

10

15

20

25

30

35

40

45

WO 2007/070073

0x1.00080be3:
0x100080be4:
0x100080be9:
0x100080bee:
0x100080bf1l:
0x100080bf4:
0x100080bfs5:
0x100080bfa:
0x100080bff:
0x100080c02:
0x100080c05:
0x100080c06:
0x100080c0b:
0x100080cl0:
'0x100080c13:
0x100080cl6:
0x100080cl17:
0x100080clc:
0x100080c21:
0x100080c24:
0x100080c27:
0x100080c28:
0x100080c2d:
0x100080c30:
0x100080c35:
0x100080c38:
0x100080c39:
0x100080c3e:
0x100080c3f:

nop
callg
mov
mov
mov
nop
callg
mov
mov
mov
nop
callg
mov
mov
mov
nop
callg
mov
mov
mov
nop
callg
mov
mov
mov
nop
callg
bop
retqg

0x10008075e
$0x2222, %eax
%rbx, $rsi
($rbx) , $ecx

0x10008075e
$0x3333, %eax
$rbx, ¥rsi
(3rbx) , %ecx

0x10008075e
S0x4444,%eax
$rbx, $rsi
($rbx) , $ecx

0x10008075e
$0x5555, ¥eax
$rbx, %rsi
($¥rbx) , %ecx

0x10008075e
$rbx, %rsi
S0x6666, ¥eax
($rbx) , $ecx

0x10008075e
¥rbx

Listing 3

PCT/US2006/012639

Listing 3 shows the native machine code generated by versions of JRockit
from the example code for the x86_64/Linux platform. The address 0x10008075e

is the address of the stub that will call the native c-function. The assembler code

in Listing 3 follows the specification in Table 1 for the x86_64/Linux platform: the

calling convention for normal Java to Java calls puts the object pointer inside rsi,

and the first integer into eax. If a second pointer had been used, it would have

been put into rdi, and a second integer would be put into edx. Also according to

the Java calling convention, rbx is a callee save register which is why it is restored

from the stack before the return.

JNIEXPORT void JNICALL
Java_HelloWorld printHelloWorld (JNIEnv *env, jobject obj, jint x)

{

printf ("Hello World %d\n", x);

Listing 4

10

15

20

25

30

35

40

45

WO 2007/070073 PCT/US2006/012639

Listing 4 shows an example of a function that follows the JNI-specification
(previously referenced above) and which can therefore be called using the above

native call.

A traditional native call stub

To interface the calls in the compiled Java code in Listing 3 to the c-function
in Listing 4 on the x86_64/Linux platform, the stub needs to put a pointer to the
JNIEnv in edi, leave the object pointer in esi, and move the integer argument from
eax to ecx, before calling Java_HelloWorld_printHelloWorld. The traditional stub
generator is tailored for each CPU/OS platform and generates the lowest level of

IR (LIR) that is essentially a one-to-one mapping to machine code.

Variables, constants and labels:

vl (reg, rsi) v2 {(reg, rax) ‘ v3 (reg, rsp)

c4 (i64, 0x30) v5 [rsp+0x28] v6 (reg, rbx)

v7 [rsp+0x20] v8 (reg, rbp) v9 [rsp]

v10 (reg, rl0) cll (i64, 0x6abl40) v1i2 [rsp+OxffffffffEEELL000]
v13 [rbp+0x8] v14 [rbp+0x1£0]

v15 [rsp+0x8] vlé (reg, ri2)

cl7 (i64, O0xf) v18 [rbx]

cl9 (i64, 0x8) v20 [rbp+0xles8]

v21 (reg, rdi) v22 (reg, rdx)

L23 (0x2aaaael746d8)<--Address of Java_HelloWorld printHelloWorld
v24 [rbp+0x10] L25 (0x100000580)

c26 (i64, 0x0) c27 (i64, 0xfa)
Parameters:

rsi (this) rax

blockO:

0 x86_sub rsp 0x30 ->rsp (i164)

1 X86_mov rbx ->[rsp+0x28] (i64)
2 x86_mov rbp ->[rsp+0x20] (i64)
3 X86_mov 0x6abl40 ->rl0 (164)

4 X86_mov rl0 ->[rsp] (164)

5 X86_mov rax ->[rsp+OxEfEFEFELEFFEFO00] (i64)
6 lir thread vm ->rbp (i64)

7 x86_mov rsp ->[rbp+0x8] (i64)

8 X86_mov [rbp+0x1f0] ->rbx (i64)
9 x86_mov rbx ->[rsp+0x8] (i64)
10 X86_mov rsp ->rl2 (i64)
11 %¥86_mov rl2 ->rl1l0 (i64)
12 x86_and r10 oxf ->r10 (i64)
13 x86_sub rsp rl0 ->rsp (i64)
14 x86_push rax

15 x86_test rsi rsi (i64)

10

15

20

25

30

35

40

45

50

WO 2007/070073 PCT/US2006/012639

8
== (then block3, else block4)
blockl:
34 x86_cmp [rbp+0x8] 0x0 (164)
== (then block7, else blocks8)
block2:
33 x86_call L25
goto (blockl)
block3:
16 x86_push rsi
goto (blocks)
block4:
17 x86_mov rsi ->[rbx] (i64)
18 x86_push rbx
19 x86_add rbx 0x8 ->rbx (164)
blocks:
20 x86_lea [rbp+0xie8] ->r1l0 (ié64)
21 X86_push rio
22 x86_pop ->rdl (i64)
23 x86_pop ->rsi (164)
24 x86_pop ->rdx (i64)
25 X86_mov rbx ->[rbp+0x1£0] (i64)
26 lir clrreg ->rbp (164)
27 x86_call L23
28 lir thread vm ->rbp (i64)
29 X86_mov rl2 ->rsp (i64)
30 x86_mov [rbp+0x10] ->rl0 (i64)
31 x86_mov rl0 ->[rbp+0x8] (i64)
32 x86_test rl0 rl0 (i6&4)
!= (then block2, else blockl)
blocké6:
37 X86_mov [rsp+0x8] ->rlo (i64)
38 ‘ X86_mov rl0 ->[rbp+0x1£0] (i64)
39 X86_mov [rsp+0x28] ->rbx (i64)
40 X86_mov [rsp+0x20] ->rbp (164)
41 x86_add rsp 0x30 ->rsp (i64)
42 X86_ret
block7:
35 x86_cmp [rbp+0x10] 0x0 (i64)
== (then blocké, else block8§)
blocks:
36 lir_ code oxf4
goto (blocksé)
Listing 5

Listing 5 shows the low-level intermediate representation of the generated
stub. As can be seen, the traditional stub generator has to produce the correct
native instructions for the current CPU/OS platform. Only the branch commands

are automatically added by the translation from LIR to native machine code.

Pseudo Code For A Traditional Native Call Stub Generator

The following pseudo code describes a traditional stub generator that is

10

15

20

25

30

35

40

45

WO 2007/070073 PCT/US2006/012639

tailored for the x86_64/Linux platform. It makes use of the following types:

pd addr is a C-storage type for platform dependent addresses.
64 bit long on the EM64T/AMD64 platform.
NativeFrame is a structure which is placed on the stack as part of the
native call. It contains:
oldHandles: 1s a pointer to the old JNI handles
Ereserved[PLATFORM NOOF_PRESERVED_STORAGES]: space for all registers
that need to be preserved over the native call.
retAddr: Pointer to the return address in the compiled java code.
debugInfo is a pointer to the debugInfo,
The native frame also contains copies of the parameter registers and
the return
value register.

Variables:

jei: is the JNI call info structure used for bookkeeping during
stub generation.

preserved: is a list of all preserved storages for the java calling
convention.

np: is the length of the preserved list.

ir: is the tree of the intermediate representation of the stub.
current_block: contains code to setup call.

transitblock: is code necessary for the last transit to native code.
end block: is code to handle the return from native code.

Subroutines:

SetupParametersForCall: Transforms the java parameters to native
parameters.

GetFrom: Acquire gource var for LIR operation.

PushReference: Generate code that pushes a reference storage on the
stack.

PushNativeParameter: Generate code that pushes a primitive type on the
stack.

Step (1) The stub generator first sets up the book keeping data structures:

Setup return type of native function call.
jei->ret_type

Setup how many storages are needed for the return type, int=1 or long=2.
jei->ret_type storages

Setup ret_frame to reference storage location(s) for the java return
type.

10

15

20

25

30

35

40

45

WO 2007/070073 PCT/US2006/012639

10

jei->ret framell

Setup ret_calle to reference storage location(s) for the native return

type.
jei->ret_calleel]

Later align is setup to contain reference to the IR op that performs
stack alignment.
jei->align

jei->types= CG_MALLOC (env, (2*mpiGetNoofArgs (jci-»>
mpi)+2) *sizeof (JlcType)) ;

jei->pushed 0;

jci-s>handles 0;

jci->storage = CG MALLOC (env, (2*mpiGetNoofArgs (jci-»>
mpi)+2) *sizeof (Storage)) ;

jei->jniEnv = env->JjniEnv;

Step (2) Initialize three code blocks:

block = CreateIRBlock(ir);

end block = CreateIRBlock(ir);
transit block = CreateIRBlock (ir);
block done = CreateIRBlock (ir);

Step (3) Allocate native frame. The initial part of the stack frame for native

function calls is always the same size:

AppendIRToBlock (block, IR _X86_ SUB(ir,
IR X86_SP,
IR_CONSTANT (NATIVEFRAME SIZE*sizeof (pd_addr)),
IR_X86_SP))

Step (4) Store each preserved register on the stack so they can be restored
after the JNI call:

for (i=0; i<np; ++1)
{
AppendIRToBlock (block, IR_X86 MOV (ir,
irGetStorageVar (ir, preserved[i]),
IR_RELATIVE ID(X86_SP,
sizeof (void*) * (np-i-1) +offsetof (
struct NativeFrame,
preserved))))

}

10

15

20

25

30

35

40

WO 2007/070073 PCT/US2006/012639

11

Step (5) To make stack walking easier store a pointer to the native function

in the stack frame:

AppendIRToBlock (block, IR_X86_MOV (ir,
IR_CONSTANT (irGetDebufInfo (ir)),
JAVA TRANSIT SCRATCH REG))

AppendIRToBlock (block, IR_X86_ MOV (ir,
JAVA_TRANSIT SCRATCH REG,
IR_RELATIVE_ID(XSG_SP, offsetof (

struct NativeFrame,
debugInfo)}))

Step (6) Add a unconditional write (stackbang) that verifies that it is at least

one page of stack left for the native function:

AppendIRToBlock (block, IR_X86_MOV_T(ir, IR PD_ADDR,
IR _X86_A,
IR_RELATIVE ID({X86_SP, - (int) (size_t)sysPageSize))};

Step (7) Load the thread local data pointer and store the current stack
pointer (the last Java stack frame) in the thread local data:

AppendIRToBlock (block, IR _LIR_THREAD VM(ir, JAVA TRANSIT THREAD REG)) ;
AppendIRToBlock (block, IR_X86_MOV_T(ir, IR PD_ADDR,
IR _X86_SP,
JAVA TRANSIT THREAD REG_ID(VMT LAST JAVA FRAME_ OFFSET)));

Step (8) Save the current JNI handles to the thread local data:

AppendIRToBlock (block, IR _X86_MOV_T(ir, IR_PD_ADDR,
JAVA TRANSIT THREAD_REG_ID (VMT_ HANDLES_OFFSET),
JAVA2C_HANDLE_REG)) ;

AppendIRToBlock (block, IR _X86_MOV_T(ir, IR_PD_ADDR,
JAVA2C_HANDLE_REG,
IR_RELATIVE_ID (X86_SP, offsetof (

struct NativeFrame,
oldHandles))))

Step (9) Store the value of rsp before the parameters and alignment are
pushed:

AppendIRToBlock (block, IR_X86_MOV_T(ir, IR PD ADDR,
IR X86_SP,
JAVA2C_SCRATCH PRESERVED_REG)) ;

10

15

20

25

30

35

40

WO 2007/070073 PCT/US2006/012639

12

AppendIRToBlock (block, IR X86_MOV_T(ir, IR PD_ADDR,
JAVA2C SCRATCH_PRESERVED_REG,
JAVA TRANSIT_ SCRATCH_REG)) ;

Step (10) Align stack since the native calling convention X86_64 Linux

requires 16 byte aligned stack pointers when entering a native function:

AppendIRToBlock (block, IR _X86 AND (ir,
JAVA TRANSIT SCRATCH REG,
IR _CONSTANT (STACK ALIGNMENT-1),
JAVA TRANSIT SCRATCH_REG))

AppendIRToBlock (block, jeci->align = IR X86_ SUB(ir,
IR X86_SP,
JAVA TRANSIT_ SCRATCH_REG,
IR_X86_SP))

Step (11) Place parameters in the correct places, basically push all on

stack, and then pop some/all into the correct regs:

SetupParametersForCall (block) ;

Step (12) Store JNI handle in thread local data if the native function takes
such arguments that need handles (usually pointers to objects):

if (jeci.handles != 0)

AppendIRToBlock (block, IR_X86_ MOV_T(ir, IR PD_ADDR,
JAVA2C_HANDLE_REG,
JAVA TRANSIT_ THREAD REG_ID(VMT_HANDLES_OFFSET)))

Step (13) Patch the alignment of the stack if needed:

if (jci.pushed & 1) {
InsertIROpAfter (IR_X86_ SUB (ir,
IR_X86_SP,
IR_CONSTANT (sizeof (pd_addr)),
IR X86_SP),
jei->align);

10

15

20

25

30

35

WO 2007/070073 PCT/US2006/012639

13

Step (14) The stack is setup, so the call can be made to the native function:

AppendIRToBlock (block, IR_XB86_CALL(ir, IR LABEL(ir, code)));

Step (15) Restore the stack pointer, and at the same time skip the stack

alignment:

AppendIRToBlock (block, IR_X86_MOV_T(ir, IR_PD ADDR,
JAVA2C SCRATCH PRESERVED REG,
IR_X86_SP));

Step (16) The thread local variable oldframe is a copy of the last Java frame

if the native code has thrown exceptions. Otherwise oldframe will be NULL.:

AppendIRToBlock (block, IR X86_MOV_T(ir, IR_PD_ADDR,
JAVA TRANSIT THREAD REG_ID (VMT_ CHECKATTRANSITFRAME OFFSET) ,
JAVA_TRANSIT SCRATCH REG)) ;

Step (17) Restore the last Java frame:

AppendIRToBlock (block, IR_X86 MOV_T(ir, IR_PD ADDR,
JAVA _TRANSIT SCRATCH_ REG,
JAVA TRANSIT THREAD REG_ID (VMT LAST JAVA_FRAME OFFSET))) ;

Step (18) Test if oldframe was zero or not. If oldframe is non-zero, an
exception has happened and TransitToJava must be executed, otherwise proceed
to the end_block:

AppendIRToBlock (block, IR_X86 TEST(ir,
JAVA TRANSIT SCRATCH REG,
JAVA TRANSIT SCRATCH REG)) ;

AppendIRToBlock (block, IRBB_JCC, IR NE);
ConnectIRBlock (ir, block, transit_block) ;
ConnectIRBlock(ir, block, end block);

Step (19) Create the transit block that executes the TransitToJava function
that takes care of thrown JNI exceptions. First store the native return value in the

frame so it will survive TransitToJava:

10

15

20

25

30

35

40

45

50

55

WO 2007/070073 PCT/US2006/012639

14

for (i=0; i<jci->ret_type_storages; i++)
{
from = irGetStorageVar (ir, data.ret_calleel[i]);
to = IR RELATIVE ID(X86_SP, offsetof (struct NativeFrame,
space[il));

switch (CG_GET STORAGE_TYPE (data.ret_callee[i]))
{
case STORAGE_TYPE NORMAL:
AppendIRToBlock (transit_block, IR_X86_ MOV_T(ir, IR_PD ADDR,
from, to));
break;
case STORAGE TYPE_FLOAT:
AppendIRToBlock (transit_block, IR _X86_ FSTP T(ir, jci.ret_type
== JLC_FLOAT ? IR_F32 : IR_F64,
from, to));

break;
case STORAGE_TYPE XMM:
AppendIRToBlock (transit_block, jci.ret type == JLC_FLOAT ?
IR_X86_MOVSS(ir, from, to)
IR_X86_MOVSD (ir, from, to));
break;

}

AppendIRToBlock (block, IR X86 CALL(ir, IR_LABEL(ir,
CI_GET_ CODE (cgGetCodeMethodCI (transitTodava_V)))));

for (i=0 ; i<data.ret_type_ storages ; i++)

{

from = IR _RELATIVE_ID(X86_SP, offsetof (struct NativeFrame,
space[il));

to = irGetStorageVar (ir, data.ret _calleelil);

switch (CG_GET_STORAGE_TYPE (data.ret_callee[i]))
{
case STORAGE_TYPE NORMAL:
AppendIRToBlock (block, IR X86_MOV_T(ir, IR_PD_ADDR,
from, to));
break;
case STORAGE_TYPE FLOAT:
AppendIRToBlock (block, IR X86 FLD T (ir, data.ret_type ==
JLC_FLOAT ? IR F32 : IR _Fé64, from, to));
break;
case STORAGE_TYPE XMM:
AppendIRToBlock (block,
data.ret_type == JLC_FLOAT ? IR X86_MOVSS(ir, from,
to) : IR _X86_MOVSD(ir, from, to));
break;
}
}

ConnectIRBlock (ir, transit block, end block) ;

Step (20) To translate the return value from the native code to Java code,

assume that the variable is in the correct native return position and move it fo the

10

15

20

25

30

35

40

45

50

55

WO 2007/070073 PCT/US2006/012639

15

correct Java return position with proper sign extension or zero extension. IF the

jei->ret_type == JLC_VOID this step can be skipped:

from = irGetStorageVar (ir, jci->ret_callee[0]);
to = irGetStorageVar (ir, jci-s>ret frame[0]);

switch (jci->ret_ type)

{

case

case
to));

caée
to));

case
to));

case

case
case

JLC_BOOLEAN: -
JLC_BYTE:
AppendIRToBlock(end block, IR _X86_MOVSX_T(ir, IR I8, from,

break;
JLC_SHORT:
AppendIRToBlock (end_block, IR_X86_MOVSX_T(ir, IR I16, from,

break;
JLC_CHAR:
AppendIRToBlock (end block, IR _X86_MOVZX_T(ir, IR UI1l6, from,

break;

JLC_OBJECT:

JLC_INTERFACE:

JLC_ARRAY:

AppendIRToBlock (block, IR_X86_ MOV_T(ir, IR_REF, from, to));
append_nullcheck(ir, to, end block, &block null,

&block non null) ;

case
case

space[0]));

AppendIRToBlock(block non null, IR _X86_MOV_T(ir, IR REF,
IR_MEM(ir, to, 0, IR _NONE, 0),
to));

ConnectIRBlock (ir, block _nom_null, block null);
*end block = block null;

break;
JLC_FLOAT:
JLC_DOUBLE :
if (jei->ret_callee[0] == jci->ret framel0])
{
// Do nothing since native frame and java frame share
// the same return convention.
1
else
{
IRType type;
//this must be x87->xmm or xmm->x87
tmp = IR_RELATIVE_ID(XBG_SP,
offsetof (struct NativeFrame,

type = jci-sret_type == JLC_FLOAT ? IR_F32 : IR F64;

switch (CG_GET_STORAGE TYPE (jci->ret_callee[0]))
{
case STORAGE_TYPE_ FLOAT:
AppendIRToBlock (*block,
IR_X86_ FSTP_T(ir, type, from, tmp));
AppendIRToBlock (*block, type == IR_F32 ?
IR _X86_MOVSS({ir, tmp, to)

10

15

20

25

30

35

40

45

WO 2007/070073 PCT/US2006/012639

16

IR X86_MOVSD(ir, tmp, to));
break;

case STORAGE_TYPE_XMM:
AppendIRToBlock (*block, type == IR_F32 ?
IR _XB6_MOVSS(ir, from, tmp)
IR _X86_MOVSD(ir, £from, tmp));
AppendIRToBlock (*block, IR _X86_FLD T (ir, type,
tmp, to));
break;

break;

Step (21) Restore the old handle pointer from the native frame on the stack
to the thread local data:

AppendIRToBlock (end block, IR X86_MOV_T(ir, IR _PD ADDR,
IR_RELATIVE ID(X86_SP,
offsetof (struct NativeFrame, oldHandles)),
JAVA TRANSIT_ S CRATCH__REG))

AppendIRToBlock (end block, IR _X86_MOV_T(ir, IR_PD_ADDR,
JAVA TRANSIT SCRATCH_REG,
JAVA_TRANSIT THREAD REG_ID(VMT_ HANDLES OFFSET)))

Step (22) Restore the preserved registers:

for (i=0 ; i<mnp ; i++)
{
AppendIRToBlock (end block, IR _X86_MOV_T(ir, IR_PD_ADDR,
IR_RELATIVE_ID(X86_SP, offsetof (struct NativeFrame,
preserved) +- sizeof (void*) * (np-i-1)),
irGetStoragevVar (ir, preservedl[i])));
}

Step (23) Deallocate the native frame from the stack:
AppendIRToBlock (end_block, IR_X86_ADD(ir,
IR X86_SP,

IR_CONSTANT (NATIVEFRAME SIZE*sizeof (pd_addr)),
IR_X86_SP));

Step (24) Add the return instruction back to compiled Java code:

AppendIRToBlock (end _block, IR_X86_RET (ir));

10

15

20

25

30

35

40

45

50

WO 2007/070073 PCT/US2006/012639

17

The function shown below describes with pseudo code how the parameters
are setup to follow the calling convention of the native function. The strategy is to
walk through all parameters and push all parameters on the stack that are
supposed to be on the stack following the calling convention. Then the
parameters that should be in registers are also pushed on the stack but

immediately afterwards popped into the correct registers.

SetupParametersForCall (IRBlockP *block)

{
Storage used [PLATFORM_NOOF_STORAGE TYPES] ;
MPIIterS iter;
int i, n, pos=0, poso;

n = mpiGetNoofArgs (jei->mpi) ;
memset (used, 0, PLATFORM_NOOF STORAGE TYPES*sizeof (int)) ;
pos0 = 0;

// Fetch the JNIEnvironment
jeci->storage pos0] =
platformGetNativeParamStorage (STORAGE TYPE NORMAL,
pos0, used);
posO++;
for (mpiGetIterator (&iter, jci->mpi, MPIITER_STORAGES, FALSE);
mplIteratorHasMore (&iter) ;
mpilteratorNext (&iter))

{
jci->storage[pos0] = platformGetNativeParamStorage (
STORAGETYPE_FOR (iter.jlcType), pos0, used);
posO+4+;
}
pos = pos0;

for (mpiGetIterator (&iter, jci->mpi, MPIITER_STORAGES, TRUE);
mpllteratorHasMore (&iter) ;
mpilteratorNext (&iter))

if (CG_IS_STACK STORAGE (jci->storage[--pos]))

{
}

PushNativeParameter (block, iter.jlcType, iter.storage);

}

pos = pos0;

for (mpiGetIterator(&iter, jci->mpi, MPIITER STORAGES, TRUE);
mpiIteratorHasMore (&iter) ;
mpiIteratorNext (&iter))

if (1CG_IS_STACK STORAGE (jci->storage[--pos])) {
PushNativeParameter (block, iter.jlcType, iter.storage);
}

10
15
20
25
A’ 30
35
40
45
50

55

}

WO 2007/070073 PCT/US2006/012639

18

// Load the address of the JINIEnvironment
AppendIRToBlock (*block, IR_X86_LEA T(ir, IR_PD_ADDR,

JAVA_TRANSIT THREAD REG_ID (VMT JNI_INTERFACE OFFSET),
JAVA_TRANSIT_SCRATCH REG)) ;

AppendIRToBlock (block, IR _X86_ PUSH(ir, get_from(data, ir,

irVarGetStorage (ir, JAVA TRANSIT SCRATCH REG))));

jei-s>types[jci->pushed++] = JLC_INT;
memset (used, 0, PLATFORM_NOOF_STORAGE_TYPES*sizeof (int)) ;
for (i=jci-s>pushed-1 ; i>=0 ; i--)

{

JlcType jlctype jei-s>types[i];

Storage storage = platformGetNativeParamStorage {
STORAGETYPE FOR (jlctype), i, used);

StorageType t = CG_GET STORAGE TYPE (storage) ;

IRVAR var = IR_NONE;

// All stack storages are ensured to be at the end

if (t == STORAGE TYPE_STACK) {
break;

} else {
if (t == STORAGE_TYPE_XMM) {

if (jlctype == JLC FLOAT)

// Defaults to 32 bit

AppendIRToBlock (*block,
IR_X86_ MOVSS(ir, IR RELATIVE ID(X86 SP,0),
irGetOutParamvVar (ir, storage)));

else 1f (jlctype == JLC_DOUBLE)

// Defaults to 64 bit ‘
AppendIRToBlock (*block, IR _X86_MOVSD (ix,
IR _RELATIVE ID(X86_SP,0),
irGetOutParamVar (ir, storage)));

}

var = JAVA TRANSIT SCRATCH REG;

}

else 1f (t == STORAGE TYPE NORMAL)

{
}

AppendIRToBlock (*block, IR _X86_ POP({ir, var));
jei->pushed--;

var = irGetOutParamVar (ir, storage);

IRVAR GetFrom(Storage storage)

{

if (CG_IS STACK STORAGE (storage))

{

return IR _RELATIVE_ID(JAVA2C_ STACKPARAM STORAGE,
sizeof (pd_addr) * (STACK_EXTRA(data) +
CG_GET_STORAGE_INDEX (storage)));

5

10

15

20

25

30

35

40

45

50

55

WO 2007/070073 PCT/US2006/012639

19

else

{
}

return irGetStorageVar{ir, storage);

}

PushReference (IRBlockP *block, Storage storage)

{ .
IRBlockP block null, block not_null, block done;
IRVAR from;
if (CG_IS_STACK STORAGE (storage)) {

AppendIRToBlock (*block, IR_X86_MOV_T(ir, IR_REF,
GetFrom(data, ir, storage),
JAVA_TRANSIT SCRATCH_REG)) ;
from = JAVA_TRANSIT SCRATCH_REG;
} else {
from = get_from(data, ir, storage);
}

append nullcheck(ir, from, *block, &block_null, &block not_null);
block_done = CreateIRBlock(ir);
irBBSetMustNotHaveSafepoint (block done) ;
AppendIRToBlock (block null, IR X86 PUSH(ir, from));
irBBConnect (ir, block null, block_done);

PushReference (data, ir, &block_not null, storage, FALSE);
irBBConnect (ir, block not null, block done) ;

*block = block_ done;

}

PushNativeParameter (IRBlockP *block, JlcType type, Storage storage)

{

if (JLCTYPE IS PRIMITIVE (type))

{
AppendIRToBlock (*block, IR X86_PUSH(ir, GetFrom(data, ir,
storage))) ;

}

else

{

. PushReference (block, storage);

}

jei->types[jeci->pushed++] = type;

Listing 6 shows the final native machine code for the stub. Each machine
code instruction maps to one LIR operation in Listing 5, except for the branch
instructions, the frame setup and exit that have been added by the compiler.

-~ Entering code with object pointer in esi and integer argument in eax.
0x80c70: sub $0x30, $rsp

0x80c74: mov $rbx, 0x28 (%rsp)

0x80c79: mov %rbp, 0%20 ($rsp)

0x80c7e: mov $0x6ab140, %$r10

0x80c88: mov %rl0, (%rsp)

0x80c8c: mov Srax, OXEEEEEEELEFELEFO000 (R rsp)

0x80c94 : mov %fs:0xd8, $rbp

10

15

20

25

30

35

40

45

50

WO 2007/070073 PCT/US2006/012639

20
0x80c9od: mov %rsp, 0x8 (%rbp)
0x80cal: mov 0x1£0 (%rbp) , ¥rbx
0x80ca8: mov %rbx, 0x8 (%rsp)
0x80cad: mov $rsp, ¥rl2
0x80cbo0: mov %rl2,%rlo0
0x80cb3: and $oxf, %r10
0x80cb7: sub %rl0, ¥rsp
-- Push the integer argument, to be tranferred into rdx.
0x80cba: push $rax
0x80cbb: test $rsi, $rsi
0x80cbe: jne 0x80cec3

-- Push the object pointer, to be popped into the same register.
0x80ccO: push grsi

0x80ccl: Jmp 0x80ccce

0x80cc3: mov %rsi, (%rbx)
0x80cc7: push $rbx

0x80cc8: add $0x8, $rbx

0x80ccc: lea 0x1e8 (%rbp) ,%$r1l0
-- Push the calculated address to the JINIEnvironment.
0x80cd3: push %rlo

-- Pop the JNIEnvironment into rdi
0x80cd5: pop rdi

-- Pop the rsi into rsi.

0x80cd6: pop $rsi

-- Pop the integer argument into rdx.
0x80cd7: pop Frdx

0x80cd8: mov $rbx, 0x1£0 ($rbp)
0x80cdf: xor %rbp, $rbp

-- Call the native function using ip relative addressing.
0x80ce2: callg *74 (%rip) # 0x100080d32
0x80ce8: mov %fs:0xd8, $rbp
0x80cfl: mov %rl2, %rsp

0x80cf4: mov 0x10 (%rbp) , $r10
0x80cf8: mov %$rl10, 0x8 (%rbp)
0x80cfc: test %rl0,%rl0

0x80cff: Je 0x80d06

0x80d01: callg 0x00580

0x80d06: cmpq $0x0, 0x8 (3rbp)
0x80d0b: jne 0x80d2f

0x80dod: cmpg $0x0, 0x10 (%rbp)
0x80d12: Jne 0x80d2f

0x80d14: mov 0x8 (%rsp), ¥rlo0
0x80d19: mov $r10,0x1£0 (%rbp)
0x80d20: mov 0x28 (%rsp), %rbx
0x80d25: mov 0x20 (%rsp) , $rbp
0x80d2a: add $0x30, ¥rsp
0x80d2e: retqg

0x80d2£E: hlt

0x80d30: Jmp 0x80d14

Listing 6

As can be seen from the pseudo code above, the traditional stub generator
uses low-level knowledge of the current CPU/OS platform to generate a proper

stub for calling native code from compiled byte code. The programmer encodes

10

15

20

25

30

WO 2007/070073 PCT/US2006/012639

21

this knowledge manually. Since the traditional stub generator generates low-level
native machine code, no compiler optimization techniques can be applied to the
generated stub. Therefore the current techniques used for translating calling
conventions in VMs are unsatisfactory due to non-optimal performance for short
native functions, and because of the large amount of manual work needed to both
add new calling conventions and to maintain the existing set of calling conventions

of a large range of CPU/OS combinations.

Summary of the Invention:

Disclosed herein is a system and method for generation of efficient calls
from compiled byte code within a virtual machine (VM) to native code within or
outside of the VM. In particular the invention can be used in a system that
includes a Java Virtual Machine (JVM). As described above, current techniques
used to interface dynamically compiled byte code with native libraries using stubs
are unsatisfactory due to non-optimal performance and of the large amount of
manual work needed to maintain the stub generation code. An embodiment of the
present invention addresses this problem by providing a system and a method to
generate MIR code for native call stubs that can be compiled into native machine
code that uses the current CPU/OS platform calling convention.

In accordance with an embodiment, the invention provides a system for
efficient native call generation in a virtual machine environment, comprising: a
computer running an operating system with native libraries; a virtual machine for
executing a software application; a memory space for the compiled byte code as
part of the software application, a compiler with a calling convention adaptor that
generates MIR code for a native calls that is later compiled into native machine
code. In accordance with another embodiment, the calling convention adaptor can
include the native call into the MIR of the caller function. In accordance with
another embodiment, the calling convention adaptor can generate MIR code for

native calls of several different kinds of calling conventions.

10

15

20

25

30

WO 2007/070073 PCT/US2006/012639

22

Brief Description of the Figures:

Figure 1 shows an illustration of a system in accordance with an
embodiment of the present invention, that includes a compiler with a calling
convention adaptor that generates efficient native code calls from virtual machine
byte codes.

Figure 2 shows a schematic of the MIR code for a native call, generated by
the calling convention adaptor.

Figure 3 shows a schematic of the Paramlnfo data structure that is used by

the compiler to compile the MIR code for a native call into native machine code.

Detailed Description:

Disclosed herein is a system and method for generation of efficient calls
from compiled byte code within a virtual machine to native code within or outside
of the virtual machine. Traditionally the JIT defines its own calling convention for
compiled Java to Java calls. Java to Native calls are handled with platform specific
stubs. A large amount of manual work is required to implement the code that
generates these stubs since they are different for each OS/CPU combination.

Figure 1 shows an illustration of a system in accordance with an
embodiment of the present invention, that includes an byte code compiler with a
calling convention adaptor which controls the compilation process. As shown in
Figure 1, the system 101 may include a computer or physical server 102, that
includes a hardware 103, operating system 104, libraries for operating system and
user interface access 105 and run-time environment or virtual machine 106. The
virtual machine may be a Java Virtual Machine (JVM), examples of which include
the Sun Microsystems Inc. Java Virtual Machine, and the JRockit product from
BEA Systems, Inc. The JVM contains the byte code to be execute 107, together
with a byte code compiler 108. The present invention extends the byte code
compiler with a calling convention adaptor 109 and Paraminfo structures 110. The
JVM also includes, or has access to, a memory space 111, which in a Java
environment comprises the native code generated by the compiler 108. The
native code version of the Java Application 112, can make use of different
libraries, like the Java Standard Library 113, the Java SWT Library 114 and a

10

15

20

25

30

35

40

WO 2007/070073 PCT/US2006/012639

23

Native Application Library 115.

The Java Standard Library is supplied by the JVM and the functionality that
make use of operating system resources need to call a Native JVM Library 116. A
native call 117 follows the JNI calling convention for the platform. The JNI calling
convention is used for the call from the Java Standard Library to the Native JVM
Library, for the Java SWT Library to the Native SWT Library and for the call from
the Java Application to the Native Application Library. These calls (117) are
transferred through a native call stub and the present invention improves both this
stub and the process of generating it. The present invention can also include the
native call into the MIR of the calling function to avoid a separate stub altogether.

A call 118 within the Java Application follows the Java-to-Java calling
convention for the platform, which is different from the JNI calling convention.
Since the Java Standard Library is supplied by the JVM, it is possible for a JVM
implementation to add a separate (hidden) way of calling 119 the operating system
resources using the platform calling convention, without going through an

intermediate JNI-compatible library.

Variables and constants:

vl (reg, rsp) v2 (ref, v2)

v3 (i32, v3) v4 (i64, v4)

v5 (164, v5) vé (i64, ve6)

v7 (ie4, v7) " v8 (ise4, v8)

v9 (i64, v9) v10 (ié4, wv10)
vi0o (i64, v10) v1il (reg, [rsp+0x28]) f
v12 (i64, v12) vi3 (i32, v13)
vl4 (432, v1a) v1l5 (i64, v15)
v1le (164, v16) ' v1l7 (i64, v17)
vig (164, v18) v19 (i64, v19)
cl (i64, 8) c2 (i64, 32)

c3 (i64, 7208720) c4 (i64, 560)
c5 (164, 24) c6 (i64, 16)

c7 (164, 552) c8 (ref, (nil))
c9 (ie4, 40) clo (ie4, 0)
cll (i64, 15) cl2 (i64, 204)

Labels: (L1l is printHelloWorld)
L1l (0x2aab2e4296d8, 0) L2 ((nil), 0)

Parameters:
v2 (this) v3

block200:
0 (i64) thread vm -> v4
goto (block201)

10

15

20

25

30

35

40

45

50

55

WO 2007/070073 PCT/US2006/012639

24
block201:
1 (N/A) call {type=method} {method=stackBang()V}
2 (164) add rsp 8 -> v5
3 (i64) mov v -> V6
4 (i64) st rsp 32 rsp
5 (i64) mov 7208720 -> v7
6 (i64) st rsp 8 v7
7 (i64) 1d v4 560 -> v8
8 (ie4) st rsp 24 v8
9 (i64) lir movlbl L2 -> v9
10 (ie4) st rsp 16 v9
12 (i64) add v4 552 -> v10
13 (ref) cmp v2 (nil)
== (then block205, else block206)
block202:
28 (N/A) call v4 {type=method} {method=transitToJava (J)V}
goto (block203)
block203:
29 (ie4) 1d vd 8 -> v17
30 (ie4) 1d v4 16 -> v18
31 (i64) or v1l7 v18 -> v17
32 (164) cmp v1l7 0
== (then block209, else block210)
block204:
18 (i64) cast v3 -> vl4d
19 (i32) mov vlda -> vi3
20 (N/A) call v4 {type=method}
{method=transitFromJava_pd (J)V}
21 (i64) and rsp 15 -> v15
22 (i164) cmp v1l5 0
== (then block207, else block208)
block205:
16 (i64) mov 0 -> vil2
17 (ref) st rsp 40 v12
goto (block204)
block206:
14 (ref) st rsp 40 v2
15 (i64) add rsp 40 -> vl2
goto (block204)
block207:
24 (i64) st v4 8 V5
11 (i32) call v10 v12 v13 Ll {keepalive=[rsp+0x28]}
{type=method}
{method=printHelloWorld (I)V}
25 (i64) 14 v4 16 -> vle
26 (i64) st v4 8 v1ée

27 (i64) cmp vlié 0
!= (then block202, else block203)

block208:
23 (N/A) lir code 204

10

15

20

25

30

35

WO 2007/070073 PCT/US2006/012639

25
block209:
34 (N/A) call v4 {type=method}
{method=transitToJava_pd (J)V}
36 (is4) 1la rsp 24 -> v19
37 (i64) st v4 560 v19
goto (block2011)
block210:
33 (N/A) lir code 204
block211:
35 (N/A) return
36
Listing 7

Figure 2 shows a schematic of the MIR code for a native call generated by
the calling convention adaptor in accordance with an embodiment of the present
invention. The exact contents of each block can be seen in listing 7. In block 200,
a pointer (v4) to the thread structure is acquired. In block 201, a stackbang is
added to guarantee a minimum amount of stack space for the native call. The
stack frame is setup for the native call, allocate JNi-handies in the thread
structure, a pointer to a JNIEnv is extracted (v10) and a null pointer check is
added. Block 202 transfers the control flow to the Java-exception handler if an
exception was thrown from the native code. Block 203 contains useful sanity

checks used when debugging. Block 204 translates 32-bit parameter (v3) into a

'64-bit native call parameter (v12) and calls a platform dependent leave Java-

function which is a no-op on the x86_64/Linux platform. It also checks that the
stack is properly aligned. Block 205 moves a null this-pointer into the JNI handle.
Block 206 moves a non-null this-pointer into the JNI handle. Block 207 calls the
native function using v10, v12 and v13 as arguments. If an exception was thrown
from the native code, the control flow will continue to 202, otherwise to 203. Block
208 contains the debug trap that follows a failed stack alignment check (204).
Block 209 calls a platform dependent return to Java-function, which is a no-op on
the x86_64/Linux platform and frees the JNi-handles allocated in block 201. Block
210 contains the debug trap that follows a failed sanity check (203). Block 211 is
the return operation for the stub.

10

15

20

25

30

35

40

45

50

55

WO 2007/070073

26

Storage gregs[] = {X86_64 RDI, X86_64 RSI, X86 64 RDX,
X86_64_RCX, X86_64 R8, X86_64 R9};

{x86_XMM(0), X86_XMM(1l), X86_XMM(2),
X86_XMM(3), X86_XMM(4), X86 XMM(5),

X86_XMM(6), X86_XMM(7)};

Storage fregs][]

Bool piSetupStoragesNative (ParamInfoP pinfo)

{
int curgreg;
int curfreg;

int offset;

int sindex;

int i, n;

n = piGetNoofArgs (pinfo) ;
offset = 1;

sindex = 0;

curgreg = curfreg = 0;

for (i = 0; 1 < n; i++) {

switch (piGetJlcType (pinfo, i)} {
case JLC_FLOAT:
case JLC_ DOUBLE:
if (curfreg < NOOF_FREGS)

PCT/US2006/012639

PI_SET_STORAGE (pinfo, sindex++, fregs[curfreg++]);

else

PI_SET_STORAGE (pinfo, sindex++, X86_ STACK(offset++));

break;
case JLC_LONG:
case JLC_INT:
case JLC_SHORT:
case JLC_BYTE:
case JLC_CHAR:
case JLC_BOQLEAN:
case JLC_OBJECT:
case JLC_ARRAY:
if (curgreg < NOOF_GREGS)

PI_SET STORAGE (pinfo, sindex++, gregs [curgreg++]);

else
PI_SET_STORAGE (pinfo, sindex++, X86_STACK(offset++));
break;
default:
assert (0) ;

return FALSE;

}

// Ok, now the return type. should not be counted into

// 'nStorages', even though we store it.
switch (piGetReturnType (pinfo)) {

case JLC_VOID:

break;

case JLC_LONG:

case JLC_INT:

case JLC SHORT:

case JLC_BYTE:

case JLC_CHAR:

case JLC_BOOLEAN:

10

15

20

25

30

35

40

WO 2007/070073 PCT/US2006/012639

27

case JLC_OBJECT:
case JLC_ARRAY:
PI_SET STORAGE (pinfo, sindex, X86_64 RAX);
break;
case JLC_FLOAT:
case JLC DOUBLE:
// Even if we don't use xmm for our java convention,
// native always returns floats in xmm0. deal with it
PI_SET_STORAGE (pinfo, sindex, X86 XMM(0));
break;
case JLC_ INTERFACE:
assert(0);
return FALSE;

}

pinfo->nStorages
pinfo->nOnStack

sindex;
offset;

o

return TRUE;

Listing 8

Figure 3 shows a schematic of the Paraminfo data structure, in accordance
with an embodiment of the present invention, which is used by the compiler to
compile the MIR code for the native call into native machine code. When the
compiler translates a medium level call representation to a low level call
representation it will use the Paraminfo structure to add move operations to
transfer the MIR call parameters into their proper position for the native call and to
move the return value from the call to its proper variable. Listing 8 shows the
details of the procedure piSetupStoragesNative which is used to setup the
Paraminfo for the native calling convention on the x86_64/Linux platform. The
Paraminfo structure 300 contains: the call type 301, which is one of
PARAMTYPE_JAVA, PARAMTYPE_NATIVE, PARAMTYPE_NATIVE_JNI; the
number of arguments 302; the exact number of platform words 303 that are
pushed on the stack to store the arguments that cannot be stored in registers; the
exact number of MIR storages 304 for the arguments (the exact number varies
with the OS/CPU combination); the type for each parameter and the return value
305, where each type is one of: JLC_LONG, JLC_DOUBLE, JLC_INT,
JLC_FLOAT, JLC_SHORT, JLC_CHAR, JLC BYTE, JLC_BOOLEAN, JLC VOID,
JLC_OBJECT, JLC_INTERFACE, JLC_ARRAY: the MIR storages 306 for the

parameters, where a storage can be a register or a stack position and the MIR

10

15

20

25

30

35

WO 2007/070073 PCT/US2006/012639

28

storages (nRets) for the return type. nRets is zero if the return type is void. If the
call is virtual, the first storage is the "this" pointer, which is then followed by the
actual parameters. If the return type is not void, storages and a parameter may -
well share the same storage.

In accordance with an embodiment, the function piSetupStoragesNative
takes as argument a Paraminfo filled with the correct call type (calltype), number
of parameters (nParams), the parameter types and the return type (paramType).
It then iterates over function parameters and creates proper storages for each
parameter according to the calling convention, here encoded in the variables
gregs and fregs. It also creates storages for the return type. More than one
storage for a parameter or the return type can be required, e.g. for 64-bit primitive
data types on 32-bit platforms.

When the compiler translates "call v10 v12 v13" in block 207:11 (illustrated
in Listing 7) from MIR to LIR, it will iterate over the parameters (v10, v12, v13) and
for each parameter look up the proper storage for the parameter in the Paraminfo
structure for the function to be called. If the storage is a normal integer register or
stack position, a single LIR move operation is inserted to move the variable to the
proper storage. If the storage is a floating point register that might require special
handling on the platform, a few more LIR operations are added to allocate the
required resources for that particular parameter.

Pseudo Code For Improved Stub Generator
The following pseudo code describes an improved stub generator in
accordance with an embodiment of the present invention. It makes use of the

following types:

pd addr is a C-storage type for platform dependent addresses.
64 bit long on the EM64T/AMD64 platform.
NativeFrame is a structure which 1s placed on the stack as part of the
native call. It contains:
callAddr: the address of the native function to be called.
oldHandles: is a pointer to the old JNI handles.
realFrame: pointer to the real frame
debugInfo: a pointer used for stack walking

10

15

20

25

30

35

40

WO 2007/070073 PCT/US2006/012639

29

Variables:

mpi: ParamInfo structure used by the present invention to compile the MIR

code.
params, nargs: The parameters to the function.

current block,block_start,block end,block_transit,block_return: Blocks
call, call_transit, ret, op, movlbl_native: Labels for MIR operations

thread var: Points to the local data for the current thread.
1jf: Pointer to the last java frame on the stack.

Step (1) Add a variable that contains the pointer to the current thread.
(Block 200):

block_start = CreateIRBlock(ir);

thread_var = IR_VARIABLE(ir, IR_PD_ADDR);
AppendIRToBlock (block start, IR _THREAD VM(ir, thread var));
[Block 200:0]

Step (2) Create more blocks:

CreateIRBlock (ir) ;
block_transit CreateIRBlock(ir) ;
block end CreateIRBlock (ir) ;
ConnectIRBlock (ir, block start, current block) ;

current_block

Step (3) Add stack bang (Block 201):

AppendIRToBlock (current_block, IR _CALL_T(ir, IRFLAG_CALL_ FIXED,
IR_NOTYPE,

cgGetCodeMethod (stackBang V)))
[Block 201:1]

Step (4) Allocate space on the stack for the native frame:

CI_SET NOOF_PARAMS ON_STACK (irGetDebufInfo (ir),
getNoofOnStackArgs (native mpi)) ;

nativeframe_pos (FIRST STACK SLOT +
getNoofOnStackArgs (native_mpi)) * sizeof (void¥*) ;

handlestack pos = nativeframe_pos + sizeof (struct NativeFrame) ;

10

15

20

25

30

35

40

WO 2007/070073 PCT/US2006/012639

30

Step (5) Calculate the pointer to the last Java frame, and fill it in. (Block
201):

1jf = IR_VARIABLE (ir, IR _PD ADDR);
tmp = IR _VARIABLE (ir, IR_PD ADDR};
[Block 201:2]
AppendIRToBlock (current_block, IR ADD T{ir, IR _PD ADDR,
sp,
IR _CONSTANT (ir, IR_PD_ADDR, nativeframe_ pos),
13£));
[Block 201:3]
AppendIRToBlock (current_block, IR_MOV_T(ir, IR _PD_ADDR,
1j£,
tmp)) ;

Step (6) Store current stack pointer into the native frame on the stack.
(Block 201):

AppendIRToBlock (current_block, STACK STORE(ir, IR _PD_ADDR, sp,
nativeframe pos +
offsetof (struct NativeFrame, realFrame)));
[Block 201:4]

Step (7) Store the pointer to the debuglinfo structure for the native function

in the native frame as well. (Block 201):

tmp = IR_VARIABLE (ir, IR_PD ADDR) ;
AppendIRToBlock (current_block, IR_MOV_T(ir, IR PD ADDR,
IR_CONSTANT (ir, IR PD_ADDR,
irGetDebugInfo(ir)),
tmp)) ;
[Block 201:5]
AppendIRToBlock (current_block, STACK STORE (ir, IR_PD ADDR,
tmp,
nativeframe pos + offsetof (struct
NativeFrame,
debugInfo)));
[Block 201:6]

Step (8) Store a pointer to the previous JNI handles in the native frame. (Block
201):
tmp = IR_VARIABLE(ir, IR_PD_ADDR);

AppendIRToBlock {current block, IR_LD T(ir, IR _PD ADDR, IR PD_ADDR,
thread varxr, IR_CONSTANT (ir, IR_PD_ADDR,

10

15

20

25

30

35

40

WO 2007/070073 PCT/US2006/012639

31

VMT_HANDLES_OFFSET), tmp));
[Block 201:7]

AppendIRToBlock (current block, STACK STORE(ir, IR _PD_ADDR,
tmp,
nativeframe_pos +
offsetof (struct NativeFrame,
oldHandles))) ;
[Block 201:8]

Step (9) Store the address of the native function in the native frame, this is
used for stack walking. (Block 201):

tmp = IR VARIABLE(ir, IR PD_ADDR) ;
AppendIRToBlock (current block,
movlbl native = IR_LIR MOVLBL(ir, IR NONE, tmp));
[Block 201:9]
AppendIRToBlock (current_ block,
STACK _STORE (ir, IR PD ADDR,
tmp,
nativeframe pos + offsetof (struct NativeFrame,
calladdr))) ;
[Block 201:10]

Step (10) Create the MIR operation for the call. Do not add it to any block
yet.:

irGetIRTypeAndSizeForJdlcType (piGetReturnType (mpi), &type, &s);
call = IR_CALL_T(ir, IRFLAG CALL_FIXED, IR_SIZE2VARTYPE (type), method) ;
iropAddsSourcevVar (ir, call, IR LABEL(ir, getCallPtr (code)));

Step (11) Set the call to be of the Java native type:

IRCallSetInfoTypes (ir, call, CALLINFO_JAVA2C, PARAMTYPE NATIVE_JNI) ;

Step (12) The first parameter to the native function is the JNI environment.
(Block 201):

param = IR _VARIABLE (ir, IR_PD_ADDR) ;

AppendIRToBlock (current block, IR ADD T(ir, IR_PD ADDR, thread var,
IR_CONSTANT (ir, IR_PD_ADDR,
VMT_JNI_INTERFACE_OFFSET),
param)) ;

10

15

20

25

30

35

40

45

WO 2007/070073 PCT/US2006/012639

32

[Block 201:121
IRAddSourceVar (ir, call, param);

Step (13) Add the parameters to the native function call. (Block
201,204,205,206):

for (pos=0 ; pos<nargs; pos++)

{

from = params[pos];
type = irVarGetType(ir, from);
if (type == IR_REF)
{
block_done = CreateIRBlock(ir);
append_nullcheck(ir, from, current block, &block null,
&block non null) ;
[Block 201:13]
ConnectIRBlock(ir, block null, block_domne) ;
ConnectIRBlock (ir, block non null, block done);
hsp = push_reference (ir, block non_null, call, from,
&handlestack pos, ¶m);
[Block 206:14,15]
AppendIRToBlock (block_null, IR MOV_T(ir, IR_PD ADDR,
IR 0,
param)) ;
[Block 205:16,17]
current_block = block done;
1
else

{
param = IR VARIABLE(ir, type);
if (type == IR_I32)

tmp = IR VARIABLE (ir, type);
AppendIRToBlock (current block, castOp =
SIGN_EXT_PARAMETER_TO_PLATFORM(ir, IR_PD ADDR,
from, tmp));

[Block 204:18]

from = tmp;
1
AppendIRToBlock {(current_block, IR _MOV_T(ir, type, from, param)) ;
[Block 204:19]

}

irOpAddSourceVar (ir, call, param) ;

10

15

20

25

30

35

40

WO 2007/070073 PCT/US2006/012639

33

Step (14) Call the transit from Java function with the thread as an argument.
(Block 204, 208):

AppendIRToBlock (current_block, op = IR_CALL T(ir, IRFLAG_CALL_FIXED,
IR NOTYPE,

cgGetCodeMethod (transitFromJava_pd PV))) ;
irOpAddSourceVar (ix, op, thread var) ;
[Block 204:20]
check_stack(ir, ¤t block) ;
[Block 204:21,22 8:23]

Step (15) The NativeFrame is now a Java-compatible stack frame, store
this in the thread local area for garbage collection purposes. (Block 207):

AppendIRToBlock (current_block, IR ST T(ir, IR_PD ADDR, IR_PD_ADDR,
thread_var,
IR_CONSTANT (ir, IR PD ADDR,
VMT_LAST JAVA FRAME OFFSET),
1j£));
[Block 207:24]

Step (16) Now add the call that was created earlier to the current block of
code. (Block 207):

AppendIRToBlock (current_block, call);
[Block 207:11]

Step (17) After the call, restore the previous Java frame. If the previous
Java frame was non-NULL it indicates that the process is returning to Java-code
called from native JNI-code. Extra management is needed so transit2java is
called. If an exception has occured in the nativé code, then transit2java will need
to be called. Otherwise, the function can return quickly. (Block 207):

frame_var = IR_VARIABLE (ir, IR_PD ADDR) ;
AppendIRToBlock (current_block, IR _LD_T(ir, IR_PD ADDR, IR PD ADDR,
thread_var,
IR_CONSTANT (ir, IR_PD ADDR,
VMT_CHECKATTRANSITFRAME OFFSET) ,
frame var));
[Block 207:25]

WO 2007/070073 PCT/US2006/012639

34

AppendIRToBlock (current_block, IR_ST T(ir, IR _PD ADDR, IR _PD ADDR,
thread var, IR CONSTANT (ir, IR_PD_ADDR,
VMT LAST JAVA FRAME OFFSET),
frame_var));
[Block 207:26]
AppendIRToBlock (current_block, IR_CMP_T(ir, IR PD_ADDR, frame var,
IR_0));
[Block 207:27]
irBBSetType (current_block, IRBB_JCC, IR_NE);
ConnectIRBlock (ir, current_block, block_transit);
ConnectIRBlock(ir, current block, block_end);

Step (18) Call transit2java if an exception has happened. As can be seen
in this code the return object no longer needs to be explicitly preserved since the

normal register allocation and spilling takes care of protecting it for us. (Block

20

25

30

35

40

45

202):

current_block = block transit;
AppendIRToBlock (transit_block,
call transit = IR _CALL T(ir, IRFLAG_CALL_FIXED, IR NOTYPE,
cgGetCodeMethod (transitToJava_PV))) ;
irOpAddSourceVar (ir, call_transit, thread var);
[Block 202:28]
ConnectIRBlock(ir, block transit, block_end);

Step (19) Make useful sanity checks. These can be ignored when not
debugging the JVM. (Block 203, 210):

checkl IR_VARIABLE (ir, IR_PD ADDR) ;
check2 = IR_VARIABLE (ir, IR_PD_ADDR) ;
current_block = block end;
irBBAppendOp (current_block, IR _LD_T(ir, IR_PD_ADDR, IR _PD ADDR,
thread var,
IR_CONSTANT (ir, IR _PD ADDR,
VMT_LAST JAVA FRAME_ OFFSET),
checkl)) ;
[Block 203:29]
irBBAppendOp (current_block, IR LD_T(ir, IR PD_ADDR, IR_PD_ADDR,
thread_var,
IR_CONSTANT (ir, IR_PD_ADDR,
VMT_CHECKATTRANSITFRAME OFFSET),
check2)) ;
[Block 203:30]
irBBAppendOp (current_block, IR OR_T(ir, IR PD ADDR, checkl, check2,
checkl)) ;
[Block 203:31]
append_nullcheck(ir, checkl, block, &block ok, &block trap);
[Block 203:32]
irBBAppendOp (block_trap, IR _BREAK(ir));

10

15

20

25

30

35

40

45

50

WO 2007/070073 PCT/US2006/012639

35

[Block 210:33]
block _end = block_ok;

Step (20) Platform dependent transit2java part 2. This is a no-op on the
x86_64/Linux platform. (Block 209):

current_block = block end;

AppendIRToBlock (current_block, op = IR CALL T(ir, IRFLAG CALL_FIXED,
IR _NOTYPE,

cgGetCodeMethod (transitToJava_pd PV))) ;
irOpAddSourcevVar (ir, op, thread_var);
[Block 209:34]

Step (21) Calculate the return IR operation "ret" from the native function. In

this example the return value is void:
if (piGetReturnType (mpi) == JLC VOID)

ret = IR _RETURNO (ir) ;
}
else
{
IRVAR res;
irGetIRTypeAndSizeForJlcType (piGetReturnType (mpi), &flags, &s);

type = IR_SIZE2VARTYPE (flags);
res = IR_VARIABLE (ir, type);

if (type == IR_REF) ({
IRBlockP block null, block non_null;
IRBlockP block_done = CreateIRBlock (ir);
IRVAR res_native = IR_VARIABLE(ir, IR_PD ADDR) ;

irOpSetDestVar (call, res_native);

append_nullcheck(ir, res_native, current_block, &block null,
&block_non_null) ;

AppendIRToBlock (block_non_null, IR LD_T(ir, IR _REF, IR REF,

res_native,

IR_0, res)});

AppendIRToBlock (block null, IR _MOV_T(ir, IR _REF, IR _NULL, res));

ConnectIRBlock (ir, block_non null, block done) ;

ConnectIRBlock (ir, block_null, block_done) ;

current_block = block_done;

} else {
set_flags(ir, type);
irOpSetDestVar (call, res);

}

ret = IR RETURN_T(ir, type, res);

10

15

20

25

30

35

40

45

WO 2007/070073 PCT/US2006/012639

36

Step (22) Restore the JNI handles. (Block 209):

tmp = IR_VARIABLE(ir, IR_PD_ADDR) ;
AppendIRToBlock (current block, STACK LOAD(ir, IR_PD_ADDR,
nativeframe pos + offsetof (struct NativeFrame,
oldHandles),

tmp)) ;
[Block 209:36]

AppendIRToBlock (current block, IR _ST T{ir, IR_PD_ADDR, IR_PD_ADDR,
thread_var,
IR _CONSTANT{ir, IR_PD_ADDR, VMT_HANDLES_OFFSET) ,

tmp)) ;
[Block 209:37]

Step (23) Now create the return code block. (Block 211):

block return = CreateIRBlock(ir);
AppendIRToBlock (block return, ret);

[Block 211:35]

ConnectIRBlock({ir, current block, block return);

Step (24) Now that the call IR operation exists the label can be inserted into
the previous storage operation:

irOpSetSourceVar (movlbl native, 0, irOpGetOrCreatelabel (ir, call));

-- Entering code with object pointer in rsi and integer argument in eax.
0x2aaaeceleB82d0: push ¥rbx

0x2aaaeceleB82dl: push %rbp
Ox2aaaeele82d2: sub $0x38, ¥rsp

-- Save object pointer into ril.
0x2aaaeele82d6: mov $rsi, %ril

-- Save integer argument into esi
Ox2aaaeceleB2d9: mov Yeax, ¥esi
[Block 200]

O0x2aaaeelbe82db: mov $fs:0xd8, %$rl3

[Block 201]
Ox2aaaeecle82ed: movqg $0x0, 0xEEEEEELEEELLE000 ($rsp)

0x2aaaee0e82f0: mov $rsp, $rl5
0x2aaaeele82f3: add $0x8,%rls
O0x2aaaeceleB82f7: mov $rl5, %$rl4
Ox2aaaeele82fa: mov $rsp, 0x20 ($rsp)
0x2aaaeceleB82ff: mov $0x6df£f10, %rl5
0x2aaaee0e8309: mov %rl5, 0x8 (%rsp)
0x2aaaeeleB830e: ' mov 0%230 (%r13),%r8
0x2aaaeele8315: mov %r8,0x18 (¥rsp)

0x2aaaeele83la: mov $0x2aaaeeleBl7l, $rax

10

15

20

25

30

35

40

45

50

95

WO 2007/070073

0x2aaaeele8324:
Ox2aaaeeleB8329:
Ox2aaaeel0e8330:
0x2aaaeele8333:

[Block 205}

0x2aaaece0e8335:
0x2aaaece0e8338:
0x2aaaeele833d:

[Block 206]

0x2aaaece0e833f:
Ox2aaaeeeB8344:
0x2aaaeeleB8347:

[Block 2041
0x2aaaeeleB834b:

-- Move the integer argument from esi to rdx.

0x2aaaee0e8350:
0x2aaaeele8353:
0x2aaaeeleB8356:
0xZaaaeele835a:
Ox2aaaeeleB835d:

[Block 207]
0x2aaaeele835f:
O0xZ2aaaee0e8364:

-- Move calculated JNIEnv pointer into rsi.

0x2aaaeele8368:
-- Move object
0x2aaaeele836b:
O0x2aaaeeleB836e:
O0x2aaaeele8371:
0x2aaaeeleB8376:
0x2aaaece0e8379:
0x2aaaeeleB837e:
0x2aaaecele8382:
0x2aaaeeeB8386:
0x2aaaee0e8389:

[Block 2021

0x2aaaee0e838b:
0x2aaaee0e8390:
0x2aaaeeleB8393:
0x2aaaeeleB8398:

[Block 203]

0x2aaaeele839a:
0x2aaaeeleB839f:;
0x2aaaeele83a3:
Ox2aaaeele83a7:
0x2aaaeele83aa:
Ox2aaaeele83ad:

[Block 209]
Ox2aaaeceleB83af:
Ox2aaaeele83b4:

mov
lea
test
jne

Xor
mov

jmp

mov
mov
add

mov

37

%rax, 0x10 (%rsp)

0x228 (%r13), %ri5

%rl1il,%ril
0x2aaaeele833f

$rdi, $rdi
%rdi, 0x28 ($rsp)
0x2aaaeele834b

$rll, 0x28 (%rsp)
$rsp, ¥rdi
$0x28, $rdi

%rl3, 0x30 (%rsp)

movslqg %esi, $rdx

mov
and
test
jne

mov
mov

mov

Frsp, %ril3
$0xf, %ri13
%rli3,%rl3
0x2aaaeele83c2

0x30 (%rsp), %rsi
$ri4, 0x8 (%rsi)

$rdi, $rsi

pointer into rdi.

mov
mov
callg
mov
mov
mov
mov
test

Je

mov
mov
callg
jmp

mov
mov
mov
or
test
jne

mov
mov

$rl5, $rdi
$rsp, srl2

PCT/US2006/012639

0x2aab2e4296d8 <Java_HelloWorld printHelloWorlds>

%¥rl2, %rsp

0x30 (%rsp),%rlo0
0x10(%rl0), %rcx
$rex, 0x8 (%r10)
$rcx, $rcx
0x2aaaeele839%9a

0x30 (%rsp) , $rbx
$rbx, $rax
0x2aaaeea2010
0x2aaaeele839f

0x30 (%rsp), srbx
0x8 (%rbx) , %r9
0x10 (%rbx) , $rdi
$rdi, $ro
%r9,%r9
0x2aaaeele83c3

0x18 (%rsp) , %rl2

$rl2,0x230 (%rbx)

10

15

20

25

30

35

WO 2007/070073 PCT/US2006/012639

38

[Block 211]
0x2aaaeele83bb: add $0x38, ¥rsp
0x2aaaeele83bf: pop %rbp
0x2aaaee0e83cO: pop %rbx
0x2aaaeele83cl: retqg
[Block 208]
0x2aaaeele83c2: DEBUG trap
[Block 210]
0x2aaaeele83c3: DEBUG trap

Listing 9

Listing 9 shows the final native machine code for the stub. In accordance
with embodiments of the present invention, the virtual machine has enabled
automatic generation of this stub. The stub translates the Java calling convention
with the object pointer in rsi and the integer argument in eax to the native calling
convention with a JNIEnv pointer in rsi, the object pointer in rdi and the integer
argument in rdx. The calling convention adaptor creates the MIR code for this
stub, not using platform specific knowledge. The compiler then compiles the MIR
code using the Paraminfo which contained the platform specific knowledge. Since
embodiments of the present invention extend the compiler to generate stubs (with
the calling convention adaptor and the Paraminfo structure), there is no separate
manual work required to maintain the stub generation code. If the compiler can
compile for the platform, it can generate native call stubs for the platform.
Furthermore, since the compiler has access to a higher level description of the
native call stub it can apply advanced compiler optimization techniques on the stub
to increase the code efficiency. It is even possible to include the MIR of the native
call into the MIR of the caller to achive even higher performance improvements.
There is no limitation on what kind of native calls can be generated. JNI-
compatible calls such as 117 in Figure 1 can co-exist with raw calls such as 119 in
Figure 1 within the same JVM. Therefore embodiments of the present invention
improve native call performance, and reduce the manual work needed to add new
calling conventions when the number of CPU/OS combinations grow.

The present invention may be conveniently implemented using a
conventional general purpose or a specialized digital computer or microprocessor
programmed according to the teachings of the present disclosure. Appropriate

software coding can readily be prepared by skilled programmers based on the

10

15

20

25

30

WO 2007/070073 PCT/US2006/012639

39

teachings of the present disclosure, as will be apparent to those skilled in the
software art.

In some embodiments, the present invention includes a computer program
product which is a storage medium (media) having instructions stored thereon/in
which can be used to program a computer to perform any of the processes of the
present invention. The storage medium can include, but is not limited to, any type
of disk including floppy disks, optical discs, DVD, CD -ROMs, microdrive, and
magneto -optiéal disks, ROMs, RAMs, EPROMs, EEPROMs, DRAMs, VRAMs,
flash mem ory devices, magnetic or optical cards, nanosystems (including
molecular memory ICs), or any type of media or device suitable for storing
instructions and/or data.

The foregoing description of the present invention has been provided for the
purposes of illustration and description. It is not intended to be exhaustive or to
limit the invention to the precise forms disclosed. Many modifications and
variations will be apparent to the practitioner skilled in the art. Particularly, it will
be evident that while the examples described herein illustrate how the features
may be used in a WebLogic or JRockit environment, other application servers,
virtual machines, JVMs, computing environments, and software development
systems may use and benefit from the invention. The code examples given are
presented for purposes of illustration. It will be evident that the techniques
described herein may be applied using other code languages, and with different
code.

The embodiments were chosen and described in order to best explain the
principles of the invention and its practical application, thereby enabling others
skilled in the art to understand the invention for various embodiments and with
various modifications that are suited to the particular use contemplated. It is
intended that the scope of the invention be defined by the following claims and

their equivalence.

10

15

20

25

30

WO 2007/070073 PCT/US2006/012639

40
Claims:
What is claimed is:
1. A system for generating native code calls from byte code in virtual

machines, comprising:

a computer running an operating system with native libraries;

a virtual machine for executing a software application;

a memory space for the compiled byte code as part of the software
application; and

a compiler with a calling convention adaptor that integrates native calls into

the high level analysis step of the compilation of byte codes.

2. The system of claim 1, wherein the compiler uses a Paraminfo structure to

compile a MIR call into a LIR call.

3. The system of claim 1, wherein the MIR of the native call is inserted into the
MIR of the caller code.

4, The system of claim 1, wherein the MIR for Java to Java calls are compiled
using the

Paraminfo structure.

5. The system of claim 4, wherein several different native calling conventions

are used simultaneously.

6. A method for generating native code calls from byte code in virtual
machines, comprising the steps of:
providing a computer running an operating system with native libraries;
providing a virtual machine for executing a software application;
providing a memory space for the compiled byte code as part of the
software application; and

10

15

WO 2007/070073 PCT/US2006/012639
41

providing a compiler with a calling convention adaptor that integrates native
calls into the high level analysis step of the compilation of byte codes.

7. The method of claim 6, wherein the compiler uses a Paraminfo structure to
compile a MIR call into a LIR call.

8. The method of claim 6, wherein the MIR of the native call is inserted into
the MIR of the caller code.

9. The method of claim 6, wherein the MIR for Java to Java calls are compiled
using the

Paraminfo structure.

10. The method of claim 9, wherein several different native calling conventions

are used simultaneously.

WO 2007/070073 PCT/US2006/012639

1/3

JVM 106

Byte Code 107

Java Application Java Standard Library Java SWT Library

Byte Code Compiler 108

Calling Convention Adaptor 109 Paraminfo structures 110

Storage for generated native code 111

118«,@ Java Application 112

Java Standard Library 113 Java SWT Library 114

117~ 117 117~

~
119 Native JVM Library 116

A A

Native SWT Library 118 Native Application Library 115

System Libraries for OS and Ul access 105

Operating System 104

Computer Hardware 103

Computer (Server) 102

FIG. 1 °

101

WO 2007/070073

2/3

Block 200

Block 205 Block 206

L

»| Block 208
v

Block 207
v

Block 202
v

B

lock 203 »| Block 210

Y

Block 209
v

Block 211

FIG. 2

PCT/US2006/012639

WO 2007/070073

3/3
Paraminfo
int calltype 301
int nParams 302
int nOnStack 303
int nStorages 304
int paramType[nParams+1] 305

int storages[nStorages+nRets]

306

\

300

FIG. 3

PCT/US2006/012639

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - claims
	Page 43 - claims
	Page 44 - drawings
	Page 45 - drawings
	Page 46 - drawings

