wo 2016/077267 A1 [N NI N0V 00O OO O O

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

19 May 2016 (19.05.2016)

WIPOIPCT

(10) International Publication Number

WO 2016/077267 Al

(51

eay)

(22)

(25)
(26)
(30)

1

(72

International Patent Classification:
GO6F 11/14 (2006.01)

International Application Number:
PCT/US2015/059819

International Filing Date:
10 November 2015 (10.11.2015)

Filing Language: English
Publication Language: English
Priority Data:

14/540,640 13 November 2014 (13.11.2014) US

Applicant: MICROSOFT TECHNOLOGY LICENS-
ING, LLC [US/US]; Attn: Patent Group Docketing (Bldg.
8/1000), One Microsoft Way, Redmond, Washington
98052-6399 (US).

Inventors: BEZBARUAH, Angshuman; Microsoft Tech-
nology Licensing, LLC, Attn: Patent Group Docketing
(Bldg. 8/1000), One Microsoft Way, Redmond, Washing-
ton 98052-6399 (US). REUTHER, Lars; Microsoft Tech-
nology Licensing, LLC, Attn: Patent Group Docketing
(Bldg. 8/1000), One Microsoft Way, Redmond, Washing-
ton 98052-6399 (US). BROWN, Taylor O'Neil; Microsoft
Technology Licensing, LLC, Attn: Patent Group Docketing
(Bldg. 8/1000), One Microsoft Way, Redmond, Washing-
ton 98052-6399 (US).

(74) Agents: MINHAS, Sandip et al.; Microsotft Corporation,

(8D

(84)

Attn: Patent Group Docketing (Bldg. 8/1000), One Mi-
crosoft Way, Redmond, Washington 98052-6399 (US).

Designated States (uniess otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG,
MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,
PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,
SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,
TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,
TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,
SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW, KM, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

as to applicant'’s entitlement to apply for and be granted a
patent (Rule 4.17(i1))

[Continued on next page]

(34

Title: VIRTUAL MACHINE CLUSTER BACKUP

101

10.

100 Computer System
RS
e

Processor Memory

IS
8
l

G 112

Communications
Module

|

10

Indication Generating
Module

10

Checkpoint Generating
Module
107
Cluster Wide Checkpoint

Checkpoint For &~ 108
Node 1134
Checkpoint For &~ 109
Node 1138

11

&

=Y

Determining Module

l[

Identifying Module

1134

Virtual
Maghine

(Owner)

Application

114! 115

Node

Virtual
Machine
Cluster 116

51138

Virtual
Machine

Figure 1

Node

Application
114

3
Shared
Storage

Resource

N

(57) Abstract: Embodiments are directed to backing up a virtual machine cluster and to determining virtual machine node owner -
ship prior to backing up a virtual machine cluster. In one scenario, a computer system determines which virtual machines nodes are
part of the virtual machine cluster, determines which shared storage resources are part of the virtual machine cluster and determines
which virtual machine nodes own the shared storage resources. The computer system then indicates to the virtual machine node
owners that at least one specified application is to be quiesced over the nodes of the virtual machine cluster, such that a consistent,
cluster-wide checkpoint can be created. The computer system further creates a cluster-wide checkpoint which includes a checkpoint
for each virtual machine in the virtual machine cluster.

WO 2016/077267 A1 AT 00T 00 A

— as to the applicant's entitlement to claim the priority of Published:
the earlier application (Rule 4.17(iii)) — with international search report (Art. 21(3))

10

15

20

25

30

WO 2016/077267 PCT/US2015/059819

VIRTUAL MACHINE CLUSTER BACKUP

BACKGROUND

[0001] Computing systems have become ubiquitous, ranging from small embedded
devices to phones and tablets to PCs and backend servers. Each of these computing
systems is designed to process software code. The software allows users to perform
functions, interacting with the hardware provided by the computing system. In some cases,
these computing systems allow users to establish and run virtual machines. These virtual
machines may provide functionality not provided by the host operating system, or may
comprise a different operating system altogether. In this manner, virtual machines may be
used to extend the functionality of the computing system.
SUMMARY

[0002] Embodiments described herein are directed to backing up a virtual machine
cluster and to determining virtual machine node ownership prior to backing up a virtual
machine cluster. In one embodiment, a computer system determines which virtual
machines nodes are part of the virtual machine cluster, determines which shared storage
resources are part of the virtual machine cluster and determines which virtual machine
nodes own the shared storage resources. The computer system then indicates to the virtual
machine node owners that at least one specified application is to be quiesced over the
nodes of the virtual machine cluster, such that a consistent, cluster-wide checkpoint can be
created. The computer system further creates a cluster-wide checkpoint which includes a
checkpoint for each virtual machine in the virtual machine cluster. Creating a consistent,
cluster-wide checkpoint reduces storage requirements within this system as it avoids
backing up each virtual machine separately. Morecover, as each virtual machine is not
separately backed up, processing resources for each of those backups are saved, allowing
these resources to be used elsewhere and increase the processing speed of other projects.
[0003] In another embodiment, a computer system performs a method for determining
virtual machine node ownership prior to backing up a virtual machine cluster. The
computer system determines that ownership has changed for at least one shared storage
resource within a virtual machine cluster and identifies at least one potential new owner of
the shared storage resource. The computer system determines which virtual machine nodes
own the shared storage resources and indicates to the virtual machine node owners that at
least one specified application is to be quiesced over the nodes of the virtual machine

cluster, so that a consistent, cluster-wide checkpoint can be created. The computer system

10

15

20

25

30

WO 2016/077267 PCT/US2015/059819

then creates the cluster-wide virtual machine checkpoint which includes checkpoints for
cach shared storage device in the virtual machine cluster.
[0004] This Summary is provided to introduce a selection of concepts in a simplified
form that are further described below in the Detailed Description. This Summary is not
intended to identify key features or essential features of the claimed subject matter, nor is
it intended to be used as an aid in determining the scope of the claimed subject matter.
[0005] Additional features and advantages will be set forth in the description which
follows, and in part will be apparent to one of ordinary skill in the art from the description,
or may be learned by the practice of the teachings herein. Features and advantages of
embodiments described herein may be realized and obtained by means of the instruments
and combinations particularly pointed out in the appended claims. Features of the
embodiments described herein will become more fully apparent from the following
description and appended claims.

BRIEF DESCRIPTION OF THE DRAWINGS
[0006] To further clarify the above and other features of the embodiments described

herein, a more particular description will be rendered by reference to the appended
drawings. It is appreciated that these drawings depict only examples of the embodiments
described herein and are therefore not to be considered limiting of its scope. The
embodiments will be described and explained with additional specificity and detail
through the use of the accompanying drawings in which:

[0007] Figure 1 illustrates a computer architecture in which embodiments described
herein may operate including backing up a virtual machine cluster.

[0008] Figure 2 illustrates a flowchart of an example method for backing up a virtual
machine cluster.

[0009] Figure 3 illustrates a flowchart of an example method for determining virtual
machine node ownership prior to backing up a virtual machine cluster.

[0010] Figure 4 illustrates an embodiment in which a virtual machine node within a
virtual machine cluster goes down and ownership changes nodes.

[0011] Figure 5 illustrates an embodiment in which an agent instantiated in a virtual
machine node creates a checkpoint for multiple shared storage resources.

DETAILED DESCRIPTION

[0012] Embodiments described herein are directed to backing up a virtual machine
cluster and to determining virtual machine node ownership prior to backing up a virtual

machine cluster. In one embodiment, a computer system determines which virtual

10

15

20

25

30

WO 2016/077267 PCT/US2015/059819

machines nodes are part of the virtual machine cluster, determines which shared storage
resources are part of the virtual machine cluster and determines which virtual machine
nodes own the shared storage resources. The computer system then indicates to the virtual
machine node owners that at least one specified application is to be quiesced over the
nodes of the virtual machine cluster, such that a consistent, cluster-wide checkpoint can be
created. The computer system further creates a cluster-wide checkpoint which includes a
checkpoint for each virtual machine in the virtual machine cluster.

[0013] In another embodiment, a computer system performs a method for determining
virtual machine node ownership prior to backing up a virtual machine cluster. The
computer system determines that ownership has changed for at least one shared storage
resource within a virtual machine cluster and identifies at least one potential new owner of
the shared storage resource. The computer system determines which virtual machine nodes
own the shared storage resources and indicates to the virtual machine node owners that at
least one specified application is to be quiesced over the nodes of the virtual machine
cluster, so that a consistent, cluster-wide checkpoint can be created. The computer system
then creates the cluster-wide virtual machine checkpoint which includes checkpoints for
cach shared storage device in the virtual machine cluster.

[0014] The following discussion now refers to a number of methods and method acts
that may be performed. It should be noted, that although the method acts may be discussed
in a certain order or illustrated in a flow chart as occurring in a particular order, no
particular ordering is necessarily required unless specifically stated, or required because an
act is dependent on another act being completed prior to the act being performed.

[0015] Embodiments described herein may implement various types of computing
systems. These computing systems are now increasingly taking a wide variety of forms.
Computing systems may, for example, be handheld devices such as smartphones or feature
phones, appliances, laptop computers, wearable devices, desktop computers, mainframes,
distributed computing systems, or even devices that have not conventionally been
considered a computing system. In this description and in the claims, the term “computing
system” is defined broadly as including any device or system (or combination thereof) that
includes at least one physical and tangible processor, and a physical and tangible memory
capable of having thereon computer-executable instructions that may be executed by the
processor. A computing system may be distributed over a network environment and may

include multiple constituent computing systems.

10

15

20

25

30

WO 2016/077267 PCT/US2015/059819

[0016] As illustrated in Figure 1, a computing system 101 typically includes at least one
processing unit 102 and memory 103. The memory 103 may be physical system memory,
which may be volatile, non-volatile, or some combination of the two. The term “memory”
may also be used herein to refer to non-volatile mass storage such as physical storage
media. If the computing system is distributed, the processing, memory and/or storage
capability may be distributed as well.

[0017] As used herein, the term “executable module” or “executable component” can
refer to software objects, routines, or methods that may be executed on the computing
system. The different components, modules, engines, and services described herein may
be implemented as objects or processes that execute on the computing system (e.g., as
separate threads).

[0018] In the description that follows, embodiments are described with reference to acts
that are performed by one or more computing systems. If such acts are implemented in
software, one or more processors of the associated computing system that performs the act
direct the operation of the computing system in response to having executed computer-
executable instructions. For example, such computer-executable instructions may be
embodied on one or more computer-readable media that form a computer program
product. An example of such an operation involves the manipulation of data. The
computer-executable instructions (and the manipulated data) may be stored in the memory
103 of the computing system 101. Computing system 101 may also contain
communication channels that allow the computing system 101 to communicate with other
message processors over a wired or wireless network.

[0019] Embodiments described herein may comprise or utilize a special-purpose or
general-purpose computer system that includes computer hardware, such as, for example,
one or more processors and system memory, as discussed in greater detail below. The
system memory may be included within the overall memory 103. The system memory
may also be referred to as “main memory”, and includes memory locations that are
addressable by the at least one processing unit 102 over a memory bus in which case the
address location is asserted on the memory bus itself. System memory has been
traditionally volatile, but the principles described herein also apply in circumstances in
which the system memory is partially, or even fully, non-volatile.

[0020] Embodiments within the scope of the present invention also include physical and
other computer-readable media for carrying or storing computer-executable instructions

and/or data structures. Such computer-readable media can be any available media that can

10

15

20

25

30

WO 2016/077267 PCT/US2015/059819

be accessed by a general-purpose or special-purpose computer system. Computer-readable
media that store computer-executable instructions and/or data structures are computer
storage media. Computer-readable media that carry computer-executable instructions
and/or data structures are transmission media. Thus, by way of example, and not
limitation, embodiments of the invention can comprise at least two distinctly different
kinds of computer-readable media: computer storage media and transmission media.
[0021] Computer storage media are physical hardware storage media that store
computer-executable instructions and/or data structures. Physical hardware storage media
include computer hardware, such as RAM, ROM, EEPROM, solid state drives (“SSDs”),
flash memory, phase-change memory (“PCM”), optical disk storage, magnetic disk
storage or other magnetic storage devices, or any other hardware storage device(s) which
can be used to store program code in the form of computer-executable instructions or data
structures, which can be accessed and executed by a general-purpose or special-purpose
computer system to implement the disclosed functionality of the invention.

[0022] Transmission media can include a network and/or data links which can be used
to carry program code in the form of computer-executable instructions or data structures,
and which can be accessed by a general-purpose or special-purpose computer system. A
“network” is defined as one or more data links that enable the transport of electronic data
between computer systems and/or modules and/or other electronic devices. When
information is transferred or provided over a network or another communications
connection (either hardwired, wireless, or a combination of hardwired or wireless) to a
computer system, the computer system may view the connection as transmission media.
Combinations of the above should also be included within the scope of computer-readable
media.

[0023] Further, upon reaching various computer system components, program code in
the form of computer-executable instructions or data structures can be transferred
automatically from transmission media to computer storage media (or vice versa). For
example, computer-executable instructions or data structures received over a network or
data link can be buffered in RAM within a network interface module (e.g., a “NIC”), and
then eventually transferred to computer system RAM and/or to less volatile computer
storage media at a computer system. Thus, it should be understood that computer storage
media can be included in computer system components that also (or even primarily) utilize

transmission media.

10

15

20

25

30

WO 2016/077267 PCT/US2015/059819

[0024] Computer-executable instructions comprise, for example, instructions and data
which, when executed at one or more processors, cause a general-purpose computer
system, special-purpose computer system, or special-purpose processing device to perform
a certain function or group of functions. Computer-executable instructions may be, for
example, binaries, intermediate format instructions such as assembly language, or even
source code.

[0025] Those skilled in the art will appreciate that the principles described herein may
be practiced in network computing environments with many types of computer system
configurations, including, personal computers, desktop computers, laptop computers,
message processors, hand-held devices, multi-processor systems, microprocessor-based or
programmable consumer electronics, network PCs, minicomputers, mainframe computers,
mobile telephones, PDAs, tablets, pagers, routers, switches, and the like. The invention
may also be practiced in distributed system environments where local and remote
computer systems, which are linked (either by hardwired data links, wireless data links, or
by a combination of hardwired and wireless data links) through a network, both perform
tasks. As such, in a distributed system environment, a computer system may include a
plurality of constituent computer systems. In a distributed system environment, program
modules may be located in both local and remote memory storage devices.

[0026] Those skilled in the art will also appreciate that the invention may be practiced in
a cloud computing environment. Cloud computing environments may be distributed,
although this is not required. When distributed, cloud computing environments may be
distributed internationally within an organization and/or have components possessed
across multiple organizations. In this description and the following claims, “cloud
computing” is defined as a model for enabling on-demand network access to a shared pool
of configurable computing resources (e.g., networks, servers, storage, applications, and
services). The definition of “cloud computing” is not limited to any of the other numerous
advantages that can be obtained from such a model when properly deployed.

[0027] Still further, system architectures described herein can include a plurality of
independent components that each contribute to the functionality of the system as a whole.
This modularity allows for increased flexibility when approaching issues of platform
scalability and, to this end, provides a variety of advantages. System complexity and
growth can be managed more easily through the use of smaller-scale parts with limited
functional scope. Platform fault tolerance is enhanced through the use of these loosely

coupled modules. Individual components can be grown incrementally as business needs

10

15

20

25

30

WO 2016/077267 PCT/US2015/059819

dictate. Modular development also translates to decreased time to market for new
functionality. New functionality can be added or subtracted without impacting the core
System.

[0028] Figure 1 illustrates a computer architecture 100 in which at least one
embodiment may be employed. Computer architecture 100 includes computer system 101.
Computer system 101 may be any type of local or distributed computer system, including
a cloud computing system. The computer system 101 includes modules for performing a
variety of different functions. For instance, the communications module 104 may be
configured to communicate with other computing systems. The communications module
104 may include any wired or wireless communication means that can receive and/or
transmit data to or from other computing systems. The communications module 104 may
be configured to interact with databases, mobile computing devices (such as mobile
phones or tablets), embedded or other types of computing systems.

[0029] The computer system 101 may include a checkpoint generating module 106. The
checkpoint generating module 106 may be configured to generate checkpoints or
snapshots. These checkpoints or snapshots are point-in-time representations of the state of
a computing system. These checkpoints may form points of reference for restoring a
computing system to a prior state in time. The checkpoint may include an operating
system, applications that are installed within that operating system, data files, settings and
configuration changes, media files and other data related to a physical or virtual machine
node. In some cases, the checkpoint may be a cluster-wide checkpoint that applies to
multiple different virtual machine nodes and/or shared storage resources within a virtual
machine cluster.

[0030] For example, as shown in Figure 1, virtual machine cluster 116 includes two
virtual machine (VM) nodes 113A and 113B. Although two nodes are shown in Figure 1,
it will be understood that substantially any number of VM nodes may be in a given VM
cluster. Similarly, while only one shared storage resource 117 is shown in Figure 1, it will
be understood that substantially any number of shared storage resources may be
implemented in a given VM cluster or cluster of physical machines. Each virtual machine
node may have applications installed on it, such as application 114. As shown in Figure 1,
the VM nodes may have the same application (e.g. 114) installed, and may have other
applications installed which are not shown. Indeed, each VM node may have substantially
any number of applications or services installed or running on it. Virtual machine nodes

may further have virtualization agents (or simply “agents” herein) installed on them. These

10

15

20

25

30

WO 2016/077267 PCT/US2015/059819

agents (e.g. 115) may perform multiple tasks including preparing VM nodes to generate a
cluster-wide checkpoint.

[0031] For instance, the indication generating module 105 may generate indication 112
which is sent to one or more nodes of the virtual machine cluster 116. In Figure 1, the
indication 112 is sent to VM node 113A which is the owner of the shared storage resource
117 which is shared between VM nodes 113A and 113B. The indication may indicate to
the owning VM node that an application (e.g. 114) is to be quiesced over the VM nodes of
the cluster and over the shared storage 117. The term “quiescing” as used herein refers to
settling an application, or preparing the application so that a consistent, stable checkpoint
can be created for the application. As such, quiescing may include writing data to the
shared storage, flushing data from temporary memory, completing transactions, or taking
any other steps needed to obtain a stable state for that application or set of applications.
Once an application is quiesced over the shared storage, a stable, consistent checkpoint
may be generated that applies to multiple VM nodes and potentially multiple shared
storage resources within a VM cluster.

[0032] Virtual machines are often clustered using high availability software running
inside guest operating systems. These guest operating systems may use various forms of
shared storage including shared virtual hard disks. Traditional virtual machine backups
only work with a single VM at a time and do not provide a means for backing up an entire
VM cluster in a consistent way. As such, backing up a single VM at a time does not
provide a coherent image of the entire cluster. Moreover, backing up each virtual machine
separately may result in multiple copies of the shared storage being backed up, resulting in
wasted storage resources.

[0033] The VM cluster (also referred to herein as a guest cluster) 116 may include
multiple VM nodes spread across multiple physical servers, which themselves may be part
of a host cluster. As mentioned above, a virtualization agent may be instantiated in each
VM. The virtualization agent may include integration components installed within the
virtual machine. The virtualization agent may query the clustering framework in the guest
operating system to determine the shared storage resources and the owning nodes of the
shared storage resources. Typically, in a VM cluster, a shared disk or other shared storage
resource is exclusively owned by one VM node (e.g. node 113A in Figure 1). In some
embodiments, this may be achieved by using small computer system interface (SCSI)
reservation. Only the owning node can perform I/O to the shared disk. On the event of a

failover, the ownership moves over to another VM node (as generally shown in Figure 4).

10

15

20

25

30

WO 2016/077267 PCT/US2015/059819

[0034] At the host cluster level, a snapshot operation may be initiated on a VM cluster
as a whole. At the host cluster layer, messages are sent to the virtualization agents inside
the VMs (that are members of the VM cluster) querying about shared storage information.
Each VM's virtualization agent queries the in-guest clustering framework (e.g. high
availability software) to obtain the list of shared disk resources in the cluster and the
owning nodes of each of them. This information is then sent back to the host cluster. The
communication with the virtualization agent can take place through a secure, private
guest-host communication channel (e.g. over a VM bus) or through other communication
means.

[0035] The host cluster may use the information obtained from the virtualization agents
to ensure that only the owning VM of a shared disk should take responsibility to take
snapshot of that shared virtual disk (e.g. 117). The host cluster initiates VM snapshot
operations for each VM in the guest cluster. Additionally, the host cluster provides each
VM a list of shared virtual disks it is responsible for snapshotting. At least in some
embodiments, the owning VM is also responsible to get the applications running on the
shared virtual disk to a consistent state (i.c. quiescing the applications) before performing
the snapshot of the storage. Each VM may also be responsible for taking snapshot of its
private/non-shared storage. The result is a snapshot of the entire guest/VM cluster which
includes snapshots of each VM, but there is a single instance of each shared virtual disk in
the snapshot (as generally shown in Figure 5).

[0036] Accordingly, embodiments described herein include instantiating an agent in
cach VM which provides information about shared storage resources. Furthermore,
embodiments analyze this information about shared storage resources at the host cluster
level to distribute responsibility of snapshotting the shared storage devices across different
VMs. These concepts will be explained further below with regard to methods 200 and 300
of Figures 2 and 3, respectively.

[0037] In view of the systems and architectures described above, methodologies that
may be implemented in accordance with the disclosed subject matter will be better
appreciated with reference to the flow charts of Figures 2 and 3. For purposes of simplicity
of explanation, the methodologies are shown and described as a series of blocks. However,
it should be understood and appreciated that the claimed subject matter is not limited by
the order of the blocks, as some blocks may occur in different orders and/or concurrently
with other blocks from what is depicted and described herein. Moreover, not all illustrated

blocks may be required to implement the methodologies described hereinafter.

10

15

20

25

30

WO 2016/077267 PCT/US2015/059819

[0038] Figure 2 illustrates a flowchart of a method 200 for backing up a virtual machine
cluster. The method 200 will now be described with frequent reference to the components
and data of environment 100.

[0039] Method 200 includes determining which virtual machines nodes are part of the
virtual machine cluster (210). For example, determining module 110 of computer system
101 may determine that virtual machine nodes 113A and 113B are part of VM cluster 116.
The determining module 110 may also determine which shared storage resources are part
of the virtual machine cluster (220), and which virtual machine nodes own the shared
storage resources (230). Thus, in Figure 1, the determining module may query the VM
nodes or the agents instantiated on those nodes to determine that shared storage resource
117 is part of the VM cluster 116, and further that VM node 113A is the owner of the
shared storage resource 117. As such, VM node 113A has the exclusive ability among the
VM nodes to write to the shared storage resource 117. By only allowing one VM node in a
cluster to be an owner, data consistency can be ensured among multiple different VM
nodes that are accessing the shared storage resource. In some cases, multiple VM nodes
may read data from the shared storage resource simultancously, whereas in other cases,
only one node can read or write to the shared storage resource at a time. Still further,
applications may be running on each shared storage resource, as well as running on the
resource owner node.

[0040] Method 200 further includes indicating to the one or more virtual machine nodes
that are storage device owners that at least one specified application is to be quiesced over
the nodes of the virtual machine cluster, such that a consistent, cluster-wide checkpoint
can be created (240). For example, the indication generating module 105 may generate
indication 112 and the communications module 104 may communicate the indication to
VM nodes that are storage device owners of various VM clusters. In cases where the
computer system 101 is a host machine to one or more VM nodes, the communication
may occur over a VM bus, over a simulated local network connection, or via other
communication means. If the VM nodes are being hosted on a physical computing system
that is different from computer system 101, the indication message 112 may be transmitted
via any wired or wireless communication means. The indication indicates that data is to be
quiesced for an operating system, for an application, for a service, or for some
combination thereof.

[0041] For example, if a cluster-wide checkpoint is to be created for application 114

which is running on both VM nodes 113A and 113B, the indication 112 would indicate

10

10

15

20

25

30

WO 2016/077267 PCT/US2015/059819

that the data for application 114 is to be quiesced so that a consistent, stable checkpoint
can be generated for that application. It should be noted that, in another embodiment, the
checkpoint generation module 106 may be the one to issue the indication 112 that the data
for application 114 is to be quiesced. The checkpoint generation module 106 may ask each
VM node to quiesce and generate a checkpoint. In response to this message/indication,
cach VM node quiesces the application and creates the checkpoint of the storage
(including the shared storage it owns). The resulting cluster-wide checkpoint 107 would
include a checkpoint 108 for VM node 113A and a checkpoint 109 for VM node 113B.
[0042] Once the data for the application has been quiesced, the checkpoint generating
module 106 may generate a cluster-wide checkpoint which includes a checkpoint for each
virtual machine in the virtual machine cluster (250). The cluster-wide checkpoint 107 may
thus include a single instance of each shared storage resource in the virtual machine
cluster. Accordingly, if a virtual machine cluster included multiple different shared storage
resources, the cluster-wide checkpoint would include a checkpoint for each shared storage
resource in that cluster.

[0043] For example, as illustrated in Figure 5, virtual machine cluster 501 includes two
virtual machine nodes 502 and 503 and three shared storage resources (e.g. virtual or
physical hard disks or other types of storage media) 505, 506 and 507. When the
checkpoint generating module 106 generates a cluster-wide checkpoint for VM cluster
501, the cluster-wide checkpoint 508 includes separate checkpoints for each shared
resource, including a checkpoint for resource 505, a checkpoint for resource 506, and a
checkpoint for resource 507. The VM node 502 may be the owner for one, two or all three
of the shared storage resources 505, 506 and 507. As such, VM node 502 may be
responsible for quiescing data over the shared storage resources prior to generation of the
cluster-wide checkpoint 508. A virtualization agent may be implemented on the VM nodes
to help facilitate the creation of a consistent, stable cluster-wide checkpoint.

[0044] Each VM node may have a virtualization agent 504A/504B instantiated on it
which performs various functions. For example, the virtualization agent may be
configured to determine current ownership of shared storage resources within the virtual
machine cluster. The virtualization agent 115 of Figure 1 may take steps to determine
whether the node in which it is currently instantiated is an owner and, if so, which shared
storage resources it “owns.” The virtualization agent 115 may also communicate with
other VM nodes in the cluster 116 to determine whether they are owners and which shared

storage resources they own. Alternatively, agents may be used to broadcast messages to

11

10

15

20

25

30

WO 2016/077267 PCT/US2015/059819

other VM nodes in the cluster notifying those nodes of current ownership status of each
node within the cluster. In other embodiments, a combination of push and pull techniques
may be used to determine shared storage ownership within the VM cluster.

[0045] In some embodiments, the virtualization agent 115 may communicate with a host
operating system to make various determinations including VM cluster membership and
ownership within the cluster. Such communications may be made using a secure, private
guest-host communication channel. In some cases, the host may indicate to the agent that a
checkpoint is to be created and may specify parameters or settings for that checkpoint. For
instance, the host may indicate that running processes are to be spun down immediately
and that all data is to be quiesced immediately in order to take the snapshot as soon as
possible. Alternatively, the host may indicate that running processes are to be spun down
slowly and organically as processes naturally finish, and that data is to be quiesced upon
full closure of the application and associated processes. Accordingly, an administrative or
other user may have control over how the checkpoints are generated.

[0046] In a VM cluster with multiple VM nodes and multiple shared storage resources
(e.g. Figure 5), each owning VM node may create a checkpoint for the shared storage
resources that it owns. Thus, if VM node 502 owns shared resources 505 and 506, it may
initiate checkpoints for those resources, while if VM node 503 owns shared resource 507,
it may initiate a checkpoint for that resource. The cluster-wide checkpoint 508 in that case
would include separate checkpoints for each shared resource (505, 506 and 507), where
cach shared storage resource’s checkpoint was initiated by that resource’s owner. This
may take place on active-passive clusters which allow for owning nodes to quiesce
applications on those nodes.

[0047] In order to maintain consistent state across applications and/or VM nodes, a
shared storage resource owner may implement hard disk reservations to maintain
consistent state on a shared hard disk. For example, a shared storage resource owner may
implement SCSI controller reservations to maintain consistent state on a shared SCSI disk.
If a non-owning virtual machine node that does not own a specified shared storage
resource wishes to quiesce the data for a given application, that non-owning VM node
(e.g. VM node 113B of Figure 1) may communicate with the shared storage resource’s
owner (VM node 113A) to quiesce a given application. The owning node may
communicate back to the non-owning node to indicate that the application’s data has been
quiesced upon completion. In some cases, a virtual machine node’s guest operating system

may be the entity that initiates the creation of a checkpoint for the virtual machine node. In

12

10

15

20

25

30

WO 2016/077267 PCT/US2015/059819

these cases, the guest OS can communicate with the agent on the VM node to initiate the
creation of a checkpoint.

[0048] In some cases, the virtual machine nodes may have their own private, non-shared
storage resources. In such cases, the virtual machine node having its own private, non-
shared storage resource may create a checkpoint for its private, non-shared storage. This
private checkpoint may be stored along with the other shared resource checkpoints of the
cluster-wide checkpoint 508, or may be stored separately.

[0049] The agents may further be used to analyze other virtual machine nodes in the
virtual machine cluster to determine whether the virtual machine nodes have experienced
failure. And, upon determining that a virtual machine node has failed, the agent may
initiate an analysis to determine whether the virtual machine node’s failure has affected
shared storage node ownership within the virtual machine cluster. For example, as shown
in Figure 4, virtual machine cluster 401 may include four virtual machine nodes: 402, 403,
404 and 405. Each VM node may include its own agent: 407A, 407B, 407C and 407D,
respectively. Each of the VM nodes of the cluster 401 may access a single shared storage
resource 406. If, as shown in Figure 4, VM node 402 is the owner of the shared storage
resource 406, and if the node goes down for some reason (e.g. due to hardware or software
failure), ownership may be moved to another virtual machine node within the virtual
machine cluster 401. The new owner may be any other VM node in the cluster, and may
be determined based on policy or simply based on a “next-available” approach. Upon
assuming the owner role, VM 403 is now the owner of shared storage resource 406 and is
the sole controller of data writes to that storage resource.

[0050] Turning now to Figure 3, a flowchart is illustrated of a method 300 for
determining virtual machine node ownership prior to backing up a virtual machine cluster.
The method 300 will now be described with frequent reference to the components and data
of environment 100 of Figure 1.

[0051] Method 300 includes determining that ownership has changed for at least one
shared storage resource within a virtual machine cluster (310). For instance, as mentioned
above with regard to Figure 4, ownership of a shared storage resource may change over
time. For example, a VM node that owns a particular resource may go down due to
hardware or software failure, due to routine maintenance, due to a malicious attack or for
some other reason. In some cases, however, ownership may change based on policy or
based on a manual change made by a user, and not due to any type of failure on the VM

node. For instance, an administrator or other user may wish to change ownership from VM

13

10

15

20

25

30

WO 2016/077267 PCT/US2015/059819

node 402 to VM node 403 in Figure 4. The administrator may have various reasons for
doing so. Indeed, the administrator may know that a given node is going to be brought
down for maintenance within the next twenty-four hours. As such, the administrator may
transfer the ownership to another VM node within the cluster.

[0052] In some cases, a failover policy may be in place between VM nodes in the
cluster. For example, VM cluster 401 of Figure 4 may have instituted a failover policy that
indicates that upon failure of a given node, the ownership role and perhaps application
processing for some applications may automatically fail over to a specified VM node.
Thus, in VM cluster 401, a failover policy may indicate that if VM node 402 goes down,
then the owner role is to be transferred to VM node 403. The failover policy may further
indicate that if VM node 403 goes down, then the owner role is to be transferred to VM
node 404, and so on.

[0053] Method 300 next includes identifying at least one potential new owner of the
shared storage resource (320). The identifying module 111 of computer system 101 of
Figure 1 may identify potential new owners of the shared storage resource. In the example
above where the ownership role was transferred according to failover policy, the
identifying module 111 or any of the virtualization agents installed on the VM nodes may
determine which VM nodes may be potential new owners of a given shared storage
resource. As there may be many shared storage resources within a VM cluster, there may
be many owners and many potential owners. For instance, a policy may indicate who the
subsequent owner will be if the node fails for some reason. As such, agents may
communicate with each other to maintain a current state of ownership for each storage
resource that identifies who the current owner is, and identifies potential new owners
based on policy.

[0054] Method 300 further includes determining which one or more virtual machine
nodes own the shared storage resources (330). For example, the determining module 110
may determine that VM node 113A of Figure 1 currently owns shared storage resource
117. The indication generating module 105 may then generate indication 112 which
indicates to the one or more virtual machine nodes that are owners of shared storage
resources that at least one specified application is to be quiesced over the nodes of the
virtual machine cluster, such that a consistent, cluster-wide checkpoint can be created
(340). The cluster-wide checkpoint generating module 106 may then generate the cluster-
wide virtual machine checkpoint 107 (350) which includes checkpoints for each shared

storage device in the virtual machine cluster (including checkpoints for VM node 113A

14

10

15

20

25

30

WO 2016/077267 PCT/US2015/059819

(checkpoint 108) and for VM node 113B (checkpoint 109)). The cluster-wide checkpoint
generating module 106 may, at least in some embodiments, generate the indication 112
which quiesces specified applications and creates checkpoints in a single step.

[0055] As mentioned above, a change in ownership may result in many different
scenarios including failover from a failed VM node or manual changing of ownership by
an administrator. Because the owner role ensures that only one VM node can write to a
shared storage device, if that owner role fails and does not failover, no VM nodes will be
able to write that shared storage device. As such, the ownership role transfers from node to
node as needed to ensure that each shared storage resource has an owner. The shared
storage resource owner has exclusive write access to the shared storage resource, or may
have shared write access to the shared storage resource wherein access is regulated
according to an access policy. For example, if two different VM nodes are writing to
different files on a shared data store, both nodes may have ownership and write to the
shared storage device simultancously.

[0056] In some embodiments, the shared storage resource is part of a host computing
node (such as computer system 101 of Figure 1) or may be accessed through the host
computing node. The shared storage resource may be accessed using a virtualization agent
installed on the VM node. The virtualization agents may be instantiated on each virtual
machine node, and the virtualization agent may be configured to determine shared storage
resource ownership and ensure consistency among checkpoints. Consistency may be
ensured by quiescing application data to disk prior to creating a checkpoint. VM nodes
that are owners may quiesce application data when instructed or automatically when
needed. Additionally, non-owning virtual machine nodes may determine the current owner
for a given shared storage resource and allow the current owner to quiesce application
running on the non-owning virtual machine node.

[0057] Claim support: A computer system that includes at least one processor performs
a computer-implemented method for backing up a virtual machine cluster, the method
comprising: determining which virtual machines nodes 113A are part of the virtual
machine cluster 116, determining which shared storage resources 117 are part of the
virtual machine cluster, determining which one or more virtual machine nodes own the
shared storage resources, indicating to the one or more virtual machine node owners 113A
that at least one specified application 114 is to be quiesced over the nodes of the virtual

machine cluster, such that a consistent, cluster-wide checkpoint 107 can be created, and

15

10

15

20

25

30

WO 2016/077267 PCT/US2015/059819

creating a cluster-wide checkpoint 107 which includes a checkpoint for each virtual
machine in the virtual machine cluster.

[0058] In some embodiments, the cluster-wide checkpoint includes a single instance of
cach shared storage resource in the virtual machine cluster. The virtualization agent is
instantiated on each virtual machine, and the virtualization agent determines current
ownership of shared storage resources within the virtual machine cluster. The
virtualization agent also communicates with a host operating system using a secure,
private guest-host communication channel.

[0059] A computer system is provided which includes at least one processor. The
computer system performs a computer-implemented method for determining virtual
machine node ownership prior to backing up a virtual machine cluster, the method
comprising: determining that ownership has changed for at least one shared storage
resource 406 within a virtual machine cluster 401, identifying at least one potential new
owner 403 of the shared storage resource, determining which one or more virtual machine
nodes 403 own the shared storage resources, indicating to the one or more virtual machine
node owners that at least one specified application 114 is to be quiesced over the nodes of
the virtual machine cluster 401, such that a consistent, cluster-wide checkpoint 107 can be
created and creating the cluster-wide virtual machine checkpoint 107 which includes
checkpoints for each shared storage device 406 in the virtual machine cluster.

[0060] In some embodiments, the shared storage resource owner has exclusive access to
the shared storage resource, or has shared access to the shared storage resource wherein
access is regulated according to an access policy. In some cases, the virtualization agent is
instantiated on each virtual machine, where the virtualization agent is configured to
determine shared storage resource ownership and ensure consistency among checkpoints.
A non-owning virtual machine node determines the current owner for a given shared
storage resource and allows the current owner to quiesce one or more applications running
on the non-owning virtual machine node.

[0061] A computer system is provided that includes the following: one or more
processors, a determining module 110 for determining which virtual machines nodes 113A
are part of the virtual machine cluster 116, determining which shared storage resources are
part of the virtual machine cluster, and determining which one or more virtual machine
nodes own the shared storage resources, an indicating module 105 for indicating to the one
or more virtual machine node owners that at least one specified application 114 is to be

quiesced over the nodes of the virtual machine cluster 116, such that a consistent, cluster-

16

10

15

20

25

30

WO 2016/077267 PCT/US2015/059819

wide checkpoint 107 can be created, and a cluster-wide checkpoint creating module 106
for creating the cluster-wide checkpoint 107 which includes a checkpoint for each virtual
machine in the virtual machine cluster 116.

[0062] The computer system further includes an analyzing module for analyzing one or
more virtual machine nodes in the virtual machine cluster to determine whether the virtual
machine nodes have experienced failure and, upon determining that at least one virtual
machine node has failed, initiating an analysis to determine whether the virtual machine
node’s failure has affected shared storage node ownership within the virtual machine
cluster. Upon failover due to node failure, ownership of a shared storage resource is
moved to another virtual machine node within the virtual machine cluster. The owning
virtual machine node of a shared storage resource quiesces one or more applications
running on the shared storage resource and creates a checkpoint for that shared storage
resource.

[0063] In some embodiments, the owning virtual machine node owns a plurality of
shared storage resources, and creates checkpoints for cach of the plurality of shared
storage resources that it owns. In some cases, at least one of the virtual machine nodes has
its own private, non-shared storage resource, and further, the at least one virtual machine
node has its own private, non-shared storage resource creates a checkpoint for its private,
non-shared storage. A non-owning virtual machine node that does not own a specified
shared storage resource communicates with the shared storage resource’s owner to quiesce
a given application.

[0064] Accordingly, methods, systems and computer program products are provided
which back up a virtual machine cluster. Moreover, methods, systems and computer
program products are provided which determining virtual machine node ownership prior
to backing up a virtual machine cluster.

[0065] The concepts and features described herein may be embodied in other specific
forms without departing from their spirit or descriptive characteristics. The described
embodiments are to be considered in all respects only as illustrative and not restrictive.
The scope of the disclosure is, therefore, indicated by the appended claims rather than by
the foregoing description. All changes which come within the meaning and range of

equivalency of the claims are to be embraced within their scope.

17

WO 2016/077267 PCT/US2015/059819

CLAIMS

1. A computer-implemented method for backing up a virtual machine cluster,
the computer-implemented method being performed by one or more processors executing
computer executable instructions for the computer-implemented method, and the
computer-implemented method comprising:

determining which virtual machines nodes are part of the virtual machine
cluster;

determining which shared storage resources are part of the virtual machine
cluster;

determining which one or more virtual machine nodes own the shared
storage resources;

indicating to the one or more virtual machine node owners that at least one
specified application is to be quiesced over the nodes of the virtual machine
cluster, such that a consistent, cluster-wide checkpoint can be created; and

creating a cluster-wide checkpoint which includes a checkpoint for each
virtual machine in the virtual machine cluster.

2. The computer-implemented method of claim 1, wherein the cluster-wide
checkpoint includes a single instance of each shared storage resource in the virtual
machine cluster.

3. The computer-implemented method of claim 1, wherein a virtualization
agent is instantiated on each virtual machine and wherein the virtualization agent
determines current ownership of shared storage resources within the virtual machine
cluster.

4. The computer-implemented method of claim 3, wherein the virtualization
agent communicates with a host operating system using a secure, private guest-host

communication channel.

18

WO 2016/077267 PCT/US2015/059819

5. A computer-implemented method for determining virtual machine node
ownership prior to backing up a virtual machine cluster, the computer-implemented
method being performed by one or more processors executing computer executable
instructions for the computer-implemented method, and the computer-implemented
method comprising:

determining that ownership has changed for at least one shared storage
resource within a virtual machine cluster;

identifying at least one potential new owner of the shared storage resource;

determining which one or more virtual machine nodes own the shared
storage resources;

indicating to the one or more virtual machine node owners that at least one
specified application is to be quiesced over the nodes of the virtual machine
cluster, such that a consistent, cluster-wide checkpoint can be created; and

creating the cluster-wide virtual machine checkpoint which includes
checkpoints for each shared storage device in the virtual machine cluster.

6. The computer-implemented method of claim 5, wherein the shared storage
resource owner has exclusive access to the shared storage resource, or has shared access to
the shared storage resource wherein access is regulated according to an access policy.

7. The computer-implemented method of claim 5, wherein a virtualization
agent is instantiated on each virtual machine, the virtualization agent being configured to
determine shared storage resource ownership and ensure consistency among checkpoints.

8. The computer-implemented method of claim 5, wherein a non-owning
virtual machine node determines the current owner for a given shared storage resource and
allows the current owner to quiesce one or more applications running on the non-owning

virtual machine node.

19

WO 2016/077267 PCT/US2015/059819

9. A computer system comprising:

a computer readable medium containing computer-executable instructions;

one or more processors which, when executing the computer-executable
instructions, cause the computer system to be configured with an architecture for
performing a computer-implemented method for determining virtual machine node
ownership prior to backing up a virtual machine cluster, and when configured with the
architecture, the computer system comprising:

a determining module for determining which virtual machines nodes are
part of the virtual machine cluster, determining which shared storage resources are
part of the virtual machine cluster, and determining which one or more virtual
machine nodes own the shared storage resources;

an indicating module for indicating to the one or more virtual machine node
owners that at least one specified application is to be quiesced over the nodes of
the virtual machine cluster, such that a consistent, cluster-wide checkpoint can be
created; and

a cluster-wide checkpoint creating module for creating the cluster-wide
checkpoint which includes a checkpoint for each virtual machine in the virtual
machine cluster.

10. The computer system of claim 9, wherein when configured with the
architecture, the computer system further comprises an analyzing module for analyzing
one or more virtual machine nodes in the virtual machine cluster to determine whether the
virtual machine nodes have experienced failure and, upon determining that at least one
virtual machine node has failed, initiating an analysis to determine whether the virtual
machine node’s failure has affected shared storage node ownership within the virtual

machine cluster.

20

PCT/US2015/059819

WO 2016/077267

1/5

944 J=Isno
auIyoBp|
[ENJIA

AT

80IN0SaY
abeio)g
paieys

T

T euma

P

uoneolddy

SPON
auIyoB

[ENJIA

geiLs

Jusby

LS svll

uoneolddy

(1eumQ)
SPON
auIyoB
[enIA

veLLS

[94n31

uonedIpu|

4%

anpoyy Buikypuap

mEs

ainpojy Buluiwige(

0L

ggL) SpoN
604~ 104 ulodyo8y)

V€Ll SPON
804 ~ 404 Jul0dx¥oey9

Julodo8yD SpIp J8IsN|D

00

9|NPO
Bunessuas) uiodyoeyn

901

9|NPO
Buneiauac) uoneaipuy

coL S

9INPON
SUONBOIUNLULIOD

10SS8901d

2005
T0F walsAg seindwon

WO 2016/077267 PCT/US2015/059819

2/5

£

210ﬁ

Determine Which Virtual Machines Nodes Are Part Of The Virtual Machine Cluster

220 ~ ¢

Determine Which Shared Storage Resources Are Part Of The Virtual Machine Cluster

230 —~ ¢

Determine Which Virtual Machine Nodes Own The Shared Storage Resources

240 ~ ¢

Indicate That An Application Is To Be Quiesced Over
The Nodes Of The Virtual Machine Cluster

250 ~ ¢

Create Cluster-Wide Checkpoint

Figure 2

WO 2016/077267 PCT/US2015/059819

3/5

300

A

310~

Determine That Ownership Has Changed For A Shared Storage Resource

320~ ¢

|dentify New Owner Of The Shared Storage Resource

330~ ¢

Determine Which Virtual Machine Nodes Own The Shared Storage Resources

340~ ¢

Indicate That An Application Is To Be Quiesced
Over The Nodes Of The Virtual Machine Cluster

350 —~ ¢

Create Cluster-Wide Virtual Machine Checkpoint

Figure 3

PCT/US2015/059819

WO 2016/077267

4/5

02077

p 91n31

Jueby

Gor
9pON
auIyoB
[BNIA

(umoQ
$905) 9poN)

V.07

\}
907
90IN0S0Y
abeio)g
paieys
Y
J/07 2 g0y 2
Juseby Jusby
707 (1oumQ maN)
SPON €07 opoN
auIyoep auIlyoep
[enuIA [enuIA

N/

L0F RSN
SUIYOBIN [BNYIA

(154N0)
777 P
auIyoey

[enuIA

PCT/US2015/059819

WO 2016/077267

5/5

S 91n31y

N N Y

208 905 ¢os
90IN0SaYy 90IN0SaY 90IN0SaY
abeio)g abeio)g abeioig
paleys paleys paleys
N N

70G 90IN0SaYy

0C 90In0Say

gr05 3 V705 3 G0G 82In0say
Jusby Jusby > Juiodyosy)
£og (JaumQ) momk
SPON ¢0G SpoN
auIyoB| auIyoBp
[ENUIA [enuIA
L0G J9I1sN|D

SUIYBY [ENYIA

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2015/059819

INV.
ADD.

A. CLASSIFICATION OF SUBJECT MATTER

GO6F11/14

According to International Patent Classification (IPC) or to both national classification and IPG

B. FIELDS SEARCHED

GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, WPI Data, INSPEC, COMPENDEX, IBM-TDB

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X US 8 326 803 Bl (STRINGHAM RUSSELL R [US]) 1-10
4 December 2012 (2012-12-04)
column 1, 1ine 38 - column 2, Tine 39
column 3, line 12 - column 8, Tine 20
column 9, 1ine 34 - column 10, Tine 21
column 12, Tine 19 - column 13, line 17
claims 1-4, 10-13
figures 1, 2, 4A, 6
X US 8 219 769 Bl (WILK TOMASZ F [US]) 1,5,9
10 July 2012 (2012-07-10)
A column 1, line 14 - column 2, Tine 32 2-4,6-8,
column 3, 1line 3 - column 10, Tine 34 10
column 11, Tine 11 - column 13, Tine 16
figures 1-3, 5
- / -
Further documents are listed in the continuation of Box C. See patent family annex.

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is step when the document is taken alone
cited to establish the publication date of another citation or other
special reason (as specified)

* Special categories of cited documents :

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is

"Q" document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents, such combination
means being obvious to a person skilled in the art
"P" document published prior to the international filing date but later than
the priority date claimed "&" document member of the same patent family
Date of the actual completion of the international search Date of mailing of the international search report
12 February 2016 19/02/2016
Name and mailing address of the ISA/ Authorized officer

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswik

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016 Johansson, Ulf

Form PCT/ISA/210 (second sheet) (April 2005)

page 1 of 2

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2015/059819
C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT
Category* | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X US 2010/011178 Al (FEATHERGILL DAVID ALLEN 1,5,9
[US]) 14 January 2010 (2010-01-14)
A paragraphs [0008] - [0016], [0023] - 2-4,6-8,
[0062], [0070] - [0081] 10
figures 1-3, 4A, 4B

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

page 2 of 2

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2015/059819
Patent document Publication Patent family Publication
cited in search report date member(s) date

US 8326803 Bl 04-12-2012 US 8326803 Bl 04-12-2012
us 8924358 Bl 30-12-2014
US 8219769 Bl 10-07-2012 US 8219769 Bl 10-07-2012
US 2012278287 Al 01-11-2012
US 2010011178 Al 14-01-2010 US 8166265 Bl 24-04-2012
us 8335902 Bl 18-12-2012
US 2010011178 Al 14-01-2010

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - claims
	Page 21 - claims
	Page 22 - claims
	Page 23 - drawings
	Page 24 - drawings
	Page 25 - drawings
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - wo-search-report
	Page 29 - wo-search-report
	Page 30 - wo-search-report

