

DOMANDA DI INVENZIONE NUMERO	102021000022901
Data Deposito	03/09/2021
Data Pubblicazione	03/03/2023

Classifiche IPC

Sezione	Classe	Sottoclasse	Gruppo	Sottogruppo
F	27	D	1	16

Titolo

Forno modulare per trattamenti termici di manufatti

10

15

20

25

DESCRIZIONE

Campo di applicazione

La presente invenzione si riferisce ad un forno modulare per trattamenti termici di manufatti, ad esempio di carpenteria pesante, tubazioni, serbatoi, colonne, scambiatori di calore, apparecchi a pressione, in particolare per trattamenti termici successivi alla saldatura di manufatti di grandi dimensioni destinati, ad esempio, all'uso in impianti chimici, petroliferi, di produzione di energia, nell'industria pesante, etc.

La presente invenzione si riferisce anche ad un metodo per il trattamento termico di manufatti tramite il forno modulare del tipo sopra citato.

Arte nota

Sono noti forni per trattamenti termici di manufatti di grandi dimensioni, ad esempio manufatti per il settore della carpenteria pesante, dell'energia, chimico o Oil&Gas.

Date le notevoli dimensioni, questi manufatti sono normalmente assemblati sul posto o in siti provvisori remoti, tramite montaggio di plurime componenti di dimensione inferiore, prodotte singolarmente altrove e trasportate per l'assemblaggio sul posto, dove poi il manufatto è impiegato.

L'assemblaggio comporta normalmente procedimenti di saldatura dei singoli componenti che implicano, quindi, l'esecuzione di un trattamento termico (PWHT, distensione, solubilizzazione, ecc...) per il miglioramento della microstruttura del manufatto, specialmente nelle

10

15

20

25

aree di saldatura e zone adiacenti, per la diffusione di idrogeno nelle saldature, per la riduzione dei corridoi di concentrazione degli sforzi, che sono creati durante i procedimenti di saldatura (tensioni residue). Si tratta, ad esempio, di effettuare il trattamento termico su uno scambiatore di calore a piastre fisse in acciaio al carbonio, in acciai basso legati o legati, oppure di effettuare il trattamento su recipienti in pressione, come colonne e reattori con lunghezza notevole (oltre 30 metri), per esempio in acciaio al carbonio o acciai da "creep" come il P11, P22, P91, P92, ecc....

I trattamenti termici possono essere anche finalizzati, in alcuni casi, alla solubilizzazione e stabilizzazione degli acciai austenici e duplex su componenti destinati a raffinerie, impianti chimici e petrolchimici, oppure alla solubilizzazione e distensione di componenti in lega di nickel, per la tempra (bonifica e rinvenimento) di acciai legati / basso legati (grado 11, grado 22, grado 91, grado 92), o ancora alla ricottura di acciai destinati agli impianti chimici, petrolchimici e di produzione di energia.

Il riscaldamento termico deve risultare uniforme sull'intera geometria del manufatto per garantire una reazione uniforme dei materiali assiemati alle sollecitazioni di esercizio del componente, siano esse di tipo meccanico o corrosivo. La qual cosa richiede l'impiego di forni di dimensioni considerevoli come lo sono i componenti trattati, normalmente costruiti anche questi sul posto e sviluppati tutto attorno al manufatto.

Date le dimensioni del manufatto da trattare, i forni per il

10

15

20

25

trattamento termico secondo l'arte nota non possono essere trasportati, specialmente su ruota. Di norma, il forno è pertanto improvvisato sul posto e adattato all'occorrenza. Ad esempio, il forno è costituito da piloni di altezza predeterminata, corrispondente alla massima altezza del manufatto, da traverse di lunghezza e larghezza predeterminata, corrispondente alla massima lunghezza e alla massima larghezza del manufatto, e da pareti sorrette dai piloni e distanziate dalle traverse.

Siffatti forni soffrono tuttavia di alcune importanti limitazioni.

Innanzitutto, sono adatti specificatamente per un solo manufatto e difficilmente possono essere riutilizzati. Inoltre, i forni richiedono importanti sforzi costruttivi, tanto più quanto maggiore è la dimensione del forno, dovendo quindi trasportare, e poi sollevare, posizionare e fissare tra loro piloni, traverse e pareti di svariate decine di metri. In particolare il sollevamento ed il posizionamento in verticale di un pilone o di una parete, ed il mantenimento in tale posizione per il successivo fissaggio delle parti è tutt'altro che immediato, e può comportare difetti in conseguenza a imprevedibili disallineamenti delle parti, durante il fissaggio.

In conseguenza di tali difetti ma anche di limitazioni strutturali dei componenti suddetti, le temperature che possono essere raggiunte all'interno del forno durante il trattamento termico sono limitate a 650 °C, in conseguenza alle perdite termiche che si verificano in corrispondenza alle giunzioni tra le pareti, alle perdite termiche dovute ai bassi spessori di isolamento impiegati per limitare il peso delle pareti, quindi anche alle difficoltà strutturali derivanti dalla necessità di

sostenere le pareti stesse. L'effetto delle perdite termiche non può garantire alcuna qualità del processo a causa della mancata uniformità della temperatura nel forno e le temperature di esercizio più elevate (maggiore di 635°C) determinano deformazioni strutturali delle esili strutture di sostegno.

Non per ultimo, l'impiego di materiali da costruzione moderni per la realizzazione di apparecchi a pressione e strutture sempre più performanti implica che il manufatto debba essere sottoposto anche a fasi di raffreddamento rapido che richiedono addirittura una sua estrazione immediata dal forno in temperatura. La qual cosa è tuttavia complicata sia dalle dimensioni e dal peso del manufatto trattato, sia dalle dimensioni, geometria e peso del forno impiegato, oltre che dal tempo necessario per la sua movimentazione in loco.

Il problema tecnico alla base della presente invenzione è quello di escogitare un impianto mobile modulare per trattamenti termici di manufatti di grandi dimensioni, ad esempio per il settore della carpenteria pesante, dell'energia, chimico o Oil&Gas, che sia in grado di risolvere tutti gli inconvenienti sopra citati, in particolare adatto a sviluppare e resistere ad una temperatura di esercizio fino a 1250 °C, ad accogliere il manufatto indipendentemente dalla sua dimensione e geometria, ad agevolare la sua movimentazione in relazione ad eventuali cicli di raffreddamento o riscaldamento, nonché facilmente riscaldabile, e riutilizzabile per trattamenti termici di altri manufatti.

Sommario dell'invenzione

5

10

15

20

25

L'idea alla base della presente invenzione è quella di realizzare

un impianto o forno modulare smontabile per trattamenti termici di manufatti di grandi dimensioni, ad esempio manufatti per il settore della carpenteria pesante, dell'energia, chimico o Oil&Gas, avente almeno un modulo autoportate, connesso strutturalmente ad una pluralità di altri moduli destinati a chiudersi ad anello con il modulo autoportante, e a racchiudere il manufatto, nonché un modulo destinato a rimanere sopra al manufatto, preferibilmente una pluralità di moduli prefabbricati e pre-assemblati, destinati a restare sopra al manufatto, rimovibilmente.

5

10

15

20

25

Il problema tecnico alla base della presente invenzione è risolto da un forno modulare per un trattamento termico secondo la rivendicazione 1 e da un trattamento termico secondo la rivendicazione 12.

Forme di realizzazione preferite del forno modulare e del trattamento termico secondo la presente invenzione sono date, rispettivamente, dalle rivendicazioni 2-11 e 12-14.

Ulteriori caratteristiche e vantaggi del forno modulare e del trattamento termico secondo la presente invenzione sono date nella descrizione che segue con riferimento ai disegni allegati, dati solo a scopo esemplificativo e non limitativo dell'ambito di protezione dell'invenzione.

Breve descrizione delle figure allegate

La figura 1 è una vista prospettica di un forno modulare per trattamenti termici di manufatti, secondo la presente invenzione.

La figura 2 è una vista prospettica di un modulo prefabbricato

20

25

autoportante del forno modulare per trattamenti termici di manufatti della figura 1.

La figura 3 è un'altra vista prospettica di un modulo prefabbricato autoportante del forno modulare per trattamenti termici di manufatti della figura 1.

La figura 4 è una vista prospettica di un particolare di un modulo prefabbricato del forno modulare per trattamenti termici di manufatti della figura 1.

La figura 5 è una vista prospettica di un altro particolare di un 10 modulo prefabbricato del forno modulare per trattamenti termici di manufatti della figura 1.

La figura 6 è una vista prospettica di un altro particolare di un modulo prefabbricato del forno modulare – modulo combustione -per trattamenti termici di manufatti della figura 1.

La figura 7 è una vista prospettica di una pluralità di moduli secondo la presente invenzione, disposti per il trasporto.

Descrizione dei disegni

Con riferimento alla figura 1, è rappresentato un forno modulare 100 secondo una possibile forma di realizzazione della presente invenzione, data a scopo esemplificativo. Il forno modulare 100 è destinato all'uso per trattamenti termici di manufatti di grandi dimensioni, ad esempio manufatti per il settore della carpenteria pesante, dell'energia, chimico o Oil&Gas, ed in particolare di manufatti assemblati sul posto, tramite montaggio di plurime componenti, prodotte altrove e trasportate per l'assemblaggio sul posto, dove poi il

10

15

20

25

manufatto è impiegato senza ulteriori movimentazioni, in considerazioni, appunto, alla dimensione e al peso del manufatto.

L'assemblaggio delle componenti, siano essi carpenterie, scambiatori di calore, serbatoi, reattori, apparecchi destinati al settore dell'energia, industria, industria chimica e petrolchimica, comportare procedimenti di saldatura ed il trattamento termico diventa quindi necessario per il miglioramento della microstruttura del manufatto, della metallurgia del materiale adiacente alla saldatura, diffusione dell'idrogeno nella saldatura. solo esemplificativo, il trattamento termico mediante il forno modulare 100 può essere applicato ad uno scambiatore a piastre fisse in acciaio al carbonio, e/o in acciai basso legati e/o legati, per ridurre, tra l'altro, i corridoi di concentrazione degli sforzi, ovvero le tensioni residue create in fase di saldatura, che sono deleterie specialmente per i manufatti soggetti a tenso-corrosione, vale a dire un fenomeno di degrado dovuto all'azione combinata di corrosione e applicazione di un carico costante (il cosiddetto regime di "Stress corrosion cracking").

Il trattamento termico suddetto, tuttavia, non è di per sé limitativo dell'ambito di applicazione del forno modulare, potendo quest'ultimo essere utilizzato anche per trattamento su recipienti in pressione, colonne e reattori con lunghezza anche superiore a 30 metri, in acciaio al carbonio o acciai legati, oppure per trattamenti di solubilizzazione e stabilizzazione degli acciai austenici e duplex su componenti per raffinerie, impianti chimici e petrolchimici, oppure alla solubilizzazione e distensione di componenti in lega di nickel, per la

10

15

20

25

normalizzazione di acciai basso legati (grado 11, grado 22, grado 91, grado 92), o ancora alla ricottura di acciai destinati agli impianti chimici, petrolchimici e per la produzione di energia.

Il risultato del trattamento termico sul manufatto deve essere uniforme per garantire un'uniforme resistenza e risposta dei materiali e delle saldature alle sollecitazioni di esercizio. Il forno modulare deve essere di dimensioni sufficienti ad accogliere interamente il manufatto, e pertanto è costruito sul posto e sviluppato tutto attorno al manufatto. Di fatti, anche il forno modulare non è trasportabile, specialmente su ruota, in considerazione delle sue notevoli dimensioni.

Secondo la presente invenzione, il forno modulare 100 per il trattamento termico del manufatto, in particolare per il trattamento termico successivo a saldatura del manufatto comprende

una pluralità di moduli prefabbricati 10 (ad esempio come indicato in fig. 1) destinati ad essere assemblati per realizzare il forno modulare 100 attorno o in prossimità al manufatto, evitando lo spostamento del manufatto su ruota, ciascuno della pluralità di moduli prefabbricati 10 comprendendo almeno una fiancata 10a (ad esempio come indicato in fig. 4) ed un pannello isolante 2 destinato a rimanere all'interno del forno modulare 100 (sempre come ad esempio indicato in figura 4).

Nell'esempio di figura 4 il modulo prefabbricato 10 ha una fiancata 10a che si sviluppa sostanzialmente in due direzioni X, Y, così come il pannello isolante 2, che è sovrapposto alla fiancata 10a (senza considerare lo spessore del pannello isolante 2 e della fiancata 10a che

10

15

20

25

si sviluppano nella terza direzione Z, in misura tuttavia trascurabile rispetto allo sviluppo del pannello isolante 2 e della fiancata 10a nelle altre due direzioni X, Y).

Siffatta geometria del modulo prefabbricato 10 non è tuttavia limitativa è, viceversa, sono previste moduli prefabbricati a diverse geometrie, nel seguito indicato con numero di riferimento 5, al fine principalmente di connotare la diversa geometria del modulo prefabbricato 5. In particolare almeno un modulo 5 della pluralità di moduli prefabbricati comprende almeno due fiancate 3, 4 estendentisi l'una rispetto all'altra ad una prefissata distanza angolare.

In altre parole, mentre il modulo prefabbricato 10 ha una fiancata 10a che si sviluppa sostanzialmente in due direzioni X, Y, così come il pannello isolante 2 che è ad essa sovrapposto, il modulo prefabbricato 5 ha due fiancate 3, 4 che si sviluppano ciascuna in due direzioni (ad esempio la fiancata 3 nelle direzione X, Y e la fiancata 4 in direzione Z, Y), così come i rispettivi pannelli isolanti 2 ad esse sovrapposti, ma che sono disposte una rispetto all'altra ad una prefissata distanza angolare, formando ad esempio un modulo prefabbricato 5 con sezione ad L.

Naturalmente, così come già osservato per il modulo prefabbricato 10, anche le fiancate 3, 4 (e i pannelli isolanti 2) del modulo prefabbricato 5 hanno uno spessore che si sviluppa in una terza direzione (nell'esempio sopra dato, nella direzione Z per la fiancata 3 e nella direzione X per la fiancata 4, in misura tuttavia trascurabile rispetto allo sviluppo del pannello isolante 2 e delle fiancate 3, 4 nelle

10

15

20

25

rispettive due direzioni).

Le fiancate 3, 4 del modulo prefabbricato 5 sono preferibilmente prefabbricate ed integrate, affinché il modulo prefabbricato 5 possa essere immediatamente posato in modo autoportante.

Il modulo prefabbricato 5 è quindi dotato di una base 3a, 4a di appoggiato dalla quale le fiancate 3, 4 si estendono verticalmente (ad esempio in direzione Z). La base 3a, 4a ha pertanto una superficie che consente un mantenimento autonomo del modulo prefabbricato 5 a terra. Naturalmente, se il modulo prefabbricato 5 è capovolto, la superficie precedentemente detta "di base" risulta rivolta verso l'alto è può quindi essere utilizzata per sostenere alla base altri moduli.

In particolare, il modulo prefabbricato 5 è preferibilmente dotato di una superficie alla base 3a, 4a e di una corrispondente superficie opposta alla base, ad esempio detta superficie di testa. Le superfici sono uguali. Il modulo 5 è così reversibile o ribaltabile (può essere posato indifferentemente su una o l'altra superficie).

Ciascun modulo della pluralità di moduli prefabbricati 10 comprende mezzi di accoppiamento 6 che realizzano l'accoppiamento strutturale con uno o più moduli 10 adiacenti, e la pluralità di moduli 10 sono accoppiati per formare almeno un anello chiuso 50 che inizia da una delle almeno due fiancate 3, 4, e termina nell'altra delle almeno due fiancate 3, 4.

Almeno uno dei moduli prefabbricati 60, detto anche tetto 60, è accoppiato strutturalmente sopra all'anello 50, delimitando uno

10

15

20

25

spazio di accoglimento chiuso per il manufatto. In una forma di realizzazione, il tetto è costituito da moduli prefabbricati di forma geometria o dimensioni differente dai moduli prefabbricati 10, 5 precedentemente citati. In particolare, è stato osservato che uno spessore dei moduli preposti a formare il tetto di 300 mm o inferiore è preferibile a spessori maggiori, normalmente adottati per le pareti laterali del forno (moduli prefabbricati 5 o 10). Analogamente, è stato osservato che uno sviluppo lineare dei moduli preposti a formare il tetto di 3600 mm o inferiore è preferibile a sviluppi maggiori, normalmente adottati per le pareti laterali del forno (moduli prefabbricati 5 o 10). Tali parametri sono adottati per ottimizzare il peso del tetto e l'isolamento termico del forno.

La figura 2 rappresenta schematicamente un modulo 5 della pluralità di moduli prefabbricati in una forma di realizzazione in cui il modulo 5 è esteso per un tratto inferiore rispetto al modulo 5 della figura 3. Le due fiancate 3, 4 integrate si estendono l'una rispetto all'altra ad una distanza angolare di 90°. La base 3a, 4a di ciascuna fiancata 3, 4 costituisce un appoggiato dalla quale le fiancate 3, 4 si estendono verticalmente. Il modulo ha pertanto una pianta ad L ed è autoportante in quanto non necessità di sostegni o apparecchiature (gru o puntelli) per restare eretto, diversamente da quanto succede per moduli (secondo l'arte nota) estendentisi in una sola direzione.

Una pluralità di moduli 5 prefabbricati autoportanti, ad esempio disposti come schematicamente rappresentato in figura 7, possono essere trasportati sul posto per realizzare le parti angolari

10

15

20

25

autoportanti del forno modulare 100. Tra dette parti angolari autoportanti sono poi estese pareti laterali lineari del forno modulare, o singoli piani di tali pareti che si sviluppano su più piani verticali di moduli 10, detti anche moduli 10 semplici.

I moduli 10 semplici sono ad esempio raffigurati nella figura 7. Tali moduli 10 semplici hanno la forma di un pannello sostanzialmente piano dotato di una superficie di appoggio a sviluppo sostanzialmente lineare, e sono destinati all'accoppiamento con altri moduli 10 semplici adiacenti, partendo tuttavia e terminando in un modulo 5 prefabbricato autoportante. In particolare, il modulo 5 prefabbricato autoportante può sostenere anche il modulo 10 o i moduli 10 semplici ad esso associati uno dopo l'altro.

Preferibilmente, il montaggio del forno modulare 100

-parte da un modulo 5 prefabbricato autoportante con o senza predisposizione all'alloggiamento dell'impianto di combustione, che è posato a terra sulla sua superficie di appoggio a L (o su una sezione di forma diversa del modulo 5, determinata dall'estensione in prefissata distanza angolare delle fiancate 3, 4),

prosegue con l'accoppiamento di una delle fiancate 3 ad un primo modulo 10 semplice che prolunga il forno modulare lungo la direzione della prima fiancata 3, e successivamente con

l'accoppiamento di uno dei moduli 10 semplici (con o senza predisposizione all'alloggiamento dell'impianto di combustione) ad un altro dei moduli 5 prefabbricati autoportanti che consente di sviluppare il forno modulare in una direzione parallela alla direzione della seconda

fiancata 4.

5

10

15

20

25

Ulteriori moduli 10 semplici sono poi applicati a partire dal secondo dei moduli 5 prefabbricati autoportanti, fino all'applicazione di un terzo modulo 5 prefabbricato autoportante che consente di continuare a sviluppare il forno modulare in una direzione parallela alla direzione della prima fiancata 3.

Un quarto modulo 5 prefabbricato autoportante è poi applicato per chiudere ad anello il forno modulare 10, insieme ad altri moduli 10 semplici ad esso associati, in corrispondenza al primo modulo 5 prefabbricato autoportante.

Ciascun modulo della pluralità di moduli prefabbricati 10 comprende mezzi di accoppiamento 6, preferibilmente ad innesto rapido, che realizzano l'accoppiamento strutturale con uno o più moduli 10 semplici adiacenti.

Come detto, la pluralità di moduli 10 sono accoppiati per formare almeno un anello chiuso 50 (fig. 1) che inizia da una delle almeno due fiancate 3, 4, e termina nell'altra delle almeno due fiancate 3, 4.

Il tetto 60 è ad esempio rappresentato in figura 1. Il tetto 60 può comprendere plurimi moduli prefabbricati, pre-assemblati. In altre parole, il tetto 60 può essere assemblato prima di essere montato sull'anello 50.

Lo sviluppo verticale del forno modulare 100 è su anelli 50 sovrapposti.

Nell'esempio di realizzazione di figura 1, la superficie dei

10

15

20

25

moduli 10 che formano l'anello di base, cioè quello preposto a stare in contatto con il suolo, è maggiore della superficie dei moduli 10 che formano l'anello superiore all'anello di base. Siffatto dimensionamento, agevola le operazioni di posa degli anelli superiori. Preferibilmente, la superficie dei moduli 10 semplici di un anello superiore è inferire alla superficie dei moduli 10 semplici dell'anello inferiore. Un anello superiore comprende preferibilmente moduli 5 prefabbricati autoportanti, eventualmente di dimensione inferiore ai moduli 5 prefabbricati autoportanti del piano inferiore. Tuttavia sono previste forme di realizzazione in cui un anello superiore è formato solo da moduli 10 semplici.

Una pluralità di anelli 50 chiusi sono sovrapposti l'uno all'altro. Ciascun anello chiuso 50 è strutturalmente accoppiato ad un anello chiuso 50 superiore o al tetto 60 per il tramite dei mezzi di accoppiamento strutturale 6.

I mezzi di accoppiamento strutturale 6, pertanto, sono impiegati sia per l'accoppiamento strutturale dei moduli 5, 10 di un anello, sia per l'accoppiamento strutturale tra anelli. La figura 6 e la figura 8 rappresentato i mezzi di accoppiamento 6 secondo una forma di realizzazione, ed in particolare un dado a passo rapido (fig. 8) destinato ad entrare in parte ed in modo inamovibile in una sede o boccola situata su un profilo laterale di un primo modulo 5, 6 e destinata ad entrare, dall'altra parte, in modo amovibile, in una sede o boccola situata sul profilo laterale di un secondo modulo 5, 6 destinato all'accoppiamento con il primo modulo.

10

15

20

25

In una forma di realizzazione, il pannello isolante 2 è in fibra ceramica.

Il richiedente ha escogitato una geometria particolarmente vantaggiosa per il pannello isolante. Le fiancate dei moduli 5, 10, in particolare, hanno le superfici perimetrali del pannello isolante 2 sporgenti in misura prefissata S. Ad esempio la sporgenza è tra 5 e 10 mm.

Siffatta geometria migliora l'isolamento e accoppiamento termico del forno modulare. Di fatti, grazie alla sporgenza del pannello isolante, la sovrapposizione verticale e orizzontale dei lati di due moduli 5, 10 determina un contatto diretto tra le superfici dei pannelli isolanti 2. Inoltre, il peso di un modulo 5, 10 superiore comprime il corrispondente pannello isolante 2 contro il pannello isolante di un modulo 5, 10 inferiore, evitando infiltrazione di aria, ed aumentando pertanto l'isolamento termico del forno modulare 100. Ancor più preferibilmente, la sporgenza è tra 1 e 3 mm e, in uso, il peso del modulo 5, 10 superiore comprime il corrispondente pannello isolante 2 contro il pannello isolante del modulo 5, 10 inferiore, al punto di deformare parzialmente il pannello isolante 2 e di portare in contatto la restante struttura del modulo 5, 10.

Tale struttura è metallica. Sostanzialmente, il modulo 5, 10 è dotato di un corpo di montaggio, metallico, dotato dei mezzi di accoppiamento strutturale 6, a forma di lastra, sopra il quale è montato il pannello isolante 2. Il pannello 2 riveste totalmente il corpo di montaggio metallico, e sporge di pochi millimetri da esso.

10

15

20

25

Suddetti accorgimenti sono adottati anche per i moduli del tetto. In particolare, ciascuno dei moduli del tetto comprende una piastra (funzionalmente corrispondente alla fiancata 10a del modulo 10) ed è accoppiato ad un pannello isolante 2, ad esempio in fibra ceramica. La geometria e dimensione del pannello isolante 2 è tale da sporgere in misura prefissata dalla piastra. Ad esempio la sporgenza è tra 5 e 10 mm. Siffatta geometria migliora l'isolamento e accoppiamento termico del tetto del forno modulare. La sporgenza di un primo pannello isolante 2 rispetto alla piastra consente un contatto diretto del primo pannello isolante con un secondo pannello isolante di un'altra piastra. Inoltre, la sporgenza di un pannello isolante 2 perimetrale del tetto, situato in corrispondenza alle pareti laterali del forno, rispetto alla rispettiva piastra, consente un contatto diretto del pannello isolante 2 perimetrale con un pannello isolante 2 di una fiancata 3, 4, o 10a dei moduli prefabbricati 5 o 10. Inoltre, il peso di un modulo del tetto comprime il pannello isolante 2 contro il pannello isolante di un modulo 5, 10, anche in questo caso evitando infiltrazione o perdite di aria e calore, ed aumentando pertanto l'isolamento termico del forno modulare 100. Anche in questo caso, preferibilmente, la sporgenza è tra 1 e 3 mm e, in uso, il peso del modulo del tetto comprime il corrispondente pannello isolante 2 contro il pannello isolante 2 del modulo 5, 10 inferiore, al punto di deformare parzialmente il pannello isolante 2 e di portare in contatto la restante struttura del modulo 5, 10 con la piastra del modulo del tetto, che è preferibilmente metallica. Il tetto 60 è preferibilmente dotato di una apertura ad area non definita richiudibile.

10

15

20

25

L'apertura richiudibile consente l'inserimento è l'estrazione del manufatto anche durante i cicli di trattamento del manufatto. In una forma di realizzazione, l'apertura può avere anche la stessa ampiezza dell'anello superiore del forno modulare. La rimozione del manufatto pertanto non necessita di porte laterali. La figura 9 rappresenta schematicamente un forno modulare dotato di una apertura sul tetto 60 e di una chiusura 70 dell'apertura. Il manufatto 2000 è inserito ed estratto dall'apertura sul tetto.

Un basamento (non rappresentato) può essere formato sul fondo del forno modulare 100 per il tramite di una pluralità di moduli 10 prefabbricati. Il basamento è situato sotto l'anello 50 inferiore del forno modulare 100, ed è preferibilmente rimovibile per dare accesso, per esempio, ad una vasca di raffreddamento sottostante.

Uno o più moduli prefabbricati comprendono un attacco di un mezzo di riscaldamento, preferibilmente un bruciatore, destinato ad immettere calore dall'esterno del forno modulare, ad esempio per combustione di metano o gpl o miscele di metano e idrogeno. L'attacco è preferibilmente situato su un anello inferiore, ma nulla vieta di installare unità di riscaldamento anche ad su un anello superiore, quanti ad altezze superiori.

I moduli 5, 10 sono inoltre dotati di piastre di ancoraggio, come rappresentato in figura 5. Le piastre di ancoraggio possono servire per diversi scopi, tra i quali, ad esempio, il fissaggio di accessori come passerelle di sicurezza, balconi o supporti per impianti di combustione sopraelevati oppure dispositivi di sicurezza, atti ad assicurare il modulo

10

15

20

25

al suolo e ad evitare spostamenti anche in condizione di forte vento. Sostanzialmente, le piastre sono fissate alla superficie esterna del modulo, ad esempio in corrispondenza ad un lato superiore e ad un lato inferiore del modulo, eventualmente anche in posizioni intermedie lungo la verticale tra i due lati. Le piastre possono essere dotate di plurimi fori, ad esempio quattro fori in corrispondenza agli angoli di una piastra quadrata, e ad un foro centrale, di diametro maggiore agli altri fori. Plurime piastre sono situate sul lato superiore e sul lato inferiore. Una parte di attacco dell'accessorio può trovare sede nel foro di diametro maggiore e mezzi di fissaggio dell'accessorio possono essere attestati sui fori di diametro inferiore della piastra e su rispettivi fori dell'accessorio.

Il metodo di trattamento termico di un manufatto secondo la presente invenzione, ad esempio un manufatto di carpenteria, una tubazione, uno scambiatore di calore, in particolare un trattamento termico successivo a saldatura (PWHT) di un manufatto di grandi dimensioni destinato ad esempio all'uso in un impianto chimico o petrolifero, comprendente le fasi di:

assemblare una pluralità di moduli prefabbricati 10 il loco, attorno o in prossimità al manufatto, ciascuno della pluralità dei moduli prefabbricati 10 comprendendo almeno una fiancata 10a ed un pannello isolante 2 destinato a rimanere all'interno del forno modulare 100 durante il trattamento termico,

la fase di assemblare comprendendo inizialmente la posa di almeno un modulo 5 della pluralità di moduli prefabbricati 10 comprendente almeno due fiancate 3, 4 integrate estendentisi l'una

10

15

20

rispetto all'altra ad una prefissata distanza angolare ed essendo dotato di una base 3a, 4a di appoggiato dalla quale le fiancate 3, 4 si estendono verticalmente,

sviluppare la restante parte del forno modulare a partire da almeno un modulo, mediante accoppiamento strutturale di ulteriori moduli della pluralità di moduli prefabbricati 10, laddove mezzi di accoppiamento 6 sono preposti per realizzare l'accoppiamento strutturale con uno o più moduli 10 adiacenti,

la pluralità di moduli (10) sono accoppiati per formare almeno un anello chiuso 50 che inizia da una delle almeno due fiancate 3, 4, integrate e termina nell'altra di dette almeno due fiancate 3, 4 integrate,

chiudere l'anello 50 mediante almeno uno dei moduli prefabbricati 60, detto anche tetto 60, accoppiando il tetto 50 strutturalmente sopra all'anello 50, e delimitando così uno spazio di accoglimento chiuso per il trattamento termico del manufatto.

Il manufatto può essere inserito nel forno modulare per il tramite di un'apertura richiudibile sul tetto 60 o tramite di un'apertura ottenuta tramite rimozione integrale del tetto 60 e serie di anelli 50. Preferibilmente, l'apertura richiudibile è chiusa da un coperchio integrale 60 o sottoinsiemi applicabili al manufatto stesso, e la fase di inserzione del manufatto tramite apertura sovrastante realizza anche la chiusura contemporanea del forno modulare.

Dott. Rinaldo Ferreccio Nr. Iscr. ALBO 525 BM

25

10

15

20

25

RIVENDICAZIONI

1. Forno modulare (100) per il trattamento termico di manufatti, ad esempio manufatti di carpenteria, tubazioni, scambiatori di calore, in particolare per il trattamento termico (PWHT) successivo a saldatura di manufatti di grandi dimensioni destinati ad esempio all'uso in un impianto chimico o petrolifero, di produzione energia, o per l'industria pesante comprendente

una pluralità di moduli prefabbricati (10) destinati ad essere assemblati per realizzare il forno modulare (100) attorno o in prossimità al manufatto, evitando lo spostamento del manufatto su ruota, ciascuno della pluralità di moduli prefabbricati (10) comprendendo almeno una fiancata (10a) ed un pannello isolante (2) destinato a rimanere all'interno del forno modulare (100),

almeno un modulo (5) della pluralità di moduli prefabbricati (10) comprendendo almeno due fiancate (3, 4) integrate estendentisi l'una rispetto all'altra ad una prefissata distanza angolare ed essendo dotato di una base (3a, 4a) di appoggiato dalla quale le fiancate (3, 4) si estendono verticalmente,

ciascun modulo della pluralità di moduli prefabbricati (10) comprendendo mezzi di accoppiamento (6) che realizzano l'accoppiamento strutturale con uno o più moduli (10) adiacenti, e detta pluralità di moduli (10) essendo accoppiati per formare almeno un anello chiuso (50) che inizia da una di dette almeno due fiancate (3, 4), e termina nell'altra di dette almeno due fiancate (3, 4),

almeno uno di detti moduli prefabbricati (60), detto tetto (60),

20

essendo accoppiato strutturalmente sopra all'anello (50), delimitando uno spazio di accoglimento chiuso per il manufatto.

- 2. Forno modulare secondo la rivendicazione 1, caratterizzato dal fatto di comprendere una pluralità di anelli (50), simmetrici o asimmetrici, chiusi, sovrapposti l'uno all'altro, ciascun anello chiuso (50) essendo strutturalmente accoppiato ad un anello chiuso (50) superiore o al tetto (60) per il tramite dei mezzi di accoppiamento strutturale (6).
- 3. Forno modulare secondo la rivendicazione 1, caratterizzato dal fatto che quattro moduli (5) comprendenti ciascuno due fiancate (3, 4) integrate estendentisi l'una rispetto all'altra ad una distanza angolare di 90° sono situati agli angoli dell'anello (50), detto anello avendo forma quadrangolare o rettangolare.
- 4. Forno modulare secondo la rivendicazione 1,
 15 caratterizzato dal fatto che il tetto (60) comprende plurimi moduli
 prefabbricati (10) pre-assemblati.
 - 5. Forno modulare secondo la rivendicazione 1, caratterizzato dal fatto che il pannello isolante (2) è in fibra ceramica.
 - 6. Forno modulare secondo la rivendicazione 5, caratterizzato dal fatto che la fiancata di un modulo (10) ha una superficie inferiore al pannello isolante (2), ed il pannello isolante (2) sporge in misura prefissata (S) rispetto ad almeno un lato della fiancata tra 1 e 10 mm.
- 7. Forno modulare secondo la rivendicazione 1, 25 caratterizzato dal fatto che il tetto (60) è dotato di una apertura

10

15

25

richiudibile per l'inserimento è l'estrazione del manufatto.

- 8. Forno modulare secondo la rivendicazione 2, caratterizzato dal fatto che il tetto (60) è integralmente rimovibile dall'anello chiuso (50) superiore.
- 9. Forno modulare secondo la rivendicazione 1, caratterizzato dal fatto che l'anello (50) è privo di porte di inserimento del manufatto.
- 10. Forno modulare secondo la rivendicazione 1, caratterizzato dal fatto di comprendere un basamento formato da una pluralità di moduli prefabbricati, situato sotto l'anello (50), detto basamento essendo rimovibile per dare accesso ad una vasca di raffreddamento o camera vuota, sottostante.
- 11. Forno modulare secondo la rivendicazione 1, caratterizzato dal fatto che almeno uno dei moduli prefabbricati comprende un attacco di un mezzo di riscaldamento, preferibilmente un bruciatore, destinato ad immettere calore dall'esterno del forno modulare, ad esempio per combustione di metano o gpl o miscele di metano e idrogeno, detto attacco essendo situato su un anello.
- 12. Metodo di trattamento termico di un manufatto, ad esempio manufatti di carpenteria, tubazioni, scambiatori di calore, in particolare un trattamento termico (PWHT) successivo a saldatura di manufatti di grandi dimensioni destinati ad esempio all'uso in un impianto chimico o petrolifero, comprendente le fasi di:

assemblare una pluralità di moduli prefabbricati (10) in loco, attorno o in prossimità al manufatto, ciascuno della pluralità dei moduli

10

15

20

25

prefabbricati (10) comprendendo almeno una fiancata (10a) ed un pannello isolante (2) destinato a rimanere all'interno del forno modulare (100) durante il trattamento termico,

detta fase di assemblare comprendendo inizialmente la posa di almeno un modulo (5) della pluralità di moduli prefabbricati (10) comprendente almeno due fiancate (3, 4) integrate estendentisi l'una rispetto all'altra ad una prefissata distanza angolare ed essendo dotato di una base (3a, 4a) di appoggiato dalla quale le fiancate (3, 4) si estendono verticalmente,

sviluppare la restante parte del forno modulare a partire da detto almeno un modulo, mediante accoppiamento strutturale di ulteriori moduli della pluralità di moduli prefabbricati (10), mezzi di accoppiamento (6) essendo preposti per realizzare l'accoppiamento strutturale con uno o più moduli (10) adiacenti,

detta pluralità di moduli (10) essendo accoppiati per formare almeno un anello chiuso (50) che inizia da una di dette almeno due fiancate (3, 4), integrate e termina nell'altra di dette almeno due fiancate (3, 4) integrate,

chiudere l'anello (50) mediante almeno uno di detti moduli prefabbricati (60), detto tetto (60), accoppiando il tetto (50) strutturalmente sopra all'anello (50), e delimitando così uno spazio di accoglimento chiuso per il trattamento termico del manufatto.

13. Metodo di trattamento termico secondo la rivendicazione 12 caratterizzato dal fatto di inserire il manufatto nel forno modulare per il tramite di un'apertura richiudibile sul tetto (60) o tramite

un'apertura ottenuta tramite rimozione integrale del tetto (60) dell'anello (50).

14. Metodo di trattamento termico secondo la rivendicazione 12 caratterizzato dal fatto che detta apertura richiudibile è chiusa da un coperchio applicabile al manufatto, e dal fatto che la fase di inserire il manufatto tramite l'apertura realizza anche la chiusura del forno modulare.

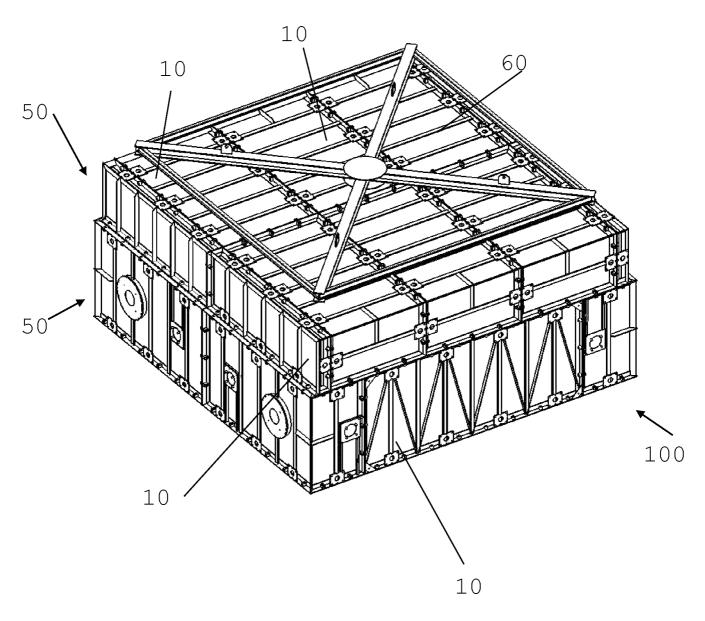
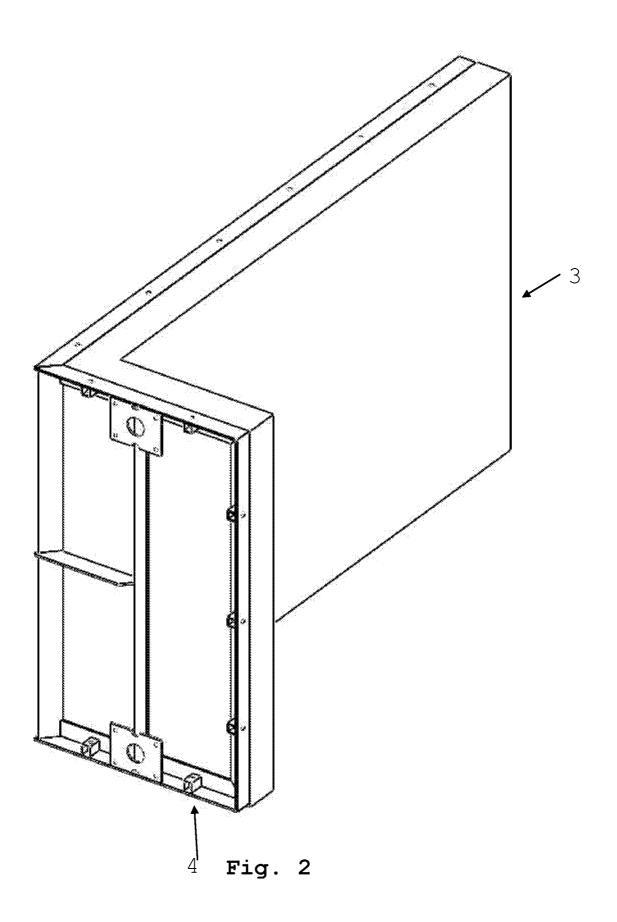
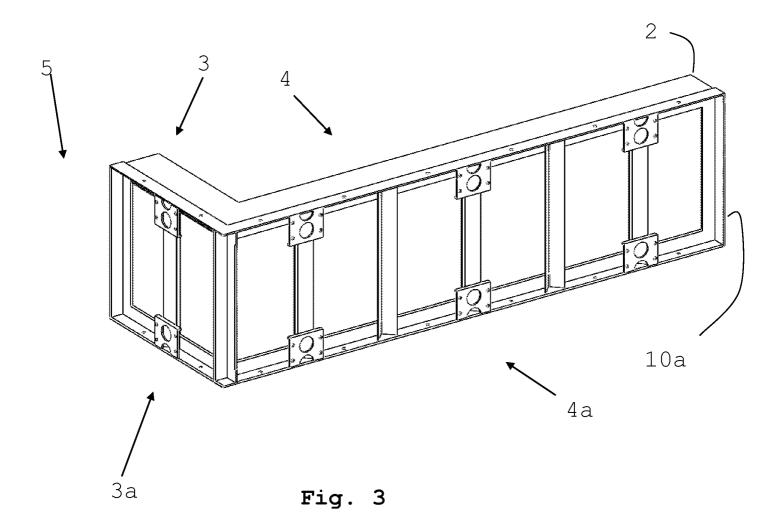
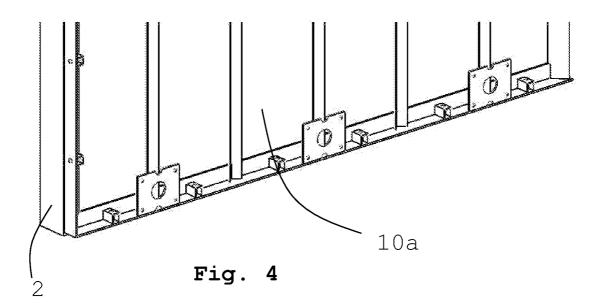





Fig. 1

Dott. Rinaldo Ferreccio Nr., Iscr. ALBO 525 BM

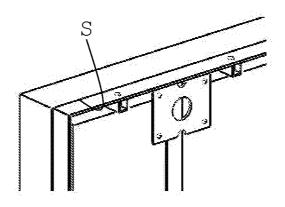


Fig. 5

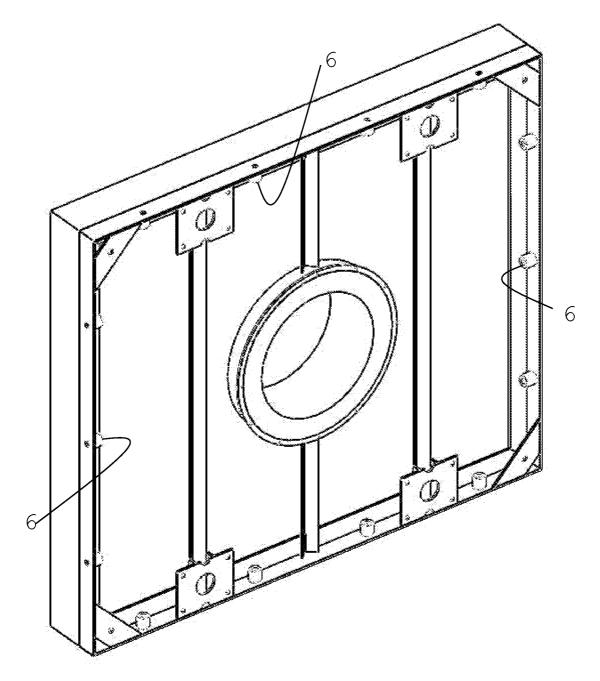
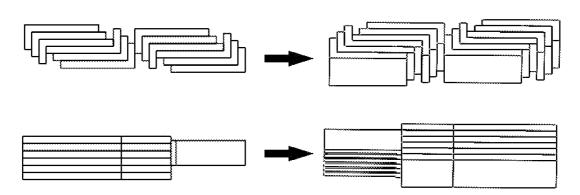



Fig. 6

Fig. 7

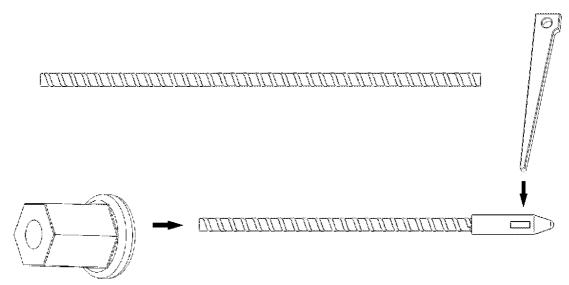


Fig. 8

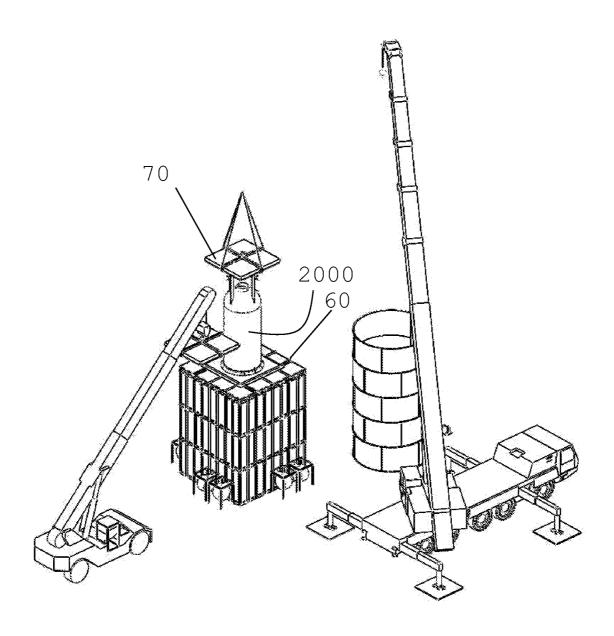


Fig. 9