The third antibody in the composition binds HER2 such that it blocks heterodimerization between HER2 and HER3.
before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments (Rule 48.2(h))
ANTI-HER2 ANTIBODIES AND COMPOSITIONS

Field of the Invention
The present invention relates to novel recombinant antibodies targeting the HER2 receptor and compositions comprising two or more of these antibodies for use in human cancer therapy.

Background of the Invention
The epidermal growth factor receptor (EGFR) family (also known as the ErbB family) is a subgroup of the receptor tyrosine kinases (RTKs) and consists of four members: EGFR/ErbB, HER2/ErbB2, HER3/ErbB3 and HER4/ErbB4. The members of the EGFR family are closely related single-chain modular glycoproteins with an extracellular ligand binding region, a single transmembrane domain and an intracellular tyrosine kinase (reviewed in Ferguson (2008) Annu Rev Biophys. 37: 353-373). In normal physiological settings the ErbB family regulates key events in coordination of cell growth, differentiation and migration (Citri et al. (2006) Nat Rev Mol Cell Biol. 7: 505-516). EGFR, HER2 and HER3 are believed to play crucial roles in the malignant transformation of normal cells and in the continued growth of cancer cells. EGFR and HER2 have been found to be overexpressed by many epithelial cancers (Slamon et al. (1987) Science, 235: 177-182; Arteaga (2002) Oncologist 7 Suppl 4: 31-39; Bodey et al. (1997) Anticancer Res. 17: 1319-1330; Rajkumar et al. (1996) J Pathol. 179: 381-385). Overexpression of EGFR and HER2 has furthermore been linked to disease progression, reduced survival, poor response and chemotherapy resistance in several human epithelial cancers (Slamon et al. (1987) supra; Baselga et al. (2002) Oncologist 7 Suppl 4: 2-8).

Human epidermal growth factor receptor 2 (HER2, also known as ErbB2 or Neu; UniProtKB/Swiss-Prot No. P04626) consists of 1233 amino acids and is structurally similar to EGFR with an extracellular domain consisting of four subdomains I-IV, a transmembrane domain, a juxtamembrane domain, an intracellular cytoplasmic tyrosine kinase and a regulatory C-terminal domain (Yamamoto et al. (1986) Nature 319: 230-234).

HER2 is the only member of the ErbB family that does not bind known ligands (Klapper et al. (1999) Proc Natl Acad Sci USA 96: 4995-5000). HER2 is instead activated via formation of heteromeric complexes with other ErbB family members and thereby indirectly regulated by EGFR and HER3 ligands (reviewed in Yarden et al. (2001) Nat Rev Mol Cell Biol. 2: 127-137). HER2 is the preferred heterodimerization partner of the three other ErbB receptors (Graus-Porta et al. (1997) EMBO J 16: 1647-1655; Tzahar et al. (1996) Mol Cell Biol. 16: 5276-5287), enhancing the affinity of the other ErbB receptors for their ligands by slowing down the rate of ligand-receptor complex dissociation, whereby HER2 enhances and prolongs signaling.

The primary role of HER2 in normal tissues appears to be modulation of signaling initiated through a ligand-bound ErbB receptor. Like EGFR, HER2 is primarily expressed by epithelial cells (reviewed in Freudenberg et al. (2009) Exp Mol Pathol. 87: 1-11) and has been found to have a non-oncogenic role in regulating growth, differentiation, apoptosis and remodeling in normal mammary gland development (Troyer et al. (2001) J Mammary Gland Biol Neoplasia 6: 7-21). As it is the case for EGFR, an excess of HER2 on the cell surface causes transformation of epithelial cells from multiple tissues (Freudenberg et al. (2009) supra). HER2 amplification and overexpression have been reported in a range of human tumors, including 20-30% of invasive ductal carcinomas, and is a well recognized predictor of poor clinical outcome with reduced overall survival rates (Slamon et al. (1987) supra; Ravdin et al. (1995) Gene 159: 19-27). High levels of HER2 can be readily detected in human breast tissues that show early signs of transformation but have not yet fully transformed, indicating the important role of HER2 in the early malignant transformation (Freudenberg et al. (2009) supra). High levels of HER2 have also been implicated in other epithelial cancers such as colorectal, ovarian, pancreatic, lung, and urothelial cancers (Freudenberg et al. (2009) supra). HER2 activation induces uncontrolled proliferation, protects against apoptosis, and disrupts normal epithelial organization (Muthuswamy et al. (2001) Nat Cell Biol. 3: 785-792). Furthermore, HER2 is expressed by metastatic cells and may play a role in cancer cell motility (De Potter (1994) Hum Pathol. 25: 1264-1268).

EGFR and HER2 are validated cancer targets and both monoclonal antibodies and small molecule inhibitors targeting these receptors have been approved for the treatment of various cancers. However, patients who initially respond to these therapies often relapse due to evolvement of acquired resistance (Pao et al. (2005) PLoS Med 2: e73). The monoclonal antibody trastuzumab (marketed as Herceptin®) targets HER2 and is used for treatment of breast cancer in which the HER2 receptor is overexpressed. In January 2010 Herceptin was approved in the European Union in combination with chemotherapy for use in patients with HER2-positive metastatic stomach (gastric) cancer. Another monoclonal antibody directed in part against the HER2 receptor, pertuzumab, is currently in various clinical trials. In contrast
to trastuzumab, which acts by binding to HER2 and thereby blocking its function, pertuzumab is a HER dimerization inhibitor which inhibits dimerization of HER2 to HER3 and the other EGFR receptors.

Since pertuzumab is still in clinical trials, the extent to which it may ultimately prove to be clinically beneficial is still unknown. For trastuzumab, while it has shown clinical benefits in terms of e.g. prolonged survival in connection with chemotherapy compared to chemotherapy alone, a majority of HER2 positive breast cancer patients were nevertheless found to be non-responders (45% overall response rate for Herceptin + chemotherapy vs. 29% for chemotherapy alone; Prescribing Information for Herceptin, Genentech, March 2009). Similar results are described by Slamon et al. in N Engl J Med (2001), 344(11):783-92, who also describe that the combination of Herceptin and chemotherapy resulted in a lower rate of death at 1 year compared to chemotherapy alone (22% vs. 33%, P=0.008) and a longer median survival (25.1 vs. 20.3 months, P=0.046). Thus, while monoclonal antibody therapy directed against HER2 has been shown to provide improved treatment in e.g. metastatic breast cancers that overexpress HER2, there is still considerable room for improvement.

Summary of the invention

The present invention is directed to novel recombinant antibodies targeting the HER2 receptor as well as compositions comprising two or more of these antibodies and use of the antibodies and compositions for human cancer therapy, e.g. for the treatment of breast cancer, ovarian cancer, gastric cancer and other cancers that overexpress HER2. Compared to the currently available treatments for such cancers, including available monoclonal antibodies directed against HER2 or other receptors of the EGFR family, it is contemplated that the antibodies of the invention may provide a superior clinical response either alone or, preferably, in a composition comprising two or more such antibodies, and optionally in combination with other treatments such as chemotherapy.

In one aspect, the invention relates to novel recombinant anti-HER2 antibodies based on the antibodies referred to herein as antibodies 4380/4381, 4382, 4383, 4384, 4385, 4386, 4387, 4517, 4518 and 4519, as well as humanized variants thereof. In one embodiment, this aspect of the invention relates to a recombinant anti-H ER2 antibody molecule comprising the heavy chain CDR3 sequence of any one of the antibodies referred to herein as antibodies 4380/4381, 4382, 4383, 4384, 4385, 4386, 4387, 4517, 4518 and 4519.

Further embodiments of this aspect of the invention include: a recombinant anti-HER2 antibody molecule comprising the heavy chain CDR3 sequence and the light chain CDR3 sequence of any one of antibodies 4380/4381, 4382, 4383, 4384, 4385, 4386, 4387, 4517, 4518 and 4519; a recombinant anti-HER2 antibody molecule comprising the heavy chain...
CDR1, CDR2 and CDR3 sequences and light chain CDR1, CDR2 and CDR3 sequences of any one of these antibodies; and a recombinant anti-HER2 antibody comprising the heavy chain variable region sequence and the light chain variable region sequence of any one of these antibodies, or comprising a heavy chain variable region sequence and a light chain variable region sequence each having at least 80%, 85%, 90% or 95% sequence identity, such as at least 96%, 97%, 98% or 99% sequence identity, with the heavy chain and light chain variable region sequences, respectively, of any one of these antibodies.

Another aspect of the invention relates to a recombinant antibody composition, comprising at least first and second recombinant anti-HER2 antibodies, wherein the first and second antibodies bind distinct epitopes of HER2, and wherein one or both of the first and second antibodies are selected from the group of antibodies outlined above.

A further aspect of the invention relates to a recombinant polyclonal anti-HER2 antibody composition comprising at least first, second and third recombinant anti-HER2 antibodies that bind distinct epitopes of HER2, wherein binding of the first and second antibodies to HER2 results in HER2 receptor internalization, and wherein binding of the third antibody to HER2 results in inhibition of ligand-induced phosphorylation of HER3.

A further aspect of the invention relates to an immunoconjugate comprising a recombinant anti-HER2 antibody of the invention conjugated to an anti-cancer agent. A related aspect relates to compositions comprising at least first and second recombinant anti-HER2 antibodies of the invention, wherein at least one anti-HER2 antibody in said composition is an immunoconjugate.

A further aspect of the invention relates to a nucleic acid molecule having a nucleotide sequence that encodes an anti-HER2 antibody of the invention, as well as expression vectors comprising such a polynucleotide and host cells that have been transfected with such an expression vector.

A still further aspect of the invention relates to methods for producing antibodies and polyclonal antibody compositions of the invention.

A still further aspect of the invention relates to methods for treating a disease in a human or animal subject, in particular treatment of cancer in humans, by administering an anti-HER2 antibody or composition of the invention to said subject. A related aspect is the use of one or more anti-HER2 antibodies of the invention for preparation of a medicament for use in treating a disease in a human or animal, in particular for the treatment of cancer in humans.
A still further aspect of the invention relates to a method for inducing internalization of HER2 on the surface of cells that overexpress HER2, the method comprising contacting the cells with a recombinant anti-HER2 antibody or immunoconjugate or a recombinant anti-HER2 antibody composition of the invention.

Additional aspects of the invention and particular embodiments will be apparent from the description and examples below.

Drawing description

Figure 1 illustrates the results from a representative epitope binning of anti-HER2 antibodies of the invention.

Figures 2A, 2B, 2C and 2D show the percent relative ADCC at two different antibody concentrations in N87 and SKBR3 cancer cell lines induced by antibody mixtures containing two, three or four anti-HER2 antibodies of the invention.

Figures 3A, 3B, 3C and 3D show measurements of ADCC in N87 and SKBR3 cells using mixtures of two or three anti-HER2 antibodies of the invention.

Figure 4 shows measurements of CDC in N87 cells induced by antibody mixtures containing two, three or four anti-HER2 antibodies of the invention.

Figure 5 shows measurements of CDC in N87 cells using mixtures of two or three anti-HER2 antibodies of the invention.

Figure 6 shows the results of titrations of four different antibody mixtures of the invention on inhibition of metabolic activity of the N87 gastric cancer cell line.

Figure 7 shows the results of titrations of four different antibody mixtures of the invention on inhibition of metabolic activity of the HCC202 breast cancer cell line.

Figure 8 shows the results of titrations of four different antibody mixtures of the invention on inhibition of metabolic activity of the BT474 breast cancer cell line.

Figure 9 shows the results of titrations of four different antibody mixtures of the invention on inhibition of metabolic activity of the ZR-75-30 breast cancer cell line.

Figure 10 shows the *in vivo* efficacy of anti-HER2 antibody mixtures of the invention in the nude mouse NCI-N87 gastric cancer xenograft model.
Figure 11 shows the in vivo efficacy of anti-HER2 antibody mixtures of the invention in the nude mouse OE19 gastric cancer xenograft model.

Figure 12 shows western blot analyses of EGFR, pEGFR, HER2, pHER2, HER3 and pHER3 levels in the cell line NCI-N87 after overnight treatment with the indicated antibodies or antibody mixtures followed by stimulation with Heregulin beta for 15 minutes.

Figure 13A shows the distinct but interrelated roles of HER2 homodimers and HER2/HER3 heterodimers in oncogenic signaling in human cancers. Figure 13B illustrates a proposed mechanism for shutdown of both pathways by mixtures of three anti-HER2 antibodies of the invention, where two of the antibodies induce HER2 internalization and degradation, while the third antibody blocks compensatory signaling via HER2/HER3 heterodimers.

Figure 14 shows western blot analyses of HER2 levels in the cancer cell lines ZR-75-30, NCI-N87, BT474 and HCC202 after overnight treatment with the indicated antibodies and antibody mixtures.

Figure 15 shows western blot analyses of HER2 and HER3 levels in the cancer cell lines HCC202 and NCI-N87 after overnight treatment with the indicated antibodies and antibody mixtures.

Figure 16 shows a western blot analysis of HER2 levels in the cell lines OE19, N87, ZR-75-30, BT474 and HCC202 after incubation for 48 hours with 10 µg/ml of the indicated monoclonal antibodies or antibody mixtures.

Figures 17-19 show the result of titrations of different antibody mixtures on inhibition of metabolic activity of the NCI-N87 gastric cancer cell line (Figure 17), the BT474 breast cancer cell line (Figure 18) and the HCC202 breast cancer cell line (Figure 19).

Detailed description of the invention

Definitions

The term "antibody" or "antibody molecule" describes a functional component of serum and is often referred to either as a collection of molecules (antibodies or immunoglobulin) or as one molecule (the antibody molecule or immunoglobulin molecule). An antibody is capable of binding to or reacting with a specific antigenic determinant (the antigen or the antigenic epitope), which in turn may lead to induction of immunological effector mechanisms. An individual antibody is usually regarded as monospecific, and a composition of antibodies may
be monoclonal (i.e., consisting of identical antibody molecules) or polyclonal (i.e., consisting of two or more different antibodies reacting with the same or different epitopes on the same antigen or even on distinct, different antigens). Each antibody has a unique structure that enables it to bind specifically to its corresponding antigen, and all natural antibodies have the same overall basic structure of two identical light chains and two identical heavy chains. Antibodies are also known collectively as immunoglobulins.

The terms "antibody" or "antibodies" as used herein are also intended to include chimeric and single chain antibodies, as well as binding fragments of antibodies, such as Fab, Fv fragments or single chain Fv (scFv) fragments, as well as multimeric forms such as dimeric IgA molecules or pentavalent IgM. An antibody may be of human or non-human origin, for example a murine or other rodent-derived antibody, or a chimeric, humanized or reshaped antibody based e.g. on a murine antibody.

Each heavy chain of an antibody typically includes a heavy chain variable region (VH) and a heavy chain constant region. The heavy chain constant region typically includes three domains, referred to as CH1, CH2 and CH3. Each antibody light chain typically includes a light chain variable region (VL) and a light chain constant region. The light chain constant region typically includes a single domain, referred to as CL. The VH and VL regions may be further subdivided into regions of hypervariability ("hypervariable regions", which may be hypervariable in sequence and/or in structurally defined loops). These are also referred to as complementarity determining regions (CDRs), which are interspersed with regions that are more conserved, termed framework regions (FRs). Each VH and VL typically includes three CDRs and four FRs, arranged from the amino terminus to the carboxy terminus in the following order: FR1, CDR1, FR2, CDR2, FR3, CDR3, FR4. The amino acid residues in the variable regions are often numbered using a standardized numbering method known as the Kabat numbering scheme (Kabat et al. (1991) Sequences of Proteins of Immunological Interest, 5th Ed. Public Health Service, National Institutes of Health, Bethesda, MD, USA).

In the appended sequence listing, the light chain (LC) DNA and amino acid sequences include both the light chain variable region (VL) sequence and the human kappa constant region sequence. As mentioned below in Example 1, the human kappa constant region starts with the amino acids -TVAAP- (Thr Val Ala Ala Pro) and ends at the C-terminal with the amino acids -NRGEC (Asn Arg Gly Glu Cys). Therefore, as used herein, the terms "light chain variable region sequence" or "VL" are understood to refer to the N-terminal part of a light chain sequence in the sequence listing before the start of the human kappa constant region (i.e. before the amino acids TVAAP).
The antibody numbers used herein in the context of whole antibodies, e.g. "antibody 4517", refer to the specific antibodies described in the examples and defined in the appended sequence listing. For example, antibody 4517 is an antibody with a heavy chain comprising the heavy chain variable region set forth in SEQ ID NO:2 and the IGHG1 heavy chain constant region set forth in SEQ ID NO:44, and a light chain with the sequence set forth in SEQ ID NO:4, where the light chain sequence as explained above includes both the light chain variable region sequence (residues 1-110 in SEQ ID NO:4) and the human kappa constant region sequence (residues 111-216 in SEQ ID NO:4).

When an antibody is said to be "derived from" or "based on" a specified antibody described herein, this means that the "derived" antibody comprises, depending on the particular context, one of the following: the heavy chain CDR3 sequence of said specified antibody; the heavy chain CDR3 sequence and the light chain CDR3 sequence of said specified antibody; the heavy chain CDR1, CDR2 and CDR3 sequences and light chain CDR1, CDR2 and CDR3 sequences of said specified antibody; or the heavy chain variable region sequence and the light chain variable region sequence of said specified antibody, or a humanized variant of said heavy chain variable region sequence and/or light chain variable region sequence, or a heavy chain and/or light chain variable region sequence having at least 80%, 85%, 90% or 95% sequence identity, such as at least 96%, 97%, 98% or 99% sequence identity, with the respective heavy chain and light chain variable region sequences. An antibody that is derived from or based on a specified antibody described herein will generally bind the same HER2 epitope as said specified antibody and will preferably exhibit substantially the same activity as said specified antibody.

The specificity of an antibody's interaction with a target antigen resides primarily in the amino acid residues located in the six CDRs of the heavy and light chain. The amino acid sequences within CDRs are therefore much more variable between individual antibodies than sequences outside of CDRs. Because CDR sequences are responsible for most antibody-antigen interactions, it is possible to express recombinant antibodies that mimic the properties of a specific naturally occurring antibody, or more generally any specific antibody with a given amino acid sequence, by constructing expression vectors that express CDR sequences from the specific antibody grafted into framework sequences from a different antibody. As a result, it is possible to "humanize" a non-human antibody and still substantially maintain the binding specificity and affinity of the original antibody. A more detailed discussion of humanization is provided below.

A "chimeric antibody" refers in its broadest sense to an antibody that contains one or more regions from one antibody and one or more regions from one or more other antibodies. As used herein, a "chimeric antibody" is generally an antibody that is partially of human origin.
and partially of non-human origin, i.e. derived in part from a non-human animal, for example a mouse or other rodent, or an avian such as a chicken. Chimeric antibodies are preferred over non-human antibodies in order to reduce the risk of a human anti-antibody response, e.g. a human anti-mouse antibody response in the case of a murine antibody. An example of a typical chimeric antibody is one in which the variable region sequences are murine sequences derived from immunization of a mouse, while the constant region sequences are human. In the case of a chimeric antibody, the non-human parts, i.e. typically the framework regions of the variable region sequences, may be subjected to further alteration in order to humanize the antibody.

The term "humanize" refers to the fact that where an antibody is wholly or partially of non-human origin, for example a murine antibody obtained from immunization of mice with an antigen of interest or a chimeric antibody based on such a murine antibody, it is possible to replace certain amino acids, in particular in the framework regions and constant domains of the heavy and light chains, in order to avoid or minimize an immune response in humans. It is known that all antibodies have the potential for eliciting a human anti-antibody response, which correlates to some extent with the degree of "humanness" of the antibody in question. Although it is not possible to precisely predict the immunogenicity and thereby the human anti-antibody response of a particular antibody, non-human antibodies tend to be more immunogenic than human antibodies. Chimeric antibodies, where the foreign (usually rodent) constant regions have been replaced with sequences of human origin, have been shown to be generally less immunogenic than antibodies of fully foreign origin, and the trend in therapeutic antibodies is towards humanized or fully human antibodies. For chimeric antibodies or other antibodies of non-human origin, it is therefore preferred that they be humanized to reduce the risk of a human anti-antibody response. For chimeric antibodies, humanization typically involves modification of the framework regions of the variable region sequences. Amino acid residues that are part of a complementarity determining region (CDR) will typically not be altered in connection with humanization, although in certain cases it may be desirable to alter individual CDR amino acid residues, for example to remove a glycosylation site, a deamidation site or an undesired cysteine residue.

Numerous methods for humanization of an antibody sequence are known in the art; see e.g. the review by Almagro & Fransson (2008) Front Biosci. 13: 1619-1633. One commonly used method is CDR grafting, which for e.g. a murine-derived chimeric antibody involves identification of human germline gene counterparts to the murine variable region genes and grafting of the murine CDR sequences into this framework. CDR grafting may be based on the Kabat CDR definitions, although a recent publication (Magdelaine-Beuzelin et al. (2007) Crit Rev. Oncol. Hematol. 64: 210-225) has suggested that the IMGT definition (www.imgt.org) may improve the result of the humanization. Since CDR grafting may reduce the binding specificity
and affinity, and thus the biological activity, of a CDR grafted non-human antibody, back mutations may be introduced at selected positions of the CDR grafted antibody in order to retain the binding specificity and affinity of the parent antibody. Identification of positions for possible back mutations can be performed using information available in the literature and in antibody databases. Amino acid residues that are candidates for back mutations are typically those that are located at the surface of an antibody molecule, while residues that are buried or that have a low degree of surface exposure will not normally be altered. An alternative humanization technique to CDR grafting and back mutation is resurfacing, in which non-surface exposed residues of non-human origin are retained, while surface residues are altered to human residues.

As noted above, the present invention encompasses humanized antibodies, i.e. antibodies as otherwise described that have been subjected to humanization. These may also be referred to as “humanized variants” of an antibody of the invention. In particular, the terms “heavy chain variable region sequence” and “light chain variable region sequence” as used herein with reference to any specific amino acid sequence are intended to encompass not only that specific sequence but also any humanized variant thereof.

As used herein, a reference to a heavy chain variable region sequence or a light chain variable region sequence with a particular minimum level of sequence identity compared to a specified heavy chain or light chain variable region sequence, e.g. having at least 80%, 85%, 90% or 95% sequence identity with the reference sequence, such as at least 96%, 97%, 98% or 99% sequence identity, is intended to include, but not to be limited to, humanized variants of such reference sequence.

The term “recombinant antibody” refers to an antibody that is expressed from a cell or cell line transfected with an expression vector (or possibly more than one expression vector, typically two expression vectors) comprising the coding sequence of the antibody, where said coding sequence is not naturally associated with the cell.

The term “vector” refers to a nucleic acid molecule into which a nucleic acid sequence can be inserted for transport between different genetic environments and/or for expression in a host cell. A vector that carries regulatory elements for transcription of the nucleic acid sequence (at least a suitable promoter) is referred to as an “an expression vector”. The terms “plasmid” and “vector” may be used interchangeably. Expression vectors used in the context of the present invention may be of any suitable type known in the art, e.g. a plasmid or a viral vector.

The term “polyclonal antibody” refers to a composition of two or more different antibody molecules which are capable of binding to or reacting with different specific antigenic
determinants on the same or on different antigens. In the context of the present invention, the individual antibodies of a polyclonal antibody bind to different antigenic determinants of HER2. Preferably the individual antibodies of a polyclonal antibody of the invention bind to different epitopes of HER2, more preferably distinct and substantially non-overlapping epitopes. The variability of a polyclonal antibody is generally thought to be located in the variable regions of the antibody molecules. A "recombinant polyclonal anti-HER2 antibody composition" is a composition comprising a mixture of two or more monoclonal antibodies that bind HER2.

It is well-known in the art that antibodies exist as different isotypes, such as the human isotypes IgGl, IgG2, IgG3, IgG4, IgAl and IgA2, or the murine isotypes IgGl, IgG2a, IgG2b, IgG3 and IgA. An antibody of the invention may be of any isotype. Although it is possible for the individual antibodies of a polyclonal antibody composition of the invention to include antibodies of more than one isotype, they are preferably all of the same isotype.

A recombinant antibody composition comprising "at least first and second recombinant anti-HER2 antibodies" will comprise at least two of the specified antibodies, but may include more than two of the anti-HER2 antibodies described herein. In certain cases such a recombinant antibody composition may include a relatively large number of individual anti-HER2 antibodies, e.g. up to 10 or more, such as up to 15 or 20, but will normally include less than 10 different anti-HER2 antibodies, i.e. 2, 3, 4, 5, 6, 7, 8 or 9 antibodies. Recombinant antibody compositions of the invention will more typically include not more than about 6 different anti-HER2 antibodies, and in many cases they will include not more than 4 different anti-HER2 antibodies. In preferred embodiments, a recombinant antibody composition of the invention will therefore include 2, 3 or 4 different anti-HER2 antibodies, typically 2 or 3 different anti-HER2 antibodies.

The term "CDR" or "complementarity determining region" refers to the "hypervariable" regions found in the variable domains of an antibody that are primarily responsible for determining the antibody's binding specificity. See the definition in Lefranc et al (2003), IMGT unique numbering for immunoglobulin and T cell receptor variable domains and Ig superfamily V-like domains, Dev. Comp Immunol. 27, 55-77. Each of the heavy and light chains of an antibody contain three CDR regions, referred to as CDR1, CDR2 and CDR3, of which CDR3 shows the greatest variability.

The term "epitope" is used to describe a part of a larger molecule (e.g. antigen or antigenic site) having antigenic or immunogenic activity in an animal. An epitope having immunogenic activity is a portion of a larger molecule that elicits an antibody response in an animal. An epitope having antigenic activity is a portion of a larger molecule to which an antibody
immunospecifically binds as determined by any method known in the art. Antigenic epitopes are not necessarily immunogenic. An antigen is a substance to which an antibody or antibody fragment immunospecifically binds, e.g. a toxin, virus, bacteria, protein or DNA. An antigen or antigenic site often has more than one epitope, unless it is very small, and is often capable of stimulating an immune response. Epitopes may be linear or conformational. A linear epitope generally consists of about 6 to 10 adjacent amino acids on a protein molecule that are recognized by an antibody. In contrast, a conformational epitope consists of amino acids that are not arranged sequentially, but where an antibody recognizes a particular three-dimensional structure. When a protein molecule folds into a three-dimensional structure, the amino acids forming the epitope are juxtaposed, enabling the antibody to recognize the conformational epitope. In a denatured protein only linear epitopes are recognized. A conformational epitope, by definition, must be on the outside of the folded protein.

The term "distinct epitopes" refers to the fact that when two different antibodies of the invention bind distinct epitopes, there is less than 100% competition for antigen binding, preferably less than 80% competition for antigen binding, more preferably less than 50% competition for antigen binding, and most preferably as little competition as possible, such as less than about 25% competition for antigen binding. Antibodies capable of competing with each other for binding to the same antigen may bind the same or overlapping epitopes or may have a binding site in the close vicinity of one another, so that competition is mainly caused by steric hindrance. An analysis for "distinct epitopes" of antibody pairs may be performed by methods known in the art, for example by way of binding experiments under saturating antibody conditions using either FACS (fluorescence activated cell sorting) or other flow cytometry analysis on cells expressing HER2 and individual fluorescent labeled antibodies, or by Surface Plasmon Resonance (SPR) using HER2 antigen captured or conjugated to a flow cell surface. A method for determining competition between antibodies using SPR is described in the examples.

The distinct epitopes are preferably "non-overlapping" in the sense that two different anti-HER2 antibodies in a composition of the invention have a sufficiently low competition for antigen binding that the two antibodies are able to bind their respective epitopes simultaneously. It will be understood by persons skilled in the that there can be different degrees of overlap, and that distinct epitopes can be considered to be "non-overlapping" in spite of the presence of some degree of overlap, as long as the respective antibodies are able to substantially bind their epitopes. This is generally considered to be the case when the competition for antigen binding between two antibodies is less than about 50%.

Antibodies binding to different epitopes on the same antigen can have varying effects on the activity of the antigen to which they bind, depending on the location of the epitope. An
antibody binding to an epitope in an active site of the antigen may block the function of the antigen completely, whereas another antibody binding at a different epitope may have no or little effect on the activity of the antigen alone. Such antibodies may, however, still activate complement and thereby result in the elimination of the antigen, and may result in synergistic effects when combined with one or more antibodies binding at different epitopes on the same antigen. In the context of the present invention, the epitope is preferably a portion of the extracellular domain of HER2. Antigens of the present invention are preferably extracellular domain HER2 proteins, polypeptides or fragments thereof to which an antibody or antibody fragment immunospecifically binds. A HER2 associated antigen may also be an analog or derivative of the extracellular domain of HER2 polypeptide or fragment thereof to which an antibody or antibody fragment immunospecifically binds.

The term "immunoglobulin" is commonly used as a collective designation of the mixture of antibodies found in blood or serum, but may also be used to designate a mixture of antibodies derived from other sources.

The term "cognate V_H and V_L coding pair" describes an original pair of V_H and V_L coding sequences contained within or derived from the same antibody-producing cell. Thus, a cognate V_H and V_L pair represents the V_H and V_L pairing originally present in the donor from which such a cell is derived. The term "an antibody expressed from a V_H and V_L coding pair" indicates that an antibody or an antibody fragment is produced from a vector, plasmid or other polynucleotide containing the V_H and V_L coding sequence. When a cognate V_H and V_L coding pair is expressed, either as a complete antibody or as a stable fragment thereof, they preserve the binding affinity and specificity of the antibody originally expressed from the cell they are derived from. A library of cognate pairs is also termed a repertoire or collection of cognate pairs, and may be kept individually or pooled.

By "protein" or "polypeptide" is meant any chain of amino acids, regardless of length or post-translational modification. Proteins can exist as monomers or multimers, comprising two or more assembled polypeptide chains, fragments of proteins, polypeptides, oligopeptides, or peptides.

The term "head-to-head promoters" refers to a promoter pair being placed in close proximity so that transcription of two gene fragments driven by the promoters occurs in opposite directions. Head-to-head promoters are also known as bi-directional promoters.

The term "transfection" is herein used as a broad term for introducing foreign DNA into a cell. The term is also meant to cover other functional equivalent methods for introducing foreign
DNA into a cell, such as e.g., transformation, infection, transduction or fusion of a donor cell and an acceptor cell.

The term "HER2" (also known as HER2/neu and ErbB-2) stands for "Human Epidermal growth factor Receptor 2" as described above in the "Background of the invention" section. As used herein, it is intended to include variants, isoforms and species homologs of HER2. Preferably, binding of an antibody of the invention to HER2 inhibits the growth of cells expressing HER2 (i.e. typically tumor cells) by inhibiting formation of heteromeric complexes between HER2 and other ErbB family members, e.g. heterodimerization with EGFR or HER3.

As used herein, the term "inhibits growth" (e.g., referring to cells) is intended to include any measurable decrease in the proliferation (increase in number of cells) or metabolism of a cell when contacted with an anti-HER2 antibody as compared to the growth of the same cells in the absence of an anti-HER2 antibody, e.g. inhibition of growth of a cell culture by at least about 10%, and preferably more, such as at least about 20% or 30%, more preferably at least about 40% or 50%, such as at least about 60%, 70%, 80%, 90%, 99% or even 100%.

As used herein, the terms "inhibits dimerization" or "inhibits dimer formation" refer to any measurable reduction in the ability of HER2 to form dimers with e.g. EGFR, HER3 or HER4 as a result of binding of an anti-HER2 antibody compared to dimer formation in the absence of an anti-HER2 antibody.

The term "treatment" as used herein refers to administration of an anti-HER2 antibody or antibody composition of the invention in a sufficient amount to ease, reduce, ameliorate or eradicate (cure) symptoms or disease states. Administration of two or more anti-HER2 antibodies of the invention will generally be by way of simultaneous administration of the antibodies, preferably in the form of a composition containing all of the anti-HER2 antibodies to be used for treatment. However, it is also possible to administer two or more anti-HER2 antibodies of the invention separately. References herein to e.g. administration of a recombinant antibody composition comprising at least two anti-HER2 antibodies should therefore be understood as encompassing not only administration of a composition comprising the at least two antibodies as such, but also separate administration of the antibodies. Combinations of two or more anti-HER2 antibodies of the invention can thus be administered simultaneously, sequentially or separately.

The percent identity between two sequences, e.g. variable region sequences, refers to the number of identical positions shared by the sequences (calculated as # of identical positions/total # of positions x 100), taking into account gaps that must be introduced for optimal alignment of the two sequences. The comparison of sequences and determination of
percent identity between two sequences may be accomplished using readily available software. Suitable software programs are available from various sources, both for online use and for download, and for alignment of both protein and nucleotide sequences. One suitable program is ClustalW (Thompson et al. (1994) Nucleic Acids Res. 22(22):4673-80), available from www.clustal.org, or alternatively e.g. from the European Bioinformatics Institute (www.ebi.ac.uk), which also provides various other protein and nucleotide informatics tools.

Particular embodiments

One aspect of the invention relates to various novel anti-HER2 antibodies. In one embodiment, the invention thus relates to a recombinant anti-HER2 antibody comprising the heavy chain CDR3 sequence of any one of the antibodies referred to herein as antibodies 4380/4381, 4382, 4383, 4384, 4385, 4386, 4387, 4517, 4518 and 4519.

In another embodiment, the invention relates to a recombinant anti-HER2 antibody comprising the heavy chain CDR3 sequence and the light chain CDR3 sequence of any one of antibodies 4380/4381, 4382, 4383, 4384, 4385, 4386, 4387, 4517, 4518 and 4519.

In another embodiment, the invention relates to a recombinant anti-HER2 antibody comprising the heavy chain CDR1, CDR2 and CDR3 sequences and light chain CDR1, CDR2 and CDR3 sequences of any one of antibodies 4380/4381, 4382, 4383, 4384, 4385, 4386, 4387, 4517, 4518 and 4519.

In a further embodiment, the invention relates to a recombinant anti-HER2 antibody comprising the heavy chain variable region sequence and the light chain variable region sequence of any one of antibodies 4380/4381, 4382, 4383, 4384, 4385, 4386, 4387, 4517, 4518 and 4519, or comprising a humanized variant of said heavy chain and/or light chain variable region sequence, or comprising a heavy chain variable region sequence and a light chain variable region sequence each having at least 80%, 85%, 90% or 95% sequence identity with said heavy chain and light chain variable region sequences, such as at least 96%, 97%, 98% or 99% sequence identity with said sequences.

In a further embodiment, the invention relates to a recombinant anti-HER2 antibody that binds the same epitope as and which competes for binding with any of the antibodies defined above, as well as antibody compositions comprising one or more of such antibodies, preferably comprising at least two such antibodies, e.g. two or three such antibodies as described elsewhere herein.
Table 1 below shows the sequence ID numbers, as set forth in the appended sequence listing, for the DNA and amino acid sequences of the heavy chain variable regions (VH) and the light chains (LC) of antibodies 4380/4381, 4382, 4383, 4384, 4385, 4386, 4387, 4517, 4518 and 4519. As explained above, the light chain DNA and amino acid sequences in the sequence listing include both the light chain variable region (VL) sequence and the human kappa constant region sequence.

Table 1: Sequence ID numbers for the DNA and amino acid sequences of the heavy chain variable regions and light chains of selected anti-HER2 antibodies

<table>
<thead>
<tr>
<th>Antibody No.</th>
<th>VH DNA seq.</th>
<th>VH protein seq.</th>
<th>LC DNA seq.</th>
<th>LC protein seq.</th>
</tr>
</thead>
<tbody>
<tr>
<td>4517</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>4518</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>4380/4381</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>4382</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td>4383</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
</tr>
<tr>
<td>4384</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
</tr>
<tr>
<td>4385</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
</tr>
<tr>
<td>4386</td>
<td>29</td>
<td>30</td>
<td>31</td>
<td>32</td>
</tr>
<tr>
<td>4387</td>
<td>33</td>
<td>34</td>
<td>35</td>
<td>36</td>
</tr>
<tr>
<td>4519</td>
<td>37</td>
<td>38</td>
<td>39</td>
<td>40</td>
</tr>
</tbody>
</table>

One particular embodiment of the invention is a recombinant anti-HER2 antibody comprising the heavy chain CDR3 sequence of antibody 4517, preferably comprising the heavy and light chain CDR3 sequences of antibody 4517, e.g. comprising the heavy and light chain CDR1, CDR2 and CDR3 sequences of antibody 4517, or comprising the heavy chain variable region sequence or a humanized variant thereof and the light chain variable region sequence or a humanized variant thereof of antibody 4517, or comprising a heavy chain variable region sequence and a light chain variable region sequence each having at least 80%, 85%, 90% or 95% sequence identity with the heavy chain and light chain variable region sequences, respectively, of antibody 4517.

Another particular embodiment of the invention is a recombinant anti-HER2 antibody comprising the heavy chain CDR3 sequence of antibody 4518, preferably comprising the heavy and light chain CDR3 sequences of antibody 4518, e.g. comprising the heavy and light chain CDR1, CDR2 and CDR3 sequences of antibody 4518, or comprising the heavy chain variable region sequence or a humanized variant thereof and the light chain variable region sequence or a humanized variant thereof of antibody 4518, or comprising a heavy chain variable region sequence and a light chain variable region sequence each having at least 80%, 85%, 90% or 95% sequence identity with the heavy chain and light chain variable region sequences, respectively, of antibody 4518.
Another particular embodiment of the invention is a recombinant anti-HER2 antibody comprising the heavy chain CDR3 sequence of antibody 4380/4381, preferably comprising the heavy and light chain CDR3 sequences of antibody 4380/4381, e.g. comprising the heavy and light chain CDR1, CDR2 and CDR3 sequences of antibody 4380/4381, or comprising the heavy chain variable region sequence or a humanized variant thereof and the light chain variable region sequence or a humanized variant thereof of antibody 4380/4381, or comprising a heavy chain variable region sequence and a light chain variable region sequence each having at least 80%, 85%, 90% or 95% sequence identity with the heavy chain and light chain variable region sequences, respectively, of antibody 4380/4381. In this embodiment, 4380 is preferred.

Antibody "4380/4381" refers to an antibody with the VH and LC amino acid sequences set forth in SEQ ID NO: 10 and 12, respectively. As indicated in SEQ ID NO: 12, the amino acid residue in position 40 can be Tyr or Thr. The only difference between antibodies 4380 and 4381 is that in antibody 4380 the residue in position 40 of the LC sequence is Tyr, while in antibody 4381 the residue in this position is Thr. In the original murine antibody there was a free Cys in this position. Among these two antibodies, 4380 is generally preferred.

Another particular embodiment of the invention is a recombinant anti-HER2 antibody comprising the heavy chain CDR3 sequence of antibody 4382, preferably comprising the heavy and light chain CDR3 sequences of antibody 4382, e.g. comprising the heavy and light chain CDR1, CDR2 and CDR3 sequences of antibody 4382, or comprising the heavy chain variable region sequence or a humanized variant thereof and the light chain variable region sequence or a humanized variant thereof of antibody 4382, or comprising a heavy chain variable region sequence and a light chain variable region sequence each having at least 80%, 85%, 90% or 95% sequence identity with the heavy chain and light chain variable region sequences, respectively, of antibody 4382.

Another particular embodiment of the invention is a recombinant anti-HER2 antibody comprising the heavy chain CDR3 sequence of antibody 4383, preferably comprising the heavy and light chain CDR3 sequences of antibody 4383, e.g. comprising the heavy and light chain CDR1, CDR2 and CDR3 sequences of antibody 4383, or comprising the heavy chain variable region sequence or a humanized variant thereof and the light chain variable region sequence or a humanized variant thereof of antibody 4383, or comprising a heavy chain variable region sequence and a light chain variable region sequence each having at least 80%, 85%, 90% or 95% sequence identity with the heavy chain and light chain variable region sequences, respectively, of antibody 4383.
Another particular embodiment of the invention is a recombinant anti-HER2 antibody comprising the heavy chain CDR3 sequence of antibody 4384, preferably comprising the heavy and light chain CDR3 sequences of antibody 4384, e.g. comprising the heavy and light chain CDR1, CDR2 and CDR3 sequences of antibody 4384, or comprising the heavy chain variable region sequence or a humanized variant thereof and the light chain variable region sequence or a humanized variant thereof of antibody 4384, or comprising a heavy chain variable region sequence and a light chain variable region sequence each having at least 80%, 85%, 90% or 95% sequence identity with the heavy chain and light chain variable region sequences, respectively, of antibody 4384.

Another particular embodiment of the invention is a recombinant anti-HER2 antibody comprising the heavy chain CDR3 sequence of antibody 4385, preferably comprising the heavy and light chain CDR3 sequences of antibody 4385, e.g. comprising the heavy and light chain CDR1, CDR2 and CDR3 sequences of antibody 4385, or comprising the heavy chain variable region sequence or a humanized variant thereof and the light chain variable region sequence or a humanized variant thereof of antibody 4385, or comprising a heavy chain variable region sequence and a light chain variable region sequence each having at least 80%, 85%, 90% or 95% sequence identity with the heavy chain and light chain variable region sequences, respectively, of antibody 4385.

Another particular embodiment of the invention is a recombinant anti-HER2 antibody comprising the heavy chain CDR3 sequence of antibody 4386, preferably comprising the heavy and light chain CDR3 sequences of antibody 4386, e.g. comprising the heavy and light chain CDR1, CDR2 and CDR3 sequences of antibody 4386, or comprising the heavy chain variable region sequence or a humanized variant thereof and the light chain variable region sequence or a humanized variant thereof of antibody 4386, or comprising a heavy chain variable region sequence and a light chain variable region sequence each having at least 80%, 85%, 90% or 95% sequence identity with the heavy chain and light chain variable region sequences, respectively, of antibody 4386.

Another particular embodiment of the invention is a recombinant anti-HER2 antibody comprising the heavy chain CDR3 sequence of antibody 4387, preferably comprising the heavy and light chain CDR3 sequences of antibody 4387, e.g. comprising the heavy and light chain CDR1, CDR2 and CDR3 sequences of antibody 4387, or comprising the heavy chain variable region sequence or a humanized variant thereof and the light chain variable region sequence or a humanized variant thereof of antibody 4387, or comprising a heavy chain variable region sequence and a light chain variable region sequence each having at least 80%, 85%, 90% or 95% sequence identity with the heavy chain and light chain variable region sequences, respectively, of antibody 4387.
Another particular embodiment of the invention is a recombinant anti-HER2 antibody comprising the heavy chain CDR3 sequence of antibody 4519, preferably comprising the heavy and light chain CDR3 sequences of antibody 4519, e.g. comprising the heavy and light chain CDR1, CDR2 and CDR3 sequences of antibody 4519, or comprising the heavy chain variable region sequence or a humanized variant thereof and the light chain variable region sequence or a humanized variant thereof of antibody 4519, or comprising a heavy chain variable region sequence and a light chain variable region sequence each having at least 80%, 85%, 90% or 95% sequence identity with the heavy chain and light chain variable region sequences, respectively, of antibody 4519.

In another aspect, the invention relates to a recombinant antibody composition comprising at least first and second recombinant anti-HER2 antibodies, wherein the first and second antibodies bind distinct epitopes of HER2, and wherein each of the first and second antibodies are selected from the group of antibodies outlined above. One embodiment of this aspect of the invention thus relates to a recombinant antibody composition comprising at least first and second recombinant anti-HER2 antibodies, wherein the first and second antibodies bind distinct epitopes of HER2, and wherein each of the first and second antibodies comprise the heavy chain CDR3 sequence of an antibody selected from the group consisting of antibodies 4380/4381, 4382, 4383, 4384, 4385, 4386, 4387, 4517, 4518 and 4519.

Another embodiment of this aspect of the invention relates to a recombinant antibody composition comprising at least first and second recombinant anti-HER2 antibodies, wherein the first and second antibodies bind distinct epitopes of HER2, and wherein each of the first and second antibodies comprise the heavy chain and light chain CDR3 sequences of an antibody selected from the group consisting of antibodies 4380/4381, 4382, 4383, 4384, 4385, 4386, 4387, 4517, 4518 and 4519.

A further embodiment of this aspect of the invention relates to a recombinant antibody composition comprising at least first and second recombinant anti-HER2 antibodies, wherein the first and second antibodies bind distinct epitopes of HER2, and wherein each of the first and second antibodies comprise the heavy chain and light chain CDR1, CDR2 and CDR3 sequences of an antibody selected from the group consisting of antibodies 4380/4381, 4382, 4383, 4384, 4385, 4386, 4387, 4517, 4518 and 4519.

A further embodiment of this aspect of the invention is a recombinant antibody composition comprising at least first and second recombinant anti-HER2 antibodies, wherein the first and second antibodies bind distinct epitopes of HER2, and wherein each of the first and second antibodies comprise the heavy chain variable region sequence or a humanized variant thereof.
and the light chain variable region sequence or a humanized variant thereof of an antibody selected from the group consisting of antibodies 4380/4381, 4382, 4383, 4384, 4385, 4386, 4387, 4517, 4518 and 4519; or wherein each of the first and second antibodies comprise a heavy chain variable region sequence and a light chain variable region sequence each having at least 80%, 85%, 90% or 95% sequence identity with the heavy chain and light chain variable region sequences, respectively, of an antibody selected from the group consisting of antibodies 4380/4381, 4382, 4383, 4384, 4385, 4386, 4387, 4517, 4518 and 4519.

A still further embodiment of this aspect of the invention is a recombinant antibody composition comprising at least first and second recominant anti-HER2 antibodies, wherein the first and second antibodies bind distinct epitopes of HER2, and wherein the first and second antibodies are selected from the group consisting of antibodies 4380/4381, 4382, 4383, 4384, 4385, 4386, 4387, 4517, 4518 and 4519, or humanized variants thereof.

A still further embodiment of this aspect of the invention is a recombinant antibody composition comprising at least first and second recominant anti-HER2 antibodies, wherein the first and second antibodies bind distinct epitopes of HER2, and wherein the first and second antibodies are selected from the group consisting of antibodies that bind to the same epitope as and compete for binding with antibodies 4380/4381, 4382, 4383, 4384, 4385, 4386, 4387, 4517, 4518 and 4519.

A further embodiment of the invention is an antibody composition comprising at least first and second recominant anti-HER2 antibodies that bind distinct epitopes of HER2, wherein at least one of said antibodies is selected from the group consisting of:

(a) an antibody comprising the heavy chain CDR3 sequence (SEQ ID NO: 56) and the light chain CDR3 sequence (SEQ ID NO: 82) of antibody 4382;
(b) an antibody comprising the heavy chain CDR3 sequence (SEQ ID NO: 59) and the light chain CDR3 sequence (SEQ ID NO: 84) of antibody 4383;
(c) an antibody comprising the heavy chain CDR3 sequence (SEQ ID NO: 62) and the light chain CDR3 sequence (SEQ ID NO: 86) of antibody 4384;
(d) an antibody comprising the heavy chain CDR3 sequence (SEQ ID NO: 65) and the light chain CDR3 sequence (SEQ ID NO: 88) of antibody 4385;
(e) an antibody comprising the heavy chain CDR3 sequence (SEQ ID NO: 68) and the light chain CDR3 sequence (SEQ ID NO: 90) of antibody 4386;
(f) an antibody comprising the heavy chain CDR3 sequence (SEQ ID NO: 71) and the light chain CDR3 sequence (SEQ ID NO: 92) of antibody 4387;
(g) an antibody comprising the heavy chain CDR3 sequence (SEQ ID NO: 47) and the light chain CDR3 sequence (SEQ ID NO: 76) of antibody 4517;
(h) an antibody comprising the heavy chain CDR3 sequence (SEQ ID NO: 50) and the light chain CDR3 sequence (SEQ ID NO: 78) of antibody 4518;

(i) an antibody comprising the heavy chain CDR3 sequence (SEQ ID NO: 74) and the light chain CDR3 sequence (SEQ ID NO: 93) of antibody 4519; and

(j) an antibody comprising the heavy chain CDR3 sequence (SEQ ID NO: 53) and the light chain CDR3 sequence (SEQ ID NO: 80) of antibody 4380.

Preferably, both of said first and second recombinant anti-HER2 antibodies are selected from antibodies (a) - (j) set forth above. The composition may also comprise at least a third recombinant anti-HER2 antibody, preferably an antibody selected from antibodies (a) - (j) above. In another embodiment, the antibody composition may comprise at least first and second recombinant anti-HER2 antibodies that bind distinct epitopes of HER2, wherein each of said first and second antibodies binds the same epitope as and competes for binding with one of antibodies (a) - (j) set forth above.

A still further embodiment of the invention is an antibody composition comprising at least first and second recombinant anti-HER2 antibodies that bind distinct epitopes of HER2, wherein at least one of said antibodies is selected from the group consisting of:

(A) an antibody comprising CDR1, CDR2 and CDR3 of the heavy chain variable region (SEQ ID NO: 14) and CDRI, CDR2 and CDR3 of the light chain variable region (SEQ ID NO: 16) of antibody 4382;

(B) an antibody comprising CDRI, CDR2 and CDR3 of the heavy chain variable region (SEQ ID NO: 18) and CDRI, CDR2 and CDR3 of the light chain variable region (SEQ ID NO: 20) of antibody 4383;

(C) an antibody comprising CDRI, CDR2 and CDR3 of the heavy chain variable region (SEQ ID NO: 22) and CDRI, CDR2 and CDR3 of the light chain variable region (SEQ ID NO: 24) of antibody 4384;

(D) an antibody comprising CDRI, CDR2 and CDR3 of the heavy chain variable region (SEQ ID NO: 26) and CDRI, CDR2 and CDR3 of the light chain variable region (SEQ ID NO: 28) of antibody 4385;

(E) an antibody comprising CDRI, CDR2 and CDR3 of the heavy chain variable region (SEQ ID NO: 30) and CDRI, CDR2 and CDR3 of the light chain variable region (SEQ ID NO: 32) of antibody 4386;

(F) an antibody comprising CDRI, CDR2 and CDR3 of the heavy chain variable region (SEQ ID NO: 34) and CDRI, CDR2 and CDR3 of the light chain variable region (SEQ ID NO: 36) of antibody 4387;

(G) an antibody comprising CDRI, CDR2 and CDR3 of the heavy chain variable region (SEQ ID NO: 2) and CDRI, CDR2 and CDR3 of the light chain variable region (SEQ ID NO: 4) of antibody 4517;
(H) an antibody comprising CDR1, CDR2 and CDR3 of the heavy chain variable region (SEQ ID NO: 6) and CDR1, CDR2 and CDR3 of the light chain variable region (SEQ ID NO: 8) of antibody 4518;

(I) an antibody comprising CDR1, CDR2 and CDR3 of the heavy chain variable region (SEQ ID NO: 38) and CDR1, CDR2 and CDR3 of the light chain variable region (SEQ ID NO: 40) of antibody 4519; and

(J) an antibody comprising CDR1, CDR2 and CDR3 of the heavy chain variable region (SEQ ID NO: 10) and CDR1, CDR2 and CDR3 of the light chain variable region (SEQ ID NO: 12) of antibody 4380.

In this embodiment, both of said first and second recombinant anti-HER2 antibodies are preferably selected from antibodies (A) - (J) set forth above. The composition may also comprise at least a third recombinant anti-HER2 antibody, preferably an antibody selected from antibodies (A) - (J) above. In another embodiment, the antibody composition may comprise at least first and second recombinant anti-HER2 antibodies that bind distinct epitopes of HER2, wherein each of said first and second antibodies binds the same epitope as and competes for binding with one of antibodies (A) - (J) set forth above.

One particular embodiment of this aspect of the invention relates to a recombinant antibody composition comprising at least first and second recombinant antibodies, wherein the first and second antibodies are:

- antibodies 4380 and 4382, or humanized variants thereof;
- an antibody comprising the heavy chain CDR3 sequence of antibody 4380, and an antibody comprising the heavy chain CDR3 sequence of antibody 4382;
- an antibody comprising the heavy and light chain CDR3 sequences of antibody 4380, and an antibody comprising the heavy and light chain CDR3 sequences of antibody 4382;
- an antibody comprising the heavy and light chain CDR1, CDR2 and CDR3 sequences of antibody 4380, and an antibody comprising the heavy and light chain CDR1, CDR2 and CDR3 sequences of antibody 4382;
- an antibody comprising the heavy and light chain variable region sequences of antibody 4380, and an antibody comprising the heavy and light chain variable region sequences of antibody 4382; or
- an antibody comprising heavy and light chain variable region sequences each having at least 80%, 85%, 90% or 95% sequence identity with the heavy and light chain variable region sequences, respectively, of antibody 4380, and an antibody comprising heavy and light chain variable region sequences each having at least 80%, 85%, 90% or 95% sequence identity with the heavy and light chain variable region sequences, respectively, of antibody 4382.
Further embodiments of this aspect of the invention relate to compositions based on antibodies 4380 and 4382, and comprising at least one additional antibody, in particular selected from antibodies based on 4385, 4517 and 4518. One such embodiment relates to a recombinant antibody composition comprising first, second and third recombinant antibodies, wherein the first, second and third antibodies are:

- antibodies 4380, 4382 and 4385, or humanized variants thereof;
- an antibody comprising the heavy chain CDR3 sequence of antibody 4380, an antibody comprising the heavy chain CDR3 sequence of antibody 4382, and an antibody comprising the heavy chain CDR3 sequence of antibody 4385;
- an antibody comprising the heavy and light chain CDR3 sequences of antibody 4380, an antibody comprising the heavy and light chain CDR3 sequences of antibody 4382, and an antibody comprising the heavy and light chain CDR3 sequences of antibody 4385;
- an antibody comprising the heavy and light chain CDR1, CDR2 and CDR3 sequences of antibody 4380, an antibody comprising the heavy and light chain CDR1, CDR2 and CDR3 sequences of antibody 4382, and an antibody comprising the heavy and light chain CDR1, CDR2 and CDR3 sequences of antibody 4385;
- an antibody comprising the heavy and light chain variable region sequences of antibody 4380, an antibody comprising the heavy and light chain variable region sequences of antibody 4382, and an antibody comprising the heavy and light chain variable region sequences of antibody 4385; or
- an antibody comprising heavy and light chain variable region sequences each having at least 80%, 85%, 90% or 95% sequence identity with the heavy and light chain variable region sequences, respectively, of antibody 4380, an antibody comprising heavy and light chain variable region sequences each having at least 80%, 85%, 90% or 95% sequence identity with the heavy and light chain variable region sequences, respectively, of antibody 4382, and an antibody comprising heavy and light chain variable region sequences each having at least 80%, 85%, 90% or 95% sequence identity with the heavy and light chain variable region sequences, respectively, of antibody 4385.

Another such embodiment relates to a recombinant antibody composition comprising first, second and third recombinant antibodies, wherein the first, second and third antibodies are:

- antibodies 4380, 4382 and 4517, or humanized variants thereof;
- an antibody comprising the heavy chain CDR3 sequence of antibody 4380, an antibody comprising the heavy chain CDR3 sequence of antibody 4382, and an antibody comprising the heavy chain CDR3 sequence of antibody 4517;
- an antibody comprising the heavy and light chain CDR3 sequences of antibody 4380, an antibody comprising the heavy and light chain CDR3 sequences of antibody 4382,
and an antibody comprising the heavy and light chain CDR3 sequences of antibody 4517;
• an antibody comprising the heavy and light chain CDR1, CDR2 and CDR3 sequences of antibody 4380, an antibody comprising the heavy and light chain CDR1, CDR2 and CDR3 sequences of antibody 4382, and an antibody comprising the heavy and light chain CDR1, CDR2 and CDR3 sequences of antibody 4517;
• an antibody comprising the heavy and light chain variable region sequences of antibody 4380, an antibody comprising the heavy and light chain variable region sequences of antibody 4382, and an antibody comprising the heavy and light chain variable region sequences of antibody 4517; or
• an antibody comprising heavy and light chain variable region sequences each having at least 80%, 85%, 90% or 95% sequence identity with the heavy and light chain variable region sequences, respectively, of antibody 4380, an antibody comprising heavy and light chain variable region sequences each having at least 80%, 85%, 90% or 95% sequence identity with the heavy and light chain variable region sequences, respectively, of antibody 4382, and an antibody comprising heavy and light chain variable region sequences each having at least 80%, 85%, 90% or 95% sequence identity with the heavy and light chain variable region sequences, respectively, of antibody 4517.

Another such embodiment relates to a recombinant antibody composition comprising first, second and third recombinant antibodies, wherein the first, second and third antibodies are:
• antibodies 4380, 4382 and 4518, or humanized variants thereof;
• an antibody comprising the heavy chain CDR3 sequence of antibody 4380, an antibody comprising the heavy chain CDR3 sequence of antibody 4382, and an antibody comprising the heavy chain CDR3 sequence of antibody 4518;
• an antibody comprising the heavy and light chain CDR3 sequences of antibody 4380, an antibody comprising the heavy and light chain CDR3 sequences of antibody 4382, and an antibody comprising the heavy and light chain CDR3 sequences of antibody 4518;
• an antibody comprising the heavy and light chain CDR1, CDR2 and CDR3 sequences of antibody 4380, an antibody comprising the heavy and light chain CDR1, CDR2 and CDR3 sequences of antibody 4382, and an antibody comprising the heavy and light chain CDR1, CDR2 and CDR3 sequences of antibody 4518;
• an antibody comprising the heavy and light chain variable region sequences of antibody 4380, an antibody comprising the heavy and light chain variable region sequences of antibody 4382, and an antibody comprising the heavy and light chain variable region sequences of antibody 4518; or
• an antibody comprising heavy and light chain variable region sequences each having at least 80%, 85%, 90% or 95% sequence identity with the heavy and light chain
variable region sequences, respectively, of antibody 4380, an antibody comprising heavy and light chain variable region sequences each having at least 80%, 85%, 90% or 95% sequence identity with the heavy and light chain variable region sequences, respectively, of antibody 4382, and an antibody comprising heavy and light chain variable region sequences each having at least 80%, 85%, 90% or 95% sequence identity with the heavy and light chain variable region sequences, respectively, of antibody 4518.

A still further embodiment relates to a recombinant antibody composition comprising first, second, third and fourth recombinant antibodies, wherein the first, second, third and fourth antibodies are:

- antibodies 4380, 4382, 4385 and 4518, or humanized variants thereof;
- an antibody comprising the heavy chain CDR3 sequence of antibody 4380, an antibody comprising the heavy chain CDR3 sequence of antibody 4382, an antibody comprising the heavy chain CDR3 sequence of antibody 4385, and an antibody comprising the heavy chain CDR3 sequence of antibody 4518;
- an antibody comprising the heavy and light chain CDR3 sequences of antibody 4380, an antibody comprising the heavy and light chain CDR3 sequences of antibody 4382, an antibody comprising the heavy and light chain CDR3 sequences of antibody 4385, and an antibody comprising the heavy and light chain CDR3 sequences of antibody 4518;
- an antibody comprising the heavy and light chain CDR1, CDR2 and CDR3 sequences of antibody 4380, an antibody comprising the heavy and light chain CDR1, CDR2 and CDR3 sequences of antibody 4382, an antibody comprising the heavy and light chain CDR1, CDR2 and CDR3 sequences of antibody 4385, and an antibody comprising the heavy and light chain CDR1, CDR2 and CDR3 sequences of antibody 4518; or
- an antibody comprising the heavy and light chain variable region sequences of antibody 4380, an antibody comprising the heavy and light chain variable region sequences of antibody 4382, an antibody comprising the heavy and light chain variable region sequences of antibody 4385, and an antibody comprising the heavy and light chain variable region sequences of antibody 4518;
- an antibody comprising heavy and light chain variable region sequences each having at least 80%, 85%, 90% or 95% sequence identity with the heavy and light chain variable region sequences, respectively, of antibody 4380, an antibody comprising heavy and light chain variable region sequences each having at least 80%, 85%, 90% or 95% sequence identity with the heavy and light chain variable region sequences, respectively, of antibody 4382, an antibody comprising heavy and light chain variable region sequences each having at least 80%, 85%, 90% or 95% sequence identity with the heavy and light chain variable region sequences, respectively, of antibody 4385, and an antibody comprising heavy and light chain variable region sequences each
having at least 80%, 85%, 90% or 95% sequence identity with the heavy and light chain variable region sequences, respectively, of antibody 4518.

Another embodiment of this aspect of the invention relates to a recombinant antibody composition comprising at least first and second recombinant antibodies, wherein the first and second antibodies are:

- antibodies 4380 and 4383, or humanized variants thereof;
- an antibody comprising the heavy chain CDR3 sequence of antibody 4380, and an antibody comprising the heavy chain CDR3 sequence of antibody 4383;
- an antibody comprising the heavy and light chain CDR3 sequences of antibody 4380, and an antibody comprising the heavy and light chain CDR3 sequences of antibody 4383;
- an antibody comprising the heavy and light chain CDR1, CDR2 and CDR3 sequences of antibody 4380, and an antibody comprising the heavy and light chain CDR1, CDR2 and CDR3 sequences of antibody 4383;
- an antibody comprising the heavy and light chain variable region sequences of antibody 4380, and an antibody comprising the heavy and light chain variable region sequences of antibody 4383; or
- an antibody comprising heavy and light chain variable region sequences each having at least 80%, 85%, 90% or 95% sequence identity with the heavy and light chain variable region sequences, respectively, of antibody 4380, and an antibody comprising heavy and light chain variable region sequences each having at least 80%, 85%, 90% or 95% sequence identity with the heavy and light chain variable region sequences, respectively, of antibody 4383.

A further embodiment of this aspect of the invention relates to compositions based on antibodies 4380 and 4383, and comprising at least one additional antibody. One such embodiment relates to a recombinant antibody composition comprising first, second and third recombinant antibodies, wherein the first, second and third antibodies are:

- antibodies 4380, 4383 and 4384, or humanized variants thereof;
- an antibody comprising the heavy chain CDR3 sequence of antibody 4380, an antibody comprising the heavy chain CDR3 sequence of antibody 4383, and an antibody comprising the heavy chain CDR3 sequence of antibody 4384;
- an antibody comprising the heavy and light chain CDR3 sequences of antibody 4380, an antibody comprising the heavy and light chain CDR3 sequences of antibody 4383, and an antibody comprising the heavy and light chain CDR3 sequences of antibody 4384;
- an antibody comprising the heavy and light chain CDR1, CDR2 and CDR3 sequences of antibody 4380, an antibody comprising the heavy and light chain CDR1, CDR2 and
CDR3 sequences of antibody 4383, and an antibody comprising the heavy and light chain CDR1, CDR2 and CDR3 sequences of antibody 4384;
• an antibody comprising the heavy and light chain variable region sequences of antibody 4380, an antibody comprising the heavy and light chain variable region sequences of antibody 4383, and an antibody comprising the heavy and light chain variable region sequences of antibody 4384; or
• an antibody comprising heavy and light chain variable region sequences each having at least 80%, 85%, 90% or 95% sequence identity with the heavy and light chain variable region sequences, respectively, of antibody 4380, an antibody comprising heavy and light chain variable region sequences each having at least 80%, 85%, 90% or 95% sequence identity with the heavy and light chain variable region sequences, respectively, of antibody 4383, and an antibody comprising heavy and light chain variable region sequences each having at least 80%, 85%, 90% or 95% sequence identity with the heavy and light chain variable region sequences, respectively, of antibody 4384.

Another embodiment of this aspect of the invention relates to a recombinant antibody composition comprising at least first and second recombinant antibodies, wherein the first and second antibodies are:
• antibodies 4380 and 4384, or humanized variants thereof;
• an antibody comprising the heavy chain CDR3 sequence of antibody 4380, and an antibody comprising the heavy chain CDR3 sequence of antibody 4384;
• an antibody comprising the heavy and light chain CDR3 sequences of antibody 4380, and an antibody comprising the heavy and light chain CDR3 sequences of antibody 4384;
• an antibody comprising the heavy and light chain CDR1, CDR2 and CDR3 sequences of antibody 4380, and an antibody comprising the heavy and light chain CDR1, CDR2 and CDR3 sequences of antibody 4384;
• an antibody comprising the heavy and light chain variable region sequences of antibody 4380, and an antibody comprising the heavy and light chain variable region sequences of antibody 4384; or
• an antibody comprising heavy and light chain variable region sequences each having at least 80%, 85%, 90% or 95% sequence identity with the heavy and light chain variable region sequences, respectively, of antibody 4380, and an antibody comprising heavy and light chain variable region sequences each having at least 80%, 85%, 90% or 95% sequence identity with the heavy and light chain variable region sequences, respectively, of antibody 4384.

Further embodiments of this aspect of the invention relate to compositions based on antibodies 4380 and 4384, and comprising at least one additional antibody, in particular
selected from antibodies based on 4385, 4517, 4518 and 4519. One such embodiment relates to a recombinant antibody composition comprising first, second and third recombinant antibodies, wherein the first, second and third antibodies are:

- antibodies 4380, 4384 and 4517, or humanized variants thereof;
- an antibody comprising the heavy chain CDR3 sequence of antibody 4380, an antibody comprising the heavy chain CDR3 sequence of antibody 4380, and an antibody comprising the heavy chain CDR3 sequence of antibody 4517;
- an antibody comprising the heavy and light chain CDR3 sequences of antibody 4380, an antibody comprising the heavy and light chain CDR3 sequences of antibody 4384, and an antibody comprising the heavy and light chain CDR3 sequences of antibody 4518;
- an antibody comprising the heavy and light chain CDR1, CDR2 and CDR3 sequences of antibody 4380, an antibody comprising the heavy and light chain CDR1, CDR2 and CDR3 sequences of antibody 4384, and an antibody comprising the heavy and light chain CDR1, CDR2 and CDR3 sequences of antibody 4517;
- an antibody comprising the heavy and light chain variable region sequences of antibody 4380, an antibody comprising the heavy and light chain variable region sequences of antibody 4384, and an antibody comprising the heavy and light chain variable region sequences of antibody 4517; or
- an antibody comprising heavy and light chain variable region sequences each having at least 80%, 85%, 90% or 95% sequence identity with the heavy and light chain variable region sequences, respectively, of antibody 4380, an antibody comprising heavy and light chain variable region sequences each having at least 80%, 85%, 90% or 95% sequence identity with the heavy and light chain variable region sequences, respectively, of antibody 4384, and an antibody comprising heavy and light chain variable region sequences each having at least 80%, 85%, 90% or 95% sequence identity with the heavy and light chain variable region sequences, respectively, of antibody 4517.

Another such embodiment relates to a recombinant antibody composition comprising first, second and third recombinant antibodies, wherein the first, second and third antibodies are:

- antibodies 4380, 4384 and 4518, or humanized variants thereof;
- an antibody comprising the heavy chain CDR3 sequence of antibody 4380, an antibody comprising the heavy chain CDR3 sequence of antibody 4380, and an antibody comprising the heavy chain CDR3 sequence of antibody 4518;
- an antibody comprising the heavy and light chain CDR3 sequences of antibody 4380, an antibody comprising the heavy and light chain CDR3 sequences of antibody 4384, and an antibody comprising the heavy and light chain CDR3 sequences of antibody 4518;
• an antibody comprising the heavy and light chain CDR1, CDR2 and CDR3 sequences of antibody 4380, an antibody comprising the heavy and light chain CDR1, CDR2 and CDR3 sequences of antibody 4384, and an antibody comprising the heavy and light chain CDR1, CDR2 and CDR3 sequences of antibody 4518;

• an antibody comprising the heavy and light chain variable region sequences of antibody 4380, an antibody comprising the heavy and light chain variable region sequences of antibody 4384, and an antibody comprising the heavy and light chain variable region sequences of antibody 4518; or

• an antibody comprising heavy and light chain variable region sequences each having at least 80%, 85%, 90% or 95% sequence identity with the heavy and light chain variable region sequences, respectively, of antibody 4380, an antibody comprising heavy and light chain variable region sequences each having at least 80%, 85%, 90% or 95% sequence identity with the heavy and light chain variable region sequences, respectively, of antibody 4384, and an antibody comprising heavy and light chain variable region sequences each having at least 80%, 85%, 90% or 95% sequence identity with the heavy and light chain variable region sequences, respectively, of antibody 4518.

Another such embodiment relates to a recombinant antibody composition comprising first, second and third recombinant antibodies, wherein the first, second and third antibodies are:

• antibodies 4380, 4384 and 4519, or humanized variants thereof;

• an antibody comprising the heavy chain CDR3 sequence of antibody 4380, an antibody comprising the heavy chain CDR3 sequence of antibody 4380, and an antibody comprising the heavy chain CDR3 sequence of antibody 4519;

• an antibody comprising the heavy and light chain CDR3 sequences of antibody 4380, an antibody comprising the heavy and light chain CDR3 sequences of antibody 4384, and an antibody comprising the heavy and light chain CDR3 sequences of antibody 4519;

• an antibody comprising the heavy and light chain CDR1, CDR2 and CDR3 sequences of antibody 4380, an antibody comprising the heavy and light chain CDR1, CDR2 and CDR3 sequences of antibody 4384, and an antibody comprising the heavy and light chain CDR1, CDR2 and CDR3 sequences of antibody 4519;

• an antibody comprising the heavy and light chain variable region sequences of antibody 4380, an antibody comprising the heavy and light chain variable region sequences of antibody 4384, and an antibody comprising the heavy and light chain variable region sequences of antibody 4519; or

• an antibody comprising heavy and light chain variable region sequences each having at least 80%, 85%, 90% or 95% sequence identity with the heavy and light chain variable region sequences, respectively, of antibody 4380, an antibody comprising heavy and light chain variable region sequences each having at least 80%, 85%, 90%
or 95% sequence identity with the heavy and light chain variable region sequences, respectively, of antibody 4384, and an antibody comprising heavy and light chain variable region sequences each having at least 80%, 85%, 90% or 95% sequence identity with the heavy and light chain variable region sequences, respectively, of antibody 4519.

A still further embodiment relates to a recombinant antibody composition comprising first, second, third and fourth recombinant antibodies, wherein the first, second, third and fourth antibodies are:

- antibodies 4380, 4384, 4385 and 4518, or humanized variants thereof;
- an antibody comprising the heavy chain CDR3 sequence of antibody 4380, an antibody comprising the heavy chain CDR3 sequence of antibody 4384, an antibody comprising the heavy chain CDR3 sequence of antibody 4385, and an antibody comprising the heavy chain CDR3 sequence of antibody 4518;
- an antibody comprising the heavy and light chain CDR3 sequences of antibody 4380, an antibody comprising the heavy and light chain CDR3 sequences of antibody 4384, an antibody comprising the heavy and light chain CDR3 sequences of antibody 4385, and an antibody comprising the heavy and light chain CDR3 sequences of antibody 4518;
- an antibody comprising the heavy and light chain CDR1, CDR2 and CDR3 sequences of antibody 4380, an antibody comprising the heavy and light chain CDR1, CDR2 and CDR3 sequences of antibody 4384, an antibody comprising the heavy and light chain CDR1, CDR2 and CDR3 sequences of antibody 4385, and an antibody comprising the heavy and light chain CDR1, CDR2 and CDR3 sequences of antibody 4518;
- an antibody comprising the heavy and light chain variable region sequences of antibody 4380, an antibody comprising the heavy and light chain variable region sequences of antibody 4384, an antibody comprising the heavy and light chain variable region sequences of antibody 4385, and an antibody comprising the heavy and light chain variable region sequences of antibody 4518; or
- an antibody comprising heavy and light chain variable region sequences each having at least 80%, 85%, 90% or 95% sequence identity with the heavy and light chain variable region sequences, respectively, of antibody 4380, an antibody comprising heavy and light chain variable region sequences each having at least 80%, 85%, 90% or 95% sequence identity with the heavy and light chain variable region sequences, respectively, of antibody 4384, an antibody comprising heavy and light chain variable region sequences each having at least 80%, 85%, 90% or 95% sequence identity with the heavy and light chain variable region sequences, respectively, of antibody 4385, and an antibody comprising heavy and light chain variable region sequences each having at least 80%, 85%, 90% or 95% sequence identity with the heavy and light chain variable region sequences, respectively, of antibody 4518.
Another embodiment of this aspect of the invention relates to a recombinant antibody composition comprising at least first and second recombinant antibodies, wherein the first and second antibodies are:

- antibodies 4380 and 4385, or humanized variants thereof;
- an antibody comprising the heavy chain CDR3 sequence of antibody 4380, and an antibody comprising the heavy chain CDR3 sequence of antibody 4385;
- an antibody comprising the heavy and light chain CDR3 sequences of antibody 4380, and an antibody comprising the heavy and light chain CDR3 sequences of antibody 4385;
- an antibody comprising the heavy and light chain CDR1, CDR2 and CDR3 sequences of antibody 4380, and an antibody comprising the heavy and light chain CDR1, CDR2 and CDR3 sequences of antibody 4385;
- an antibody comprising the heavy and light chain variable region sequences of antibody 4380, and an antibody comprising the heavy and light chain variable region sequences of antibody 4385; or
- an antibody comprising heavy and light chain variable region sequences each having at least 80%, 85%, 90% or 95% sequence identity with the heavy and light chain variable region sequences, respectively, of antibody 4380, and an antibody comprising heavy and light chain variable region sequences each having at least 80%, 85%, 90% or 95% sequence identity with the heavy and light chain variable region sequences, respectively, of antibody 4385.

Another embodiment of this aspect of the invention relates to a recombinant antibody composition comprising at least first and second recombinant antibodies, wherein the first and second antibodies are:

- antibodies 4380 and 4386, or humanized variants thereof;
- an antibody comprising the heavy chain CDR3 sequence of antibody 4380, and an antibody comprising the heavy chain CDR3 sequence of antibody 4386;
- an antibody comprising the heavy and light chain CDR3 sequences of antibody 4380, and an antibody comprising the heavy and light chain CDR3 sequences of antibody 4386;
- an antibody comprising the heavy and light chain CDR1, CDR2 and CDR3 sequences of antibody 4380, and an antibody comprising the heavy and light chain CDR1, CDR2 and CDR3 sequences of antibody 4386;
- an antibody comprising the heavy and light chain variable region sequences of antibody 4380, and an antibody comprising the heavy and light chain variable region sequences of antibody 4386; or
- an antibody comprising heavy and light chain variable region sequences each having at least 80%, 85%, 90% or 95% sequence identity with the heavy and light chain variable region sequences, respectively, of antibody 4380, and an antibody comprising
heavy and light chain variable region sequences each having at least 80%, 85%, 90% or 95% sequence identity with the heavy and light chain variable region sequences, respectively, of antibody 4386.

Another embodiment of this aspect of the invention relates to a recombinant antibody composition comprising at least first and second recombinant antibodies, wherein the first and second antibodies are:

- antibodies 4380 and 4387, or humanized variants thereof;
- an antibody comprising the heavy chain CDR3 sequence of antibody 4380, and an antibody comprising the heavy chain CDR3 sequence of antibody 4387;
- an antibody comprising the heavy and light chain CDR3 sequences of antibody 4380, and an antibody comprising the heavy and light chain CDR3 sequences of antibody 4387;
- an antibody comprising the heavy and light chain CDR1, CDR2 and CDR3 sequences of antibody 4380, and an antibody comprising the heavy and light chain CDR1, CDR2 and CDR3 sequences of antibody 4387;
- an antibody comprising the heavy and light chain variable region sequences of antibody 4380, and an antibody comprising the heavy and light chain variable region sequences of antibody 4387; or
- an antibody comprising heavy and light chain variable region sequences each having at least 80%, 85%, 90% or 95% sequence identity with the heavy and light chain variable region sequences, respectively, of antibody 4380, and an antibody comprising heavy and light chain variable region sequences each having at least 80%, 85%, 90% or 95% sequence identity with the heavy and light chain variable region sequences, respectively, of antibody 4387.

Another embodiment of this aspect of the invention relates to a recombinant antibody composition comprising at least first and second recombinant antibodies, wherein the first and second antibodies are:

- antibodies 4380 and 4517, or humanized variants thereof;
- an antibody comprising the heavy chain CDR3 sequence of antibody 4380, and an antibody comprising the heavy chain CDR3 sequence of antibody 4517;
- an antibody comprising the heavy and light chain CDR3 sequences of antibody 4380, and an antibody comprising the heavy and light chain CDR3 sequences of antibody 4517;
- an antibody comprising the heavy and light chain CDR1, CDR2 and CDR3 sequences of antibody 4380, and an antibody comprising the heavy and light chain CDR1, CDR2 and CDR3 sequences of antibody 4517;
- an antibody comprising the heavy and light chain variable region sequences of antibody 4380, and an antibody comprising the heavy and light chain variable region sequences of antibody 4517; or
- an antibody comprising heavy and light chain variable region sequences each having at least 80%, 85%, 90% or 95% sequence identity with the heavy and light chain variable region sequences, respectively, of antibody 4380, and an antibody comprising heavy and light chain variable region sequences each having at least 80%, 85%, 90% or 95% sequence identity with the heavy and light chain variable region sequences, respectively, of antibody 4517.

Another embodiment of this aspect of the invention relates to a recombinant antibody composition comprising at least first and second recombinant antibodies, wherein the first and second antibodies are:
 - antibodies 4380 and 4518, or humanized variants thereof;
 - an antibody comprising the heavy chain CDR3 sequence of antibody 4380, and an antibody comprising the heavy chain CDR3 sequence of antibody 4518;
 - an antibody comprising the heavy and light chain CDR3 sequences of antibody 4380, and an antibody comprising the heavy and light chain CDR3 sequences of antibody 4518;
 - an antibody comprising the heavy and light chain CDR1, CDR2 and CDR3 sequences of antibody 4380, and an antibody comprising the heavy and light chain CDR1, CDR2 and CDR3 sequences of antibody 4518;
 - an antibody comprising the heavy and light chain variable region sequences of antibody 4380, and an antibody comprising the heavy and light chain variable region sequences of antibody 4518; or
 - an antibody comprising heavy and light chain variable region sequences each having at least 80%, 85%, 90% or 95% sequence identity with the heavy and light chain variable region sequences, respectively, of antibody 4380, and an antibody comprising heavy and light chain variable region sequences each having at least 80%, 85%, 90% or 95% sequence identity with the heavy and light chain variable region sequences, respectively, of antibody 4518.

Another embodiment of this aspect of the invention relates to a recombinant antibody composition comprising at least first and second recombinant antibodies, wherein the first and second antibodies are:
 - antibodies 4380 and 4519, or humanized variants thereof;
 - an antibody comprising the heavy chain CDR3 sequence of antibody 4380, and an antibody comprising the heavy chain CDR3 sequence of antibody 4519;
• an antibody comprising the heavy and light chain CDR3 sequences of antibody 4380, and an antibody comprising the heavy and light chain CDR3 sequences of antibody 4519;
• an antibody comprising the heavy and light chain CDR1, CDR2 and CDR3 sequences of antibody 4380, and an antibody comprising the heavy and light chain CDR1, CDR2 and CDR3 sequences of antibody 4519;
• an antibody comprising the heavy and light chain variable region sequences of antibody 4380, and an antibody comprising the heavy and light chain variable region sequences of antibody 4519; or
• an antibody comprising heavy and light chain variable region sequences each having at least 80%, 85%, 90% or 95% sequence identity with the heavy and light chain variable region sequences, respectively, of antibody 4380, and an antibody comprising heavy and light chain variable region sequences each having at least 80%, 85%, 90% or 95% sequence identity with the heavy and light chain variable region sequences, respectively, of antibody 4519.

Another embodiment of this aspect of the invention relates to a recombinant antibody composition comprising at least first and second recombinant antibodies, wherein the first and second antibodies are:
• antibodies 4382 and 4384, or humanized variants thereof;
• an antibody comprising the heavy chain CDR3 sequence of antibody 4382, and an antibody comprising the heavy chain CDR3 sequence of antibody 4384;
• an antibody comprising the heavy and light chain CDR3 sequences of antibody 4382, and an antibody comprising the heavy and light chain CDR3 sequences of antibody 4384;
• an antibody comprising the heavy and light chain CDR1, CDR2 and CDR3 sequences of antibody 4382, and an antibody comprising the heavy and light chain CDR1, CDR2 and CDR3 sequences of antibody 4384;
• an antibody comprising the heavy and light chain variable region sequences of antibody 4382, and an antibody comprising the heavy and light chain variable region sequences of antibody 4384; or
• an antibody comprising heavy and light chain variable region sequences each having at least 80%, 85%, 90% or 95% sequence identity with the heavy and light chain variable region sequences, respectively, of antibody 4382, and an antibody comprising heavy and light chain variable region sequences each having at least 80%, 85%, 90% or 95% sequence identity with the heavy and light chain variable region sequences, respectively, of antibody 4384.
Another embodiment of this aspect of the invention relates to a recombinant antibody composition comprising at least first and second recombinant antibodies, wherein the first and second antibodies are:

- antibodies 4382 and 4385, or humanized variants thereof;
- an antibody comprising the heavy chain CDR3 sequence of antibody 4382, and an antibody comprising the heavy chain CDR3 sequence of antibody 4385;
- an antibody comprising the heavy and light chain CDR3 sequences of antibody 4382, and an antibody comprising the heavy and light chain CDR3 sequences of antibody 4385;
- an antibody comprising the heavy and light chain CDR1, CDR2 and CDR3 sequences of antibody 4382, and an antibody comprising the heavy and light chain CDR1, CDR2 and CDR3 sequences of antibody 4385;
- an antibody comprising the heavy and light chain variable region sequences of antibody 4382, and an antibody comprising the heavy and light chain variable region sequences of antibody 4385; or
- an antibody comprising heavy and light chain variable region sequences each having at least 80%, 85%, 90% or 95% sequence identity with the heavy and light chain variable region sequences, respectively, of antibody 4382, and an antibody comprising heavy and light chain variable region sequences each having at least 80%, 85%, 90% or 95% sequence identity with the heavy and light chain variable region sequences, respectively, of antibody 4385.

A further embodiment of this aspect of the invention relates to compositions based on antibodies 4382 and 4385, and comprising at least one additional antibody. One such embodiment relates to a recombinant antibody composition comprising first, second and third recombinant antibodies, wherein the first, second and third antibodies are:

- antibodies 4382, 4385 and 4518, or humanized variants thereof;
- an antibody comprising the heavy chain CDR3 sequence of antibody 4382, an antibody comprising the heavy chain CDR3 sequence of antibody 4385, and an antibody comprising the heavy chain CDR3 sequence of antibody 4518;
- an antibody comprising the heavy and light chain CDR3 sequences of antibody 4382, an antibody comprising the heavy and light chain CDR3 sequences of antibody 4385, and an antibody comprising the heavy and light chain CDR3 sequences of antibody 4518;
- an antibody comprising the heavy and light chain CDR1, CDR2 and CDR3 sequences of antibody 4382, an antibody comprising the heavy and light chain CDR1, CDR2 and CDR3 sequences of antibody 4385, and an antibody comprising the heavy and light chain CDR1, CDR2 and CDR3 sequences of antibody 4518;
- an antibody comprising the heavy and light chain variable region sequences of antibody 4382, an antibody comprising the heavy and light chain variable region
sequences of antibody 4385, and an antibody comprising the heavy and light chain variable region sequences of antibody 4518;

- an antibody comprising heavy and light chain variable region sequences each having at least 80%, 85%, 90% or 95% sequence identity with the heavy and light chain variable region sequences, respectively, of antibody 4382, an antibody comprising heavy and light chain variable region sequences each having at least 80%, 85%, 90% or 95% sequence identity with the heavy and light chain variable region sequences, respectively, of antibody 4385, and an antibody comprising heavy and light chain variable region sequences each having at least 80%, 85%, 90% or 95% sequence identity with the heavy and light chain variable region sequences, respectively, of antibody 4518.

Another embodiment of this aspect of the invention relates to a recombinant antibody composition comprising at least first and second recombinant antibodies, wherein the first and second antibodies are:

- antibodies 4382 and 4386, or humanized variants thereof;
- an antibody comprising the heavy chain CDR3 sequence of antibody 4382, and an antibody comprising the heavy chain CDR3 sequence of antibody 4386;
- an antibody comprising the heavy and light chain CDR3 sequences of antibody 4382, and an antibody comprising the heavy and light chain CDR3 sequences of antibody 4386;
- an antibody comprising the heavy and light chain CDR1, CDR2 and CDR3 sequences of antibody 4382, and an antibody comprising the heavy and light chain CDR1, CDR2 and CDR3 sequences of antibody 4386;
- an antibody comprising the heavy and light chain variable region sequences of antibody 4382, and an antibody comprising the heavy and light chain variable region sequences of antibody 4386; or
- an antibody comprising heavy and light chain variable region sequences each having at least 80%, 85%, 90% or 95% sequence identity with the heavy and light chain variable region sequences, respectively, of antibody 4382, and an antibody comprising heavy and light chain variable region sequences each having at least 80%, 85%, 90% or 95% sequence identity with the heavy and light chain variable region sequences, respectively, of antibody 4386.

Another embodiment of this aspect of the invention relates to a recombinant antibody composition comprising at least first and second recombinant antibodies, wherein the first and second antibodies are:

- antibodies 4382 and 4387, or humanized variants thereof;
- an antibody comprising the heavy chain CDR3 sequence of antibody 4382, and an antibody comprising the heavy chain CDR3 sequence of antibody 4387;
• an antibody comprising the heavy and light chain CDR3 sequences of antibody 4382, and an antibody comprising the heavy and light chain CDR3 sequences of antibody 4387;
• an antibody comprising the heavy and light chain CDR1, CDR2 and CDR3 sequences of antibody 4382, and an antibody comprising the heavy and light chain CDR1, CDR2 and CDR3 sequences of antibody 4387;
• an antibody comprising the heavy and light chain variable region sequences of antibody 4382, and an antibody comprising the heavy and light chain variable region sequences of antibody 4387; or
• an antibody comprising heavy and light chain variable region sequences each having at least 80%, 85%, 90% or 95% sequence identity with the heavy and light chain variable region sequences, respectively, of antibody 4382, and an antibody comprising heavy and light chain variable region sequences each having at least 80%, 85%, 90% or 95% sequence identity with the heavy and light chain variable region sequences, respectively, of antibody 4387.

A further embodiment of this aspect of the invention relates to compositions based on antibodies 4382 and 4387, and comprising at least one additional antibody. One such embodiment relates to a recombinant antibody composition comprising first, second and third recombinant antibodies, wherein the first, second and third antibodies are:
• antibodies 4382, 4387 and 4517, or humanized variants thereof;
• an antibody comprising the heavy chain CDR3 sequence of antibody 4382, an antibody comprising the heavy chain CDR3 sequence of antibody 4387, and an antibody comprising the heavy chain CDR3 sequence of antibody 4517;
• an antibody comprising the heavy and light chain CDR3 sequences of antibody 4382, an antibody comprising the heavy and light chain CDR3 sequences of antibody 4387, and an antibody comprising the heavy and light chain CDR3 sequences of antibody 4517;
• an antibody comprising the heavy and light chain CDR1, CDR2 and CDR3 sequences of antibody 4382, an antibody comprising the heavy and light chain CDR1, CDR2 and CDR3 sequences of antibody 4387, and an antibody comprising the heavy and light chain CDR1, CDR2 and CDR3 sequences of antibody 4517;
• an antibody comprising the heavy and light chain variable region sequences of antibody 4382, an antibody comprising the heavy and light chain variable region sequences of antibody 4387, and an antibody comprising the heavy and light chain variable region sequences of antibody 4517; or
• an antibody comprising heavy and light chain variable region sequences each having at least 80%, 85%, 90% or 95% sequence identity with the heavy and light chain variable region sequences, respectively, of antibody 4382, an antibody comprising heavy and light chain variable region sequences each having at least 80%, 85%, 90%
or 95% sequence identity with the heavy and light chain variable region sequences, respectively, of antibody 4387, and an antibody comprising heavy and light chain variable region sequences each having at least 80%, 85%, 90% or 95% sequence identity with the heavy and light chain variable region sequences, respectively, of antibody 4517.

Another embodiment of this aspect of the invention relates to a recombinant antibody composition comprising at least first and second recombinant antibodies, wherein the first and second antibodies are:

- antibodies 4382 and 4517, or humanized variants thereof;
- an antibody comprising the heavy chain CDR3 sequence of antibody 4382, and an antibody comprising the heavy chain CDR3 sequence of antibody 4517;
- an antibody comprising the heavy and light chain CDR3 sequences of antibody 4382, and an antibody comprising the heavy and light chain CDR3 sequences of antibody 4517;
- an antibody comprising the heavy and light chain CDR1, CDR2 and CDR3 sequences of antibody 4382, and an antibody comprising the heavy and light chain CDR1, CDR2 and CDR3 sequences of antibody 4517;
- an antibody comprising the heavy and light chain variable region sequences of antibody 4382, and an antibody comprising the heavy and light chain variable region sequences of antibody 4517; or
- an antibody comprising heavy and light chain variable region sequences each having at least 80%, 85%, 90% or 95% sequence identity with the heavy and light chain variable region sequences, respectively, of antibody 4382, and an antibody comprising heavy and light chain variable region sequences each having at least 80%, 85%, 90% or 95% sequence identity with the heavy and light chain variable region sequences, respectively, of antibody 4517.

Another embodiment of this aspect of the invention relates to a recombinant antibody composition comprising at least first and second recombinant antibodies, wherein the first and second antibodies are:

- antibodies 4382 and 4518, or humanized variants thereof;
- an antibody comprising the heavy chain CDR3 sequence of antibody 4382, and an antibody comprising the heavy chain CDR3 sequence of antibody 4518;
- an antibody comprising the heavy and light chain CDR3 sequences of antibody 4382, and an antibody comprising the heavy and light chain CDR3 sequences of antibody 4518;
- an antibody comprising the heavy and light chain CDR1, CDR2 and CDR3 sequences of antibody 4382, and an antibody comprising the heavy and light chain CDR1, CDR2 and CDR3 sequences of antibody 4518;
• an antibody comprising the heavy and light chain variable region sequences of antibody 4382, and an antibody comprising the heavy and light chain variable region sequences of antibody 4518; or
• an antibody comprising heavy and light chain variable region sequences each having at least 80%, 85%, 90% or 95% sequence identity with the heavy and light chain variable region sequences, respectively, of antibody 4382, and an antibody comprising heavy and light chain variable region sequences each having at least 80%, 85%, 90% or 95% sequence identity with the heavy and light chain variable region sequences, respectively, of antibody 4518.

Another embodiment of this aspect of the invention relates to a recombinant antibody composition comprising at least first and second recombinant antibodies, wherein the first and second antibodies are:
• antibodies 4383 and 4384, or humanized variants thereof;
• an antibody comprising the heavy chain CDR3 sequence of antibody 4383, and an antibody comprising the heavy chain CDR3 sequence of antibody 4384;
• an antibody comprising the heavy and light chain CDR3 sequences of antibody 4383, and an antibody comprising the heavy and light chain CDR3 sequences of antibody 4384;
• an antibody comprising the heavy and light chain CDR1, CDR2 and CDR3 sequences of antibody 4383, and an antibody comprising the heavy and light chain CDR1, CDR2 and CDR3 sequences of antibody 4384;
• an antibody comprising the heavy and light chain variable region sequences of antibody 4383, and an antibody comprising the heavy and light chain variable region sequences of antibody 4384; or
• an antibody comprising heavy and light chain variable region sequences each having at least 80%, 85%, 90% or 95% sequence identity with the heavy and light chain variable region sequences, respectively, of antibody 4383, and an antibody comprising heavy and light chain variable region sequences each having at least 80%, 85%, 90% or 95% sequence identity with the heavy and light chain variable region sequences, respectively, of antibody 4384.

Another embodiment of this aspect of the invention relates to a recombinant antibody composition comprising at least first and second recombinant antibodies, wherein the first and second antibodies are:
• antibodies 4383 and 4385, or humanized variants thereof;
• an antibody comprising the heavy chain CDR3 sequence of antibody 4383, and an antibody comprising the heavy chain CDR3 sequence of antibody 4385;
• an antibody comprising the heavy and light chain CDR3 sequences of antibody 4383, and an antibody comprising the heavy and light chain CDR3 sequences of antibody 4385;
• an antibody comprising the heavy and light chain CDR1, CDR2 and CDR3 sequences of antibody 4383, and an antibody comprising the heavy and light chain CDR1, CDR2 and CDR3 sequences of antibody 4385;
• an antibody comprising the heavy and light chain variable region sequences of antibody 4383, and an antibody comprising the heavy and light chain variable region sequences of antibody 4385; or
• an antibody comprising heavy and light chain variable region sequences each having at least 80%, 85%, 90% or 95% sequence identity with the heavy and light chain variable region sequences, respectively, of antibody 4383, and an antibody comprising heavy and light chain variable region sequences each having at least 80%, 85%, 90% or 95% sequence identity with the heavy and light chain variable region sequences, respectively, of antibody 4385.

Another embodiment of this aspect of the invention relates to a recombinant antibody composition comprising at least first and second recombinant antibodies, wherein the first and second antibodies are:
• antibodies 4383 and 4386, or humanized variants thereof;
• an antibody comprising the heavy chain CDR3 sequence of antibody 4383, and an antibody comprising the heavy chain CDR3 sequence of antibody 4386;
• an antibody comprising the heavy and light chain CDR3 sequences of antibody 4383, and an antibody comprising the heavy and light chain CDR3 sequences of antibody 4386;
• an antibody comprising the heavy and light chain CDR1, CDR2 and CDR3 sequences of antibody 4383, and an antibody comprising the heavy and light chain CDR1, CDR2 and CDR3 sequences of antibody 4386;
• an antibody comprising the heavy and light chain variable region sequences of antibody 4383, and an antibody comprising the heavy and light chain variable region sequences of antibody 4386; or
• an antibody comprising heavy and light chain variable region sequences each having at least 80%, 85%, 90% or 95% sequence identity with the heavy and light chain variable region sequences, respectively, of antibody 4383, and an antibody comprising heavy and light chain variable region sequences each having at least 80%, 85%, 90% or 95% sequence identity with the heavy and light chain variable region sequences, respectively, of antibody 4386.
Another embodiment of this aspect of the invention relates to a recombinant antibody composition comprising at least first and second recombinant antibodies, wherein the first and second antibodies are:

- antibodies 4383 and 4517, or humanized variants thereof;
- an antibody comprising the heavy chain CDR3 sequence of antibody 4383, and an antibody comprising the heavy chain CDR3 sequence of antibody 4517;
- an antibody comprising the heavy and light chain CDR3 sequences of antibody 4383, and an antibody comprising the heavy and light chain CDR3 sequences of antibody 4517;
- an antibody comprising the heavy and light chain CDR1, CDR2 and CDR3 sequences of antibody 4383, and an antibody comprising the heavy and light chain CDR1, CDR2 and CDR3 sequences of antibody 4517;
- an antibody comprising the heavy and light chain variable region sequences of antibody 4383, and an antibody comprising the heavy and light chain variable region sequences of antibody 4517; or
- an antibody comprising heavy and light chain variable region sequences each having at least 80%, 85%, 90% or 95% sequence identity with the heavy and light chain variable region sequences, respectively, of antibody 4383, and an antibody comprising heavy and light chain variable region sequences each having at least 80%, 85%, 90% or 95% sequence identity with the heavy and light chain variable region sequences, respectively, of antibody 4517.

Another embodiment of this aspect of the invention relates to a recombinant antibody composition comprising at least first and second recombinant antibodies, wherein the first and second antibodies are:

- antibodies 4383 and 4518, or humanized variants thereof;
- an antibody comprising the heavy chain CDR3 sequence of antibody 4383, and an antibody comprising the heavy chain CDR3 sequence of antibody 4518;
- an antibody comprising the heavy and light chain CDR3 sequences of antibody 4383, and an antibody comprising the heavy and light chain CDR3 sequences of antibody 4518;
- an antibody comprising the heavy and light chain CDR1, CDR2 and CDR3 sequences of antibody 4383, and an antibody comprising the heavy and light chain CDR1, CDR2 and CDR3 sequences of antibody 4518;
- an antibody comprising the heavy and light chain variable region sequences of antibody 4383, and an antibody comprising the heavy and light chain variable region sequences of antibody 4518; or
- an antibody comprising heavy and light chain variable region sequences each having at least 80%, 85%, 90% or 95% sequence identity with the heavy and light chain variable region sequences, respectively, of antibody 4383, and an antibody comprising...
heavy and light chain variable region sequences each having at least 80%, 85%, 90% or 95% sequence identity with the heavy and light chain variable region sequences, respectively, of antibody 4518.

Another embodiment of this aspect of the invention relates to a recombinant antibody composition comprising at least first and second recombinant antibodies, wherein the first and second antibodies are:

• antibodies 4383 and 4519, or humanized variants thereof;
• an antibody comprising the heavy chain CDR3 sequence of antibody 4383, and an antibody comprising the heavy chain CDR3 sequence of antibody 4519;
• an antibody comprising the heavy and light chain CDR3 sequences of antibody 4383, and an antibody comprising the heavy and light chain CDR3 sequences of antibody 4519;
• an antibody comprising the heavy and light chain CDR1, CDR2 and CDR3 sequences of antibody 4383, and an antibody comprising the heavy and light chain CDR1, CDR2 and CDR3 sequences of antibody 4519;
• an antibody comprising the heavy and light chain variable region sequences of antibody 4383, and an antibody comprising the heavy and light chain variable region sequences of antibody 4519; or
• an antibody comprising heavy and light chain variable region sequences each having at least 80%, 85%, 90% or 95% sequence identity with the heavy and light chain variable region sequences, respectively, of antibody 4383, and an antibody comprising heavy and light chain variable region sequences each having at least 80%, 85%, 90% or 95% sequence identity with the heavy and light chain variable region sequences, respectively, of antibody 4519.

Another embodiment of this aspect of the invention relates to a recombinant antibody composition comprising at least first and second recombinant antibodies, wherein the first and second antibodies are:

• antibodies 4384 and 4385, or humanized variants thereof;
• an antibody comprising the heavy chain CDR3 sequence of antibody 4384, and an antibody comprising the heavy chain CDR3 sequence of antibody 4385;
• an antibody comprising the heavy and light chain CDR3 sequences of antibody 4384, and an antibody comprising the heavy and light chain CDR3 sequences of antibody 4385;
• an antibody comprising the heavy and light chain CDR1, CDR2 and CDR3 sequences of antibody 4384, and an antibody comprising the heavy and light chain CDR1, CDR2 and CDR3 sequences of antibody 4385;
• an antibody comprising the heavy and light chain variable region sequences of antibody 4384, and an antibody comprising the heavy and light chain variable region sequences of antibody 4385; or
• an antibody comprising heavy and light chain variable region sequences each having at least 80%, 85%, 90% or 95% sequence identity with the heavy and light chain variable region sequences, respectively, of antibody 4384, and an antibody comprising heavy and light chain variable region sequences each having at least 80%, 85%, 90% or 95% sequence identity with the heavy and light chain variable region sequences, respectively, of antibody 4385.

Another embodiment of this aspect of the invention relates to a recombinant antibody composition comprising at least first and second recombinant antibodies, wherein the first and second antibodies are:
• antibodies 4384 and 4387, or humanized variants thereof;
• an antibody comprising the heavy chain CDR3 sequence of antibody 4384, and an antibody comprising the heavy chain CDR3 sequence of antibody 4387;
• an antibody comprising the heavy and light chain CDR3 sequences of antibody 4384, and an antibody comprising the heavy and light chain CDR3 sequences of antibody 4387;
• an antibody comprising the heavy and light chain CDR1, CDR2 and CDR3 sequences of antibody 4384, and an antibody comprising the heavy and light chain CDR1, CDR2 and CDR3 sequences of antibody 4387;
• an antibody comprising the heavy and light chain variable region sequences of antibody 4384, and an antibody comprising the heavy and light chain variable region sequences of antibody 4387; or
• an antibody comprising heavy and light chain variable region sequences each having at least 80%, 85%, 90% or 95% sequence identity with the heavy and light chain variable region sequences, respectively, of antibody 4384, and an antibody comprising heavy and light chain variable region sequences each having at least 80%, 85%, 90% or 95% sequence identity with the heavy and light chain variable region sequences, respectively, of antibody 4387.

Another embodiment of this aspect of the invention relates to a recombinant antibody composition comprising at least first and second recombinant antibodies, wherein the first and second antibodies are:
• antibodies 4384 and 4517, or humanized variants thereof;
• an antibody comprising the heavy chain CDR3 sequence of antibody 4384, and an antibody comprising the heavy chain CDR3 sequence of antibody 4517;
• an antibody comprising the heavy and light chain CDR3 sequences of antibody 4384, and an antibody comprising the heavy and light chain CDR3 sequences of antibody 4517;
• an antibody comprising the heavy and light chain CDR1, CDR2 and CDR3 sequences of antibody 4384, and an antibody comprising the heavy and light chain CDR1, CDR2 and CDR3 sequences of antibody 4517;
• an antibody comprising the heavy and light chain variable region sequences of antibody 4384, and an antibody comprising the heavy and light chain variable region sequences of antibody 4517; or
• an antibody comprising heavy and light chain variable region sequences each having at least 80%, 85%, 90% or 95% sequence identity with the heavy and light chain variable region sequences, respectively, of antibody 4384, and an antibody comprising heavy and light chain variable region sequences each having at least 80%, 85%, 90% or 95% sequence identity with the heavy and light chain variable region sequences, respectively, of antibody 4517.

Another embodiment of this aspect of the invention relates to a recombinant antibody composition comprising at least first and second recombinant antibodies, wherein the first and second antibodies are:
• antibodies 4384 and 4519, or humanized variants thereof;
• an antibody comprising the heavy chain CDR3 sequence of antibody 4384, and an antibody comprising the heavy chain CDR3 sequence of antibody 4519;
• an antibody comprising the heavy and light chain CDR3 sequences of antibody 4384, and an antibody comprising the heavy and light chain CDR3 sequences of antibody 4519;
• an antibody comprising the heavy and light chain CDR1, CDR2 and CDR3 sequences of antibody 4384, and an antibody comprising the heavy and light chain CDR1, CDR2 and CDR3 sequences of antibody 4519;
• an antibody comprising the heavy and light chain variable region sequences of antibody 4384, and an antibody comprising the heavy and light chain variable region sequences of antibody 4519; or
• an antibody comprising heavy and light chain variable region sequences each having at least 80%, 85%, 90% or 95% sequence identity with the heavy and light chain variable region sequences, respectively, of antibody 4384, and an antibody comprising heavy and light chain variable region sequences each having at least 80%, 85%, 90% or 95% sequence identity with the heavy and light chain variable region sequences, respectively, of antibody 4519.
Another embodiment of this aspect of the invention relates to a recombinant antibody composition comprising at least first and second recombinant antibodies, wherein the first and second antibodies are:

- antibodies 4385 and 4386, or humanized variants thereof;
- an antibody comprising the heavy chain CDR3 sequence of antibody 4385, and an antibody comprising the heavy chain CDR3 sequence of antibody 4386;
- an antibody comprising the heavy and light chain CDR3 sequences of antibody 4385, and an antibody comprising the heavy and light chain CDR3 sequences of antibody 4386;
- an antibody comprising the heavy and light chain CDR1, CDR2 and CDR3 sequences of antibody 4385, and an antibody comprising the heavy and light chain CDR1, CDR2 and CDR3 sequences of antibody 4386;
- an antibody comprising the heavy and light chain variable region sequences of antibody 4385, and an antibody comprising the heavy and light chain variable region sequences of antibody 4386; or
- an antibody comprising heavy and light chain variable region sequences each having at least 80%, 85%, 90% or 95% sequence identity with the heavy and light chain variable region sequences, respectively, of antibody 4385, and an antibody comprising heavy and light chain variable region sequences each having at least 80%, 85%, 90% or 95% sequence identity with the heavy and light chain variable region sequences, respectively, of antibody 4386.

Another embodiment of this aspect of the invention relates to a recombinant antibody composition comprising at least first and second recombinant antibodies, wherein the first and second antibodies are:

- antibodies 4385 and 4517, or humanized variants thereof;
- an antibody comprising the heavy chain CDR3 sequence of antibody 4385, and an antibody comprising the heavy chain CDR3 sequence of antibody 4517;
- an antibody comprising the heavy and light chain CDR3 sequences of antibody 4385, and an antibody comprising the heavy and light chain CDR3 sequences of antibody 4517;
- an antibody comprising the heavy and light chain CDR1, CDR2 and CDR3 sequences of antibody 4385, and an antibody comprising the heavy and light chain CDR1, CDR2 and CDR3 sequences of antibody 4517;
- an antibody comprising the heavy and light chain variable region sequences of antibody 4385, and an antibody comprising the heavy and light chain variable region sequences of antibody 4517; or
- an antibody comprising heavy and light chain variable region sequences each having at least 80%, 85%, 90% or 95% sequence identity with the heavy and light chain variable region sequences, respectively, of antibody 4385, and an antibody comprising
heavy and light chain variable region sequences each having at least 80%, 85%, 90% or 95% sequence identity with the heavy and light chain variable region sequences, respectively, of antibody 4517.

Another embodiment of this aspect of the invention relates to a recombinant antibody composition comprising at least first and second recombinant antibodies, wherein the first and second antibodies are:

- antibodies 4385 and 4518, or humanized variants thereof;
- an antibody comprising the heavy chain CDR3 sequence of antibody 4385, and an antibody comprising the heavy chain CDR3 sequence of antibody 4518;
- an antibody comprising the heavy and light chain CDR3 sequences of antibody 4385, and an antibody comprising the heavy and light chain CDR3 sequences of antibody 4518;
- an antibody comprising the heavy and light chain CDR1, CDR2 and CDR3 sequences of antibody 4385, and an antibody comprising the heavy and light chain CDR1, CDR2 and CDR3 sequences of antibody 4518;
- an antibody comprising the heavy and light chain variable region sequences of antibody 4385, and an antibody comprising the heavy and light chain variable region sequences of antibody 4518; or
- an antibody comprising heavy and light chain variable region sequences each having at least 80%, 85%, 90% or 95% sequence identity with the heavy and light chain variable region sequences, respectively, of antibody 4385, and an antibody comprising heavy and light chain variable region sequences each having at least 80%, 85%, 90% or 95% sequence identity with the heavy and light chain variable region sequences, respectively, of antibody 4518.

Another embodiment of this aspect of the invention relates to a recombinant antibody composition comprising at least first and second recombinant antibodies, wherein the first and second antibodies are:

- antibodies 4385 and 4519, or humanized variants thereof;
- an antibody comprising the heavy chain CDR3 sequence of antibody 4385, and an antibody comprising the heavy chain CDR3 sequence of antibody 4519;
- an antibody comprising the heavy and light chain CDR3 sequences of antibody 4385, and an antibody comprising the heavy and light chain CDR3 sequences of antibody 4519;
- an antibody comprising the heavy and light chain CDR1, CDR2 and CDR3 sequences of antibody 4385, and an antibody comprising the heavy and light chain CDR1, CDR2 and CDR3 sequences of antibody 4519;
• an antibody comprising the heavy and light chain variable region sequences of antibody 4385, and an antibody comprising the heavy and light chain variable region sequences of antibody 4519; or
• an antibody comprising heavy and light chain variable region sequences each having at least 80%, 85%, 90% or 95% sequence identity with the heavy and light chain variable region sequences, respectively, of antibody 4385, and an antibody comprising heavy and light chain variable region sequences each having at least 80%, 85%, 90% or 95% sequence identity with the heavy and light chain variable region sequences, respectively, of antibody 4519.

Another embodiment of this aspect of the invention relates to a recombinant antibody composition comprising at least first and second recombinant antibodies, wherein the first and second antibodies are:
• antibodies 4386 and 4387, or humanized variants thereof;
• an antibody comprising the heavy chain CDR3 sequence of antibody 4386, and an antibody comprising the heavy chain CDR3 sequence of antibody 4387;
• an antibody comprising the heavy and light chain CDR3 sequences of antibody 4386, and an antibody comprising the heavy and light chain CDR3 sequences of antibody 4387;
• an antibody comprising the heavy and light chain CDR1, CDR2 and CDR3 sequences of antibody 4386, and an antibody comprising the heavy and light chain CDR1, CDR2 and CDR3 sequences of antibody 4387;
• an antibody comprising the heavy and light chain variable region sequences of antibody 4386, and an antibody comprising the heavy and light chain variable region sequences of antibody 4387; or
• an antibody comprising heavy and light chain variable region sequences each having at least 80%, 85%, 90% or 95% sequence identity with the heavy and light chain variable region sequences, respectively, of antibody 4386, and an antibody comprising heavy and light chain variable region sequences each having at least 80%, 85%, 90% or 95% sequence identity with the heavy and light chain variable region sequences, respectively, of antibody 4387.

Another embodiment of this aspect of the invention relates to a recombinant antibody composition comprising at least first and second recombinant antibodies, wherein the first and second antibodies are:
• antibodies 4386 and 4517, or humanized variants thereof;
• an antibody comprising the heavy chain CDR3 sequence of antibody 4386, and an antibody comprising the heavy chain CDR3 sequence of antibody 4517;
• an antibody comprising the heavy and light chain CDR3 sequences of antibody 4386, and an antibody comprising the heavy and light chain CDR3 sequences of antibody 4517;

• an antibody comprising the heavy and light chain CDR1, CDR2 and CDR3 sequences of antibody 4386, and an antibody comprising the heavy and light chain CDR1, CDR2 and CDR3 sequences of antibody 4517;

• an antibody comprising the heavy and light chain variable region sequences of antibody 4386, and an antibody comprising the heavy and light chain variable region sequences of antibody 4517; or

• an antibody comprising heavy and light chain variable region sequences each having at least 80%, 85%, 90% or 95% sequence identity with the heavy and light chain variable region sequences, respectively, of antibody 4386, and an antibody comprising heavy and light chain variable region sequences each having at least 80%, 85%, 90% or 95% sequence identity with the heavy and light chain variable region sequences, respectively, of antibody 4517.

Another embodiment of this aspect of the invention relates to a recombinant antibody composition comprising at least first and second recombinant antibodies, wherein the first and second antibodies are:

• antibodies 4386 and 4518, or humanized variants thereof;

• an antibody comprising the heavy chain CDR3 sequence of antibody 4386, and an antibody comprising the heavy chain CDR3 sequence of antibody 4518;

• an antibody comprising the heavy and light chain CDR3 sequences of antibody 4386, and an antibody comprising the heavy and light chain CDR3 sequences of antibody 4518;

• an antibody comprising the heavy and light chain CDR1, CDR2 and CDR3 sequences of antibody 4386, and an antibody comprising the heavy and light chain CDR1, CDR2 and CDR3 sequences of antibody 4518;

• an antibody comprising the heavy and light chain variable region sequences of antibody 4386, and an antibody comprising the heavy and light chain variable region sequences of antibody 4518; or

• an antibody comprising heavy and light chain variable region sequences each having at least 80%, 85%, 90% or 95% sequence identity with the heavy and light chain variable region sequences, respectively, of antibody 4386, and an antibody comprising heavy and light chain variable region sequences each having at least 80%, 85%, 90% or 95% sequence identity with the heavy and light chain variable region sequences, respectively, of antibody 4518.
Another embodiment of this aspect of the invention relates to a recombinant antibody composition comprising at least first and second recombinant antibodies, wherein the first and second antibodies are:

- antibodies 4386 and 4519, or humanized variants thereof;
- an antibody comprising the heavy chain CDR3 sequence of antibody 4386, and an antibody comprising the heavy chain CDR3 sequence of antibody 4519;
- an antibody comprising the heavy and light chain CDR3 sequences of antibody 4386, and an antibody comprising the heavy and light chain CDR3 sequences of antibody 4519;
- an antibody comprising the heavy and light chain CDR1, CDR2 and CDR3 sequences of antibody 4386, and an antibody comprising the heavy and light chain CDR1, CDR2 and CDR3 sequences of antibody 4519;
- an antibody comprising the heavy and light chain variable region sequences of antibody 4386, and an antibody comprising the heavy and light chain variable region sequences of antibody 4519; or
- an antibody comprising heavy and light chain variable region sequences each having at least 80%, 85%, 90% or 95% sequence identity with the heavy and light chain variable region sequences, respectively, of antibody 4386, and an antibody comprising heavy and light chain variable region sequences each having at least 80%, 85%, 90% or 95% sequence identity with the heavy and light chain variable region sequences, respectively, of antibody 4519.

Another embodiment of this aspect of the invention relates to a recombinant antibody composition comprising at least first and second recombinant antibodies, wherein the first and second antibodies are:

- antibodies 4387 and 4517, or humanized variants thereof;
- an antibody comprising the heavy chain CDR3 sequence of antibody 4387, and an antibody comprising the heavy chain CDR3 sequence of antibody 4517;
- an antibody comprising the heavy and light chain CDR3 sequences of antibody 4387, and an antibody comprising the heavy and light chain CDR3 sequences of antibody 4517;
- an antibody comprising the heavy and light chain CDR1, CDR2 and CDR3 sequences of antibody 4387, and an antibody comprising the heavy and light chain CDR1, CDR2 and CDR3 sequences of antibody 4517;
- an antibody comprising the heavy and light chain variable region sequences of antibody 4387, and an antibody comprising the heavy and light chain variable region sequences of antibody 4517; or
- an antibody comprising heavy and light chain variable region sequences each having at least 80%, 85%, 90% or 95% sequence identity with the heavy and light chain variable region sequences, respectively, of antibody 4387, and an antibody comprising...
heavy and light chain variable region sequences each having at least 80%, 85%, 90% or 95% sequence identity with the heavy and light chain variable region sequences, respectively, of antibody 4517.

Another embodiment of this aspect of the invention relates to a recombinant antibody composition comprising at least first and second recombinant antibodies, wherein the first and second antibodies are:

- antibodies 4387 and 4518, or humanized variants thereof;
- an antibody comprising the heavy chain CDR3 sequence of antibody 4387, and an antibody comprising the heavy chain CDR3 sequence of antibody 4518;
- an antibody comprising the heavy and light chain CDR3 sequences of antibody 4387, and an antibody comprising the heavy and light chain CDR3 sequences of antibody 4518;
- an antibody comprising the heavy and light chain CDR1, CDR2 and CDR3 sequences of antibody 4387, and an antibody comprising the heavy and light chain CDR1, CDR2 and CDR3 sequences of antibody 4518;
- an antibody comprising the heavy and light chain variable region sequences of antibody 4387, and an antibody comprising the heavy and light chain variable region sequences of antibody 4518;
- an antibody comprising heavy and light chain variable region sequences each having at least 80%, 85%, 90% or 95% sequence identity with the heavy and light chain variable region sequences, respectively, of antibody 4387, and an antibody comprising heavy and light chain variable region sequences each having at least 80%, 85%, 90% or 95% sequence identity with the heavy and light chain variable region sequences, respectively, of antibody 4518.

Another embodiment of this aspect of the invention relates to a recombinant antibody composition comprising at least first and second recombinant antibodies, wherein the first and second antibodies are:

- antibodies 4387 and 4519, or humanized variants thereof;
- an antibody comprising the heavy chain CDR3 sequence of antibody 4387, and an antibody comprising the heavy chain CDR3 sequence of antibody 4519;
- an antibody comprising the heavy and light chain CDR3 sequences of antibody 4387, and an antibody comprising the heavy and light chain CDR3 sequences of antibody 4519;
- an antibody comprising the heavy and light chain CDR1, CDR2 and CDR3 sequences of antibody 4387, and an antibody comprising the heavy and light chain CDR1, CDR2 and CDR3 sequences of antibody 4519;
• an antibody comprising the heavy and light chain variable region sequences of
antibody 4387, and an antibody comprising the heavy and light chain variable region
sequences of antibody 4519; or
• an antibody comprising heavy and light chain variable region sequences each having at
least 80%, 85%, 90% or 95% sequence identity with the heavy and light chain
variable region sequences, respectively, of antibody 4387, and an antibody comprising
heavy and light chain variable region sequences each having at least 80%, 85%, 90%
or 95% sequence identity with the heavy and light chain variable region sequences,
respectively, of antibody 4519.

Another embodiment of this aspect of the invention relates to a recombinant antibody
composition comprising at least first and second recombinant antibodies, wherein the first and
second antibodies are:
• antibodies 4517 and 4519, or humanized variants thereof;
• an antibody comprising the heavy chain CDR3 sequence of antibody 4517, and an
antibody comprising the heavy chain CDR3 sequence of antibody 4519;
• an antibody comprising the heavy and light chain CDR3 sequences of antibody 4517,
and an antibody comprising the heavy and light chain CDR3 sequences of antibody
4519;
• an antibody comprising the heavy and light chain CDR1, CDR2 and CDR3 sequences of
antibody 4517, and an antibody comprising the heavy and light chain CDR1, CDR2 and
CDR3 sequences of antibody 4519;
• an antibody comprising the heavy and light chain variable region sequences of
antibody 4517, and an antibody comprising the heavy and light chain variable region
sequences of antibody 4519; or
• an antibody comprising heavy and light chain variable region sequences each having at
least 80%, 85%, 90% or 95% sequence identity with the heavy and light chain
variable region sequences, respectively, of antibody 4517, and an antibody comprising
heavy and light chain variable region sequences each having at least 80%, 85%, 90%
or 95% sequence identity with the heavy and light chain variable region sequences,
respectively, of antibody 4519.

Another embodiment of this aspect of the invention relates to a recombinant antibody
composition comprising at least first and second recombinant antibodies, wherein the first and
second antibodies are:
• antibodies 4518 and 4519, or humanized variants thereof;
• an antibody comprising the heavy chain CDR3 sequence of antibody 4518, and an
antibody comprising the heavy chain CDR3 sequence of antibody 4519;
• an antibody comprising the heavy and light chain CDR3 sequences of antibody 4518, and an antibody comprising the heavy and light chain CDR3 sequences of antibody 4519;
• an antibody comprising the heavy and light chain CDR1, CDR2 and CDR3 sequences of antibody 4518, and an antibody comprising the heavy and light chain CDR1, CDR2 and CDR3 sequences of antibody 4519;
• an antibody comprising the heavy and light chain variable region sequences of antibody 4518, and an antibody comprising the heavy and light chain variable region sequences of antibody 4519; or
• an antibody comprising heavy and light chain variable region sequences each having at least 80%, 85%, 90% or 95% sequence identity with the heavy and light chain variable region sequences, respectively, of antibody 4518, and an antibody comprising heavy and light chain variable region sequences each having at least 80%, 85%, 90% or 95% sequence identity with the heavy and light chain variable region sequences, respectively, of antibody 4519.

Preferred recombinant polyclonal anti-HER2 antibody compositions according to the invention thus include those wherein the first and second antibodies, respectively, are antibodies:

• 4380 and 4382,
• 4380 and 4383,
• 4380 and 4384,
• 4380 and 4385,
• 4380 and 4386,
• 4380 and 4387,
• 4380 and 4517,
• 4380 and 4518,
• 4380 and 4519,
• 4382 and 4384,
• 4382 and 4385,
• 4382 and 4386,
• 4382 and 4387,
• 4382 and 4517,
• 4382 and 4518,
• 4383 and 4384,
• 4383 and 4385,
• 4383 and 4386,
• 4383 and 4517,
• 4383 and 4518,
• 4383 and 4519,
or humanized variants thereof; or antibodies derived from the respective antibodies in each listed pair, e.g. wherein the first and second antibodies comprise the heavy chain CDR3 sequence of said antibodies, or wherein the first and second antibodies comprise the heavy chain and light chain CDR3 sequences of said antibodies, or wherein the first and second antibodies comprise the heavy chain and light chain variable region sequences of said antibodies or humanized variants thereof.

More preferred recombinant polyclonal anti-HER2 antibody compositions according to the invention are those that comprise two, three or four antibodies selected from among the following combinations:

- 4380 and 4382,
- 4380 and 4384,
- 4380 and 4518,
- 4382 and 4385,
- 4382 and 4518,
- 4383 and 4518,
- 4384 and 4385,
- 4384 and 4517,
- 4385 and 4518,
- 4380, 4382 and 4385,
- 4380, 4382 and 4517,
• 4380, 4382 and 4518,
• 4380, 4383 and 4384,
• 4380, 4384 and 4517,
• 4380, 4384 and 4518,
• 4380, 4384 and 4519,
• 4382, 4385 and 4518,
• 4382, 4387 and 4517,
• 4380, 4382, 4385 and 4518,
• 4380, 4384, 4385 and 4518;

or humanized variants thereof; or antibodies derived from the respective antibodies in each listed combination, e.g. wherein the individual antibodies comprise the heavy chain CDR3 sequence of said antibodies, or wherein the individual antibodies comprise the heavy chain and light chain CDR3 sequences of said antibodies, or wherein the individual antibodies comprise the heavy chain and light chain CDR1, CDR2 and CDR3 sequences of said antibodies, e.g. the heavy chain and light chain variable region sequences of said antibodies or humanized variants thereof.

Still more preferred recombinant polyclonal anti-HER2 antibody compositions according to the invention are those that comprise two or three antibodies selected from among the following combinations:
• 4382 and 4518,
• 4384 and 4517,
• 4382, 4385 and 4518,
• 4382, 4387 and 4517;

or humanized variants thereof; or antibodies derived from the respective antibodies in each listed combination, e.g. wherein the individual antibodies comprise the heavy chain CDR3 sequence of said antibodies, or wherein the individual antibodies comprise the heavy chain and light chain CDR3 sequences of said antibodies, or wherein the individual antibodies comprise the heavy chain and light chain CDR1, CDR2 and CDR3 sequences of said antibodies, e.g. the heavy chain and light chain variable region sequences of said antibodies or humanized variants thereof.

A further embodiment is a recombinant antibody composition comprising at least first and second recombinant anti-HER2 antibodies, wherein the first and second antibodies bind distinct epitopes of HER2, and wherein the first and second antibodies bind to the same epitopes as the respective antibodies in each composition listed above.

In a preferred aspect, the recombinant polyclonal anti-HER2 antibody composition of the invention comprises at least three anti-HER2 antibodies that bind distinct epitopes of HER2,
more preferably in which binding of the first and second antibodies to HER2 results in HER2 receptor internalization, and wherein binding of the third antibody to HER2 results in inhibition of ligand-induced phosphorylation of HER3. Antibody compositions of this type are believed to function by a mechanism where two of the antibodies upon binding to HER2 on the surface of a cell are capable of generating a cross-linked antibody-receptor lattice on the cell surface, thereby contributing to an increased level of HER2 receptor internalization, and where the third antibody binds HER2 such that it blocks heterodimerization between HER2 and HER3, thereby inhibiting HER3 phosphorylation.

An example of such a recombinant polyclonal antibody composition is one wherein the first anti-HER2 antibody is 4517 or 4518, the second anti-HER2 antibody is 4380, 4385 or 4387, and the third anti-HER2 antibody is 4382, 4383 or 4519; or humanized variants thereof; or antibodies derived from the respective antibodies, e.g. wherein the first, second and third antibodies comprise the heavy chain CDR3 sequence of said antibodies, or wherein the first, second and third antibodies comprise the heavy chain and light chain CDR3 sequences of said antibodies, or wherein the first, second and third antibodies comprise the heavy chain and light chain CDR1, CDR2 and CDR3 sequences of said antibodies, e.g. the heavy chain and light chain variable region sequences of said antibodies or humanized variants thereof.

Examples of preferred recombinant polyclonal antibody compositions of this type include compositions wherein the first and second anti-HER2 antibodies are 4518+4385 or 4517+4387, and the third anti-HER2 antibody is 4382; or humanized variants thereof; or antibodies derived from the respective antibodies, e.g. wherein the first, second and third antibodies comprise the heavy chain CDR3 sequence of said antibodies, or wherein the first, second and third antibodies comprise the heavy chain and light chain CDR3 sequences of said antibodies, or wherein the first, second and third antibodies comprise the heavy chain and light chain CDR1, CDR2 and CDR3 sequences of said antibodies, e.g. the heavy chain and light chain variable region sequences of said antibodies or humanized variants thereof.

In a particular embodiment, the invention thus relates to an antibody composition comprising first, second and third anti-HER2 antibodies that bind distinct epitopes of HER2, wherein:

(a) the first anti-HER2 antibody comprises:

the heavy chain CDR3 sequence (SEQ ID NO: 47) and the light chain CDR3 sequence (SEQ ID NO: 76) of antibody 4517, or

the heavy chain CDR3 sequence (SEQ ID NO: 50) and the light chain CDR3 sequence (SEQ ID NO: 78) of antibody 4518;

(b) the second anti-HER2 antibody comprises:
the heavy chain CDR3 sequence (SEQ ID NO: 53) and the light chain CDR3
sequence (SEQ ID NO: 80) of antibody 4380,
the heavy chain CDR3 sequence (SEQ ID NO: 65) and the light chain CDR3
sequence (SEQ ID NO: 88) of antibody 4385, or
the heavy chain CDR3 sequence (SEQ ID NO: 71) and the light chain CDR3
sequence (SEQ ID NO: 92) of antibody 4387; and
(c) the third anti-HER2 antibody comprises:
the heavy chain CDR3 sequence (SEQ ID NO: 56) and the light chain CDR3
sequence (SEQ ID NO: 82) of antibody 4382,
the heavy chain CDR3 sequence (SEQ ID NO: 59) and the light chain CDR3
sequence (SEQ ID NO: 84) of antibody 4383, or
the heavy chain CDR3 sequence (SEQ ID NO: 74) and the light chain CDR3
sequence (SEQ ID NO: 93) of antibody 4519.

In a preferred embodiment, the antibody composition comprises first, second and third anti-
HER2 antibodies that bind distinct epitopes of HER2, wherein:
(a) the first anti-HER2 antibody comprises:
CDR1, CDR2 and CDR3 of the heavy chain variable region (SEQ ID NO: 2) and
CDR1, CDR2 and CDR3 of the light chain variable region (SEQ ID NO: 4) of antibody
4517, or
CDR1, CDR2 and CDR3 of the heavy chain variable region (SEQ ID NO: 6) and
CDR1, CDR2 and CDR3 of the light chain variable region (SEQ ID NO: 8) of antibody
4518;
(b) the second anti-HER2 antibody comprises:
CDR1, CDR2 and CDR3 of the heavy chain variable region (SEQ ID NO: 10) and
CDR1, CDR2 and CDR3 of the light chain variable region (SEQ ID NO: 12) of antibody
4380,
CDR1, CDR2 and CDR3 of the heavy chain variable region (SEQ ID NO: 26) and
CDR1, CDR2 and CDR3 of the light chain variable region (SEQ ID NO: 28) of antibody
4385, or
CDR1, CDR2 and CDR3 of the heavy chain variable region (SEQ ID NO: 34) and
CDR1, CDR2 and CDR3 of the light chain variable region (SEQ ID NO: 36) of antibody
4387; and
(c) the third anti-HER2 antibody comprises:
CDR1, CDR2 and CDR3 of the heavy chain variable region (SEQ ID NO: 14) and
CDR1, CDR2 and CDR3 of the light chain variable region (SEQ ID NO: 16) of antibody
4382,
CDR1, CDR2 and CDR3 of the heavy chain variable region (SEQ ID NO: 18) and CDR1, CDR2 and CDR3 of the light chain variable region (SEQ ID NO: 20) of antibody 4383, or

CDR1, CDR2 and CDR3 of the heavy chain variable region (SEQ ID NO: 38) and CDR1, CDR2 and CDR3 of the light chain variable region (SEQ ID NO: 40) of antibody 4519.

In a specific preferred embodiment, the third anti-HER2 antibody comprises CDR1, CDR2 and CDR3 of the heavy chain variable region (SEQ ID NO: 14) and CDR1, CDR2 and CDR3 of the light chain variable region (SEQ ID NO: 16) of antibody 4382. In this case, the anti-HER2 antibody composition may e.g. be one wherein:

(a) the first anti-HER2 antibody comprises CDR1, CDR2 and CDR3 of the heavy chain variable region (SEQ ID NO: 6) and CDR1, CDR2 and CDR3 of the light chain variable region (SEQ ID NO: 8) of antibody 4518, and

the second anti-HER2 antibody comprises CDR1, CDR2 and CDR3 of the heavy chain variable region (SEQ ID NO: 26) and CDR1, CDR2 and CDR3 of the light chain variable region (SEQ ID NO: 28) of antibody 4385; or

(b) the first anti-HER2 antibody comprises CDR1, CDR2 and CDR3 of the heavy chain variable region (SEQ ID NO: 2) and CDR1, CDR2 and CDR3 of the light chain variable region (SEQ ID NO: 4) of antibody 4517, and

the second anti-HER2 antibody comprises CDR1, CDR2 and CDR3 of the heavy chain variable region (SEQ ID NO: 34) and CDR1, CDR2 and CDR3 of the light chain variable region (SEQ ID NO: 36) of antibody 4387.

In particular, the anti-HER2 antibody composition of the invention may be one wherein:

the first anti-HER2 antibody comprises CDR1, CDR2 and CDR3 of the heavy chain variable region (SEQ ID NO: 6) and CDR1, CDR2 and CDR3 of the light chain variable region (SEQ ID NO: 8) of antibody 4518, and

the second anti-HER2 antibody comprises CDR1, CDR2 and CDR3 of the heavy chain variable region (SEQ ID NO: 26) and CDR1, CDR2 and CDR3 of the light chain variable region (SEQ ID NO: 28) of antibody 4385, and

the third anti-HER2 antibody comprises CDR1, CDR2 and CDR3 of the heavy chain variable region (SEQ ID NO: 14) and CDR1, CDR2 and CDR3 of the light chain variable region (SEQ ID NO: 16) of antibody 4382.

Antibody 4382 binds to domain II of HER2, which is also the case for pertuzumab, and as described in Example 9 below, both 4382 and a pertuzumab analogue were able to block ligand-induced HER3 phosphorylation. Franklin et al. (Cancer Cell 2004, 5(4):317-28) disclose that pertuzumab binds HER2 near the center of domain II, sterically blocking a binding pocket
necessary for HER2-HER3 heterodimerization and signaling. It is therefore contemplated that, in addition to e.g. 4382 and pertuzumab, other anti-HER2 antibodies that bind to the dimerization interface in a similar manner will have a similar effect in blocking HER2-HER3 heterodimerization, and that such antibodies will be suitable for use as the third antibody in this aspect of the invention.

In experiments carried out in connection with the present invention it was found that while combinations of two or more anti-HER2 antibodies described herein are able to effectively lead to internalization and degradation of HER2, the cells in which HER2 is targeted by the antibodies have a tendency to upregulate production of HER3. It is believed that development of resistance to anti-HER2 monoclonal antibodies, e.g. trastuzumab, may be related to this upregulation of HER3, possibly by a mechanism in which the HER2-HER3 heterodimer represents a complete receptor that allows for oncogenic signaling even in the absence of HER2 homodimer signaling. Example 9 below describes antibody compositions of the invention comprising three anti-HER2 antibodies, of which two antibodies are capable of binding to HER2 so as to generate a cross-linked antibody-receptor lattice that results in HER2 internalization and degradation, and a third antibody binds HER2 such that HER2-HER3 heterodimerization is blocked, thereby preventing HER3 phosphorylation and HER3-mediated signaling. It is contemplated that these and similar anti-HER2 antibody compositions, i.e. containing a mixture of at least three anti-HER2 antibodies of which two antibodies result in internalization and degradation of HER2 and a third antibody blocks HER2-HER3 heterodimerization, may be highly advantageous in terms of blocking HER family phosphorylation and signaling. In particular, it is contemplated that compositions of this type may be able to provide a significant reduction in development of tumor cell resistance to anti-HER2 antibodies. Anti-HER2 antibody compositions of this type may thus be useful for both prevention and reduction of resistance to anti-HER2 antibody treatment as well as for treatment of tumors that have already become resistant to treatment with a monoclonal anti-HER2 antibody such as trastuzumab.

A further aspect of the invention thus relates to a method for inhibiting growth of tumor cells that are resistant or partially resistant to treatment with an anti-HER2 antibody, the method comprising contacting the cells with a recombinant polyclonal anti-HER2 antibody composition as defined above comprising two anti-HER2 antibodies that are capable of generating a cross-linked antibody-receptor lattice on the cell surface, thereby resulting in HER2 internalization, and a third antibody that binds HER2 such that it blocks heterodimerization between HER2 and HER3, thereby inhibiting ligand-induced phosphorylation of HER3. The tumor cells may e.g. have been previously treated with trastuzumab.
Tables 2 and 3 below show the CDR1, CDR2 and CDR3 amino acid sequences of the heavy chain (Table 2) and the light chain (Table 3) of various anti-HER2 antibodies according to the invention. The amino acid sequences of the heavy chain variable region and the light chain, including the light chain variable region, of these antibodies, as well as the encoding DNA sequences (optimized for expression in CHO cells) are provided in the appended sequence listing. See Table 1 above for an overview of the SEQ ID numbers for these sequences.

Table 2: Heavy chain CDR1, CDR2 and CDR3 sequences of selected anti-HER2 antibodies

<table>
<thead>
<tr>
<th>Antibody number</th>
<th>H CDR1</th>
<th>H CDR2</th>
<th>H CDR3</th>
<th>SEP ID NOs (CDR1/2/3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4517</td>
<td>GTFSSYG</td>
<td>ISGGGSYT</td>
<td>CARKGNYGNYGKLAYW</td>
<td>45-47</td>
</tr>
<tr>
<td>4518</td>
<td>GFNIKIDIF</td>
<td>IDPANDNP</td>
<td>CAGGPAYFDYW</td>
<td>48-50</td>
</tr>
<tr>
<td>4380/4381</td>
<td>GYTFNYYW</td>
<td>IHPSDSDV</td>
<td>CAKSYYDSAMDYW</td>
<td>51-53</td>
</tr>
<tr>
<td>4382</td>
<td>GYTFDTDYY</td>
<td>INPNNGGT</td>
<td>CVPGGLRSYFDYW</td>
<td>54-56</td>
</tr>
<tr>
<td>4383</td>
<td>GYTFDTDYS</td>
<td>INTATGEP</td>
<td>CTAWAYEPFDYW</td>
<td>57-59</td>
</tr>
<tr>
<td>4384</td>
<td>GYTFFSHW</td>
<td>INPSNGGT</td>
<td>CARAYYDFSFWVYW</td>
<td>60-62</td>
</tr>
<tr>
<td>4385</td>
<td>GYTFGTGYW</td>
<td>ILPGSGST</td>
<td>CARWGDGSFAYW</td>
<td>63-65</td>
</tr>
<tr>
<td>4386</td>
<td>GYTFSTYW</td>
<td>IHPNSGSI</td>
<td>CAGYNGPMDYW</td>
<td>66-68</td>
</tr>
<tr>
<td>4387</td>
<td>GYTFNYYW</td>
<td>ILPGGGYT</td>
<td>CARGSSGYPYFYWDW</td>
<td>69-71</td>
</tr>
<tr>
<td>4519</td>
<td>GYSFTDYN</td>
<td>IDPYNNGGT</td>
<td>CARGAGYALDYW</td>
<td>72-74</td>
</tr>
</tbody>
</table>

Table 3: Light chain CDR1, CDR2 and CDR3 sequences of selected anti-HER2 antibodies

<table>
<thead>
<tr>
<th>Antibody number</th>
<th>L CDR1</th>
<th>L CDR2</th>
<th>L CDR3</th>
<th>SEP ID NOs (CDR1/2/3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4517</td>
<td>ENIYSN</td>
<td>AAT</td>
<td>CQHWGTPWTF</td>
<td>75-76</td>
</tr>
<tr>
<td>4518</td>
<td>QDVIAA</td>
<td>WAS</td>
<td>CQHYSTPWF</td>
<td>77-78</td>
</tr>
<tr>
<td>4380/4381</td>
<td>KSVTSSGYSY</td>
<td>VAS</td>
<td>CHHSRELWTF</td>
<td>79-80</td>
</tr>
<tr>
<td>4382</td>
<td>QDVSSAA</td>
<td>WAS</td>
<td>CQHYTTPTF</td>
<td>81-82</td>
</tr>
<tr>
<td>4383</td>
<td>QDVFTA</td>
<td>SAS</td>
<td>CQHGIPWTF</td>
<td>83-84</td>
</tr>
<tr>
<td>4384</td>
<td>QDISNY</td>
<td>IS</td>
<td>CQQGNTLPETF</td>
<td>85-86</td>
</tr>
<tr>
<td>4385</td>
<td>QNVGTA</td>
<td>STS</td>
<td>CQQYRSYPFT</td>
<td>87-88</td>
</tr>
<tr>
<td>4386</td>
<td>SSVSY</td>
<td>RTS</td>
<td>CQQHYNYPETF</td>
<td>89-90</td>
</tr>
<tr>
<td>4387</td>
<td>QDVGTA</td>
<td>WAS</td>
<td>CQQYSSYPYMTF</td>
<td>91-92</td>
</tr>
<tr>
<td>4519</td>
<td>SSVSY</td>
<td>LTS</td>
<td>CQQWSSTPYTF</td>
<td>89,93</td>
</tr>
</tbody>
</table>

Another aspect of the invention relates to nucleic acid molecules comprising a nucleotide sequence that encodes an antibody of the invention, i.e. an antibody selected from the group consisting of antibodies 4380/4381, 4382, 4383, 4384, 4385, 4386, 4387, 4517, 4518 and 4519, or a humanized variant thereof; or encoding a heavy and/or light chain variable region sequence of such an antibody, or a heavy and/or light chain sequence having at least 80%, 85%, 90% or 95% sequence identity with such a heavy and/or light chain variable region sequence.
In one embodiment of this aspect of the invention, the nucleic acid molecule comprises a nucleotide sequence selected from the group consisting of SEQ ID NOS 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37 and 39, or sequences that encode the same amino acid sequence as any one of said nucleotide sequences.

A further aspect of the invention relates to an expression vector comprising a nucleic acid molecule as defined above. As noted above, expression vectors for use in the context of the present invention may be of any suitable type known in the art, e.g. a plasmid or a viral vector.

A still further aspect of the invention relates to a host cell comprising a nucleic acid molecule as defined above, wherein said host cell is capable of expressing an anti-HER2 antibody encoded by said nucleic acid molecule.

In a further aspect the binding specificities of any two individual antibodies disclosed herein may be combined in one bispecific binding molecule. Such a bispecific binding molecule preferably comprises the heavy and light chain CDR1, CDR2 and CDR3 sequences of the two selected antibodies. The bispecific binding molecule may be a dual variable domain antibody, i.e. wherein the two arms of the antibody comprise two different variable domains, or may be in the form of an antibody fragment such as a bispecific Fab fragment or a bispecific scFv.

Production of anti-HER2 antibodies and antibody compositions
An additional aspect of the invention relates to methods for producing an anti-HER2 antibody or a polyclonal anti-HER2 antibody composition of the invention. One embodiment of this aspect of the invention relates to a method for producing an anti-HER2 antibody as defined herein, comprising providing a host cell as defined above capable of expressing an anti-HER2 antibody, cultivating said host cell under conditions suitable for expression of the antibody, and isolating the resulting antibody.

In another embodiment, the invention relates to method for producing a recombinant polyclonal anti-HER2 antibody composition comprising at least first and second recombinant anti-HER2 antibodies as described herein, the method comprising providing at least a first host cell and a second host cell, wherein the first and second host cells each are capable of expressing a recombinant anti-HER2 antibody, cultivating the first and second host cells under conditions suitable for expression of the first and second antibodies, and isolating the resulting first and second antibodies.

An antibody or antibody composition of the present invention may be produced by methods generally known in the art for production of recombinant monoclonal or polyclonal antibodies. Thus, in the case of production of a single antibody of the invention, any method known in the
art for production of recombinant monoclonal antibodies may be used. For production of an antibody composition comprising two or more anti-HER2 antibodies of the invention, the individual antibodies may be produced separately, i.e. each antibody being produced in a separate bioreactor, or the individual antibodies may be produced together in single bioreactor. When the number of different antibodies in a composition is more than e.g. two or three, it will generally be preferably for reasons of cost efficiency to produce the antibodies together in a single bioreactor. On the other hand, when the composition only contains a small number of different antibodies, e.g. two, three or possibly four different antibodies, a decision to produce them separately in different bioreactors or together in a single bioreactor will have to be made based on the individual circumstances. If the antibody composition is produced in more than one bioreactor, the purified anti-HER2 antibody composition can be obtained by pooling the antibodies obtained from individually purified supernatants from each bioreactor. Various approaches for production of a polyclonal antibody composition in multiple bioreactors, where the cell lines or antibody preparations are combined at a later point upstream or prior to or during downstream processing, are described in WO 2009/129814 (incorporated by reference).

In the case of production of two or more individual antibodies in a single bioreactor, this may be performed e.g. as described in WO 2004/061104 or WO 2008/145133 (both of which are incorporated herein by reference). The method described in WO 2004/061104 is based on site-specific integration of the antibody coding sequence into the genome of the individual host cells, ensuring that the V_H and V_L protein chains are maintained in their original pairing during production. Furthermore, the site-specific integration minimizes position effects, and therefore the growth and expression properties of the individual cells in the polyclonal cell line are expected to be very similar. Generally, the method involves the following: i) a host cell with one or more recombinase recognition sites; ii) an expression vector with at least one recombinase recognition site compatible with that of the host cell; iii) generation of a collection of expression vectors by transferring the selected V_H and V_L coding pairs from the screening vector to an expression vector such that a full-length antibody or antibody fragment can be expressed from the vector (such a transfer may not be necessary if the screening vector is identical to the expression vector); iv) transfection of the host cell with the collection of expression vectors and a vector coding for a recombinase capable of combining the recombinase recognition sites in the genome of the host cell with that in the vector; v) obtaining/generating a polyclonal cell line from the transfected host cell and vi) expressing and collecting the antibody composition from the polyclonal cell line.

WO 2008/145133 describes an alternative approach to production of two or more different antibodies in a single bioreactor. This method involves generation of a polyclonal cell line capable of expressing a polyclonal antibody or other polyclonal protein comprising two or more
distinct members by a) providing a set of expression vectors, wherein each of said vectors comprises at least one copy of a distinct nucleic acid encoding a distinct member of the polyclonal protein, separately transfecting host cells with each of the expression vectors under conditions avoiding site-specific integration of the expression vectors into the genome of the cells, thereby obtaining two or more compositions of cells, each composition expressing one distinct member of the polyclonal protein, and c) mixing the at least two compositions of cells to obtain a polyclonal cell line. The methods of WO 2004/061104 and WO 2008/145133 both have the advantage of allowing all of the members constituting the recombinant polyclonal antibody to be produced in a single bioreactor and to be purified in a single process, thereby avoiding the need for separate production and purification processes for each antibody, while at the same time resulting in a surprisingly uniform production of the different antibodies. The method of WO 2008/145133 has the further advantage of providing an increased yield, since each production cell can carry multiple copies of the polynucleotide encoding a particular antibody.

The antibodies of the invention may be produced in various types of cells, including mammalian cells as well as non-mammalian eukaryotic or prokaryotic cells, such as plant cells, insect cells, yeast cells, fungi, \(E.\ coli \) etc. However, the antibodies are preferably produced in mammalian cells, for example CHO cells, COS cells, BHK cells, myeloma cells (e.g. Sp2/0 or NS0 cells), fibroblasts such as NIH 3T3, or immortalized human cells such as HeLa cells, HEK 293 cells or PER.C6 cells.

Methods for transfecting a nucleic acid sequence into a host cell are well-known in the art (see, e.g., Sambrook et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press, 3rd Edition, 2001). For site-specific integration e.g. as described in WO 2004/061104, a suitable host cell will comprise one or more recombinase recognition sites in its genome. In this case, a suitable expression vector comprises a recombination recognition site matching the recombinase recognition site(s) of the host cell. Further details regarding e.g. transfer of selected VH and VL coding pairs from a screening vector using the site-specific integration approach may be found in WO 2004/061104.

When an antibody composition of the invention comprising two or more anti-HER2 antibodies is to be produced in a single bioreactor, cell lines with similar proliferation rates and preferably similar antibody expression levels may be selected to generate a polyclonal cell line. The polyclonal cell line is then generated by mixing the individual cell lines in a predefined ratio. See WO 2009/129814, WO 2004/061104 and WO 2008/145133 (incorporated herein by reference) for further information and examples relating to generating polyclonal cell lines expressing a polyclonal antibodies as well as production of polyclonal antibodies using such cell lines.
One embodiment of the present invention is thus a polyclonal cell line capable of expressing two or more anti-HER2 antibodies of the present invention. A further embodiment is a polyclonal cell line wherein each individual cell is capable of expressing a single \(V_H \) and \(V_L \) pair, and the polyclonal cell line as a whole is capable of expressing a collection of \(V_H \) and \(V_L \) pairs, where each \(V_H \) and \(V_L \) pair encodes an anti-HER2 antibody.

A recombinant antibody composition of the present invention may be manufactured in a single bioreactor by culturing one ampoule from a polyclonal working cell bank (pWCB) in an appropriate medium for a period of time to allow for a sufficient level of antibody expression while maintaining substantial uniformity in the relative expression levels of the individual antibodies expressed by the polyclonal cell line. A production time of between approximately 15 and 50 days will normally be suitable. Culturing methods known in the art such as fed batch or perfusion culturing may be used. The culture medium is preferably a serum-free medium, more preferably a serum-free and protein free medium, e.g. a chemically defined medium. Such culture media are typically designed for growth of the particular cell type being used for production, and numerous suitable media formulations are commercially available.

The recombinant antibody composition is obtained from the culture medium and purified by conventional purification techniques. These may include, for example, affinity chromatography combined with subsequent purification steps such as ion-exchange chromatography, hydrophobic interaction chromatography and gel filtration, as these purification techniques have frequently been used for the purification of recombinant antibodies. When two or more antibodies are produced by a polyclonal cell line in a single bioreactor, the presence of all the individual members in the polyclonal antibody composition is typically assessed subsequent to purification, for example by ion-exchange chromatography. Characterization of a polyclonal antibody composition may be performed e.g. as described in WO 2006/007853 and WO 2009/065414 (incorporated herein by reference).

Therapeutic compositions

Another aspect of the invention is a pharmaceutical composition comprising as an active ingredient at least one anti-HER2 antibody of the invention, or an anti-HER2 recombinant Fab or another anti-HER2 recombinant antibody fragment composition. Preferably, the active ingredient of such a pharmaceutical composition is an anti-HER2 recombinant antibody composition as described above comprising two or more anti-HER2 antibodies. Such compositions are intended for amelioration, prevention and/or treatment of cancer. The pharmaceutical composition may be administered to a human or to a domestic animal or pet, but will typically be administered to humans.
The ratio between the individual antibodies in a therapeutic composition of the invention, or, in the case of individual antibodies of the invention being administered simultaneously, sequentially or separately, the ratio between the antibodies to be administered, will often be such that the antibodies are administered in equal amounts, but this need not necessarily be the case. Thus, a composition of the invention comprising two anti-HER2 antibodies will often contain them in a 1:1 ratio, and a composition comprising three anti-HER2 antibodies will often contain them in a 1:1:1 ratio. Depending on the characteristics of the individual antibodies, however, it may be desirable to use non-equal amounts of the different antibodies. Suitable ratios for the different anti-HER2 antibodies in compositions of the invention may be determined as described in WO 2010/040356 (incorporated herein by reference), which describes methods for identifying and selecting the optimal stoichiometric ratio between chemical entities in a combinatorial drug product, e.g. a polyclonal antibody composition, to obtain a combinatorial drug with optimal potency and efficacy.

In addition to at least one antibody of the invention or fragment thereof, the pharmaceutical composition will further comprise at least one pharmaceutically acceptable diluent, carrier or excipient. These may for example include preservatives, stabilizers, surfactants/wetting agents, emulsifying agents, solubilizers, salts for regulating the osmotic pressure and/or buffers. Solutions or suspensions may further comprise viscosity-increasing substances, such as sodium carboxymethylcellulose, carboxymethylcellulose, dextran, polyvinylpyrrolidone or gelatin. A suitable pH value for the pharmaceutical composition will generally be in the range of about 5.5 to 8.5, such as about 6 to 8, e.g. about 7, maintained where appropriate by use of a buffer.

Conventional pharmaceutical practice may be employed to provide suitable formulations or compositions to administer to e.g. cancer patients. The administration will typically be therapeutic, meaning that it is administered after a cancer condition has been diagnosed. Any appropriate route of administration may be employed, for example parenteral, intravenous, intra-arterial, subcutaneous, intramuscular, intraperitoneal, intranasal, aerosol, suppository or oral administration. Pharmaceutical compositions of the invention will typically be administered in the form of liquid solutions or suspensions, more typically aqueous solutions or suspensions, in particular isotonic aqueous solutions or suspensions.

The pharmaceutical compositions of the invention are prepared in a manner known per se, for example, by means of conventional dissolving, lyophilizing, mixing, granulating or confectioning processes. The pharmaceutical compositions may be formulated according to conventional pharmaceutical practice (see, for example, Remington: The Science and Practice of Pharmacy (21st edition), ed. A.R. Gennaro, 2005, Lippincott Williams & Wilkins,

As an alternative to a liquid formulation, the compositions of the invention may be prepared in lyophilized form comprising the at least one antibody alone or together with a carrier, for example mannitol, in which case the composition is reconstituted with a liquid such as sterile water prior to use.

The pharmaceutical compositions comprise from approximately 1% to approximately 95%, preferably from approximately 20% to approximately 90%, active ingredient. Pharmaceutical compositions according to the invention may e.g. be produced in unit dose form, such as in the form of ampoules, vials, suppositories, tablets or capsules. The formulations can be administered to human individuals in therapeutically or prophylactically effective amounts (e.g., amounts which prevent, eliminate, or reduce a pathological condition) to provide therapy for a cancerous disease or other condition. The preferred dosage of therapeutic agent to be administered is likely to depend on such variables as the severity of the cancer, the overall health status of the particular patient, the formulation of the compound excipients, and its route of administration.

Therapeutic uses of antibodies and compositions according to the invention

The anti-HER2 antibodies and pharmaceutical compositions according to the present invention may be used for the treatment or amelioration of a disease in a mammal, in particular treatment of cancer in humans. One embodiment of the invention is a method of preventing, treating or ameliorating one or more symptoms associated with cancer in a human or other mammal, comprising administering an effective amount of an anti-HER2 recombinant antibody composition of the present invention to said mammal.

A particular embodiment relates to a method for treating a human patient with a disorder characterized by overexpression of HER2, in particular cancer, the method comprising administering to said patient a recombinant anti-HER2 antibody as defined herein or, preferably, a recombinant antibody composition comprising at least two anti-HER2 antibodies as defined herein.

An additional embodiment relates to a method for reducing heterodimer formation between HER2 and other ErbB family receptors in cells that overexpress HER2, the method comprising contacting said cells with a recombinant anti-HER2 antibody as defined herein or, preferably, a recombinant antibody composition comprising at least two anti-HER2 antibodies as defined herein.
A further embodiment of the present invention is the use of an anti-HER2 recombinant antibody or antibody composition of the present invention for the preparation of a composition for the treatment, amelioration or prevention of one or more symptoms associated with cancer in a human or other mammal, e.g. for treatment of a human patient with a disorder characterized by overexpression of HER2.

Based upon a number of factors, including HER2 expression levels, the following tumor types in particular may be indicated for treatment with an antibody composition of the invention: breast, ovarian, gastric, colon, rectum, prostate, bladder, pancreas, head and neck, and non-small cell lung cancer. Antibody compositions of the invention are contemplated to be particularly applicable to treatment of cancers that overexpress HER2, for example certain epithelial cancers such as many breast cancers, ovarian cancers and gastric (stomach) cancers.

In connection with each of these indications, two main clinical pathways are contemplated, namely 1) adjunctive therapy in connection with at least one additional therapeutic treatment or 2) as a monotherapy. These two options are briefly discussed below.

1) Adjunctive therapy: In adjunctive therapy, also known as combination therapy, patients will be treated with antibodies of the present invention in combination with at least one additional therapeutic treatment, typically a chemotherapeutic or antineoplastic agent and/or radiation therapy. Alternatively or additionally, the anti-HER2 antibodies and compositions of the invention may also be used in combination with a different anti-cancer antibody, e.g. an antibody targeting EGFR or VEGF. The primary cancer targets listed above may thus be treated by administration of an antibody or composition of the invention in addition to standard first line and second line therapy. Protocol designs will address effectiveness as assessed e.g. by reduction in tumor mass as well as the ability to reduce usual doses of standard chemotherapy. Such dosage reductions may allow additional and/or prolonged therapy by reducing dose-related toxicity of the chemotherapeutic agent.

By combining the antibody compositions of the invention with agents known to induce terminal differentiation of cancer cells, the effect may be improved further. Such compounds may, for example, be selected from the group consisting of retinoic acid, trans-retinoic acids, cis-retinoic acids, phenylbutyrate, nerve growth factor, dimethyl sulfoxide, active form vitamin D3, peroxisome proliferator-activated receptor gamma, 12-O-tetradecanoylphorbol 13-acetate, hexamethylene-bis-acetamide, transforming growth factor-beta, butyric acid, cyclic AMP, and vesnarinone. Preferably, the compound is selected from the group consisting of retinoic acid, phenylbutyrate, all-trans-retinoic acid, active form vitamin D.
Pharmaceutical articles comprising an antibody composition of the invention and at least one chemotherapeutic or antineoplastic compound may be used as a combination treatment for the simultaneous, separate or successive administration in cancer therapy. The chemotherapeutic compound may by any chemotherapeutic agent suitable for treatment of the particular cancer in question, for example an agent selected from the group consisting of alkylating agents, for example platinum derivatives such as cisplatin, carboplatin or oxaliplatin; plant alkoids, for example paclitaxel, docetaxel or irinotecan; antitumor antibiotics, for example doxorubicin (adriamycin); topoisomerase inhibitors such as topotecan; and antimetabolites, for example fluorouracil or other fluoropyrimidines.

It is also contemplated that antibodies of the invention may be used in adjunctive therapy in connection with tyrosine kinase inhibitors (TKIs). These are synthetic, mainly quinazoline-derived, low molecular weight molecules that interact with the intracellular tyrosine kinase domain of receptors and inhibiting ligand-induced receptor phosphorylation by competing for the intracellular Mg-ATP binding site. Several tyrosine kinase inhibitors that block HER2 kinase are currently in clinical development. Some of these also target EGFR or other EGFR family receptors. For a review of these TKIs see Spector et al. (2007) Breast Cancer Res. 9(2): 205. Pharmaceutical articles comprising an antibody composition of the invention and at least one TKI targeting HER2 may thus also be used as a combination treatment for the simultaneous, separate or successive administration in cancer therapy.

In other embodiments, the antibody compositions of the present invention may be used in combination with other antibody therapeutics. Examples of these include e.g. antibodies against EGFR (Erbitux® or Vectibix®) or VEGF (Avastin®). In yet other embodiments, the antibody compositions of the present invention may be used in combination with an agent known to stimulate cells of the immune system, such combination treatment leading to enhanced immune-mediated enhancement of the efficacy of the antibody compositions of the invention. Examples of such immune-stimulating agents include recombinant interleukins (e.g. IL-21 and IL-2).

2) Monotherapy: In connection with the use of the antibodies in accordance with the present invention in monotherapy of tumors, the antibodies may be administered to patients without concurrent use of a chemotherapeutic or antineoplastic agent, i.e. as a stand-alone therapy.

Immunoconjugates

Another option for therapeutic use of the antibodies and compositions of the invention is in the form of immunoconjugates, i.e. antibodies conjugated to one or more anti-cancer agents. In particular in the case of compositions comprising two or more individual antibodies of the invention that bind distinct HER2 epitopes, it is contemplated that this may generate a cross-
linked antibody-receptor lattice on the cell surface, thereby potentially resulting in an increased level of receptor internalization as compared to the use of a single monoclonal antibody. Conjugation of one or more of the individual antibodies of such a composition to one or more anti-cancer agents therefore has the potential to specifically and effectively deliver the conjugated anti-cancer agents to the interior of tumor cells, thereby augmenting the effect of the anti-HER2 antibodies of the invention to provide an improved tumor cell-killing activity.

Various types of anti-cancer agents may be conjugated to the antibodies of the invention, including cytotoxic agents (including conventional chemotherapy agents and other small molecule anti-cancer drugs), cytokines (in which case the conjugate may be termed an "immunocytokine"), toxins (in which case the conjugate may be termed an "immunotoxin") and radionuclides, and a few immunoconjugates have already been approved for clinical use. These include Zevalin® (a murine anti-CD20 antibody conjugated to ^{90}Y), Bexxar® (a murine anti-CD20 antibody conjugated to ^{131}I) and Mylotarg® (a humanized anti-CD33 antibody conjugated to calicheamicin). Other immunoconjugates that have been tested in clinical trials include antibodies conjugated to e.g. doxorubicin or a maytansinoid compound. Immunotoxins that have been tested in clinical trials include several antibodies conjugated to a truncated Pseudomonas exotoxin A. An immunocytokine comprising a humanized EpCAM antibody conjugated to IL-2 has also been tested.

In the case of antibodies of the invention conjugated to cytotoxic agents, these may e.g. belong to any of the major classes of chemotherapy drugs, including alkylating agents (e.g. carboplatin, cisplatin, oxaliplatin), antimetabolites (e.g. methotrexate, capecitabine, gemcitabine), anthracyclines (e.g. bleomycin, doxorubicin, mitomycin-C) and plant alkaloids (e.g. taxanes such as docetaxel and paclitaxel, and vinca alkaloids such as vinblastine, vincristine and vinorelbine). Since the use of immunoconjugates specifically directs the anti-cancer agent to the tumors, and in particular to the interior of the tumor cells subsequent to internalization, immunoconjugates based on the anti-HER2 antibodies of the invention may advantageously be based on highly cytotoxic agents such as calicheamicin or maytansine derivatives, or on toxins such as bacterial toxins (e.g. Pseudomonas exotoxin A, diphtheria toxin) or plant toxins (e.g. ricin).

The conjugated anti-cancer agent in an immunoconjugate is generally linked to the antibody by means of a labile linker that is relatively stable in serum but which allows release of the agent when the immunoconjugate is internalized into the target cell. Suitable linkers include, for example, chemical linkers that are stable at neutral pH in serum but are subjected to acid hydrolysis in the mildly acidic conditions within the lysosomes subsequent to internalization, disulfide linkers that are cleaved by intracellular thiols, and peptide linkers that are stable in serum but which are subjected to enzymatic cleavage in intracellular compartments.
Various conjugation arrangements can be envisioned in compositions containing two or more antibodies of the invention. For example, with two antibodies it would be possible to conjugate the antibodies to two or more different anti-cancer drugs or to conjugate one antibody to a prodrug which is activated by an agent such as an enzyme conjugated to the other antibody. The general concept of antibody-directed enzyme prodrug therapy (ADEPT) has been described for monoclonal antibodies, where a prodrug is activated by an enzyme targeted to the tumor by a mAB-enzyme conjugate, but the present invention may provide an opportunity for tailoring this approach to particular conditions. It may thus be possible to specifically increase tumor cell killing while sparing or reducing damage to normal tissues.

Dose and Route of Administration

The antibodies and compositions of the invention will be administered in an effective amount for treatment of the condition in question, i.e. at dosages and for periods of time necessary to achieve a desired result. A therapeutically effective amount may vary according to factors such as the particular condition being treated, the age, sex and weight of the patient, and whether the anti-HER2 antibodies are being administered as a stand-alone treatment or in combination with one or more additional anti-cancer treatments.

An effective amount for tumor therapy may be measured by its ability to stabilize disease progression and/or ameliorate symptoms in a patient, and preferably to reverse disease progression, e.g. by reducing tumor size. The ability of an antibody or composition of the invention to inhibit cancer may be evaluated by *in vitro* assays, e.g. as described in the examples, as well as in suitable animal models that are predictive of the efficacy in human tumors. Suitable dosage regimens will be selected in order to provide an optimum therapeutic response in each particular situation, for example, administered as a single bolus or as a continuous infusion, and with possible adjustment of the dosage as indicated by the exigencies of each case.

While specific dosing for antibodies in accordance with the invention has not yet been determined, certain dosing considerations can be determined through comparison with a similar product (an anti-HER2 monoclonal antibody) that has been approved for therapeutic use. It is thus contemplated that an appropriate dosage of an antibody composition of the invention will be similar to the recommended dosage for the anti-HER2 monoclonal antibody trastuzumab (Herceptin®). Depending on the particular condition, Herceptin is administered
(by way of infusion) for treatment of breast cancer at either an initial dose of 4 mg/kg and subsequent weekly doses of 2 mg/kg, or an initial dose of 8 mg/kg and subsequent doses of 6 mg/kg every three weeks.

It is contemplated that a suitable dose of an antibody composition of the invention will be in the range of 0.1-100 mg/kg, such as about 0.5-50 mg/kg, e.g. about 1-20 mg/kg. The antibody composition may for example be administered in a dosage of at least 0.25 mg/kg, e.g. at least 0.5 mg/kg, such as at least 1 mg/kg, e.g. at least 1.5 mg/kg, such as at least 2 mg/kg, e.g. at least 3 mg/kg, such as at least 4 mg/kg, e.g. at least 5 mg/kg; and e.g. up to at most 50 mg/kg, such as up to at the most 30 mg/kg, e.g. up to at the most 20 mg/kg, such as up to at the most 15 mg/kg. Administration will normally be repeated at suitable intervals, e.g. once every week, once every two weeks, once every three weeks, or once every four weeks, and for as long as deemed appropriate by the responsible doctor, who may optionally increase or decrease the dosage as necessary.

Three distinct delivery approaches are contemplated for delivery of the antibodies of the invention. Conventional intravenous delivery will presumably be the standard delivery technique for the majority of tumors. However, in connection with tumors in the peritoneal cavity, such as tumors of the ovaries, biliary duct, other ducts, and the like, intraperitoneal administration may prove favourable for obtaining high dose of antibody at the tumor and to minimize antibody clearance. Similarly, certain solid tumors possess vasculature that is appropriate for regional perfusion. Regional perfusion may allow the obtaining of a high dose of the antibody at the site of a tumor and minimize short term clearance of the antibody.

As with any protein or antibody infusion-based therapeutic product, safety concerns are related primarily to (i) cytokine release syndrome, i.e. hypotension, fever, shaking, chills, (ii) the development of an immunogenic response to the protein (i.e. development of human antibodies by the patient to the recombinant antibody product), and (iii) toxicity to normal cells that express the HER2 receptor, e.g. many epithelial cells. Standard tests and follow-up procedures are utilised to monitor any such safety concerns.

All patent and non-patent references cited in the present application are hereby incorporated by reference in their entirety.

The invention will be further described in the following non-limiting examples.
EXAMPLES

Example 1: Cloning of anti-HER2 antibodies

Immunization

Female BALB/c, strain A, or C57 B16 mice (8-10 weeks old) were used for immunizations by injections with different purified proteins in addition to HER2-overexpressing cells.

Commercially available HER2 protein (R&D Systems cat.#1129-ER) was used for the protein immunizations. The human breast cancer cell line AU565 (ATCC, CRL-2351) was used for the cell-based immunizations. Cells were cultured in RPMI-1640 medium supplemented with 10% FBS (Fetal Bovine Serum) and 1% Penicillin/Streptomycin (P/S). Before each immunization the cells were washed in PBS, trypsinized with TrypLE and resuspended in growth medium. The cell suspensions were subsequently washed twice in PBS by centrifugation at 250xg for 5 min, followed by dislodging and resuspension in 15 ml sterile PBS.

Cells or antigen were diluted in PBS and then mixed 1:1 with Freund's Adjuvant. Adjuvant is used to enhance and modulate the immune response. For the first immunizations Complete Freund's Adjuvant (CFA) was used, whereas Incomplete Freund's Adjuvant (IFA) was used for the subsequent immunizations. IFA is an oil-in-water emulsion composed of mineral oils, and CFA is IFA to which heat-killed, dried Mycobacterium species are added. Both adjuvants have a depot effect. CFA gives rise to long-term persistence of the immune response and is used for the first immunizations to boost the immune response and IFA is used for subsequent immunizations. The emulsions were tested by adding a drop on the surface of a glass with water. If the drop remains as one drop, the emulsion is stable and the injections can be performed. Only stable emulsions were administered to mice.

Depending on the schedule (see Table 4), 25-100 µg antigen or 10⁷ cells were used for each injection. In total, mice received 4 injections. All mice were injected with either 300 µl or 200 µl emulsion. Depending on the schedule, injections were performed subcutaneously (s.c), intraperitoneally (i.p.) or intravenously (i.v.).

At termination, the mice were sacrificed by cervical dislocation, and the spleens were removed and transferred to a 74 µm cell strainer (Corning#136350-3479). The cells were macerated through the filter, resuspended in cold RPMI-1640 with 10% FBS and centrifuged at 300xg for 5 minutes. The cell pellet was resuspended in RPMI-1640 with 1% FBS, filtered through a 50 µm syringe filter (BD# 340603) and collected by centrifugation. The cell pellet was cryopreserved after resuspension in FCS (fetal calf serum) with 10% DMSO and frozen cells were stored at -80°C until FACS sorting.
FACS sorting of murine plasma cells

Vials with frozen splenocytes were thawed at 37°C and transferred to 15 ml tubes with ice still present. 10 ml ice-cold RPMI, 10% FBS was added one drop at a time to the tube while swirling. After one wash in 10 ml FACS PBS, 5 ml FCS PBS was added before filtering the cells through 50 µm Filcon. Cells were then pelleted and resuspended in 1 ml PBS with 2% FBS (final volume) and stained with anti-CD43-FITC and anti-CD138-PE according to the specific dilution to a final concentration of approx. 5 µg/ml. Cells were incubated at 4°C for 20 min in the dark. Subsequently, cells were washed 2 times with 2 ml FACS buffer. Up to 15 ml FACS PBS was added. Propidium iodide (PI) was added at 1:100 (1 part PI to 100 parts FACS PBS buffer), and cells were subsequently sorted into 96-well PCR plates containing PCR reaction buffer (see below), and spun down for 2 min at 400xg before the plates were frozen at -80°C. Plasma cells were gated as CD43-positive/CD-138 positive.

Linkage of cognate V_H and V_L pairs

Linkage of V_H and V_L coding sequences was performed on the single cells gated as plasma cells, facilitating cognate pairing of the V_H and V_L coding sequences. The procedure utilized a two step PCR procedure based on a one-step multiplex overlap-extension RT-PCR followed by a nested PCR. The primer mixes used in the present example only amplify kappa light chains. Primers capable of amplifying lambda light chains could, however, be added to the multiplex primer mix and nested PCR primer mix if desired. If lambda primers are added, the sorting procedure should be adapted such that lambda positive cells are not excluded. The principle for linkage of cognate V_H and V_L sequences is described in detail in WO 2005/042774 and in Meijer et al. (2006) *J Mol Biol.* 358(3): 764-72.

96-well PCR plates were thawed and the sorted cells served as template for the multiplex overlap-extension RT-PCR. The sorting buffer added to each well before the single-cell sorting contained reaction buffer (OneStep RT-PCR Buffer; Qiagen), primers for RT-PCR (see Table 5) and RNase inhibitor (RNasin, Promega). This was supplemented with OneStep RT-PCR₅Enzyme Mix (25x dilution; Qiagen) and dNTP mix (200 µM each) to obtain the given final concentration in a 20 µl reaction volume. The plates were incubated for 30 min at 55°C to allow for reverse transcription (RT) of the RNA from each cell. Following the RT, the plates were subjected to the following PCR cycle: 10 min at 94°C, 35x(40 sec at 94°C, 40 sec at 60°C, 5 min at 72°C), 10 min at 72°C.

The PCR reactions were performed in a H20BIT Thermal Cycler with a Peel Seal Basket for 24 96-well plates (ABgene) to facilitate a high-throughput. The PCR plates were stored at -20°C after cycling.
For the nested PCR step, 96-well PCR plates were prepared with the following mixture in each well (20 µl reactions) to obtain the given final concentration: 1 x FastStart buffer (Roche), dNTP mix (200 µM each), nested primer mix (see Table 6), Phusion DNA Polymerase (0.08 U; Finnzymes) and FastStart High Fidelity Enzyme Blend (0.8 U; Roche). As template for the nested PCR, 1 µl was transferred from the multiplex overlap-extension PCR reactions. The nested PCR plates were subjected to the following thermocycling: 35x(30 sec at 95°C, 30 sec at 60°C, 90 sec at 72°C), 10 min at 72°C. Randomly selected reactions were analyzed on a 1% agarose gel to verify the presence of an overlap-extension fragment of approximately 890 basepairs (bp). The plates were stored at -20°C until further processing of the PCR fragments.

The repertoires of linked V_H and V_L coding pairs from the nested PCR were pooled, without mixing pairs from different donors, and were purified by preparative 1% agarose gel electrophoresis. The human kappa constant light chain encoding sequence was spliced by overlap extension to the V_L coding region of the pooled PCR products of linked V_H and V_L coding pairs as described in WO 2008/104183. The human kappa constant light chain encoding sequence was amplified from a plasmid containing the coding sequence of a human antibody with a kappa light chain in a reaction containing: Phusion Enzyme (2 U; Finnzymes), 1 x Phusion buffer, dNTP mix (200 µM each), hKClForw-v2 primer and Kappa3' primer (Table 5), and plasmid template pLL138 (10 ng/µl) in a total volume of 50 µl. The reaction was subjected to the following thermocycling: 25x(30 sec at 95°C, 30 sec at 55°C, 45 sec at 72°C), 10 min at 72°C. The resulting PCR fragment was purified by preparative 1% agarose gel electrophoresis.

The purified pooled PCR fragments from each repertoire were spliced to the amplified and purified PCR fragment of the human kappa constant encoding region (SEQ ID NO:41) by the following splicing by overlap extension PCR (50 µl total volume) containing: human kappa constant encoding region fragment (1.4 ng/µl), purified pooled PCR fragment (1.4 ng/µl), Phusion DNA Polymerase (0.5 U; Finnzymes) and FastStart High Fidelity Enzyme Blend (0.2 U; Roche), 1 x FastStart buffer (Roche), dNTP mix (200 µM each), mhKCrev primer and mJH set primers (see Table 7). The reaction was subjected to the following thermocycling: 2 min at 95°C, 25x(30 sec at 95°C, 30 sec at 55°C, 1 min at 72°C), 10 min at 72°C. The resulting PCR fragment (approx. 4518 bp) was purified by preparative 1% agarose gel electrophoresis.

Insertion of cognate V_H and V_L coding pairs into a screening vector

In order to identify antibodies with binding specificity to HER2, the V_H and V_L coding sequences obtained were expressed as full-length antibodies. This involved insertion of the repertoire of V_H and V_L coding pairs into an expression vector and transfection into a host cell.
A two-step cloning procedure was employed for generation of a repertoire of expression vectors containing the linked \(V_H \) and \(V_L \) coding pairs. Statistically, if the repertoire of expression vectors contains ten times as many recombinant plasmids as the number of cognate paired \(V_H \) and \(V_L \) PCR products used for generation of the screening repertoire, there is a 99% likelihood that all unique gene pairs are represented. Thus, if 400 overlap-extension \(V \)-gene fragments were obtained, a repertoire of at least 4000 clones would be generated for screening to have a 99% likelihood of obtaining all unique gene pairs.

Briefly, the purified PCR product of the repertoires of linked \(V_H \) and \(V_L \) coding pairs, spliced to the human kappa constant coding region, were cleaved with \(XhoI \) and \(NheI \) DNA endonucleases at the recognition sites introduced into the termini of PCR products. The cleaved and purified fragments were ligated into an \(XhoI/NheI \) digested mammalian IgG expression vector, OO-VP-002 (described in WO 2008/104183), by standard ligation procedures. The ligation mix was electroporated into \(E. coli \) and added to 2xYT plates containing the appropriate antibiotic and incubated at 37°C over night. The amplified repertoire of vectors was purified from cells recovered from the plates using standard DNA purification methods (Qiagen). The plasmids were prepared for insertion of promoter-leader fragments by cleavage using \(Ascl \) and \(NheI \) endonucleases. The restriction sites for these enzymes were located between the \(V_H \) and \(V_L \) coding gene pairs. Following purification of the vector, an \(Ascl-NheI \) digested bi-directional mammalian promoter-leader fragment was inserted into the \(Ascl \) and \(NheI \) restriction sites by standard ligation procedures. The ligated vector was amplified in \(E. coli \) and the plasmid was purified using standard methods. The generated repertoire of screening vectors was transformed into \(E. coli \) by conventional procedures. Colonies obtained were consolidated into 384-well master plates and stored.

Screening for binding to HER2 overexpressing cells

Initially the antibody-libraries were screened for binders to the HER2-overexpressing breast cancer cell line (SKBR-3) using confocal microscopy. 5000 SKBR-3 cells were seeded into each well of 384-well cell carrier plates (Perkin Elmer, cat.# 6007439) and allowed to attach overnight. 10 \(\mu l \) of antibody supernatant was transferred to each well and plates were incubated for 2 hours, after which the media in the wells was discarded and 30 \(\mu l \) new media containing 2 \(\mu g/ml \) of Alexa-488 labeled goat anti-human IgG (H+L, Invitrogen cat.# A11013), 2 \(\mu g/\mu l \) CellMask Blue (Invitrogen cat.# H34558) and 1 \(\mu M \) Hoechst 33342 (Invitrogen cat.# H3570) was added to each well and plates were incubated for another 30 minutes. The media was again discarded and the cells were washed and fixed with 2% formaldehyde solution (Aldrich cat.# 533998). The level of fluorescence was then measured using an OPERA high throughput confocal microscope (Perkin Elmer).
The data from the confocal screening identified 266 positive hits corresponding to 3.46% of the total clones.

Sequence analysis and clone selection

The clones identified as binding to SKBR-3 cells were retrieved from the original master plates (384-well format) and consolidated into new plates. DNA was isolated from the clones and submitted for DNA sequencing of the V-genes. The sequences were aligned and all the unique clones were selected. Multiple alignments of obtained sequences revealed the uniqueness of each particular clone and allowed for identification of unique antibodies. Following sequence analysis of 266 clones, more than 70 genetically distinct antibody sequence clusters were identified. Each cluster of related sequences has probably been derived through somatic hypermutations of a common precursor clone. Overall, one to two clones from each cluster were chosen for validation of sequence and specificity. Sequences of selected antibody variable regions are shown in the appended sequence listing. As explained above, the light chain sequences shown in the sequence listing all include the same human kappa constant region, which starts with amino acids -TVAAP- and ends at the C-terminal -NRGEC.

Sequence and specificity validation

In order to validate the antibody encoding clones, DNA plasmid was prepared and transfection of Freestyle CHO-S cells (Invitrogen) at 2 ml scale was performed for expression. The supernatants were harvested 96 hours after transfection. Expression levels were estimated with standard anti-IgG ELISA, and the specificity was determined by HER2 specific ELISA and OPERA analysis of antibody binding to cells.

Briefly, for the ELISA, Nunc Maxisorb plates (cat.# 464718) were coated with 1 µg/ml HER2 protein (R&D Systems cat.#1129-ER), diluted in PBS at 4°C over night. Prior to blocking in 50 µl 2% Milk-PBS-T the plates were washed once with PBS + 0.05% Tween 20 (PBS-T). The plates were washed once with PBS-T and 20 µl of 2% milk-PBS-T, and 5 µl supernatants from Freestyle CHO-S transfectants (see below) were added and incubated for 1.5 hours at room temperature, after which the plates were washed once with PBS-T, 20 µl per well. Secondary antibody (HRP-Goat-anti-human kappa light chain, Serotec, cat.# STAR 100P) diluted 1:25000 in 2% milk-PBS-T was added to detect the antibodies bound to the wells and incubated for 1 hour at room temperature. The plates were washed once in PBS-T before addition of 25 µl substrate (Kem-En-Tec Diagnostics, cat.# 4518) that was incubated for 5 min. 25 µl 1M sulphuric acid was added after the incubation to stop the reaction. Specific signal was detected on an ELISA reader at 450 nm. 178 of the 266 clones found to bind to SKBR-3 cells were also positive in the HER2 ELISA.
Table 4. Immunization schedules used to generate starting material for anti-HER2 cloning

<table>
<thead>
<tr>
<th>Mouse group</th>
<th>Strain</th>
<th>Injection 1</th>
<th>Injection 2</th>
<th>Injection 3</th>
<th>Injection 4</th>
<th>Termination</th>
</tr>
</thead>
<tbody>
<tr>
<td>102</td>
<td>Balb/c</td>
<td>Day 1</td>
<td>Day 35</td>
<td>Day 56</td>
<td>Day 70</td>
<td>Day 73</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25 µg rhHER2</td>
<td>25 µg rhHER2</td>
<td>25 µg rhHER2</td>
<td>25 µg rhHER2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(R&D Systems</td>
<td>(R&D Systems</td>
<td>(R&D Systems</td>
<td>(R&D Systems</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1129-ER)</td>
<td>1129-ER)</td>
<td>1129-ER)</td>
<td>1129-ER)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CFA s.c.</td>
<td>IFA s.c.</td>
<td>IFA s.c.</td>
<td>IFA s.c.</td>
<td></td>
</tr>
<tr>
<td>122</td>
<td>Balb/c</td>
<td>Day 1</td>
<td>Day 28</td>
<td>Day 42</td>
<td>Day 56</td>
<td>Day 59</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1x10⁷ AU565</td>
<td>100 µg</td>
<td>1x10⁷ AU565</td>
<td>100 µg</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>cells</td>
<td>rhHER2 (R&D</td>
<td>cells IFA</td>
<td>rhHER2 (R&D</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>IFA s.c.</td>
<td></td>
<td>IFA s.c.</td>
<td></td>
</tr>
<tr>
<td>123</td>
<td>C57/</td>
<td>Day 1</td>
<td>Day 28</td>
<td>Day 42</td>
<td>Day 56</td>
<td>Day 59</td>
</tr>
<tr>
<td>B16</td>
<td></td>
<td>1x10⁷ AU565</td>
<td>100 µg</td>
<td>1x10⁷ AU565</td>
<td>100 µg</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>cells</td>
<td>rhHER2 (R&D</td>
<td>cells IFA</td>
<td>rhHER2 (R&D</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>IFA s.c.</td>
<td></td>
<td>IFA s.c.</td>
<td></td>
</tr>
<tr>
<td>124</td>
<td>Balb/c</td>
<td>Day 1</td>
<td>Day 28</td>
<td>Day 42</td>
<td>Day 56</td>
<td>Day 59</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100 µg</td>
<td>100 µg</td>
<td>100 µg</td>
<td>100 µg</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>rhHER2 (R&D</td>
<td>rhHER2 (R&D</td>
<td>rhHER2 (R&D</td>
<td>rhHER2 (R&D</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CFA s.c.</td>
<td>IFA s.c.</td>
<td>IFA s.c.</td>
<td>IFA s.c.</td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>C57/</td>
<td>Day 1</td>
<td>Day 28</td>
<td>Day 42</td>
<td>Day 56</td>
<td>Day 61</td>
</tr>
<tr>
<td>B16</td>
<td></td>
<td>100 µg</td>
<td>100 µg</td>
<td>100 µg</td>
<td>100 µg</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>rhHER2 (R&D</td>
<td>rhHER2 (R&D</td>
<td>rhHER2 (R&D</td>
<td>rhHER2 (R&D</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CFA s.c.</td>
<td>IFA s.c.</td>
<td>IFA s.c.</td>
<td>IFA s.c.</td>
<td></td>
</tr>
</tbody>
</table>
Table 5. RT-PCR multiplex overlap-extension primer mix

<table>
<thead>
<tr>
<th>Primer name</th>
<th>Conc. (nM)</th>
<th>Sequence</th>
<th>SEQ ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>mHCrev</td>
<td>0.2</td>
<td>GACGAGGGMTCCAKAGTTCCADKT</td>
<td>105</td>
</tr>
<tr>
<td>mKappa</td>
<td>0.2</td>
<td>GACAGATGGTCAGCCACAGTTCCAGTTTCTGGTCTTGC</td>
<td>106</td>
</tr>
<tr>
<td>mVH</td>
<td>0.04</td>
<td>TATTTTGGGATAGCTAGGGCGATTTTCTGGTCTTGC</td>
<td>107</td>
</tr>
<tr>
<td>mVH A</td>
<td>0.04</td>
<td>TATTTTGGGATAGCTAGGGCGATTTTCTGGTCTTGC</td>
<td>108</td>
</tr>
<tr>
<td>mVH B</td>
<td>0.04</td>
<td>TATTTTGGGATAGCTAGGGCGATTTTCTGGTCTTGC</td>
<td>109</td>
</tr>
<tr>
<td>mVH C</td>
<td>0.04</td>
<td>TATTTTGGGATAGCTAGGGCGATTTTCTGGTCTTGC</td>
<td>100</td>
</tr>
<tr>
<td>mVH D</td>
<td>0.04</td>
<td>TATTTTGGGATAGCTAGGGCGATTTTCTGGTCTTGC</td>
<td>101</td>
</tr>
<tr>
<td>mVH E</td>
<td>0.04</td>
<td>TATTTTGGGATAGCTAGGGCGATTTTCTGGTCTTGC</td>
<td>102</td>
</tr>
<tr>
<td>mVH F</td>
<td>0.04</td>
<td>TATTTTGGGATAGCTAGGGCGATTTTCTGGTCTTGC</td>
<td>103</td>
</tr>
<tr>
<td>mVH G</td>
<td>0.04</td>
<td>TATTTTGGGATAGCTAGGGCGATTTTCTGGTCTTGC</td>
<td>104</td>
</tr>
</tbody>
</table>

Table 6. Nested primer set

<table>
<thead>
<tr>
<th>Primer name</th>
<th>Conc. (nM)</th>
<th>Sequence</th>
<th>SEQ ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>mHCrev</td>
<td>0.2</td>
<td>GACGAGGGMTCCAKAGTTCCADKT</td>
<td>105</td>
</tr>
<tr>
<td>mKappa</td>
<td>0.2</td>
<td>GACAGATGGTCAGCCACAGTTCCAGTTTCTGGTCTTGC</td>
<td>106</td>
</tr>
<tr>
<td>mVH</td>
<td>0.04</td>
<td>TATTTTGGGATAGCTAGGGCGATTTTCTGGTCTTGC</td>
<td>107</td>
</tr>
<tr>
<td>mVH A</td>
<td>0.04</td>
<td>TATTTTGGGATAGCTAGGGCGATTTTCTGGTCTTGC</td>
<td>108</td>
</tr>
<tr>
<td>mVH B</td>
<td>0.04</td>
<td>TATTTTGGGATAGCTAGGGCGATTTTCTGGTCTTGC</td>
<td>109</td>
</tr>
<tr>
<td>mVH C</td>
<td>0.04</td>
<td>TATTTTGGGATAGCTAGGGCGATTTTCTGGTCTTGC</td>
<td>100</td>
</tr>
<tr>
<td>mVH D</td>
<td>0.04</td>
<td>TATTTTGGGATAGCTAGGGCGATTTTCTGGTCTTGC</td>
<td>101</td>
</tr>
<tr>
<td>mVH E</td>
<td>0.04</td>
<td>TATTTTGGGATAGCTAGGGCGATTTTCTGGTCTTGC</td>
<td>102</td>
</tr>
<tr>
<td>mVH F</td>
<td>0.04</td>
<td>TATTTTGGGATAGCTAGGGCGATTTTCTGGTCTTGC</td>
<td>103</td>
</tr>
<tr>
<td>mVH G</td>
<td>0.04</td>
<td>TATTTTGGGATAGCTAGGGCGATTTTCTGGTCTTGC</td>
<td>104</td>
</tr>
</tbody>
</table>

K=G/T, M=A/C; Cone. - final concentration.
Table 7. Kappa constant splicing primer set

<table>
<thead>
<tr>
<th>Primer</th>
<th>Conc. (nM)</th>
<th>Sequence</th>
<th>SEQ ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human kappa constant amplification</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hKForw-</td>
<td>0.2</td>
<td>GAACTGTGGCTGACCATCTGTC</td>
<td>110</td>
</tr>
<tr>
<td>Kappa3'</td>
<td>0.2</td>
<td>ACCGCTCCACCAGGCGAGCTTTATATAGCTCTCCCGTGG</td>
<td>111</td>
</tr>
<tr>
<td>Splicing by overlap extension</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mhKCre</td>
<td>0.2</td>
<td>ACCGCTCCACCGGCGCGATTATACCTGTCTCTCCCGTGGAGCCTTT</td>
<td>112</td>
</tr>
<tr>
<td>mJH set</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mJH1</td>
<td>0.2</td>
<td>GAGGGCGCTCGAGACGTGGACGGTGTTCCC</td>
<td>113</td>
</tr>
<tr>
<td>mJH2</td>
<td>0.2</td>
<td>GAGGGCGCTGACAGGAGTGAGTGGGCC</td>
<td>114</td>
</tr>
<tr>
<td>mJH3</td>
<td>0.2</td>
<td>GAGGGCGCTCGAGACAGGAGTGGCTCCCGG</td>
<td>115</td>
</tr>
<tr>
<td>mJH4</td>
<td>0.2</td>
<td>GAGGGCGCTCGAGACAGGAGTGGCTCCCGG</td>
<td>116</td>
</tr>
</tbody>
</table>

Example 2: Functional characterization of selected anti-HER2 antibodies

41 unique antibodies were selected for functional testing using a viability assay. Cellular damage will inevitably result in loss of the ability of the cell to maintain and provide energy for metabolic cell function and growth. Metabolic activity assays are based on this premise, usually measuring mitochondrial activity. The cell proliferation reagent WST-1 (Roche Cat. No. 11 644 807 001) is a ready-to-use substrate which measures the metabolic activity of viable cells. It is assumed that the metabolic activity correlates with the number of viable cells. In this example the WST-1 assay was used to measure the number of metabolically active cells after treatment of cancer cells with 2 µg/ml of different anti-HER2 antibodies for 96 hours.

The cancer cell lines SKBR-3 (ATCC cat.# HTB-30), BT-474 (ATCC cat.# HTB-20), NCI-N87 (ATCC cat.# CRL-5822) and MDA-453 (ATCC cat.# HTB-130), were seeded into 96-well plates at a concentration of 1000 cells/well in media containing 2 µg/ml of anti-HER2 antibody. The plates were incubated for 4 days in a humidified incubator at 37°C. 20 µl of WST-1 reagent was then added per well and the plates were incubated for one hour at 37°C. Plates were then transferred to an orbital plate shaker and left for another hour. The absorbance was measured at 450 nm and 620 nm (reference wavelength) on an ELISA reader. The difference in the levels of metabolically active cells (MAC) was calculated as percent of the control supernatants as follows:

\[
\%MAC = \left(1 - \frac{(OD_{\text{Exp.}} - OD_{\text{Media}})}{(OD_{\text{Untreat.}} - OD_{\text{Media}})}\right) \times 100
\]

The results of this analysis for selected antibodies are shown in Table 8 below, where data is provided for the individual cancer cell lines as well as the average and standard deviation. It is
evident from these results that HER2 antibodies with a range of functional activities have been identified and that the antibodies in the repertoire exhibit an inhibitory effect on all or most of the tested cancer cell lines.

Table 8. Percent metabolically active cells (MAC) in the presence of anti-HER2 antibodies

<table>
<thead>
<tr>
<th>Antibody No.</th>
<th>SKBR-3</th>
<th>BT-474</th>
<th>N87</th>
<th>MDA-453</th>
<th>Average</th>
<th>Std. dev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>3165*</td>
<td>83</td>
<td>78</td>
<td>83</td>
<td>108</td>
<td>88</td>
<td>14</td>
</tr>
<tr>
<td>4382</td>
<td>94</td>
<td>68</td>
<td>88</td>
<td>90</td>
<td>85</td>
<td>12</td>
</tr>
<tr>
<td>4383</td>
<td>91</td>
<td>98</td>
<td>64</td>
<td>115</td>
<td>92</td>
<td>21</td>
</tr>
<tr>
<td>4384</td>
<td>88</td>
<td>66</td>
<td>61</td>
<td>78</td>
<td>73</td>
<td>12</td>
</tr>
<tr>
<td>4385</td>
<td>95</td>
<td>95</td>
<td>82</td>
<td>84</td>
<td>89</td>
<td>7</td>
</tr>
<tr>
<td>4386</td>
<td>87</td>
<td>89</td>
<td>47</td>
<td>98</td>
<td>80</td>
<td>23</td>
</tr>
<tr>
<td>4387</td>
<td>82</td>
<td>82</td>
<td>65</td>
<td>97</td>
<td>81</td>
<td>13</td>
</tr>
<tr>
<td>4517</td>
<td>94</td>
<td>83</td>
<td>69</td>
<td>81</td>
<td>82</td>
<td>10</td>
</tr>
<tr>
<td>4518</td>
<td>99</td>
<td>79</td>
<td>81</td>
<td>102</td>
<td>90</td>
<td>12</td>
</tr>
<tr>
<td>4519</td>
<td>98</td>
<td>79</td>
<td>105</td>
<td>96</td>
<td>95</td>
<td>11</td>
</tr>
</tbody>
</table>

* Ab 4380/4381 with Cys in position 40 of the light chain

Example 3: Determination of overlapping epitopes

For selection of mixtures containing anti-HER2 antibodies which exert a synergistic effect in combination, the antibodies in each mixture should bind distinct non-overlapping epitopes. Therefore, to investigate the degree of overlap between the anti-HER2 antibodies, epitope binning by Surface Plasmon Resonance (SPR) was performed. SPR analysis was performed on the ProteOn™ XPR 36 Protein Interaction Array System (Biorad Laboratories). This system allows for measurement of six interactions in two dimensions (defined as L and A) yielding a total of 36 possible interactions simultaneously.

Setup

A ProteOn GLC sensor Chip (BioRad) was conjugated with 3600-3620 Resonance Units (RU) of anti-Fc antibody (Biacore, GE Healthcare) injected into flow cells L1 to L6 using the ProteOn amine coupling kit (Biorad) according to the manufacturer’s instructions. Using a flow rate of 25 µl/min, 125 µl Fc-conjugated HER2 (HER2-Fc) at a concentration of 50nM was injected and captured on flow cells L1-L5, while running buffer (for composition see the reagents section below) was injected similarly into flow cell L6. In order to block free anti-Fc sites prior to injection of anti-HER2 antibodies, 125 µl of blocking monoclonal antibody (mAb) Synagis® (Abbott) was injected at a concentration of 0.33 mg/ml into flow cells L1 to L5, and running buffer was injected into L6, all at a flow rate of 25 µl/min. Blocking mAb was allowed to dissociate for at least 300 seconds prior to injection of 100 µl anti-HER2 antibody at a concentration of 50nM and a flow rate of 50 µl/min, followed by at least 10 seconds of dissociation. The multichannel module was then turned to the A dimension followed by the
second injection of anti-HER2 antibody (using identical flow conditions and concentrations as outlined for the first injection of anti-HER2 antibody in the L dimension). All of the HER2 antibodies were tested for overlap one against the other in both dimensions and against themselves to confirm self-overlap (control representing 100% overlap between two antibodies) in a total of eight cycles. Between each cycle, antibody-EGFR complexes were stripped by regeneration with 25 µl 3 M MgCl₂ at a flow rate of 50 µl/nl.

Reagents

- GLC-Chip (Biorad, Cat. No. 176-5012)
- ProteOn™ amine coupling kit (Biorad) EDC-NHS (cat# 176-2410)
- Anti-Fc antibody (Biacore kit, cat# BR-1008-39)
- Running buffer: PBS, 0.005% Tween-20 (PBS-T)
- 3M MgCl₂-regeneration buffer, Biacore cat. No 344-ER-050
- Antigen: HER2-Fc , R&D systems cat. No 1129-ER reconstituted at 100µg/ml in PBS
- Blocking mAb: Synagis® (Abbott). Dissolved to a stock solution of 5mg/ml in ddH₂O and diluted further to 0.33mg/ml in running buffer
- Anti-HER2 antibodies: 4517, 4518, 4519, 4382, 4383, 4384, 4385, 4386, 4387 + Herceptin® and pertuzumab analogue (where the pertuzumab analogue has the light chain and heavy chain amino acid sequences of pertuzumab as disclosed in WO 2006/033700 and US 2006/0121044 Al)

Results

RU max values were obtained after normalization to running buffer control and baseline correction, and the degree of inhibition of tested anti-HER2 antibodies was determined by comparing the RU max value of the individual anti-HER2 antibody before and after competition by introduction of report points recorded immediately before and after injection of each sample. An example of a typical XPR ProteOn cycle is shown in Figure 1. Percentage overlap/binding inhibition of the first and second antibody is calculated based on the difference in RU-values before and after the first and second antibody, so that identical RU-values of the first and second antibody represents 100% overlap (i.e. 100% inhibition). At least two experiments were performed to confirm inhibition between two antibodies in both dimensions. Inhibition values of 50-100 % (calculated as a mean from at least two independent experiments) were taken as an indication of significant competition between antibody pairs binding overlapping epitopes or epitopes in close proximity on the antigen, while inhibition values below 50% indicated that the epitopes recognized by the antibody pairs were not in close proximity, resulting in decreased steric hindrance. Inhibition values below 25% were not included in the analysis for overlapping epitopes, because they were judged to represent non-significant inhibition. The antibody pairs that were found to have 50-100% and 25-50% inhibition, respectively, are listed below.

Antibody pair combinations exhibiting 50-100% inhibition:

- 4517 and 4518
• 4517 and Herceptin
• 4384 and 4518
• 4382 and 4519
• 4382 and 4383
• 4382 and Pertuzumab analogue
• 4383 and 4387
• 4383 and Pertuzumab analogue
• 4384 and 4386
• 4385 and 4387

Antibody pair combinations exhibiting 25-50% inhibition:

- 4387 and 4519
- 4519 and Pertuzumab analogue
- 4382 and 4387
- 4383 and 4387
- 4387 and Pertuzumab analogue

Figure 1 illustrates the results from a representative epitope binning of anti-HER2 antibodies of the invention. "HER2" designates the association period of Fc-conjugated HER2. "Block" designates the association time for the blocking antibody Synagis to block free anti-Fc sites. The blocked sites are represented by the difference in RU value between the end of "HER2" and the end of "Block" (in both cases determined at the end of the dissociation period, i.e. at about 600 and 1500 sec), designated "Blocked free Anti-Fc sites". "mAbl ➔" designates the association time of an anti-HER2 antibody in the first dimension. "ROTATE CHIP", indicates the shift to the second dimension. "mAbl ➔" designates the association time of an anti-HER2 antibody in the second dimension. Percent inhibition is calculated as the fraction of RU in the first antibody binding (designated "mAbl binding") that is obtained after binding of the second antibody (designated "mAbl2 binding"). In this example, running buffer is injected twice in sample A1, the same antibody is injected twice in sample A2, and the antibody from A2 is injected with four different antibodies in sample A3, A4, A5 and A6. Self-overlap is observed for sample A2 (insignificant change in RU during mAbl2 ➔; indicated by dashed arrow at lower right) but no significant overlap is observed between the antibody from A2 and the other antibodies.

Example 4: Functional characterization of mixtures of two or three anti-HER2 antibodies

This example describes *in vitro* testing of all possible mixtures of two or three antibodies among ten selected anti-HER2 antibodies of the invention with confirmed binding to human HER2. The antibody mixtures were evaluated for their ability to inhibit the growth of three different cancer cell lines: N87 (gastric cancer), SKBR-3 (breast cancer) and BT474 (breast cancer).
Methods
Antibodies 4380, 4381, 4382, 4383, 4384, 4385, 4387, 4517, 4518 and 4519, each of which had confirmed binding to the human HER2 receptor, were tested in all possible mixtures of two or three antibodies in order to identify antibody combinations with optimal efficacy. The methods used, e.g. for preparing the different antibody combinations in the 384-well plates, were those generally described in WO 2010/040356. Further details are provided below.

Mixtures of two antibodies
The ten antibodies were diluted to a concentration of 25 µg/ml in lxPBS, and 100 µl of antibody solution was added to the wells of 384-well feeder plates for use in preparing mixtures of two antibodies for testing.

For each of the three cell lines tested, two separate 384-well plates were used, with 46 µl of media containing the relevant number of cells (N87: 3000 cells; SKBR-3: 1000 cells; BT474: 2000 cells) being added to the wells. A Biomek 3000 laboratory automation workstation (Beckman Coulter) was used to add 2 µl of each of two different antibodies from the feeder plates to the wells of the 384-well plates containing media + cells, such that all combinations of two different antibodies were represented. In addition, the plates included media control wells (50 µl lxPBS media; no cells), untreated control wells (50 µl lxPBS media + cells; no antibody), and wells containing (in addition to 46 µl of media + cells) either 4 µl of media with either Herceptin or a Pertuzumab analogue as a reference antibody or 4 µl of media with only one of the ten antibodies of the invention as an additional control.

The plates with wells containing mixtures of two antibodies, as well as media and untreated control wells and wells with Herceptin/Pertuzumab analogue or a single antibody of the invention, were incubated for 4 days in a humidified incubator at 37°C, after which 5 µl of the cell proliferation reagent WST-1 diluted 1:1 in lxPBS was added to all relevant wells on the plates. The plates were then incubated for 1 hour at 37°C and subsequently transferred to orbital shakers and incubated for another hour. The absorbance was measured at 450 nm and 620 nm (reference wavelength) on an ELISA reader. The amount of metabolically active cells (MAC) was calculated as a percentage of the untreated control as follows:

\[
\%MAC = \left(\frac{OD_{exp.} - OD_{media}}{OD_{untreat.} - OD_{media}} \right) \times 100
\]

It is assumed that the metabolic activity correlates with the number of viable cells, a lower %MAC corresponding to a higher level of cell growth inhibition by the antibodies.
Mixtures of three antibodies
The same ten antibodies with confirmed binding to the human HER2 receptor were diluted to a concentration of 16.67 µg/ml in IxPBS, and 100 µl of antibody solution was added to the wells of 384-well feeder plates for use in preparing mixtures of three antibodies for testing.

The same three cell lines were used for the 3-mix in vitro assays, i.e. N87, SKBR-3 and BT474. For each cell line tested, ten different 384-well plates were used, with 44 µl of media containing the same number of cells as set forth above being added to the wells. A Biomek 3000 laboratory automation workstation (Beckman Coulter) was used to add 2 µl of each of three different antibodies from the feeder plates to the wells of the 384-well plates containing media + cells, such that all combinations of three different antibodies were represented. In addition, the plates included media control wells (50 µl IxPBS media; no cells), untreated control wells (50 µl IxPBS media + cells; no antibody), and wells containing (in addition to 44 µl of media + cells) either 6 µl of media with either Herceptin or Pertuzumab analogue as a reference antibody or 6 µl of media with only one of the ten antibodies of the invention as an additional control.

The plates with wells containing mixtures of three antibodies, as well as media and untreated control wells and wells with Herceptin/Pertuzumab analogue or a single antibody of the invention, were incubated for 4 days in a humidified incubator at 37°C, after which 5 µl of the cell proliferation reagent WST-1 diluted 1:1 in IxPBS was added to all relevant wells on the plates. The plates were then incubated for 1 hour at 37°C and subsequently transferred to orbital shakers and incubated for another hour. The absorbance was measured at 450 nm and 620 nm and the %MAC was calculated as described above.

Results
All possible 2-mixes and 3-mixes of ten selected anti-HER2 antibodies with confirmed binding to human HER2 were evaluated for their ability to inhibit the growth of the three cancer cell lines N87 (gastric cancer), SKBR-3 (breast cancer) and BT474 (breast cancer). The %MAC was calculated for each of the ten individual monoclonal antibodies and for each of the mixtures of two or three antibodies. The mixtures were then ranked according to their effect on cell growth, and the 55 mixtures with the highest average efficacy (highest average %MAC, based on an average of the results for the three cell lines) are shown below in Table 8.

The results show that the growth inhibition effect of the various mixtures varies considerably between the different cell lines, while the difference in the average %MAC is less pronounced. Although the 55 antibody mixtures in Table 8 were selected based on the average %MAC, it is contemplated that individual antibody mixtures may be of interest based on an effect demonstrated in any one or more cell lines, and that a high level of inhibition (low %MAC) in
just a single cell line may translate into a highly useful antibody combination *in vivo* against certain types of cancers.

Table 8. Level of cancer cell growth inhibition by the 55 most efficacious mixtures of two or three anti-HER2 antibodies in the three cancer cell lines N87, BT474 and SKBR-3. The level of inhibition is shown as % metabolically active cells (%MAC).

<table>
<thead>
<tr>
<th>Mix No.</th>
<th>Antibodies</th>
<th>Level of inhibition (%MAC)</th>
<th>N87</th>
<th>BT474</th>
<th>SKBR-3</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4380+4384</td>
<td>30</td>
<td>55</td>
<td>91</td>
<td>59</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>4382+4518</td>
<td>40</td>
<td>50</td>
<td>93</td>
<td>61</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4381+4384</td>
<td>32</td>
<td>55</td>
<td>96</td>
<td>61</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4384+4517</td>
<td>33</td>
<td>68</td>
<td>85</td>
<td>62</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>4385+4518</td>
<td>28</td>
<td>78</td>
<td>81</td>
<td>62</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>4382+4387</td>
<td>45</td>
<td>61</td>
<td>85</td>
<td>63</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>4383+4518</td>
<td>37</td>
<td>75</td>
<td>84</td>
<td>65</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>4380+4382</td>
<td>44</td>
<td>62</td>
<td>91</td>
<td>66</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>4382+4385</td>
<td>37</td>
<td>76</td>
<td>90</td>
<td>68</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>4381+4518</td>
<td>46</td>
<td>68</td>
<td>97</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>4380+4518</td>
<td>46</td>
<td>75</td>
<td>92</td>
<td>71</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>4385+4517</td>
<td>30</td>
<td>95</td>
<td>88</td>
<td>71</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>4384+4385</td>
<td>28</td>
<td>89</td>
<td>97</td>
<td>71</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>4381+4382</td>
<td>51</td>
<td>64</td>
<td>100</td>
<td>71</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>4380+4517</td>
<td>40</td>
<td>81</td>
<td>94</td>
<td>72</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>4383+4517</td>
<td>41</td>
<td>91</td>
<td>84</td>
<td>72</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>4381+4517</td>
<td>42</td>
<td>79</td>
<td>96</td>
<td>72</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>4383+4387</td>
<td>54</td>
<td>86</td>
<td>90</td>
<td>77</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>4383+4384</td>
<td>46</td>
<td>84</td>
<td>100</td>
<td>77</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>4384+4518</td>
<td>65</td>
<td>79</td>
<td>96</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>4381+4382+4518</td>
<td>25</td>
<td>34</td>
<td>69</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4382+4385+4518</td>
<td>21</td>
<td>40</td>
<td>74</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>4380+4382+4518</td>
<td>29</td>
<td>35</td>
<td>72</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>4382+4387+4517</td>
<td>20</td>
<td>48</td>
<td>75</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>4382+4387+4518</td>
<td>30</td>
<td>43</td>
<td>74</td>
<td>49</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>4381+4382+4517</td>
<td>23</td>
<td>49</td>
<td>81</td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>4380+4382+4517</td>
<td>30</td>
<td>47</td>
<td>82</td>
<td>53</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>4380+4381+4384</td>
<td>25</td>
<td>50</td>
<td>89</td>
<td>55</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>4380+4384+4517</td>
<td>28</td>
<td>43</td>
<td>94</td>
<td>55</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>4381+4384+4517</td>
<td>29</td>
<td>43</td>
<td>94</td>
<td>55</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>4383+4387+4517</td>
<td>29</td>
<td>61</td>
<td>76</td>
<td>55</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>4382+4518+4519</td>
<td>46</td>
<td>40</td>
<td>81</td>
<td>56</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>4380+4382+4519</td>
<td>41</td>
<td>47</td>
<td>80</td>
<td>56</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>4380+4384+4519</td>
<td>34</td>
<td>51</td>
<td>86</td>
<td>57</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>4383+4387+4518</td>
<td>24</td>
<td>66</td>
<td>83</td>
<td>58</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>4382+4383+4518</td>
<td>39</td>
<td>53</td>
<td>84</td>
<td>59</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>4382+4517+4518</td>
<td>39</td>
<td>46</td>
<td>93</td>
<td>59</td>
<td></td>
</tr>
</tbody>
</table>
Example 5: ADCC and CDC measurements

To investigate the ability of HER2-specific antibody mixtures of the invention to induce *in vitro* antibody dependent cellular cytotoxicity (ADCC) and complement dependent cytotoxicity (CDC), 20 different anti-HER2 antibody mixtures of two, three or four antibodies were tested using N87 and/or SKBR3 as target cells.

Methods

In vitro ADCC

Peripheral blood mononuclear cells (PBMCs) were separated from the blood of normal volunteers using Lymphoprep™ separation medium and used as effector cells. HER2-expressing N87 and SKBR3 cells were used as target cells. Target cells were labeled with 334 μCi sodium chromate (51Cr, 334) per 10^7 cells for one hour at 37°C. After washing, the target cells (5x10^5/well) were preincubated with anti-HER2 antibodies for 30 minutes at 37°C in RPMI-1640 + 10% FCS + 1% penicillin/streptomycin before adding the effector cells at a 50:1 effector:target (E/T) ratio. The cells were incubated for an additional 4 hours at 37°C before detecting cell lysis by measuring the amount of 51Cr in the medium using a TopCount microplate scintillation counter. Maximum lysis was achieved by addition of 2% Triton-X100 to wells containing 51Cr labeled target cells. Spontaneous lysis was measured from wells containing both effector and target cells but no antibodies.
The specific cytotoxicity was calculated as follows:

\[
\text{% specific cytotoxicity} = \left(\frac{\text{Experimental target lysis} - \text{Spontaneous target lysis}}{\text{Maximum target lysis} - \text{Spontaneous target lysis}} \right) \times 100
\]

The relative cytotoxicity compared to the positive control antibody Herceptin was calculated as follows:

\[
\text{% relative cytotoxicity} = \left(\frac{\text{Cytotoxicity antibody}}{\text{Cytotoxicity Herceptin}} \right) \times 100
\]

In vitro CDC

Serum from freshly drawn blood separated by centrifugation was used as a source of complement. HER2-expressing N87 cells were used as target cells. Target cells were labeled with 334 μCi sodium chromate \(^{51}\text{Cr}\) per \(10^7\) cells for one hour at 37°C. After washing, target cells \((5 \times 10^3/\text{well}, 100 \, \mu\text{l})\) were added to anti-H ER2 antibodies diluted in RPMI-1640 + 10% FCS + 1% penicillin/streptomycin \((50 \, \mu\text{l})\) followed by the addition of fresh serum \((50 \, \mu\text{l})\). The cells were incubated with serum and antibodies for 3 hours at 37°C before detecting cell lysis by measuring the amount of \(^{51}\text{Cr}\) in the medium using a TopCount microplate scintillation counter. Maximum lysis was achieved by the addition of 2% Triton-X1 00 to wells containing \(^{51}\text{Cr}\) labeled target cells. Spontaneous lysis was measured from wells containing target cells but no serum.

The cytotoxicity percentage was calculated as follows:

\[
\text{% cytotoxicity} = \left(\frac{\text{Experimental target lysis} - \text{Spontaneous target lysis}}{\text{Maximum target lysis} - \text{Spontaneous target lysis}} \right) \times 100
\]

Results

All of the 20 antibody combinations tested were able to induce ADCC in the HER2-expressing cell lines N87 and SKBR3. The maximum specific cytotoxicity of the anti-H ER2 antibody combinations in the N87 cancer cell line was in the range from 16-24% at an antibody concentration of 0.1 μg/ml, which is equivalent to a % relative lysis of 46-69% compared to Herceptin (see Figures 2A and 2B, and Figures 3A and 3B). In SKBR3 cells the % specific ADCC induced at an antibody concentration of 0.1 μg/m L was in the range of 20-34%, corresponding to a relative cytotoxicity of 48-83% compared to Herceptin (see Figures 2C and 2D, and Figures 3C and 3D).
As opposed to the results from the ADCC assay, where Herceptin induced potent lysis of target cells, Herceptin was unable to induce CDC (Figures 4 and 5). In contrast, sixteen of the anti-HER2 antibody mixtures of the invention containing two, three or four antibodies induced CDC at levels of 5%-31% specific cytotoxicity with a mean of 12% specific cytotoxicity (Figures 4 and 5). No CDC was observed when using SKBR3 cells. No correlation between the number of antibodies in the mixtures and the maximum % cytotoxicity induced was observed, and mixtures containing two, three and four antibodies were represented among the top four CDC-inducing antibody mixtures (Figure 4 and 5).

This example demonstrates that all of the anti-HER2 antibody mixtures of the invention exhibit substantial levels of ADCC and CDC. In an in vivo setting, mechanisms of action other than ADCC and CDC will play a significant role in the effect of the antibody mixtures. In particular, it is contemplated that the antibody mixtures of the invention that bind non-overlapping HER2 epitopes will result in a high level of receptor internalization, and that this will lead to an improved anti-tumor effect. The results shown in this example should thus be seen in conjunction with Example 4, which shows that the antibody mixtures of the invention generally show a high level of cancer cell growth inhibition in one or more of the tested cell lines, and that the growth inhibition shown in Example 4 is not necessarily correlated with e.g. the ADCC level.

Example 6: Titration of antibody mixtures on different cancer cell lines

In this example the WST-1 assay described in Examples 2 and 4 was used to measure the number of metabolically active cells after treatment with different antibody mixtures in different concentrations. The antibody mixtures were tested in several cancer cell lines, and the results for the four cell lines N87 (gastric cancer), HCC202 (breast cancer), BT474 (breast cancer) and ZR-75-30 (breast cancer) are presented in this example.

Methods
Prior to performing the WST-1 assay the antibody mixtures of the invention along with control antibodies (Synagis® as a negative control antibody and a pertuzumab analogue as a positive control antibody) were diluted to a final total antibody concentration of 100 μg/ml in appropriate media for the individual cell lines supplemented with 2% FBS and 1% P/S, yielding a final antibody concentration of 50 μg/ml in wells containing the highest antibody concentration. A threefold serial dilution of the antibodies was then performed. Relevant numbers of cells (N87: 3000 cells/well; HCC202, BT474 and ZR-75-30: 2000 cells/well) were then added to the experimental wells in a 384-well plate, and the plates were incubated for 4 days in a humidified incubator at 37°C. WST-1 reagent was subsequently added to the plates, which were then incubated for one hour at 37°C and then transferred to an orbital plate shaker.
for one hour. The absorbance was measured at 450 nm and 620 nm (reference wavelength) using an ELISA reader. The amount of metabolically active cells as a percentage of the untreated control (%MAC) was calculated as described above.

Results
The results of the titrations of four antibody mixtures on the cell lines N87, HCC202, BT474 and ZR-75-30 are shown in appended Figures 6-9. In addition, Table 9 below shows the IC_{50} (half maximal inhibitory concentration) values as well as the maximum levels of inhibition of the four antibody mixtures and the pertuzumab analogue. (It should be noted that the IC_{50} values can only be meaningfully compared if the corresponding maximum levels of inhibition are not too different from each other). It is evident from the figures as well as Table 9 that the mixtures have different levels of inhibition and different potencies depending on the cell line in which they are tested. However, all four mixtures are superior to a pertuzumab analogue at inhibiting the growth of the four cell lines.

Table 9. IC_{50} values and efficacy of inhibition of the four cell lines by the four anti-HER2 mixtures and a pertuzumab analogue.

<table>
<thead>
<tr>
<th></th>
<th>N87 IC_{50}</th>
<th>N87 % inhibition</th>
<th>HCC202 IC_{50}</th>
<th>HCC202 % inhibition</th>
<th>BT474 IC_{50}</th>
<th>BT474 % inhibition</th>
<th>ZR-75-30 IC_{50}</th>
<th>ZR-75-30 % inhibition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pertuzumab</td>
<td>0.196</td>
<td>17.7</td>
<td>NA</td>
<td>0.0</td>
<td>0.032</td>
<td>30.2</td>
<td>0.040</td>
<td>30.5</td>
</tr>
<tr>
<td>4382+4518</td>
<td>0.076</td>
<td>78.7</td>
<td>0.014</td>
<td>13.7</td>
<td>0.064</td>
<td>59.8</td>
<td>0.035</td>
<td>75.3</td>
</tr>
<tr>
<td>4384+4517</td>
<td>0.077</td>
<td>80.4</td>
<td>0.066</td>
<td>34.8</td>
<td>0.636</td>
<td>81.1</td>
<td>0.038</td>
<td>72.6</td>
</tr>
<tr>
<td>4382+4385+4518</td>
<td>0.080</td>
<td>86.6</td>
<td>0.060</td>
<td>28.6</td>
<td>0.211</td>
<td>78.2</td>
<td>0.043</td>
<td>77.1</td>
</tr>
<tr>
<td>4382+4387+4517</td>
<td>0.167</td>
<td>90.4</td>
<td>0.132</td>
<td>44.6</td>
<td>0.378</td>
<td>72.3</td>
<td>0.058</td>
<td>83.4</td>
</tr>
</tbody>
</table>

Example 7: In vivo efficacy of anti-HER2 mixtures, N87 xenograft model

The anti-HER2 antibody mixtures 4384+4517, 4382+4518, 4382+4385+4518 and 4382+4387+4518 were investigated for in vivo efficacy in the nude mouse NCI-N87 xenograft model. This is a widely used model for investigating the potency and efficacy of monoclonal anti-cancer antibodies, including anti-HER2 antibodies. Nude mice are immune-compromised and lack T-cells, which allows growth of human cells in the mice.

Method

10^7 NCI-N87 cells were inoculated subcutaneously into the left flank of eight week old female athymic nude mice. Tumors were measured twice weekly with calipers and tumor volume in mm^3 was calculated according to the formula: (width)^2 x length x 0.5. At an average tumor size of 300 mm^3, the mice were randomized and treatment was initiated. The mice were treated twice weekly with intraperitoneal injections of 50 mg/kg 4384+4517, 4382+4318,
4382+4385+4518 or 4382+4387+4517 for five weeks (10 injections in total) followed by a three week observation period. The experiment also included the anti-HER2 monoclonal antibody trastuzumab (Herceptin®), which was dosed and administered following the same schedule as described for the anti-HER2 antibody mixtures.

Results

The results of this experiment are shown in Figure 10. On day 59 post-tumor inoculation at an average tumor size of 300 mm³ the mice were randomized into six groups of 10 animals and treatment was started with 50 mg/kg 4382+4518, 4384+4517, 4382+4385+4518, 4382+4387+4517, trastuzumab and vehicle (control group). Tumors in all treatment groups initially kept growing before starting to recede on day 66 after one week of treatment. In the mice treated with 4384+4517 or trastuzumab, the tumors became only marginally smaller than the treatment start size of 300 mm³, before starting to grow at day 83 and 73 post-tumor inoculation, respectively. After this time the tumors on animals in both treatment groups had growth kinetics similar to the vehicle control group. In contrast, mice treated with 4382+4518, 4382+4385+4518 or 4382+4387+4517 showed prolonged and significantly better tumor suppression compared to trastuzumab. At the end of the treatment period (day 91) the tumor growth inhibition was reduced in all three groups, and the tumors slowly started to grow after treatment was discontinued.

In summary, animals treated with the anti-HER2 mixtures 4382+4518, 4382+4385+4518 and 4382+4387+4517 showed significantly improved growth inhibition of N87 tumor xenografts compared to trastuzumab.

Example 8: In vivo efficacy of anti-HER2 mixtures, OE19 xenograft model

The *in vivo* efficacy of the antibody mixtures 4384+4517, 4382+4518, 4382+4385+4518 and 4382+4387+4518 was tested in another *in vivo* tumor model, the OE19 gastric cancer xenograft model.

Method

5x10⁵ OE19 cells were inoculated subcutaneously into the left flank of eight-ten week old female athymic nude mice. Tumors were measured twice weekly with calipers and tumor volume in mm³ was calculated according to the formula: \(\text{width}^2 \times \text{length} \times 0.5 \). At an average tumor size of 110 mm³ the mice were randomized and treatment was initiated. The mice were treated twice weekly with intraperitoneal injections of 50 mg/kg 4384+4517, 4382+4318, 4382+4385+4518 or 4382+4387+4517 for five weeks (10 injections in total) followed by a three week observation period. The experiment also included the anti-HER2 monoclonal
antibody trastuzumab (Herceptin®), which was dosed and administered following the same schedule as described for the anti-HER2 antibody mixtures.

Results

The results of this experiment are shown in Figure 11. Immediately after the first treatment a suppression of tumor growth compared to the control group could be observed in the groups treated with 4382+4385+4518 and 4382+4387+4517. The tumors on mice in the 4382+4385+4518 group all receded and were significantly better than trastuzumab as early as day 23; this improvement lasted throughout the rest of the study. On day 37 post-tumor inoculation, after 7 out of 10 treatments, 6 of the 8 mice in this group had total remission and were tumor-free until the end of the study. In the group treated with 4382+4387+4517, the tumors receded in all but one mouse. This antibody 3-mix was significantly better than trastuzumab from day 32 onwards. On day 37, 4 of the 7 animals in this group were tumor-free and remained so until the end of the study. One mouse did not respond to treatment and was euthanized on day 53 due to large tumor size. The mice treated with 4384+4517 also responded well to treatment and became significantly better than trastuzumab on day 28 post-tumor inoculation. On day 43, 3 of the 8 mice in this group were tumor-free. Mice treated with 4382+4518 had control of tumor growth from day 16 (treatment start) to day 28, after which antibody treatment still suppressed tumor growth compared to the vehicle control and trastuzumab, although the tumor size slowly increased. Despite this, 4382+4518 was significantly better at suppressing tumor growth compared to trastuzumab on day 44 and from day 53 until the end of the study (day 67).

In summary, all of the anti-HER2 antibody mixtures of the invention were significantly better at inhibiting and controlling tumor growth compared to trastuzumab in the OE19 tumor xenograft model.

Example 9

This example demonstrates that simultaneous HER2 degradation and blockade of HER2-mediated HER3 phosphorylation result in optimal inhibition of HER2-dependent cancer cell lines. Such a double blockade is best achieved with mixtures of three antibodies against HER2, two of which efficiently induce HER2 degradation, while the third antibody blocks compensatory signaling through the HER2/HER3 heterodimer. This compensatory HER2/HER3 heterodimer signaling is believed to be partly facilitated by compensatory HER3 upregulation (see Example 11).
Methods
In order to investigate the mechanism behind the superior growth inhibitory potential of antibody mixtures against HER2, the phosphorylation levels of EGFR, HER2 and HER3 were investigated in the gastric cancer cell line NCI-N87. Western blot analyses were performed on whole cell lysates of NCI-N87 cells pre-treated with the antibodies overnight and stimulated with 10 nM of the HER3 ligand heregulin beta for 15 minutes. Cells were grown in 6-well plates, and at 80% confluence the culture medium was removed, and the cells were washed in lxPBS and treated with 10 µg/ml of the antibodies diluted in 2 ml medium containing 0.5% FBS. Cells were treated overnight and then stimulated with 10 nM of heregulin beta for 15 minutes. Cells were washed with 2 ml of lxPBS after which 200 µl of lx NuPAGE LDS Sample Buffer was added. 10-15 µl of sample were analyzed by western blotting using primary antibodies against EGFR, pEGFR (Tyr1068), HER2, pHER2 (Tyr1221), HER3 or pHER3 (Tyr1289).

Results
The results of the analyses of antibody-mediated inhibition of heregulin-induced phosphorylation of HER2, HER3 and EGFR (Figure 12) demonstrate that anti-HER2 antibodies and antibody mixtures have different effects on the phosphorylation status of EGFR, HER2 and HER3 and the levels of HER2. Heregulin induced phosphorylation of HER3 but had no effect on the phosphorylation levels of EGFR and HER2. Only the monoclonal antibody 4382 and the reference monoclonal antibody pertuzumab analogue were able to block ligand-induced HER3 phosphorylation. These results show the ability of 4382 to block heterodimerization of HER2 and HER3. All antibody mixtures were able to decrease the overall level of HER2 and EGFR phosphorylation as well as HER2 levels. However, only mixtures containing 4382 were able to simultaneously induce HER2 degradation and inhibit HER2 and EGFR phosphorylation as well as HER3 phosphorylation. The results also showed that the mixtures containing three antibodies (4382+4385+4518 and 4382+4387+4517) were superior to the mixtures of two antibodies (4382+4518 and trastuzumab-pertuzumab analogue) at blocking phosphorylation of all three receptors, in particular HER2. It is believed that the mixtures containing three antibodies are superior because of their ability to simultaneously induce potent HER2 degradation (via the antibody pair 4385+4518 or 4387+4517 in the respective mixtures) and to block ligand-mediated HER3-phosphorylation (via antibody 4382). These results correlate well with our pharmacological data showing that mixtures of three antibodies against HER2 are superior to single anti-HER2 mAbs and are generally also superior to mixtures of two anti-HER2 antibodies at inhibiting cell and tumor growth in vitro and in vivo (see e.g. Examples 4 and 6).

A schematic drawing of the HER2/HER3 signaling system and the hypothesized mechanism for the general superiority of 3-mixtures of anti-HER2 antibodies is shown in Figure 13 A and B,
respectively. The left side of Figure 13A illustrates the oncogenic signaling cascade by a HER2 homodimer, resulting in angiogenesis, cell motility and proliferation. The right side of Figure 13A illustrates a signaling cascade (possibly caused by upregulation of HER3 upon treatment with an anti-HER2 antibody) by a HER2/HER3 heterodimer upon binding of HER3 ligand to the HER3 receptor. This results in oncogenic signaling by impacting mechanisms such as protein synthesis, proliferation and glucose metabolism. Figure 13B illustrates a hypothesized mechanism by which mixtures of three anti-HER2 antibodies of the invention may obstruct oncogenic signaling from both HER2 homodimers and HER2/HER3 heterodimers. The left side of the figure shows that two anti-HER2 antibodies that bind non-overlapping epitopes of HER2 can form a cross-linked receptor-antibody lattice structure that leads to internalization and degradation of the HER2 receptor. The right side of Figure 13B illustrates how a third anti-HER2 antibody that binds to the dimerization arm of HER2 is believed to be able to block compensatory formation of a HER2/HER3 heterodimer, thereby also blocking HER3 mediated signaling and hindering possible resistance to the anti-HER2 antibody treatment caused by upregulation of HER3.

Example 10

This example demonstrates that mixtures of anti-HER2 antibodies that bind non-overlapping epitopes are able to efficiently induce degradation of HER2 in various human cancer cell lines.

Methods
In order to investigate the level of receptor degradation induced by anti-HER2 mixtures, western blot analyses were performed on whole cell lysates of ZR-75-30, NCI-N87, BT474 and HCC202 cells treated with 10 μg/ml of antibodies for 48 hours. Cells were grown in T-75 culture flasks, and at 80% confluence the culture medium was removed, and the cells were washed in 1xPBS and treated with 20 μg/ml of the antibodies diluted in 5 ml medium containing 0.5% FBS. Cells were treated overnight, after which whole cell lysates were prepared using standard RIPA buffer. The total protein concentration was determined in each sample, and 1-5 μg protein was analyzed by western blotting using primary antibodies against HER2.

Results
The results of the investigation of target degradation (Figure 14) demonstrate that mixtures of antibodies that non-overlapping epitopes (4384+4517, 4382+4385+4518 and 4382+4387+4517) induced degradation of HER2 in all the cell lines. The mixtures 4382+4518 and trastuzumab+pertuzumab analogue were less efficient, indicating that the epitopes of these antibodies are not optimal for induction of target degradation. The mixtures of three antibodies appeared to be superior to both single anti-HER2 mAbs and mixtures of 2 anti-
HER2 antibodies, and in particular the mixture containing antibodies 4382+4385+4518 was very efficient. Neither of the mAbs trastuzumab or pertuzumab analogue induced significant HER2 degradation, with the exception of trastuzumab in the ZR-75-30 cell line. These results thus show that mixtures of antibodies against non-overlapping epitopes on HER2 are able to induce its degradation but that the mixtures have different efficiencies.

Example 11

This example demonstrates that some cancer cell lines upregulate the levels of HER3 in response to HER2 targeting in order to maintain oncogenic signaling through the HER2/HER3 axis.

Methods
In order to investigate the level of HER3 levels in response to HER2 targeting western blot analyses were performed on whole cell lysates of NCI-N87 and HCC202 cells treated with 20 µg/ml of antibodies (trastuzumab, pertuzumab analogue, trastuzumab+pertuzumab analogue, 4384+4517, 4382+4518, 4382+4385+4518 or 4382+4387+4517) overnight. Cells were grown in T-75 culture flasks and at 80% confluence the culture medium was removed, and the cells were washed in lxPBS and treated with 20 µg/ml of the antibodies diluted in 5 ml medium containing 0.5% FBS. Cells were treated overnight, after which whole cell lysates were prepared using standard RIPA buffer. The total protein concentration was determined in each sample, and 1 or 10 µg protein was analyzed by western blotting using primary antibodies against HER2 and HER3.

Results
The results of the investigation of HER3 levels (Figure 15) demonstrate that HER2 targeting leads to HER3 upregulation in two different cell lines. The results also show that HER3 upregulation is most likely when the cells are treated with a mixture of antibodies that induces HER2 degradation.

Example 12: HER2 degradation in antibody-treated cancer cell lines

This example demonstrates that mixtures of HER2 antibodies that bind non-overlapping epitopes are able to induce degradation of HER2, that the combination of the three antibodies 4382+4385+4518 is more efficient at inducing degradation than combinations of two antibodies, and that the combination of antibodies 4385+4518 is the primary driver of HER2 internalization in the 4382+4385+4518 mixture.
Methods
In order to investigate the level of HER2 receptor degradation induced by antibody mixtures, western blot analyses were performed on whole cell lysates of OE19 (gastric cancer), NCI-N87 (gastric cancer), ZR-75-30 (breast cancer), BT474 (breast cancer) and HCC202 (breast cancer) cells treated with 10 µg/ml of a monoclonal antibody or an antibody mixture containing two or three antibodies for 48 hours. Cells were grown in T75 culture flasks. At 80% confluence the culture media was removed, and the cells were washed in lxPBS and subsequently treated with 10 µg/ml antibody or antibody mixture diluted in 5 ml medium containing 0.5% FBS. Following 48 hours of incubation, whole cell lysates were prepared using RIPA buffer. The total protein concentration was determined for each sample and 1-5 µg protein was analyzed by western blotting using primary antibodies to HER2 and actin. The antibodies tested were a negative control antibody (anti-RSV (respiratory syncytial virus) antibody with no binding to HER2), trastuzumab, pertuzumab analog, trastuzumab + pertuzumab analogue, and antibodies 4382, 4385 and 4518 alone or in mixtures of two or three.

Results
The results (Figure 16) show that of the tested monoclonal antibodies and antibody mixtures, the antibody mixture 4382+4385+4518 is the most efficient at inducing HER2 target degradation across all cell lines tested. In addition, 4385+4518 is the most efficient of the mixtures containing two antibodies at inducing HER2 degradation. The other two permutations of the antibodies in the 4382+4385+4518 antibody mixture, i.e. 4382+4385 and 4382+4518, are less efficient at inducing target internalization. This shows that the combination of antibodies 4385 and 4518 is the primary driver of HER2 internalization in the 4382+4385+4518 antibody mixture.

Example 13: Growth inhibitory effect of different components in an antibody mixture
In this example, the viability (WST-1) assay described in Examples 2, 4 and 6 was used to determine the anti-proliferative effect of the different components in the 4382+4385+4518 antibody mixture. In addition, antibody mixtures in which antibody 4382 was replaced by the pertuzumab analogue were similarly evaluated to determine whether antibodies with similar binding specificity and biological function can substitute for each other. As described in Example 3, antibody 4382 and the pertuzumab analogue bind to overlapping epitopes or epitopes in close proximity on HER2, and both antibodies are capable of blocking ligand-induced HER3 phosphorylation (Example 9). The antibody mixtures were tested in several cancer cell lines, including NCI-N87 (gastric cancer), OE19 (gastric cancer), HCC202 (breast cancer), BT474 (breast cancer) and SKBR3 (breast cancer).
Results

The results of the titration of the different antibody mixtures show that all combinations of two antibodies from the 4382+4385+4518 antibody mixture, i.e. 4382+4385, 4382+4518 and 4385+4518, are capable of inhibiting cancer cell growth. However, the mixture of all three of these antibodies, i.e. 4382+4385+4518, is the most efficient at inhibiting the growth in all cell lines tested. Results from the titrations on the three cell lines NCI-N87, BT474 and HCC202 are shown in Figures 17-19.

It may be seen from Figures 17-19 that the effect on growth inhibition is maintained when antibody 4382 is replaced by an antibody with similar binding specificity and the ability to block ligand-induced HER3 phosphorylation, in this case the pertuzumab analogue. Combinations of the pertuzumab analogue and antibody 4385 or 4518, or both, show enhanced inhibition of cell growth as compared to the pertuzumab analogue alone. However, combinations containing antibody 4382 are more efficacious than the corresponding combinations containing the pertuzumab analogue in all tested cell lines.
CLAIMS

1. An antibody composition comprising at least first, second and third recombinant anti-HER2 antibodies that bind distinct epitopes of HER2, wherein binding of the first and second antibodies to HER2 results in HER2 receptor internalization, and wherein binding of the third antibody to HER2 results in inhibition of ligand-induced phosphorylation of HER3.

2. The antibody composition of claim 1, wherein the first and second antibodies bind to HER2 on the surface of a cell such that they generate a cross-linked antibody-receptor lattice on the cell surface, and wherein the third antibody binds HER2 such that it blocks heterodimerization between HER2 and HER3.

3. The antibody composition of claim 1 or 2, wherein:
 (a) the first anti-HER2 antibody comprises:
 the heavy chain CDR3 sequence (SEQ ID NO: 47) and the light chain CDR3 sequence (SEQ ID NO: 76) of antibody 4517, or
 the heavy chain CDR3 sequence (SEQ ID NO: 50) and the light chain CDR3 sequence (SEQ ID NO: 78) of antibody 4518;
 (b) the second anti-HER2 antibody comprises:
 the heavy chain CDR3 sequence (SEQ ID NO: 53) and the light chain CDR3 sequence (SEQ ID NO: 80) of antibody 4380,
 the heavy chain CDR3 sequence (SEQ ID NO: 65) and the light chain CDR3 sequence (SEQ ID NO: 88) of antibody 4385, or
 the heavy chain CDR3 sequence (SEQ ID NO: 71) and the light chain CDR3 sequence (SEQ ID NO: 92) of antibody 4387; and
 (c) the third anti-HER2 antibody comprises:
 the heavy chain CDR3 sequence (SEQ ID NO: 56) and the light chain CDR3 sequence (SEQ ID NO: 82) of antibody 4382,
 the heavy chain CDR3 sequence (SEQ ID NO: 59) and the light chain CDR3 sequence (SEQ ID NO: 84) of antibody 4383, or
 the heavy chain CDR3 sequence (SEQ ID NO: 74) and the light chain CDR3 sequence (SEQ ID NO: 93) of antibody 4519.

4. The antibody composition of claim 1 or 2, wherein
 (a) the first anti-HER2 antibody comprises:
 CDR1, CDR2 and CDR3 of the heavy chain variable region (SEQ ID NO: 2) and
 CDR1, CDR2 and CDR3 of the light chain variable region (SEQ ID NO: 4) of antibody 4517, or
CDRI, CDR2 and CDR3 of the heavy chain variable region (SEQ ID NO: 6) and
CDRI, CDR2 and CDR3 of the light chain variable region (SEQ ID NO: 8) of antibody
4518;
(b) the second anti-HER2 antibody comprises:
CDRI, CDR2 and CDR3 of the heavy chain variable region (SEQ ID NO: 10) and
CDRI, CDR2 and CDR3 of the light chain variable region (SEQ ID NO: 12) of antibody
4380,
CDRI, CDR2 and CDR3 of the heavy chain variable region (SEQ ID NO: 26) and
CDRI, CDR2 and CDR3 of the light chain variable region (SEQ ID NO: 28) of antibody
4385, or
CDRI, CDR2 and CDR3 of the heavy chain variable region (SEQ ID NO: 34) and
CDRI, CDR2 and CDR3 of the light chain variable region (SEQ ID NO: 36) of antibody
4387; and
(c) the third anti-HER2 antibody comprises:
CDRI, CDR2 and CDR3 of the heavy chain variable region (SEQ ID NO: 14) and
CDRI, CDR2 and CDR3 of the light chain variable region (SEQ ID NO: 16) of antibody
4382,
CDRI, CDR2 and CDR3 of the heavy chain variable region (SEQ ID NO: 18) and
CDRI, CDR2 and CDR3 of the light chain variable region (SEQ ID NO: 20) of antibody
4383, or
CDRI, CDR2 and CDR3 of the heavy chain variable region (SEQ ID NO: 38) and
CDRI, CDR2 and CDR3 of the light chain variable region (SEQ ID NO: 40) of antibody
4519.

5. The antibody composition of claim 1 or 2, wherein the third anti-HER2 antibody
comprises CDRI, CDR2 and CDR3 of the heavy chain variable region (SEQ ID NO: 14) and
CDRI, CDR2 and CDR3 of the light chain variable region (SEQ ID NO: 16) of antibody
4382.

6. The antibody composition of claim 5, wherein:
(a) the first anti-HER2 antibody comprises CDRI, CDR2 and CDR3 of the heavy
chain variable region (SEQ ID NO: 6) and CDRI, CDR2 and CDR3 of the light chain variable
region (SEQ ID NO: 8) of antibody 4518, and
the second anti-HER2 antibody comprises CDRI, CDR2 and CDR3 of the heavy
chain variable region (SEQ ID NO: 26) and CDRI, CDR2 and CDR3 of the light chain variable
region (SEQ ID NO: 28) of antibody 4385; or
(b) the first anti-HER2 antibody comprises CDRI, CDR2 and CDR3 of the heavy
chain variable region (SEQ ID NO: 2) and CDRI, CDR2 and CDR3 of the light chain variable
region (SEQ ID NO: 4) of antibody 4517, and
the second anti-HER2 antibody comprises CDR1, CDR2 and CDR3 of the heavy chain variable region (SEQ ID NO: 34) and CDR1, CDR2 and CDR3 of the light chain variable region (SEQ ID NO: 36) of antibody 4387.

7. An antibody composition comprising at least first, second and third recombinant anti-HER2 antibodies that bind distinct epitopes of HER2, wherein binding of the first and second antibodies to HER2 results in HER2 receptor internalization, and wherein binding of the third antibody to HER2 results in inhibition of ligand-induced phosphorylation of HER3, wherein each of said first, second and third anti-HER2 antibodies binds the same epitope as and competes for binding with the respective first, second and third antibodies set forth in any of claims 4-6.

8. An antibody composition comprising at least first and second recombinant anti-HER2 antibodies that bind distinct epitopes of HER2, wherein at least one of said antibodies is selected from the group consisting of:
 (a) an antibody comprising the heavy chain CDR3 sequence (SEQ ID NO: 56) and the light chain CDR3 sequence (SEQ ID NO: 82) of antibody 4382;
 (b) an antibody comprising the heavy chain CDR3 sequence (SEQ ID NO: 59) and the light chain CDR3 sequence (SEQ ID NO: 84) of antibody 4383;
 (c) an antibody comprising the heavy chain CDR3 sequence (SEQ ID NO: 62) and the light chain CDR3 sequence (SEQ ID NO: 86) of antibody 4384;
 (d) an antibody comprising the heavy chain CDR3 sequence (SEQ ID NO: 65) and the light chain CDR3 sequence (SEQ ID NO: 88) of antibody 4385;
 (e) an antibody comprising the heavy chain CDR3 sequence (SEQ ID NO: 68) and the light chain CDR3 sequence (SEQ ID NO: 90) of antibody 4386;
 (f) an antibody comprising the heavy chain CDR3 sequence (SEQ ID NO: 71) and the light chain CDR3 sequence (SEQ ID NO: 92) of antibody 4387;
 (g) an antibody comprising the heavy chain CDR3 sequence (SEQ ID NO: 47) and the light chain CDR3 sequence (SEQ ID NO: 76) of antibody 4517;
 (h) an antibody comprising the heavy chain CDR3 sequence (SEQ ID NO: 50) and the light chain CDR3 sequence (SEQ ID NO: 78) of antibody 4518;
 (i) an antibody comprising the heavy chain CDR3 sequence (SEQ ID NO: 74) and the light chain CDR3 sequence (SEQ ID NO: 93) of antibody 4519; and
 (j) an antibody comprising the heavy chain CDR3 sequence (SEQ ID NO: 53) and the light chain CDR3 sequence (SEQ ID NO: 80) of antibody 4380.

9. The antibody composition of claim 8, wherein said first and second recombinant anti-HER2 antibodies are both selected from antibodies (a) - (j).
10. The antibody composition of claim 9, comprising a third recombinant anti-HER2 antibody selected from antibodies (a) - (j).

11. An antibody composition comprising at least first and second recombinant anti-HER2 antibodies that bind distinct epitopes of HER2, wherein each of said first and second antibodies binds the same epitope as and competes for binding with one of antibodies (a) - (j) defined in claim 8.

12. An antibody composition comprising at least first and second recombinant anti-HER2 antibodies that bind distinct epitopes of HER2, wherein at least one of said antibodies is selected from the group consisting of:

 (A) an antibody comprising CDRI, CDR2 and CDR3 of the heavy chain variable region (SEQ ID NO: 14) and CDRI, CDR2 and CDR3 of the light chain variable region (SEQ ID NO: 16) of antibody 4382;

 (B) an antibody comprising CDRI, CDR2 and CDR3 of the heavy chain variable region (SEQ ID NO: 18) and CDRI, CDR2 and CDR3 of the light chain variable region (SEQ ID NO: 20) of antibody 4383;

 (C) an antibody comprising CDRI, CDR2 and CDR3 of the heavy chain variable region (SEQ ID NO: 22) and CDRI, CDR2 and CDR3 of the light chain variable region (SEQ ID NO: 24) of antibody 4384;

 (D) an antibody comprising CDRI, CDR2 and CDR3 of the heavy chain variable region (SEQ ID NO: 26) and CDRI, CDR2 and CDR3 of the light chain variable region (SEQ ID NO: 28) of antibody 4385;

 (E) an antibody comprising CDRI, CDR2 and CDR3 of the heavy chain variable region (SEQ ID NO: 30) and CDRI, CDR2 and CDR3 of the light chain variable region (SEQ ID NO: 32) of antibody 4386;

 (F) an antibody comprising CDRI, CDR2 and CDR3 of the heavy chain variable region (SEQ ID NO: 34) and CDRI, CDR2 and CDR3 of the light chain variable region (SEQ ID NO: 36) of antibody 4387;

 (G) an antibody comprising CDRI, CDR2 and CDR3 of the heavy chain variable region (SEQ ID NO: 2) and CDRI, CDR2 and CDR3 of the light chain variable region (SEQ ID NO: 4) of antibody 4517;

 (H) an antibody comprising CDRI, CDR2 and CDR3 of the heavy chain variable region (SEQ ID NO: 6) and CDRI, CDR2 and CDR3 of the light chain variable region (SEQ ID NO: 8) of antibody 4518;

 (I) an antibody comprising CDRI, CDR2 and CDR3 of the heavy chain variable region (SEQ ID NO: 38) and CDRI, CDR2 and CDR3 of the light chain variable region (SEQ ID NO: 40) of antibody 4519; and
an antibody comprising CDR1, CDR2 and CDR3 of the heavy chain variable region (SEQ ID NO: 10) and CDR1, CDR2 and CDR3 of the light chain variable region (SEQ ID NO: 12) of antibody 4380.

13. The antibody composition of claim 12, wherein said first and second recombinant anti-HER2 antibodies are both selected from antibodies (A) - (J).

14. The antibody composition of claim 13, comprising a third recombinant anti-HER2 antibody selected from antibodies (A) - (J).

15. An antibody composition comprising at least first and second recombinant anti-HER2 antibodies that bind distinct epitopes of HER2, wherein each of said first and second antibodies binds the same epitope as and competes for binding with one of antibodies (A) - (J) defined in claim 12.

16. The recombinant antibody composition of any of claims 8-15 comprising 2, 3, 4, 5 or 6 anti-HER2 antibodies.

17. The recombinant antibody composition of claim 16, comprising two anti-HER2 antibodies.

18. The recombinant anti-HER2 antibody composition of claim 17, comprising first and second recombinant antibodies, wherein the first and second antibodies comprise the heavy chain CDR3 and light chain CDR3 sequences of antibodies:
 • 4380 and 4382,
 • 4380 and 4384,
 • 4380 and 4518,
 • 4382 and 4385,
 • 4382 and 4518,
 • 4383 and 4518,
 • 4384 and 4385,
 • 4384 and 4517, or
 • 4385 and 4518.

19. The recombinant anti-HER2 antibody composition of claim 18, wherein the first and second antibodies comprise the heavy chain CDR1, CDR2 and CDR3 and light chain CDR1, CDR2 and CDR3 sequences of antibodies:
 • 4380 and 4382,
 • 4380 and 4384,
• 4380 and 4518,
• 4382 and 4385,
• 4382 and 4518,
• 4383 and 4518,
• 4384 and 4385,
• 4384 and 4517, or
• 4385 and 4518.

20. The recombinant antibody composition of claim 16, comprising three anti-HER2 antibodies.

21. The recombinant anti-HER2 antibody composition of claim 20, comprising first, second and third recombinant antibodies, wherein the first, second and third antibodies comprise the heavy chain CDR3 and light chain CDR3 sequences of antibodies:
• 4380, 4382 and 4385,
• 4380, 4382 and 4517,
• 4380, 4382 and 4518,
• 4380, 4383 and 4384,
• 4380, 4384 and 4517,
• 4380, 4384 and 4518,
• 4380, 4384 and 4519,
• 4382, 4385 and 4518, or
• 4382, 4387 and 4517.

22. The recombinant anti-HER2 antibody composition of claim 21, comprising first, second and third recombinant antibodies, wherein the first, second and third antibodies comprise the heavy chain CDR1, CDR2 and CDR3 and light chain CDR1, CDR2 and CDR3 sequences of antibodies:
• 4380, 4382 and 4385,
• 4380, 4382 and 4517,
• 4380, 4382 and 4518,
• 4380, 4383 and 4384,
• 4380, 4384 and 4517,
• 4380, 4384 and 4518,
• 4380, 4384 and 4519,
• 4382, 4385 and 4518, or
• 4382, 4387 and 4517.
23. The recombinant antibody composition of claim 16, comprising four anti-HER2 antibodies.

24. The recombinant anti-HER2 antibody composition of claim 23, comprising first, second, third and fourth recombinant antibodies, wherein the first, second, third and fourth antibodies comprise the heavy chain CDR3 and light chain CDR3 sequences of antibodies:
 • 4380, 4382, 4385 and 4518, or
 • 4380, 4384, 4385 and 4518.

25. The recombinant anti-HER2 antibody composition of claim 24, comprising first, second, third and fourth recombinant antibodies, wherein the first, second, third and fourth antibodies comprise the heavy chain CDR1, CDR2 and CDR3 and light chain CDR1, CDR2 and CDR3 sequences of antibodies:
 • 4380, 4382, 4385 and 4518, or
 • 4380, 4384, 4385 and 4518.

26. The recombinant antibody composition of any of claims 1-25, wherein at least one anti-HER2 antibody in said composition is an immunoconjugate comprising a recombinant anti-HER2 antibody conjugated to an anti-cancer agent.

27. The recombinant antibody composition of claim 26, where the anticancer agent is selected from the group consisting of cytotoxic agents, cytokines, toxins and radionuclides.

28. A bispecific binding molecule having the binding specificities of two antibodies as defined in any of claims 1-25.

29. The bispecific binding molecule of claim 28, comprising the heavy and light chain CDR1, CDR2 and CDR3 sequences of said two antibodies.

30. A nucleic acid molecule comprising a nucleotide sequence that encodes an antibody as defined in any of claims 1-25.

31. An expression vector comprising a nucleic acid molecule according to claim 30.

32. A host cell comprising a nucleic acid molecule according to claim 30 or an expression vector according to claim 31, wherein said host cell is capable of expressing an anti-HER2 antibody encoded by said nucleic acid molecule.
33. A method for producing an anti-HER2 antibody, comprising providing a host cell according to claim 32, cultivating said host cell under conditions suitable for expression of the antibody, and isolating the resulting antibody.

34. A method for producing a recombinant anti-HER2 antibody composition comprising at least first and second recombinant anti-HER2 antibodies, the method comprising providing at least a first host cell and a second host cell, wherein each of the first and second host cells is capable of expressing a recombinant anti-HER2 antibody as defined in any of claims 1-25, cultivating the first and second host cells under conditions suitable for expression of the first and second antibodies, and isolating the resulting at least first and second antibodies.

35. The method of claim 34, wherein the at least first and second host cells are cultured in separate bioreactors.

36. The method of claim 34, wherein the at least first and second host cells are cultured in a single bioreactor.

37. A method for treating cancer in a human or other mammal, the method comprising administering to said mammal a recombinant anti-HER2 antibody composition according to any of claims 1-27.

38. A method for treating a patient with a disorder characterized by overexpression of HER2, the method comprising administering to said patient a recombinant anti-HER2 antibody composition according to any of claims 1-27.

39. A method for reducing heterodimer formation between HER2 and other ErbB family receptors in cells that overexpress HER2, the method comprising contacting said cells with a recombinant anti-HER2 antibody composition according to any of claims 1-27.

40. A method for inducing internalization of HER2 on the surface of cells that overexpress HER2, the method comprising contacting the cells with a recombinant anti-HER2 antibody composition according to any of claims 1-27.

41. A method for inhibiting growth of tumor cells that are resistant or partially resistant to treatment with an anti-HER2 antibody, the method comprising contacting the cells with a recombinant anti-HER2 antibody composition according to any of claims 1-7.

42. The method of claim 41, where the tumor cells have been previously treated with trastuzumab.
Figure 2B

N87 ADCC
Antibody conc. 0.1 µg/ml

% Relative cytotoxicity
Figure 3B

N87 ADCC
Antibody 3-mix

- Herceptin
- 4382+4385+4518
- 4382+4387+4517

% Specific cytotoxicity

Antibody (µg/ml)
Figure 3C

SKBR3 ADCC
Antibody 2-mix

% Specific cytotoxicity

0.001 0.01 0.1 1
μg/ml

Herceptin
4382+4518
4384+4517
Figure 3D

SKBR3 ADCC
Antibody 3-mix

% Specific cytotoxicity

μg/ml

- Herceptin
- 4382+4385+4518
- 4382+4387+4517
Figure 4

N87 CDC
Antibody conc. 20 µg/ml

% Specific cytotoxicity

Herceptin
4390+4392+4395
4390+4394+4395
4390+4394+4398
4390+4394+4395+4398
4390+4392+4395+4398
4390+4392+4395+4398+4393
4390+4392+4395+4398+4394
4390+4392+4395+4398+4394+4393
4390+4392+4395+4398+4394+4393+4392
4390+4392+4395+4398+4394+4393+4392+4395
4390+4392+4395+4398+4394+4393+4392+4395+4398
4390+4392+4395+4398+4394+4393+4392+4395+4398+4393
4390+4392+4395+4398+4394+4393+4392+4395+4398+4393+4392
4390+4392+4395+4398+4394+4393+4392+4395+4398+4393+4392+4395
4390+4392+4395+4398+4394+4393+4392+4395+4398+4393+4392+4395+4398
4390+4392+4395+4398+4394+4393+4392+4395+4398+4393+4392+4395+4398+4393
4390+4392+4395+4398+4394+4393+4392+4395+4398+4393+4392+4395+4398+4393+4392
4390+4392+4395+4398+4394+4393+4392+4395+4398+4393+4392+4395+4398+4393+4392+4395
Figure 5

N87 CDC

% Specific lysis

Antibody (µg/ml)

- Herceptin
- 4382+4518
- 4384+4517
- 4382+4385+4518
- 4382+4387+4517
Figure 6

N87 (Gastric)

Metabolic activity as percentage of untreated control

Antibody Concentration (µg/ml)

- Negative Control mAb
- Pertuzumab
- 4382+4518
- 4384+4517
- 4382+4385+4518
- 4382+4387+4517
Figure 7

HCC202 (Breast)

Metabolic activity as percentage of untreated control

Antibody Concentration (µg/ml)

- Negative Control mAb
- Pertuzumab
- 4382+4518
- 4384+4517
- 4382+4385+4518
- 4382+4387+4517
Figure 9

ZR-75-30 (Breast)

Metabolic activity as percentage of untreated control

Antibody Concentration (μg/ml)

- Negative Control mAb
- Pertuzumab
- 4382+4518
- 4384+4517
- 4382+4385+4518
- 4382+4387+4517
Figure 10

N87

Tumor volume (mm3)

Days post tumor inoculation

- Vehicle control N=10
- 4384+4517 50 mg/kg N=9
- 4382+4518 50 mg/kg N=8
- 4382+4385+4518 50 mg/kg N=10
- 4382+4387+4517 50 mg/kg N=9
- Trastuzumab 50 mg/kg N=10

9, 8, 7 etc. number of mice left in the group
* compound significantly better compared to trastuzumab from this point onwards
Figure 11

OE19

Treatment period

7, 6, 5 etc. number of animals left in the group.

* 4382+4385+4518, $ 4384+4517 and £ 4382+4587+4517 significantly better than Herceptin from this point onwards.

4382+4518 significantly better than Herceptin at the indicated timepoints.
Figure 12

N87
10 µg/ml overnight incubation

<table>
<thead>
<tr>
<th></th>
<th>-</th>
<th>+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Untreated</td>
<td></td>
</tr>
<tr>
<td>Control mAb</td>
<td></td>
</tr>
<tr>
<td>Trastuzumab</td>
<td></td>
</tr>
<tr>
<td>Pert. + Pert.</td>
<td></td>
</tr>
<tr>
<td>4384</td>
<td></td>
<td>78</td>
<td></td>
</tr>
<tr>
<td>4382</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>78</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4385</td>
<td></td>
<td></td>
<td></td>
<td>78</td>
<td></td>
<td></td>
<td>78</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>78</td>
<td></td>
</tr>
<tr>
<td>4387</td>
<td></td>
<td>78</td>
<td></td>
<td></td>
<td>78</td>
<td></td>
<td>78</td>
<td></td>
<td>78</td>
<td></td>
<td>78</td>
<td></td>
<td>78</td>
</tr>
<tr>
<td>4517</td>
<td>78</td>
<td></td>
<td>78</td>
<td></td>
<td>78</td>
<td></td>
<td>78</td>
<td></td>
<td>78</td>
<td></td>
<td>78</td>
<td></td>
<td>78</td>
</tr>
<tr>
<td>4384+4517</td>
<td>78</td>
<td></td>
<td>78</td>
<td>78</td>
<td></td>
<td>78</td>
<td>78</td>
<td>78</td>
<td>78</td>
<td>78</td>
<td>78</td>
<td>78</td>
<td>78</td>
</tr>
<tr>
<td>4382+4385+4518</td>
<td>78</td>
<td></td>
<td>78</td>
</tr>
<tr>
<td>4382+4387+4517</td>
<td>78</td>
<td></td>
<td>78</td>
</tr>
</tbody>
</table>

10 nM Heregulin - 15 min.

- pEGFR
- EGFR
- pHER2
- HER2
- pHER-3
- HER-3
Figure 13B

HER2 crosslinking and degradation

Blockade of HER2-HER3 heterodimer

HER3 ligand

Membrane

Cytosol

HER2 internalization and degradation

Blockade of HER3 mediated signalling

Protein Synthesis
Survival
Proliferation
Glycolysis Metabolism
Angiogenesis
Motility
Proliferation
10 µg/ml for 48 hours

<table>
<thead>
<tr>
<th>Treatment</th>
<th>N87</th>
<th>ZR-75-30</th>
<th>HCC202</th>
<th>BT474</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Antibody</td>
<td>HER-2</td>
<td>HER-2</td>
<td>HER-2</td>
<td>HER-2</td>
</tr>
<tr>
<td>Trastuzumab</td>
<td>Actin</td>
<td>Actin</td>
<td>Actin</td>
<td>Actin</td>
</tr>
<tr>
<td>Pertuzumab+Pert.</td>
<td>Actin</td>
<td>Actin</td>
<td>Actin</td>
<td>Actin</td>
</tr>
<tr>
<td>4384+4517</td>
<td>Actin</td>
<td>Actin</td>
<td>Actin</td>
<td>Actin</td>
</tr>
<tr>
<td>4382+4518</td>
<td>Actin</td>
<td>Actin</td>
<td>Actin</td>
<td>Actin</td>
</tr>
<tr>
<td>4382+4385+4518</td>
<td>Actin</td>
<td>Actin</td>
<td>Actin</td>
<td>Actin</td>
</tr>
<tr>
<td>4382+4387+4517</td>
<td>Actin</td>
<td>Actin</td>
<td>Actin</td>
<td>Actin</td>
</tr>
</tbody>
</table>

Figure 14
Figure 15

20 µg/ml for 16 hours

<table>
<thead>
<tr>
<th></th>
<th>HCC202</th>
<th>N87</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Antibody</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trastuzumab</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pertuzumab</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trast. + Pert.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4384+4517</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4382+4518</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4382+4385+4518</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4382+4387+4517</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

HER2
HER3
HER2
HER3
Figure 16

10 μg/ml for 48 hours

<table>
<thead>
<tr>
<th></th>
<th>No Antibody</th>
<th>Control mAb</th>
<th>Trastuzumab</th>
<th>Pertuzumab</th>
<th>Trast.+Pert.</th>
<th>4382</th>
<th>4385</th>
<th>4518</th>
<th>4382+4385</th>
<th>4385+4518</th>
<th>4382+4385+4518</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gastric</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OE19</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N87</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ZR-75-30</td>
<td></td>
</tr>
<tr>
<td>Breast</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BT474</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HCC202</td>
<td></td>
</tr>
</tbody>
</table>

HER-2

Actin
INTERNATIONAL SEARCH REPORT

PCT/IB201 1/050903

A. CLASSIFICATION OF SUBJECT MATTER

IPC: see extra sheet
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC: A61 K, C07K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

SE, DK, FI, NO classes as above

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, PAJ, WPI data, BIOSIS, COMPENDEX, EMBASE, INSPEC, MEDLINE, CA Registry

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>US 200701 781 02 A 1 (YARDEN YOSEF ET AL), 2 August 2007 (2007-08-02); abstract; claims 17, 18, 21, 22, 25, 49, 50, 53, 54; See whole document, especially paragraphs: [0005], [0006], [001 3], [001 4], [001 7], [0020], [0021], [0024], [0032], [0033], [0058], [0059], [01 68], [01 69] and example 3.</td>
<td>1, 5, 8-42</td>
</tr>
</tbody>
</table>

X |

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>WO 9955367 A 1 (UNIV CALIFORNIA ET AL), 4 November 1999 (1999-1-04); abstract; page 2, line 24 - line 27; page 7, line 5 - line 7; page 15, line 5 - line 9; page 17, line 10 - page 20, line 1; claims 1, 2, 23, 26, 27</td>
<td>1-42</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:
 "A" document defining the general state of the art which is not considered to be of particular relevance
 "E" earlier application or patent but published on or after the international filing date
 "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 "O" document referring to an oral disclosure, use, exhibition or other means
 "P" document published prior to the international filing date but later than the priority date claimed
 "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
 "&" document member of the same patent family

Date of the actual completion of the international search 04-07-2011
Date of mailing of the international search report 05-07-2011

Name and mailing address of the ISA/SE
Patent och registreringsverket
Box 5055
S-1 02 42 STOCKHOLM
Facsimile No. +46 8 666 02 86

Authorized officer
Liza Nilsson
Telephone No. +46 8 782 25 00

Form PCT/ISA/210 (second sheet) (July 2009)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>WO 2006087637 A2 (HELLENIC PASTEUR INST ET AL), 24 August 2006 (2006-08-24); abstract; page 3, line 15 - line 28; page 5, line 15 - line 22; page 6, line 10 - line 19; page 10, line 30 - page 11, line 2; page 38, line 11 - line 27; page 54, line 21 - line 24; claims 1, 10, 11</td>
<td>1-42</td>
</tr>
<tr>
<td>A</td>
<td>WO 99561 29 A1 (UNIV CALIFORNIA ET AL), 4 November 1999 (1999-1-04); whole document</td>
<td>1-42</td>
</tr>
<tr>
<td>A</td>
<td>FRIEGLÄNDER E. et al., "ErbB-directed immunotherapy; Antibodies in current practice and promising new agents", Immunology Letters, 2008, Vol. 116, pp. 126-140; abstract; See whole document, especially paragraphs: 1, 2, 3, 5.1, 5.2, 5.3, 5.4, 6.1, 7</td>
<td>1-42</td>
</tr>
</tbody>
</table>
Continuation of: second sheet
International Patent Classification (IPC)

C07K 16/30 (2006.01)
A61K 39/00 (2006.01)

Download your patent documents at www.prv.se
The cited patent documents can be downloaded:
• From "Cited documents" found under our online services at www.prv.se
 (English version)
• From "Anforda dokument" found under "e-tjanster" at www.prv.se
 (Swedish version)

Use the application number as username. The password is MHVIMEHJES.

Paper copies can be ordered at a cost of 50 SEK per copy from PRV InterPat (telephone number 08-782 28 85).

Cited literature, if any, will be enclosed in paper form.
Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. **Claims Nos.:** 37-42
 - because they relate to subject matter not required to be searched by this Authority, namely:

 Claims 37-42 relate to a method for treatment of the human or animal body by.../...

2. **Claims Nos.:**
 - because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:

3. **Claims Nos.:**
 - because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

1. **As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.**

2. **As all searchable claims could be searched without effort justifying additional fees, this Authority did not invite payment of additional fees.**

3. **As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:**

4. **No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:**

Remark on Protest

- The additional search fees were accompanied by the applicant's protest and, where applicable, the payment of a protest fee.
- The additional search fees were accompanied by the applicant's protest but the applicable protest fee was not paid within the time limit specified in the invitation.
- No protest accompanied the payment of additional search fees.
Continuation of: Box No. II

by therapy, see PCT rule 39.1 (iv). Nevertheless, a search has been made for these claims. The search has been directed to the technical content of the claims.
<table>
<thead>
<tr>
<th>Country</th>
<th>Patent Number</th>
<th>Filing Date</th>
<th>Document Number</th>
<th>Publication Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>WO</td>
<td>9955367 A1</td>
<td>04/1/1/1999</td>
<td>AT 412432 T</td>
<td>15/1/2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>AU 3742999 A</td>
<td>16/1/1/1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>AU 769304 B2</td>
<td>22/01/2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CA 2326377 A1</td>
<td>04/1/1/1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DE 69939820 D1</td>
<td>11/1/2/2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>EP 1071460 B1</td>
<td>29/1/0/2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ES 2316186 T3</td>
<td>01/04/2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>JP 2002524024 T</td>
<td>06/08/2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>US 200801 081 35 A1</td>
<td>08/05/2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>US 7892554 B2</td>
<td>22/02/2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>US 7244826 B1</td>
<td>17/07/2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CA 2598535 A1</td>
<td>24/08/2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>EP 1891 115 A2</td>
<td>27/02/2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>JP 2008529549 T</td>
<td>07/08/2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>KR 200701 15996 A</td>
<td>06/1/2/2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>US 20100047230 A1</td>
<td>25/02/2011</td>
</tr>
<tr>
<td>WO</td>
<td>99561 29 A1</td>
<td>04/1/1/1999</td>
<td>AU 768784 B2</td>
<td>08/01/2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>AU 3862299 A</td>
<td>16/1/1/1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CA 2326499 A1</td>
<td>04/1/1/1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>EP 1073905 A4</td>
<td>08/1/2/2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>JP 200251 3156 T</td>
<td>08/05/2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>JP 4493845 B2</td>
<td>30/06/2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>JP 2009278993 A</td>
<td>03/1/2/2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>US 20050037339 A1</td>
<td>17/02/2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>US 20010008759 A1</td>
<td>19/07/2001</td>
</tr>
</tbody>
</table>