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TECHNIQUE FOR LIVE ANALYSIS-BASED REMATERIALIZATION TO REDUCE
REGISTER PRESSURES AND ENHANCE PARALLELISM

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] This application claims the benefit of United States provisional patent
application serial number 61/556,782, filed November 7, 2011, and United States
patent application serial number 13/669,401, filed November 5, 2012. Each of these

applications is hereby incorporated herein by reference.

BACKGROUND OF THE INVENTION

Field of the Invention
[0002] The present invention generally relates to compilers for parallel processing
units (PPUs), and, more specifically, to a technique for live analysis-based

rematerialization to reduce register pressures and enhance parallelism.

Description of the Related Art

[0003] Graphics processing units (GPUs) have evolved over time to support a wide
range of operations beyond graphics-oriented operations. In fact, a modern GPU
may be capable of executing arbitrary program instructions. Such a GPU typically
includes a compiler that compiles program instructions for execution on one or more
processing cores included within the GPU. Each such core may execute one or more
different execution threads in parallel with other processing cores executing execution

threads.

[0004] When a processing core within the GPU executes a set of program
instructions, the processing core may store program variables associated with those
instructions in register memory. When register memory is entirely consumed by
program variables, additional program variables may “spill” into system memory, as is
known in the art. One problem with the conventional approach to “spilling” is that
system memory has a much higher latency than register memory. Consequently, the
speed with which the program instructions execute may decrease dramatically after a
“spill” event occurs because the program variables have to be accessed from system
memory instead of register memory. A second problem is that the number of threads
a given processing core is capable of executing simultaneously within a processing
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unit depends on the available register memory. Thus, filling up register memory with
program variables may end up decreasing the number of simultaneously executing

threads and, consequently, overall processing throughput of the GPU.

[0005] Accordingly, what is needed in the art is a more effective technique for

managing register memory within a GPU.

SUMMARY OF THE INVENTION

[0006] One embodiment of the present inventions sets forth a computer-implemented
method for optimizing program code that is capable of being compiled for execution
on a parallel processing unit (PPU), including generating a control flow graph for the
program code, identifying a first block in the control flow graph with the greatest
number of live-in variables compared to other blocks in the control flow graph,
selecting a first subset of live-in variables associated with the first block by performing
a profitability analysis on different subsets of live-in variables associated with the first
block, and optimizing the program code by rematerializing the first subset of live-in
variables into a second block in the control flow graph that is subsequent to the first
block in the control flow graph, where the optimized program code is to be executed
on the PPU.

[0007] One advantage of the disclosed technique is that rematerializing certain
subsets of live-in variables decreases register pressure, thereby reducing the
likelihood of a spill event. Decreasing register pressure also allows a greater number
of execution threads to be executed simultaneously within a PPU, thereby increasing

the overall processing throughput of the PPU.

BRIEF DESCRIPTION OF THE DRAWINGS

[0008] So that the manner in which the above recited features of the present invention
can be understood in detail, a more particular description of the invention, briefly
summarized above, may be had by reference to embodiments, some of which are
illustrated in the appended drawings. It is to be noted, however, that the appended
drawings illustrate only typical embodiments of this invention and are therefore not to
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be considered limiting of its scope, for the invention may admit to other equally
effective embodiments.

[0009] Figure 1 is a block diagram illustrating a computer system configured to

implement one or more aspects of the present invention;

[0010] Figure 2 is a block diagram of a parallel processing subsystem for the
computer system of Figure 1, according to one embodiment of the present invention;

[0011] Figure 3 illustrates a build process used to compile a co-processor enabled

application, according to one embodiment of the present invention;

[0012] Figure 4 is a flow diagram of method steps for performing live analysis-based
rematerialization with a set of live-in variables, according to one embodiment of the

invention;

[0013] Figure 5 is a flow diagram of method steps for performing a profitability
analysis on a set of live-in variables, according to one embodiment of the invention;

and

[0014] Figure 6 sets forth an example control flow graph to illustrate the operation of a

device compiler and linker, according to one embodiment of the present invention.

DETAILED DESCRIPTION

[0015] In the following description, numerous specific details are set forth to provide a
more thorough understanding of the present invention. However, it will be apparent to
one of skill in the art that the present invention may be practiced without one or more
of these specific details.

System Overview

[0016] Figure 1 is a block diagram illustrating a computer system 100 configured to
implement one or more aspects of the present invention. Computer system 100
includes a central processing unit (CPU) 102 and a system memory 104
communicating via an interconnection path that may include a memory bridge 105.

3
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System memory 104 includes an image of an operating system 130, a driver 103, and
a co-processor enabled application 134. Operating system 130 provides detailed
instructions for managing and coordinating the operation of computer system 100.
Driver 103 provides detailed instructions for managing and coordinating operation of
parallel processing subsystem 112 and one or more parallel processing units (PPUs)
residing therein, as described in greater detail below in conjunction with Figure 2.
Driver 103 also provides compilation facilities for generating machine code specifically
optimized for such PPUs, as described in greater detail below in conjunction with
Figures 3-6. Co-processor enabled application 134 incorporates instructions capable
of being executed on the CPU 102 and PPUs, those instructions being implemented
in an abstract format, such as virtual assembly, and mapping to machine code for the
PPUs within parallel processing subsystem 112. The machine code for those PPUs

may be stored in system memory 104 or in memory coupled to the PPUs.

[0017] In one embodiment, co-processor enabled application 134 represents CUDA™
code that incorporates programming instructions intended to execute on parallel
processing subsystem 112. In the context of the present description, the term
“application” or “program” refers to any computer code, instructions, and/or functions
that may be executed using a processor. For example, in various embodiments, co-
processor enabled application 134 may include C code, C++ code, etc. In one
embodiment, co-processor enabled application 134 may include a language

extension of a computer language (e.g., C, C++, etc.).

[0018] Memory bridge 105, which may be, e.g., a Northbridge chip, is connected via a
bus or other communication path 106 (e.g., a HyperTransport link) to an input/output
(VO) bridge 107. 1/O bridge 107, which may be, e.g., a Southbridge chip, receives
user input from one or more user input devices 108 (e.g., keyboard, mouse) and
forwards the input to CPU 102 via communication path 106 and memory bridge 105.
Parallel processing subsystem 112 is coupled to memory bridge 105 via a bus or
second communication path 113 (e.g., a Peripheral Component Interconnect Express
(PCle), Accelerated Graphics Port (AGP), or HyperTransport link); in one embodiment
parallel processing subsystem 112 is a graphics subsystem that delivers pixels to a
display device 110 that may be any conventional cathode ray tube, liquid crystal
display, light-emitting diode display, or the like. A system disk 114 is also connected

4
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to I/O bridge 107 and may be configured to store content and applications and data
for use by CPU 102 and parallel processing subsystem 112. System disk 114
provides non-volatile storage for applications and data and may include fixed or
removable hard disk drives, flash memory devices, and compact disc (CD) read-only
memory (ROM), digital video disc (DVD) ROM, Blu-ray, high-definition (HD) DVD, or
other magnetic, optical, or solid state storage devices.

[0019] A switch 116 provides connections between I/O bridge 107 and other
components such as a network adapter 118 and various add-in cards 120 and 121.
Other components (not explicitly shown), including universal serial bus (USB) or other
port connections, CD drives, DVD drives, film recording devices, and the like, may
also be connected to I/O bridge 107. The various communication paths shown in
Figure 1, including the specifically named communication paths 106 and 113 may be
implemented using any suitable protocols, such as PCle, AGP, HyperTransport, or
any other bus or point-to-point communication protocol(s), and connections between

different devices may use different protocols as is known in the art.

[0020] In one embodiment, the parallel processing subsystem 112 incorporates
circuitry optimized for graphics and video processing, including, for example, video
output circuitry, and constitutes a graphics processing unit (GPU). In another
embodiment, the parallel processing subsystem 112 incorporates circuitry optimized
for general purpose processing, while preserving the underlying computational
architecture, described in greater detail herein. In yet another embodiment, the
parallel processing subsystem 112 may be integrated with one or more other system
elements in a single subsystem, such as joining the memory bridge 105, CPU 102,
and I/O bridge 107 to form a system on chip (SoC).

[0021] It will be appreciated that the system shown herein is illustrative and that
variations and modifications are possible. The connection topology, including the
number and arrangement of bridges, the number of CPUs 102, and the number of
parallel processing subsystems 112, may be modified as desired. For instance, in
some embodiments, system memory 104 is connected to CPU 102 directly rather
than through a bridge, and other devices communicate with system memory 104 via
memory bridge 105 and CPU 102. In other alternative topologies, parallel processing
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subsystem 112 is connected to 1/O bridge 107 or directly to CPU 102, rather than to
memory bridge 105. In still other embodiments, 1/0O bridge 107 and memory bridge
105 might be integrated into a single chip instead of existing as one or more discrete
devices. Large embodiments may include two or more CPUs 102 and two or more
parallel processing subsystems 112. The particular components shown herein are
optional; for instance, any number of add-in cards or peripheral devices might be
supported. In some embodiments, switch 116 is eliminated, and network adapter 118
and add-in cards 120, 121 connect directly to 1/O bridge 107.

[0022] Figure 2 illustrates a parallel processing subsystem 112, according to one
embodiment of the present invention. As shown, parallel processing subsystem 112
includes one or more parallel processing units (PPUs) 202, each of which is coupled
to a local parallel processing (PP) memory 204. In general, a parallel processing
subsystem includes a number U of PPUs, where U is greater than or equal to 1.
(Herein, multiple instances of like objects are denoted with reference numbers
identifying the object and parenthetical numbers identifying the instance where
needed.) PPUs 202 and parallel processing memories 204 may be implemented
using one or more integrated circuit devices, such as programmable processors,
application specific integrated circuits (ASICs), or memory devices, or in any other
technically feasible fashion.

[0023] Referring to Figures 1 as well as Figure 2, in some embodiments, some or all
of PPUs 202 in parallel processing subsystem 112 are graphics processors with
rendering pipelines that can be configured to perform various operations related to
generating pixel data from graphics data supplied by CPU 102 and/or system memory
104 via memory bridge 105 and the second communication path 113, interacting with
local parallel processing memory 204 (which can be used as graphics memory
including, e.g., a conventional frame buffer) to store and update pixel data, delivering
pixel data to display device 110, and the like. In some embodiments, parallel
processing subsystem 112 may include one or more PPUs 202 that operate as
graphics processors and one or more other PPUs 202 that are used for
general-purpose computations. The PPUs may be identical or different, and each
PPU may have a dedicated parallel processing memory device(s) or no dedicated
parallel processing memory device(s). One or more PPUs 202 in parallel processing
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subsystem 112 may output data to display device 110 or each PPU 202 in parallel
processing subsystem 112 may output data to one or more display devices 110.

[0024] In operation, CPU 102 is the master processor of computer system 100,
controlling and coordinating operations of other system components. In particular,
CPU 102 issues commands that control the operation of PPUs 202. In some
embodiments, CPU 102 writes a stream of commands for each PPU 202 to a data
structure (not explicitly shown in either Figure 1 or Figure 2) that may be located in
system memory 104, parallel processing memory 204, or another storage location
accessible to both CPU 102 and PPU 202. A pointer to each data structure is written
to a pushbuffer to initiate processing of the stream of commands in the data structure.
PPU 202 reads command streams from one or more pushbuffers and then executes
commands asynchronously relative to the operation of CPU 102. Execution priorities
may be specified for each pushbuffer by an application program via device driver 103
to control scheduling of the different pushbuffers.

[0025] Each PPU 202 includes an I/O (input/output) unit 205 that communicates with
the rest of computer system 100 via communication path 113, which connects to
memory bridge 105 (or, in one alternative embodiment, directly to CPU 102). The
connection of PPU 202 to the rest of computer system 100 may also be varied. In
some embodiments, parallel processing subsystem 112 is implemented as an add-in
card that can be inserted into an expansion slot of computer system 100. In other
embodiments, a PPU 202 can be integrated on a single chip with a bus bridge, such
as memory bridge 105 or I/O bridge 107. In still other embodiments, some or all
elements of PPU 202 may be integrated on a single chip with CPU 102.

[0026] In one embodiment, communication path 113 is a PCle link, as mentioned
above, in which dedicated lanes are allocated to each PPU 202, as is known in the
art. Other communication paths may also be used. An I/O unit 205 generates
packets (or other signals) for transmission on communication path 113 and also
receives all incoming packets (or other signals) from communication path 113,
directing the incoming packets to appropriate components of PPU 202. For example,
commands related to processing tasks may be directed to a host interface 206, while
commands related to memory operations (e.g., reading from or writing to parallel
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processing memory 204) may be directed to a memory crossbar unit 210. Host
interface 206 reads each pushbuffer and outputs the command stream stored in the

pushbuffer to a front end 212.

[0027] Each PPU 202 advantageously implements a highly parallel processing
architecture. As shown in detail, PPU 202(0) includes a processing cluster array 230
that includes a number C of general processing clusters (GPCs) 208, where C > 1.
Each GPC 208 is capable of executing a large number (e.g., hundreds or thousands)
of threads concurrently, where each thread is an instance of a program. In various
applications, different GPCs 208 may be allocated for processing different types of
programs or for performing different types of computations. The allocation of GPCs
208 may vary dependent on the workload arising for each type of program or

computation.

[0028] GPCs 208 receive processing tasks to be executed from a work distribution
unit within a task/work unit 207. The work distribution unit receives pointers to
processing tasks that are encoded as task metadata (TMD) and stored in memory.
The pointers to TMDs are included in the command stream that is stored as a
pushbuffer and received by the front end unit 212 from the host interface 206.
Processing tasks that may be encoded as TMDs include indices of data to be
processed, as well as state parameters and commands defining how the data is to be
processed (e.g., what program is to be executed). The task/work unit 207 receives
tasks from the front end 212 and ensures that GPCs 208 are configured to a valid
state before the processing specified by each one of the TMDs is initiated. A priority
may be specified for each TMD that is used to schedule execution of the processing
task. Processing tasks can also be received from the processing cluster array 230.
Optionally, the TMD can include a parameter that controls whether the TMD is added
to the head or the tail for a list of processing tasks (or list of pointers to the processing
tasks), thereby providing another level of control over priority.

[0029] Memory interface 214 includes a number D of partition units 215 that are each
directly coupled to a portion of parallel processing memory 204, where D> 1. As
shown, the number of partition units 215 generally equals the number of dynamic
random access memory (DRAM) 220. In other embodiments, the number of partition
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units 215 may not equal the number of memory devices. Persons of ordinary skill in
the art will appreciate that DRAM 220 may be replaced with other suitable storage
devices and can be of generally conventional design. A detailed description is
therefore omitted. Render targets, such as frame buffers or texture maps may be
stored across DRAMs 220, allowing partition units 215 to write portions of each
render target in parallel to efficiently use the available bandwidth of parallel
processing memory 204.

[0030] Any one of GPCs 208 may process data to be written to any of the DRAMs 220
within parallel processing memory 204. Crossbar unit 210 is configured to route the
output of each GPC 208 to the input of any partition unit 215 or to another GPC 208
for further processing. GPCs 208 communicate with memory interface 214 through
crossbar unit 210 to read from or write to various external memory devices. In one
embodiment, crossbar unit 210 has a connection to memory interface 214 to
communicate with I/O unit 205, as well as a connection to local parallel processing
memory 204, thereby enabling the processing cores within the different GPCs 208 to
communicate with system memory 104 or other memory that is not local to PPU 202.
In the embodiment shown in Figure 2, crossbar unit 210 is directly connected with /O
unit 205. Crossbar unit 210 may use virtual channels to separate traffic streams
between the GPCs 208 and partition units 215.

[0031] Again, GPCs 208 can be programmed to execute processing tasks relating to
a wide variety of applications, including but not limited to, linear and nonlinear data
transforms, filtering of video and/or audio data, modeling operations (e.g., applying
laws of physics to determine position, velocity and other attributes of objects), image
rendering operations (e.g., tessellation shader, vertex shader, geometry shader,
and/or pixel shader programs), and so on. PPUs 202 may transfer data from system
memory 104 and/or local parallel processing memories 204 into internal (on-chip)
memory, process the data, and write result data back to system memory 104 and/or
local parallel processing memories 204, where such data can be accessed by other
system components, including CPU 102 or another parallel processing subsystem
112.
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[0032] A PPU 202 may be provided with any amount of local parallel processing
memory 204, including no local memory, and may use local memory and system
memory in any combination. For instance, a PPU 202 can be a graphics processor in
a unified memory architecture (UMA) embodiment. In such embodiments, little or no
dedicated graphics (parallel processing) memory would be provided, and PPU 202
would use system memory exclusively or almost exclusively. In UMA embodiments, a
PPU 202 may be integrated into a bridge chip or processor chip or provided as a
discrete chip with a high-speed link (e.g., PCI Express) connecting the PPU 202 to
system memory via a bridge chip or other communication means. Alternatively, each
PPU 202 may be implemented with a non-uniform memory architecture, and each
such PPU 202 may have access to multiple different memory spaces as directed by

co-processor enabled application 134.

[0033] As noted above, any number of PPUs 202 can be included in a parallel
processing subsystem 112. For instance, multiple PPUs 202 can be provided on a
single add-in card, or multiple add-in cards can be connected to communication path
113, or one or more of PPUs 202 can be integrated into a bridge chip. PPUs 202 in a
multi-PPU system may be identical to or different from one another. For instance,
different PPUs 202 might have different numbers of processing cores, different
amounts of local parallel processing memory, and so on. Where multiple PPUs 202
are present, those PPUs may be operated in parallel to process data at a higher
throughput than is possible with a single PPU 202. Systems incorporating one or
more PPUs 202 may be implemented in a variety of configurations and form factors,
including desktop, laptop, or handheld personal computers, servers, workstations,
game consoles, embedded systems, and the like.

[0034] As mentioned above, each PPU 202 is configured to execute co-processor
enabled application 134 shown in Figure 1. Co-processor enabled application 134 is
compiled by a device compiler and linker application that is derived from device driver
103, as described in greater detail below in conjunction with Figure 3.

[0035] Figure 3 illustrates the build process used to compile the co-processor enabled
application 134 of Figure 1, according to one embodiment of the present invention.
Program code 310 includes host source code 312 and device source code 314. Host

10
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source code 312 incorporates programming instructions intended to execute on a
host, such as an x86-based personal computer (PC) or server. The programming
instructions in source code 312 may include calls to functions defined in device
source code 314. Any technically feasible mechanism may be used to specify which
functions are designated as device source code 314.

[0036] Host source code 312 is pre-processed, compiled, and linked by a host
compiler and linker 322. The host compiler and linker 322 generates host machine

code 342, which is stored within co-processor enabled application 134.

[0037] Device source code 314 is pre-processed, compiled and linked by a device
compiler and linker 324. This compile operation constitutes a first stage compile of
device source code 314. Device compiler and linker 324 generates device virtual
assembly 346, which is stored within a device code repository 350, residing with or
within co-processor enabled application 134. A virtual instruction translator 334 may
generate device machine code 324 from device virtual assembly 346. This compile
operation constitutes a second stage compile of device source code 314. Virtual
instruction translator 334 may generate more than one version of device machine
code 344, based on the availability of known architecture definitions. For example,
virtual instruction translator 334 may generate a first version of device machine code
344, which invokes native 64-bit arithmetic instructions (available in the first target
architecture) and a second version of device machine code 344, which emulates 64-
bit arithmetic functions on targets that do not include native 64-bit arithmetic

instructions.

[0038] Architectural information 348 indicates the real architecture version used to
generate device machine code 344. The real architecture version defines the
features that are implemented in native instructions within a real execution target,
such as the PPU 202. Architectural information 348 also indicates the virtual
architecture version used to generate device virtual assembly 346. The virtual
architecture version defines the features that are assumed to be either native or easily
emulated and the features that are not practical to emulate. For example, atomic
addition operations are not practical to emulate at the instruction level, although they

11



10

15

20

25

30

WO 2013/070637 PCT/US2012/063757

may be avoided altogether at the algorithmic level in certain cases and, therefore,
impact which functions may be compiled in the first compile stage.

[0039] In addition to the device machine code 344 and device virtual assembly 346,
the device code repository also includes architecture information 348, which indicates
which architectural features were assumed when device machine code 344 and
device virtual assembly 346 where generated. Persons skilled in the art will
recognize that the functions included within device machine code 344 and virtual
assembly 346 reflect functions associated with the real architecture of PPU 202. The
architecture information 348 provides compatibility information for device machine
code 344 and compiler hints for a second stage compile operation, which may be
performed by a device driver 103 at some time after the development of co-processor

enabled application 134 has already been completed.

[0040] Device compiler and linker 324 is also configured to perform various
optimization routines with program code 310. One such optimization routine involves
selectively rematerializing sets of live-in variables, as described in greater detail

below in conjunction with Figure 4.
Live Analysis-Based Rematerialization

[0041] Figure 4 is a flow diagram of method steps for performing live analysis-based
rematerialization with a set of live-in variables, according to one embodiment of the
invention. Although the method steps are described in conjunction with the systems
of Figures 1-2, persons skilled in the art will understand that any system configured to
perform the method steps, in any order, is within the scope of the present invention.
In one embodiment, device compiler and linker 324 shown in Figure 3 may be
configured to implement the method steps.

[0042] As shown, a method 400 begins at step 402, where device compiler and linker
324 generates a control flow graph for program code 310. The control flow graph
generated by device compiler and linker 324 may be a conventional control graph
generated using data flow analysis techniques and, as such, may include a collection
of code blocks. At step 404, device compiler and linker 324 identifies a block in the

control flow graph that includes the maximum number of live-in variables. In one

12
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embodiment, device compiler and linker 324 determines the number of live-in
variables for each block in the control flow graph and then identifies the block having
the greatest number of live-in variables. The maximum number of live-in variables is
represented by a value referred to as “max live-in”. Max live-in may indicate an
amount of register pressure caused by executing co-processor enabled application
134. At step 406, device compiler and linker 324 collects live-in variables associated
with the block identified at step 404.

[0043] At step 408, device compiler and linker 324 selects a subset of the live-in
variables for rematerialization based on performing a profitability analysis with
different subsets of live-in variables. Device compiler and linker 324 may perform the
profitability analysis in order to determine the “profitability” of rematerializing a given
subset of live-in variables. The “profitability” of a given subset of live-in variables may
be a numerical value that reflects the number of live-in variables reduced by
rematerializing the given subset. That value may additionally reflect the number of
instructions pulled in for that rematerialization and/or the maximum number of
registers allowed for each thread, as discussed in greater detail below in conjunction

with Figure 5.

[0044] At step 410, device compiler and linker 324 rematerializes the live-in variables
in the given subset. Device compiler and linker 324 may implement any technically
feasible rematerialization technique. In one embodiment, device compiler and linker
324 rematerializes a given subset of live-in variables by first removing computations
involving those live-in variables from a block of the control flow graph. Device
compiler and linker 324 may then modify a subsequent block of the control flow graph
to re-compute the live-in variables associated with the subset within the subsequent
block. In doing so, device compiler and linker 324 may modify program code 310 as
needed. At step 412, device compiler and linker 324 updates max live-in by
identifying the number of live-in variables for each block and identifying the block with
the greatest number of live-in variables. The method 400 then ends.

[0045] Device compiler and linker 324 may perform steps 404, 406, 408, 410, and 412
iteratively until a specific goal is met. In one embodiment, device compiler and linker

324 performs those steps a fixed number of times, e.g. 5 times. In another
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embodiment, device compiler and linker 324 performs steps 404, 406, 408, 410, and
412 iteratively until max live-in decreases beneath a given threshold, indicating that
register pressure has decreased sufficiently as a result of rematerialization.

[0046] Figure 5 is a flow diagram of method steps for performing a profitability
analysis on a set of live-in variables, according to one embodiment of the invention.
Although the method steps are described in conjunction with the systems of Figures
1-2, persons skilled in the art will understand that any system configured to perform
the method steps, in any order, is within the scope of the present invention. In one
embodiment, device compiler and linker 324 shown in Figure 3 may be configured to
implement the method steps with a subset of live-in variables associated with the
block identified in step 404 of the method 400.

[0047] As shown, a method 500 begins at step 502, where device compiler and linker
324 generates a first profitability factor for the subset of live-in variables based on the
number of live-in variables reduced via rematerialization. For example, device

compiler and linker 324 could determine that rematerialization reduces the number of
live-in variables by two and increases that number by one, for a net loss of one live-in

variable.

[0048] At step 504, device compiler and linker 324 generates a second profitability
factor based on the number of instructions pulled in for rematerialization and the cost
of the use-sites required by rematerialization. Since different live-in variables may be
associated with instructions of differing complexity and/or use-sites having different
costs, device compiler and linker 324 generates the second profitability factor in order
to quantify such differences between different subsets of live-in variables.

[0049] At step 506, device compiler and linker 324 generates a third profitability factor
based on the maximum number of registers allowed for each thread configured to
execute co-processor enabled application 134. In doing so, device compiler and
linker 324 may estimate the cost of a “spill” event that would occur when that
maximum number of registers is exceeded. The cost could reflect, e.g., an increase
in memory latency due to the spill event and/or decrease in program execution speed,
among other things. At step 508, device compiler and linker 324 estimates the
profitability of rematerializing the subset of live-in variables based on the first, second,
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and third profitability factors generated at steps 402, 404, and 406, respectively. In
general, the “profitability” of rematerializing a given subset of live-in variables is a
numerical value that reflects the potential benefit of rematerializing that subset of

variables.

[0050] Device compiler and linker 324 is configured to perform the method 500 with
multiple different subsets of the set of live-in variables associated with the block
identified at step 404 of the method 400. In doing so, device compiler and linker 324
may estimate the profitability of rematerializing each possible subset of those live-in
variables and then select the subset having the greatest profitability for

rematerialization.

[0051] The methods 400 and 500 described above in conjunction with Figures 4 and
5, respectively, are illustrated in greater detail below by way of example in conjunction
with Figure 6.

[0052] Figure 6 sets forth an example control flow graph to illustrate the operation of a
device compiler and linker, according to one embodiment of the present invention.
Device compiler and linker 324 may generate control flow graph 600 based on
program code 310 at step 402 of the method 400, as described above in conjunction
with Figure 4. As shown, control flow graph 600 includes blocks 610 and 620. Block
610 includes two expressions and receives one live-in variable “t” from a previous
block (not shown). Block 620 includes three expressions and receives two live-in
variables “x” and “y” from block 610. The expressions within those blocks are derived
from program code 310. In the following example, device compiler and linker 324
performs the methods 400 and 500 described above in conjunction with Figures 4 and
5, respectively, in order to selectively rematerialize variables within control flow graph
600. In doing so, device compiler and linker 324 may reduce register pressure when

a given PPU 202 executes code represented by control flow graph 600.

[0053] Once device compiler and linker 324 has generated control flow graph 600,
device compiler and linker 324 identifies the block within control flow graph 600 with
the maximum number of live in variables. Since block 610 receives one live-in
variable and block 620 receives two live-in variables, device compiler and linker 324
identifies block 620 as having max live-in, similar to step 404 of the method 400.
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Device compiler and linker 324 then selects a subset of the live-in variables
associated with block 620 based on a profitability analysis performed with each

possible subset.

[0054] In this example, device compiler and linker 324 could perform the profitability

analysis with subsets that include live-in variable “x,” live-in variable “y,” or live-

variables “x” and “y.” The profitability analysis outlined in conjunction with Figure 5
would reveal that rematerializing just “x” or “y” independently would not reduce the
number of live-in variables to block 620, because doing so would introduce “t” as a
new live-in variable for a net loss of zero live-in variables. However, rematerializing
both “x” and “y” together would decrease the number of live-in variables by two and
increase the number of live-in variables by just one, for a net loss of one live in-
variable. This net loss may be reflected in the first profitability factor generated by
device compiler and linker 324 in step 502 of the method 500 for the subset including

“x” and “y.

[0055] Device compiler and linker 324 is also configured to determine the number of
instructions pulled in for rematerializing live-in variables in a given subset and the cost
of use-sites required for rematerializing those live-in variables, similar to step 504 of
the method 500. In this example, device compiler and linker 324 would analyze the
definitions of live-in variables “x” and “y” as well as the type of memory accesses
required by those definitions in order to determine the “overhead” involved with
rematerializing those variables. In some situations, the overhead involved with
rematerializing the live-in variables in a given subset may be prohibitive due to, e.g.,
the complexity of the instructions required to rematerialize certain live-in variables, or
the use-site cost associated with rematerializing those variables. In general, the
second profitability factor generated by device compiler and linker 324 at step 504 of

the method 500 reflects that overhead.

[0056] For each subset of live-in variables discussed in this example, specifically the

subsets that include “x”, “y”, or “x

and “y”, device compiler and linker 324 generates

the first and second profitability factors discussed above and in conjunction with steps
502 and 504, respectively, of the method 500. For each such subset, device compiler
and linker 324 also generates the third profitability factor discussed in conjunction with
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step 506 of the method 500. Device compiler and linker 324 generates the third
profitability factor for a given subset based on the maximum number of registers
allowed for each thread configured to execute co-processor enabled application 134
and the cost of a “spill” event that could occur when that number of registers is
exceeded. In such a situation, the live-in variables in the given subset could spill into
system memory. Device compiler and linker 324 estimates the third profitability factor
for the given subset based on the “cost” of that spill, e.g. the increase in memory
latency and/or the decrease in program execution speed. Accordingly, the third
profitability factor generated for a given subset of live-in variables represents a

measure of “risk” associated with rematerializing the live-in variables in that subset.

[0057] Device compiler and linker 324 estimates the overall profitability of
rematerializing the live-in variables in the different subsets discussed in this example
based on the three profitability factors generated for each such subset, similar to step
508 of the method 500. Device compiler and linker 324 then rematerializes the live-in
variables in the subset having the greatest profitability. In this example, the subset

that includes both “x” and “y” has the greatest profitability, and so device compiler and

linker rematerializes those variables within block 620 by modifying program code 310.

[0058] In sum, a device compiler and linker within a parallel processing unit (PPU) is
configured to optimize program code of a co-processor enabled application by
rematerializing a subset of live-in variables for a particular block in a control flow
graph generated for that program code. The device compiler and linker identifies the
block of the control flow graph that has the greatest number of live-in variables, then
selects a subset of the live-in variables associated with the identified block for which
rematerializing confers the greatest estimated profitability. The profitability of
rematerializing a given subset of live-in variables is determined based on the number
of live-in variables reduced, the cost of rematerialization, and the potential risk of

rematerialization.

[0059] Advantageously, rematerializing certain subsets of live-in variables decreases
register pressure, thereby reducing the likelihood of a spill event. Decreasing register
pressure also allows a greater number of execution threads to be executed
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simultaneously with the PPU, thereby increasing the overall processing throughput of
the PPU.

[0060] One embodiment of the invention may be implemented as a program product
for use with a computer system. The program(s) of the program product define
functions of the embodiments (including the methods described herein) and can be
contained on a variety of computer-readable storage media. lllustrative computer-
readable storage media include, but are not limited to: (i) non-writable storage media
(e.g., read-only memory devices within a computer such as CD-ROM disks readable
by a CD-ROM drive, flash memory, ROM chips or any type of solid-state non-volatile
semiconductor memory) on which information is permanently stored; and (ii) writable
storage media (e.g., floppy disks within a diskette drive or hard-disk drive or any type
of solid-state random-access semiconductor memory) on which alterable information

is stored.

[0061] The invention has been described above with reference to specific
embodiments. Persons skilled in the art, however, will understand that various
modifications and changes may be made thereto without departing from the broader
spirit and scope of the invention as set forth in the appended claims. The foregoing
description and drawings are, accordingly, to be regarded in an illustrative rather than

a restrictive sense.
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The invention claimed is:

1. A computer-implemented method for optimizing program code that is capable
of being compiled for execution on a parallel processing unit (PPU), the method
comprising:
generating a control flow graph for the program code;
identifying a first block in the control flow graph with the greatest number of
live-in variables compared to other blocks in the control flow graph;
selecting a first subset of live-in variables associated with the first block by
performing a profitability analysis on different subsets of live-in variables
associated with the first block; and
optimizing the program code by rematerializing the first subset of live-in
variables into a second block in the control flow graph that is
subsequent to the first block in the control flow graph, wherein the
optimized program code is to be executed on the PPU.

2. The computer-implemented method of claim 1, wherein selecting the first
subset of live-in variables comprises:
estimating a profitability value for each of the different subsets of live-in
variables by performing the profitability analysis on each of the different
subsets; and
selecting the first subset of live-in variables based on the first subset of live-in
variables having the greatest profitability value compared to the
profitability values associated with the other different subsets of live-in

variables.

3. The computer-implemented method of claim 2, wherein the profitability
analysis for a given subset of live-in variables is generated based on the number of
live-in variables reduced by rematerializing the given subset of live-in variables into

the second block in the control flow graph.

4. The computer-implemented method of claim 3, wherein the profitability

analysis for the given subset of live-in variables is further generated based on the
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number of instructions pulled into the second block of the control flow graph when

rematerializing the given subset of live-in variables into the second block.

5. The computer-implemented method of claim 4, wherein the profitability
analysis for the given subset of live-in variables is further generated based on the
number of use-sites associated with rematerializing the given subset of live-in

variables into the second block of the control flow graph.

6. The computer-implemented method of claim 5, wherein the profitability
analysis for the given subset of live-in variables is further generated based on at least
one of the cost of transferring the given subset of live-in variables from register
memory to system memory and the cost of accessing the given subset of live-in

variables within system memory.

7. The computer-implemented method of claim 1, further comprising performing a
data flow analysis on the program code to generate the control flow graph.

8. The computer-implemented method of claim 1, further comprising iteratively
optimizing the program code and estimating an amount of register pressure caused
by executing the optimized program code within the PPU until the amount of register
pressure caused by executing the program code within the PPU falls below a

threshold value.

9. The computer-implemented method of claim 1, further comprising:
determining that rematerializing the first set of live-in variables makes available
a set of registers in register memory; and
allocating the set of registers to one or more threads configured to execute on
the PPU.

10. A computing device configured to optimize program code that is capable of
being compiled for execution on a parallel processing unit (PPU), including:
a processing unit configured to:
generate a control flow graph for the program code;
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identify a first block in the control flow graph with the greatest number of
live-in variables compared to other blocks in the control flow
graph;

select a first subset of live-in variables associated with the first block by

5 performing a profitability analysis on different subsets of live-in

variables associated with the first block; and

optimize the program code by rematerializing the first subset of live-in
variables into a second block in the control flow graph that is
subsequent to the first block in the control flow graph, wherein

10 the optimized program code is to be executed on the PPU.
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