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1

SYSTEM, APPARATUS AND METHOD FOR
IN-FIELD SELF TESTING IN A DIAGNOSTIC
SLEEP STATE

This application is a continuation of U.S. patent applica-
tion Ser. No. 15/825,352, filed Nov. 29, 2017, the content of
which is hereby incorporated by reference.

TECHNICAL FIELD

Embodiments relate to a processor having self testing
capabilities.

BACKGROUND

Electronic devices such as integrated circuits used in
automotive systems are required to meet certain functional
safety requirements. The goal of these requirements is to
remove unreasonable risk of harm due to hazards caused by
malfunctioning behavior. The International Organization
For Standards (ISO) ISO 26262 standard for functional
safety of electrical/electronic systems in automobiles defines
these requirements and classifies 4 distinct levels of safety,
ranging from Automotive Safety Integrity Level (ASIL)-A
(lightest requirements) to ASIL-D (most stringent require-
ments).

In order to meet these safety and integrity goals, in-field
diagnostics may use built in self test circuitry of a processor.
Nevertheless it is difficult and time consuming to perform
such testing, and it can adversely impact normal operation.
In many cases, such testing cannot be performed during
normal system operation.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of a portion of a system in
accordance with an embodiment of the present invention.

FIG. 2 is a block diagram of a processor in accordance
with an embodiment of the present invention.

FIG. 3 is a block diagram of a multi-domain processor in
accordance with another embodiment of the present inven-
tion.

FIG. 4 is an embodiment of a processor including multiple
cores.

FIG. 5 is a block diagram of a micro-architecture of a
processor core in accordance with one embodiment of the
present invention.

FIG. 6 is a block diagram of a micro-architecture of a
processor core in accordance with another embodiment.

FIG. 7 is a block diagram of a micro-architecture of a
processor core in accordance with yet another embodiment.

FIG. 8 is a block diagram of a micro-architecture of a
processor core in accordance with a still further embodi-
ment.

FIG. 9 is a block diagram of a processor in accordance
with another embodiment of the present invention.

FIG. 10 is a block diagram of a representative SoC in
accordance with an embodiment of the present invention.

FIG. 11 is a block diagram of another example SoC in
accordance with an embodiment of the present invention.

FIG. 12 is a block diagram of an example system with
which embodiments can be used.

FIG. 13 is a block diagram of another example system
with which embodiments may be used.

FIG. 14 is a block diagram of a representative computer
system.
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2

FIG. 15 is a block diagram of a system in accordance with
an embodiment of the present invention.

FIG. 16 is a block diagram of a portion of a processor in
accordance with an embodiment of the present invention.

FIG. 17 is a block diagram of a processor in accordance
with an embodiment of the present invention.

FIG. 18 is a flow diagram of a method in accordance with
an embodiment of the present invention.

FIG. 19 is a flow diagram of a method in accordance with
another embodiment of the present invention.

FIG. 20 is a flow diagram of a method in accordance with
a still further embodiment of the present invention.

FIG. 21 is a flow diagram of yet another method in
accordance with an embodiment.

FIG. 22 is a block diagram of a system in accordance with
another embodiment of the present invention.

DETAILED DESCRIPTION

In various embodiments, techniques are provided to
enable a processor or other integrated circuit to perform
in-field self testing during normal system operation in a
manner that is non-destructive to a current state of the
processor. To this end, embodiments provide a diagnostic
sleep state in which in-field diagnostic testing may be
performed. Before entry to this state, a processor (e.g., via
microcode) saves away state of the core. When the core has
entered the diagnostic sleep state, a test controller such as a
scan finite state machine (FSM) is triggered to perform
in-field scan testing of logic of the core. Following comple-
tion, the test controller triggers a localized core reset and
wakes the core. On wakeup from this diagnostic sleep state,
the core (e.g., via microcode) restores the core’s state.

In an embodiment this in-field self testing may be per-
formed using a test pattern module, which is an encrypted
and signed binary that is used to package one or more scan
or other test patterns. A given core may execute microcode
to authenticate and decrypt this binary, and load it into a
cache memory. The test controller may use a direct access
testing (DAT) mechanism to access the cache memory and
to read the patterns and shift them into scan chains or other
test circuitry of a processor. In another embodiment the test
controller may access the patterns using a conventional
read/write interface to the cache memory.

Using an embodiment, the need for an external controller
to enable self testing via a test access port (TAP) is avoided.
In addition to reducing component count, security issues
raised by such external test controller are also avoided. An
external controller conventionally performs testing in a
manner that is completely destructive to the processor state,
requiring a complete processor reboot following testing,
which also may be avoided using an embodiment.

With an embodiment, microcode patch authentication and
decryption circuitry and cryptographic micro-operations of a
core can be used to perform test pattern module authenti-
cation and decryption. In addition, embodiments leverage a
cache memory to store test patterns. In this way, an external
non-volatile memory in which these test patterns persist may
be of any given technology as the test operation is agnostic
to the non-volatile memory technology. And with a diag-
nostic sleep state in which processor state is saved to and
restored from a low power memory, there is no need to
restart software following test completion. As embodiments
perform self testing in a non-destructive manner, such
testing can be performed periodically during normal func-
tional operation. As an example, software may select a
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module to test and carry out the test while other modules of
the processor continue in normal functional operation.

In an embodiment, test pattern modules can be received in
the field, such as by over-the-air download, and can be saved
by an operating system/basic input/output system (OS/
BIOS) into a given storage. In some cases, tests can be split
into multiple groups. Then during testing a test controller
can select one or more groups of tests to run, such that
functional execution can occur in between periodic execu-
tion of these test pattern modules. As such, embodiments
provide a low cost, flexible, low latency and non-destructive
in-field diagnostic framework.

Although the following embodiments are described with
reference to specific integrated circuits, such as in comput-
ing platforms or processors, other embodiments are appli-
cable to other types of integrated circuits and logic devices.
Similar techniques and teachings of embodiments described
herein may be applied to other types of circuits or semicon-
ductor devices that may also benefit from better energy
efficiency and energy conservation. For example, the dis-
closed embodiments are not limited to any particular type of
computer systems. That is, disclosed embodiments can be
used in many different system types, ranging from server
computers (e.g., tower, rack, blade, micro-server and so
forth), communications systems, storage systems, desktop
computers of any configuration, laptop, notebook, and tablet
computers (including 2:1 tablets, phablets and so forth), and
may be also used in other devices, such as handheld devices,
systems on chip (SoCs), and embedded applications. Some
examples of handheld devices include cellular phones such
as smartphones, Internet protocol devices, digital cameras,
personal digital assistants (PDAs), and handheld PCs.
Embedded applications may typically include a microcon-
troller, a digital signal processor (DSP), network computers
(NetPC), set-top boxes, network hubs, wide area network
(WAN) switches, wearable devices, or any other system that
can perform the functions and operations taught below.
More so, embodiments may be implemented in mobile
terminals having standard voice functionality such as mobile
phones, smartphones and phablets, and/or in non-mobile
terminals without a standard wireless voice function com-
munication capability, such as many wearables, tablets,
notebooks, desktops, micro-servers, servers and so forth.
Moreover, the apparatuses, methods, and systems described
herein are not limited to physical computing devices, but
may also relate to software optimizations.

Referring now to FIG. 1, shown is a block diagram of a
portion of a system in accordance with an embodiment of the
present invention. As shown in FIG. 1, system 100 may
include various components, including a processor 110
which as shown is a multicore processor. Processor 110 may
be coupled to a power supply 150 via an external voltage
regulator 160, which may perform a first voltage conversion
to provide a primary regulated voltage to processor 110.

As seen, processor 110 may be a single die processor
including multiple cores 120,-120,,. In addition, each core
may be associated with an integrated voltage regulator
(IVR) 125 _-125, which receives the primary regulated volt-
age and generates an operating voltage to be provided to one
or more agents of the processor associated with the IVR.
Accordingly, an IVR implementation may be provided to
allow for fine-grained control of voltage and thus power and
performance of each individual core. As such, each core can
operate at an independent voltage and frequency, enabling
great flexibility and affording wide opportunities for balanc-
ing power consumption with performance. In some embodi-
ments, the use of multiple IVRs enables the grouping of
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components into separate power planes, such that power is
regulated and supplied by the IVR to only those components
in the group. During power management, a given power
plane of one IVR may be powered down or off when the
processor is placed into a certain low power state, while
another power plane of another IVR remains active, or fully
powered.

Still referring to FIG. 1, additional components may be
present within the processor including an input/output inter-
face 132, another interface 134, and an integrated memory
controller 136. As seen, each of these components may be
powered by another integrated voltage regulator 125_. In one
embodiment, interface 132 may be enable operation for an
Intel® Quick Path Interconnect (QPI) interconnect, which
provides for point-to-point (PtP) links in a cache coherent
protocol that includes multiple layers including a physical
layer, a link layer and a protocol layer. In turn, interface 134
may communicate via a Peripheral Component Interconnect
Express (PCIe™) protocol.

Also shown is a power control unit (PCU) 138, which
may include hardware, software and/or firmware to perform
power management operations with regard to processor 110.
As seen, PCU 138 provides control information to external
voltage regulator 160 via a digital interface to cause the
voltage regulator to generate the appropriate regulated volt-
age. PCU 138 also provides control information to IVRs 125
via another digital interface to control the operating voltage
generated (or to cause a corresponding IVR to be disabled in
a low power mode). In various embodiments, PCU 138 may
include a variety of power management logic units to
perform hardware-based power management. Such power
management may be wholly processor controlled (e.g., by
various processor hardware, and which may be triggered by
workload and/or power, thermal or other processor con-
straints) and/or the power management may be performed
responsive to external sources (such as a platform or man-
agement power management source or system software).

In embodiments herein, PCU 138 may be configured to
control entry into in-field self-testing of various cores and
logic. As discussed herein, in some cases PCU 138 may
trigger such diagnostic testing for a given core in connection
with a low power state entry such that the given core is
isolated from other cores and circuitry of processor 110. In
turn, the results of such testing may be sent to one or more
destinations.

While not shown for ease of illustration, understand that
additional components may be present within processor 110
such as uncore logic, and other components such as internal
memories, e.g., one or more levels of a cache memory
hierarchy and so forth. Furthermore, while shown in the
implementation of FIG. 1 with an integrated voltage regu-
lator, embodiments are not so limited.

Processors described herein may leverage power manage-
ment techniques that may be independent of and comple-
mentary to an operating system (OS)-based power manage-
ment (OSPM) mechanism. According to one example
OSPM technique, a processor can operate at various perfor-
mance states or levels, so-called P-states, namely from PO to
PN. In general, the P1 performance state may correspond to
the highest guaranteed performance state that can be
requested by an OS. In addition to this P1 state, the OS can
further request a higher performance state, namely a PO
state. This PO state may thus be an opportunistic or turbo
mode state in which, when power and/or thermal budget is
available, processor hardware can configure the processor or
at least portions thereof to operate at a higher than guaran-
teed frequency. In many implementations a processor can
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include multiple so-called bin frequencies above the P1
guaranteed maximum frequency, exceeding to a maximum
peak frequency of the particular processor, as fused or
otherwise written into the processor during manufacture. In
addition, according to one OSPM mechanism, a processor
can operate at various power states or levels. With regard to
power states, an OSPM mechanism may specify different
power consumption states, generally referred to as C-states,
C0, C1 to Cn states. When a core is active, it runs at a CO
state, and when the core is idle it may be placed in a core low
power state, also called a core non-zero C-state (e.g., C1-C6
states), with each C-state being at a lower power consump-
tion level (such that C6 is a deeper low power state than C1,
and so forth).

Understand that many different types of power manage-
ment techniques may be used individually or in combination
in different embodiments. As representative examples, a
power controller may control the processor to be power
managed by some form of dynamic voltage frequency
scaling (DVFS) in which an operating voltage and/or oper-
ating frequency of one or more cores or other processor logic
may be dynamically controlled to reduce power consump-
tion in certain situations. In an example, DVFS may be
performed using Enhanced Intel SpeedStep™ technology
available from Intel Corporation, Santa Clara, Calif., to
provide optimal performance at a lowest power consumption
level. In another example, DVFS may be performed using
Intel TurboBoost™ technology to enable one or more cores
or other compute engines to operate at a higher than guar-
anteed operating frequency based on conditions (e.g., work-
load and availability).

Another power management technique that may be used
in certain examples is dynamic swapping of workloads
between different compute engines. For example, the pro-
cessor may include asymmetric cores or other processing
engines that operate at different power consumption levels,
such that in a power constrained situation, one or more
workloads can be dynamically switched to execute on a
lower power core or other compute engine. Another exem-
plary power management technique is hardware duty
cycling (HDC), which may cause cores and/or other com-
pute engines to be periodically enabled and disabled accord-
ing to a duty cycle, such that one or more cores may be made
inactive during an inactive period of the duty cycle and made
active during an active period of the duty cycle.

Embodiments can be implemented in processors for vari-
ous markets including server processors, desktop proces-
sors, mobile processors and so forth. Referring now to FIG.
2, shown is a block diagram of a processor in accordance
with an embodiment of the present invention. As shown in
FIG. 2, processor 200 may be a multicore processor includ-
ing a plurality of cores 210,-210,,. In one embodiment, each
such core may be of an independent power domain and can
be configured to enter and exit active states and/or maximum
performance states based on workload. Each core 210 may
be associated with a corresponding core perimeter logic
2124a-212n. In general, core perimeter logic 212 may include
one or more independent power/frequency domains that
provide an interface between core circuitry and a remainder
of the processor. Notably, one or more independent storage
units of each core perimeter logic 212 may be adapted to
store at least certain context information of the associated
core to enable fast entry into and exit from particular low
power states and to further enable certain processor opera-
tions (such as interrupt handling and snoop responses) to
occur while a corresponding core is in a low power state. In
addition, such perimeter logic 212 may provide interrupt
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information while core 210 is in a low power state, to enable
faster low power state exits when a given core is targeted by
an interrupt.

The various cores may be coupled via an interconnect 215
to a system agent or uncore 220 that includes various
components. As seen, the uncore 220 may include a shared
cache 230 which may be a last level cache. In addition, the
uncore may include an integrated memory controller 240 to
communicate with a system memory (not shown in FIG. 2),
e.g., via a memory bus. Uncore 220 also includes various
interfaces 250 and a power control unit 255, which may
include logic to perform power management techniques as
described herein. In addition, a self-test control circuit 256
may be configured to identify an appropriate core (or group
of cores) to place into a diagnostic sleep state to perform
in-field self-testing.

In addition, by interfaces 250a-250n, connection can be
made to various off-chip components such as peripheral
devices, mass storage and so forth. While shown with this
particular implementation in the embodiment of FIG. 2, the
scope of the present invention is not limited in this regard.

Referring now to FIG. 3, shown is a block diagram of a
multi-domain processor in accordance with another embodi-
ment of the present invention. As shown in the embodiment
of FIG. 3, processor 300 includes multiple domains. Spe-
cifically, a core domain 310 can include a plurality of cores
310,-310,,, a graphics domain 320 can include one or more
graphics engines, and a system agent domain 350 may
further be present. In some embodiments, system agent
domain 350 may execute at an independent frequency than
the core domain and may remain powered on at all times to
handle power control events and power management such
that domains 310 and 320 can be controlled to dynamically
enter into and exit high power and low power states. Each
of domains 310 and 320 may operate at different voltage
and/or power. Note that while only shown with three
domains, understand the scope of the present invention is not
limited in this regard and additional domains can be present
in other embodiments. For example, multiple core domains
may be present each including at least one core.

In general, each core 310 may further include low level
caches in addition to various execution units and additional
processing elements. In turn, the various cores may be
coupled to each other and to a shared cache memory formed
of a plurality of units of a last level cache (LL.C) 340,-340,,.
In various embodiments, LL.C 340 may be shared amongst
the cores and the graphics engine, as well as various media
processing circuitry. As seen, a ring interconnect 330 thus
couples the cores together, and provides interconnection
between the cores, graphics domain 320 and system agent
circuitry 350. In one embodiment, interconnect 330 can be
part of the core domain. However in other embodiments the
ring interconnect can be of its own domain. As further
shown, a plurality of core perimeter logics 312,-312,, each
may be associated with a given core and may provide for
efficient storage and retrieval of context information, e.g., as
used during low power entry and exit situations. In the
illustration of FIG. 3, core perimeter logic 312 is shown
coupled between a corresponding core 310 and ring inter-
connect 330, and may further be used to provide information
for use in identifying a target core for an interrupt, while the
core is in a low power state. However understand that direct
connection between core 310 and ring interconnect 330 may
be present, along with corresponding direct connection
between core perimeter logic 312 and ring interconnect 330,
in some embodiments.
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As further seen, system agent domain 350 may include
display controller 352 which may provide control of and an
interface to an associated display. As further seen, system
agent domain 350 may include a power control unit 355
which can include logic to perform power management
techniques. And a self-test control circuit 356 may be used
to schedule and control in-field self-testing of given cores
while the core is isolated from other circuitry of processor
300 in a diagnostic sleep state (such that this core appears to
core-external circuitry as being in a low power state).

As further seen in FIG. 3, processor 300 can further
include an integrated memory controller (IMC) 370 that can
provide for an interface to a system memory, such as a
dynamic random access memory (DRAM). Multiple inter-
faces 380,-380,, may be present to enable interconnection
between the processor and other circuitry. For example, in
one embodiment at least one direct media interface (DMI)
interface may be provided as well as one or more PCle™
interfaces. Still further, to provide for communications
between other agents such as additional processors or other
circuitry, one or more QPI interfaces may also be provided.
Although shown at this high level in the embodiment of F1G.
3, understand the scope of the present invention is not
limited in this regard.

Referring to FIG. 4, an embodiment of a processor
including multiple cores is illustrated. Processor 400
includes any processor or processing device, such as a
microprocessor, an embedded processor, a digital signal
processor (DSP), a network processor, a handheld processor,
an application processor, a co-processor, a system on a chip
(SoC), or other device to execute code. Processor 400, in one
embodiment, includes at least two cores—cores 401 and
402, which may include asymmetric cores or symmetric
cores (the illustrated embodiment). However, processor 400
may include any number of processing elements that may be
symmetric or asymmetric.

In one embodiment, a processing element refers to hard-
ware or logic to support a software thread. Examples of
hardware processing elements include: a thread unit, a
thread slot, a thread, a process unit, a context, a context unit,
a logical processor, a hardware thread, a core, and/or any
other element, which is capable of holding a state for a
processor, such as an execution state or architectural state. In
other words, a processing element, in one embodiment,
refers to any hardware capable of being independently
associated with code, such as a software thread, operating
system, application, or other code. A physical processor
typically refers to an integrated circuit, which potentially
includes any number of other processing elements, such as
cores or hardware threads.

A core often refers to logic located on an integrated circuit
capable of maintaining an independent architectural state,
wherein each independently maintained architectural state is
associated with at least some dedicated execution resources.
In contrast to cores, a hardware thread typically refers to any
logic located on an integrated circuit capable of maintaining
an independent architectural state, wherein the indepen-
dently maintained architectural states share access to execu-
tion resources. As can be seen, when certain resources are
shared and others are dedicated to an architectural state, the
line between the nomenclature of a hardware thread and core
overlaps. Yet often, a core and a hardware thread are viewed
by an operating system as individual logical processors,
where the operating system is able to individually schedule
operations on each logical processor.

Physical processor 400, as illustrated in FIG. 4, includes
two cores, cores 401 and 402. Here, cores 401 and 402 are
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considered symmetric cores, i.e., cores with the same con-
figurations, functional units, and/or logic. In another
embodiment, core 401 includes an out-of-order processor
core, while core 402 includes an in-order processor core.
However, cores 401 and 402 may be individually selected
from any type of core, such as a native core, a software
managed core, a core adapted to execute a native instruction
set architecture (ISA), a core adapted to execute a translated
ISA, a co-designed core, or other known core. Yet to further
the discussion, the functional units illustrated in core 401 are
described in further detail below, as the units in core 402
operate in a similar manner.

As depicted, core 401 includes two hardware threads
401a and 4015, which may also be referred to as hardware
thread slots 401a and 4015. Therefore, software entities,
such as an operating system, in one embodiment potentially
view processor 400 as four separate processors, i.e., four
logical processors or processing elements capable of execut-
ing four software threads concurrently. As alluded to above,
a first thread is associated with architecture state registers
401a, a second thread is associated with architecture state
registers 4014, a third thread may be associated with archi-
tecture state registers 402a, and a fourth thread may be
associated with architecture state registers 40256. Here, each
of the architecture state registers (401a, 4015, 402a, and
4025) may be referred to as processing elements, thread
slots, or thread units, as described above. As illustrated,
architecture state registers 401a are replicated in architecture
state registers 4015, so individual architecture states/con-
texts are capable of being stored for logical processor 401a
and logical processor 4015. In core 401, other smaller
resources, such as instruction pointers and renaming logic in
allocator and renamer block 430 may also be replicated for
threads 401a and 4015. Some resources, such as re-order
buffers in reorder/retirement unit 435, ILTB 420, load/store
buffers, and queues may be shared through partitioning.
Other resources, such as general purpose internal registers,
page-table base register(s), low-level data-cache and data-
TLB 415, execution unit(s) 440, and portions of out-of-order
unit 435 are potentially fully shared.

Processor 400 often includes other resources, which may
be fully shared, shared through partitioning, or dedicated
by/to processing elements. In FIG. 4, an embodiment of a
purely exemplary processor with illustrative logical units/
resources of a processor is illustrated. Note that a processor
may include, or omit, any of these functional units, as well
as include any other known functional units, logic, or
firmware not depicted. As illustrated, core 401 includes a
simplified, representative out-of-order (OOOQ) processor
core. But an in-order processor may be utilized in different
embodiments. The OOO core includes a branch target buffer
420 to predict branches to be executed/taken and an instruc-
tion-translation buffer (I-TLB) 420 to store address transla-
tion entries for instructions.

Core 401 further includes decode module 425 coupled to
fetch unit 420 to decode fetched elements. Fetch logic, in
one embodiment, includes individual sequencers associated
with thread slots 401a, 4015, respectively. Usually core 401
is associated with a first ISA, which defines/specifies
instructions executable on processor 400. Often machine
code instructions that are part of the first ISA include a
portion of the instruction (referred to as an opcode), which
references/specifies an instruction or operation to be per-
formed. Decode logic 425 includes circuitry that recognizes
these instructions from their opcodes and passes the decoded
instructions on in the pipeline for processing as defined by
the first ISA. For example, decoders 425, in one embodi-
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ment, include logic designed or adapted to recognize spe-
cific instructions, such as transactional instruction. As a
result of the recognition by decoders 425, the architecture or
core 401 takes specific, predefined actions to perform tasks
associated with the appropriate instruction. It is important to
note that any of the tasks, blocks, operations, and methods
described herein may be performed in response to a single
or multiple instructions; some of which may be new or old
instructions.

In one example, allocator and renamer block 430 includes
an allocator to reserve resources, such as register files to
store instruction processing results. However, threads 401a
and 4015 are potentially capable of out-of-order execution,
where allocator and renamer block 430 also reserves other
resources, such as reorder buffers to track instruction results.
Unit 430 may also include a register renamer to rename
program/instruction reference registers to other registers
internal to processor 400. Reorder/retirement unit 435
includes components, such as the reorder buffers mentioned
above, load buffers, and store buffers, to support out-of-
order execution and later in-order retirement of instructions
executed out-of-order.

Scheduler and execution unit(s) block 440, in one
embodiment, includes a scheduler unit to schedule instruc-
tions/operation on execution units. For example, a floating
point instruction is scheduled on a port of an execution unit
that has an available floating point execution unit. Register
files associated with the execution units are also included to
store information instruction processing results. Exemplary
execution units include a floating point execution unit, an
integer execution unit, a jump execution unit, a load execu-
tion unit, a store execution unit, and other known execution
units.

Lower level data cache and data translation buffer
(D-TLB) 450 are coupled to execution unit(s) 440. The data
cache is to store recently used/operated on elements, such as
data operands, which are potentially held in memory coher-
ency states. The D-TLB is to store recent virtual/linear to
physical address translations. As a specific example, a
processor may include a page table structure to break
physical memory into a plurality of virtual pages.

Here, cores 401 and 402 share access to higher-level or
further-out cache 410, which is to cache recently fetched
elements. Note that higher-level or further-out refers to
cache levels increasing or getting further away from the
execution unit(s). In one embodiment, higher-level cache
410 is a last-level data cache—last cache in the memory
hierarchy on processor 400—such as a second or third level
data cache. However, higher level cache 410 is not so
limited, as it may be associated with or includes an instruc-
tion cache. A trace cache—a type of instruction cache—
instead may be coupled after decoder 425 to store recently
decoded traces.

In the depicted configuration, processor 400 also includes
bus interface module 405 and a power controller 460, which
may perform power management in accordance with an
embodiment of the present invention. In this scenario, bus
interface 405 is to communicate with devices external to
processor 400, such as system memory and other compo-
nents.

A memory controller 470 may interface with other
devices such as one or many memories. In an example, bus
interface 405 includes a ring interconnect with a memory
controller for interfacing with a memory and a graphics
controller for interfacing with a graphics processor. In an
SoC environment, even more devices, such as a network
interface, coprocessors, memory, graphics processor, and
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any other known computer devices/interface may be inte-
grated on a single die or integrated circuit to provide small
form factor with high functionality and low power consump-
tion.

Referring now to FIG. 5, shown is a block diagram of a
micro-architecture of a processor core in accordance with
one embodiment of the present invention. As shown in FIG.
5, processor core 500 may be a multi-stage pipelined out-
of-order processor. Core 500 may operate at various volt-
ages based on a received operating voltage, which may be
received from an integrated voltage regulator or external
voltage regulator.

As seen in FIG. 5, core 500 includes front end units 510,
which may be used to fetch instructions, including an
in-field self test instruction as described herein, to be
executed and prepare them for use later in the processor
pipeline. For example, front end units 510 may include a
fetch unit 501, an instruction cache 503, and an instruction
decoder 505. In some implementations, front end units 510
may further include a trace cache, along with microcode
storage as well as a micro-operation storage. Fetch unit 501
may fetch macro-instructions, e.g., from memory or instruc-
tion cache 503, and feed them to instruction decoder 505 to
decode them into primitives, i.e., micro-operations for
execution by the processor.

Coupled between front end units 510 and execution units
520 is an out-of-order (OOO) engine 515 that may be used
to receive the micro-instructions and prepare them for
execution. More specifically OOO engine 515 may include
various buffers to re-order micro-instruction flow and allo-
cate various resources needed for execution, as well as to
provide renaming of logical registers onto storage locations
within various register files such as register file 530 and
extended register file 535. Register file 530 may include
separate register files for integer and floating point opera-
tions. For purposes of configuration, control, and additional
operations, a set of machine specific registers (MSRs) 538
may also be present and accessible to various logic within
core 500 (and external to the core). For example, power limit
information may be stored in one or more MSR and be
dynamically updated as described herein.

Various resources may be present in execution units 520,
including, for example, various integer, floating point, and
single instruction multiple data (SIMD) logic units, among
other specialized hardware. For example, such execution
units may include one or more arithmetic logic units (ALUs)
522 and one or more vector execution units 524, among
other such execution units.

Results from the execution units may be provided to
retirement logic, namely a reorder buffer (ROB) 540. More
specifically, ROB 540 may include various arrays and logic
to receive information associated with instructions that are
executed. This information is then examined by ROB 540 to
determine whether the instructions can be validly retired and
result data committed to the architectural state of the pro-
cessor, or whether one or more exceptions occurred that
prevent a proper retirement of the instructions. Of course,
ROB 540 may handle other operations associated with
retirement.

As shown in FIG. 5, ROB 540 is coupled to a cache 550
which, in one embodiment may be a low level cache (e.g.,
an L1 cache) although the scope of the present invention is
not limited in this regard. Also, execution units 520 can be
directly coupled to cache 550. From cache 550, data com-
munication may occur with higher level caches, system
memory and so forth. While shown with this high level in
the embodiment of FIG. 5, understand the scope of the
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present invention is not limited in this regard. For example,
while the implementation of FIG. 5 is with regard to an
out-of-order machine such as of an Intel® x86 instruction set
architecture (ISA), the scope of the present invention is not
limited in this regard. That is, other embodiments may be
implemented in an in-order processor, a reduced instruction
set computing (RISC) processor such as an ARM-based
processor, or a processor of another type of ISA that can
emulate instructions and operations of a different ISA via an
emulation engine and associated logic circuitry.

Referring now to FIG. 6, shown is a block diagram of a
micro-architecture of a processor core in accordance with
another embodiment. In the embodiment of FIG. 6, core 600
may be a low power core of a different micro-architecture,
such as an Intel® Atom™-based processor having a rela-
tively limited pipeline depth designed to reduce power
consumption. As seen, core 600 includes an instruction
cache 610 coupled to provide instructions, including an
in-field self test instruction as described herein, to an instruc-
tion decoder 615. A branch predictor 605 may be coupled to
instruction cache 610. Note that instruction cache 610 may
further be coupled to another level of a cache memory, such
as an L2 cache (not shown for ease of illustration in FIG. 6).
In turn, instruction decoder 615 provides decoded instruc-
tions to an issue queue 620 for storage and delivery to a
given execution pipeline. A microcode ROM 618 is coupled
to instruction decoder 615.

A floating point pipeline 630 includes a floating point
register file 632 which may include a plurality of architec-
tural registers of a given bit with such as 128, 256 or 512
bits. Pipeline 630 includes a floating point scheduler 634 to
schedule instructions for execution on one of multiple
execution units of the pipeline. In the embodiment shown,
such execution units include an ALU 635, a shuffle unit 636,
and a floating point adder 638. In turn, results generated in
these execution units may be provided back to buffers and/or
registers of register file 632. Of course understand while
shown with these few example execution units, additional or
different floating point execution units may be present in
another embodiment.

An integer pipeline 640 also may be provided. In the
embodiment shown, pipeline 640 includes an integer regis-
ter file 642 which may include a plurality of architectural
registers of a given bit with such as 128 or 256 bits. Pipeline
640 includes an integer scheduler 644 to schedule instruc-
tions for execution on one of multiple execution units of the
pipeline. In the embodiment shown, such execution units
include an ALU 645, a shifter unit 646, and a jump execution
unit 648. In turn, results generated in these execution units
may be provided back to buffers and/or registers of register
file 642. Of course understand while shown with these few
example execution units, additional or different integer
execution units may be present in another embodiment.

A memory execution scheduler 650 may schedule
memory operations for execution in an address generation
unit 652, which is also coupled to a TLB 654. As seen, these
structures may couple to a data cache 660, which may be a
LO and/or [L1 data cache that in turn couples to additional
levels of a cache memory hierarchy, including an 1.2 cache
memory.

To provide support for out-of-order execution, an alloca-
tor/renamer 670 may be provided, in addition to a reorder
buffer 680, which is configured to reorder instructions
executed out of order for retirement in order. Although
shown with this particular pipeline architecture in the illus-
tration of FIG. 6, understand that many variations and
alternatives are possible.
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Note that in a processor having asymmetric cores, such as
in accordance with the micro-architectures of FIGS. 5 and 6,
workloads may be dynamically swapped between the cores
for power management reasons, as these cores, although
having different pipeline designs and depths, may be of the
same or related ISA. Such dynamic core swapping may be
performed in a manner transparent to a user application (and
possibly kernel also).

Referring to FIG. 7, shown is a block diagram of a
micro-architecture of a processor core in accordance with
yet another embodiment. As illustrated in FIG. 7, a core 700
may include a multi-staged in-order pipeline to execute at
very low power consumption levels. As one such example,
processor 700 may have a micro-architecture in accordance
with an ARM Cortex AS53 design available from ARM
Holdings, LTD., Sunnyvale, Calif. In an implementation, an
8-stage pipeline may be provided that is configured to
execute both 32-bit and 64-bit code. Core 700 includes a
fetch unit 710 that is configured to fetch instructions, includ-
ing an in-field self test instruction as described herein, and
provide them to a decode unit 715, which may decode the
instructions, e.g., macro-instructions of a given ISA such as
an ARMv8 ISA. Note further that a queue 730 may couple
to decode unit 715 to store decoded instructions. Decoded
instructions are provided to an issue logic 725, where the
decoded instructions may be issued to a given one of
multiple execution units.

With further reference to FIG. 7, issue logic 725 may issue
instructions to one of multiple execution units. In the
embodiment shown, these execution units include an integer
unit 735, a multiply unit 740, a floating point/vector unit
750, a dual issue unit 760, and a load/store unit 770. The
results of these different execution units may be provided to
a writeback unit 780. Understand that while a single write-
back unit is shown for ease of illustration, in some imple-
mentations separate writeback units may be associated with
each of the execution units. Furthermore, understand that
while each of the units and logic shown in FIG. 7 is
represented at a high level, a particular implementation may
include more or different structures. A processor designed
using one or more cores having a pipeline as in FIG. 7 may
be implemented in many different end products, extending
from mobile devices to server systems.

Referring to FIG. 8, shown is a block diagram of a
micro-architecture of a processor core in accordance with a
still further embodiment. As illustrated in FIG. 8, a core 800
may include a multi-stage multi-issue out-of-order pipeline
to execute at very high performance levels (which may
occur at higher power consumption levels than core 700 of
FIG. 7). As one such example, processor 800 may have a
microarchitecture in accordance with an ARM Cortex A57
design. In an implementation, a 15 (or greater)-stage pipe-
line may be provided that is configured to execute both
32-bit and 64-bit code. In addition, the pipeline may provide
for 3 (or greater)-wide and 3 (or greater)-issue operation.
Core 800 includes a fetch unit 810 that is configured to fetch
instructions, including an in-field self test instruction as
described herein, and provide them to a decoder/renamer/
dispatcher 815, which may decode the instructions, e.g.,
macro-instructions of an ARMv8 instruction set architec-
ture, rename register references within the instructions, and
dispatch the instructions (eventually) to a selected execution
unit. Decoded instructions may be stored in a queue 825.
Note that while a single queue structure is shown for ease of
illustration in FIG. 8, understand that separate queues may
be provided for each of the multiple different types of
execution units.
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Also shown in FIG. 8 is an issue logic 830 from which
decoded instructions stored in queue 825 may be issued to
a selected execution unit. Issue logic 830 also may be
implemented in a particular embodiment with a separate
issue logic for each of the multiple different types of
execution units to which issue logic 830 couples.

Decoded instructions may be issued to a given one of
multiple execution units. In the embodiment shown, these
execution units include one or more integer units 835, a
multiply unit 840, a floating point/vector unit 850, a branch
unit 860, and a load/store unit 870. In an embodiment,
floating point/vector unit 850 may be configured to handle
SIMD or vector data of 128 or 256 bits. Still further, floating
point/vector execution unit 850 may perform IEEE-754
double precision floating-point operations. The results of
these different execution units may be provided to a write-
back unit 880. Note that in some implementations separate
writeback units may be associated with each of the execu-
tion units. Furthermore, understand that while each of the
units and logic shown in FIG. 8 is represented at a high level,
a particular implementation may include more or different
structures.

Note that in a processor having asymmetric cores, such as
in accordance with the micro-architectures of FIGS. 7 and 8,
workloads may be dynamically swapped for power man-
agement reasons, as these cores, although having different
pipeline designs and depths, may be of the same or related
ISA. Such dynamic core swapping may be performed in a
manner transparent to a user application (and possibly kernel
also).

A processor designed using one or more cores having
pipelines as in any one or more of FIGS. 5-8 may be
implemented in many different end products, extending
from mobile devices to server systems. Referring now to
FIG. 9, shown is a block diagram of a processor in accor-
dance with another embodiment of the present invention. In
the embodiment of FIG. 9, processor 900 may be a SoC
including multiple domains, each of which may be con-
trolled to operate at an independent operating voltage and
operating frequency. As a specific illustrative example,
processor 900 may be an Intel® Architecture Core™-based
processor such as an i3, 15, i7 or another such processor
available from Intel Corporation. However, other low power
processors such as available from Advanced Micro Devices,
Inc. (AMD) of Sunnyvale, Calif., an ARM-based design
from ARM Holdings, Ltd. or licensee thereof or a MIPS-
based design from MIPS Technologies, Inc. of Sunnyvale,
Calif., or their licensees or adopters may instead be present
in other embodiments such as an Apple A7 processor, a
Qualcomm Snapdragon processor, or Texas Instruments
OMAP processor. Such SoC may be used in a low power
system such as a smartphone, tablet computer, phablet
computer, Ultrabook™ computer or other portable comput-
ing device, or a vehicle computing system.

In the high level view shown in FIG. 9, processor 900
includes a plurality of core units 910,-910,. Each core unit
may include one or more processor cores, one or more cache
memories and other circuitry. Each core unit 910 may
support one or more instructions sets (e.g., an x86 instruc-
tion set (with some extensions that have been added with
newer versions); a MIPS instruction set; an ARM instruction
set (with optional additional extensions such as NEON)) or
other instruction set or combinations thereof. Note that some
of the core units may be heterogeneous resources (e.g., of a
different design). In addition, each such core may be coupled
to a cache memory (not shown) which in an embodiment
may be a shared level (L2) cache memory. A non-volatile
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storage 930 may be used to store various program and other
data. For example, this storage may be used to store at least
portions of microcode, boot information such as a BIOS,
other system software, test patterns for the diagnostic self-
testing described herein, or so forth.

Each core unit 910 may also include an interface such as
a bus interface unit to enable interconnection to additional
circuitry of the processor. In an embodiment, each core unit
910 couples to a coherent fabric that may act as a primary
cache coherent on-die interconnect that in turn couples to a
memory controller 935. As also described herein, each core
unit 910 may include a mailbox interface to enable interac-
tion with a corresponding core perimeter logic (not specifi-
cally shown in FIG. 9), to enable enhanced communications
and provide for efficient entry into and exit from low power
states, among other functions. In turn, memory controller
935 controls communications with a memory such as a
DRAM (not shown for ease of illustration in FIG. 9).

In addition to core units, additional processing engines are
present within the processor, including at least one graphics
unit 920 which may include one or more graphics processing
units (GPUs) to perform graphics processing as well as to
possibly execute general purpose operations on the graphics
processor (so-called GPGPU operation). In addition, at least
one image signal processor 925 may be present. Signal
processor 925 may be configured to process incoming image
data received from one or more capture devices, either
internal to the SoC or off-chip.

Other accelerators also may be present. In the illustration
of FIG. 9, a video coder 950 may perform coding operations
including encoding and decoding for video information, e.g.,
providing hardware acceleration support for high definition
video content. A display controller 955 further may be
provided to accelerate display operations including provid-
ing support for internal and external displays of a system. In
addition, a security processor 945 may be present to perform
security operations such as secure boot operations, various
cryptography operations and so forth.

Each of the units may have its power consumption
controlled via a power manager 940, which may include
control logic to perform the various power management
techniques described herein, including the control of in-field
self-testing of cores while in a diagnostic sleep state.

In some embodiments, SoC 900 may further include a
non-coherent fabric coupled to the coherent fabric to which
various peripheral devices may couple. One or more inter-
faces 960a-960d enable communication with one or more
off-chip devices. Such communications may be via a variety
of communication protocols such as PCle™, GPIO, USB,
I’C, UART, MIPI, SDIO, DDR, SPI, HDMI, among other
types of communication protocols. Although shown at this
high level in the embodiment of FIG. 9, understand the
scope of the present invention is not limited in this regard.

Referring now to FIG. 10, shown is a block diagram of a
representative SoC. In the embodiment shown, SoC 1000
may be a multi-core SoC configured for low power opera-
tion to be optimized for incorporation into a smartphone or
other low power device such as a tablet computer or other
portable computing device or vehicle computing system. As
an example, SoC 1000 may be implemented using asym-
metric or different types of cores, such as combinations of
higher power and/or low power cores, e.g., out-of-order
cores and in-order cores. In different embodiments, these
cores may be based on an Intel® Architecture™ core design
or an ARM architecture design. In yet other embodiments, a
mix of Intel and ARM cores may be implemented in a given
SoC.
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As seen in FIG. 10, SoC 1000 includes a first core domain
1010 having a plurality of first cores 1012,-1012,. In an
example, these cores may be low power cores such as
in-order cores that may interface with corresponding core
perimeter logic via a mailbox interface as described herein.
In one embodiment these first cores may be implemented as
ARM Cortex AS53 cores. In turn, these cores couple to a
cache memory 1015 of core domain 1010. In addition, SoC
1000 includes a second core domain 1020. In the illustration
of FIG. 10, second core domain 1020 has a plurality of
second cores 1022,-1022;. In an example, these cores may
be higher power-consuming cores than first cores 1012. In
an embodiment, the second cores may be out-of-order cores,
which may be implemented as ARM Cortex AS7 cores. In
turn, these cores couple to a cache memory 1025 of core
domain 1020. Note that while the example shown in FIG. 10
includes 4 cores in each domain, understand that more or
fewer cores may be present in a given domain in other
examples.

With further reference to FIG. 10, a graphics domain 1030
also is provided, which may include one or more graphics
processing units (GPUs) configured to independently
execute graphics workloads, e.g., provided by one or more
cores of core domains 1010 and 1020. As an example, GPU
domain 1030 may be used to provide display support for a
variety of screen sizes, in addition to providing graphics and
display rendering operations.

As seen, the various domains couple to a coherent inter-
connect 1040, which in an embodiment may be a cache
coherent interconnect fabric that in turn couples to an
integrated memory controller 1050. Coherent interconnect
1040 may include a shared cache memory, such as an L3
cache, in some examples. In an embodiment, memory con-
troller 1050 may be a direct memory controller to provide
for multiple channels of communication with an off-chip
memory, such as multiple channels of a DRAM (not shown
for ease of illustration in FIG. 10).

In different examples, the number of the core domains
may vary. For example, for a low power SoC suitable for
incorporation into a mobile computing device, a limited
number of core domains such as shown in FIG. 10 may be
present. Still further, in such low power SoCs, core domain
1020 including higher power cores may have fewer numbers
of'such cores. For example, in one implementation two cores
1022 may be provided to enable operation at reduced power
consumption levels. In addition, the different core domains
may also be coupled to an interrupt controller to enable
dynamic swapping of workloads between the different
domains.

In yet other embodiments, a greater number of core
domains, as well as additional optional IP logic may be
present, in that an SoC can be scaled to higher performance
(and power) levels for incorporation into other computing
devices, such as desktops, servers, high performance com-
puting systems, base stations forth. As one such example, 4
core domains each having a given number of out-of-order
cores may be provided. Still further, in addition to optional
GPU support (which as an example may take the form of a
GPGPU), one or more accelerators to provide optimized
hardware support for particular functions (e.g. web serving,
network processing, switching or so forth) also may be
provided. In addition, an input/output interface may be
present to couple such accelerators to off-chip components.

Referring now to FIG. 11, shown is a block diagram of
another example SoC. In the embodiment of FIG. 11, SoC
1100 may include various circuitry to enable high perfor-
mance for multimedia applications, communications and
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other functions. As such, SoC 1100 is suitable for incorpo-
ration into a wide variety of portable and other devices, such
as smartphones, tablet computers, smart TVs, vehicle com-
puting systems, and so forth. In the example shown, SoC
1100 includes a central processor unit (CPU) domain 1110.
In an embodiment, a plurality of individual processor cores
may be present in CPU domain 1110. As one example, CPU
domain 1110 may be a quad core processor having 4
multithreaded cores. Such processors may be homogeneous
or heterogeneous processors, e.g., a mix of low power and
high power processor cores.

In turn, a GPU domain 1120 is provided to perform
advanced graphics processing in one or more GPUs to
handle graphics and compute APIs. A DSP unit 1130 may
provide one or more low power DSPs for handling low-
power multimedia applications such as music playback,
audio/video and so forth, in addition to advanced calcula-
tions that may occur during execution of multimedia instruc-
tions. In turn, a communication unit 1140 may include
various components to provide connectivity via various
wireless protocols, such as cellular communications (includ-
ing 3G/4G LTE), wireless local area protocols such as
Bluetooth™ IEEE 802.11, and so forth.

Still further, a multimedia processor 1150 may be used to
perform capture and playback of high definition video and
audio content, including processing of user gestures. A
sensor unit 1160 may include a plurality of sensors and/or a
sensor controller to interface to various off-chip sensors
present in a given platform. An image signal processor 1170
may be provided with one or more separate ISPs to perform
image processing with regard to captured content from one
or more cameras of a platform, including still and video
cameras.

A display processor 1180 may provide support for con-
nection to a high definition display of a given pixel density,
including the ability to wirelessly communicate content for
playback on such display. Still further, a location unit 1190
may include a GPS receiver with support for multiple GPS
constellations to provide applications highly accurate posi-
tioning information obtained using as such GPS receiver.
Understand that while shown with this particular set of
components in the example of FIG. 11, many variations and
alternatives are possible.

Referring now to FIG. 12, shown is a block diagram of an
example system with which embodiments can be used. As
seen, system 1200 may be a smartphone or other wireless
communicator. A baseband processor 1205 is configured to
perform various signal processing with regard to commu-
nication signals to be transmitted from or received by the
system. In turn, baseband processor 1205 is coupled to an
application processor 1210, which may be a main CPU of
the system to execute an OS and other system software, in
addition to user applications such as many well-known
social media and multimedia apps. Application processor
1210 may further be configured to perform a variety of other
computing operations for the device.

In turn, application processor 1210 can couple to a user
interface/display 1220, e.g., a touch screen display. In addi-
tion, application processor 1210 may couple to a memory
system including a non-volatile memory, namely a flash
memory 1230 and a system memory, namely a dynamic
random access memory (DRAM) 1235. As further seen,
application processor 1210 further couples to a capture
device 1240 such as one or more image capture devices that
can record video and/or still images.

Still referring to FIG. 12, a universal integrated circuit
card (UICC) 1240 comprising a subscriber identity module
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and possibly a secure storage and cryptoprocessor is also
coupled to application processor 1210. System 1200 may
further include a security processor 1250 that may couple to
application processor 1210. A plurality of sensors 1225 may
couple to application processor 1210 to enable input of a
variety of sensed information such as accelerometer and
other environmental information. An audio output device
1295 may provide an interface to output sound, e.g., in the
form of voice communications, played or streaming audio
data and so forth.

As further illustrated, a near field communication (NFC)
contactless interface 1260 is provided that communicates in
a NFC near field via an NFC antenna 1265. While separate
antennae are shown in FIG. 12, understand that in some
implementations one antenna or a different set of antennae
may be provided to enable various wireless functionality.

A power management integrated circuit (PMIC) 1215
couples to application processor 1210 to perform platform
level power management. To this end, PMIC 1215 may issue
power management requests to application processor 1210
to enter certain low power states as desired. Furthermore,
based on platform constraints, PMIC 1215 may also control
the power level of other components of system 1200.

To enable communications to be transmitted and received,
various circuitry may be coupled between baseband proces-
sor 1205 and an antenna 1290. Specifically, a radio fre-
quency (RF) transceiver 1270 and a wireless local area
network (WLAN) transceiver 1275 may be present. In
general, RF transceiver 1270 may be used to receive and
transmit wireless data and calls according to a given wireless
communication protocol such as 3G or 4G wireless com-
munication protocol such as in accordance with a code
division multiple access (CDMA), global system for mobile
communication (GSM), long term evolution (LTE) or other
protocol. In addition a GPS sensor 1280 may be present.
Other wireless communications such as receipt or transmis-
sion of radio signals, e.g., AM/FM and other signals may
also be provided. In addition, via WLAN transceiver 1275,
local wireless communications can also be realized.

Referring now to FIG. 13, shown is a block diagram of
another example system with which embodiments may be
used. In the illustration of FIG. 13, system 1300 may be
mobile low-power system such as a tablet computer, 2:1
tablet, phablet or other convertible or standalone tablet
system. As illustrated, a SoC 1310 is present and may be
configured to operate as an application processor for the
device.

A variety of devices may couple to SoC 1310. In the
illustration shown, a memory subsystem includes a flash
memory 1340 and a DRAM 1345 coupled to SoC 1310. In
addition, a touch panel 1320 is coupled to the SoC 1310 to
provide display capability and user input via touch, includ-
ing provision of a virtual keyboard on a display of touch
panel 1320. To provide wired network connectivity, SoC
1310 couples to an Ethernet interface 1330. A peripheral hub
1325 is coupled to SoC 1310 to enable interfacing with
various peripheral devices, such as may be coupled to
system 1300 by any of various ports or other connectors.

In addition to internal power management circuitry and
functionality within SoC 1310, a PMIC 1380 is coupled to
SoC 1310 to provide platform-based power management,
e.g., based on whether the system is powered by a battery
1390 or AC power via an AC adapter 1395. In addition to
this power source-based power management, PMIC 1380
may further perform platform power management activities
based on environmental and usage conditions. Still further,
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PMIC 1380 may communicate control and status informa-
tion to SoC 1310 to cause various power management
actions within SoC 1310.

Still referring to FIG. 13, to provide for wireless capa-
bilities, a WLAN unit 1350 is coupled to SoC 1310 and in
turn to an antenna 1355. In various implementations, WLAN
unit 1350 may provide for communication according to one
or more wireless protocols.

As further illustrated, a plurality of sensors 1360 may
couple to SoC 1310. These sensors may include various
accelerometer, environmental and other sensors, including
user gesture sensors. Finally, an audio codec 1365 is coupled
to SoC 1310 to provide an interface to an audio output
device 1370. Of course understand that while shown with
this particular implementation in FIG. 13, many variations
and alternatives are possible.

Referring now to FIG. 14, shown is a block diagram of a
representative computer system such as notebook, Ultra-
book™ or other small form factor system. A processor 1410,
in one embodiment, includes a microprocessor, multi-core
processor, multithreaded processor, an ultra low voltage
processor, an embedded processor, or other known process-
ing element. In the illustrated implementation, processor
1410 acts as a main processing unit and central hub for
communication with many of the various components of the
system 1400. As one example, processor 1400 is imple-
mented as a SoC.

Processor 1410, in one embodiment, communicates with
a system memory 1415. As an illustrative example, the
system memory 1415 is implemented via multiple memory
devices or modules to provide for a given amount of system
memory.

To provide for persistent storage of information such as
data, applications, one or more operating systems and so
forth, a mass storage 1420 may also couple to processor
1410. In various embodiments, to enable a thinner and
lighter system design as well as to improve system respon-
siveness, this mass storage may be implemented via a SSD
or the mass storage may primarily be implemented using a
hard disk drive (HDD) with a smaller amount of SSD
storage to act as a SSD cache to enable non-volatile storage
of context state and other such information during power
down events so that a fast power up can occur on re-
initiation of system activities. Also shown in FIG. 14, a flash
device 1422 may be coupled to processor 1410, e.g., via a
serial peripheral interface (SPI). This flash device may
provide for non-volatile storage of system software, includ-
ing a basic input/output software (BIOS) as well as other
firmware of the system.

Various input/output (I/O) devices may be present within
system 1400. Specifically shown in the embodiment of FIG.
14 is a display 1424 which may be a high definition LCD or
LED panel that further provides for a touch screen 1425. In
one embodiment, display 1424 may be coupled to processor
1410 via a display interconnect that can be implemented as
a high performance graphics interconnect. Touch screen
1425 may be coupled to processor 1410 via another inter-
connect, which in an embodiment can be an I°C intercon-
nect. As further shown in FIG. 14, in addition to touch screen
1425, user input by way of touch can also occur via a touch
pad 1430 which may be configured within the chassis and
may also be coupled to the same I°C interconnect as touch
screen 1425.

For perceptual computing and other purposes, various
sensors may be present within the system and may be
coupled to processor 1410 in different manners. Certain
inertial and environmental sensors may couple to processor
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1410 through a sensor hub 1440, e.g., via an I*C intercon-
nect. In the embodiment shown in FIG. 14, these sensors
may include an accelerometer 1441, an ambient light sensor
(ALS) 1442, a compass 1443 and a gyroscope 1444. Other
environmental sensors may include one or more thermal
sensors 1446 which in some embodiments couple to pro-
cessor 1410 via a system management bus (SMBus) bus.

Also seen in FIG. 14, various peripheral devices may
couple to processor 1410 via a low pin count (LPC) inter-
connect. In the embodiment shown, various components can
be coupled through an embedded controller 1435. Such
components can include a keyboard 1436 (e.g., coupled via
a PS2 interface), a fan 1437, and a thermal sensor 1439. In
some embodiments, touch pad 1430 may also couple to EC
1435 via a PS2 interface. In addition, a security processor
such as a trusted platform module (TPM) 1438 may also
couple to processor 1410 via this LPC interconnect.

System 1400 can communicate with external devices in a
variety of manners, including wirelessly. In the embodiment
shown in FIG. 14, various wireless modules, each of which
can correspond to a radio configured for a particular wireless
communication protocol, are present. One manner for wire-
less communication in a short range such as a near field may
be via a NFC unit 1445 which may communicate, in one
embodiment with processor 1410 via an SMBus. Note that
via this NFC unit 1445, devices in close proximity to each
other can communicate.

As further seen in FIG. 14, additional wireless units can
include other short range wireless engines including a
WLAN unit 1450 and a Bluetooth unit 1452. Using WLAN
unit 1450, Wi-Fi™ communications can be realized, while
via Bluetooth unit 1452, short range Bluetooth™ commu-
nications can occur. These units may communicate with
processor 1410 via a given link.

In addition, wireless wide area communications, e.g.,
according to a cellular or other wireless wide area protocol,
can occur via a WWAN unit 1456 which in turn may couple
to a subscriber identity module (SIM) 1457. In addition, to
enable receipt and use of location information, a GPS
module 1455 may also be present. Note that in the embodi-
ment shown in FIG. 14, WWAN unit 1456 and an integrated
capture device such as a camera module 1454 may commu-
nicate via a given link.

An integrated camera module 1454 can be incorporated in
the 1lid. To provide for audio inputs and outputs, an audio
processor can be implemented via a digital signal processor
(DSP) 1460, which may couple to processor 1410 via a high
definition audio (HDA) link. Similarly, DSP 1460 may
communicate with an integrated coder/decoder (CODEC)
and amplifier 1462 that in turn may couple to output
speakers 1463 which may be implemented within the chas-
sis. Similarly, amplifier and CODEC 1462 can be coupled to
receive audio inputs from a microphone 1465 which in an
embodiment can be implemented via dual array micro-
phones (such as a digital microphone array) to provide for
high quality audio inputs to enable voice-activated control of
various operations within the system. Note also that audio
outputs can be provided from amplifiet/ CODEC 1462 to a
headphone jack 1464. Although shown with these particular
components in the embodiment of FIG. 14, understand the
scope of the present invention is not limited in this regard.

Embodiments may be implemented in many different
system types. Referring now to FIG. 15, shown is a block
diagram of a system in accordance with an embodiment of
the present invention. As shown in FIG. 15, multiprocessor
system 1500 is a point-to-point interconnect system, and
includes a first processor 1570 and a second processor 1580
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coupled via a point-to-point interconnect 1550. As shown in
FIG. 15, each of processors 1570 and 1580 may be multicore
processors, including first and second processor cores (i.e.,
processor cores 1574a and 15745 and processor cores 1584a
and 15845), although potentially many more cores may be
present in the processors. Such processor cores may couple
to corresponding core perimeter logics 1577a and 15776 and
core perimeter logics 1587a and 15875 to enable efficient
communication of context and other information, both for
purposes of operation during the diagnostic sleep state
described herein as well as for communication of informa-
tion during normal operation. Each of the processors can
include a PCU 1575, 1585 or other power management logic
to perform processor-based power management as described
herein. To this end, PCU 1575 and 1585 may include
self-test control circuitry to periodically cause a given core
(or group of cores) to enter into a diagnostic sleep state to
perform in-field self-testing to identify failing components.

Still referring to FIG. 15, first processor 1570 further
includes a memory controller hub (MCH) 1572 and point-
to-point (P-P) interfaces 1576 and 1578. Similarly, second
processor 1580 includes a MCH 1582 and P-P interfaces
1586 and 1588. As shown in FIG. 15, MCH’s 1572 and 1582
couple the processors to respective memories, namely a
memory 1532 and a memory 1534, which may be portions
of system memory (e.g., DRAM) locally attached to the
respective processors. First processor 1570 and second pro-
cessor 1580 may be coupled to a chipset 1590 via P-P
interconnects 1562 and 1564, respectively. As shown in FIG.
15, chipset 1590 includes P-P interfaces 1594 and 1598.

Furthermore, chipset 1590 includes an interface 1592 to
couple chipset 1590 with a high performance graphics
engine 1538, by a P-P interconnect 1539. In turn, chipset
1590 may be coupled to a first bus 1516 via an interface
1596. As shown in FIG. 15, various input/output (I/O)
devices 1514 may be coupled to first bus 1516, along with
a bus bridge 1518 which couples first bus 1516 to a second
bus 1520. Various devices may be coupled to second bus
1520 including, for example, a keyboard/mouse 1522, com-
munication devices 1526 and a data storage unit 1528 such
as a disk drive or other mass storage device which may
include code 1530, in one embodiment. Further, an audio I/O
1524 may be coupled to second bus 1520. Embodiments can
be incorporated into other types of systems including mobile
devices such as a smart cellular telephone, tablet computer,
netbook, Ultrabook™, or so forth.

Referring now to FIG. 16, shown is a block diagram of a
portion of a processor in accordance with an embodiment of
the present invention. As shown in FIG. 16, a module 1600
may be one of many processing modules present in a given
multicore processor or other SoC. As seen, module 1600
includes a plurality of cores 1610,-1610,. While four cores
are shown for ease of illustration in FIG. 16, understand that
in other embodiments a module or cluster may include more
or fewer cores. Module 1600 further includes a shared cache
memory 1620 accessible by test circuitry. In embodiments
herein, during an in-field self test of module 1600, state
stored within shared cache memory 1620 may be flushed to
a further portion of a memory hierarchy, and test information
in the form of one or more test patterns and operating
parameter information may be stored within shared cache
memory 1620.

Still with reference to FIG. 16, module 1600 also includes
a bus interface circuit 1630. In general, bus interface circuit
1630 includes various shared circuitry that may be accessed
by cores 1610. As described further herein, such shared
circuitry may include interface circuitry to interface module
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1600 to other portions of a processor, a local power con-
troller (such as in the form of a power management agent
(PMA)), and other circuitry. Still with reference to module
1600, a scan FSM 1640 is present, along with a PBIST
engine 1650, which may be used to perform self-testing of
memory arrays within cluster 1600 and in bus interface
circuit 1630. In general, scan FSM 1640 may be an imple-
mentation of a test controller that is configured to perform
scan-based testing of logic circuitry within cores 1610 and
bus interface circuit 1630, in response to a trigger of an
in-field self test, such as by way of a write to a built in
self-test machine specific register (MSR) of one or more
cores 1610. Understand while shown at this high level in the
embodiment of FIG. 16, many variations and alternatives are
possible.

In one embodiment, an in-field scan built-in self test
(BIST) can be initiated by BIOS or other firmware by using
the MSR. In one embodiment, a scan BIST MSR receives
and stores a pointer to a test pattern module. In an embodi-
ment, this MSR may include, in addition to an address field
to store an address of a location of a test pattern, a type field
to indicate a type of self test to be performed (such as a scan
self test and/or a memory self test). Still further, an error
signaling field may indicate whether a failure causes a
machine check error to be asserted. When this MSR is
written on a first core (e.g., core 1610,) of the module 1600,
microcode (e.g., stored in a microcode ROM 1615,) saves
the state of that core to a low power memory (e.g., within
bus interface circuit 1630), and enters the diagnostic sleep
state, which is an unbreakable sleep state. Thereafter, the
BIOS invokes a write to this MSR on each core in module
1600. Note while a single core is shown including micro-
code storage, understand that in embodiments each core may
include or otherwise be associated with a microcode store.

The last core (e.g., core 1610,) in module 1600 saves that
core’s state to the low power memory and the shared state
of module 1600 (e.g., of bus interface circuit 1630) to the
low power memory. Following this state save, core 1610,
(e.g.) flushes shared cache memory 1620 and copies the scan
pattern module into cache 1620. Microcode then verifies the
signature on the scan pattern module and if the signature
verifies, checks the hash of the scan pattern module to the
signed hash. If the hash check succeeds, then the microcode
decrypts this module in cache 1620. Once the scan pattern
module contents have been decrypted in cache 1620, micro-
code then programs scan FSM 1640 with various operating
parameters. Although the scope of the present invention is
not limited in this regard, in an embodiment the operating
parameters include number of pattern packets in the module,
start address, expected golden multiple input signature reg-
ister (MISR) signature following scan BIST, etc. These
parameters may be themselves part of the scan pattern
module. Note that while FIG. 16 shows an implementation
with multiple cores, understand that in other embodiments
the self-testing described herein may be performed in a
processor or other SoC having only a single core.

Embodiments may be used in a wide variety of semicon-
ductor devices including processors and other SoCs for
various applications. In some cases, embodiments may be
incorporated in products for industrial and automotive mar-
kets (e.g., autonomous driving cars) where there can be
various requirements for functional safety. This is so, as
some products may have more demanding reliability targets
(e.g., a failure while performing autonomous driving may
have a harsh outcome), such that a core cannot be compro-
mised while performing mission critical tasks. In embodi-
ments, the in-field self testing can be performed on a core
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when it is isolated from normal operation, such as respon-
sive to entry of the core into a given low power state, such
as the diagnostic sleep state described herein.

Referring now to FIG. 17, shown is a block diagram of a
processor in accordance with an embodiment of the present
invention. More specifically, the portion of processor 1700
shown in FIG. 17 is of a given cluster or module, where the
processor itself may include a plurality of such clusters. As
shown in FIG. 17, processor 1700 includes a plurality of
cores 1710,-1710,, and a bus interface unit 1780 that acts as
shared circuitry interface between cores 1710 and additional
circuitry within processor 1700. Understand that in multi-
core embodiments, each core may have its own core perim-
eter logic. With the isolation mode self-testing described
herein, when a cluster is in the isolation mode of a diagnostic
sleep state and actively executing self testing (in a CO state),
it appears to other portions of the core perimeter logic as
being in a low power state (e.g., a C6 state).

In the particular embodiment shown in FIG. 17, core
1710, a power management agent (PMA) 1730 and addi-
tional power delivery and clocking circuitry (further dis-
cussed below) may be in an active state (e.g., a CO state)
during this isolation mode-based self testing. However, such
circuitry appears to additional core perimeter logic, namely
a fabric interface logic (FIL) 1720, as though it were in a low
power (e.g., C6) state.

In the high level shown in FIG. 17, the components of
processor 1700 all may be implemented on a single semi-
conductor die. As seen, core 1710 includes a microcode
storage 1715, which may store various microcode to execute
on core 1710, including cryptography microcode to perform
authentication and decryption of test patterns as described
herein. As further illustrated, processor 1700 includes addi-
tional storages, including a low power memory 1770, which
in an embodiment may be a static random access memory
(SRAM, a so-called “C6 SRAM”) in which various context
or state information of a cluster is stored while in a diag-
nostic sleep state. Note that the terms “state information”
and “context information” are used interchangeably herein,
and refer to information such as control register values, data
information, register-stored information, and other informa-
tion associated with a thread being executed on a core or
other logic. Such information can be saved when the cor-
responding thread is switched from the core, e.g., due to
entry into a low power state or migration to another core.

In an embodiment, memory 1770 may be configured to
remain powered on while the core is in certain low power
states. As an example, memory 1770 may maintain infor-
mation while a core is in a given low power state (e.g., C6)
and the processor package is in a package active state (CO).
However, in other low power states, such power may not be
available, and the context information may be sent to other
storages. As further illustrated, a shared cache memory 1775
also couples to bus interface unit 1780. As illustrated, cache
memory 1775 may be implemented as an [.2 cache memory
that acts as a shared cache memory for the various cores of
the cluster. In addition during in-field self testing as
described herein, a state stored in this cache memory may be
flushed and one or more test patterns, operating parameter
information and so forth regarding the self testing may be
obtained and stored in cache memory 1775.

Core 1710 further includes an intra-die interconnect (IDI)
interface 1718 to interface with an IDI 1768. Although not
shown for ease of illustration, understand that IDI 1768 may
couple cores 1710 with various other circuitry within the
processor (not shown for ease of illustration in FIG. 17),
including one or more other clusters, a peripheral controller
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hub (PCH), one or more cache memories and/or other
uncore circuitry. To provide for an interface between core
1710 and other components within the processor that may
operate at different frequencies, a clock crossing logic 1719
may be provided, which in an embodiment may be imple-
mented as a bubble generator first in first out (FIFO) buffer.

To enable core 1710 to enter into particular and deeper
low power states when available, a first core perimeter logic,
namely FIL 1720, is coupled to core 1710. FIL, 1720 may be
of a first sustain power domain, in that it is provided with
power and clock signals when at least portions of the
processor are in a low power state. As seen, FIL 1720
couples to cores 1710 via both IDI 1768 and a second
interconnect 1777, which in an embodiment is a control
register interconnect (CRi). Interconnect 1777 may be a
relatively simple and low performance interconnect to pro-
vide for communication of state information during save and
restore operations for low power state entry and exit.

In the embodiment shown in FIG. 17, FIL 1720 includes
a storage 1722, which may be implemented as a plurality of
registers configured to store the state information received
from cores 1710 prior to their entry into a given low power
state. In certain low power states, power may be maintained
to FIL 1720 until the processor package enters a deeper
package low power state (e.g., a package C6 state) when a
coherent fabric enters a low power state. As further shown,
FIL 1720 includes a monitor logic 1724, an interrupt control
logic 1726, and a snoop response logic 1728. In general,
monitor logic 1724 may be configured, when core 1710 is in
a low power state, to monitor one or more monitored
locations for an update to a value stored therein. In turn,
interrupt control logic 1726 may be configured to handle
incoming interrupts while core 1710 is in a low power state.
Such handling may include delaying the interrupt and/or
sending a response to the interrupt. Still further, in some
cases the handling may include causing core 1710 to wake
up to handle the interrupt. Also, FIL 1720 includes a snoop
response logic 1728, which may be configured to send a
snoop response to a snoop request that is incoming while
core 1710 is in a low power state.

Still referring to FIG. 17, an additional core perimeter
logic is a power management agent (PMA) 1730. In general,
PMA 1730 may be configured to provide an interface to
other processor and system components via a sideband
interconnect 1790, which may be a power management
sideband interconnect. PMA 1730 may be of a second
sustain power domain, in that it is provided with power and
clock signals when other portions of processor 1700 (includ-
ing FIL. 1720) are in a low power state. PMA 1730 includes
a storage 1732 that may be configured to store the state
information obtained from FIL 1720. This state information
may include a current or active advanced programmable
interrupt controller (APIC) identifier (ID) for core 1710, to
enable PMA 1730 to respond to broadcast wake/APIC ID
messages. In embodiments, PMA 1730 may be configured to
send the results of the self-testing of core 1710 to a power
controller such as a PCU via sideband interconnect 1790.

In the embodiment shown, PMA 1730 includes a fuse
puller logic 1736 that may include one or more FSMs to
perform save and restore operations when PMA 1730 itself
is to be placed into a low power state. For example, the
information stored in storage 1722 may be flushed to system
memory when the processor package enters a still deeper
package low power state (e.g., a package C10 state). In some
cases, PMA 1730 may interface with a main power control-
ler of a processor such as a PCU or other power management
entity. PMA 1730 further includes an event blocking logic
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1738, which may be configured to block incoming events
when the processor is in particular low power states, includ-
ing during the isolation mode described herein. Still further,
PMA 1730 also includes a sideband interface 1739, which
may interface with sideband interconnect 1790.

Understand that a processor may include additional com-
ponents and circuitry. In the illustration of FIG. 17, proces-
sor 1700 further includes a power delivery unit 1740, which
in an embodiment may include one or more fully integrated
voltage regulators, a clock circuit 1750, which in an embodi-
ment may be implemented as a phase lock loop, and a digital
thermal sensor 1760. As seen, each of these components
may communicate with the other components of processor
1700 via interconnect 1777. Understand while shown with
this particular processor implementation in FIG. 17, many
variations and alternatives are possible.

In some cases, a PCU or other power controller may
periodically force a given cluster into the isolation mode to
cause it to run diagnostic tests as described herein. In other
cases, the PCU can cause the testing to be performed at a
system power state entry (e.g., an S3 state). When the core
is in this isolation mode, core-external entities may consider
the core in a low power state. For example, core perimeter
logic such as FIL. 1720 may ignore snoops, delay interrupts
and PMA 1730 will block events. As such, when in the
isolation mode, the core under test has no interaction with
external components.

In embodiments a given core 1710 may obtain one or
more tests from a storage and store the tests for execution
within cache memory 1775. Note that the test suite stored in
shared cache memory 1775 is the same for all cores of a
cluster. In some embodiments, these tests may be a subset of
diagnostic tests used in a manufacturing facility to perform
manufacturing testing or hypothetical use testing. In some
cases, a given test suite case be executed in a single iteration
of the isolation mode as a single pass, or different tests or
chunks can be split into multiple iterations of small chunks
of micro-tests.

Referring now to FIG. 18, shown is a flow diagram of a
method in accordance with an embodiment of the present
invention. As shown in FIG. 18, method 1800 is a high level
view of initiation operations for an in-field self test of one or
more cores or other processing circuitry as described herein.
More specifically, method 1800 is described from the view
of'a processing core that is to perform this self test. As such,
embodiments may be implemented using hardware circuitry,
firmware, software, and/or combinations thereof. As illus-
trated, method 1800 begins by receiving an instruction to
initiate the in-field self test (block 1810). In one embodi-
ment, this instruction may be implemented as a write to a
self-test register. In one embodiment, this register may be
implemented as a control register to be written by firmware
or other system software with an address or other pointer to
a location at which the self test is stored. In other cases, a
user-level instruction may be used to initiate the self test.

In any event, control next passes to block 1815 where the
core may save its state to a low power memory and addi-
tionally flush the core data cache. Note that as used herein
the term “low power memory” is used to refer to a memory
in which information is stored and maintained while a
processor is in a particular low power state. As such, this
memory is provided with an appropriate operating voltage
and frequency during the low power state to enable its
maintenance of stored information. In one embodiment, this
memory may be a C6 SRAM. In another embodiment this
memory may be a reserved range of DRAM that is encrypted
and integrity protected. Next it is determined whether this



US 10,962,596 B2

25

core is the last core of a group of cores (e.g., a module or
cluster) to receive this instruction (diamond 1820). As an
example, reference may be made to a status register that
provides fields for each core of this group which when set,
indicates that the corresponding core has received this self
test initiation signal and has begun or is in execution of the
self test. If the core determines that it is the last core of the
group to save its state away and enter into the self test mode,
control passes to block 1825 where the core may also cause
the state of shared circuitry (such as bus interface circuitry)
to be stored to this low power memory. In many cases, this
memory may be the same as the low power memory in
which the core state is saved. However understand that
scope of the present invention is not limited in this regard
and in other cases another low power memory may be used
for storage of this shared circuitry state.

Still with reference to FIG. 18, control next passes to
block 1830 where a shared cache may be flushed to a
memory hierarchy. In an embodiment, this shared cache may
be an .2 cache that is shared by the various cores of this
module. Note that in different implementations, and depend-
ing upon environment, the flush location may be a last level
cache (LLC) or further portions of the memory hierarchy,
such as a system memory (e.g., DRAM). Next, control
passes to block 1840 where a test pattern may be obtained
and stored in the shared cache memory. As discussed above,
in an embodiment a pointer may be provided to identify an
address from which the test pattern may be obtained. Note
that in an embodiment, this test pattern may be a scan pattern
that is to be executed in the core, e.g., according to a scan
self test procedure.

Still with reference to FIG. 18, next it is determined
whether this test pattern is verified (diamond 1850). If not,
an error may be raised (block 1860). Although the scope of
the present invention is not limited in this regard in one
embodiment the core may raise a machine check architec-
ture (MCA) error. If the test pattern is verified, control
passes to diamond 1865 where it is next determined whether
a hash of the test pattern matches a signed hash. If so, control
passes to block 1870 (and otherwise, control passes to block
1860 to raise an error).

At block 1870, the test pattern may be decrypted. In an
embodiment, a core may include a microcode decryption
infrastructure that may be leveraged to perform this decryp-
tion, e.g., using decryption micro-operations. Thereafter, at
block 1880 a test controller that is to manage the self test
within the core is programmed with operating parameters. In
one embodiment, this test controller may be implemented as
a scan FSM within shared circuitry of the module (e.g., as
part of bus interface circuitry). In an embodiment, such
operating parameters may be obtained within the test pattern
module itself, now decrypted and stored in the shared cache
memory.

Finally, control passes to block 1890 where the core enters
into a diagnostic sleep state. Note that in this diagnostic
sleep state, the core appears to outside entities as being in a
low power state. Nevertheless, the core does not actually
enter into a low power state. Stated another way, in this
diagnostic sleep state, the core still receives an operating
voltage and one or more clock signals such that it is able to
execute a self-test suite or an in-field self test, further details
of which are discussed below. Understand while shown at
this high level in the embodiment of FIG. 18, many varia-
tions and alternatives are possible.

Referring now to FIG. 19, shown is a flow diagram of a
method in accordance with another embodiment of the
present invention. More specifically, method 1900 is a flow
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diagram of a self-test management process, e.g., performed
by a power controller such as a power management agent
(PMA), e.g., of a multi-core module as described herein. As
such, embodiments may be implemented using hardware
circuitry, firmware, software, and/or combinations thereof.

As seen, method 1900 begins by determining whether all
cores (e.g., of the module) are in the diagnostic sleep state
(diamond 1910). In an embodiment, the power controller
may access a status register or other storage to make this
determination. When it is determined that all of these cores
are in the diagnostic sleep state, control passes to block 1920
where a fabric interface may be stopped and clock crossing
circuitry may be quiesced. These operations are effected to
isolate this module or cluster from a remainder of a proces-
sor, which may continue to operate in a normal execution
mode while the self test is performed on this module.
Thereafter at block 1930 a firewall is enabled to isolate this
cluster. As such, the entire cluster appears to external
circuitry (namely the remainder of a processor), as being in
a low power state. Nevertheless, while in this diagnostic
sleep state, the cluster remains powered and clocked, to
enable the self test to occur. Next, control passes to block
1940 where the power controller may cause the test con-
troller to initiate the in-field self test. In an embodiment, this
test controller may be implemented as a scan FSM or an
independent test controller (such as a JTAG or TAP con-
troller). Thus at this point the given cores may perform the
in-field self testing.

Next it is determined at diamond 1950 whether a test
completion indicator has been received. In an embodiment,
this indication thus indicates that all cores of the cluster have
completed self testing. If this indicator is not received,
control passes to diamond 1960 to determine whether a
timer interval has completed. This timer may correspond to
a dead man timer. If the dead man timer times out without
completion of the self testing, this may be an indication of
some error or other upset in the self testing.

In any event, control next passes to block 1970 where a
reset sequence is caused to occur. This reset sequence may
be performed on the individual cores to clear out any stale
test content or other state of the core to enable the core to
begin or continue normal execution. Note however that this
reset is simply a clearing of the testing state in the core; the
core does not require a reboot or other extensive re-initial-
ization, such that continued functional operation may
resume within the core with very low latency. Next it is
determined whether this reset sequence has completed (dia-
mond 1980). When this sequence is determined to have
completed, control passes to block 1990 where an isolation
signal may be de-asserted and the fabric interface may be
restarted. As such at this point, the module is enabled to
interact with additional circuitry of the processor and thus
the module appears to this circuitry as being in a normal
operating mode. Understand while shown at this high level
in the embodiment of FIG. 19, many variations and alter-
natives are possible.

Referring now to FIG. 20, shown is a flow diagram of a
method in accordance with a still further embodiment of the
present invention. More specifically, method 2000 of FIG.
20 is a detailed method for performing an in-field self test of
a core itself. As seen, method 2000 begins by reading a test
pattern from the shared cache (block 2010). Note that at this
point this test pattern (which may be a single test pattern or
a collection of multiple test (e.g., scan) patterns, is in a
decrypted state, such that it is directly accessible by the scan
test FSM. Next at block 2020 an in-field self test may be
performed according to this test pattern. In an embodiment
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where the test pattern is a scan pattern, this test may be a
scan self test in which the scan pattern is shifted into a scan
chain of the core (each scan circuit of which may be
associated with a given functional circuit of the core) and
shifted through the scan chain to fully test, e.g., combina-
tional logic of the core. In one example, a scan BIST may be
used to set and observe every flip-flop within a circuit under
test. To this end, a test pattern may be scanned in to a series
of flip-flops that in turn couple to combinational logic of the
core. In this way, the test pattern scanned in may proceed
through the scan chain and be scanned out to provide a test
result. Such testing may further include direct access testing
to access one or mMore Memory arrays.

Still with reference to FIG. 20, at optional block 2030 the
patterns shifted out of the scan chain may be stored, e.g., to
the shared cache memory. In this way, with this detailed scan
information, diagnostic operations, debugging and other
fault detection/isolation procedures may be performed. In
one embodiment, this shifted out data may be then subse-
quently encrypted in the field by microcode following
completion of reset such that it can be sent back to the
factory or other destination.

Still with reference to FIG. 20, control passes to block
2040 where the core may compare a result of the in-field self
test to an expected signature. Note that in embodiments, this
expected signature may be obtained from the shared cache
memory that stores the test pattern itself. That is, in some
cases the expected signature may be stored in association
with the test pattern. In some cases the expected signature
value may be read from the shared cache memory that stores
the test pattern and programmed into a control register in the
scan controller by microcode prior to initiating the self-test
sequence. In a particular embodiment, this signature is a
so-called golden signature that is the expected output from
the scan chain in response to the input of the scan pattern.

Still with reference to FIG. 20, next it may be determined
whether this comparison results in a match (diamond 2050).
If so, the core may indicate that it has successfully passed the
in-field self test (block 2070). Otherwise, at block 2060, the
core may indicate that it has failed. In an embodiment, such
indications may be made by providing an indicator within a
self-test status storage. For example, the core may set a
corresponding indicator to a first state (e.g., logic high) to
indicate that it passed the self test, and instead reset this
indicator to a logic low state to indicate that it failed the self
test. Also in connection with this indication, the core may
further indicate to, e.g., the power management agent that it
has completed the self test. Understand while shown at this
high level in the FIG. 20, many variations and alternatives
are possible.

Referring now to FIG. 21, shown is a flow diagram of yet
another method in accordance with an embodiment. As
shown in FIG. 21, method 2100 is a method for concluding
in-field self testing as described herein. To this end, method
2100 may be performed by a given core of a group of cores
as described herein. As seen, method 2100 begins by deter-
mining whether a shared state, e.g., of interface circuitry has
been restored (diamond 2110). Assuming not, control passes
to block 2120 where the core may restore this shared state
from the low power memory to the shared circuitry. Next,
control passes to block 2130 where the core may restore its
own state from the low power memory.

Still with reference to FIG. 21, next it is determined
whether the self testing performed on this cluster of cores
was successful. More specifically, the core may access a
status storage or other location to identify whether all cores
successfully passed the in-field self testing (or not). Based
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on this obtained information it is determined at diamond
2150 whether a failure is indicated. If so, control passes to
block 2160 where a given error handling mechanism may be
performed. For example, the core may simply log the error,
e.g., in an error log. In other cases, the core may report or
raise the error. In some cases, this error handling mechanism
may be based on the type of error and an error handling
policy that dictates how to handle the error.

In any event, this core, with its own state restored, may
proceed to block 2180 where it may begin or continue
execution of non-test code. More specifically, in embodi-
ments in which this in-field self testing is iteratively per-
formed during normal operation, the core may continue
whatever normal functionality it was performing prior to its
entry into the in-field self testing. More specifically, the core
may begin execution at a next instruction following the
instruction that caused it to enter into the in-field self test.

Still with reference to FIG. 21, note that if the core instead
determines at diamond 2110 that the shared state already has
been restored (meaning that this core is not the first core to
exit out of the diagnostic sleep state), control passes to block
2170. There the core state is restored from the low power
memory and control then passes to block 2180 for begin-
ning/continuing normal code execution. Understand while
shown at this high level in the embodiment of FIG. 21, many
variations and alternatives are possible.

Embodiments may use a microcode authentication and
encryption framework to package in-field scan patterns. In
addition, a scan FSM used for high volume manufacturing
can be programmed through microcode, to execute test
patterns sourced from a shared cache memory, instead of
using an external test controller and storage. As examples,
embodiments may be incorporated in automotive and air-
plane vehicle systems that implement functional safety
certifications to enable autonomous driving and avionics.

Referring now to FIG. 22, shown is a block diagram of a
system in accordance with another embodiment of the
present invention. In the embodiment of FIG. 22, system
2200 is an autonomous driving computing system. As such,
system 2200 may be implemented within a vehicle that
provides for some level of autonomous driving. Understand
that with different levels of autonomous driving control,
different levels of workloads may be executed within system
2200 to perform some or all driving tasks autonomously.

As illustrated, system 2200 includes a processor 2210,
which may be a general-purpose multicore processor or
other SoC. In different implementations, multiple such pro-
cessors may be implemented to flexibly allocate autonomous
driving workloads across these processors. Processor 2210
receives power that is controlled by a power management
integrated circuit (PMIC) 2240. As further illustrated, func-
tional safety and other diagnostic testing as described herein,
both within processor 2210 and PMIC 2240 may occur, with
results communicated between these components.

System 2200 may further include one or more field
programmable gate arrays (FPGAs) 2215 or other program-
mable accelerators to which certain autonomous driving
workloads may be offloaded. Processor 2210 further couples
to a non-volatile memory 2225, which in an embodiment
may be implemented as a flash memory. As described herein,
non-volatile memory 2225 may persistently store test pat-
terns that may be used to perform self-testing of processor
2210, PMIC 2240 and additional components within system
2200. To provide communication with other components
within a vehicle, processor 2210 further couples to a switch
fabric 2220 which in an embodiment may be implemented
as an Ethernet switch fabric that in turn may couple to other
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components within a vehicle, including display components,
vehicle infotainment systems, and so forth. Still further,
processor 2210 (and switch fabric 2220) also couple to a
microcontroller 2250 which also may be involved in the
functional safety testing.

Furthermore, to enable interaction with other systems,
including other vehicles, roadway systems, over-the-air
update sources, infotainment content sources, sensor data
communication and so forth, processor 2210 and MCU 2250
may couple to one or more radio frequency integrated
circuits (RFICs) 2260. In embodiments, RFIC 2260 may be
configured to support 5G-based specifications for commu-
nication of automotive and other data via a variety of
wireless networks. To this end, RFIC 2260 may couple to
one or more antennas 2270,-2270,, of a vehicle.

As further illustrated in FIG. 22, system 2200 may include
a plurality of sensors 2230,-2230,, that provide sensor infor-
mation, via a sensor hub 2235 to processor 2210. Although
the scope of the present invention is not limited in this regard
in embodiments, such sensors may include lidar, ultrasound,
radar and optical sensors, among other sensor types. Sensor
hub 2235 may be configured to fuse at least some of this data
to provide information regarding the vehicle’s surroundings,
for provision to processor 2210. In turn, processor 2210
and/or FPGA 2215 may use this fused sensor information in
connection with performing autonomous driving workloads.
Understand while shown at this high level in the embodi-
ment of FIG. 22, many variations and alternatives are
possible.

The following examples pertain to further embodiments.

In one example, a processor includes: a first core; and an
interface circuit coupled to the first core to interface the first
core to additional circuitry of the processor, where in
response to an in-field self test instruction, the first core is to
save a state of the first core to a low power memory, enter
into a diagnostic sleep state and execute an in-field self test
in the diagnostic sleep state, wherein the first core appears
to be inactive in the diagnostic sleep state.

In an example, the processor further comprises a plurality
of cores including the first core and a second core, where the
second core is to save a state of at least a portion of the
interface circuit to the low power memory and flush a shared
cache memory to a memory hierarchy.

In an example, the second core is, after the shared cache
memory flush, to obtain a test pattern and store the test
pattern in the shared cache memory.

In an example, the second core is to validate the test
pattern and in response to the test pattern validation, decrypt
the test pattern, program a test controller with operating
parameter information for the in-field self test and thereafter
enter into the diagnostic sleep state.

In an example, in response to a failure of the in-field self
test, the test controller is to send an error signal to one or
more of the plurality of cores and log error information in a
status storage, where the status storage is accessible via a
sideband network.

In an example, the processor is to receive an over-the-air
update including one or more test patterns and store the one
or more test patterns in a storage of a system including the
processor.

In an example, after the storage of the one or more test
patterns, the first core is to use the one or more test patterns
to perform the in-field self test in response to a second
in-field self test instruction.

In an example, in response to the first core being in the
diagnostic sleep state, the interface circuit is to isolate the
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first core from the additional circuitry and trigger a test
controller to initiate the in-field self test on the first core.

In an example, after execution of the in-field self test on
the first core, the interface circuit is to cause the first core to
be reset and thereafter continue execution of instructions at
a first instruction following the in-field self test instruction.

In another example, a method includes: receiving, in a
core of a processor, an instruction to initiate an in-field self
test of the core; in response to the instruction, saving a state
of the core and a state of shared circuitry of the processor to
a first memory of the processor; obtaining a test pattern from
a storage and storing the test pattern in a shared cache
memory of the processor; programming a test controller of
the processor with operating parameters for the in-field self
test, based at least in part on configuration information
associated with the test pattern; and entering into a diag-
nostic sleep state and in response to a signal from the test
controller, executing the in-field self test during the diag-
nostic sleep state.

In an example, the method further comprises: verifying
the test pattern; in response to verifying the test pattern,
determining whether a hash value of the test pattern matches
a signed hash value; and in response to determining that the
hash value matches the signed hash value, decrypting the
test pattern and storing the decrypted test pattern in the
shared cache memory.

In an example, executing the in-field self test comprises
reading the decrypted test pattern from the shared cache
memory and performing the in-field self test according to the
test pattern.

In an example, the method further comprises receiving an
over-the-air download of the in-field self test and storing the
in-field self test to the storage, where the in-field self test is
encrypted and signed.

In an example, the method further comprises executing
the in-field self test on a plurality of cores of the processor
concurrently during the diagnostic sleep state in which the
plurality of cores appear to other circuitry of the processor
as being in a low power state.

In an example, the in-field self test comprises at least one
functional safety test, and the method further comprises
performing a plurality of iterations of the in-field self test
during functional execution on the core.

In another example, a computer readable medium includ-
ing instructions is to perform the method of any of the above
examples.

In another example, a computer readable medium includ-
ing data is to be used by at least one machine to fabricate at
least one integrated circuit to perform the method of any one
of the above examples.

In another example, an apparatus comprises means for
performing the method of any one of the above examples.

In yet another example, a system comprises a multicore
processor including a shared cache memory, a plurality of
cores to execute functional operations, an interface circuit to
interface the plurality of cores to another portion of the
multicore processor and a power controller coupled to the
plurality of cores, where a first core of the plurality of cores
is to enter into a diagnostic sleep state in which the first core
is isolated in response to an instruction to execute an in-field
self test while at least the another portion of the multicore
processor continues to execute functional operations, the
first core to save a state of the first core and a state of the
interface circuit to a first storage, obtain a self-test suite and
store the self-test suite in the shared cache memory, execute
the self-test suite during the diagnostic sleep state and report
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a result of the execution of the self-test suite to the power
controller. The system may further include system memory
to store the self-test suite.

In an example, the system comprises an automotive
vehicle computing system, and the power controller is to
cause the first core to execute the self-test suite during
operation of the automotive vehicle computing system.

In an example, in the diagnostic sleep state, the first core
is to execute the self-test suite and appear to the another
portion of the multicore processor as in a low power state.

In an example, the first core is to flush contents of the
shared cache memory to the system memory before the
self-test suite is obtained, and obtain the contents of the
shared cache memory from the system memory to enable the
first core to restart the execution of the functional operations.

In an example, the processor comprises a plurality of
clusters each including a subset of the plurality of cores, the
first storage and the shared cache memory, and when a first
cluster is in the diagnostic sleep state, at least a second
cluster is to continue the execution of the functional opera-
tions.

In a still further example, an apparatus comprises: means
for receiving an instruction to initiate an in-field self test of
a core means of a processor; means for saving a state of the
core means and a state of shared circuitry means of the
processor to a first memory means; means for obtaining a
test pattern from a storage means for storage in a shared
cache memory means of the processor; means for program-
ming a test control means with operating parameters for the
in-field self test, based at least in part on configuration
information associated with the test pattern; means for
entering into a diagnostic sleep state; and means for execut-
ing the in-field self test during the diagnostic sleep state.

In an example, the apparatus further comprises: means for
verifying the test pattern; means for determining whether a
hash value of the test pattern matches a signed hash value;
and means for decrypting the test pattern and storing the
decrypted test pattern in the shared cache memory means.

In an example, the means for executing is to read the
decrypted test pattern from the shared cache memory means
and perform the in-field self test according to the test pattern.

In an example, the apparatus further comprises: means for
receiving an over-the-air download of the in-field self test;
and means for storing the in-field self test to the storage
means, where the in-field self test is encrypted and signed.

In an example, the apparatus further comprises means for
executing the in-field self test on a plurality of core means
concurrently during the diagnostic sleep state.

Understand that various combinations of the above
examples are possible.

Note that the terms “circuit” and “circuitry” are used
interchangeably herein. As used herein, these terms and the
term “logic” are used to refer to alone or in any combination,
analog circuitry, digital circuitry, hard wired circuitry, pro-
grammable circuitry, processor circuitry, microcontroller
circuitry, hardware logic circuitry, state machine circuitry
and/or any other type of physical hardware component.
Embodiments may be used in many different types of
systems. For example, in one embodiment a communication
device can be arranged to perform the various methods and
techniques described herein. Of course, the scope of the
present invention is not limited to a communication device,
and instead other embodiments can be directed to other
types of apparatus for processing instructions, or one or
more machine readable media including instructions that in
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response to being executed on a computing device, cause the
device to carry out one or more of the methods and tech-
niques described herein.

Embodiments may be implemented in code and may be
stored on a non-transitory storage medium having stored
thereon instructions which can be used to program a system
to perform the instructions. Embodiments also may be
implemented in data and may be stored on a non-transitory
storage medium, which if used by at least one machine,
causes the at least one machine to fabricate at least one
integrated circuit to perform one or more operations. Still
further embodiments may be implemented in a computer
readable storage medium including information that, when
manufactured into a SoC or other processor, is to configure
the SoC or other processor to perform one or more opera-
tions. The storage medium may include, but is not limited to,
any type of disk including floppy disks, optical disks, solid
state drives (SSDs), compact disk read-only memories (CD-
ROMs), compact disk rewritables (CD-RWs), and magneto-
optical disks, semiconductor devices such as read-only
memories (ROMs), random access memories (RAMs) such
as dynamic random access memories (DRAMs), static ran-
dom access memories (SRAMs), erasable programmable
read-only memories (EPROMs), flash memories, electri-
cally erasable programmable read-only memories (EE-
PROMs), magnetic or optical cards, or any other type of
media suitable for storing electronic instructions.

While the present invention has been described with
respect to a limited number of embodiments, those skilled in
the art will appreciate numerous modifications and varia-
tions therefrom. It is intended that the appended claims
cover all such modifications and variations as fall within the
true spirit and scope of this present invention.

What is claimed is:

1. A processor comprising:

a first core; and

an interface circuit coupled to the first core to interface the

first core to additional circuitry of the processor,
wherein in response to an in-field self test instruction
when the first core is in normal operation, the first core
is to enter into a diagnostic sleep state in which the first
core is isolated from the normal operation, and execute
an in-field self test, wherein in the diagnostic sleep state
the first core appears to be inactive but is in an active
state.

2. The processor of claim 1, wherein the processor further
comprises a first plurality of cores including the first core
and a second core and a second plurality of cores, wherein
the first plurality of cores are to enter the diagnostic sleep
state while the second plurality of cores are to continue the
normal operation.

3. The processor of claim 1, wherein the diagnostic sleep
state comprises an unbreakable sleep state.

4. The processor of claim 1, wherein the first core
comprises a self-test register.

5. The processor of claim 4, wherein the in-field self test
instruction is to cause self-test information to be written into
the self-test register.

6. The processor of claim 5, wherein the self-test infor-
mation comprises a location of a test pattern to be used for
the in-field self test and a type of the in-field self test.

7. The processor of claim 1, wherein the processor is to
receive the in-field self test instruction from firmware.

8. The processor of claim 1, wherein the processor is to
receive an over-the-air update including one or more test
patterns and store the one or more test patterns in a storage
of a system including the processor.
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9. The processor of claim 1, further comprising a power
controller to periodically cause the first core to enter into the
diagnostic sleep state.

10. A machine-readable medium having stored thereon
instructions, which if performed by a machine cause the
machine to perform a method comprising:

receiving, in a core of a processor, an instruction to initiate

an in-field self test of the core;

in response to the instruction, saving a state of the core

and a state of shared circuitry of the processor to a first
memory of the processor;
obtaining a test pattern from a storage and storing the test
pattern in a shared cache memory of the processor; and

entering into a diagnostic sleep state in which the core is
in an isolation mode in which the core appears to be in
a low power state, and executing the in-field self test on
the core during the diagnostic sleep state.

11. The machine-readable medium of claim 10, wherein
the method further comprises:

verifying the test pattern;

in response to verifying the test pattern, determining

whether a hash value of the test pattern matches a
signed hash value; and

in response to determining that the hash value matches the

signed hash value, decrypting the test pattern and
storing the decrypted test pattern in the shared cache
memory.

12. The machine-readable medium of claim 11, wherein
executing the in-field self test comprises reading the
decrypted test pattern from the shared cache memory and
performing the in-field self test according to the test pattern.

13. The machine-readable medium of claim 10, wherein
the method further comprises receiving an over-the-air
download of the in-field self test and storing the in-field self
test to the storage.

14. The machine-readable medium of claim 10, wherein
the method further comprises executing the in-field self test
on a plurality of cores of the processor concurrently during
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the diagnostic sleep state in which the plurality of cores
appear to other circuitry of the processor as being in the low
power state.

15. The machine-readable medium of claim 10, wherein
the method further comprises periodically performing the
in-field self test during functional execution on the core.

16. A system comprising:

a multicore processor including a shared cache memory,
aplurality of cores including a first cluster and a second
cluster to execute functional operations, and a power
controller coupled to the plurality of cores, wherein the
power controller is to cause the first cluster to enter into
an isolation mode in which a first core of the first
cluster is to enter into a diagnostic sleep state in
response to an instruction to execute an in-field self test
while at least the second cluster continues to execute
the functional operations, the first core to save a state
of the first core, obtain a self-test suite and store the
self-test suite in the shared cache memory, execute the
self-test suite during the diagnostic sleep state and
report a result of the execution of the self-test suite to
the power controller; and

a system memory to store the self-test suite.

17. The system of claim 16, wherein the system comprises
an automotive vehicle computing system, and wherein the
power controller is to cause the first core to execute the
self-test suite during operation of the automotive vehicle
computing system.

18. The system of claim 16, wherein in the diagnostic
sleep state, the first core is to execute the self-test suite and
appear to the second cluster as in a low power state.

19. The system of claim 16, wherein the processor is to
receive an over-the-air update including one or more test
patterns of the self-test suite and store the one or more test
patterns in a storage.

20. The system of claim 16, further comprising a field
programmable gate array (FPGA) coupled to the processor,
wherein the FPGA is to execute an autonomous driving
workload based at least in part on sensor information.
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