A method for storing data associated with a video game is provided. The method includes receiving position data indicative of a position of a wireless input device over a time interval at a video game controller. The method further includes generating a plurality of digital images associated with the video game over the time interval based on the position data, utilizing the video game controller. The method further includes storing a file having the position data and the plurality of digital images in either a central server or the wireless input device, utilizing the video game controller.
FIG. 4

VIDEO GAME CONTROLLER EXECUTES A VIDEO GAME

FIRST USER INPUTS A RECORD COMMAND USING A FIRST INPUT DEVICE THAT IS RECEIVED BY THE VIDEO GAME CONTROLLER

VIDEO GAME CONTROLLER RECEIVES POSITION DATA INDICATIVE OF A POSITION OF A WIRELESS INPUT DEVICE OVER A TIME INTERVAL AND TEMPORARILY STORES THE POSITION DATA THEREIN

VIDEO GAME CONTROLLER GENERATES A PLURALITY OF DIGITAL IMAGES ASSOCIATED WITH THE VIDEO GAME BASED ON THE POSITION DATA THAT IS DISPLAYED ON A DISPLAY DEVICE, AND TEMPORARILY STORES THE PLURALITY OF DIGITAL IMAGES

FIRST USER INPUTS AN END-RECORD COMMAND USING THE FIRST INPUT DEVICE THAT IS RECEIVED BY THE VIDEO GAME CONTROLLER

FIRST USER INPUTS A FIRST USER IDENTIFIER, A VIDEO GAME IDENTIFIER, LEVEL OF DIFFICULTY, AND A PRIVATE TAG IDENTIFIER AND/OR A PUBLIC TAG IDENTIFIER, USING THE FIRST INPUT DEVICE THAT IS RECEIVED BY THE VIDEO GAME CONTROLLER

TO 72 FIG. 5
FIG. 5

FROM 70
FIG. 4

A

FROM 84
FIG. 6

B

USER INPUTS A USER IDENTIFIER AND A VIDEO GAME IDENTIFIER USING THE FIRST INPUT DEVICE REQUESTING TO ACCESS THE FIRST FILE, WHICH IS RECEIVED BY THE VIDEO GAME CONTROLLER

76

VIDEO GAME CONTROLLER SENDS THE USER IDENTIFIER AND THE VIDEO GAME IDENTIFIER TO THE CENTRAL SERVER OR THE WIRELESS INPUT DEVICE

C

TO 78
FIG. 6
FIG. 6

FROM 76
FIG. 5

NO
USER IDENTIFIER EQUALS FIRST USER IDENTIFIER?
YES
CENTRAL SERVER OR WIRELESS INPUT DEVICE ALLOWS THE VIDEO GAME CONTROLLER ASSOCIATED WITH THE USER TO ACCESS THE FIRST FILE AND TO REPLAY THE PLURALITY OF DIGITAL IMAGES ON A DISPLAY DEVICE

NO
USER IDENTIFIER DOES NOT EQUAL FIRST USER IDENTIFIER AND FIRST FILE HAS A PUBLIC TAG IDENTIFIER?
YES
CENTRAL SERVER OR WIRELESS INPUT DEVICE ALLOWS THE VIDEO GAME CONTROLLER ASSOCIATED WITH THE USER TO ACCESS THE FIRST FILE AND TO REPLAY THE PLURALITY OF DIGITAL IMAGES FOR A FEE ON A DISPLAY DEVICE

TO 74
FIG. 5
METHOD FOR STORING DATA ASSOCIATED WITH A VIDEO GAME

BACKGROUND

[0001] Video game devices have been developed that allow multiple users to play a video game. Further, the video game devices utilize input devices to allow users to interact with the video game. However, in a case where a user moves an input device to specific positions over a time interval to obtain desired video game actions that they would like to have stored for later use, the user is not able to do so with the video game devices.

SUMMARY OF THE INVENTION

[0002] A method for storing data associated with a video game in accordance with an exemplary embodiment is provided. The method includes receiving position data indicative of a position of a wireless input device over a time interval at a video game controller. The method further includes generating a plurality of digital images associated with the video game over the time interval based on the position data, utilizing the video game controller. The method further includes storing a file having the position data and the plurality of digital images in either a central server or the wireless input device, utilizing the video game controller.

BRIEF DESCRIPTION OF DRAWINGS

[0003] FIG. 1 is a schematic of a system for storing data associated with a video game in accordance with an exemplary embodiment;
[0004] FIG. 2 is a schematic of a video game controller utilized in the system of FIG. 1;
[0005] FIG. 3 is a schematic of a wireless input device utilized in the system of FIG. 1;
[0006] FIGS. 4-6 are a flowchart of a method for storing data associated with a video game in accordance with another exemplary embodiment.

DETAILED DESCRIPTION

[0007] Referring to FIG. 1, a system 10 for storing data associated with a video game is illustrated. The system 10 includes a wireless input device 20, a video game controller 22, a first input device 24, a display device 26, a communication network 28, a central server 30, a wireless input device 40, a video game controller 42, a wireless input device 42, a second input device 44, and a display device 46.
[0008] Referring to FIGS. 1 and 3, the wireless input device 20 is provided to transmit wireless signals containing position data associated with the device 20 to the video game controller 22. The wireless input device 20 includes a processor 51, a wireless transceiver 52, position sensors 53, and a memory 54. The position sensors 53 are configured to generate position signals indicating a position of the wireless input device 22 that is received by the processor 51. The processor 51 is configured to execute algorithms stored in a memory 54 for inducing the wireless transceiver 52 to transmit wireless signals having the position data to the video game controller 22. The processor 51 is further configured to store a plurality of digital images generated by the video game 23 executing on the video game controller 22, as will be explained in greater detail below.
[0009] Referring to FIGS. 1 and 2, the video game controller 22 is provided to execute the video game 23. The video game controller 22 is further provided to store position data associated with the wireless input device 20 and a plurality of digital images generated by the video game 21 in response to the position data, in either the central server 30 or the wireless input device 20, as will be explained in greater detail below. The video game controller 22 includes a processor 55, a wireless transceiver 56, and a memory 57. The processor 55 is configured to execute the video game 23 and to temporarily store digital images generated by the video game 23 in the memory 57. In an exemplary embodiment, the processor 55 is further configured to send the position data associated with the wireless input device 20 and the plurality of digital images generated by the video game 23, through the communication network 28 to the central server 34 for storage within the central server 30. In another exemplary embodiment, the processor 55 is further configured to induce the wireless transceiver 56 to transmit wireless signals having the position data associated with the wireless input device 20 and the plurality of digital images generated by the video game 21 to the wireless input device 20 for storage within the wireless input device 20.
[0010] The first input device 24 is provided to allow a user to input data into the video game controller 22. In an exemplary embodiment, the first input device 24 is electrically coupled to the video game controller 22.
[0011] The display device 26 is provided to display the digital images generated by the video game 23. The display device 26 is electrically coupled to the video game controller 22.
[0012] The communication network 28 is provided to allow the video game controller 22 to communicate with either the central server 30, or the wireless input device 42 via the video game controller 42. Further, the communication network 28 is provided to allow the video game controller 42 to communicate with either the central server 30, or the wireless input device 20 via the video game controller 22.
[0013] The central server 30 is provided to store data received from the video game controllers 22 and 42 therein via the communication network 28. The central server 30 is a computer server that operably communicates with the communication network 28.
[0014] The wireless input device 40 is provided to transmit wireless signals containing position data to the video game controller 42. The wireless input device 40 has substantially similar structure as the wireless input device 20.
[0015] The video game controller 42 is provided to execute the video game 41. The video game controller 42 is further provided to store position data associated with the wireless input device 40 and a plurality of digital images generated by the video game 41 in response to the position data, in either the central server 30 or the wireless input device 40, as will be explained in greater detail below. The video game controller 42 has a substantially similar structure as the video game controller 22.
[0016] The display device 46 is provided to display the digital images generated by the video game 41. The display device 46 is electrically coupled to the video game controller 42.
[0017] Referring to FIGS. 4-6, a flowchart of a method for storing data associated with a video game in accordance with another exemplary embodiment will be described.
[0018] At step 60, the video game controller 22 executes the video game 23.
[0019] At step 62, a first user inputs a record command using the first input device 24 that is received by the video...
game controller 22. The record command instructs the video game controller 22 to store digital images generated by the video game 23.

At step 64, the video game controller 22 receives position data indicative of a position of the wireless input device 20 over a time interval and temporarily stores the position data therein.

At step 66, the video game controller 22 generates a plurality of digital images associated with the video game 23 based on the position data that is displayed on the display device 26, and temporarily stores the plurality of digital images.

At step 68, the first user inputs an end-record command using the first input device 24 that is received by the video game controller 22. The end-record command instructs the video game controller to stop storing digital images generated by the video game 23.

At step 70, the first user inputs a first user identifier, a video game identifier, a level of difficulty, and a private tag identifier and/or a public tag identifier, using the first input device 24 that is received by the video game controller 22. The first user identifier identifies the first user. The video game identifier identifies the video game 23. The level of difficulty corresponds to either an assigned level of difficulty for specific movements of the wireless input device 20 by a user or a level of difficulty that has been assigned to the video game 23. The private tag identifier indicates that stored position data and digital images associated with the video game 23 will only be retrievable by the user that stored the data. The public tag identifier indicates that stored position data and digital images associated with the video game 23 will be only retrievable by a predetermined community of users.

At step 72, the video game controller 22 stores a first file in either the central server 30 or the wireless input device 20 having: the position data, the plurality of digital images, the first user identifier, the video game identifier, the level of difficulty, and the private tag identifier and/or the public tag identifier.

At step 74, a user inputs a user identifier and a video game identifier using the first input device 24 requesting to access the first file, which is received by the video game controller 22.

At step 76, the video game controller 22 sends the user identifier and the video game identifier to the central server 30 or the wireless input device 20.

At step 78, either the central server 30 or the wireless input device 20 makes a determination as to whether the user identifier equals first user identifier. If the value of step 78 equals “yes”, the method advances to step 80. Otherwise, the method advances to step 82.

At step 80, either the central server 30 or the wireless input device 20 allows the video game controller 22 associated with the user to access the first file and to replay the plurality of digital images on the display device 26. After step 80, the method returns to step 74.

Referring again to step 78, if the value of step 78 equals “no”, the method advances to step 82.

At step 82, either the central server 30 or the wireless input device 20 makes a determination as to whether (i) the user identifier is not equal to the first user identifier, and (ii) the first file has a public tag identifier. If the value of step 82 equals “yes”, the method advances to step 84. Otherwise, the method returns to step 74.

At step 84, either the central server 30 or the wireless input device 20 allows the video game controller 22 associated with the user to access the first file and to replay the plurality of digital images for a fee on the display device 26.

It should be noted that although the above method allows a user to generate a stored file and to access the stored file using the video game controller 22, the user could also alternately utilize the video game controller 42 to generate the stored file and to access the stored file.

The method for storing data associated with a video game provides a substantial advantage over other methods. In particular, the method provides a technical effect of storing a file having position data and a plurality of digital images associated with the video game for subsequent retrieval by a user.

While the invention is described with reference to an exemplary embodiment, it will be understood by those skilled in the art that various changes may be made and equivalence may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to the teachings of the invention to adapt to a particular situation without departing from the scope thereof. Therefore, it is intended that the invention not be limited by the embodiment disclosed for carrying out this invention, but that the invention includes all embodiments falling within the scope of the appended claims. Moreover, the use of the terms first, second, etc. does not denote any order of importance, but rather the terms first, second, etc. are used to distinguish one element from another.

What is claimed is:

1. A method for storing data associated with a video game, comprising:
 - receiving position data indicative of a position of a wireless input device over a time interval at a video game controller;
 - generating a plurality of digital images associated with the video game over the time interval based on the position data, utilizing the video game controller; and
 - storing a file having the position data and the plurality of digital images in either a central server or the wireless input device, utilizing the video game controller.

2. The method of claim 1, further comprising storing in the file at least one of a user identifier, a video game identifier associated with the video game, a level of difficulty associated with the video game, a private tag identifier, and a public tag identifier.

3. The method of claim 1, further comprising allowing another video game controller to access the file in the central server for a fee.

4. The method of claim 1, further comprising replaying the plurality of digital images during a subsequent execution of the video game.