USOORES0101E

as United States

a2 Reissued Patent 10) Patent Number: US RE50,101 E
Fujimoto et al. @45) Date of Reissued Patent: *Aug. 27,2024
(54) MEMORY SYSTEM IN WHICH EXTENDED (58) Field of Classification Search
FUNCTION CAN EASILY BE SET CPC GO6F 12/00; GOGF 3/0604; GOG6F 9/30134;
GOGF 3/0679; GO6F 12/0238; GOGF
(71) Applicant: KIOXIA CORPORATION, Minato-ku 3/0659; G11C 5/00
(IP) See application file for complete search history.
(72) Inventors: Akihisa Fujimoto, Yamato (JP); (56) References Cited
Hiroyuki Sakamoto, Ome (IP) U.S. PATENT DOCUMENTS
(73) Assignee: KIOXIA CORPORATION, Minato-ku 5,280,599 A 1/1994 Arai
IP) 5,999,441 A 12/1999 Runaldue et al.
(Continued)
(*) Notice: This patent is subject to a terminal dis-
claimer. FOREIGN PATENT DOCUMENTS
(21) Appl. No.: 17/693,840 CN 101689246 A 3/2010
Jp 2001-356885 12/2001
(22) Filed: Mar. 14, 2022 (Continued)
Related U.S. Patent Documents OTHER PUBLICATIONS
Reissue of:
(64) Patent No.: 9,335,953 Leonard Ott, “Designing for SDIO,” Jul. 15, 2004, https://www.
Issued: May 10, 2016 wirelessdesignmag.com/product-release/2004/07/designing-sdio.
Appl. No.: 14/797,867 (Continued)
Filed: Jul. 13, 2015

Primary Examiner — William H. Wood
(74) Attorney, Agent, or Firm — Oblon, McClelland,
Maier & Neustadt, L.L.P.

U.S. Applications:
(63) Continuation of application No. 16/452,252, filed on
Jun. 25, 2019, now Pat. No. Re. 48,997, which is a

(Continued) (57) ABSTRACT
. s - According to one embodiment, a memory system, such as a
(30) Foreign Application Priority Data SDIO card, includes a nonvolatile semiconductor memory
Feb. 4, 2011 (JP) wooveeroeereoee e 2011-023217 device, a control section, a memory, an extended function
May 17, 2011 (IP) woooooeeeoeee e 2011-110242 Section, and an extension register. The extended function
’ section is controlled by the control section. A first command
(51) Int. CL reads data from the extension register in units of given data
GO6F 13/00 (2006.01) lengths. .A se.cond cgmmand writes data to the? exten.sion
GO6F 3/06 (2006.01) register in units of given data lengths. A extension register
. ’ includes a first area, and second area different from the first
(Continued) area, information configured to specify a type of the
(52) US. ClL extended function and controllable driver, and address infor-
CPC ... GO6F 12/00 (2013.01); GO6F 3/0604 mation indicating a place to which the extended function is
(2013.01); GO6F 3/0659 (2013.01); assigned, the place being on the extension register, are
(Continued) (Continued)
Extension
register

Memory
J ----------- gt

61 \
("Function 0 (Function 1 h Function 2
SDI0 Extension Extension
Extension
register

Page 0

Page 3

...... -l Page 1
CMD48 CMD43
Extension
Address 1 H)
Interrupt support —AT&#%Z—— register

Address 3 Page 2
. J

) i<t
CMDs2 CMDS3 Tegister J’* register

US RES50,101 E
Page 2

recorded in the first area, and the second area includes the
extended function.

11 Claims, 32 Drawing Sheets

Related U.S. Application Data

continuation of application No. 15/463,765, filed on
Mar. 20, 2017, now Pat. No. Re. 47,542, which is an
application for the reissue of Pat. No. 9,335,953,
which is a continuation of application No. 13/956,
825, filed on Aug. 1, 2013, now Pat. No. 9,104,539,
which is a continuation of application No. PCT/
JP2011/071776, filed on Sep. 16, 2011.

(51) Imt.CL
GO6F 9/30 (2018.01)
GO6F 12/00 (2006.01)
GO6F 12/02 (2006.01)
GO6F 13/28 (2006.01)
GI1IC 5/00 (2006.01)
(52) US. CL
CPC ... GO6F 3/0679 (2013.01); GOGF 9/30134
(2013.01); GO6F 12/0238 (2013.01); G1IC
5/00 (2013.01)
(56) References Cited

U.S. PATENT DOCUMENTS

6,886,083 B2 4/2005 Murakami

7,024,225 B2 4/2006 Ito

7,296,097 B2 11/2007 Kanamori

7,484,020 B2 1/2009 Takinosawa et al.

7,610,455 B2* 10/2009 Ohcccocevvenrnnn. GOGF 13/4243
711/156

7,660,938 Bl 2/2010 Chow

7,669,773 B2 3/2010 Nishizawa

8,015,340 B2 9/2011 Cedar

8,370,535 B2 2/2013 Hahn

8,495,268 B2 7/2013 Hirano

9,052,836 B2* 6/2015 Matsukawa GOG6F 3/064

9,501,399 B2* 11/2016 Wakutsu GOG6F 13/385

RE47,542 E * 7/2019 Fujimoto . .. GO6F 3/0604
10,659,553 B2* 5/2020 Ito HO4W 4/60
RE48,997 E * 3/2022 Fujimoto G11C 5/00
2002/0004864 Al 1/2002 Kubota
2002/0065044 Al 5/2002 Ito et al.
2003/0043684 Al* 3/2003 Johnson ... G11C 7/225
365/233.1
2004/0205268 Al 10/2004 Takinosawa et al.
2005/0224589 Al 10/2005 Park
2006/0104144 Al* 5/2006 Byeon G11C 5/14
365/226
2006/0218324 Al 9/2006 Zayas
2007/0011394 Al 1/2007 Hsu
2007/0094504 Al* 4/2007 Takinosawa et al. 713/172

2008/0172534 Al* 7/2008 Nagabhushana ... GO6F 13/4239

711/155
2008/0205186 Al* 82008 Kimccoevvviinnn G11C 7/22
365/230.06
2009/0077393 Al 3/2009 Nakamura
2009/0164815 Al 6/2009 Ohyama
2010/0195412 Al1* 82010 Furutani ... G11C 8/06
365/236
2010/0268897 Al 10/2010 Okamoto
2010/0281200 Al 11/2010 Okamoto
2010/0296915 Al 112010 Suzuki
2011/0041005 A1* 2/2011 Selinger G11C 29/765
714/48
2012/0042204 Al* 2/2012 Smith ... G11C 11/4093
714/6.32
2012/0163098 Al* 6/2012 Ku ..o G11C 7/1063
365/189.05
2012/0210046 Al* 82012 Ttoetal.ocoevenne. 711/103
2014/0192583 Al* 7/2014 j G11C 7/10
365/63

FOREIGN PATENT DOCUMENTS

JP 2002-171303 A 6/2002
JP 2003-115890 A 4/2003
JP 2004-046498 2/2004
JP 2006-018610 1/2006
JP 2006-236200 9/2006
JP 2008-269380 11/2008
JP 2009-157493 A 7/2009
WO W020041077306 Al 9/2004

OTHER PUBLICATIONS

Toshiba, “Toshiba SD Card Specification,” Dec. 29, 2006.

Office Action issued Jan. 28, 2015 in Chines Patent Application No.
201180068856.7 (with English translation).

International Preliminary Report on Patentability and Written Opin-
ion issued Aug. 15, 2013 in Application No. PCT/JP2011/071776.
International Search Report issued on Jan. 30, 2012 for PCT/JP2011/
071776 filed Sep. 16, 2011 in English.

International Written Opinion issued on Jan. 30, 2012 for PCT/
JP2011/071776 filed on Sep. 16, 2011 in English.

“SD Specifications Part E1 SDIO Simplified Specification”, Version
3.00; Technical Committee SD Card Association; Feb. 25, 2011.
“SD Specifications Part 1 Physical Layer Simplified Specification”;
Version 3.01; Technical Committee SD Card Association; May 18,
2010.

Japanese Office Action issued Aug. 26, 2014 in Patent Application
No. 2011-110242 (w/English translation).

Combined Taiwanese Office Action and Search Report issued May
13, 2014 in Patent Application No. 100133693 (w/English transla-
tion).

Office Action issued Oct. 12, 2015 in Chinese Patent Application
No. 201180068856.7 (with English language translation).
Extended Furopean Search Report issued Nov. 16, 2015 in Patent
Application No. 15176252.3.

“SDIO Simple Specification Version 1.0” Secure Digital Input/
Output (SDIO) Card Specification, SD Association, Version 1.0,
XP002493459, Oct. 1, 2001, pp. 1-17.

* cited by examiner

U.S. Patent Aug. 27, 2024 Sheet 1 of 32 US RE50,101 E

03,___ m"\. b
= A <3 g
Y £
© M~
=\ 7 Host controller
interface
w —_ 0
@ s
o | <. ~
B8 2 &
5) e £
K —
ban) L
=
AN L] .
= 7| Host interface 2
A
w
- "6
AN "1 Host controller ke
S~
K = S %
e
x
L‘)’\..
& > N1 9
O I

US RES0,101 E

Sheet 2 of 32

Aug. 27, 2024

U.S. Patent

sabed g

| abed |

0 9bed

S9lAG-Z1S

i91sibal
UoISua)x3

¢ 9l4

Pyl

wesboud Buissesoid uonound

814

uoIjo9s
Buissaoo.d Jaysifal uoisus)x3

ayl—

13(|01ju0d Aowsw yse|4

Byl

uonoas Buissadoid puewon)

US RES0,101 E

Sheet 3 of 32

Aug. 27,2024

U.S. Patent

sahq 16 udd)

€Ol4

1951681 UOISUB)Xa UE Ul UOREDO|
Lejs aAj0ayo sajeubisep ssaippe s)qe

mmin ¢ :Uz0o Awu_n mv 9SO
se}Aq Z :uL00
(pejqeus ysew) alAd | :upoo (ouoads Jopusn) 2 abed :q}}}
(snq 6) ybue (owosds Jopusa) g abed :qQ})
paAiesay :q101-4100
0 abed :q000
J08jes J9)sifiay
| [XO000KXX yoo X000 000 X000 | XXX 0000L1L 110
3| /0D AS] NER AS] sS40 Sd | xpul [1]S
0 1020 80-G) 91-¥2 G212 82-9€ /€-6E OFShk 9F b

US RES0,101 E

Sheet 4 of 32

Aug. 27, 2024

U.S. Patent

(pasoubi aq 0}) ejep anfosyeu] NI

P Old

18)sibai uoisuax3

N1

sS40

8¥QWO Ul N31 'S0 'Sy

D40 +s8ihq Z1G

AANAN

2<

8¥anod

[0:eliva
awo

US RES0,101 E

Sheet 5 of 32

Aug. 27,2024

U.S. Patent

A

¢Old

IO + s8ihq g1

1=NJ]
s40

N317°S40 'Sy

Iy

87N

[0:€lva
and

US RES0,101 E

Sheet 6 of 32

Aug. 27, 2024

U.S. Patent

9014

pabueyoun Aeys syq Jalsifiay g
usjium ale sjiq ejeq ;|
uoyjesado ajum sjouod Jiq yoeg

18151691 UOISUBIXS UE Uf UOIEDD
(59) 4se E)S ogmmtm sejeubisep ssaippe E-m_
(GILFRENTY
S 15 i)
SaJAq € :Uz00 (omoads Jopuan) ; obed :qLL}
sel4d Z Y100 (ouads Jopuan) g abed :qo ||
(Palqeus ysew) 8}4q | Y000 pPeAIasay :q101-9}00
(sHq 6) wbusq 0 eBed 19000
Jo9j8s Jajsibay
| [XC00000K| XX | XXKOOX | 000 | XX0000X | XXX 1 00001, 1110
3| LO¥D ASeN N3 As] S30 SY xpul 1 1} S
0 1040 80-G} 91-v¢ Gg-Lt 809 LE6E OvSy 9b ¥

US RES0,101 E

Sheet 7 of 32

Aug. 27,2024

U.S. Patent

_ 89|14
7 _
27724 ¢ NI
| §40
1851681 uoisusixg
(poioniDieq of) ep enpayay] N1 6VQINO Ul N1 'S40 ‘SH
— 1 fhsng [gy sa)fq 71§ [0:€]lva
1Y 6vAND |~ aND
x | xf{xjajx| OL 914
Vv lofr) 92914
olrfojale| V. OIS

US RES0,101 E

Sheet 8 of 32

Aug. 27, 2024

U.S. Patent

6 Ol4

uod ejep 0} UsjuMm s| g}

/00 'BIE7] | =N

ep ss}Aq 2}
\ ' |ts10 -
N317 S40 SY

A
7 \

— 1 fsng | oyp soAq 216

J [0:eliva

23] 6¥AND and

US RES0,101 E

Sheet 9 of 32

Aug. 27,2024

U.S. Patent

Bale pasnun

UMOYS SI N 801A8p Jo uoleudiojul Yjbus) ssalppe Jo pu3 saikqp| 7 Yibus| ‘7 ssaippe LeJS N 821M8(Q
............... N 821A8Q
| 80IASD 0} [BOIJUBPI BJE SJUSJUOY ' N 80IAS JO BaIE LIOJRLLIoju| S8R p| 8pod UoHRIYNUAP! LoKoUN) N 921A3Q) w
UMOYS SI Z 82IASP JO uoijewloju) yibus) ssaippe jo pu3j salkqy| A yiBus| ‘A Ssalppe Hels Z 901A3(., 8__>mo
| 80IABP O} [BDIJUSPI 8JB SJUSJUOT) "7 S2IASD JO BaIR UOBWLIOj| se)Aq | epoo uoiedlUBPI LOJUN} Z 8dIAS(
| 80Inap Aq pasn JasiBal uoisuaixs Jo eale Yix|yoes seyhq z| X ulbus| 'y ssaippe Hejs | 89iAsQ 3
| 901nep Aq pasn Jajsibal uoisusixa Jo eale puodeg|yoea selkq z| Z Yibus 'z ssaippe Lels | salneQ
UMOYS 9le pasn aq 0} eale Jg}sibal uoisua)xa Jo azs
pue ‘; o | sabed jo adeds JajsiBal uoisusxa Ul ssalppe
Buiuuibeg | aomep Aq pasn Ja)siBial uojsua)xa Jo Bale Jsil4|yoes seikq z| | yibusj ‘| ssaippe Lejs | 80IA8Q
MOJaq J8s SpJolj Yibuaj $SaIppe JO JequinN sa)kq z|(x=) Jequinu y)Bus| ssaippe | 891A8Q
301N
Z 901ASp Jo Bupyoayd o} JIys ‘pasn Jou st |, 89iA8P USYM salAq 7| Ixau jo (g ebeq) sseippe mc_cc_mmm
~ Bus Jajoeieya Ul 8ylf 8U} pue ‘uoisiAs) 1equinu
|apoLL 8qLIOSa("UOIdUN) PapUS)X8 10) Pa|IEISUI SI JBALp uoneuuoull L | aqinaq
pa)ealpap Jou o JaLjaym ULUGD 0} pash uoheLlojul pinold| seiq g uoljealuapl uoyouny | 891A8Q .
uonewloul
BuLys JejoBIeyd Ul JOPUSA JO JAINJOBNUBL JO BWEU pIoday| S8JAq g)| LONeSjusp! Jainoejnuew |, 8oiAsQ
UOIOUN; PJEPUBJSUOU O} () }8S "9POD UOIJRIYNUSPI SIASP PIEPUE)S
JO UOI}OUNJ PBPUBIXS 10} JBALIP 8JIASP PaZIPIEPUE)S &S s8)Aq p| 8poo uoyeOY)Usp) LOjjoUN) | sos(d|
(sa1fq Jaquunu uans jo syun ul paInbiyuod pay eyeuw o} 1snipy) akg 1 aledg
a01Aop AQ papoddns suopouny papuUSIXa Jo JaquinN alkg j| (N=) suonounj papuaixe Jo JaquinN |
> 0 obeq Ui papJodas yiBus) ejep aAljosy3 S9lA 7 yibusj eleq
1eunoy () abey buiuysp uoisiney salkq ¢ UOISIASJ 8INJaNIIS

0l ©I4

U.S. Patent Aug. 27, 2024 Sheet 10 of 32 US RE50,101 E

(Data port read)
(Extension register read) |NO ST Y ~ST14
- Get 512-byte data from specific
Get data of position OFS and function
length LEN from extension register
ST15
y N ad ST13 Y =
Set data of length of LEN to the Set 512-byte data to the buffer
buffer

Y
(End CMD48)

FIG. 11

US RES0,101 E

Sheet 11 of 32

Aug. 27, 2024

U.S. Patent

¢l Ol

(" svanopu3 u
y

-
’ o

uonoun)

olads o} ejep 8ifg-z|.G puas

8cLS~

\

1aying ay} woy ejep &}ha-z16 109

.

uonesado ysew Aq
Jajsibal uojsusixa 0} N3 Yibus

pUE S0 Uolisod JO ejep 103

9z1S~ \

ysew ajAg-| 199
"1oynq 8y} wolj ejep slhg-| 189

1911621 uoIsua)xe 0} N3]
yBus| pue S40 uomsod Jo ejep Jog

7A I A

Jayjng oy}
woy N1 4o ybua) jo ejep 19

1218~
(ayum pod ejeq)

\

6Z1S~ A
(eyum ysep)

—~
€215 oN

SoA

SOA

—~

ajlm JajsiBal uoisusyx3)

¢uod Bleg=S40 ‘SH

(svanoveis)

1S

US RES0,101 E

Sheet 12 of 32

Aug. 27, 2024

U.S. Patent

C ma)

SOA
Zpopus

SOA

papoddns-uou) mﬁwé

ON

Janp
8c1S~1 uoioun} psepuess 1o} yoIess

(uonoun} prepuejs)oN
¢,0=9p02
(pevioddns-uou) uonedyuspl uoroun 4

S8A LELS

suonouN] |8 10} yoseag
AR

ON

UQIOUN) PapUBIXe azifeniu]

€L Ol4

Jaquinu yiBus| ssalppe ainboy

0vLS 2 e
»| SO\ |
oz\\\\\\mmmmwmi suoioun
9els papoddns jo N Jaquinu aiinbay
£eLs~ A
Janup
uoI}ouny pajesipap o} yoIeag UOISIAR) 8JNJONJIS ULIUOT)
GelLS \ 761§~ X
uoljew.ojul 8olAsp
J0 ssasppe buiuuibaqg ainboy 0 86ed Jo ejep aunboy
1S~ A €18~ \

C s)

US RES0,101 E

Sheet 13 of 32

Aug. 27, 2024

U.S. Patent

¢pspus

suojjoun; j[e Joj yolea

SOA

e L R—y

RS

uonouny pJepuels 1o} yosess

18AIP

¥e1S~

€618

ON

pasn _m>cm pajealpag

Jequinu ybus| sseippe alinboy

(AR

A

SOA|

18AIp
uoloUN} pajedlpap 10} YoIeas

(AR \(uonouny

plepue)s-uou)

uonodunj pJepue)s)o
(uonouny piep erﬁm
UOIJBULIOJUI 821ASD
Jo ssaippe Buluuifag alinboy
vels™— A

vl 'Ol4

suonouny

papoddns jo N Jequinu alinbay
ee1s~ A

UOISIASI 8INJINJS WLUOY
AN) A
0 9bed jo ejep ainbay
1S A
C s)

US RES0,101 E

Sheet 14 of 32

Aug. 27, 2024

U.S. Patent

_

¢ abed

l9)s1ba)
uoISua)x3

g uopouny |

N | N
¢ abed I ¢ SsaIppy
< Z SSaIppy
Je)sibal |
uoIsus)x3 | S3/PPY
| ebed 0 ebeq
Ja)sibal < J9)sibal
UOISUB)XJ UoISU8}X3
 uopound) | 0 uopouny)
¢ abed"
zabed \
| obed
0 obed
u -<---
U s
Uoisy jg)sibai
UoISUSIX3J

Gl oOl4d

N
uoddns Jdnusju)
6¥aND 8ydND
€Sand ¢SAND
0ias)
6vAND 8vaND
Aowsiy

US RES0,101 E

Sheet 15 of 32

Aug. 27, 2024

U.S. Patent

91 914

0 Uoisney q uoISInY y UuoIsIoY 0
g uoisiney g uoisiney Y uoisiney 9
Y uoisiey Y uoisiney Y uoisiney v
0] g Y
LOISIAB] JBAUP UOROUN

pied e JO UOISIAS] UoKoUN 4

US RES0,101 E

Sheet 16 of 32

Aug. 27, 2024

U.S. Patent

Ll Ol
£ uogoung i}
Uoouny yoes Joj gyez| :

oy dn (}=0IN) e0eds 0|aS Pue (L=QIiN) 90eds Aiowsw | uolioun4 00

‘saoeds Juspuadapul oM} aJe a1ey | id 0 Liokoun4 -9000
Kiepunoq abed sso10 Jouuen Jaysibal uoisusixe (0=Geng sug ¢ Jaddn |=QIW) "ON uojoun

Kiowalu ayy 0} $$890Y '$8)Ag Z1,G JO siiun uj sebed sjeal) 5

‘uonouny ysinbunsip o} pasn s|
(SHq £}) SSaippy pue aoeds Alowsw asealoul Jou saop (|4

G101 9

1QI4:91000

sa)Aq Z1S Y44} 0di4 ‘90000
(suq ¥ 0=0IN) @I uonoun

) ;
Sl T
a)4q | 14000

(ssaooe Jaysifial 10} s)q 6) yybus uoisuaxe O/l -9l

Whua] uoisuajxe Aows|y :qo
/ O/l 1o Kiows)y

0000 [X0XXXXXX | SHq [} 000 XXXX X 000041 [L]|O

LJ¥D us’ PPy ASl ON4/QId |OWN | X8pul | 1]S
0 100 80-91 L€ Ve ge-8e 6€ oGy 9v L

/wvos_o

U~

US RES0,101 E

Sheet 17 of 32

Aug. 27,2024

U.S. Patent

| O} paxy si yibus
(80-G1 0} 185 S| YSBW) pP8jgeus JSey :q}
(80-91 01 }es s! yibua)) pajqesip ¥sep :qo

Spow SyIM YSEN

o} dn (L=0lN) 82eds O|QS pue (}=0|W) eoeds Aiotsw

‘Arepunoq abed ss019 Jouued Ja)sibal uoisus)x3
AlowsLu ay) 0} $$829e "$8JAQ 2).G Jo sjiun U} sabed ajealn)

uonpounj yoes 1o} gMg8el

'sadeds juspuadapul oM ale a18y |

(suq /1) Ssaippy

pabueyoun Aejs s)iq JaysiBay o
uoelado sjum S|OJUOT Jiq Yoe3

(ssao0e Jg)siBa1 40} | =M UBUM SHqQ JamO)) YSep

usplm ale sjiq ejeq 3}
'}, 0} paxy s Lpbus
S ZIS YAl

8l Ol4

£ UoRdUNS QL 1L

J uojound :q400

0 uojoun4 :ooo
(0=Geng suq ¢ Jeddn |=O[W) *oN uoRoung

*uoouny ysinBunsip o} pasn sl
pue ededs Aiowsw 8sessul Jou S90p (|4
Siald-qiiiL

1Ql4 191000
0014 :90000
(s1q ¥ 0=0IN) QI uogoun

"ON UojounJ;/ g uonoung

S9)Aq € 14200
$9)4q 2 U100 .
alAq | 14000 ualsusix3 Off -9}
(ssaaoe Jsa)sifial 10§ 0= UBYM S)Iq 6) YiBuaT] uoisusix3y Aowsiy ;a0
ysew / yhuay 0/l 10 Kiowsp
~_ \
L] [o0000xxxx | sig /) X XXXX X | LO0OLL | L]0
3| /08D | ASE/UST ippY MAN | ONJ/Qld [OIN | X8pul L[S
0 1040 80-91 L1-€€ Ve ge-8e 6 OFGy 9F Ly
fmvos_o

US RES0,101 E

Sheet 18 of 32

Aug. 27,2024

U.S. Patent

6l Ol

Peal q 0} elep anjosy3 77

(pasoubl aq 0}) Blep oAOBYOU| UST
—

OHO +s9ihq z1§

'
1
!

\.\\\\

772

J8)s1bal uoisusx3

8¥QND Ul U7 IppY ‘ONZ/Qld

ue

PPV

3<]

8¥anWd

[0:¢]1va
ano

US RES0,101 E

Sheet 19 of 32

Aug. 27,2024

U.S. Patent

301ASP UOKOUN

A

0¢ Ol

Hoazeied

YD +591kq 21§

SlAq |

ippy

IPPY ‘ON4/aI4

2!

8YAND

[0:€llva

ano

US RES0,101 E

Sheet 20 of 32

Aug. 27, 2024

U.S. Patent

TR
-
i
usylm
201 21Ep OB 2
1951681 uoIsUBXT

(peioubl aq 0}) elEp BAlOAYBU| UST
—P——

—

ua

ippY

67QWD uiue ‘ippy ‘ON4/ald

Asng loyoH seMazls

[0:€llva

2

6¥ANO |~ dWD

US RES0,101 E

Sheet 21 of 32

Aug. 27,2024

U.S. Patent

¢¢cOl4d

a0IABp uonoun

HOORIEA77) o1hq |

" 1ppY
) - /82 'ON4/a14

— 1 fng [yl sehqzig / [0:eliva

T 6YOND |- QW

US RES0,101 E

Sheet 22 of 32

Aug. 27,2024

U.S. Patent

€¢ O 14

suq /) 191 Siq ¢ Siq 0}
$s8.ppy 0 @i4/084 40000000000
00-91 Ll 81-6¢ cecle <

0lle 018s Bale pasnun

N_UOKSUS)XS J018S 19KIDal YiZ 8] | SOIAq§ | 7 Uibu9] 7 SSelppe N UOBU)XY

| 3p03 UOESYUapT UOUN]

UORWIOJUI N UOISUS}XS JO UEB)S | SOIAQ ¥ N UOKU8}X]

Z UoIsUd)Xe Jo Jas Jasibal YA 8yl | saikqy A Ybus| ‘A sselppe z uosua)xg

9p0J UOESyUap| UOKDUNg

uojjellojul Z uosualxa Jo Uelg | selkq ¢ Z UoKua)xg

| UOBUS)XS JO }9S I9BIDSI YIX 8U] | So)AG ¢ | X UIBUS| 'Y SSaIppe | UoKus)xg

| UOBU®B]X3 JO JoS I18KIDal pucdas 8] | SoAq y ¢ JIDUS] "7 SSaippe | Uosusg

1 UOKSU®)X® J0)8S Josibal BiJ ay] | SoAq & | JJbug) ¥} ssalppe | UOKUdXg

{uswuDI|e SJAqUBAS 10)) Y00 01185 | OIAq | ERNEEN

MOJ8q Paqlosap Jied jbus])sSaIppe Jo Jaquinu ayg) | 9JAq | (X=) 198 19pIba1 JO 19qun
0 Se pajealjsAemes| /| jiq sSaippe "q000=0N4

(119-01 Joamoj) uogewOU| LOISUSIXS 1X8U JO Ssalppe UBIS | SelAq Z UOISUB}Xd IXaU 0} 18)uIod
(vas Aq psbeuew jou "OJUl UOJEDLUSPI UOKOUNS

IDSY Ag uoneuliojul uoouny 8quosaq | sejkq g| | UosusIxg

(vas Aq pabeuew jou) "Ojul Lol eIl USPI JaINOBINUBK

[]DSY Ul SWeu Jajjas Jo awiey Jainjoejnuews aquosaq] | saAq gl | uosuapg
0 O} P13y SIY} S}SS UOHOUN) PIEPUB)S UON 8p00 UOfBdlUap! Uonound

J19ALP Uonouny piepuess esn 0} 8pod uolouny piepueS | seikq v | uosuaxg
M ENEEPEE I EIESELCD PENEEN

90IASD B Ul pepoddns suonounj papudixa jo Jaqunu sy | eAq | suofouny papusixe Jo JIaquinN
0 8bed Uo pap.Jodal Lpbus) elep sAnoa)3 | SelAq g (ebed Jo yjbua] eAijo8)]
JewlIo}) 8bed Saugeq| SoiAq ¢ UOBIASY 2.NjoniiS |

U.S. Patent Aug. 27, 2024 Sheet 23 of 32 US RE50,101 E

(Read from data port)
(Read from extension|No Y ST55
register) v - ST53 Vi
, , Get data from specific function
Get data from extension register 512 bytes
position “ Addr’, Length “Len”
ST56
: g Set the dat : d bI/;/
t
Set the data to data block length 516 2 b)?tesa alodataploc

of “Len”

h -

Y
(End CMD4D

FIG. 24

US RES0,101 E

Sheet 24 of 32

Aug. 27,2024

U.S. Patent

(svanopu3) G 9I14

4

A
\ e

uolesado ysew yiim)
a1Aq yyBus “ppy uonsod (37, 11DUs) *,ippy, uonsod
N m%;n mwm 1a)s|Ba1 UOISUS)X® 0} BJep 8y} }oS jejsibal uoisuelxs 0} elep 8y} 108
7 JuswnBie ui ysew aq | job 5 Uo7,
2010 BIED o] MW q wm %00/q EJEp WO} Elep 8iAq 199 4O UIDUS| %00Iq BlED LOJ) BJED J89
u\ | Bjep Wodj ejep | 189 995~] ¥918~ (Jeysibel
wmw%mymc - \ (em ysep) uolsusixe Wwouj pesy)

wm> G.F" :§§=

SR ¢hod ereg

¢
19}0 Yoes

JIM 9PIoUI0D oS JalsiBal uonuoIxe

oN puB ,ON4/dI4,

191S

(eranoves)

US RES0,101 E

Sheet 25 of 32

Aug. 27, 2024

U.S. Patent

"uogouny Yoes o gygz | ok dn (|=QIN)

aoedg OIS pue (1=0lN) 82eds Aiows|y
'seoeds Juapuadapul om} ale aisy |

‘fuepunog abed ssoloe
Jouuen Jajsibay uoisuaxg Aowsp ey}
0) $S890Y "s8)Aq 716 Jo syun Ul sabed sjear)

(sng /) bod ejep jo ssaippy

9¢ Ol4

(0=6€1g suq € Jeddn |=Qf|A) "ON uojoun4

‘uoiouny ysinbunsip oy pasn s|
pue aoeds Alowaw aseasou) Jou saop |4

(Sha ¥ 0=0IN) @I uonoun4

L HoRIN AW
| uojoun :q400
0 uooun :4000

GLald:q}LLL

11491000
0dI4 :90000

"ON Uonoung/qy uonouny

uoisuaixa QJ] :q
uoisua)xa Alowsyy :qo

0/| 10 Aowspy
} | XXXXXXX | 000000000 [SsHql} 0 XXXX X [OLOKY 1110
3| LOHD Asl 1ppY Asl ONJ/QId [OIW [Xepul [L]S
0 1040 80-91 L1-€€ e Ge-8¢ 6 O¥Gy O LY
4/me_>_0

US RES0,101 E

Sheet 26 of 32

Aug. 27, 2024

U.S. Patent

XA -

uogouny yoes 10} g8z} o dn (L=OllN)
aoeds Q|gs pue (L=0lIN) 8oeds liowspy
‘sgoeds Juspuadapul om) ale aisy]
‘fiepunoq abed ssouoe

Jouueo Jejsibal uoisus)xs Alowsaw ay}

0} $5899Y "SaAq Z|.§ Jo spun ul sabed sjear)

(SHq /1) Wod ejep Jo ssaippy

L uopound -qill

| UOROUNS G100

0 uoBouN :G00
(0=G€¥q SHq ¢ Jaddn |=QJW) "o uopouN

"uoouny ysinbuysip o} pasn s
pue aoeds AioWaW aseaIdul Jou seop |4
GLAId:qLLLL

1Qid4 91000
0dl4 ‘90000
(SH9 ¥ 0=0IW) QI uorduny

'ON Uoiound / @ uogoun4

uoisus)xa o/l :q4
uolsuajxa Alows :qQ

O/1 Jo Kiowapy
L1 XXx00XX | 000000000 O Sq /| 0 XXXX X MOLL [L]0
3| LO¥D AS) ASl 1PpPY AS) ON4/ai4 | OIN | Xepul | L[S
0 1040 80-Gl al LIEE 14 Ge-8¢ 6¢ oSy 9v Lb

= 65aND

US RES0,101 E

Sheet 27 of 32

Aug. 27,2024

U.S. Patent

g8¢ 914

eale w_ol_

ESIE paAIasay
uonewuoul [eiauab

Jg)sibas uoisus)xa O|as

| ~(Luonouny) /484 |

_
[(Luonouny) | Hgd |

[¥000 |

400010-Y44410

400600-444400
400800-U44800
400.200-444200

4OOL00-U44400
400000-U44000

0 UORoUN} Ul O[S 10} UOIJRULIOjU [BIBUSE)

V8C 914

0 obed

salfq 715

Jesibal
uosua)xg

Aiowaw 10} UONBWIOJUI [BJaUSE)

US RES0,101 E

Sheet 28 of 32

Aug. 27, 2024

U.S. Patent

\.

£1es
Jg)sibal
UOoISUsxa
olas

zuoouny |

£1es
Jgsibal

UOISUSXa
Aowspy

A

Z 8bey D

™ "
ﬂ Z)es SI9)
18)s16a4
uolIsusixa uoneuLoyul
olas |eJouab
lg)sibal
| 168 uolsua)xe
19)s16al 0l1ds
uoisusixa a4
oas d000
 buomund \ Ouogound
aoeds 0)|aS
~ N 4)
¢ Jos
Jajsiba)
uolsuaxa [
Aowsp
uoneuLojul
| 188 jeJausb
Jojsibal 19)8168.
uolsusxs = uoIsua)xe
Aowsy Aowsy
ﬁ | abed)L 0 abeq)
aoeds Alows|y

6¢

D14

J

yoddns jdnusjuj
P €GAND ¢SAND
BSAND || 89GND || 6¥AND | 8¥AND
_ oias
«/5
| <] | B9QNO || 8SQWD || 6YAWD || 8YAND
Alowsy

-/

U.S. Patent Aug. 27, 2024 Sheet 29 of 32 US RE50,101 E

~STT1
Initialize memory
\ ~STT2
Get RCA (CMD3)
y ~ST73
CMD7
Y ~ST74
Memory available state
Y ~STT5
Set common resources
\4 ~ST76
CMD5
CMD52/53 reception is possible

:

FIG. 30

U.S. Patent Aug. 27, 2024 Sheet 30 of 32 US RE50,101 E

__ ~20
é T3 | d . |
i Memory application i Function application i i
| \ i x -
g v T T
i File system % Function driver ‘i i
i X . 4
i Y \ ~ 11 E
i Host driver i
| T |
! Y ~21 !
i Host controller g
I S |
Y ~11
SD card 3

Extension resistor

~19
Function hardware

FIG. 31

US RES0,101 E

Sheet 31 of 32

Aug. 27, 2024

U.S. Patent

Z uonouny

jo la)sibal uoisua)xg

¢t Ol4d

| uonoun;

J0 Jg)siBal uoisusx3

pied gs

VL~

o_ﬂ
| uoouny
_ 104 Jayng ~
T syoqeeq | —
19|00 | 5 é8
6SAND/8SAND | ~ | uofouny
10} Jayng <
ad £8~" 18~
1SOH
0z~

U.S. Patent

Aug. 27,2024 Sheet 32 of 32 US RES0,101 E

Function identification code

Option code Function code

0: CMD48/49 not supported
1: CMD48/49 supported

0: CMD52/53 not supported
1: CMD52/53 supported

FI1G. 33

US RE50,101 E

1
MEMORY SYSTEM IN WHICH EXTENDED
FUNCTION CAN EASILY BE SET

Matter enclosed in heavy brackets [] appears in the
original patent but forms no part of this reissue specifica-
tion; matter printed in italics indicates the additions
made by reissue; a claim printed with strikethrough
indicates that the claim was canceled, disclaimed, or held
invalid by a prior post-patent action or proceeding.

CROSS REFERENCE TO RELATED
APPLICATIONS

This reissue application is a reissue continuation appli-
cation of Ser. No. 16/452,252, filed Jun. 25, 2019, which is
a reissue continuation of U.S. application Ser. No. 15/463,
765, filed Mar. 20, 2017 (now U.S. Pat. No. RE 47,542),
which is an application for reissue of U.S. Pat. No. 9,335,
953, issued May 10, 2016, which is a Continuation appli-
cation of U.S. Ser. No. 13/956,825 filed Aug. 1, 2013 (zow
U.S. Pat. No. 9,104,539, issued Aug. 11, 2015), which is a
Continuation application of PCT Application No. PCT/
JP2011/071776, filed Sep. 16, 2011 and based upon and
claiming the benefit of priority from prior Japanese Patent
Applications No. 2011-023217, filed Feb. 4, 2011; and No.
2011-110242, filed May 17, 2011, the entire contents of all
of which are incorporated herein by reference.

FIELD

Embodiments described herein relate generally to a
memory system using, for example, a semiconductor non-
volatile memory.

BACKGROUND

Recently, it is desired that a memory card be not only a
mere memory device, but also be a memory device to which
various functions can be added in order to impart added
value to the memory card. Further, in order to make it
possible to use the additional functions on a plug-and-play
basis, a general-purpose initialization means is desired.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram schematically showing a
memory system applied to an embodiment.

FIG. 2 is a block diagram showing an example of firm-
ware of the memory system shown in FIG. 1.

FIG. 3 is a block diagram showing an example of a read
command of an extension register.

FIG. 4 is a timing chart showing a read operation of an
extension register to be carried out by a read command.

FIG. 5 is a timing chart showing a read operation of a data
port to be carried out by a read command.

FIG. 6 is a block diagram showing an example of a write
command of an extension register.

FIGS. 7A, 7B, and 7C are views each showing an
operation of a mask register.

FIG. 8 is a timing chart showing a write operation of an
extension register to be carried out by a write command.

FIG. 9 is a timing chart showing a write operation of a
data port to be carried out by a write command.

FIG. 10 is a view showing an example of a general
information field to be set to a first page of an extension
register.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 11 is a flowchart showing an example of an operation
of a memory system conforming to a read command.

FIG. 12 is a flowchart showing an example of an opera-
tion of a memory system conforming to a write command.

FIG. 13 is a flowchart showing an example of an opera-
tion of a host driver.

FIG. 14 is a flowchart showing another example of an
operation of a host driver.

FIG. 15 is a view schematically showing an access
operation of an extension register in the SDIO.

FIG. 16 is a view showing an example of revision
management.

FIG. 17 is a view showing an example of a read command
of an extension register according to a second embodiment.

FIG. 18 is a view showing an example of a write com-
mand of an extension register according to the second
embodiment.

FIG. 19 is a timing chart showing a read operation of an
extension register to be carried out by a read command.

FIG. 20 is a timing chart showing a read operation of a
data port to be carried out by a read command.

FIG. 21 is a timing chart showing a write operation of an
extension register to be carried out by a write command.

FIG. 22 is a timing chart showing a write operation of a
data port to be carried out by a write command.

FIG. 23 is a view showing an example of a general
information field to be set at a first page of an extension
register.

FIG. 24 is a flowchart showing an example of an opera-
tion of a memory system conforming to a read command
according to the second embodiment.

FIG. 25 is a flowchart showing an example of an opera-
tion of a memory system conforming to a write command
according to the second embodiment.

FIG. 26 is a view showing an example of a multi-block
read command of an extension register according to the
second embodiment.

FIG. 27 is a view showing an example of a multi-block
write command of an extension register according to the
second embodiment.

FIGS. 28A and 28B are views showing an example of a
display position of general information according to the
second embodiment.

FIG. 29 is a view showing an example of a relationship
between the memory space and SDIO space according to the
second embodiment.

FIG. 30 is a flowchart shown to explain simplification of
initialization of the SDIO according to the second embodi-
ment.

FIG. 31 is a view schematically showing a relationship
between a memory device and functional interface of a host
according to the second embodiment.

FIG. 32 is a schematic block diagram shown to explain
control of a buffer according to the second embodiment.

FIG. 33 is a view showing an example of a function
identification code.

DETAILED DESCRIPTION

In general, according to one embodiment, a memory
system includes a nonvolatile semiconductor memory
device, a control section, a memory, an extended function
section, and an extension register. The control section con-
trols the nonvolatile semiconductor memory device. The
memory is a work area connected to the control section. The
extended function section is controlled by the control sec-
tion. The extension register is provided on the memory, and

US RE50,101 E

3

has a given block length which can define the extended
function of the extended function section. The control sec-
tion processes a first command to read data from the
extension register in units of given data lengths, and a
second command to write data to the extension register in
units of given data lengths, extension register includes a first
area, and second area different from the first area, informa-
tion configured to specify a type of the extended function
and controllable driver, and address information indicating a
place to which the extended function is assigned, the place
being on the extension register, are recorded in the first area,
and the second area includes the extended function.

In a memory device such as an SD card, when the function
is to be extended, a new standard is set, and the function is
extended in accordance with the standard. Accordingly,
without defining the standard, it has been difficult to extend
the function.

For example, in a memory device such as an SD card and
host apparatus, an extension method of standard functions
has not been defined. Accordingly, it has not been possible
to make a function added to the memory device easily
usable, except in a particular host device. This has been an
obstacle to addition of new functions to the memory device.

Further, as a host controller is limited in its functions,
there have been cases where functions added to the memory
device cannot be used. More specifically, in many cases, a
host controller for a memory does not support an interrupt or
is not compatible with read/write of data smaller than 512
bytes. Particularly in the SDIO standard, although multi-
block transfer of a variable-length block is defined, a
memory-dedicated host cannot carry out such data transfer
in many cases. Accordingly, in a peripheral such as a digital
camera and PHS, when a function of an SDIO card having
a function of an interface or a combo-card obtained by
incorporating an SDIO card into an SD card is extended, it
has been necessary to install a function driver corresponding
to the extended function in the host system, and it has not
been possible to recognize the function driver without
changing the host driver.

Further, the host uses a card address (RCA), and device ID
configured to specify a card/device. Although a function can
be specified by using these information items in the case of
a single-function card/device, there is the problem that it is
not possible to specify one of functions of a multi-function
device by using only the card address. Accordingly, it has
not been possible to use a multi-function device unless the
software configured to manage the host system is changed so
that the software can be compatible with the multi-function
card/device.

Further, a controller in the memory generally accesses the
memory in units of 512 bytes. Accordingly, when part of
data of the 512-byte unit data is to be rewritten, a read-
modify-write operation has been required. That is, for
example, when 1 byte-data in the 512-byte data is to be
rewritten, an operation of reading the 512-byte data into a
buffer, updating the 1-byte data on the buffer, and writing the
updated 512-byte data is required. Accordingly, the control
efficiency has been poor.

Further, in general, when a function of a card is to be
extended by using a register, a control register has been
assigned to a specific address. Accordingly, it has not been
possible for a card vendor to freely determine an address
position used for function extension. When the extended
function is to be standardized, it has been necessary to assign
a plurality of functions to register addresses in such a
manner that the functions are not assigned in a duplicated
manner, and there has been the problem that address spaces

25

30

40

45

4

become desultorily discontinuous depending on the sup-
ported state of the function. Further, when a vendor’s
original function is to be implemented too, there has been
the problem that the function cannot be freely added.

Thus, this embodiment provides a function extension
means which enables function extension by using a virtual
extension register, and which is flexible by standardizing
information by which a corresponding function driver can be
found.

A schematic explanation of this embodiment is as follows.
(Function Extension Method)

When a host driver looks for a function driver configured
to control the additional function, and a corresponding
function driver is installed in the host, it becomes possible
to easily carry out function extension by adopting a mecha-
nism configured to transfer control to the function driver.
Control peculiar to a function is hidden in the function
driver, and hence it becomes possible for the host driver to
implement an additional function by using only the mini-
mum information. For example, firmware includes an exten-
sion register of a plurality of pages managed by the firm-
ware, and provides a standard general information field
configured to recognize a specific driver in page 0 of the
extension register. Thereby, it becomes possible for the host
system to implement the plug-and-play function. Further, by
the management carried out by the host system so that each
of the functions can be pointed out in order to support the
multi-function card/device, it is made possible to use the
multi-function card/device without changing the host soft-
ware.

(Compatibility of SD Memory or SDIO Host Controller)

In the SD memory host controller too, a dedicated com-
mand configured to access an extension register by which
control of an additional function can be efficiently carried
out is defined. By transfer of a fixed-length block of 512
bytes, it is possible to issue the dedicated command from a
conventional SD memory host controller. Furthermore, by
having information about an effective data length or a
masking function at the time of write as an argument of the
command, it becomes possible to make the read-modify-
write operation unnecessary.

In a host controller compatible with the SDIO card, by
making it possible to access the extension register from the
SDIO access command, it becomes possible to be compat-
ible with short-length-block transfer and multi-block trans-
fer, and hence it becomes possible to make a further opti-
mized driver.

By supporting a data port serving as a data transfer port,
it becomes possible to realize implementation requiring a
smaller amount of the extension register space. Further, by
using a data port, it becomes possible to efficiently carry out
data transfer to a device other than the extension register. It
is possible to support a burst transfer command by using a
plurality of blocks. Regarding the data port, it is possible to
define an arbitrary address of the extension register as a data
port when the function is implemented. The card deciphers
the address to determine whether the address is associated
with a data port or an extension register.

(Definition of Extension Register by Relocatable Address)

By making it possible for the card vendor to assign a
register configured to control an additional function to an
arbitrary position on the extension register, and by providing
address information about the implemented register from the
general information field, it is made possible to make the
register arrangement relocatable. Accordingly, address
arrangement conventionally requiring standardization is
made unnecessary, and it becomes easy to manufacture a

US RE50,101 E

5

memory device. Relocation is enabled, and hence it is easily
possible, even when a register is extended, to cope with the
extension.

Hereinafter, an embodiment will be described with refer-
ence to the drawings.

FIG. 1 schematically shows a memory system according
to this embodiment.

The memory system is constituted of a memory device 11
such as an SD card, and host 20.

When the memory device 11 is connected to the host 20,
the memory device 11 receives power supply to operate, and
carries out processing corresponding to access from the host
20. The memory device 11 includes a controller 11a.

The controller 11a is constituted of, for example, a host
interface 12, CPU 13, read only memory (ROM) 14, random
access memory (RAM) 15, buffer 16, and memory interface
17. These are connected to each other by a bus. For example,
a NAND flash memory 18, and SDIO 19 serving as an
extended function section are connected to the memory
interface 17. As the extended function section, for example,
a wireless LAN device or the like can be adopted.

The host interface 12 carries out interface processing
between the controller 11a and host 20.

The memory interface 17 carries out interface processing
between the controller 11a and NAND flash memory 18 or
the SDIO 19.

The CPU 13 is a unit configured to manage operations of
the overall memory device 11. A program configured to
control the CPU 13 executes predetermined processing by
using firmware (control program and the like) stored in the
ROM 14 or by loading the firmware into the RAM 15. That
is, the CPU 13 creates various tables and an extension
register, to be described later, on the RAM 18, receives a
write command, read command or erase command from the
host 20 to access an area on the NAND flash memory 18,
and controls data transfer processing through the buffer 16.

The ROM 14 stores therein firmware such as a control
program to be used by the CPU 13. The RAM 15 is used as
a work area of the CPU 13, and stores therein a control
program, various tables, and extension register to be
described later.

When data sent from the host 20 is to be written to, for
example, the NAND flash memory 18, the buffer 16 tem-
porarily stores therein data of a given amount (for example,
data of one page) and, when data read from the NAND flash
memory 18 is to be sent to the host 20, the buffer 16
temporarily stores therein data of a given amount. Further,
the buffer 16 can control the SD bus interface and back-end
asynchronously by carrying out the control through the
buffer.

The NAND flash memory 18 is constituted of, for
example, memory cells of a stacked gate structure or
memory cells of a MONOS structure.

The SDIO 19 has a function of a peripheral such as a
digital camera and PHS, and function of an interface. By
adopting a wireless LAN device as the SDIO 19, it becomes
possible for even a digital camera having no wireless
communication function to carry out data communication by
wireless between itself and an external server, external PC,
and the like.

As the host 20, for example, a digital camera, PHS, and
the like can be adopted. The host 20 is constituted of a host
controller 21, CPU 22, ROM 23, RAM 24 and, for example,
hard disk 25 (including an SSD). These are connected to
each other by a bus.

The CPU 22 controls the overall host. The ROM 23 stores
therein firmware necessary for the operation of the CPU 22.

10

15

20

25

30

35

40

45

50

55

60

65

6

Although the RAM 24 is used as, for example, a work area
of'the CPU 22, a program which can be executed by the CPU
22 is also loaded here to be executed. The hard disk 25 holds
various data items. In the state where the memory device 11
is connected to the host controller 21, the host controller 21
carries out interface processing between itself and the
memory device 11. Furthermore, the host controller 21
issues various commands, to be described later, in accor-
dance with instructions from the CPU 22.

(Configuration of Firmware)

FIG. 2 shows an example of the functional configuration
of the firmware stored in the ROM 14 of the memory device
11. These functions are realized by the combination of the
hardware items such as the CPU 13 and the like constituting
the controller 11a. The firmware is constituted of, for
example, a command processing section 14a, flash memory
controller 14b, extension register processing section 14c,
and function processing program 14d. When the memory
device 11 is activated, the extension register processing
section 14c creates an extension register 31 in the RAM 15.
The extension register 31 is a virtual register, and is enabled
to define an extended function. In the embodiment, the
extension register is not limited to the virtual register. It is
possible to provide the extension register as hardware in the
CPU 13, for example.

(Configuration of Extension Register)

As shown in FIG. 2, the extension register 31 is consti-
tuted of, for example, eight pages. One page is constituted
of 512 bytes. In order to access the 512-byte extension
register in units of one byte, addresses of at least 9 bits are
required and, in order to access the eight pages, addresses of
at least 3 bits are required. By the addresses of a total of 12
bits, all the spaces of the extension register are made
accessible. Although 512 bytes is an access unit which can
be supported by almost all hosts, the access unit is not
limited to 512 bytes, and may be made larger than 512 bytes.
When the extension register 31 is constituted of an address
field of a long bit length, some lower bits are used as an
access unit, and remaining upper bits are used to select one
of a plurality of pages.

The reason for making the 512 bytes a unit is that the
configuration is made in such a manner that a large number
of memory card host controllers carry out read/write transfer
by using one block (=512 bytes) as a unit. Although a host
controller compatible with the SDIO can carry out read/
write in units of one byte, not all the host controllers support
the above read/write. In order to enable the great majority of
the host controllers to control the extended function, it is
convenient if access can be carried out in units of 512 bytes.

Of the eight pages (page 0 to page 7), page 0 is an area
configured to record a general information field in order to
carry out the plug-and-play operation of the extended func-
tion. Details of the general information field will be
described later. In pages 1 to 7, registers configured to
control the extended functions are defined. A position can
easily be specified in page 0, and hence page 0 is a suitable
place to record the general information field, but the page in
which the general information field is to be recorded is not
necessarily limited to page 0, and a position in a specific
page can be defined as a place configured to describe the
general information field.

For read/write of the extension register, dedicated read/
write commands to be defined as follows are used. These
commands each have a first operation mode in which
read/write of the extension register is carried out, and second
operation mode in which a data port is configured.

US RE50,101 E

7
(Read Command (CMD 48) of Extension Register)

FIG. 3 shows an example of the field configuration of a
read command (CMD 48) of the extension register. “S”
indicates a start bit of the command, “T” is a bit indicating
the transfer direction, and “index” indicates the command
number. “RS” (register select) indicates a page in the exten-
sion register 31, and “OFS” indicates a position (offset from
a head of the page) of data in the selected page. By using
“RS” of 3 bits, and “OFS” of 9 bits, a space corresponding
to the 8 pages of the 512-byte extension register can be
specified in units of one byte. More specifically, a read start
position in the selected extension register is designated by
“RS” and “OFS”.

“LEN” indicates the data length. An effective data length
necessary for read in the 512-byte extension register is
designated by the 9-bit LEN field.

“CRC7” indicates a cyclic redundancy check code, and
“E” indicates an end bit of the command. Further, “rsv”
indicates a spare bit.

(Read Command of Extension Register, First Operation
Mode)

FIG. 4 shows an example of a read operation of an
extension register to be carried out in the first operation
mode.

As shown in FIG. 4, upon receipt of a command (CMD
48) from the host 20, the memory device 11 returns a
response (R1) to the host 20 and, thereafter reads a 512-byte
data block from the extension register 31.

More specifically, by the arguments of the command
(CMD 48), i.e., by “RS” and “OFS”, a page in the extension
register, and position of data to be read in the page are
designated, and data length is designated by “LEN”. In the
manner described above, the data in the designated exten-
sion register is set to the head of the 512-byte data block, and
is read. Among data items in the 512-byte data block, data
items having data lengths exceeding a data length specified
by “LEN” become ineffective data items. A CRC code is
added to the last part of the data block to make it possible
to check whether or not the data has been properly received
(checking of data is carried out by including ineffective
data). Effective data items are arranged from the head, and
hence it is not necessary for the host 20 to carry out an
operation such as data shift or the like in order to look for
effective data.

(Read Command of Extension Register, Second Operation
Mode)

FIG. 5 shows an example of an operation of data port read
to be carried out in the second operation mode.

Upon receipt of the command (CMD 48), the memory
device 11 returns a response (R1) and, thereafter returns the
512-byte data block.

By arguments “RS” and “OFS” of the command, a
position in a selected page of the extension register is
designated. In FIG. 5, a data port example of a case where
the length is “1” is shown. That is, it is sufficient if the data
port occupies only an address of one byte on the extension
register map. Further, it is sufficient if it is possible to
distinguish whether or not an address is a data port by
decoding of the address, and it is not necessary for the data
to be actually transmitted through the 1-byte width port, and
hence the data transmission performance is not adversely
affected. It is possible to read data of one block (512-byte
unit) from the device assigned to this data port. That is, it is
possible to read data of one block (512-byte unit) at one
time. The read data is held in, for example, the buffer 16, and
is then read by the host 20.

10

15

20

25

30

35

40

45

50

55

60

65

8

When the same data port is subsequently read, the sub-
sequent 512-byte data can be read. The place from which
data to be read from the data port is taken can be freely
defined by the specification of the extended function.
Regarding data port control, the control can be carried out by
defining a control register on, for example, the extension
register. A CRC code is added to the last part of the 512-byte
data block to make it possible to check whether or not the
data has been properly received.

(Write Command (CMD 49) of Extension Register)

FIG. 6 shows an example of a write command of the
extension register. In the write command (CMD 49), parts
identical to the read command (CMD 48) are denoted by
identical reference symbols. The write command and read
command are distinguished from each other by “index”. By
using “RS” of 3 bits, and “OFS” of 9 bits, a page in the
extension register, and position of data in the selected page
are designated. A length of data to be written to the 512-byte
extension register is designated by a “LEN” field of 9 bits.
Accordingly, it is possible to write data of an arbitrary data
length (byte unit) within 512 bytes to an arbitrary page and
place of the extension register.

The write command (CMD 49) is provided with a mask
register in the argument of the command. That is, “Mask”
indicates an 8-bit length mask register. By the mask register,
it becomes possible to carry out an operation in units of one
bit in data write of one byte, and write data to only a specific
bit. Accordingly, in a bit operation within one byte, it is not
necessary to carry out the read-modify-write operation.

When the data length is one byte, i.e., in the case of
“LEN=0" (length 1), the mask register becomes effective.
Regarding a bit of the mask register “Mask” having data of
“17, data is written to the bit, and regarding a bit of the mask
register “Mask™ having data of “0”, the value already set is
retained.

That is, when an extension register holding data shown in
FIG. 7A is assumed, if data of the mask register is as shown
in FIG. 7B, by executing a write command, data is written
to a bit of the mask register having data of “1” as shown in
FIG. 7C, and in a bit having data of “0”, the original data is
retained. Accordingly, it becomes possible to rewrite only
the desired bits without carrying out the read-modify-write
operation. The parts each indicated by “x” show the bits to
which new data is written.

Further, when longer mask data can be supplied by a
separate means, even in the case of LEN larger than 1
(LEN>1), although mask write is enabled, in the example
shown in FIGS. 7A, 7B, and 7C, mask data is assigned to the
command arguments, and hence the 8-bit mask is used.
(Write Command of Extension Register, First Operation
Mode)

FIG. 8 shows an example of a write operation of the
extension register to be carried out in the first operation
mode.

Upon receipt of the command (CMD 49), the memory
device 11 returns a response (R1) and, thereafter receives a
512-byte data block.

The memory device 11 returns a CRC code indicating
whether or not the data block has properly been received to
the host 20. Thereafter, the memory device 11 returns
information indicating the busy state until the processing of
the command is completed, and notifies the host 20 of the
timing at which the host 20 can issue the next command. The
data block is held in the buffer 16.

In the command processing, a page and position in the
extension register are designated by the arguments “RS” and
“OFS” of the command, and data length is designated by

US RE50,101 E

9
“LEN”. Among the data blocks held in the buffer 16, data
items each having a length designated by “LLEN” are written
to the extension register from the head thereof. Data in the
data blocks having a length exceeding the data length
designated by “LEN” is discarded as ineffective data.

By arranging effective data items from the head of the
data block, it becomes unnecessary for the host system to
carry out an operation of arranging the effective data items
in the middle of the data block.

(Write Command of Extension Register, Second Operation
Mode)

FIG. 9 shows an example of an operation of a write data
port to be carried out in the second operation mode.

Upon receipt of the command (CMD 49), the memory
device 11 returns a response (R1) and, thereafter receives a
512-byte data block.

The memory device 11 returns a CRC code indicating
whether or not the data block has properly been received to
the host 20. Thereafter, the memory device 11 returns
information indicating the busy state until the processing of
the command is completed, and notifies the host 20 of the
timing at which the host 20 can issue the next command. The
data block is held in the buffer 16.

In the command processing, a page and position in the
extension register are designated, and a data port is desig-
nated by the arguments “RS” and “OFS” of the command.
It is sufficient if the data port occupies only an address of one
byte on the extension register map. It is possible to write data
of one block (512-byte unit) held in the buffer 16 to a certain
device assigned to this data port. That is, it is possible to
write data of one block at one time.

When the same data port is subsequently written, the
subsequent 512-byte data can be written to the device to
which the data is assigned. The place to which the data of the
data port is delivered can be freely defined by the specifi-
cation of the extended function. Regarding data port control,
the control can be carried out by defining a control register
on, for example, the extension register.

(Usage Example of General Information Field)

FIG. 10 shows an example of the general information field
shown in page 0 of the extension register 31. By making it
possible for the host 20 to specify a driver configured to
control the extended function by using the general informa-
tion field, it is possible for the host system, when an
extended function is added, to easily use the extended
function, and realize plug-and-play.

A sequence example to be processed by a standard host
driver will be described below with reference to FIG. 10.
(Structure Revision)

A structure revision is a revision configured to define the
format of page 0 of the extension register 31. When new
information is added to the general information field, which
version of the general information field is held is indicated
by updating the structure revision. The function host driver
of the previous version ignores the new field.

(Data Length)

As a data length, the effective data length recorded in page
0 is shown.

(Number of Extended Functions (=N))

The number of extended functions indicates the number
of extended functions supported by the device. At the time
of start-up, the host driver repetitively checks whether or not
drivers for extended functions are installed the number of
times corresponding to the number of supported functions.
(Device 1 Function Identification Code)

When a code is set to the device 1 function identification
code, it is indicated that the standard driver can be used.

20

35

40

45

50

55

60

65

10

When the OS supports the standard driver, the device can be
used without installing a dedicated driver. When a dedicated
driver is installed, the dedicated driver is preferentially used.
In the case of a nonstandard function, <07 is set to this field.
In this case, this function is controlled by only a dedicated
driver.

(Device 1 Manufacturer Identification Information, Device 1
Function Identification Information)

Each of the device 1 manufacturer identification informa-
tion, and device 1 function identification information is
information configured to specity a dedicated driver and, in
these fields, a name of the manufacturer, and name of the
distributor or identification information of the extended
function are described by using, for example, an ASCII
character string. On the basis of these information items, the
host driver checks whether or not a dedicated driver of the
device 1 is installed.

As the function identification information, a model num-
ber of the device, revision, and the like are described by
using, for example, an ASCII character string.

(Beginning Address of Next Device)

The beginning address of the next device indicates an
address in page 0 in which device information of the next
device is described. When the host system does not support
this device, this device cannot be used, and hence the next
device is checked. The fields after this are of a variable
length, and hence definition is set to this position.

(Device 1 Address Pointers 1 to X, Length Fields 1 to X)

The device 1 address pointers 1 to X, and length fields 1
to X indicate that a plurality of extension register areas can
be defined for one function. The addresses and lengths are
enumerated below. The length field may not necessarily be
required information and this field can be omitted.
(Device 1 Address Pointer 1 (Start Address), Length 1)

The first area of the extension register used by the device
1, beginning address in the space of pages 1 to 7 of the
extension register, and size of the used extension register
area are indicated.

That is, one or a plurality of extension register areas can
be assigned to one device, and the address pointer indicates
a place (start address) of an arbitrary extension area other
than page 0. The length indicates a size for occupying the
extension register having the pointer at the beginning
address.

(Device 1 Address Pointer 2 (Start Address), Length 2)

A position and area size of the second area in the
extension register assigned to the device 1 are indicated.
Thereby, an application in which, for example, the standard
driver carries out control in only the first area, and a
dedicated driver is enabled to efficiently carry out control by
using the first area and second area is enabled.

(Device 1 Address Pointer X (Start Address), Length X)

A position and area size of the Xth area assigned to the
device 1 are indicated.

As described above, a plurality of areas can be defined in
the extension register. The areas are arranged in such a
manner that they do not overlap each other. It is possible to
check whether or not there is overlap between the areas by
using the length information.

When an additional field becomes necessary, the addi-
tional field is additionally defined after this. A host which
cannot recognize a new field reads the recognizable fields,
and ignores the additional field. A skip can be carried out by
using the above-mentioned (beginning address of the next
device) field.

US RE50,101 E

11

(Operation of Read Command (CMD 48))

FIG. 11 shows an operation of the controller 11a in the
memory device 11 compatible with the read command
(CMD 48).

When the read command is received, the arguments “RS”
and “OFS” of the command are analyzed by the CPU 13, and
it is determined whether or not the read command is read
from the data port (ST11). That is, a page “RS” in the
extension register, and position of data in the page are
determined. As a result, when it is determined that the read
command is read from the extension register, data having a
data length “LEN” is acquired from a position indicated by
“OFS” in the selected page of the extension register 31
(ST12). The acquired data is set to the buffer 16 (ST13).

On the other hand, when it is determined in step ST11 that
the read command is read from the data port, data of 512
bytes is acquired, in the second operation mode, from a
specific function of, for example, the SDIO 19 through a
data port of a position indicated by “OFS” of the selected
page of the extension register 31 (ST14). The acquired data
is set to the buffer 16 (ST15).

(Operation of Write Command (CMD 49))

FIG. 12 shows an operation of the controller in the
memory device 11 compatible with the write command
(CMD 49).

When the write command is received, the arguments “RS”
and “OFS” of the command are analyzed by the CPU 13
(command processing section 14a), and it is determined
whether or not the write command is write to a data port
(ST21). That is, a page “RS” in the extension register, and
position of data in the page are determined. When it is
determined, as a result, that the write command is write to
apart other than the data port, it is determined whether or not
the argument “LEN” of the command is 0 (“LEN”=0)
(length 1), i.e., whether or not the mask is effective (ST22).
When it is determined, as a result of the determination, that
“LEN” is not 0 (length is greater than 1), write processing
of the extension register is carried out by the extension
register processing section 14c. That is, data of a length
designated by “LEN” is acquired from the buffer 16 (ST23).
The acquired data is set to a position designated by “OFS”
in the page of the extension register selected by “RS”.

On the other hand, when it is determined in step ST22 that
“LEN” is 0 (“LEN=0") (length is 1), and the mask is
effective, data of 1 byte, and a mask of 1 byte are acquired
from the buffer 16 by the extension register processing
section 14c¢ (ST25). By using the 1-byte data, and 1-byte
mask, a mask operation shown in FIGS. 7A, 7B, and 7C is
executed, and part of the data of the position designated by
“OFS” in the page of the extension register selected by “RS”
is rewritten (ST26).

Further, when it is determined in step ST21 that the write
command is write to the data port, data of 512 bytes is
acquired from the buffer 16 (ST27). The acquired data is
transferred to a specific function of, for example, the SDIO
19 through a data port of the position indicated by “OFS” in
the selected page of the extension register 31 (ST28).
(Host Driver Processing)

FIG. 13 shows processing of the host 20. When the
memory device 11 is connected to the host 20, the memory
device 11 is activated, and extension register 31 is spread on
the RAM 15 of the memory device 11. The host device 11
first issues a read command (CMD 48) by using the host
driver, and acquires data of page 0 of the extension register
31 (ST31). Then, the structure revision of the acquired page
0 is confirmed, and it is further confirmed which version of
the general information field is held (ST32). After this, the

10

15

20

25

30

35

40

45

50

55

60

65

12

number of supported functions N, and beginning address of
the device information are acquired (ST33, ST34).

Subsequently, it is checked, by a search, whether or not a
dedicated function driver corresponding to the acquired
extended function is installed in the host 20 (ST35, ST36).
When there is no dedicated function driver as a result of the
checking, it is further determined whether or not the function
identification code described in page 0 of the extension
register is “0” (ST37). As a result, when the function
identification code is “0”, the extended function is not
supported, and hence it is recognized that this device cannot
be used, whereby the processing is shifted to a search for a
driver for the next device (ST34).

Further, as a result of the determination of step ST37,
when the function identification code is not “0”, the standard
function driver installed in the host 20 is searched for (ST38,
ST39). As a result, when there is no standard function driver,
this extended function is not supported, and hence it is
recognized that the device cannot be used, whereby the
processing is shifted to a search for a driver for the next
device (ST34).

Further, as a result of the search of steps ST35, and ST36,
when there is a standard function driver, and as a result of
the search of steps ST35, and ST36, when there is a
dedicated function driver, an address of the device, and
length number described in page 0 are acquired (ST40). This
operation is executed the number of times corresponding to
the number of the addresses and lengths (ST41).

After this, the retrieved dedicated function driver or the
standard function driver is loaded from, for example, the
hard disk 25 of the host 20 into the RAM 24, an address
pointer (start address) of one or a plurality of extension areas
described in page 0 is delivered to the function driver, and
an extended function is initialized (ST42). The address and
length information is delivered when the function driver
loaded into the RAM 24 is executed. Although there is the
possibility of the standard function driver, and dedicated
function driver differing from each other in the number of
deliverable address and length information items, the infor-
mation items are delivered by the number of the deliverable
items in the order registered in page 0. Accordingly, the
firstly registered address and length area serves as a common
function register, and address and length area registered later
can fill a role of an option.

Initialization is carried out by the function driver. That is,
on the basis of the start address delivered from the host
driver, the function driver accesses the extension register to
which the function is assigned to initialize the device. In the
initialization operation, it is necessary to consider the power
consumption of the device. This is because the device must
be used within the range of power which can be supplied by
the host. When the device has a plurality of power modes,
it is necessary to select a power mode lower than the device
power which can be supplied by the host. The host system
transmits the power which can be supplied by the host
system to the function driver by a separate means, whereby
selection of the power mode is enabled.

The operation of above steps ST34 to ST43 is repeated
until the number of supported functions N is reached (ST43).

It should be noted that when, for example, a new field is
added to page 0, processing of the new field is added to a part
between step ST40 and step ST41. A host driver which
cannot recognize the new field is configured to skip the field.

As described above, the host 20 acquires the information
of page 0 of the extension register 31 and, on the basis of the
information, retrieves the driver, whereby plug-and-play can
be realized. Further, unlike in the conventional case, the

US RE50,101 E

13

device vendor can define a function at an arbitrary position
in the extension register without the need for determining
the fixing position of the extension register, and hence
function extension can easily be implemented.

FIG. 14 shows a modification example of FIG. 13, parts
identical to FIG. 13 are denoted by identical reference
symbols, and only different parts will be described below.

In FIG. 14, the dedicated function driver, and standard
function driver are different from each other in the search
processing. That is, in step ST34, after the beginning address
of the device information is acquired, first, it is determined
whether or not the function identification code is “0” (ST51).
As a result of the determination, when the function identi-
fication code is not “0”, i.e., when the function is the
standard function, it is further determined whether or not a
dedicated driver is to be used (ST53). As a result of the
determination, when the dedicated driver is not used, a
standard function driver is searched for (ST54, ST55). When
there is no standard function driver as a result of the search
or when it is determined in step ST53 that the dedicated
function driver is used, the dedicated function driver is
searched for (ST52, ST56). When there is the dedicated
function driver as a result of the search or when there is the
standard function driver in step ST55, the address and length
number is acquired as described previously (ST40).

By the above operation too, it is possible to realize
plug-and-play as in the case of FIG. 13.

It should be noted that in the above description, it has been
described that the extended function driver is installed in the
host 20, and searches the inside of the host 20. However, the
configuration is not limited to this, and the extended function
driver may also be stored in the memory card 11. In this case,
the memory card 11 is also made the search object of the
extended function driver.

FIG. 33 shows information for specifying function drivers
when a card has options and the function drivers differ
according to the options. As shown in FIG. 33, a function
identification code indicates two kinds of information, an
option code and a function code. The function code indicates
a standardized specific functional specification, and the kind
of option is also defined by the functional specification. The
option code is information which indicates whether an
option implemented in the card affects the function driver.
This example shows the information on whether CMD48/49
are supported and the information on whether CMD52/53
are supported. When the option code is 1 byte, the driver
using CMD48/49 is denoted by “0lh” (“h” indicates a
hexadecimal number), and the driver using CMD52/53 is
denoted by “02h”. When installing the function driver in a
host system, these codes are registered as a functional driver
implementing code. The host system with which two drivers
are installed has the both option codes “01h™ and “02h”.

In a card designed in order to use CMD48/49, “01h” is
indicated in the option code. The host system selects a driver
for CMD48/49 based on the option code. Moreover, In a
card designed in order to use CMD52/53, “02h” is indicated
in the option code. The host system selects a driver for
CMD52/53 based on the option code.

It is important that the host driver does not need to have
the information about the options, and a general-purpose
host driver can be made. The information about the options
is given to the host system when a function driver is
installed. Since a host driver does not need for the informa-
tion about the options, the host driver does not need to
update a host driver when a new card is installed. The
function specification can decide contents of the options
freely, and by installing two or more function drivers cor-

10

15

20

25

30

35

40

45

55

60

65

14

responding to the combination of the options in the host
system, the optimal function driver can be selected accord-
ing to the support state of the card.

(Access to Extension Register in SDIO)

FIG. 15 shows access to the extension register in the
SDIO.

A host controller compatible with the SD memory card
can access the extension register by using commands CMD
48 and CMD 49, and control the extended function. That is,
the host controller supports the fixed-length block transfer
and single-block transfer.

On the other hand, a host controller compatible with the
SDIO card is enabled to access the extension register by
using the commands CMD 48 and CMD 49, and the
extension register is mapped onto each function area of the
SDIO, whereby it becomes possible for the host controller to
access the extension register also from the SDIO commands
CMD 52 (write command), and CMD 53 (data transfer
command). By using the SDIO commands, it is possible to
support the variable block length transtfer, and multi-block
transfer, and optimize the driver. When access is made by
using the commands CMD 48 and CMD 49, it is possible to
access the extension register without regard to the spatial
mapping of the SDIO.

More specifically, when the extension register is used in
the SDIO, each page of the extension register is mapped
onto each function area. In the case of the example shown
in FIG. 15, page 0 of the extension register is mapped onto
the function 0 of the function area 61, page 1 and page 2 are
mapped onto the function 1, and page 3 is mapped onto the
function 2. The function 0 holds address information indi-
cating positions on the SDIO map at which function regis-
ters of the pages are arranged. Accordingly, by using the
address information, it is possible to access each page of the
extension register by means of not only the driver using the
commands CMD 48 and CMD 49, but also the driver using
the commands CMD 52 and CMD 53.

It should be noted that the host 20 delivers position
information about the extension register assigned to the
extended function to the driver from the general information
field described in the first page of the extension register.
Thereby, it becomes possible to control the extended func-
tion even when the extended function is arranged at an
arbitrary position.

Further, in the state where data transfer is enabled
between the host 20 and memory device 11 by the plug-
and-play, it becomes possible to carry out data transfer
between the host 20 and SDIO serving as an extended
function section by using the commands CMD 48, CMD 49,
CMD 52, and CMD 53.

According to the above embodiment, the extension reg-
ister including a plurality of pages is provided in the RAM
15 of the memory device 11, and the standard general
information field configured to recognize a specific driver is
set in page 0 of the extension register 31. Accordingly, the
host 20 sets a driver by referring to the general information
field in page 0 of the extension register 31, whereby plug-
and-play can be realized.

Further, by defining the commands CMD 48 and CMD 49
exclusively used to access the extension register, the host
controller for the memory can also efficiently control the
added function.

Moreover, the data transfer is made transfer of the 512-
byte fixed block length, and hence the dedicated command
configured to access the extension register can be issued
from the conventional host controller for the memory.

US RE50,101 E

15

Furthermore, information about the effective data length
or a masking function at the time of write is set as an
argument of the command, and hence when part of the data
is to be rewritten, the read-modify-write operation is not
necessary, and part of the data can easily be rewritten.

Further, the host controller compatible with the SDIO
card supports the data port, and hence it becomes possible to
carry out data transfer to a certain specific device, and
realize implementation that enables reduction in the amount
of the extension register space consumed.

Further, by using the data port, it is possible to support a
burst transfer command based on a plurality of blocks in the
SDIO, and efficiently carry out data transfer of a device other
than the memory. (Although not described in this embodi-
ment, in the memory too, when a burst transfer command
based on a plurality of blocks is defined, transfer of a
plurality of blocks is enabled.)

Furthermore, it becomes possible for the host controller
compatible with the SDIO card to be compatible with
short-length-block transfer, and multi-block transfer by
accessing the extension register by using an access com-
mand of the SDIO. Accordingly, it becomes possible to
create a further optimized driver.

Further, it is made possible for the card vendor to assign
a register configured to control an additional function to an
arbitrary position on the extension register, and thus the card
vendor provides address information about the implemented
register from the general information field in page 0.
Accordingly, it is possible to arrange the defined function
registers in a relocatable manner. Accordingly, the work of
determining address assignment conventionally requiring
standardization is made unnecessary, and it is possible to
facilitate manufacture of the device.

It should be noted that the configuration of the extension
register is not limited to a plurality of pages, and it is also
possible to make the extension register constituted of one
page, and set areas corresponding to page 0, and pages 1 to
7 within the one page.

(Determination of Usable Functions by Revision Confirma-
tion)

Each of the functions described above is provided with a
register configured to indicate revision on the extension
register set defined by the function. Further, the function
driver knows the corresponding revision by itself. When a
certain function is to be extended by revision improvement,
it is possible to maintain the compatibility by extending the
function while maintaining compatibility with the conven-
tional function. When a removable card is used, usable
functions are determined by the combination of the function
revision of the card, and revision of the function driver
installed in the host system.

FIG. 16 shows an example of revision management. FIG.
16 shows examples of the function available in accordance
with the revision of each of the card and function driver. For
example, the case where there are three revisions (A<B<C)
will be described. In this case, extension in which C includes
the function of B, and B includes the function of A is carried
out. Revision management is carried out by the function
driver. The function driver itself knows its own revision.
Available functions are determined on the basis of the
combinations shown in FIG. 16. In all the function driver
revisions, the function of the revision A can be used and, in
order to use the function of the revision B, it is necessary for
the function driver revision to be higher than or equal to B.
(Second Embodiment)

FIG. 17 and FIG. 18 each show an example of the field
configuration of a read command CMD 48, and write

10

15

20

25

30

35

40

45

50

55

60

65

16
command CMD 49 according to a second embodiment. It
should be noted that in FIG. 17, and FIG. 18, parts identical
to FIG. 3, and FIG. 6 are denoted by identical reference
symbols, and a description of them is omitted.

The commands CMD 48 and CMD 49 shown in FIG. 17
and FIG. 18 are the commands CMD 48 and CMD 49 shown
in FIG. 3 and FIG. 6 in each of which the address field
constituted of 12 bits of “RS” and “OFS” is extended to 20
bits constituted of “FNO” and “Addr” to thereby consider
the affinity/compatibility to/with the SDIO.

The “MIO” field is a bit separating the memory space and
SDIO space from each other, thereby enabling both the
spaces to define an extension register independently of each
other. Accordingly, when the extension register is defined, it
is possible to prevent both the spaces from interfering with
each other. When “MIO” is 0 (“MIO”=0), the extension
register for the memory can be accessed and, when “MIO”
is 1 (“MIO”=1), extension register for the SDIO can be
accessed.

The “FNO/FID” field is set to one of “FNO” and “FID”
according to the value of the “MIO” field. When “MIO” is
1 (“*MIO”=1), “FNO” is a 3-bit field indicating a function
number and, when “MIO” is 0 (“MIO”=0), “FID” is a 4-bit
field indicating function identification information. Due to
the different bit numbers, different symbols are used for
expression. When the aforementioned general information
field is to be read, “FNO/FID” is set to 0 (“FNO/FID”=0).
It is sufficient if the host driver sets this field to 0. Although
“FID” is not used in the memory space, “FNO” is used in the
SDIO space to distinguish the eight function spaces.

That is, regarding “FNO/FID” (4 bits), when “MIO” is 1
(“MIO”=1), the bits 38 to 36 indicate “FNO”, and bit 35 is
always made “0”.

Further, regarding “FNO/FID”, when “MIO” is O
(“MIO”=0), the bits 38 to 36 indicate “FID”. “FID” is used
to distinguish the functions without increasing the memory
space.

(The Memory Space May be Increased by Using “FID”,
this being not Limited.)

When a function is to be implemented in a card, a unique
value is assigned to “FID/FNO”, and is indicated in the field
definition of general information as will be described later.
Accordingly, when a command is issued to the data port, the
function driver sets “FID/FNO” as an argument, whereby it
is possible for the card to confirm that the command is a
command corresponding to the designated function. Accord-
ingly, it is possible to prevent data corruption and malfunc-
tion due to designation of a wrong data port, and erroneous
write from occurring, thereby assuring safety.

Although when the host attempts to specify a function
from address information, the host must decode the address
information, function distinction is enabled by using only
“FID/FNO”, and control of the host driver can be simplified.
That is, the same command is used by a plurality of
functions in a mixing manner, and hence in the host and
card, “FID/FNO” is set so that the functions can be distin-
guished.

The “Addr” field (17 bits) is an address, and can access a
space of 128 KB. The upper 8 bits of “Addr” are used as a
page number. One of pages 0 to 7 is selected by the 8 bits.
A 512-byte block in the selected page is accessed by the
lower 9 bits. That is, by using “MIO”, “FNO” (“MIO”=1),
and “Addr”, a position of the extension register is desig-
nated.

The “Len” field (8 bits) shown in FIG. 17 indicates an
effective data length.

US RE50,101 E

17

Further, in the write command (CMD 49) shown in FIG.
18, “MW” is a bit used to designate the mask write mode.
When “MW” is 0 (“MW”=0), the mask is disabled and,
when “MW” is 1 (“MW”=1), the mask is enabled.

Further, in the “Len/Mask” field, when the mask is
disabled (“MW”=0), the data length is set to 9 bits (16 to
08). Further, when the mask is enabled (“MW”=1), the data
length is set to 1, and the write operation is controlled as
described above by the lower 8 bits of the 9 bits (16 to 08).
That is, when each bit in the 8 bits is “1”, data of the register
is written and, when each bit is “0”, the bit in the register is
not changed, and the value set already is maintained.

In the second embodiment, it is possible to make the space
which can be accessed by the SDIO commands CMD 52 and
CMD 53, and SDIO space which can be accessed by the
commands CMD 48 and CMD 49 coincide with each other.
That is, it becomes possible to access the same extension
register set by using either commands.

(Read Command of Extension Register, First Operation
Mode)

FIG. 19 shows an example of a read operation of the
extension register to be carried out in a first operation mode
of a read command (CMD 48) of the extension register.

As shown in FIG. 19, upon receipt of a command (CMD
48) from the host 20, the memory device 11 returns a
response (R1) to the host 20 and, thereafter reads a 512-byte
data block from the extension register 31.

More specifically, a position of data in the page to be read
is designated by “FNO” (MIO=1) and “Addr”, and effective
data length to be read is designated by “Len”. In this way,
the data in the designated extension register is set to the head
of'the 512-byte data block, and is then read. Of the 512-byte
data block, data exceeding the data length designated by
“Len” becomes ineffective data. A CRC code is added to the
end of the data block, thereby making it possible to check
whether or not the data has been properly received (checking
of data is carried out by including ineffective data).

FIG. 20 shows an example of a read operation of a data
port to be carried out in the second operation mode.

Upon receipt of the command (CMD 48), the memory
device 11 returns a response (R1) and, thereafter returns the
512-byte data block.

The memory device 11 verifies whether or not the argu-
ment “FID/FNO” of the command coincides with the
assigned extension register set. The extension register set is
specified by “FNO” (“MIO”=1) and “Addr”. When “FID/
FNO” and the extension register set coincide with each
other, a position in the selected page of the extension register
is designated by the argument “Addr” of the command. It is
sufficient if the data port occupies only an address of one
byte on the extension register map. It is sufficient if it is
distinguished whether or not an address is a data port by
decoding of the address, and it is not necessary for the data
to be actually transmitted through the 1-byte width port, and
hence the data transmission performance is not adversely
affected. It is possible to read data of one block (512-byte
unit) from the device assigned to this data port. That is, it is
possible to read data of one block (512-byte unit) at one
time. The read data is held in, for example, the buffer 16, and
is then read by the host 20.

When the same data port is subsequently read, the sub-
sequent 512-byte data can be read. The place from which
data to be read from the data port is taken can be freely
defined by the specification of the extended function.
Regarding data port control, the control can be carried out by
defining a control register on, for example, the extension
register. A CRC code is added to the last part of the 512-byte

10

15

20

25

30

35

40

45

50

55

60

65

18

data block to make it possible to check whether or not the
data has been properly received.

Further, as a result of the above verification, when “FID/
FNO” is not coincident with the value assigned to the
function, the data transfer operation is not executed, and the
data block is not transferred.

(Write Command of Extension Register, First Operation
Mode)

FIG. 21 shows an example of a write command of the
extension register.

Upon receipt of the command (CMD 49), the memory
device 11 returns a response (R1) and, thereafter receives a
512-byte data block.

The memory device 11 returns a CRC code indicating
whether or not the data block has properly been received to
the host 20. Thereafter, the memory device 11 returns
information indicating the busy state until the processing of
the command is completed, and notifies the host 20 of the
timing at which the host 20 can issue the next command. The
data block is held in the buffer 16.

In the write command (CMD 49), parts identical to the
read command (CMD 48) are denoted by identical reference
symbols. The write command, and read command are dis-
tinguished from each other by “Index”. A page in the
extension register, and a position of data in the selected page
are designated by “FNO” (“MIO”=1), and “Addr” of 17 bits.
Furthermore, a data length to be written to the 512-byte
extension register is designated by the 9-bit “Len” field.
Accordingly, it is possible to write data having an arbitrary
data length (byte unit) within 512 bytes to an arbitrary page
and position in the extension register.

As described above, in the write command (CMD 49), a
mask register is provided in the argument of the command.
That is, “Mask” indicates an 8-bit length mask register. By
the mask register, it becomes possible to carry out an
operation in units of one bit in data write of one byte, and
write data to only a specific bit. Accordingly, in a bit
operation within one byte, it is not necessary to carry out the
read-modify-write operation. When the data length is one
byte, i.e., when the upper 1 bit of “Mask” is “1”, the mask
register becomes effective.

(Write Command of Extension Register, Second Operation
Mode)

FIG. 22 shows an example of an operation of a write data
port to be carried out in the second operation mode. Upon
receipt of the command (CMD 49), the memory device 11
returns a response (R1). Thereafter, the memory device 11
verifies whether or not the argument “FID/FNO” of the
command coincides with the extension register set. The
extension register set is specified by “FNO” (“MIO”=1) and
“Addr”. When “FID/FNO” and the extension register set
coincide with each other, a position in the selected page of
the extension register is designated by the argument “Addr”
of the command, and the 512-byte data block is received.

Subsequently, the memory device 11 returns a CRC code
indicating whether or not the data block has properly been
received to the host. Thereafter, the memory device 11
returns information indicating the busy state until the pro-
cessing of the command is completed, and notifies the host
20 of the timing at which the host 20 can issue the next
command. The data block is held in the buffer 16.

In the command processing, a page and position in the
extension register are designated, and a data port is desig-
nated by the argument “Addr” of the command. It is
sufficient if the data port occupies only an address of one
byte on the extension register map. It is possible to write data
of'one block (512-byte unit) held in the buffer 16 to a certain

US RE50,101 E

19

device assigned to this data port. That is, it is possible to
write data of one block at one time.

When the same data port is subsequently written, the
subsequent 512-byte data can be written to the device to
which the data is assigned. The place to which the data of the
data port is delivered can be freely defined by the specifi-
cation of the extended function. Regarding data port control,
the control can be carried out by defining a control register
on, for example, the extension register.

Further, as a result of the above verification, when “FID/
FNO” is not coincident with the value assigned to the
function, the data transfer operation is not executed, and the
data block is discarded.

(Usage Example of General Information Field)

FIG. 23 is a view showing an example associated with
designation of FID according to the second embodiment.
The meaning of the general information field is identical to
FIG. 10. The point different from FIG. 10 is that a 4-bit field
is secured in order to set the value of “FID/FNO” in the
format of the extension address, and length field. Unique
“FID/FNO” is set for each function. Each function imple-
mented in the card knows its own “FID/FNO”.

(Operation of Read Command (CMD 48))

FIG. 24 shows an operation of a controller 11a in the
memory device 11 corresponding to the read command
(CMD 48) shown in FIG. 19 and FIG. 20.

When the read command is received, it is verified by the
CPU 13 whether or not the argument “FID/FNO” of the
command coincides with the assigned extension register set
(ST51). The extension register set is specified by “FNO”
(“MIO”=1) and “Addr”. As a result of the verification, when
both of them coincide with each other, the argument “Addr”
of'the command is analyzed, and it is determined whether or
not the read command is read from the data port (ST52).
That is, it is determined whether or not the address is an
address defined by “FNO” (“MIO”=1) and “Addr” as the
data port.

As a result, when it is determined that the address is not
the address of the data port, and the command is read of the
extension register, data of the data length “Len” is acquired
from the selected page of the extension register 31 on the
basis of the position “Addr” in the first operation mode
(ST53). The acquired data of the data length “Len” is set to
the 512-byte data block of the buffer 16 (ST54).

On the other hand, when it is determined in step ST52 that
the read command is read from the data port, data of 512
bytes is acquired from, for example, a specific function of
the SDIO 19 through a data port of a position set in advance
in the selected page of the extension register in the second
operation mode (ST55). The acquired data is set to the
512-byte data block of the buffer 16 (ST56).

As a result of the determination of step ST51 described
above, when the command is not a command associated with
the data port, the processing is terminated.

(Operation of Write Command (CMD 49))

FIG. 25 shows an operation of a controller in the memory
device 11 corresponding to the write command (CMD 49).

When the write command is received, it is verified by the
CPU 13 (command processing section 14a) whether or not
the argument “FID/FNO” of the command coincides with
the assigned extension register set (ST61). The extension
register set is specified by “FNO” (“MIO”=1) and “Addr”.
As a result of the verification, when both of them coincide
with each other, the argument “Addr” of the command is
analyzed, and it is determined whether or not the write
command is write to the data port (ST62). That is, it is

10

15

20

25

30

35

40

45

50

55

60

65

20
determined whether or not the position is a position of the
data port set in advance by “FNO” (“MI0”=1) and “Addr”.

As a result of the above determination, when it is deter-
mined that the write command is write to a part other than
the data port, it is determined whether or not the argument
“MW?” of the command is “1”, i.e., whether or not the write
is mask write (ST63).

As a result of the determination, when it is determined
that the write is not mask write, write processing of the
extension register is carried out by the extension register
processing section 14c. That is, data of a length designated
by “Len” is acquired from the data block of the buffer 16
(ST64). The acquired data is set to a designated position in
the selected page of the extension register on the basis of
“Addr” (ST65).

On the other hand, when it is determined in step ST63 that
“MW” is “1” (“MW”=“1"), and the write is mask write,
1-byte data is acquired from the data block of the buffer 16
by the extension register processing section 14c, and 1-byte
mask is acquired from the argument (ST66).

Subsequently, a mask operation shown in FIGS. 7A, 7B,
and 7C is executed by using the 1-byte data, and 1-byte
mask, and data obtained when the mask operation of the 1
byte is executed is set to a predetermined position in a
predetermined page of the extension register designated by
“Addr” (ST67).

Further, when it is determined in step ST62 that the write
command is write to the data port, 512-byte data is acquired
from the data block of the buffer 16 (ST68). The acquired
data is sent to, for example, a specific function of the SDIO
19 through a data port of a position in a designated page of
the extension register (ST69).

As a result of the determination of step ST61 described
above, when the write command is not a command associ-
ated with the data port, the processing is terminated.
(CMD 58, CMD 59)

FIG. 26 and FIG. 27 each show a multi-block transfer
command configured to improve transfer efficiency of data,
FIG. 26 shows multi-block read (CMD 58), and FIG. 27
shows multi-block write (CMD 59).

Although the arguments of the commands CMD 58 and
CMD 59 are similar to those of the commands CMD 48 and
CMD 49, they partly differ from each other in the definition.
Further, the command CMD 58 has no argument “Len” of
the command CMD 48, and command CMD 59 has no
arguments “MW” and “Len/Mask™ of the command CMD
49. This is because transfer to a data port is assumed in the
multi-block transfer. The commands CMD 58 and CMD 59
are optional commands, and a data port is configured in such
a manner that a plurality of single-block transfer commands
CMD 48 or CMD 49 can be substituted for the command
CMD 58 or CMD 59.

Data transfer through a data port is assumed in the
multi-block transfer. Accordingly, this command becomes
effective only when an address of this command coincides
with an address defined as a data port in the extension
register space. Accordingly, when this command is executed
with respect to a normal extension register, an error occurs,
and data transfer is not executed.

A code configured to recognize a function for which an
issued command is used is set to the “FID/FNO” field (4
bits). Accordingly, by using the “FID” field, the function can
be recognized by means of the value, and implementation is
facilitated. The function can also be recognized by using the
“Addr” (address) field. However, an address to be assigned
differs depending on the card, and hence there is the problem

US RE50,101 E

21

that it is difficult for the host driver to manage recognition
of a function from an address.

It is possible for the host driver to use a data buffer or the
like implemented in the host system for each function for
switching control.

The arguments of the command CMD 58/59 do not
include the “Len” field configured to designate the data
length. This is because for data transfer of long data, it is
necessary to designate a long block count, and this infor-
mation is too much for the argument of the read/write
command to designate. Accordingly, it is necessary to des-
ignate the block count necessary for data transfer before
issuing the command CMD 58/59. Accordingly, for
example, a method of defining a register configured to set a
block count to the extension register, and setting the register
by using the command CMD 49, a method of issuing a
command configured to set a block count immediately
before the command CMD 58/59 is issued or the like is used.

When setting the number of blocks to the extension
register, “FID/FNO” of CMD 49 which sets it up, and
“FID/FNO” of CMD 58/59 which executes data transfer
need to be in coincidence. The data transfer is not performed
when both of these are not in coincidence.

When data is set to the extension register, the data can
independently be set for each function, and each function is
not affected by other functions. When a common block
count command is used, setting of a block count to the
memory multi-block command, and distinction thereof are
required. Accordingly, it is necessary to issue the command
immediately before issuing each command CMD 58/59, and
it is necessary for the host driver to manage the issuing order
in such a manner that other commands are not issued
immediately after issuance of the command.

In order that the host may specify a function of a multi-
function card/device, a relative card address (RCA) obtained
by initialization, device ID, aforementioned “MIO” infor-
mation, and “FNO/FID” information are needed.

Each of FIGS. 28A and 28B shows example of a display
position of a general information field according to the
second embodiment. In the memory space shown in FIG.
28A, the general information field is arranged in page 0 of
the extension register and, in the SDIO space shown in FIG.
28B, the general information field is arranged at a specific
position at which the field does not conflict with the con-
ventional register. In FIG. 28B, for example, the general
information for SDIO is arranged at “008FFh”-“00800h”
(512 bytes) (“h” indicates a hexadecimal number).

FIG. 29 shows an example of the correspondence between
the memory space and SDIO space according to the second
embodiment. In FIG. 29, parts identical to FIG. 15 are
denoted by identical reference symbols.

The memory extension register can be accessed by using
the command CMD 48/49. More specifically, single-block
transfer is carried out by using a fixed-block length of 512
bytes. Furthermore, in the case of the data port, it is possible
to carry out multi-block transfer by using the command
CMD 58/59. The SDIO extension register can be accessed
not only by the command CMD 48/49 but also by the
command CMD 52/53. The command CMD 53 is a variable-
length command, and hence can be used for access to the
SDIO extension register irrespective of the data port.
(Installation of Function Driver)

Whether or not the SDIO function (CMD 52/53) can be
used is determined by the function supported by the host
system. A host that does not support the SDIO installs a
function driver using the commands CMD 48/49 and CMD

5

10

15

20

25

30

35

40

45

55

60

65

22

58/59. A host system that supports the SDIO can further
install a function driver using the command CMD 52/53.

It should be noted that the command CMD 53 is a
command which supports, for example, variable-length
block transfer and multi-block transfer, and can be read or
written, and command CMD 52 is a command which has, for
example, no data, and enables read or write of 1-byte data by
argument and response.

The SDIO extension register space of the command CMD
48/49 is equivalent to the space of the command CMD
52/53. The command CMD 53 supports variable-length
block transfer and multi-block transfer, and hence by using
an optimized SDIO driver, data transfer is executed more
efficiently.

Like a host supporting the command CMD 48/49 refers to
the information without referring to the card information
structure (CIS), the general information of the SDIO can be
seen from a specific position of the function 0.

(Selection of Function Driver)

Regarding an SDIO-compatible card, when a function
driver using the command CMD 52/53 is installed, the
function driver is used and, when the function driver is not
installed, a function driver using the commands CMD 48/49,
and CMD 58/59 is used.

Regarding an SDIO-incompatible card, a function driver
using the commands CMD 48/49, and CMD 58/59 is used.
(Initialization Operation of SDIO)

FIG. 30 schematically shows a second initialization
operation of the SDIO in a combo card.

Heretofore, the definition of the initialization sequence (a
first initialization operation) of the SDIO is given in such a
manner that the SDIO function is not enabled unless an
SDIO initialization command (CMD 5) is firstly executed.
Accordingly, even when a memory is used in the combo
card, re-initialization is required when the SDIO is to be
used, thereby making it hard for the host to use the speci-
fication.

Normally, it is desirable that an I/O function be initialized
immediately before the function is used in order not to waste
the system resources or not to waste the power. Regarding
the timing for initialization of the function, it is recommend-
able to carry out the initialization at a point of time at which
the application using the function is activated.

Further, in the re-initialization, changes in the relative
card address (RCA) are made, and hence the accessing
method of the memory is affected. In order to enable the
SDIO function without affecting memory control, it is
desirable that the memory initialization sequence be made
the fundamental, and the SDIO function be made addable
later.

Thus, as shown in FIG. 30, when the memory device 11
is activated and initialized (ST71), a command (CMD 3) is
issued, and relative card address (RCA) is acquired (ST72).
After this, a command (CMD 7) is issued (ST73), and the
memory device 11 is set to a transfer state, i.e., a state where
the memory can be used (ST74). Then, a common resource
of cards, such as a pass mode and a power consumption
setup, is set up (ST75). In this state, an initialization com-
mand (CMD 5) of the SDIO is issued (ST76). Thereby, the
SDIO is initialized, and reception of the commands CMD 52
and CMD 53 is enabled (ST77).

In step ST76, it is also possible to set up a common
resource of the SDIO automatically. Conventionally, a
memory and I/O had the independent setting method in
order to control a common resource. For this reason, drivers
contained in a memory and /O needed to be adjusted
similarly. In the second initialization operation, a card which

US RE50,101 E

23

received CMDS5 copies the common resource of the memory
set up in ST75 to I/O. Therefore, it is not necessary to adjust
each driver. The common resource contains a bus speed
mode, RCA, current limit/power Limit, and a setup of drive
capability, etc., for example.

This is an addition to the initialization method, and
initialization can also be carried out by the conventional
SDIO initialization sequence, and the conventional sequence
has compatibility.

According to the above-mentioned configuration, the
function is initialized at the timing at which the application
using the function is activated, and hence it is possible to
initialize each function without affecting the memory con-
trol.

(Function Driver Interface)

Heretofore, the SDIO has been controlled by assigning
necessary control bits to the common register. In order for a
card to control by setting a value to a register, the card needs
to implement a processing function. When carrying out
specific processing, by calling a functional driver, it
becomes possible to process by a function driver instead of
processing inside a card. More specifically, the process is
performed by a host.

When the control which has conventionally been carried
out by the card through the common register is defined as an
application program interface (API) of the function driver, it
is possible to form the control into software. By standard-
izing the API level, implementation of the card can be
facilitated.

Examples of the API are shown below.

(1) Initialize Function

Calling a function from the host driver to initial the
function

(2) Abort/Reset Function

Abort or reset of a function

(3) Get Function Information

Read of function revision

Read of function information (support information or the
like)

Read of interrupt information (polling)

(4) Power Consumption Control

Power mode information implemented in the function

(5) Power Off Notification

Notifying the timing at which power shutdown is allowed

(6) Application Interface

Control interface with the application

Particularly, in a card in which a plurality of functions are
implemented, when the power of the card is turned off; it is
necessary for the host to turn off the power after each
function is brought into a state where each function allows
power shutdown. Power Off Notification is an API used for
this control.

FIG. 31 schematically shows a relationship between an
SD card serving as the memory device 11, and function
interface of the host 20.

The host 20 is constituted of a host controller 21, host
driver 71, file system 72, memory application 73, function
driver 74, and function application 75. Further, the SD card
serving as the memory device 11 includes an extension
register 31, and function hardware 19 constituted of, for
example, the SDIO.

In the host 20, the host driver 71 supports a function of
detecting and loading the function driver 74. That is, the host
driver 71 refers to the general information field of the
extension register to detect the function driver 74, and
executes the function driver, whereby the host driver 71 can
use the extended function. Further, the function driver 74

10

15

20

25

30

35

40

45

50

55

60

65

24

configured to control the extension register 31, and function
application 75 communicate with each other by means of an
API defined by the functional specification.

The SD card includes the aforementioned general infor-
mation field for the purpose of standardization so that the
extension register 31 defined by the functional specification,
and host driver 71 can find and load the function driver 74.

The host controller 21, and memory device 11 commu-
nicate with each other by using the aforementioned com-
mand CMD 48/49 or the like.

According to the configuration described above, by defin-
ing the control which has conventionally been carried out in
the card as the API of the function driver, it is possible to
form the control into software. Further, by standardizing the
API level, implementation of the card can be facilitated.

Further, the host driver 71 refers to the general informa-
tion field of the extension register to detect the function
driver 74, and execute the function driver, whereby the host
driver 71 can use the extended function. Accordingly, the
host 20 can easily use the extended function.

(Control of Data Buffer by “FID”)

It is possible for the memory device 11 to determine for
which function a command is intended by recognizing
address information. However, the address range differs
depending on the function, and hence it is difficult for the
host 20 to recognize a function from the address.

Accordingly, as described above, it is possible for the host
20 to easily recognize the function by using “FID/FNO”.

Further, it is possible to control, for example, a plurality
of buffers of the host 20 by using “FID/FNO”.

As shown in FIG. 32, the host 20 includes buffers 81 and
82 to be used when the host 20 carries out data transfer with
respect to a plurality of functions of an SD card serving as
the memory device 11, the buffers independently corre-
sponding to the functions. These buffers 81 and 82 are
connected to the host controller 21 through a multiplexer
(MUX) 83. The buffers 81 and 82 and the multiplexer 83 are
constituted by virtual components, and the buffers 81 and 82
are configured on the system memory, and a function of the
multiplexer 83 is realized by a software by a driver. An
address of buffers selected by the multiplexer 83 is supplied
to the host controller. By controlling the multiplexer 83 by
means of “FID/FNO”, it is possible to select a buffer 81 or
82 corresponding to each function.

That is, the host 20 can select a corresponding buffer 81
or 82 in accordance with “FID/FNO” set to the command
CMD 58/59 by using the multiplexer 83.

When, for example, a read command CMD 58 has been
issued from the host controller 21, data read from an
extension register of the corresponding function of the
memory device 11 is supplied to the multiplexer 83 through
the host controller 21. The multiplexer 83 supplies the
received data to one of the buffers 81 and 82 on the basis of
“FID/FNO”.

Further, when, for example, a write command CMD 59 is
issued from the host controller 21, the multiplexer 83
supplies data selected from one of the buffers 81 and 82 to
the host controller 21 on the basis of “FID/FNO”, and host
controller 21 transfers the data to the memory device 11. The
memory device 11 supplies the data to an extension register
of the corresponding function on the basis of “FID/FNO”.

As described above, “FID/FNO” is used to control the
multiplexer 83, whereby it is possible to surely select the
buffer 82 or 83 corresponding to each function.

While certain embodiments have been described, these
embodiments have been presented by way of example only,
and are not intended to limit the scope of the inventions.

US RE50,101 E

25

Indeed, the novel embodiments described herein may be
embodied in a variety of other forms; furthermore, various
omissions, substitutions and changes in the form of the
embodiments described herein may be made without depart-
ing from the spirit of the inventions. The accompanying
claims and their equivalents are intended to cover such
forms or modifications as would fall within the scope and
spirit of the inventions.

What is claimed is:

[1. A memory device comprising:

a nonvolatile semiconductor memory device; and

a control section configured to control the nonvolatile
semiconductor memory device and an extension regis-
ter space, the extension register space being capable of
defining an interface controlling an extended function
through an extended function section,

wherein the extension register space stores information,
the information is configured to specify a type of the
extended function and a controllable driver, and to
include address information indicating a place where a
register for controlling the extended function is stored,

the control section is arranged to process a first command
to read data from the extension register space in accor-
dance with designations of the address information and
data length, and a second command to write data to the
extension register space in accordance with designa-
tions of the address information and data length.]

[2. The device according to claim 1, wherein

each of the first and second commands comprises an
address field and a length field in an argument of either
of'the first and second commands used to access data in
one page of the extension register space constituted of
a plurality of pages,

a value of a mode field in the argument of each of the first
and second commands selects a first operation mode,

the first operation mode of the first command corresponds
to a read operation of reading data including an effec-
tive data indicated by the length field from a position of
the register indicated by the address field, and

the first operation mode of the second command corre-
sponds to a write operation of writing data including an
effective data indicated by the length field to a position
of the register indicated by the address field.]

[3. The device according to claim 2, wherein

in the first operation mode of the first command, data
items placed a location in a designated page of the
register, a top of the data items location is designated by
the address field, are arranged to transfer the data items
from a head of a read data block, the length field
indicating an effective data length from head of read
data block, and

in the first operation mode of the second command, data
items transferred from the head of a write data block are
written to a page of the register, the top of write
position in a designated page of the register is specified
by the address field and data length to be written is
specified by the length filed.]

[4. The device according to claim 2, wherein

the argument of the second command includes a bit used
to select whether or not mask write is to be carried out,
when mask write is not carried out, the length field
indicates an effective write data length, and when mask
write is carried out, the length field becomes a fixed
value, the length field indicates mask information used
to select whether write is to be carried out in units of

10

20

25

30

35

40

45

55

60

65

26

one bit or original data is to be held, and the mask
information and write data length are the same length
as the fixed value.]

[5. The device according to claim 2, further comprising a
function which is controlled by multiple methods using an
extension register set configured by multiple of registers,
multiple of functions are controlled by singly extension
register set, wherein

function identification information in the extension reg-
ister space includes common information for all func-
tions and multiple of information to identify a location
of each extension register set in the extension register
space.]

[6. The device according to claim 2, further comprising a
third command used as a read command supporting fixed-
length block transfer and multi-block transfer, and a fourth
command used as a write command supporting fixed-length
block transfer and multi-block transfer, wherein

each of the third and fourth commands includes an
address field as an argument thereof, data transfer is
executed when the address field designates a data port
of the register, and data length transfer is specified by
a block count.]

[7. The device according to claim 2, further comprising:

a fifth command which enables read/write supporting
variable-length block transfer, and multi-block transfer;

a sixth command which enables read/write of 1-byte data
by the argument and the response; and

a function register set which can be accessed by the fifth
and sixth commands, wherein

the function register set which can be accessed by the fifth
and sixth commands can also be accessed by the first
and second commands.]

[8. The device according to claim 2, wherein

each of the first and second commands comprises an
address field and a length field in the argument of the
first and second commands used to access data in one
page of the extension register space constituted of a
plurality of pages,

a value of the a mode field in the argument of each of the
first and second commands selects a second operation
mode,

in the second operation mode of each the first and second
commands, a specific address indicated by the address
field is interpreted as a data port of the register,

the first command reads data from the extended function
section through the data port which is associated with
the extended function, and

the second command writes data to the extended function
section through the data port which is associated with
the extended function.]

[9. The device according to claim 1, wherein

the information which is placed in the extension register
space includes any one of a function identification
codes configured to recognize a standard extended
function, manufacturer identification information con-
figured to recognize a manufacturer, and a function
identification information for identifying classification
for the extended function, wherein the information is
used as an information for selecting a general-purpose
driver or a dedicated driver.]

[10. A host system to use a memory device, the memory
device including a nonvolatile semiconductor memory
device, the host system is accessible to a memory space and
an extension register space of the nonvolatile semiconductor
memory device, and the host system can control an extended

US RE50,101 E

27

function section through extension register set which is
placed in the extension register space,

wherein an information register in the extension register
space indicates information which is configured to
specify a type of the extended function and a control-
lable driver, and address information indicating a place
where a register for controlling the extended function is
stored,

the control section is arranged to process a first command
to read data from the extension register space in accor-
dance with designations of the address information and
data length, and a second command to write data to the
extension register space in accordance with designa-
tions of the address information and data length,

the host system comprising a host driver and a system
memory,

wherein the host driver uses the first command to read a
function identification code, a manufacturer identifica-
tion information, and a function identification informa-
tion from the information which is described in the
information register in the extension register space, and
specify a usable general-purpose function driver or a
dedicated function driver and, when a driver exists, the
host driver loads the driver into the system memory,
and execution of the function driver initializes the
extended function in the memory device.]

[11. The host system according to claim 10, wherein

the host driver delivers position information about the
register assigned to the extended function to the loaded
function driver from the information, thereby making
the extended function controllable even when the reg-
ister is arranged at an arbitrary position.]

[12. The host system according to claim 10, wherein

each of the first and second commands comprises an
address field and a length field in an argument of either
of'the first and second commands used to access data in
any one page of the extension register space constituted
of a plurality of pages,

a first operation mode of the first command corresponds
to a read operation of reading data including an effec-

tive data indicated by the length field from a position of

the register indicated by the address field, and

the first operation mode of the second command corre-
sponds to a write operation of writing data including an
effective data indicated by the length field to a position
of the register indicated by the address field.]

[13. The host system according to claim 12, further
comprising a third command used as a read command
supporting multi-block transfer, and a fourth command used
as a write command supporting multi-block transfer,
wherein

each of the third and fourth commands includes an

address field as an argument thereof, multi-block data
transfer is executed when the address field designates a
data port of at least one byte register in a second
operation mode, in the second operation mode of each
the first, second, third and fourth commands, a specific
address indicated by the address field is interpreted as
a data port of the register.]

[14. The host system according to claim 13, wherein

the host driver accesses the register of the memory device

by the first and second commands or by the third and
fourth commands in the first operation mode, and
carries out data transfer between the host system and
the extended function section of the memory device in
the second operation mode.]

10

—_
w

20

25

30

35

40

45

50

55

60

65

28

[15. The host system according to claim 10, wherein

the host driver recognizes a certain function from a
plurality of multi-function devices by the information
including function identification code, manufacturer
identification information, and a function identification
information which are singly assigned to each function,
and location of the register is determined by address
field of the information which is corresponded with the
specified function, and length of the register is specified
in the register of the function.]

16. A memory system carrying out interface processing
between a host device and a memory device connectable to
the host device, with use of a read command from the host
device applied to the memory device,

the memory device includes a nonvolatile memory and

control circuitry,

the control circuitry is configured to control the nonvola-

tile memory and an extension register space comprised
of a plurality of extension registers,

the extension register space defining an interface control-

ling an extended function and storing information,

the information includes address information indicating a

place where one extension register among the plurality
of extension registers for controlling the extended func-
tion is stored and specifies the extended function and a
controllable driver,

the read command applied from the host device to the

memory device includes a first bit which indicates a
page in the extension registers and a second bit which
indicates a start position of data in the page to be read,
and

the memory device reads data to the host device in

accordance with the first bit and the second bit of the
read command.

17. The memory system according to claim 16, wherein
the read command further includes a third bit which indi-
cates a data length of the data.

18. The memory system according to claim 16, wherein
the read command has a first operation mode and a second
operation mode.

19. The memory system according to claim 18, wherein

the read command further includes a thirvd bit which

indicates data length of the data,

the first operation mode of the read command corre-

sponds to a read operation of reading the data includ-
ing an effective data indicated by the third bit from the
start position indicated by the first and second bit
included in the read command.

20. The memory system according to claim 19, wherein

in the first operation mode of the read command, data

items placed at a location in a designated page of the
extension register, a top of the data items location being
designated by the first and second bit, are arranged to
transfer the data items from a head of a read data
block, the third bit indicating an effective data length
from the head of the read data block.

21. The memory system according to claim 19, further
comprising a function which is controlled by a plurality of
methods using an extension register set configured by the
plurality of extension registers, a plurality of functions being
controlled by a singly extension register set,

wherein function identification information in the exten-

sion register space includes common information for
all functions and multiple information to identify a
location of each extension register set in the extension
register space.

US RE50,101 E

29

22. The memory system according to claim 19, wherein

in the second operation mode of the read command, a
specific address indicated by the first and second bits is
interpreted as a data port of the extension register, and

the first command reads data through the data port which
is associated with the extended function.

23. The memory system according to claim 16, wherein

the host device includes a host driver and a device
memory,

the host driver issues the read command to read a function
identification code, manufacturer identification infor-
mation, and function identification information from
the information that is described in an information
register in the extension register space and specifies a
usable general-purpose function driver or a dedicated
function driver, and

when a particular function driver, being either the speci-
fied general-purpose function driver or the dedicated
function driver, is present on the host device, the host
driver loads the particular function driver into the
device memory, and execution of the particular func-
tion driver initializes the extended function in the
memory device.

24. The memory system according to claim 23, wherein

the information stored in the extension register space

10

15

20

30

includes any one of function identification codes configured
to recognize a standard extended function, the manufacturer
identification information to recognize a manufacturer, and
the function identification information for identifying clas-
sification for the standard extended function, wherein the
information is used as information for selecting the general-
purpose function driver or the dedicated function driver.

25. The memory system according to claim 23, wherein

the host device delivers position information about the

extension register assigned to the extended function to
the loaded function driver from the information,
thereby making the extended function controllable even
when the extension register is arranged at an arbitrary
position.

26. The memory system according to claim 23, wherein
the host driver recognizes the extended function from a
plurality of multi-function devices by the information includ-
ing function identification code, manufacturing identifica-
tion information, and a function identification information
which are singly assigned to each function, and a location
of the extension register is determined by an address field of
the information that corresponds to the extended function,
and a length of the extension register is specified in the
extension register of the extended function.

#* #* #* #* #*

