(12) STANDARD PATENT (11) Application No. AU 2014237590 B2
(19) AUSTRALIAN PATENT OFFICE

(54)

(61)

(21)
(87)
(30)

(31)

(43)

(44)

(71)

(72)

(74)

(56)

Title
Privacy preserving knowledge/factor possession tests for persistent authentication

International Patent Classification(s)
GOG6F 21/30 (2013.01) GOG6F 15/16 (2006.01)

Application No: 2014237590 (22) Date of Filing: 2014.03.07
WIPO No: WO014/150064

Priority Data

Number (32) Date (33) Country
13/844,619 2013.03.15 us
Publication Date: 2014.09.25

Accepted Journal Date: 2019.02.28

Applicant(s)
Google LLC

Inventor(s)
Berkman, Omer;Yung, Marcel M.M.

Agent / Attorney
Spruson & Ferguson, GPO Box 3898, Sydney, NSW, 2001, AU

Related Art

US 2006/0085647 A1
US 2011/0191837 A1
US 2007/0124321 A1
US 2003/0163737 A1
US 2006/0037073 A1
US 2013/0046993 A1

WO 20147150064 A1 1)1} 1010000 00 OO0 0010 A 0

(43) International Publication Date
25 September 2014 (25.09.2014)

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

~o
é

=

\

WIPOIPCT

(10) International Publication Number

WO 2014/150064 A1

(51

21

(22)

(25)
(26)
(30)

a1

72)

74)

International Patent Classification:
GO6F 21/30 (2013.01) GO6F 15/16 (2006.01)

International Application Number:
PCT/US2014/022075

International Filing Date:
7 March 2014 (07.03.2014)

English
English

Filing Language:
Publication Language:

Priority Data:
13/844,619 15 March 2013 (15.03.2013) UsS

Applicant: GOOGLE INC. [US/US]; 1600 Ampitheatre
Parkway, Mountain View, California 94043 (US).

Inventors: BERKMAN, Omer; 2 Kehilat Venezia Street,
69400 Tel Aviv (IL). YUNG, Marcel M.M.; 200 W. 24th
Street, New York, New York 10011 (US).

Agents: MEHTA, Mainak H. et al.; c/o Procopio, Cory,
Hargreaves & Savitch LLP, 525 B Street, #2200, San
Diego, CA 92101 (US).

(81)

(84)

Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, T™M,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM,
ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

[Continued on next page]

(54) Title: PRIVACY PRESERVING KNOWLEDGE/FACTOR POSSESSION TESTS FOR PERSISTENT AUTHENTICATION

100

1

Start

Y

\ Generate a plurality of hashes from a plurality of

responses to a plurality of questions

01

Y
F\ Generate an authentication hash from the

plurality of hashes

102 v

Authenticate with the authentication hash

A 4

end)

FIG. 1(a)

(57) Abstract: Example implementations described herein are directed to au-
thentication based on the user's private factors, while not revealing at the
server side information allowing the server (or anyone with the server's in-
formation) to deduce the private answers. In example implementations, the
user answers a questionnaire with authentication factors, wherein the answers
are transformed in a one-way fashion and the transformed answers are
provided to the server side. Example implementations facilitate authentication
based on polynomial interpolation or other methods to permit a user to au-
thenticate, even if the user does not answer all of the questions correctly.

WO 2014/150064 A1 W00)00 00 R A A

Published:
— with international search report (Art. 21(3))

WO 2014/150064 PCT/US2014/022075

PRIVACY PRESERVING KNOWLEDGE/FACTOR POSSESSION TESTS FOR

PERSISTENT AUTHENTICATION

BACKGROUND

1] 1. Technical Field

[2] Aspects of the example embodiments relate to privacy preservation tests for
persistent authentication, and more specifically, to devices, method, and system for
generation of an authentication hash or other one-way hard to invert function, and
authentication based on the generated authentication hash, such that the answers to private
questions are not revealed at the server side.

3] 2. Related Art

4] A user may need to prove his or her identity in various situations during an
authentication process of users for access and for recovery of accounts. To facilitate
authentication or alternative methods for authentication (e.g. fault tolerant/ recovery),
users register factors (e.g., answer to questions specific to user’s life and taste) with the
server holding the access (e.g., account provider). Registration by the user including the
answers may reveal private user information to the server. Unauthorized access to the
server by a malicious party may reveal private user information to that malicious party.
For example, that party (e.g., insider to the server organization or an outsider or a phishing
attacker) may exploit the registered answers at other or the same account providers which
may require similar answers, and impersonate the user.

[5] For authentication, there is a need to allow the user to answer questions (or
provide other private factors, such as biometric information, possessed information stored
outside the systems, etc.), while for privacy reasons, not having the server verifying the
information from the user to hold the private information.

SUMMARY

1

2014237590 04 Feb 2019

2

[6] Aspects of the present application may include a device, which involves a processor,
configured to generate a plurality of hashes from a plurality of responses to a plurality of
questions; generate an authentication hash from at least one of a polynomial interpolation of the
plurality of hashes and algebraic operations over the plurality of hashes, and a selection of one
or more of the plurality of hashes to form the authentication hash based on a selected group of

the plurality of questions; and authenticate with the authentication hash.

[7] Aspects of the present application further include a computer readable storage medium
storing instructions for executing a process. The instructions may involve generating a plurality
of hashes from a plurality of responses to a plurality of questions; generating an authentication
hash from at least one of: a polynomial interpolation of the plurality of hashes and algebraic
operations over the plurality of hashes, and a selection of one or more of the plurality of hashes
to form the authentication hash based on a selected group of the plurality of questions; and

authenticating with the authentication hash.

[8] Aspects of the present application further include a server, which may include an
processor configured to transmit a plurality of questions; and grant access when an
authentication hash responsive to the transmitted plurality of questions matches a secret
authentication hash; and deny access when the authentication hash does not match the secret
authentication hash; wherein the authentication hash is generated from at least one of: a
polynomial interpolation of the plurality of hashes and algebraic operations over the plurality of
hashes, and a selection of one or more of the plurality of hashes to form the authentication hash

based on a selected group of the plurality of questions.

[9] Aspects of the present application further include a method for a user device to register for
authentication at a server and for further authenticating at server, comprising: receiving a
plurality of answers to a plurality of questions, the questions associated with one or more factors
of a user, generating an authenticating secret hash from the plurality of answers, authenticating
the user device at the server based on an authentication session wherein the authenticating secret
hash is reproduced by the user device and, allowing or denying access at the server based on a
successful outcome of the authentication session, the successful outcome being based on the

user device possessing the authenticating secret hash.

21578370 (IRN: P221239)

2014237590 04 Feb 2019

2a

BRIEF DESCRIPTION OF THE DRAWINGS

[9] FIGS. I(a) and 1(b) illustrate a flow diagram for a device, in accordance with an example

implementation.

21578370 (IRN: P221239)

WO 2014/150064 PCT/US2014/022075

[10] FIGS. 2(a) and 2(b) illustrate a flow diagram for a server, in accordance

with an example implementation.

[11] FIG. 3 illustrates an example computing environment with an example

computing device suitable for use in some example implementations.

[12] FIG. 4 illustrates an example processing environment according to the

example implementation.

DETAILED DESCRIPTION

[13] The subject matter described herein is taught by way of example
implementations. Various details have been omitted for the sake of clarity and to avoid
obscuring the subject matter. The examples shown below are directed to structures and
functions for implementing measurement of campaign performance with privacy
preservation. Aspects of the example implementations may relate to e-commerce,
information sharing, privacy preserving methods, encryption and cryptographic
methodologies, transaction systems, private information sharing, and secure computing,
for example. However, the example implementations are not limited thereto, and may be
applied to other fields, without departing from the scope of the present inventive concept.
[14] Example implementations described herein are directed to authentication
based on the user’s private factors, while not revealing at the server side information
allowing the server (or anyone with the server’s information) to deduce the private
answers. In example implementations, the user answers a questionnaire with
authentication factors, wherein the answers are transformed in a one-way fashion and the
transformed answers are provided to the server side. This protects the user’s privacy while
allowing the server to authenticate the original user who registered information with the

SErver.

WO 2014/150064 PCT/US2014/022075

[15] Example implementations are directed to allowing a plurality of factors
with sufficient entropy (e.g., strings) to be transformed together on the user device under a
one-way (e.g., cryptographic hash) function, and to transmitting the transformed values to
the server at registration. At an authentication session, the user is asked for the answers
again, which are transformed in a similar fashion as described above by the device, and
sent to the server. The server then compares the one-way transformed answers to the
registered information. The following description is directed to more detailed
programs/protocol which outline the mechanisms used in example implementations.

[16] Protocol entities for example implementations may include a user, a user
device, and a server. For purposes of clarity, protocol parameters are expressed as n, t, T,
and m, which are described below.

[17] In an example protocol environment, there are several aspects to consider,
as described below.

[18] Private registration information: The user has n labeled strings of private
information. This can be something the user knows and is likely to remember, or factors
that the user owns or otherwise possesses. In example implementations, the initial
registration can be made valid, for example, after the user receives and responds to an
acknowledgement sent to a device associated with the user (e.g., the user’s phone and an
account associated with the user such as an alternative email, or a friends’ account).

[19] Non-private labeling: The labels, format, possibly hints, and order of the
strings are not private.

[20] Persistence: At any time user knows at least n-t strings. That is, the user
may have registered n strings, and cannot be assumed to always remember all of them and

may forget t of them. Thus, the user is required to know some threshold of n-t of the

WO 2014/150064 PCT/US2014/022075

strings. Note that the level required can be tuned by the server from one authentication
session to another.

[21] User device: User has access to a device that can input data securely,
compute, erase data, save data, and output data. The device is under control of the user
(e.g., it is not phishable). This can be a smartphone or a software element that is not
connected to the web.

[22] Device partial integrity: Device operates correctly (in particular, data is
permanently erased when requested), but may get lost/stolen.

[23] Server integrity: server operates correctly and never loses any data, as the
server is interested in authenticating the user. Further, data stored for long term at the

server does not contain data which allows attackers to impersonate a user.

[24] Setup: During setup, the device and the server can exchange information
securely.

[25] The example protocol environment may also include several requirements,
such as:

[26] Privacy: Given knowledge of r of the private strings, information on the

server, on the device, or information exchanged between the server and device should be
substantially insufficient in revealing any of the remaining n-r strings or in guessing better
than initially any of the remaining n-r strings.

[27] Authenticity: At any time, the user can prove to the server (using the
device) that the user knows at least n-t of the input strings (n-t is much larger than r). This
authenticity operation determines a successful result of operation and the server may
change the required threshold n-t possibly dynamically in various authentication sessions.
[28] Security: Information on the server, on the device while not used by the

user, or information exchanged between the server and device should be substantially

WO 2014/150064 PCT/US2014/022075

insufficient for use to authenticate a user who may not be the original user who registered
initially.

[29] The example protocol environment may employ various protocols. For
example, factor registration may be conducted to setup various factors. The factor
registration may involve randomization, tabulation, answering and generation.

[30] In the randomization aspect of the factor registration, the device and server
may jointly generate randomness with a random number generator or other methods. In an
example implementation, the server provides a long random (non secret) salt Rs to the
device. The user may generate a long random (non secret) salt Ru, and enter Rs and Ru
into the device. The device generates a long random (non secret) salt Rd and concatenates
all three random salts into a single random salt R (salt R may be a factor to be employed
by the server in further interactions).

[31] In the tabulation aspect of the factor registration, label provisioning may be
conducted. The server provides the user with a set of string labels and the respective
possible formats of each string and a set of standard “hints” to be employed by the user.
Label is a variable for which the user provides a value is in a string in a given format. The
user may choose n labels out of the offered ordered set of labels to define the
questionnaire. In example implementations, some elements in the questionnaire may not
necessarily be of the “something you know” type, and other types of information (e.g.,
biometrics, customized questions, etc.) can be used as well.

[32] In the answering aspect of the factor registration, the user provides
questionnaire answers as n strings. The user can be trained by the system to repeat the
answers as part of the process (e.g. user is asked twice, system employs techniques to

increase user memory of the answers, etc.). The answers can be moved to the device.

WO 2014/150064 PCT/US2014/022075

[33] The questionnaire can be kept secret or can be mixed with other methods
that are open (e.g., the server knows direct answers to), depending on the desired
implementation. For example, the questionnaire can be used in combination with other
authentication methods, (e.g., as enhancing claim for identity rather than being the sole
method.) For example, the combination can be used upon failure of other methods, after
some initial success with other methods, before other methods are used, only when the
user is already authenticated but requests further sensitive access/ action.

[34] In the factor generation aspect of the factor registration, the system
generates the factors to remember based on the answers, and by utilizing an algorithm. For
initializing the algorithm, the device is given n user secrets u_1, ..., u_n, wherein u_i= the
question q_i and the answer a_i. The device generates n secrets s_1, ..., s_n, which are a
hashing or a one way function of the q_i’ s. s_i=HASH(a_i, R). The device from the
points (q_i, s_i) for i=1,n can be generated by interpolation over a finite field a
polynomial P of degree n-1 which passes through all the points in the plane. Each of q_i
and s_i is interpreted in the finite field, for example the hash can be a string of 256 bits
interpreted modulo a prime of size 256 bits as elements in the finite field defined by the
prime, q_1 and s_i generated via hashing are likely to be mapped to a random looking
point which can be viewed as a point lying in the Cartesian plane with X and Y
coordinates in the finite field. Finite fields, prime numbers, and polynomial interpolations
are basic notions to the skilled in the art. The secret s is the value of the polynomial at O
(i.e., P(0)=s), and can be registered at the server with a serial number. In addition,
additional k=2t points on the polynomial, like the points (1, P(1)), (2,P(2)),... (k, P(k)) are
sent and registered at the server assuming these are not in the points originally used in the
interpolation. This is i to allow the user to be wrong or omit t possible out of the n strings

in future authentication. The polynomial P has degree n-1 (since it was generated by n

WO 2014/150064 PCT/US2014/022075

points) and registration of the secret which is the point (o, P(0)) and added k points it
should be that k+1 is smaller than n, and this k+1 points knowledge does not give the
server the polynomial properties. For example, if the user is asked for 20 factors to
answer, while reserving a threshold of requiring only 15 answers in the future, then ten
points are sent to the server in addition to the secret. When a user authenticates in the
future (to be described below as an example implementation), the user sends the factors
again and the added 10 points are added to the representation of the polynomial, and noisy
interpolation can be attempted by the user which includes these points. If an attacker
attempts to impersonate, the attacker will always know less than ten points since the
factors were chosen carefully to represent the user knowledge and possession of factors.
Thus, the points sent by the server and the knowledge of an attempting impersonator will
fail to interpolate the available points to recover the polynomial P.

[35] In another example implementation, HASH(s) is maintained locally rather
than s itself. The other information can be deleted or maintained by the device, or the k
points be maintained at the server, depending on the desired implementation. For example,
erasing the other information forces the user to enter the information again at the
authentication, while maintaining the information can be used in proving possession of the
device. HASH can be any one way function, a cryptographic hash algorithm, or an
exponentiation with a generator over some finite field or another algebraic structure as
known for modular exponentiation in the cryptographic literature. Keeping HASH(s)
rather than s at the server prevents attackers who penetrate the server from learning s
itself.

[36] In an example implementation, an authentication session may be employed
as described below. The authentication session may include various modes of use of the

factors. In a first mode, the device is available, the user has access to the device and the

WO 2014/150064 PCT/US2014/022075

secret s was not deleted. In the first mode, the device then informs the server of the hash’s
serial number and proves knowledge of the secret by using a secure protocol.

[371] In a second mode of use, the server, the user and the device (or another
device) collaboratively generate one of the hashes. The server sends to the user the n
labels (questions) and their format. Then, the server sends to the device the n labels, and
the salt R. The user enters to the device a_i the answers. The server also sends the k added
points (1,P(1)),... (k,P(k)). Using a noisy interpolation algorithm (e.g. Berlekamp Welch,
Guruswami-Sudan, etc.) the device computes the polynomial and if a threshold of answers
are correct (e.g., 2/3 as in the example of 15 out of 20 above, half, etc.) the noisy
interpolation algorithm produces s. If the device has HASH(s), the produced s can
checked for correctness, and may ask the user for new answers (e.g., if incorrect, for
initialization, etc.). The resulting s is sent to server, wherein the server authenticates the
user, or alternatively, the user’s device proves the possession of s based on HASH(s)
which is sent to the server, and to this end zero-knowledge protocols or challenge-
response protocols known in the art can be utilized.

[38] If one of the points for the noisy interpolation algorithm is a randomizer
(e.g., contributed by the server or local software) then the resulting factor is randomized
(i.e., independent from the answers of the user). For example, assume initially that the %
bound from the Berlekamp Welch noisy interpolation algorithm can be tuned by having
the server contribute some points. If a higher threshold is desired, then the server can
contribute error points (not on the polynomial). Therefore, if the desired threshold is, for
example, 16 out of 18 (16/18) points and the Berlekamp Welch noisy interpolation
algorithm is employed, six errors can be introduced by either the server or the device so
that 16/24 points are correct, thereby meeting the Berlekamp Welch threshold. In another

example, if the implemented threshold requires only half of the answers to be correct, then

WO 2014/150064 PCT/US2014/022075

“good polynomial points” can be introduced by the server or device. For example, if
10/18 (above half of the questions to be right) is considered to be sufficient, six good
points can be introduced such that the result is 16/24, which meets the 2/3 Berlekamp
Welch threshold. Tuning of the required threshold can vary from one authentication
session to another.

[39] Because the information chosen is so private, the user should be able to
recall almost all of the information. The complexity is that of evaluation of a polynomial
in a finite field.

[40] The strings can be very private and involve secret information that ensures
that the user can recall most of them when required. Examples include names of siblings,
of children, spouse, parents, grandparents, friends, addresses of self and relatives, account
names and/or numbers, name of employers and others, depending on the desired
implementation. The selection criteria for the strings should be such that the user is able to
re-create the answers if required. The amount and variability of the data should be such
that enough strings are never known to an attacker so that even with extra points from the
server the attacker is unable to produce good interpolation points and the polynomial
remains secret to the attacker.

[41] In example implementations, several security levels can also be introduced.
For example, the labels, formatting and order of the strings may themselves be protected
by a few basic and easy to remember strings (e.g. password of the user)

[42] For the purpose of account recovery and releasing accounts taken over by
hijackers, an authentication factor should be employed that is used for the recovery

process and has the following properties:

10

WO 2014/150064 PCT/US2014/022075

[43] Persistent: always available to the user; user cannot lose it (or can re-create
it) even if she loses a physical object containing the factor, or loses her account (e.g., by
hijacking).

[44] Un-forgeable: substantially impossible to guess even when given access to
the account or to the personal user information. Should be un-forgeable both to random
attackers and to associates of the user.

[45] Private: does not reveal personal data to the account provider or to an
attacker; and

[46] Available: implementable in general software systems without special-
purpose devices.

[47] There are several considerations for selecting factors. For example, if the
persistent factor is “something the user has,” the user may lose the factor or the factor may
fall into the attacker’s hands. If the persistent factor is “something that the user knows” the
factor may not be private for the system to check, and the user may forget the factor. If the
persistent factor is “something the user is” the factor requires some human feature
recognition (biometrics devices, etc.) and may not be readily available, and may also
reveal personal information to the provider.

[48] In example implementations, persistent factors are utilized based on user
knowledge (“something you know”) and may also be based on something the user
possesses. Such requirements may be difficult to fulfill with many of the existing
situations. Therefore, example implementations may involve a solution based on user
knowledge, assuming the user can remember many basic questions reliably, and
entangling the answers with cryptographic operations.

[49] Self and Other People’s Knowledge: While example implementations

presented as “user knowledge” based, the knowledge can be acquired from trustees and

11

WO 2014/150064 PCT/US2014/022075

other sources in real time, and the accumulation of knowledge can represent user personal
knowledge and user access to trustees. Trustees can represent part of the knowledge about
the user and help him in producing the factors needed.

[50] Example implementations can involve a basic process for emergency
recovery of access to the account, but can also be implemented as a general authentication
method that balances privacy and authenticity and takes usability into account (e.g. user
training and user interfaces to train the user when the factor is needed).

[51] The accounts that users have from the Internet account provider are gaining
importance as users keep their email, e-payments, personal content, and so on in the
account. These accounts are major personal resources and are susceptible to attackers.
Example implementations are directed to systems and methods such that the user can
retain and re-claim the account in a way that a hijacker cannot, if the user has a persistent
authentication factor that is always available to the user and never to the attacker.
Approximating such a factor may ease the recovery process.

[52] It is the case that in the related art that when an account like an email
account is hijacked, an attacker has the state of the account and can manipulate the
account so that recovery by the non-malicious account holder who is the user may be
harder. The attacker can also learn from all the data stored in the account. Example
implementations therefore utilize mechanisms that cannot be inferred from having access
to the account. Similarly, the mechanisms should be such that they cannot be lost if the
account is not available (e.g., hijacked). The recovery is then dominated by the holder of
the persistent factors.

[53] Example implementations employ a high-entropy source of user
knowledge, or knowledge that the user can re-create when required. For this purpose, a

large amount of very private user information is utilized - names of siblings, children,

12

WO 2014/150064 PCT/US2014/022075

spouse, parents, grandparents, friends, addresses of self and relatives, account names
and/or numbers, name of employers and more. The information should be such that the
user is able to re-create the answers if required, and the amount and variability of the data
is such that enough bits are never known to an attacker. Similarly, other factors like
biometric reading or access to trustees like bank servers, are also assumed to be in
combination, not known to the attacker.

[54] In another example implementation, the factor can be generated by a
process that has input, processing and output for generation and for checking the factor.
The process may involve user input, system input and a cryptographic computation, each
having a role.

[55] The input can involve a high-entropy source of knowledge , such as a set of
questions that the user is asked Q1, Q2, Q3, etc. and answers: Al, A2, A3, etc.. The
answers Ai’s should be such that the user is able to remember (the questions can be asked
a number of times and the user can thereby be trained to answer them). The choice of such
questions can involve life questions, taste questions (in various areas), personal history
questions, etc. Further, the number of questions should be large enough to create the
desired entropy. Depending on the desired implementation, random values can also be
employed that the user keeps on the hand held device, or a piece of paper, or is mailed to
the user and is kept outside Internet accounts: R1, R2, etc., and/or added random values
that the user local system keeps, and a secret S.

[56] The processing can involve factor generation. Given the inputs to
questions: Al, A2,....An, the answers are organized into groups (with repetitions), e.g.,
G1=A1,A3,A5, G2=A1,A3,A6,A7. A group represents a set of concatenated answers the
user is expected to answer in full. Assume m groups, wherein each group has high enough

entropy. Depending on the desired implementation, random values R1,...Rm and the secret

13

WO 2014/150064 PCT/US2014/022075

S may also be added (concatenated), e.g., S to each group and Ri to Gi, so Gl=
S,R1,A1,A3,AS.

[57] Each Gi is hashed with a cryptographic hash function (e.g., Shal, etc.) H.
For example, H1= HHHHHH(R), S1) A1)A3)AS5). Additional hashing for slowing down
the computation may also take place. The H_i’s are called indicators.

[58] Each group has its own indicator Hi: H1, H2,Hm. The random values
Ri, called randomizers, are kept in the user system (e.g., not accessible by the server, or
encrypted under S and sent to the server), and S is the user’s secret kept outside the system
(e.g., on a paper or in another device kept for recovery, or at trustees, and in no other
place). Let E_S(Ri)=Xi, wherein Xi is the encryption of Ri used in Hi and S is called the
seed. Hi, Xi i=1,..,m are sent to the server. The indicators Hi’s are then erased on the
client side and in his device.

[59] S, the seed, is kept at the user’s memory outside the account storage (e.g.,
on a device or a paper). The Hi’s are sent to the server to be kept for recovery validation,
and the local copy is erased. The server may further hash with one-way functions the
indicators, to prevent penetrating attackers from learning the indicators.

[60] From the above example implementation, the server therefore receives no
information on the answers, and only receives a hashed value with sufficient entropy. The
user should be able to answer enough questions to match one group. An attacker should
not be able to guess the answers to cover even one group, and has no access to S.

[61] The factors can then be used for authorization. In the authentication process
or the account recovery process, the attempt to use the persistent factor takes place. The
server presents the questions of one of the group, wherein the user chooses a group,
answers the questions, inputs its S and its device, in turn, recovers Ri from Xi using its

secret S. The Hi is computed from scratch, based on user current answers generating

14

WO 2014/150064 PCT/US2014/022075

answer group Gi-current (a candidate for Gi) and the generated Hi is sent to the server.
The user may compute the entire indicator from the answers; alternatively some of the
answers in the indicators (like AS in the example) can be sent on the clear and partially
evaluated indicator HHH(H(H(R), S1) A1)A3) in the example, can be sent and the user can
complete the indicator computation (so some answers are hidden and some are open-- only
at recovery).

[62] The server compares the computed generated Hi which is then hashed with
the stored hashed Hi. If there is a match, the user is authenticated. Otherwise the claimant
(e.g., if the generated Hi fails on various groups) is failed and is not recognized as the
original user. Note that in an alternative example implementation, the user may engage in
a protocol proving the possession of Hi, relative to a hashed version HASH(Hi).

[63] The answers may require personal information about the user, but the
information is all local to the user computer or the user device and is not accessible by the
server for privacy purposes nor is it accessible to phishing parties pretending to be the
server. Since the answers are erased, they are reconstructed at query time. Also, partial
information can be given: such as the partial nested hashing is calculated and AS is given
in the clear, and the server completes the hashing.

[64] For an implementation such as H(R)*H(A1)*H(A3)* H(AS) (i.e., a
multiplication of hashes of individual values in a large enough field) as the combining
function, a partial product can be provided, wherein some of the answers can be open and
the server can complete the product. For a position fixed test, H(R)*H(1, A1)*H(2, A3)*
H(3, AS5) can be provided, so that the answer Ai at position j of the questionnaire is
associated with the position j. The product can be performed over a large prime order

field.

15

WO 2014/150064 PCT/US2014/022075

[65] The information should have enough entropy to hide the individual fields
given the server’s state, such that the probability of an attacker producing the answer is
substantially small. The user further needs to ensure that the factor is given to the right
server. Trying to learn the factor (off line attacks) or factors that open some of the answers
(real time attacks) are possible and should considered in the implementation.

[66] Further, a set of highly memorized answers should be used and user
training should be in place before the values are committed (recorded) at the server will
help this. Non easy to remember answers may be written down, to ensure that the factor is
persistent. Example implementations can be such that a general software system can be
employed without special devices/ readers/ etc.

[67] Example implementations can involve a system or process where answers
are obtained by the users from external agencies, rather than remembered. These agencies
rely on authentication to allow the user to retrieve the answer, so the implementation can
build an implicit “social recovery” using the persistent factor above. The factor can be
built incrementally, by passing the previous test first and then updating the knowledge
embedded in the factor. Further, the persistent factor can be restricted so that it is used
when needed and can be supported by other factors, and be included as one additional
decisive factor in a recovery of account or reclaiming of account process. Note that
answers from user and trustees can be obtained employing any input method: typing,
voice, biometric reading, camera, etc.

[68] The example implementations described above thereby allows the user to
replace a password with knowledge that the user enters. Unlike passwords, the user most
likely knows pieces of knowledge about the user (a large portion thereof). Password usage
can be utilized for local decryption of password encrypted info (like a private key).

Extending this new idea can be used for password drop-in replacement for such purposes,

16

WO 2014/150064 PCT/US2014/022075

and is a matter of another design where the “device” is merely local computation. The
“local computation” can be done on a mobile device and the final result sent to the
computer or server via a local communication method, such as a wireless, USB or physical
connection, to ensure the user that the answers are not stolen.

[69] Example implementations can also involve a persistent factor which the
user can always reconstruct, even if other means of identification has been lost. This can
distinguish the user from an account hijacker, and be used for claiming accounts back by
users (e.g. a method on claiming back based on questionnaire and minimizing exposure is
in place).

[70] FIG. 1(a) illustrates a flow diagram for a device, in accordance with an
example implementation. At 100, the device generates a plurality of hashes from a
plurality of responses provided by the user, to a plurality of questions. The questions
provided can be from a server, or from the device, and utilize a questionnaire involving
personal information about the user as described above.

[71] At 101, the device can generate an authentication hash from the plurality of
hashes. This can be implemented by conducting a polynomial interpolation of the plurality
of hashes to generate the authentication hash, and/or by selecting one or more of the
plurality of hashes to form the authentication hash based on a selected group of the
plurality of questions. As described in the above example implementations, the user can
select a group of questions to answer, and the answers can thereby be hashed to generate
the authentication hash, or the device can select a subset of the provided answers (e.g. two
or more) and generate an authentication hash based on the subset. As described in above
example implementations, a secret authentication hash can also be stored in the device,

and forwarded to the server by a secure protocol when the requirements are met (e.g.,

17

WO 2014/150064 PCT/US2014/022075

meeting a threshold of correct answers to the questions, answering a subset of the
questions correctly, the authentication hash matching the secret authentication hash, etc.).
[72] The device may also generate the authentication hash from a polynomial
interpolation of the plurality of hashes from use of a polynomial interpolation to
interpolate the authentication hash, as described above. Implementations such as the
polynomial interpolation algorithm and noisy interpolation algorithm can be employed. A
threshold can be adjusted and applied to the polynomial interpolation through the
introduction of one or more erroneous points for the polynomial interpolation, using added
points at the server and/or one or more correct points for the polynomial interpolation. At
102, the device then attempts to authenticate to the server with the generated
authentication hash.

[73] FIG. 1(b) illustrates a flow chart for a recovery process, in accordance with
an example implementation. As described in above example implementations, at 103, the
device receives a plurality of questions, of which the user may select a subset to answer to
recover access to the account. At 104, the answers provided are converted into an
authentication hash based on the use of a random number generated from a secret seed that
is outside the user device. At 105, the authentication hash is forwarded to the server.

[74] FIG. 2(a) illustrates a flow diagram for a server, in accordance with an
example implementation. At 200, the server may transmit a plurality of personal questions
to the device. At 201, the server receives an authentication hash from a device in response
to the transmitted plurality of questions. At 202, the server may then decide to grant access
204 (YES) when an authentication hash responsive to the transmitted plurality of
questions matches a secret authentication hash stored in the server; and deny access 203
(NO) when the authentication hash does not match the secret authentication hash. The

authentication hash may be generated from a polynomial interpolation of the plurality of

18

WO 2014/150064 PCT/US2014/022075

hashes, and a selection of one or more of the plurality of hashes to form the authentication
hash based on a selected group of the plurality of questions. Depending on the
implementation, the server may transmit one or more erroneous points, and one or more
correct points for use in a noisy interpolation algorithm, based on the secret authentication
hash and a threshold. The server may also conduct hashing of the received authentication
hash to determine if the hash matches the stored secret hash.

[75] In another example, the server may select the secret authentication hash
from a plurality of secret authentication hashes based on a selected group of the
transmitted questions, wherein each of the plurality of secret authentication hashes is
associated with at least two of the plurality of questions. The selected group of transmitted
questions may be selected at the device or by the server. This can be implemented, for
example, in a recovery process as described above.

[76] FIG. 2(b) illustrates a flow diagram for a recovery process from the server,
in accordance with an example implementation. At 205, the server may transmit a plurality
of personal questions to the device. At 206, the server receives an authentication hash
from a device in response to the transmitted plurality of questions, wherein the
authentication hash is potentially one of the indicators as described in above example
implementations. At 207, the server may then decide to start a process for recovering the
user account 209 (YES) when the authentication hash matches one of the indicators stored
in the server; and deny access 208 (NO) when the authentication hash does not match any
of the stored indicators.

[77] Example Processing Environment

[78] FIG. 3 shows an example computing environment with an example
computing device suitable for use in some example implementations. Computing device

305 in computing environment 300 can include one or more processing units, cores, or

19

WO 2014/150064 PCT/US2014/022075

processors 310, memory 315 (e.g., RAM, ROM, and/or the like), internal storage 320
(e.g., magnetic, optical, solid state storage, and/or organic), and/or I/O interface 325, any
of which can be coupled on a communication mechanism or bus 330 for communicating
information or embedded in the computing device 305.

[79] Computing device 305 can be communicatively coupled to input/user
interface 325 and output device/interface 340. Either one or both of input/user interface
325 and output device/interface 340 can be a wired or wireless interface and can be
detachable. Input/user interface 325 may include any device, component, sensor, or
interface, physical or virtual, that can be used to provide input (e.g., buttons, touch-screen
interface, keyboard, a pointing/cursor control, microphone, camera, braille, motion sensor,
optical reader, and/or the like). Output device/interface 340 may include a display,
television, monitor, printer, speaker, braille, or the like. In some example
implementations, input/user interface 325 and output device/interface 340 can be
embedded with or physically coupled to the computing device 305. In other example
implementations, other computing devices may function as or provide the functions of
input/user interface 325 and output device/interface 340 for a computing device 605.

[80] Examples of computing device 305 may include, but are not limited to,
highly mobile devices (e.g., smartphones, devices in vehicles and other machines, devices
carried by humans and animals, and the like), mobile devices (e.g., tablets, notebooks,
laptops, personal computers, portable televisions, radios, and the like), and devices not
designed for mobility (e.g., desktop computers, other computers, information kiosks,
televisions with one or more processors embedded therein and/or coupled thereto, radios,
servers, and the like).

[81] Computing device 305 can be communicatively coupled (e.g., via I/O

interface 325) to external storage 345 and network 350 for communicating with any

20

WO 2014/150064 PCT/US2014/022075

number of networked components, devices, and systems, including one or more
computing devices of the same or different configuration. Computing device 305 or any
connected computing device can be functioning as, providing services of, or referred to as
a server, client, thin server, general machine, special-purpose machine, or another label.
[82] I/O interface 325 can include, but is not limited to, wired and/or wireless
interfaces using any communication or I/O protocols or standards (e.g., Ethernet, 802.11x,
Universal System Bus, WiMax, modem, a cellular network protocol, and the like) for
communicating information to and/or from at least all the connected components, devices,
and network in computing environment 300. Network 350 can be any network or
combination of networks (e.g., the Internet, local area network, wide area network, a
telephonic network, a cellular network, satellite network, and the like).

[83] Computing device 305 can use and/or communicate using computer-usable
or computer-readable media, including signal media and storage media. Signal media
include transmission media (e.g., metal cables, fiber optics), signals, carrier waves, and the
like. Storage media include magnetic media (e.g., disks and tapes), optical media (e.g.,
CD ROM, digital video disks, Blu-ray disks), solid state media (e.g., RAM, ROM, flash
memory, solid-state storage), and other non-volatile storage or memory.

[84] Computing device 305 can be used to implement techniques, methods,
applications, processes, or computer-executable instructions in some example computing
environments. Computer-executable instructions can be retrieved from transitory media,
and stored on and retrieved from non-transitory media. The executable instructions can
originate from one or more of any programming, scripting, and machine languages (e.g.,
C, C++, C#, Java, Visual Basic, Python, Perl, JavaScript, and others).

[85] Processor(s) 310 can execute under any operating system (OS) (not shown),

in a native or virtual environment. One or more applications can be deployed that include

21

WO 2014/150064 PCT/US2014/022075

logic unit 360, application programming interface (API) unit 365, input unit 370, output
unit 375, authentication unit 380, recovery unit 385, random number generator unit 390,
and inter-unit communication mechanism 395 for the different units to communicate with
each other, with the OS, and with other applications (not shown). For example,
authentication unit 380, recovery unit 385, and random number generator unit 390 may
implement one or more processes as shown in FIGs. 1(a), 1(b), 2(a) and 2(b), depending
on the implementation as a device or a server. Recovery unit 385 may also implement the
recovery processes as described in the above example implementations of FIGS. 1(b) and
2(b). The described units and elements can be varied in design, function, configuration, or
implementation and are not limited to the descriptions provided.

[86] In some example implementations, when information or an execution
instruction is received by API unit 365, it may be communicated to one or more other
units (e.g., logic unit 360, input unit 370, output unit 375, authentication unit 380,
recovery unit 385, and random number generator unit 390). For example, random number
generator unit 390 may be used to generate hashes or select questions for submission, and
use the API unit 365 to communicate with the authentication unit 380 and the recovery
unit 385 to provide random numbers as described in the above example implementations.
Authentication unit 380 may, via API unit 365, interact with the recovery unit 385 to
compare an authentication hash with a stored secret authentication hash.

[87] In some instances, logic unit 360 may be configured to control the
information flow among the units and direct the services provided by API unit 365, input
unit 370, output unit 375, authentication unit 380, recovery unit 385, and random number
generator unit 390 in some example implementations described above. For example, the
flow of one or more processes or implementations may be controlled by logic unit 360

alone or in conjunction with API unit 365.

22

WO 2014/150064 PCT/US2014/022075

[88] Example Processing Environment

[89] FIG. 4 shows an example online environment in which some example
embodiments may be implemented. Environment 400 includes devices 405-445, each is
communicatively connected to at least one other device via, for example, network 450.
Some devices may be communicatively connected to one or more storage devices 430 and

445 (e.g., via device 425).

[90] An example of one or more devices 405-450 may be computing device
605described below in FIG. 6. Devices 405-450 may include, but are not limited to, a
computer 425 (e.g., personal or commercial), a device associated with a vehicle 420, a
mobile device 410 (e.g., smartphone), a television 415, a mobile computer 405, a server
computer 450, computing devices 435-440), storage devices 430, 445. Any of devices 405-
450 may access one or more services from and/or provide one or more services to one or
more devices shown in environment 400 and/or devices not shown in environment 400.
Accessing among devices can be wired, wireless, and by means of multimedia

communication like user voice, camera pictures, etc.

[91] A user may control a device, as explained above, to implement the example
implementations, via network 450. Information associated with the example

implementations may be stored at storage device 430 or 445, respectively, for example.

[92] In situations in which the systems discussed here collect personal
information about users, or may make use of personal information, the users may be
provided with an opportunity to control whether programs or features collect user
information (e.g., information about a user’s social network, social actions or activities,
profession, a user’s preferences, or a user’s current location), or to control whether and/or

how to receive content from the content server that may be more relevant to the user. In

23

WO 2014/150064 PCT/US2014/022075

addition, certain data may be treated in one or more ways before it is stored or used, so
that personally identifiable information is removed. For example, a user’s identity may be
treated so that no personally identifiable information can be determined for the user, or a
user’s geographic location may be generalized where location information is obtained
(such as to a city, ZIP code, or state level), so that a particular location of a user cannot be
determined. Thus, the user may have control over how information is collected about the
user and used by a content server.

[93] Although a few example implementations have been shown and described,
these example implementations are provided to convey the subject matter described herein
to people who are familiar with this field. It should be understood that the subject matter
described herein may be implemented in various forms without being limited to the
described example implementations. The subject matter described herein can be practiced
without those specifically defined or described matters or with other or different elements
or matters not described. It will be appreciated by those familiar with this field that
changes may be made in these example implementations without departing from the

subject matter described herein as defined in the appended claims and their equivalents.

24

31 Jan 2019

2014237590

25

CLAIMS:

1. A device, comprising:
a processor, configured to:
generate a plurality of hashes from a plurality of responses to a plurality of
questions;
generate an authentication hash from at least one of:
a polynomial interpolation of the plurality of hashes and algebraic
operations over the plurality of hashes, and
a selection of one or more of the plurality of hashes to form the
authentication hash based on a selected group of the plurality of questions; and

authenticate with the authentication hash.

2. The device of claim 1, wherein the processor is configured to generate the authentication
hash from the selection based on a selection of one of the plurality of hashes as the
authentication hash, and wherein the processor is configured to generate each of the plurality of

hashes from at least two of the plurality of responses.

3. The device of claim 1, further comprising a memory configured to store a secret
authentication hash, and wherein the processor is configured to authenticate with the
authentication hash through a comparison of the secret authentication hash with the
authentication hash, and further configured to:

use the secret authentication hash for authentication when the authentication hash matches
the secret authentication hash, and

deny authentication when the authentication hash does not match the secret authentication

hash.

4. The device of claim 1, wherein the processor is configured to generate the authentication
hash from the polynomial interpolation of the plurality of hashes from use of a noisy

interpolation algorithm.

5. The device of claim 4, wherein the processor is further configured to adjust a threshold of

the noisy interpolation algorithm through the introduction of one of: one or more erroneous

21578370 (IRN: P221239)

31 Jan 2019

2014237590

26

points for the polynomial interpolation, and one or more correct points for the polynomial

interpolation.

6. The device of claim 1, wherein the processor is configured to generate the authentication
hash from the selection based on use of the plurality of hashes that correspond to the plurality of
responses associated with the selected group of the plurality of questions to form the

authentication hash.

7. A computer readable storage medium storing instructions for executing a process, the
instructions comprising:
generating a plurality of hashes from a plurality of responses to a plurality of questions;
generating an authentication hash from at least one of:
a polynomial interpolation of the plurality of hashes and algebraic operations over
the plurality of hashes, and
a selection of one or more of the plurality of hashes to form the authentication hash
based on a selected group of the plurality of questions; and

authenticating with the authentication hash.

8. The computer readable storage medium of claim 7, wherein the generating the
authentication hash from the plurality of hashes comprises performing a polynomial

interpolation of the plurality of hashes.

9. The computer readable storage medium of claim 8, wherein the authenticating with the
authentication hash comprises:

comparing a secret authentication hash with the authentication hash;

using the secret authentication hash for authentication when the authentication hash
matches the secret authentication hash, and

denying authentication when the authentication hash does not match the secret

authentication hash.

10. The computer readable storage medium of claim 8, wherein the performing the
polynomial interpolation of the plurality of hashes further comprises utilizing a noisy

interpolation algorithm to perform the polynomial interpolation.

21578370 (IRN: P221239)

31 Jan 2019

2014237590

27

11. The computer readable storage medium of claim 10, wherein the instructions further
comprise adjusting a threshold of the noisy interpolation algorithm through the introduction of
one of: one or more erroneous points for the polynomial interpolation, and one or more correct

points for the polynomial interpolation.

12. The computer readable storage medium of claim 7, wherein each of the plurality of hashes
is generated from at least two of the plurality of responses; and wherein generating the
authentication hash from the plurality of hashes comprises selecting one of the plurality of

hashes as the authentication hash based on a selected group of the plurality of questions.

13. A server, comprising:

a processor configured to:

transmit a plurality of questions; and

grant access when an authentication hash responsive to the transmitted plurality of
questions matches a secret authentication hash; and

deny access when the authentication hash does not match the secret authentication
hash;
wherein the authentication hash is generated from at least one of:

a polynomial interpolation of the plurality of hashes and algebraic operations over
the plurality of hashes, and

a selection of one or more of the plurality of hashes to form the authentication hash

based on a selected group of the plurality of questions.

14. The server of claim 13, wherein the processor is configured to generate and transmit at
least one of: one or more erroneous points, and one or more correct points for use in a noisy

interpolation algorithm, based on the secret authentication hash and a threshold.

15. The server of claim 13, wherein the processor is configured to select the secret
authentication hash from a plurality of secret authentication hashes based on a selected group of
the transmitted questions, wherein each of the plurality of secret authentication hashes is

associated with at least two of the plurality of questions.

16. The server of claim 13, wherein the processor is further configured to:

21578370 (IRN: P221239)

31 Jan 2019

2014237590

28

receive a response to the plurality of questions, the response comprising a response hash
and an answer to one or a subset of the plurality of questions; and

construct the authentication hash from the response hash and the answer.

17. The server of claim 16, wherein the processor is configured to construct the authentication

hash by constructing a nested hash from the response hash and the answer.

18. The server of claim 16, wherein the processor is configured to construct the authentication

hash by multiplying the response hash with a hash of the answer.

19. The server of claim 13, wherein the processor is further configured to receive the secret
authentication hash and store the secret authentication hash into a memory after receiving a

confirmation from a device associated a user and an account associated with the user.

20. The server of claim 13, wherein the plurality of questions comprises a request for

biometric information.

21. A method for a user device to register for authentication at a server and for further
authenticating at server, comprising:

receiving a plurality of answers to a plurality of questions, the questions associated with
one or more factors of a user,

generating an authenticating secret hash from the plurality of answers,

authenticating the user device at the server based on an authentication session wherein the
authenticating secret hash is reproduced by the user device and,

allowing or denying access at the server based on a successful outcome of the
authentication session, the successful outcome being based on the user device possessing the

authenticating secret hash.

Google LLC
Patent Attorneys for the Applicant/Nominated Person

SPRUSON & FERGUSON

21578370 (IRN: P221239)

WO 2014/150064 PCT/US2014/022075

1/6

=) HG.1fa)

100

Generate a plurality of hashes from a plurality of
responses to a plurality of questions

-

101

Generate an authentication hash from the
plurality of hashes

102

/

Authenticate with the authentication hash

=

WO 2014/150064 PCT/US2014/022075

2/6

=) G 1b)

103

Select a group of questions and provide answers
to the group

-

104

Generate an authentication hash from the
answers and from a random number generated
from a secret seed

-

105

/

Authenticate with the authentication hash

=

WO 2014/150064 PCT/US2014/022075
3/6
(Start)
A
Transmit a plurality of questions NG 200
Receive Authentication Hash .
201
Authentication hash matches secret
authentication hash?
~— 202
YES NO
Y
/\\
Grant Access Deny Access
y 203

h | |

(End

FIG. 2(a)

WO 2014/150064 PCT/US2014/022075

4/6
(Start)
A
—
Transmit a plurality of questions NG 205
Receive Authentication Hash Y
206
Authentication hash matches one o
the stored indicators?
~— 207
YES NO
Y
_
Start Recovery Process Deny Access N 208

h | |

FIG. 2(b)

(End

WO 2014/150064

3002

INPUT/USER
INTERFACE
3

‘—

QUTPUT
DEVICE/
INTERFACE

M0

PCT/US2014/022075

1

EXTERNAL
STORAGE
15

FIG.3

COMPUTING
DEVICE PROCESSOR(S) 310
305
LOGIC UNIT APIUNIT
0 35
/0 INPUT UNIT OUTPUT UNIT
INTERFACE je—
2 30 3B
INTERNAL
STORAGE. s AUTHENTICATION RECOVERY
32 380 38
MEMORY RANDOMNUMBER | [305
N GENERATOR —>
315
M
330'<

WO 2014/150064 PCT/US2014/022075

6/6

415 449

e

T s o —

FIG. 4

