wo 2015/142595 A1 [N 00O 0 Y O

(43) International Publication Date
24 September 2015 (24.09.2015)

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

WIPOIPCT

(10) International Publication Number

WO 2015/142595 A1l

(51

eay)

(22)

(25)
(26)
(30)

1

(72

International Patent Classification:
GO6F 17/30 (2006.01)

International Application Number:
PCT/US2015/020050

International Filing Date:
12 March 2015 (12.03.2015)

English
English

Filing Language:
Publication Language:

Priority Data:
14/216,990 17 March 2014 (17.03.2014) Us

Applicant: MICROSOFT TECHNOLOGY LICENS-
ING, LLC [US/US]; One Microsoft Way, Redmond,
Washington 98052-6399 (US).

Inventors: BURGER, Douglas C.; ¢/o Microsott Techno-
logy Licensing, LLC, LCA - International Patents (8/1172),
One Microsoft Way, Redmond, Washington 98052-6399
(US). LARUS, James R.; ¢/o Microsoft Technology Li-
censing, LLC, LCA - International Patents (8/1172), One
Microsoft Way, Redmond, Washington 98052-6399 (US).
PUTNAM, Andrew; c/o Microsoft Technology Licensing,
LLC, LCA - International Patents (8/1172), One Microsoft
Way, Redmond, Washington 98052-6399 (US). GRAY,
Jan; c/o Microsoft Technology Licensing, LLC, LCA - In-
ternational Patents (8/1172), One Microsoft Way, Red-
mond, Washington 98052-6399 (US).

(8D

(84)

Designated States (uniess otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG,
MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,
PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,
SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,
TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,
TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,
SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW, KM, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

as to applicant'’s entitlement to apply for and be granted a
patent (Rule 4.17(i1))

as to the applicant's entitlement to claim the priority of the
earlier application (Rule 4.17(iii))

Published:

with international search report (Art. 21(3))

(54) Title: PARALLEL DECISION TREE PROCESSOR ARCHITECTURE

HosT 104

/—100

SPECIALIZED OR PROGRAMMABLE LOGIC DevICE 116D

DECISION TREE
CODER 106 (

SPECIALIZED OR PROGRAMMABLE LoaGIc DEVICE 116C

(SPECIALIZED OR PROGRAMMABLE LOGIG DEVICE 1168

FEATURE
VECTOR CODER — 118

SPECIALIZED OR PROGRAMMABLE LOGIC DEVICE 116A

110

DEecisioN TREE SCORER 102

| |
DECISION TREE N f

N

-
SCORING T T s

SCHEDULER 114

DECISION TREE CLUSTER 122

120

MODEL III
CONTEXTS 108

DECISION TREE FEATURE
PROCESSOR 124 STORAGE 126

FEATURE Ill
VECTORS 112 L

| —

FIG. 1

(57) Abstract: Disclosed herein is a decision tree multi-processor system. The system includes a plurality of decision tree processors
that access a common feature vector and execute one or more decision trees with respect to the common feature vector.

10

15

20

25

30

WO 2015/142595 PCT/US2015/020050

PARALLEL DECISION TREE PROCESSOR ARCHITECTURE

BACKGROUND

[0001] A decision tree is a binary search tree comprised of decision nodes and left and
right sub-trees and/or leaves. A decision node includes a decision to be made. Branches
lead from a decision node to other decision nodes or to leaf nodes, and a selection of one of
the branches is based on the decision made at the decision node. An example decision
includes the comparison of two values, such as a feature value and a threshold value. If the
feature value is less than or equal to the threshold value, then a left subtree is selected; if the
feature value is not less than or equal to the threshold value, then the right subtree is selected.
The branch is followed to the next node and, if the next node is a decision node, another
decision is made, and so on until a branch leading to a leaf node is selected. A leaf node
represents an output or an end-point of the decision tree. An example output is an output
value, or a score, for the decision tree. This process is referred to as walking the decision
tree.
[0002] Among other applications, decision trees are used to rank documents in
document search. In one example, a decision tree is used to calculate the relevance of a
particular item (e.g., a web page) to a particular search query. An initial set of candidate
search result documents are obtained, and a feature vector for the candidate search result
documents are produced. The feature vector represents various aspects (e.g., document
statistics) of the candidate search result documents. One example of a feature is the number
of times a search query word appears in the candidate document. Each decision tree node
includes a threshold and a feature identifier, which can be used to look up the feature value
for the candidate search result document. The decision tree is walked, and the tree-walking
process eventually arrives at a leaf node and outputs the associated score. The score (or
multiple scores if more than one decision tree is used) is used to determine the relevance of
a candidate search result. The relative scores of multiple documents are used to rank the
documents.
[0003] Besides search, decision trees have a variety of uses. Decision trees are used to
implement gesture recognition, voice recognition, data mining, and other types of
computations.

BRIEF SUMMARY
[0004] This Summary is provided in order to introduce simplified concepts of the

present disclosure, which are further described below in the Detailed Description. This

10

15

20

25

30

WO 2015/142595 PCT/US2015/020050

summary is not intended to identify essential features of the claimed subject matter, nor is
it intended for use in determining the scope of the claimed subject matter.
[0005] Embodiments of the present description include hardware implementations of
decision tree scoring, which enables faster decision tree scoring than conventional software-
based decision tree scoring. On-chip architecture of the decision tree scoring system
includes a plurality of decision tree processors implemented in parallel on one or more
specialized or programmable logic circuits. At the top level of the on-chip architecture is a
decision tree scorer (DTS) that receive feature vectors (e.g., sets of feature values) from an
upstream computing system host or processing system, sends the feature vectors to a first
decision tree cluster (DTC), receives scores from the decision tree clusters, and outputs the
result to the host or other downstream system. At the next level of the hierarchy, a plurality
of decision tree clusters (DTC) distributes feature vectors amongst themselves, and
processes and propagates scores from decision tree processors to neighboring DTCs and to
the DTS. The DTCs include one or more decision tree processors, and one or more feature
storage tiles (FST). Feature value and threshold value compression reduce the bandwidth
and storage requirements for the decision tree scoring system.

BRIEF DESCRIPTION OF THE DRAWINGS
[0006] The Detailed Description is set forth with reference to the accompanying figures.
In the figures, the left-most digit(s) of a reference number identifies the figure in which the
reference number first appears. The use of the same reference numbers in different figures
indicates similar or identical items.
[0007] FIG. 1 is a block diagram of an example decision tree scoring system that
includes one or more hardware-implemented decision tree scorers in accordance with
various embodiments.
[0008] FIG. 2 illustrates decision tree coding in accordance with various embodiments
of the present disclosure.
[0009] FIG. 3 illustrates an example list of unique threshold values on a real number
line.
[0010] FIG. 4 illustrates an example architecture of the decision tree scorerin
accordance with various embodiments.
[0011] FIG. 5 illustrates an example architecture of a decision tree cluster in accordance
with various embodiments.
[0012] FIG. 6 illustrates a multi-stage, multi-threaded, pipelined tree walking

implementation of a decision tree processor, in accordance with various embodiments.

10

15

20

25

30

WO 2015/142595 PCT/US2015/020050

[0013] FIG. 7 depicts a flow graph that shows an example process of executing a
decision tree node, in accordance with various embodiments.
[0014] FIG. 8 illustrates a process of scoring feature vectors a plurality of decision trees
by a decision tree scorer, in accordance with various embodiments.
[0015] FIG. 9 illustrates a process of scoring a plurality of decision trees by decision
tree clusters, in accordance with various embodiments.
[0016] FIG. 10 illustrates a process of coding threshold values of a plurality of decision
trees in accordance with various embodiments.
[0017] FIG. 11 illustrates a process of coding a set of feature values, in accordance with
various embodiments.
[0018] FIG. 12 is a block diagram of an example computing system usable to perform
various methods described herein.

DETAILED DESCRIPTION
Overview
[0019] Embodiments of the present description include hardware implementations of
decision tree scoring, which enables faster decision tree scoring than conventional software-
based decision tree scoring. The hardware implementation includes one or more decision
tree processors, implemented as circuitry, that execute decision tree programs. A decision
tree program is a decision tree that has been converted to a program or other data executable
by a decision tree processor. A decision tree program includes a decision tree table, which
includes the various decision nodes, feature identifiers, threshold values, and output values
for a decision tree. Some embodiments of decision tree processors walk decision trees in a
multi-stage and/or multi-threaded fashion. In multi-threaded embodiments, each stage of
the decision tree processor executes a different decision tree thread; thus an n-stage multi-
threaded decision tree processor concurrently executes portions of up to # decision trees per
cycle.
[0020] Embodiments include processes, systems, and apparatuses for coding,
compressing, and/or compiling decision trees to be executed within a decision tree
processor. In various embodiments, pointers are eliminated from decision trees by arranging
the nodes such that some of the nodes with branches between them in the decision tree are
adjacent to the particular node in the decision tree table. Other nodes are identified with next
node data, such as offset or delta values. Leaf values are part of the decision tree node

representations, rather than part of separate leaf node entries.

10

15

20

25

30

WO 2015/142595 PCT/US2015/020050

[0021] In some embodiments, feature value and threshold value compression reduces
the bandwidth and storage requirements for a decision tree scoring system, while also
increasing the size of workloads that embodiments are able to handle. In some embodiments
of the present description, a sorted list is created for each threshold value that a particular
feature is compared to in one or more decision trees, and threshold value indices are assigned
to the threshold values. Although the total number of possible thresholds is high (e.g.,
represented in some embodiments by a 32-bit floating point number), the total number of
actual thresholds for a particular feature in a plurality of decision trees is in practice much
smaller, usually no more than 255 thresholds (although larger numbers of thresholds are
possible). A dense or non-dense fixed-point small integer threshold value index is created.
The threshold value index may be numbers from 0 to the total number of thresholds, and
thus may be represented by a 4 bit, 8 bit, or other n-bit fixed point value. In other
embodiments, the threshold value index may be negative numbers, and may include non-
contiguous integer values, such as 0, 2, 4, 6, or other non-contiguous integer values. Feature
values are also coded as n-bit fixed point feature value indices, such that comparisons of the
threshold value indices to the feature value indices are equivalent to comparisons of the
original, non-compressed threshold values to the original, non-compressed feature values.

[0022] In some embodiments, a plurality of decision tree processors is implemented in
parallel on one or more specialized or programmable logic circuits. In some embodiments,
the plurality of decision tree processors executes, or concurrently executes, decision trees
with respect to a common feature vector. At the top level of the on-chip architecture is a
decision tree scorer (DTS) that receives feature vectors (e.g., sets of feature values) from an
upstream computing system host or processing system, sends the feature vectors to a first
decision tree cluster (DTC), receives scores from the decision tree clusters, and outputs the
result to the host or other downstream system. At the next level of the hierarchy, a plurality
of decision tree clusters (DTC) distributes feature vectors amongst themselves and
propagates scores from decision tree processors to neighboring DTCs and to the DTS. At
the next level of the hierarchy, the DTCs include one or more decision tree processors, and
one or more feature storage tiles (FST). The decision tree processors may be multi-threaded
to concurrently execute multiple decision trees with respect to common feature vectors. The
FST stores feature vectors to be scored against the plurality of decision trees, and in some
embodiments are double-buffered to enable one set of features to be written to the FST while

another set of features are accessed by the decision tree processors for scoring.

10

15

20

25

30

WO 2015/142595 PCT/US2015/020050

[0023] Embodiments described herein are amenable to implementation in specialized
hardware such as in an ASIC, or in programmable logic device such as an FPGA. Various
aspects of embodiments are also amenable to implementation in a multi-core processor, a
system-on-chip (SoC) (e.g., one or more decision tree scoring cores on an SoC), and/or as a
general purpose processor with an extended instruction set, and thus able to partially or
wholly execute decision trees responsive to one or more atomic processor instructions. The
devices, processes, and systems described herein may be implemented in a number of ways.
Example implementations are provided below with reference to the following figures.
Example Decision Tree Scoring System

[0024] FIG. 1 is a block diagram of an example decision tree scoring system 100 that
includes one or more hardware-implemented decision tree scorers 102 in accordance with
various embodiments. A host 104 includes a decision tree coder 106 to code decision trees
into model contexts 108 for execution on the decision tree scorers 102. As described in
more detail below, the decision tree coder 106 represents decision trees using variable-
length nodes, wherein subtree pointers are eliminated with adjacencies and offsets, leaf
values are included in the node representations, and threshold values are coded as threshold
index values. The decision tree coder 106 reduces the sizes of the decision trees, to enable
more of them to be loaded onto the decision tree scorer 102. The decision tree coder 106
may also or alternatively compress the decision tree data (or coded decision tree data) of the
model contexts 108 using other compression techniques. In these embodiments the decision
tree scorer 102 or other on-chip logic is configured to decompress the compressed decision
tree or coded decision tree data for scoring on the decision tree scorer 102.

[0025] The host 104 also includes a feature vector coder 110 that codes feature values
within feature vectors 112 to reduce the bandwidth and storage requirements of the decision
tree scorers 102, to make the feature vectors 112 compatible with the coded model contexts
108, and to place the model contexts 108 and the feature vectors 112 into a form more casily
processed by specialized hardware as described in various embodiments herein. As
described in more detail elsewhere within this Detailed Description, the feature vector coder
110 selects feature index values for the features such that comparisons of the feature index
values to threshold index values within the model contexts 108 are equivalent to
comparisons of the corresponding feature values and threshold values.

[0026] The host 104 includes a decision tree scoring scheduler 114 that schedules

decision tree scoring jobs. The host 104 receives or determines that various ones of the

10

15

20

25

30

WO 2015/142595 PCT/US2015/020050

feature vectors 112 are to be scored against various ones of the model contexts 108. An
example set of decision tree scoring jobs includes:

Feature vector 1 / Model Context A

Feature vector 2 / Model Context B

Feature vector 3 / Model Context A

Feature vector 4 / Model Context B
[0027] Because it generally takes more time to load a new model context into the
decision tree scorer 102 than it takes to load a new feature vector into the decision tree scorer
102, the decision tree scoring scheduler 114 rearranges the decision scoring jobs to reduce
the number of times that a new model context 108 is loaded into the decision tree scorer
102. Continuing with the example above, the decision tree scoring jobs are rearranged as
follows:

Feature vector 1 / Model Context A

Feature vector 3 / Model Context A

Feature vector 2 / Model Context B

Feature vector 4 / Model Context B
[0028] In the field of search, a model context is a set of decision trees associated with a
type of search being performed. Examples of search contexts that utilize different sets of
decision trees are language (search on English-language queries may be performed using a
different model context that searches performed in German-language queries), image
search, news search, video search, and so forth. Other search contexts may call for separate
model contexts.
[0029] The host 104 is configured to be communicatively coupled to one or more
specialized or programmable logic devices 116 via datapath interfaces, such as interfaces
118 and 120. The interfaces 118 and 120 are, in various embodiments, Peripheral
Component Interfaces Express (PCI-Express) interfaces, although other interface types and
specifications may be used without departing from the scope of embodiments. The
determination of the interface type may be based on interface bandwidth targets, which may
in turn be based on the throughput targets for the decision tree scoring system 100. In a
particular example, where a target processing speed is one microsecond per search
document scoring, using decision tree and feature compression techniques described herein
results in a bandwidth target of approximately 2-8 KB per feature vector (e.g., per candidate
search result document), or approximately 2-8 GB per second. PCI-Express is suitable for

this target, although other interface types and specifications may also be suitable for this or

10

15

20

25

30

WO 2015/142595 PCT/US2015/020050

other targets. Multiple interfaces may also be used in place of a single high-speed interface
without departing from the scope of embodiments.

[0030] As described in more detail below, the host 104 may be implemented as a
plurality of programming instructions executable by one or more general-purpose
processors of a computing system. However, one or more aspects of the host 104 may be
implemented on specialized or programmable logic circuits (such as ASIC chips or FPGA
chips).

[0031] The decision tree scorer 102 includes one or more decision tree clusters 122.
The decision tree clusters 122 are configured to distribute the model contexts 108 and the
feature vectors 112 amongst themselves. Alternatively, or in addition, the decision tree
scorer 102 may include an interconnect network to pass the model contexts 108 and/or the
feature vectors 112 throughout the decision tree scorer 102. The decision tree clusters 122
are also configured to process and propagate decision tree scores from neighboring decision
tree clusters 122, as well as from the decision tree processors 124 within the decision tree
clusters 122. The decision tree clusters 122 are configured to process the scores received
from the decision tree processors 124 and neighboring decision tree clusters — which may
include summing the decision tree scores — and to propagate the processed scores (e.g., the
summed scores) to other neighboring decision tree clusters 122, as will be described in more
detail elsewhere within this Detailed Description. The decision tree scorer 102 is configured
to receive from one of the decision tree clusters 122 a final score (e.g., a scalar or a vector
quantity) for the decision tree scoring job and to output the score to the host 104, or another
downstream device.

[0032] The decision tree processors 124 include circuitry to execute decision trees of
one or more model contexts 108, such as in parallel and concurrently against a common one
of the feature vectors 112, or against the different ones of the feature vectors 112, depending
on the implementation. Different ones of the feature storage 126 may store either a common
one of the feature vectors 112 or different ones of the feature vectors 112. The feature
storage 126 within each decision tree cluster 122 may store the same or different ones of the
feature vectors 112.

[0033] As used herein, a decision tree processor 124 includes circuitry to score a
decision tree. A decision tree processor 124 may include both circuitry to score a decision
tree, and the decision tree code itself, embodied as a decision tree table and stored in some
memory accessible to the decision tree processor 124. One or more decision tree tables may

be hard-coded into the decision tree processors 124, stored on memory within the decision

10

15

20

25

30

WO 2015/142595 PCT/US2015/020050

tree processors 124, or stored on memory that is otherwise associated with and
communicatively coupled to the decision tree processors 124. The memory that the decision
tree tables are stored in may be shared or dedicated storage, and may be random-access
memory (RAM), flash memory, read-only-memory (ROM), or other memory type. The
memory that the decision tree tables are stored on may be on-die, such as on-diec memory,
or may be off-chip on attached memory, such as may be communicatively coupled via a
high-speed memory interface. The model contexts may be co-resident within the shared or
dedicated memory. In some embodiments the host 104 may provide the model contexts 108
to the decision tree scorers 102, and/or to an on-chip or attached memory. The host 104,
when scheduling a workload, may provide the decision tree scorers 102 an indication of the
model context 108 that should be loaded or otherwise accessed and executed by the decision
tree processors 124. In some embodiments, there may be two levels of memory that stores
decision tree tables; a first level of memory (which may be on-chip or attached memory,
and may be shared or dedicated to one or more decision tree processors 124) is loaded or
loadable with a particular decision tree table or tables to be executed according to a current
workload requirement. A second level of memory (which may be on-chip or in attached
memory, shared or dedicated to one or more decision tree processors 124) may store one or
more co-resident model contexts, all or portions of which are loadable onto the first level of
decision tree table memory.

[0034] The host 104 may provide a common one of the feature vectors 112 to a plurality
of specialized or programmable logic devices 116, and also provide decision tree tables of
a single model context 108 to the plurality of specialized or programmable logic devices
116. Thus, the individual decision tree clusters 122 and decision tree processors 124 across
a plurality of specialized or programmable logic devices 116 may score decision trees of a
single model context 108 against a common one of the feature vectors 112. Score data from
cach of the plurality of specialized or programmable logic devices 116 may be propagated
within each of the plurality of specialized or programmable logic devices 116 as described
elsewhere within this Detailed Description, and also passed back to the host 104. In some
embodiments, score data may be passed from a first specialized or programmable logic
device 116 to another specialized or programmable logic device 116, which may then further
propagate the score data (such as by summing or appending scores, or appending sums of
scores) to produce combined score data for both specialized or programmable logic devices

116.

10

15

20

25

30

WO 2015/142595 PCT/US2015/020050

[0035] Other methods of processing score data are possible without departing from the
scope of embodiments. For example, each decision tree scorer 102 may receive scores, or
a list of sums of scores, from the decision tree processors 124 and/or the decision tree
clusters 122 within the decision tree scorer 102, and provide a final summed value either to
the host 104, another programmable logic device 116, or to some other downstream device.
The decision tree scorer 102 may provide the lists of scores (or sums of scores) to the host
104, another programmable logic device 116, or to the other downstream device. The host
104, other programmable logic device 116, or other downstream device may perform a final
scoring of the feature vector 112, such as by summing the scores or performing some other
algorithm to determine a final score for the feature vector 112, such as based on score data
from one or more of the of the plurality of specialized or programmable logic devices 116.
[0036] In some embodiments, the specialized or programmable logic devices 116 may
be, or be included in, one or more of application-specific integrated circuits (ASIC), a
programmable logic device such as a field programmable gate array (FPGA), a system on a
chip (SoC), as part of a general purpose processor having a specialized portion that scores
decision trees, some other logic device, or some combination of the above.

General Purpose Processor with Extended Instruction Set

[0037] In some embodiments, the instruction set architecture of a general purpose
processor is extended to include decision tree traversal, scoring instructions, and state. In
some embodiments, the extended instruction set includes an instruction to walk one node in
a decision tree. In some embodiments, the extended instruction set includes an instruction
to walk a plurality of nodes, or to walk an entire decision tree from a root (top node) to a
leaf.

[0038] The state usable by a general purpose processor with an extended instruction set
to traverse a decision tree includes representation of the decision tree nodes and the feature
vector data. The decision tree nodes may be represented in a data structure, in executable
instructions, or in some other form. As a data structure, the decision tree may be represented
as a tree comprising one or more nodes, the nodes comprising feature identifiers, threshold
values, and left and right subtree data, which may identify left (respectively right) subtree
nodes or left (respectively right) leaf nodes or leaf score values. A particular node’s data
may be bundled into adjacent bytes e.g. a record or ‘struct’ or ‘class’, or may be spread
across tables. Where the decision tree nodes are represented as a data structure, a tree node
is identified by a data value, e.g., an index or pointer (machine address) of the node.

Traversing a tree node responsive to an instruction to walk one or more nodes comprises

10

15

20

25

30

WO 2015/142595 PCT/US2015/020050

starting with a tree node identifier, retrieving the feature it identifies, comparing it to the
threshold value of the node, and using the comparison outcome to determine the tree node
identifier of the left or right subtree, or right or left leaf/leaf value. In some embodiments
an instruction to walk a node, referred to herein as a NODEWALK instruction, may take
two parameters, for example a register containing a pointer to the tree node and a register
containing a pointer to the feature vector in RAM, and may produce two values, for example,
a register containing either a pointer to the left or right subtree (if not a leaf node) or
containing the output value (if a leaf node), as well as a condition code register containing
a flag that is set if NODEWALK has reached a leaf value (terminating the tree walk). In
assembly language, a tree walk includes:
; load r1 with the address of the root node of the decision tree
; load r2 with the address of the feature vector
repeat:
rl = NODEWALK rl,r2 ; walk from one node to its left or right subtree
;node
JNE repeat ; repeat until a leaf is reached
; reached a leaf; leaf output value is in rl
[0039] Another embodiment of NODEWALK bundles the loop test and jump into one
instruction:
; load r1 with the address of the root node of the decision tree
; load r2 with the address of the feature vector
repeat2:
rl = NODEWALKREPEAT rl,r2,repeat2 ; walk one node, repeat ;until ;a
leaf is reached
; reached a leaf, leaf output value is inrl
[0040] Another embodiment walks the entire tree in one instruction:
; load r1 with the address of the root node of the decision tree
; load r2 with the address of the feature vector
r3 = TREEWALK rl,r2; walk the tree
; leaf output value is in rl
[0041] In some embodiments, a decision tree is represented as a series of tree traversal
instructions that are executed by a processor, which implements decision tree traversal
instructions. The instructions correspond to one node in a decision tree. The instructions,

represented as bit strings, comprise bit fields including a feature identifier, a threshold, and

10

10

15

20

25

30

WO 2015/142595 PCT/US2015/020050

identifiers of the left and right subtree nodes and/or leaves and leaf values. In this
embodiment, a tree node is identified with an instruction (machine code) address. Therefore
a tree walk comprises executing a tree node walk instruction that changes program control
flow to jump to the code for the left or right subtree.
[0042] For example, if a decision tree is comprised of two nodes:
if (feature 10 <=t1) then
if (feature 20 <=t2) then
score = a;
else
score = b;
endif
else
score = ¢;
endif
[0043] This might be represented by this program:
treewalk:
; load r2 with the address of the feature vector
root:
rl = NODE #10.#t1 #left,#0,#0,#c,#end, 12
left:
rl = NODE #20,#t2,#0,#0,#a,#b,#end,r2
end:
; leaf output value in r1
in which the NODE instructions encode:
leaf-output-value = NODE #feature-identifier, #threshold-value, #left-subtree-
address, #right-subtree-address, #left-leaf-output-value, #right-leaf-output-value,
#leaf-code-address, feature-vector-address-register
The # fields are ‘immediate’ value bit fields of the instruction.
[0044] In this embodiment a decision tree is scored by executing its first NODE
instruction, which jumps to the next left or right NODE instruction, and so on, until it
reaches a leaf. The root NODE instruction’s bit fields encode the feature identifier (10), the
threshold value (41), the left subtree (‘left’), the right subtree (nil), the left leaf value (nil),
and the right leaf value (c). In this example if the identified feature is less than or equal to

the threshold t1, then control transfers to the second NODE instruction at address ‘left’. This

11

10

15

20

25

30

WO 2015/142595 PCT/US2015/020050

instruction’s bit fields encode its feature identifier (20), threshold value (t2), left and right
subtrees (nil), and the left and right leaf output values (a and b, respectively). If a node
instruction advances to a leaf, then it transfers control to the specified address (end) and the
leaf index or output value is obtained in the output register.

[0045] In other embodiments, a tree traversal instruction may use implicit registers,
special purpose registers, or memory locations to identify the feature vector and the leaf-
node address. Other embodiments may employ variable-length instruction encodings to
compress or eliminate instruction bit fields (such as nil subtree fields) which are not used to
represent a particular decision tree node. Other embodiments may take advantage of
adjacency of instructions in memory to compress or eliminate bit fields (such as a left or
right subtree address) in a manner similar to that described ecarlier.

[0046] In some embodiments, the decision tree data structure memory, or the decision
tree instruction memory, may be integrated into the general purpose processor, stored
externally to it, or may be coupled to external memory through a memory cache hierarchy.
[0047] A general purpose processor with decision tree traversal, scoring instructions,
and state may also be coupled to a feature storage RAM. In some embodiments the feature
storage RAM may be loaded automatically by a feature vector distribution network as
described elsewhere within this Detailed Disclosure. In particular, new feature data may be
loaded into this RAM by the feature vector distribution network without requiring execution
of any instructions by the general purpose processor with extended instruction set for
walking decision trees. This may save time and energy required to score a decision tree.
[0048] A general purpose processor with decision tree traversal, scoring instructions,
and state may also be coupled to a score aggregation system. This may comprise additional
registers, thread state, or an adder tree network, to accumulate leaf output values (scores)
resulting from instructions like NODEWALK, TREEWALK, or NODE to traverse a node
to a leaf node. This too may save time and energy required to score a decision tree.
Example Decision Tree Coding

[0049] FIG. 2 illustrates decision tree coding in accordance with various embodiments
of the present disclosure. An example decision tree 200 is illustrated in FIG. 2. It includes
a plurality of decision nodes 202 and a plurality of leaf nodes 204. A decision node 202
includes various features, including a feature identifier, which may be an address, an index
number, a reference numeral or other identifier that identifies the feature being compared at
the decision node 202. The decision node 202 also includes a threshold value to which the

feature value (referenced via the feature identifier) is compared. The decision node 202 also

12

10

15

20

25

30

WO 2015/142595 PCT/US2015/020050

includes a left branch pointer and a right branch pointer, which indicate the locations where
the next nodes are located. Each decision node 202 represents a comparison; for example
node number 7 shows that feature value, identified as feature “F1,” is compared to a
threshold number 10. Other comparisons are possible without departing from the scope of
embodiments.

[0050] Embodiments described herein refer to left branch, right branch, left nodes, right
nodes, etc. But these terms are used merely for the sake of describing a decision tree. In
general, a decision tree walking algorithm performs a comparison between the feature value
and the threshold value and proceeds to either a first node or a second node depending on
the outcome of the comparison. For ease of description, these next nodes are referred to
herein as left nodes and right nodes, but this is not to be taken in a literal or limiting sense.
[0051] A leaf node 204 includes a leaf value. When a decision tree walking algorithm
reaches a leaf node 204, the particular instance of walking the decision tree is complete, and
the leaf value corresponding to the particular leaf node 204 arrived at is output.

[0052] The decision tree coder 106 codes the decision tree 200. The decision tree coder
106 creates a decision tree table 206 for each decision tree within a model context. In the
decision tree table 206, at least some branch pointers are eliminated with adjacencies. Thus,
Node 1 in the decision tree 200 is coded in the decision tree table as being prior to Node 2.
Node 3 is listed after Node 2, and Node 4 is after Node 3. Thus, during the execution of
Nodes 1-3 within the decision tree table 206, a decision tree processor, such as one of the
decision tree processors 124, knows to select, based on the outcome of a comparison of the
feature value to the threshold value, either the following adjacent node in the decision tree
table 206 or another node, referred to by next node data such as an offset value, as a next
node to be executed by the decision tree processors. Thus, based on the example adjacencies
illustrated in FIG. 2, the outcomes of executing decision nodes of the decision tree table 206
that indicate to select the left branch result in selecting the adjacent node as the next node.
Thus, where a particular decision node has a left branch that leads to another decision node
(and not to a leaf node), the adjacent node in the decision tree table 206 is the next left node.
Right next nodes are identified using next node data, such as offset values. Where there is
no left decision node (because for example the left branch leads to a leaf node), it is possible
for right next nodes to be adjacent; such right nodes may also identified by next node data,
such as offset values, or they may be assumed to be adjacent.

[0053] In addition to arranging the decision nodes 202 within the decision tree table 206

based on adjacencies, the decision tree coder 106 also includes any leaf node values of leaf

13

10

15

20

25

30

WO 2015/142595 PCT/US2015/020050

nodes 204 in the representation of the decision nodes 202 within the decision tree table 206.
For example, Node 7 is coded by the decision tree coder 106 such that its representation
includes a leaf value. Based on the outcome of the execution of Node 7 (e.g., based on the
comparison of the feature value to a threshold value 10 as shown in FIG. 2), the decision
tree processor selects either to output the value of the left leaf node or select node 8 as the
next decision node for processing.
[0054] The decision nodes 202 are represented within the decision tree table 206 as
variable length decision nodes (some are shown as being smaller than others to illustrate
this). In one example, the following fields are used by the decision tree coder 106 to code
the decision nodes.

2 Leaves: {feat ad;info; L Leaf val; R Leaf val} (72 bits)

1 Leaf: {feat ad;info; L Leaf val or R Leaf val} (48 bits)

0 Leaves: {feat ad; info; delta(optional)} (24 or 36 bits)

[0055] All representations of decision nodes 202 within the decision tree table 206
include a feature identifier (“feat ad”) and information (“info”) field. The feature identifier
identifies a location within the feature storage where the feature value (which may be a
feature index value as described elsewhere within this Detailed Description) to be compared
to a threshold in the execution of the decision node is found. The feature identifier may be
an address or other identifier that a decision tree processor uses to look up the feature value
within feature storage, such as within the feature storage 126. The information field includes
various sub-fields discussed in more detail below.
[0056] The two-leaf decision nodes also include a left leaf value (“L_Leaf val”) and a
right leaf value (“R_Leaf val”). These values represent possible outcomes or outputs of the
decision tree 200. The one-leaf decision nodes include one of a left leaf value
(“L_Leaf val”) or a right leaf value (“R_Leaf val”). A leaf value may include various data
types, including integer, fixed point, floating point, or an index that identifies a unique value
stored outside of the decision tree table.
[0057] A decision node with no leaves, such as Node 2, includes an optional delta value
that identifies where the right decision node is located. In this case, the left decision node
is located within the decision tree table 206 at the adjacent location (e.g., for Node 2, the
“left” decision node is Node 3). The right decision node is located at a location within the
decision tree table 206 that is identifiable by the delta value. The decision tree processor
processes the delta value to determine the right decision node value. For example, the

decision tree processor may add the delta value to a location value (e.g., an index value or

14

10

15

20

25

30

WO 2015/142595 PCT/US2015/020050

address) of the currently executing decision node to obtain the location value (e.g., address
or index value) of the next right decision node. In some instances, the delta value is included
within the info field as described in more detail below. In these instances, a separate delta
value is not included within the node representation.
[0058] In an example implementation, the feat ad field is 12 bits, the info field is 12
bits, the rdelta field is 12 bits, the left leaf value is 24 bits, and the right leaf value is 24 bits.
[0059] The info field includes various sub-fields that identify the threshold wvalue,
whether there is a left leaf, whether there is a right leaf, and encodes common offset or delta
values for locating the next right node. One example of the info field is as follows:

Info: {nyb; x; 1 leaf; r_leaf; threshold}
[0060] In some embodiments, the nyb field is 1-bit that identifies whether the feature
value is a 4-bit or an 8-bit word (e.g., whether the feature value is a “nibble”), the x field is
1-bit, the 1 leaf is 1-bit, the r_leaf is 1-bit, and the threshold is 8 bits, although other field
sizes may be used without departing from the scope of embodiments. The | leaf field
indicates whether the node includes a left leaf value; likewise, the r leaf field indicates
whether the node includes a right leaf value. As noted above, the info field can be used to
code the right node offset or delta value, thereby eliminating the need for a separate delta
field in the node. Where x=1, the | leaf and r_leaf fields are used to code four common
offset values. In a particular example, the 1 leaf and r_leaf fields are used to code offsets
of 8 words, 12 words, 16 words, and 20 words (where a word = 12 bits in this particular
example), although other offset values may be coded without departing from the scope of
embodiments. Where the offset value cannot be coded with one of the common offset values
within the info field — because for example the next right node is not at a location that is one
of the common offset values away from the current node — the optional separate offset delta
field is used. In some embodiments, multiple decision trees are stored in one decision tree
table, with appropriate coding identifying the number of decision trees and/or locations of
the one or more decision trees within the decision tree table.
[0061] In some embodiments, the decision tree table 206 also includes a DTT header
208, which codes various aspects of the decision tree table 206, such as the number of
decision trees contained within the decision tree table 206 and starting locations for one or
more decision trees within the decision tree table 206.
Example Threshold and Feature Compression
[0062] Within a given decision tree, or within a plurality of decision trees such as within

a model context 108, decision nodes include feature identifiers and threshold values. In an

15

10

15

20

25

30

WO 2015/142595 PCT/US2015/020050

example decision tree node execution, a feature value (read from the feature vector at a
location indexed by the feature identifier feat ad) is compared to a threshold value. The
comparison may be a determination of whether the feature value is less than or equal to a
threshold value. If yes, then the left branch is selected; if no, then the right branch is
selected. Other types of comparisons are possible without departing from the scope of
embodiments, such as less than, greater than, or greater than or equal to. Although various
examples of feature value and threshold value encoding described below assume that the
decision tree comparisons include determining whether a feature value is less than or equal
to the threshold value, similar coding can be performed for feature values and threshold
values based on other types of decision tree comparisons without departing from the scope
of embodiments.

[0063] Throughout a plurality of decision trees, a given feature f; will be referenced in
one or more nodes. The nodes that reference a given feature f; will include one of one or
more threshold values #vi. Thus, within a given model context (e.g., one or more decision
trees), and for a particular feature fi, the decision tree coder 106 determines a list zs; of
threshold values #v; that feature values fv: corresponding to a particular feature fi are
compared to. Threshold values not compared to a particular feature fi are not included in
the list for the particular feature fi (although they will be included in other lists for other
features). To code the threshold values #v: for a particular i within a model context, the
following procedure is used.

[0064] For each feature fi, the decision tree coder 106 forms a sorted list #s; of all unique
threshold values #v; that are included in any node of any of the decision trees of a model
context that also reference fi. FIG. 3 illustrates an example list zs; of unique threshold values
tvi on a real number line 300. The sorted list zs; only includes unique ones of the threshold
values tvi; thus a particular threshold #v: appears in zs; only once, even if it is included in
multiple nodes that reference f; within a given model context.

[0065] An example coding 302 for the thresholds values #v: in #s; are shown in FIG. 3.
Index numbers #vi; are assigned to each unique #v; on the real number line 300 within #s; in
ascending order, such that the smallest 7v; is assigned index 0 and the largest #v: is assigned
an index number equal to one less than the total number of unique #v; within #si. In the
example shown in FIG. 3, threshold value ¢/ is the smallest #v;, and is assigned index 0,
while threshold value t6 is the largest #v: and is assigned threshold index value 5. Where the
threshold values are large numbers, the assignment of fixed-point integer index values #vi;

reduces the number of bits required to represent the thresholds within the decision tree node

16

10

15

20

25

30

WO 2015/142595 PCT/US2015/020050

representations. For example, the threshold values #vi may be 32-bit floating point numbers
(although other numbers of bits, and other types of variables, may be used without departing
from the scope of embodiments), and in the example illustrated in FIG. 3, as small as a
three-bit number may be used to represent the threshold index values #vi; (although other
numbers of bits may be used to represent #vi;, and the feature index values fvii, as is described
in more detail below).
[0066] In addition to coding #v: into #vi;, the feature vector coder 110 codes the feature
values fvi that correspond to f; in the feature vectors 112 into feature index values fvi; such
that they are compatible with the coded threshold index values #vi;. Each feature vector 112
includes a list of feature values fv; for each fi. In some embodiments, the feature values fvi
are coded into feature index values fvi; based on the threshold index values #vii, and in
particular they are coded such that outcomes of the comparisons of the threshold index
values tvi; to the feature index values fvi; are equivalent to the outcomes of comparing the
threshold values #v: to the feature values fvi. By coding feature values this way, outcomes
of the execution of the coded decision trees within the model contexts 108 against the coded
feature vectors 112 produce the same outputs as conventional, software-based execution of
the decision trees based on the original feature values and threshold values.
[0067] Continuing with the example illustrated in FIG. 3, execution of the decision
nodes of the decision trees within the model contexts 108 are based on determining whether
a feature value fv; is less than or equal to the threshold value #v:. Therefore, in this example,
the feature values fv: are coded into feature index values fvi; such that
i < tvii if-and-only-iff fvi < tvi

[0068] More generally, feature values fv: are coded into feature index values fvi; such
that

fvii compare tvi; if-and-only-if fvi compare tvi
where compare represents the comparison function performed during execution of the
decision tree (e.g., one of <, >, <, or >). In the example shown in FIG. 3, feature index
values fvi; are selected such that

fviiis the greatest integer such that fvi <= tsi/fvii],

or else fvi; = #tsiif fi > tsif#tsi-1].
where #zs; is the total number of threshold values # associated with a particular feature f;
within a particular model context (e.g., all threshold values #vi in nodes that reference feature
fi). Stated another way, feature index values fvi; are selected to be either (1) the threshold

index value #vi; that corresponds to the smallest one of the threshold values #v: that is greater

17

10

15

20

25

30

WO 2015/142595 PCT/US2015/020050

than or equal to the feature value fv;, or if all threshold values #v; are smaller than the feature
value fvi, (2) a number that is greater than the largest threshold index value #vii. In the
example shown above, the corresponding fvi; is selected to be a number equal to the total
number of threshold values #v;, which is one larger than the largest tvii; however, any number
larger than the largest #vi; may be selected.
[0069] In the example illustrated in FIG. 3, the feature vector coder 110 codes example
features f1-f6 as coding 304. With respect to feature f1, t2 is the smallest #v; that is greater
than or equal to f1, and thus the feature index value fvi; for f1 is set to be the same as the #vi;
for t2 (i.e., 1). With respect to feature f6, no tvi is greater than or equal to f6; thus the fvi;
for f6 is set to a number greater than the largest rvii. In the example shown in FIG. 3, the
Jvii for t6 is set to 6, which is one greater than the largest #vii, 5. Also, in the example shown
in FIG. 3, f4 is coded as 3.
[0070] The number of bits selected to code the #v; and the fvi associated with a particular
fi is, in embodiments, large enough to accommodate #s: (the total number of unique #vi
associated with decision nodes that reference f;). In some embodiments, one of a set of
possible index lengths is used to represent #v; and fvi, which reduces the complexity of
coding #v; and fvi. In one particular example, #v; and fvi are coded as either 4-bit words, 8-
bit words, or as multiple 8-bit words, although other word lengths may be used without
departing from the scope of embodiments. In a particular example, the index word lengths
are selected such that

o If [g(#ts;) <4, recode tvi and fvi into 4 bits, where /g(x) is the logarithm of x to the

base-2.
e Else if Ig(#ts;) <8, recode tvi and fvi into 8 bits
e Elserecode any #vi and fvi with #ts; > 255 threshold comparisons as (#tsi)/255
separate fi

Where fi is recoded into (#s1)/255 separate fi, the decision nodes are recoded by the decision
tree coder 106 to indicate one of the (#tsi)/255 separate fi, and the corresponding threshold
values #v: of the nodes are recoded accordingly. In a specific example, an fi with 1259 total
tvi within zs; results in nodes associated with the particular fi being recoded into one of five
different nodes, each with a separate fi and 8-bit thresholds. Thus, fvii=0 is coded as (0, 0,
0, 0, 0) (e.g., is coded as 0 for all of the separate fi that the original fi is broken into); fvii
=255 is coded as (255, 0, 0, 0, 0) (e.g., 255 for the first of the separate fi and 0 for all others
of the separate fi); fvii=256 is coded as (255, 1, 0, 0, 0) (e.g., 255 for the first of the separate

18

10

15

20

25

30

WO 2015/142595 PCT/US2015/020050

fi, 1 for the second separate fi, and 0 for all others); fvii =1258 is coded as (255, 255, 255,
255, 238). Threshold values #v; for the separate fi are also coded in a similar way.

Parallel Architecture

[0071] FIG. 4 illustrates architecture 400 of the decision tree scorer 102 implemented
on a specialized integrated circuit or a programmable integrated circuit in accordance with
various embodiments. The architecture 400 includes a plurality of decision tree clusters
(DTC) 122 arranged in a grid. The DTCs 122 are configured to receive model contexts 108
and feature vectors 112 from the decision tree scorer 102. The DTCs 122 include subsets
of a plurality of decision tree processors 124 and subsets of feature storage 126. The subsets
of decision tree processors 124 may be loaded and/or loadable with the same or different
decision tree tables as other subsets of the decision tree processors, and the subsets of the
feature storage 126 may be loaded or loadable with the same or different feature vectors
(e.g., they may be loaded with common feature vectors).

[0072] The DTCs 122 may receive the feature vectors 112 from first neighboring DTCs
122 and distribute them to second neighboring ones of the DTCs 122. In one example, DTC
122-A is configured to receive feature vectors 112 from DTC 122-C, and to distribute those
feature vectors 112 to DTCs 122-C and 122-D as illustrated by the arrows in FIG. 4.
[0073] Likewise, the DTCs 122 may receive score data from first neighboring DTCs
122 and propagate them to second neighboring ones of the DTCs 122. The score data may
be based on individual decision tree scores, as output by different ones of the decision tree
processors 124 (such as against a common feature set). The score data may a list of scores,
a sum of the scores, or some other score data that is based on the individual scores (such as
a multiplication of the individual scores, or some other algorithm for processing scores).
The lists of scores may be lists of scores from individual decision tree outcomes, or lists of
processed scores. For example, all scores from a particular decision tree cluster 122 may
be summed, and appended to a list of all DTC 122 scores such that a final score data includes
a list of summed scores from each DTC 122. In another example, all scores from decision
trees executed by a single decision tree processor 124 may be summed, and the summed
scores from all decision tree processors may be listed in a final score data, and so forth.
Other ways of propagating the score data may be used without departing from the scope of
embodiments. In some embodiments, processed or raw score data from each DTC 122,
groups of DTCs 122, decision tree processors 124, groups of decision tree processors 124,

individual decision trees, group of decision trees are provided to the DTS 400 in some other

19

10

15

20

25

30

WO 2015/142595 PCT/US2015/020050

fashion (such as on a separate output network), and not propagated to neighboring DTCs
122 as described herein.

[0074] In the example shown in FIG. 4, DTC 122-E is configured to receive score data
from neighboring DTCs 122-F and 122-G. The DTC 122-E is configured to receive score
data from neighboring DTCs 122-F and 122-G along with score data provided by the
decision tree processors (such as the decision tree processors 124) within DTC 122-E,
process the score data to determine combined score data (such as by summing the scores,
appending the scores to a list of individual scores, or processing the score data in some other
way), and to pass the combined score data to neighboring DTC 122-H, which performs
similar functions, and so on until all scores are propagated to a final one of the DTCs 122,
which passes the final score data to the DTS 102. More generally, the DTCs 122 are
configured to propagate score data such that scores are not double counted. For example, a
particular pattern of score propagation through the DTS 102 avoids any one of the DTCs
122 from receiving two scores from two neighboring DTCs 122 into which the same scores
have been processed.

[0075] In some embodiments, loading a model context into the decision tree scorer
architecture 400 includes loading different decision tree tables into different ones of the
decision tree tiles within the DTCs 122, including a plurality of decision trees distributed
throughout the decision tree processors of the DTCs 122 of the decision tree scorer
architecture 400. In these embodiments, cach of the decision trees loaded into the DTCs
122 produces a separate score based on a common feature vector.

[0076] In some embodiments, different decision tree tables loaded at the same time into
the decision tree architecture 400 may be part of a single model context 108, or part of
different model contexts 108. In some embodiments, multiple decision tree models are
coded into a single model context. In one example, two models may be similar but have
some differences. The decision trees for the two models are modified slightly to introduce
new decision nodes that select either model 1 or model 2. In addition, appropriate features
into the feature vectors to select for either model 1 or model 2.

[0077] In some embodiments, loading a feature vector into the decision tree scorer
architecture 400 includes loading the same feature vector values into each of the feature
storage tiles of the DTCs 122. Thus, the plurality of decision trees of the DTCs, which in
embodiments are different from one another, are scored against the same set of features,

with all scores processed (e.g., summed) and propagated back to the DTS 102.

20

10

15

20

25

30

WO 2015/142595 PCT/US2015/020050

[0078] In other embodiments, various ones of the DTCs 122 are loaded with the same
decision trees, such that they execute the same decision trees as other ones of the DTCs 122.
Different feature vectors may be loaded into different ones of the DTCs such that the
decision trees are executed against different feature vectors. In some embodiments, the
DTCs 122 are loaded with different feature vectors and the same decision tree, or group of
decision trees, are loaded into the decision tree scorer architecture 400. In these
embodiments, each DTC 122 is loaded with a different group of one or more feature vectors.
The decision trees are scored against the feature vectors and scores are accumulated over
time for the feature vectors as all decision trees of a model context are flowed past the feature
vectors and executed. In these embodiments, the DTCs 122 may be configured to hold
scores for the feature vectors until all decision trees of the model context are loaded and
executed against the feature vectors; alternatively, individual decision tree scores are
transmitted to the host 104, which accumulates and processes scores for a particular feature
vector.

[0079] In still other embodiments, different groups of the DTCs 122 are loaded with
different decision tree jobs (e.g., combinations of model contexts and feature vectors). Thus,
a first portion of the decision tree scorer architecture 400 determines scores for a first feature
vector against a first model context, a second portion of the decision tree scorer architecture
400 determines a score for a second feature vector against a second model context, and so
on with an Nth portion of the decision tree scorer architecture 400 determining a score for
an Nth feature vector against an Nth model context. In these embodiments, the DTCs 122
of each portion are loaded with decision trees of a model context, and feature vectors
distributed one-by-one within the portions for scoring, or the DTCs 122 of each portion are
loaded with different feature vectors, and the decision trees of the model context are
distributed one-by-one within the portions for scoring.

[0080] The number of DTCs 122 within the decision tree scorer architecture 400 can
scale up to an arbitrarily large number, depending on the size and capabilities of the
integrated circuit onto which the decision tree scorer architecture 400 is implemented.
[0081] In some embodiments, more than one decision tree scorer architecture 400 is
utilized, each with its own set of DTCs 122 executing in parallel. In these embodiments, a
single model context may be loaded onto DTCs 122 of one or more chips, and feature
vectors distributed to the DTCs 122 of the different chips one-by-one for scoring. In other
embodiments, different feature vectors are loaded into the DTCs 122 of the different chips,

with different decision trees of the model contexts distributed one-by-one into each of the

21

10

15

20

25

30

WO 2015/142595 PCT/US2015/020050

DTCs 122 for scoring. In various other embodiments, combinations of these approaches
may be utilized for different portions of the combined multi-chip decision tree scorer
architecture 400.

[0082] In some embodiments, determining an overall or combined score for the model
context loaded into the decision tree scorer architecture 400 is based on an associative
function, such as addition or multiplication, where the order in which the scores are grouped
is not determinative of the outcome. Thus, the distribution of the decision trees within ones
of the DTCs 122 is not necessarily important to producing the correct final or combined
score for a particular feature vector against the decision trees of the model context loaded
into the architecture 400. In other embodiments, processing of the scores for a feature vector
and model context decision tree scoring job is not associative, and an order in which the
decision trees and/or feature vectors are distributed throughout the architecture is important
for determining the final or combined score for a particular feature vector.

[0083] Feature vectors 112, decision tree tables of a model context 108, and/or score
data may be distributed to DTCs 122 and/or decision tree processors 124 via one or more
networks, internal to the specialized or programmable logic devices 116. One or more of
the DTCs 122, the decision tree processors 124, and the various feature storages 126 may
be addressable via packet headers. Regardless of the distribution method for decision tree
tables that are loadable into shared or dedicated storage for the decision tree processors 124,
the decision tree tables may be individually transmitted (such as via packets) and addressed
to ones of the DTCs 122 or decision tree processors 124, or the decision tree tables may be
distributed together. Logic within the host 104 and/or the decision tree scorer 102 may
determine a distribution of the individual decision tree tables amongst the DTCs 122 and
the decision tree processors 124. Furthermore, the DTCs 122 may include logic to distribute
decision tree tables to individual ones of the decision tree processors 124.

[0084] FIG. 4 illustrates an example of a network to distribute scores and feature vectors
to the decision tree processors of the on-chip multi-processor system. In particular, the
DTCs 122 act as network elements to aggregate/process the score data and feature vectors.
In other embodiments, other network types are employed to distribute the scores and/or the
feature vectors to the decision tree processors and/or the feature storage. In these other
embodiments, the decision tree clusters 122 may or may not be included as part of the
architecture. In one embodiment, the decision processors may be arranged in a mesh of
decision tree processors, and scores and/or feature vectors may be distributed via the

decision tree processors directly, and eventually to the decision tree scorer or other score

22

10

15

20

25

30

WO 2015/142595 PCT/US2015/020050

aggregation element. In other embodiments, a broadcast network — which may be bus,
mesh, point-to-point, hub-and-spoke, or other topology — may connect the decision tree
processors (and/or decision tree clusters 122) to the decision tree scorer or other element
that provides the feature vectors and/or receives/accumulates/processes scores from the
decision tree processors. In other embodiments, a network on a chip (NOC), which may
have other purposes such as to distribute configuration data to FPGA clements or other
function, may be re-used to distribute feature vectors and/or provide score data from the
decision tree processors to the decision tree scorer or other score aggregation element.
[0085] A score aggregation element may receive and accumulate score data from the
decision tree processors and/or the decision tree clusters 122. The score aggregation
element may process the score data, which may include summing the score data, appending
the score data to a list or vector of scores, perform some other algorithm to compute a score
based on the received data, and so forth. The score aggregation element may pass the score
data, either processed or in raw form, to a host or other downstream element.

[0086] Embodiments may include separate networks, one for score data and the other
for feature vectors. Thus, in different embodiments, a network may be a feature network, a
score aggregation network, or both. In some embodiments, decision tree clusters 122 may
act as network elements for one or both the feature network or the score network. Other
examples are possible without departing from the scope of embodiments.

[0087] FIG. 5 illustrates architecture 500 of a decision tree cluster 122 implemented on
a specialized integrated circuit or a programmable integrated circuit in accordance with
various embodiments. The architecture 500 includes one or more decision tree processors
124 and one or more feature storages 126. The example architecture 500 illustrated in FIG.
5 includes five decision tree processors 124 and one feature storage 126, although other
numbers of decision tree processors 124 and feature storages 126 are used in various other
embodiments.

[0088] The DTC 122 includes a feature input bus register to receive feature vectors for
storage in the feature storage 126, for example a 64-bit feature input bus register. The DTC
122 includes a score output register to accumulate and output hold scores for output to
neighboring ones of the DTC 122, for example a 33-bit fixed point score output register.
An adder tree of the DTC 122 totals the scores from the decision tree processors 124 and
from one or two or more neighboring DTCs 122. The Decision tree processors 124 output
done flags when all decision tree threads being executed therein have completed and output

scores. The DTC 122 accumulates the done flags, and upon the adder tree adding the scores

23

10

15

20

25

30

WO 2015/142595 PCT/US2015/020050

from neighboring DTCs 122 to the scores from the decision tree processors 124, the DTC
122 outputs the scores to one or more neighboring DTCs 122. At this point, the DTCs 122
also output completion signals to their upstream DTCs 122, such as through a completion
signal network, which may be the same as or different from interconnect networks within
the DTS 102 to distribute feature vectors, score data, and/or decision tree table data. In the
case of a final DTC 122, the scores and completion signals are output to the DTS 102. Upon
receiving completion signals, the DTCs 122 and the decision tree scorer 102 determines that
the upstream DTCs 122 have completed their decision tree execution and that all available
scores are received on an input bus, that no more scores are waiting to be received, and that
the scores are ready to be added to scores of the decision tree processors 124 and propagated
to downstream DTCs 122 and/or the decision tree scorer 102.

[0089] The feature storage 126 is, in some embodiments, double-buffered to enable one
set of features to be loaded into the feature storage 126 while another set of features is read
by the decision tree processors 124. In one example, the feature storage 126 includes two
32-bit write ports, enabling the feature storage 126 to retire 64 bits of features data at 250
MHz. In one example, the feature storage 126 includes two 32-bit read ports to enable the
feature storage 126 to receive two 8-bit features per cycle. The feature storage 126 receives
a feature identifier from the decision tree processors 124 and responds with a feature value,
for example an 8-bit feature value, and a flag.

[0090] In some embodiments, storage space on the feature storage 126 is reduced by
selective capture of subsets of the feature vectors that are used by the decision tree
processors 124 of the particular decision tree cluster 122. Not all features within the feature
vectors 112 will be referenced by the decision trees of a particular decision tree cluster 122;
thus, the storage space on the feature storage 126 is reduced, in some embodiments, by only
capturing those feature values that are actually referenced by the decision trees executed by
decision tree processors 124 of the particular DTC 122. Thus, the portions of the feature
vectors to be stored by a particular feature storage 126 may be referenced in a packet
addressed to the feature storage 126, or to the DTC 122 that the particular feature storage
126 is included in. The feature storage 126 may be provided with a mask, such as in a
packet addressed to the feature storage 126 or the DTC 122, that identifies the portions of
the feature vector to selectively store.

[0091] As will be described in more detail below, the decision tree processors 124 are
multi-threaded tree-walking engines, capable of executing a plurality of decision trees. The

decision trees are stored as decision tree tables within the decision tree processors 124. In

24

10

15

20

25

30

WO 2015/142595 PCT/US2015/020050

various embodiments, the decision tree tables are stored on various memory storage types,
such as random access memory, including Dynamic Random Access Memory (DRAM),
Block Random Access Memory (BRAM), Static Random Access Memory (SRAM), and so
forth. In some embodiments, the decision tree processors 124 include a five-stage pipeline
as is described in more detail below; thus, as long as there are at least five runnable threads
(corresponding to five decision trees whose execution have not yet completed), the decision
tree processor 124 is able to initiate walking one node of a decision tree on each clock cycle.
Multi-stage tree-walking pipeline

[0092] In some embodiments, the decision tree processors include a pipelined
architecture. FIG. 6 illustrates a multi-stage, multi-threaded, pipelined tree walking circuit
600 of a decision tree processor, in accordance with various embodiments. The circuit 600
is implemented on logic circuitry within the decision tree processor. A thread circuit (or
thread stage) (denoted “TH” in FIG. 6) receives a next thread TH THD from a
NEXT THDS table 602. In the example illustrated in FIG. 6, the NEXT THDS table 602
is 32 x 5 bits, and thus stores up to 32 5-bit next thread numbers; therefore up to 32 threads
can be handled by the circuit 600. The NEXT THDS table 602 is a linked list of threads;
initially all threads are listed in the NEXT THDS table 602; as threads complete (by
outputting a leaf value), the threads are de-linked from the NEXT THDS table 602. Once
all threads are de-linked from the NEXT THDS table 602, the decision tree processor
outputs a completion signal to the decision tree cluster, indicating that it is finished with all
threads. The thread circuit uses the next thread identifier from the NEXT THDS table 602
to issue a read for the next node address of the next thread from a node address table,
NODE_ADS table 604 and a leaf table, LEAFS table 606. The NODE_ADS table 604 is
32 x 13 bits, and thus stores up to 32 13-bit next node addresses, one for each thread.
[0093] The LEAFS table 606 stores leaf output flags; where an entry for a particular
thread within the LEAFS table 606 stores an output flag (e.g., a 1 or a 0), the leaf value is
output to the decision tree cluster and the thread is de-linked from the NEXT THDS table
602.

[0094] Where the leaf output flag indicates that no leaf value is previously selected, the
next node addresses are passed to the read node circuit (or read stage) (denoted “RN” in
FIG. 6), and a read to the node table NTAB 608 that corresponds to current thread is issued
by the circuit 600 for the next node descriptor. In embodiments, the NTAB 608 is stored
on dedicated memory within or otherwise associated with the circuitry of decision tree

processor. In other embodiments, the NTAB 608 is stored in a memory that is separate from

25

10

15

20

25

30

WO 2015/142595 PCT/US2015/020050

and communicatively coupled to the decision tree processor. In some embodiments, the
NTAB 608 is stored in a memory shared by a plurality of decision tree processors.

[0095] The 12-bit feature address F1_FEAT AD and 12-bit info field F1_INFO of the
node descriptor, along with next node data, such as an offset value if present in the NTAB
608, are read out in the F1 feature circuit (or F1 feature stage) of the circuit 600. For
example, the next left and right node addresses and next left and right leaf flag values are
pre-computed by logic 610 at this stage and are a function of the node address, the info field,
and the optional rdelta offset field. The info field determines whether the node one, two, or
zero next subtree nodes, and whether there are one, two, or zero leaf values. The next left
and right next node addresses are pre-computed based on adjacencies within the NTAB 608
the F1_RDELTA value, if present, or from the coding of the offset value in the info field,
as described elsewhere within this Detailed Description. In some embodiments, when the
current node has a left subtree node, the next left node address is the address of the node
adjacent to (immediately following) the current node, and the next left leaf flag is false.
Otherwise the current node has a left leaf output value, and the next left node address the
address of the word(s) within the current node that contain the left leaf value, and the next
left leaf flag is true. The pre-computation is similar for the next right node address and next
right leaf flag. When the current node has a right subtree node but no left subtree node, the
next right node address is the address of the node adjacent to (immediately following) the
current node, and the next right leaf flag is false. When the current node has both a left
subtree node and a right subtree node, the next right node address is determined by adding
the current node address and an offset (whose value is encoded within the info field, or
explicitly represented in the optional rdelta offset field), and the next right leaf flag is false.
Otherwise the current node has a right leaf output value, and the next right node address the
address of the word(s) within the current node that contain the right leaf value, and the next
right leaf flag is true.

[0096] At the F2 feature circuit (or F2 feature stage) of the circuit 600, the feature value
associated with the F1 FEAT AD is read from the feature storage 612 (e.g., the feature
storage 126). The FST 126, in embodiments, is configured to be read by two different
decision tree processors; thus the feature storage 612 is shown having two inputs and two
outputs.

[0097] At the execution circuit (or execution stage) of the circuit 600 (denoted “EX” in
FIG. 6), the feature value (“EX_FEAT”) read from the feature storage 612 is compared by
logic 614 to the threshold value (EX TH) of the currently executing node. The threshold

26

10

15

20

25

30

WO 2015/142595 PCT/US2015/020050

value EX TH and the feature value EX FEAT may be threshold index values and feature
index values as is described elsewhere within this Detailed Description, or they may be
uncompressed threshold values and feature values. Embodiments of the present disclosure
are not limited to use of one or the other. Based on the outcome of the compare output by
the logic 614, either a next left node address or a next right node address is written to the
thread’s entry in the NODE ADS table 604Also based on the outcome of the compare
output by the logic 614, either a next left leaf flag or a next right leaf flag is written to the
thread’s entry in the LEAFS table 606.

[0098] Once the execution circuit selects a leaf value for a particular thread and sets a
leaf flag, then the next time the thread is issued into the pipeline, the leaf flag is read and
the node address in the NODE_ADS table 604 is not the address of a node but rather the
address of leaf value words within previous node within the NTAB 608. At the RN circuit,
these leaf value words are read from the NTAB 608, thereby obtaining the leaf value’s score
620 for the particular thread instead of a feature address and info field. The score 620 may
be output to the decision tree cluster as described elsewhere within this detailed description.
In addition, when the leaf flag is true, the thread is unlinked from the NEXT THDS table
602 so that it is not fetched by the pipeline again.

[0099] Each of the portions of the circuit 600 (TH, RN, F1, F2, and EX) concurrently
processes different ones of the threads. Thus, at any one time, the circuit 600 processes
some portion of up to five different threads, which corresponds to processing some portion
of up to five different decision trees concurrently, every clock cycle.

Example Processes

[00100] FIG. 7 depicts a flow graph that shows an example process 700 of executing a
decision tree, in accordance with various embodiments. At 702, a decision tree processor,
¢.g., a thread circuit or stage of a decision tree processor pipeline, determines a next thread
to be executed by the processor and issues a read to the node table to determine the next
node address of the next thread.

[00101] At 704, a decision tree processor, €.g., a read node circuit or stage of a decision
tree processor pipeline, retrieves decision tree node data, such as decision tree node words,
including at least feature indicators and threshold values, from a decision tree node table,
which may be stored within the decision tree processor. A subset of the decision tree nodes
also includes next node data, such as next node offset values.

[00102] Final outcomes of the decision tree node executions result in output of leaf values

as an output of the decision tree-walking thread, such as where a decision tree node

27

10

15

20

25

30

WO 2015/142595 PCT/US2015/020050

execution results in selecting a left leaf or a right leaf value. At 706, the decision tree
processor, €.g., a read circuit or stage of a decision tree processor, determines whether a leaf
flag is set for a particular thread, such as during a previous pass of the thread through a
pipeline. Where the leaf flag is set, at 708 the particular thread is unlinked from the threads
table. At 710, leaf value data, such as onc or more leaf value words, of the decision tree
node are read by the read node circuit or stage of the decision tree processor pipeline and
output to the decision tree cluster, or to some other output network.

[00103] At 712, where the leaf flag value is not set, the decision tree processor, €.g., a
feature circuit or stage of a decision tree processor pipeline, reads the feature value identified
by the feature indicator from feature storage.

[00104] At 714, the decision tree processor, ¢.g., the feature circuit or stage of a decision
tree processor pipeline, pre-computes possible next decision tree node addresses based on
the next node data, such as offset values and the next decision tree nodes that are adjacent
to currently executing nodes. The decision tree processor, ¢.g., the feature circuit or stage
of a decision tree processor pipeline, also or alternatively pre-computes addresses for right
or left leaf data, such as right or left leaf words or values of the current decision tree node.
As noted elsewhere within this Detailed Description, a subset of the nodes of the decision
tree node table includes one or more leaf values. The presence of leaf nodes indicates that
a possible outcome of the execution of the decision node is to select to output a leaf value
the next time the thread passes through the pipeline. Thus, the decision tree processor pre-
computes one of a left leaf data address or a left next node address, and one of a right leaf
data address or a right next node address, depending on whether there is a left leaf or left
next node, and based on whether there is a right leaf value or a right next node in the
particular decision node being executed. Pre-computation at 714 occurs prior to the
execution of the decision node by the decision tree processor.

[00105] Pre-computation of some of the next node addresses is performed, in some
embodiments, by processing next node data, such as an offset value of the decision tree
node, such as by adding the offset value to location of the current node to arrive at a location
of the next node. The next node data, such as an offset value, is either separate next node
data, such as an offset value, provided within the decision node, or coded by the info field
of the decision node, as described elsewhere within this Detailed Description. Pre-
computing the next node addresses is also based on adjacencies for some of the next node

addresses.

28

10

15

20

25

30

WO 2015/142595 PCT/US2015/020050

[00106] At 716, the decision tree processor, €.g., an execution circuit or stage of the
decision tree processor pipeline, executes the decision tree node. Executing the decision
tree node includes comparing a threshold value of the decision tree node to the feature value
retrieved from the feature storage. The threshold value may be a threshold index value, and
the feature value may be a feature index value, as described elsewhere within this Detailed
Description.

[00107] At 718, the decision tree processor, ¢.g., the execution circuit or stage of the
decision tree processor pipeline, determines the next decision tree node for the thread to be
retrieved and executed and/or an address of leaf data containing a leaf value to be output the
next time the thread is fetched into the pipeline. Selection of the next decision tree node or
address of leaf data are determined based on an outcome of executing the decision tree node.
Some outcomes of the comparisons (such as where the feature value is less than or equal to
the threshold value) result in determining the next decision tree node based on the next node
data, such as a next node offset value. Other outcomes of the comparisons (such as where
the feature value is not less than or equal to the threshold value) result in determining the
next decision tree node that is adjacent to currently executing node within a decision tree
table associated with the decision tree within the decision tree processor.

[00108] At 720, a determination is made by the decision tree processor, ¢.g., by the thread
circuit or stage of the decision tree processor, whether all threads have been retired. As
threads output leaf values at 710 and are completed, they are de-linked at 708 from a linked
list of decision tree threads. When all threads are de-linked, the decision tree executions in
this decision tree processor 124 are complete. Each thread corresponds to a single decision
tree; thus once all threads are completed, the decision tree processor outputs a completion
signal and outputs one or more scores from the decision tree execution.

[00109] FIG. 8 illustrates a process 800 of scoring a plurality of decision trees by a
decision tree scorer, in accordance with various embodiments. At 802, the decision tree
scorer 102 receives a model context 108 from a host 104 or other upstream processing
system. At 804, the decision tree scorer 102 loads the model context 108 onto the plurality
of decision tree clusters 122.

[00110] At 806, the decision tree scorer 102 receives a feature vector 112 from the host
104 or from an upstream processing system. At 808, the decision tree scorer 102 provides
the feature vector 112 to a first one of the decision tree clusters 122. Thus, in some
embodiments, a common feature vector is provided to the decision tree clusters 122 and the

decision tree processors 124.

29

10

15

20

25

30

WO 2015/142595 PCT/US2015/020050

[00111] At810, the decision tree scorer 102 receives a final score and a completion signal
from one of the decision tree clusters 122, indicating that the decision tree clusters have
completed the scoring of feature vector with the plurality of decision trees. At 812, the
decision tree scorer 102 provides the final score to the host 104 or a downstream processing
system, which may include in some embodiments another decision tree scorer or other
System.

[00112] FIG. 9illustrates a process 900 of scoring a plurality of decision trees by decision
tree clusters, in accordance with various embodiments. At 902, the decision tree clusters
(DTCs) 122 receive a feature vector (such as a common feature vector) from the decision
tree scorer 102 or from neighboring DTCs 122. At 904, the DTCs 122 provide the feature
vector to other neighboring DTCs 122. In this manner, the feature vector is distributed to
all DTCs within a decision tree scorer.

[00113] At 906, the decision tree clusters 122 cause the plurality of decision tree
processors 124 within a plurality of DTCs 122 to begin execution of the plurality of decision
trees within the model contexts loaded onto the DTCs 122. The execution of the plurality
of decision trees may be concurrent, and may be performed by multi-threaded, multi-stage
pipelined decision tree processors. Execution of the decision trees includes, among other
things, comparisons of threshold values (or threshold index values) to feature values (or
feature index values) of a common feature vector, and selection of next nodes and/or output
values based on the comparisons. The execution of the decision trees results in
corresponding scores for ones of the plurality of decision trees.

[00114] At 908, the DTCs 122 receive from the decision tree processors 124 the
corresponding scores and completion signals resulting from the execution of the decision
trees on the decision tree processors 124. At 910, the DTCs 122 receive scores and
completion signals from neighboring DTCs 122.

[00115] At 912, based on receipt of the completion signals and the scores, the DTCs 122
process the scores from the decision tree processors 124 within the DTCs 122 with scores
from the neighboring DTCs 122. For example, the DTCs 122 may sum the scores to produce
an accumulated score. In another example, the DTCs 122 may append the scores, or a sum
of the scores from the decision tree processors 124 within the DTCs 122, to the score data
received from the neighboring DTCs 122.

[00116] At 914, the DTCs 122 propagate the accumulated scores and completion signals
to neighboring DTCs 122, eventually reaching the final one of the DTCs 122, which

provides a final score to the decision tree scorer 102. In this way, the individual scores from

30

10

15

20

25

30

WO 2015/142595 PCT/US2015/020050

cach of the decision trees executing on the decision tree processors 124 within each of the
DTCs 122 are accumulated into final score data, such as a final sum of scores or list or sct
of scores from individual ones of the decision tree processors and propagated to the decision
tree scorer 102.

[00117] FIG. 10 illustrates a process 1000 of coding threshold values of a plurality of
decision trees in accordance with various embodiments. At 1002, a decision tree coder 106
identifies all threshold values referenced in all decision nodes of a plurality of decision trees
— such as those within a model context 1008 — that correspond to a particular feature.
[00118] At 1004, the decision tree coder 106 determines a list of unique threshold values
associated with the particular feature in the one or more decision trees. In some
embodiments, the list is sorted, such as in ascending or descending order. At 1006, the
decision tree coder 106 determines a number of bits to be used to represent threshold index
values for the threshold values based at least in part on a number of values in the sorted list
of unique threshold values associated with the particular feature in the one or more decision
trees.

[00119] In one particular example, where the base-2-logarithm of the total number of
threshold values associated with the particular feature is less than 4, the threshold index is
coded as a 4-bit word, and where the base-2-logarithm of the total number of threshold
values associated with the particular feature is less than &, the threshold index is coded as a
8-bit word. Where the base-2-logarithm of the total number of threshold values associated
with the particular feature is greater than 8, multiple features are used to represent the
particular feature in the coded decision tree, such that the number of features to represent
the particular feature is determined by »/255, where n is equal to the total number of
threshold values associated with the particular feature, as described elsewhere within this
Detailed Description. 8-bit words are used to represent the threshold values for these
multiple features. In other embodiments, the decision tree is modified to include multiple
decision nodes in place of one node with a number of unique thresholds exceeding a
predetermined value. Other examples are possible without departing from the scope of
embodiments.

[00120] At 1008, the decision tree coder 106 determines a plurality of threshold index
values for the list of unique threshold values. In some embodiments, index values are
assigned to the sorted list, such that threshold index values associated with smaller threshold
values are smaller than threshold index values associated with larger threshold values,

although larger index values are assigned to smaller threshold values in other embodiments.

31

10

15

20

25

30

WO 2015/142595 PCT/US2015/020050

In one particular example, the smallest one of the unique threshold values is assigned a
threshold index value of 0, and the largest one is assigned a threshold index value that is
equal to the total number of unique threshold values minus one. Other examples are possible
without departing from the scope of embodiments.

[00121] At 1010, the decision tree coder 106 represents the one or more decision trees
such that decision nodes of the one or more decision trees associated with the particular
feature include the threshold index values. The process 1000 is repeated for each feature
referenced in at least one decision node of a plurality of decision trees until all threshold
values in the plurality of decision trees are coded with threshold index values.

[00122] FIG. 11 illustrates a process 1100 of coding a vector of feature values, in
accordance with various embodiments. As described above with respect to FIG. 10,
threshold values for each feature are coded. Feature values for feature vectors that are to be
scored against the set of coded decision trees are coded such that the feature values are
compatible with the coded threshold values. At 1102, a feature vector coder 110 receives a
feature vector 112 to be scored by a plurality of decision trees.

[00123] At 1104, a feature vector coder 110 compares a feature value associated with the
particular feature to the threshold values that correspond to the particular feature (e.g., to
the list #s; described above). At 1106, a determination is made by the feature vector coder
110 as to whether the feature value corresponding to the particular feature in the feature
vector is greater than the largest threshold value in the set of threshold values associated in
the plurality of decision trees with the particular feature.

[00124] At 1108, upon determining that the feature value is not larger than the largest
threshold value (the “NO” path), the feature vector coder 110 identifies a smallest one of
the list of unique threshold values that is greater than or equal to the feature value.

[00125] At 1110, the feature vector coder 110 codes the feature value to produce a coded
feature value (e.g., a feature index value) that is equal to a particular one of the sorted
threshold index values that corresponds to the smallest one of the sorted list of unique
threshold values.

[00126] At 1112, upon determining that the feature value is larger than the largest
threshold value (the “YES” path), feature vector coder 110 sets the feature index value to
be larger than the largest threshold index value. In one particular example, the feature index
value is set to be equal to the total number of unique threshold values associated with the
feature, but any number larger than the largest threshold index value could be used. In this

way, the feature index values are set such that outcomes of comparisons of the threshold

32

10

15

20

25

30

WO 2015/142595 PCT/US2015/020050

index values to corresponding feature index values during decision tree execution (such as
by the decision tree processors 124) are equivalent to outcomes of comparisons of
corresponding threshold values to corresponding feature values.

[00127] The operations of the example processes of FIGS. 7-11 are illustrated in
individual blocks and summarized with reference to those blocks. The order in which the
operations are described is not intended to be construed as a limitation, and any number of
the described operations can be combined in any order, separated into sub-operations, and/or
performed in parallel to implement the process. Processes according to various
embodiments of the present disclosure may include only some or all of the operations
depicted in the logical flow graph.

Example Computing System

[00128] FIG. 12 is a block diagram of an example computing system 1200 usable to
perform various methods described herein. The computing system 1200 may be configured
as any suitable computing device capable of implementing all or part of a decision tree
scoring system, such as the host 104. According to various non-limiting examples, suitable
computing devices may include personal computers (PCs), handheld devices, wearable
smart devices, smartphones, tablet computers, laptop computers, desktop computers,
gaming systems, electronic media players (such as mp3 players and e-book readers), servers,
server farms, datacenters, special purpose computers, combinations of these, or any other
computing device(s) capable of storing and executing all or part of the decision tree scoring
system described herein.

[00129] In one example configuration, the computing system 1200 comprises one or
more processors 1202 and memory 1204. The computing system 1200 may also contain
communication connection(s) 1206 that allow communications with various other systems.
The computing system 1200 may also include one or more input devices 1208, such as a
keyboard, mouse, pen, voice input device, touch input device, etc., and one or more output
devices 1210, such as a display, speakers, printer, etc. coupled communicatively to the
processor(s) 1202 and the memory 1204.

[00130] The memory 1204 may store program instructions that are loadable and
executable on the processor(s) 1202, as well as data generated during execution of, and/or
usable in conjunction with, these programs. In the illustrated example, memory 1204 stores
an operating system 1212, which provides basic system functionality of the computing
system 1200 and, among other things, provides for operation of the other programs and

program modules of the computing system 1200.

33

10

15

20

25

30

WO 2015/142595 PCT/US2015/020050

Computer-Readable Media

[00131] Depending on the configuration and type of computing device used, memory
1204 of the computing system 1200 in FIG. 12 may include volatile memory (such as
random access memory (RAM)) and/or non-volatile memory (such as read-only memory
(ROM), flash memory, etc.). Memory 1204 may also include additional removable storage
and/or non-removable storage including, but not limited to, flash memory, magnetic storage,
optical storage, and/or tape storage that may provide non-volatile storage of computer-
readable instructions, data structures, program modules, and other data for computing
system 1200.

[00132] Memory 1204 is an example of computer-readable media. Computer-readable
media includes at least two types of computer-readable media, namely computer storage
media and communications media. Computer storage media includes volatile and non-
volatile, removable and non-removable media implemented in any process or technology
for storage of information such as computer-readable instructions, data structures, program
modules, or other data. Computer storage media includes, but is not limited to, phase change
memory (PRAM), static random-access memory (SRAM), dynamic random-access
memory (DRAM), other types of random-access memory (RAM), read-only memory
(ROM), electrically erasable programmable read-only memory (EEPROM), flash memory
or other memory technology, compact disk read-only memory (CD-ROM), digital versatile
disks (DVD) or other optical storage, magnetic cassettes, magnetic tape, magnetic disk
storage or other magnetic storage devices, or any other non-transmission medium that can
be used to store information for access by a computing device. In contrast, communication
media may embody computer-readable instructions, data structures, program modules, or
other data in a modulated data signal, such as a carrier wave, or other transmission
mechanism. As defined herein, computer storage media does not include communication
media.

Conclusion

[00133] Although the disclosure uses language that is specific to structural features
and/or methodological acts, the invention is not limited to the specific features or acts
described. Rather, the specific features and acts are disclosed as illustrative forms of

implementing the invention.

34

WO 2015/142595 PCT/US2015/020050

CLAIMS
1. An on-chip decision tree scoring hardware system comprising:
a plurality of decision tree processors, implemented as circuitry on the chip to access
a common feature vector and to execute one or more decision trees with respect to the

common feature vector.

2. The on-chip decision tree scoring hardware system of claim 1, wherein a first one of
the plurality of decision tree processors further execute a first one of the decision trees with
respect to the common feature vector concurrently with execution of a second one of the
decision tree with respect to the common feature vector by a second one of the decision tree

Proccessors.

3. The on-chip decision tree scoring hardware system of claim 1, further comprising a
plurality of decision tree clusters, ones of the decision tree clusters comprising subsets of
the decision tree processors, the subsets of the decision tree processors output scores based
on outcomes of execution of the one or more decision trees, a first one of the decision tree
clusters to accept first scores from a first subset of the decision tree processors within the
first one of the decision tree clusters, accept at least second score data from a second one of
the plurality of decision tree clusters, process the first scores and the at least the second

score data to produce combined score data.

4. The on-chip decision tree scoring hardware system of claim 3, wherein the first one
of the decision tree clusters further processes the first scores and the second score data by
one of:

appending the first scores, or a sum of the first scores, to the second score data to
produce the combined score data; or

summing the first scores with the second score data to produce the combined score

data.

5. The on-chip decision tree scoring hardware system of claim 1, wherein ones of the
decision tree processors output scores based on outcomes of execution of the one or more
decision trees, the decision tree scoring hardware system further comprising:

a score aggregation network to collect the scores output by the decision tree

Proccessors.

35

WO 2015/142595 PCT/US2015/020050

6. The on-chip decision tree scoring hardware system of claim 1, further comprising
one or more of:

a plurality of decision tree clusters comprising subsets of decision tree processors,
wherein a first one of the plurality of decision tree cluster is to receive the common set of
features from a second one of the decision tree clusters and to propagate the common set of
features to a third one of the decision tree clusters; and

a feature network coupled to the decision tree processors to provide the common set

of features to the decision tree processors.

7. A method comprising:

providing a common feature vector to a plurality of decision tree processors
implemented as circuitry within an on-chip decision tree scoring system; and

executing, by the plurality of decision tree processors, a plurality of decision trees,

by reference to the common feature vector.

8. The method of claim 7, further comprising:
outputting, into a score aggregation network, scores for ones of the plurality of

decision trees based on outcomes of executing the plurality of decision trees.

9. The method of claim 7, wherein the common feature vector is stored on a feature
storage, the method further comprising concurrently:

loading another feature vector into the feature storage; and

executing, by at least one of the decision tree processors, at least one of the plurality
of decision trees, the executing including reading one or more features of the common

feature vector from the feature storage.

10. The method of claim 7, further comprising propagating the common feature vector
throughout a plurality of decision tree clusters, the propagating including receiving the
common feature vector from first neighboring decision tree clusters, and passing, by ones
of the plurality of decision tree clusters, the feature vector to second neighboring decision

tree clusters.

36

PCT/US2015/020050

WO 2015/142595

1/12

L Ol

97T 3OVH0LS

J4NLv3S

TZT H0SSID0Md

334 NOISIDAQ

> 4

> 4
> 4
4

ZZ) d¥3a1sn1) 33d] NoIsIoaAg

201 ¥3400S 3341 NoIsIoag

YOTT 301A3Q 21907 I1GVINAVEO0Hd HO d3zITvIOaAdS

— 0Cl

8Ll

GOTT I01A3Q 21907 I1GVINNVEO0E] HO a3ZITvID3dS

39T 1 I0IAAQ 21907 IT1GVINNVEO0E YO d3ZITvIDAdS

Qor T I0IAIQ 21907 I1AVINNVEO0Ed HO a3ZITvID3dS

00 _\.\

Z1T SYOLO3A
ENTINED|

0T SLX3LNOD
J13aon

C

g
o’
o’
-

(Y11 ¥31NA3IHOS
ONIYOOS
(3341 NOISI03Q

\Jdnhiv3ad

\
901 ¥3aon
334 NOISIOAQ

(0lT
Y¥3a0D YOLO3A

PCT/US2015/020050

WO 2015/142595

2/12

{(Jleuondo)eyop ‘ojul pe iesy} :soARST O
{len 1ea7 Y 4O |eA JeaT 7 ‘ojul pe ey} :jea Q |l SPON

{len jeo1

{ploysauy; 1e9| Jes| | X ‘gAu} :ou|

|BA 197 7 ‘OJul pe” B3]} :S9ARDT Z

¢ 9l

JspesH 11d

80¢ —

90¢

youeig ya1 v

youeug ybry ‘¢
anjeA ploysaiyl ‘g
Jayiuap| ainies ‘|

S

90T ¥3a0D
334 NOISID3Qg

00¢

¢0¢

WO 2015/142595 PCT/US2015/020050

3/12

f f2 f3 4 5 f6

- 1 1T 1T

t1 t2 t3 t4 t5 t6
DECISION TREE FEATURE VECTOR
CODER 106 CODER 110
Threshold Threshold Feature Feature
Index Value Value Index Value Value
0 t1 1 1
1 t2 2 f2
2 t3 3 3
3 t4 3 f4
4 t5 5 5
5 t6 6 6

302 J 304 J

FIG. 3

WO 2015/142595

4/12

PCT/US2015/020050

/‘400

122-C
— 122-A
DTC DTC DTC DTC
? — 122-D
DTC DTC DTC et DTC
]
| | 122¢C
I
DTC DTC DTC DTC
DTC DTC DTC DTC
— 122-F
DTC DTC DTC DTC — 122-E
v — 122-G
DTC DTC DTC <= DTC
1 — 122-H
DTC DTC DTC DTC
DTC DTC DTC DTC

122

FIG. 4

WO 2015/142595 PCT/US2015/020050

5/12
/‘500

122

— 124
DECISION TREE PROCESSOR DECISION TREE PROCESSOR

— 126
DECISION TREE PROCESSOR FEATURE STORAGE
DECISION TREE PROCESSOR DECISION TREE PROCESSOR

FIG. 5

WO 2015/142595

6/12

PCT/US2015/020050

602 < NEXT_THDS
32 x 5b c05 /-600
TH Asy AN
TH ST || TH THD NODE_ADS LEAFS
 RA>[32x13b R'A 32 x1b
604 13 v
> +1
11
RNy Y Y Y *
RN_ST |[RN_THD RN_NODE_AD
NTAB | _—608
2048 x 36b
y 36 ¥ 36
2 l12 l12 12
Fly Y Y y
F1 ST |[F1_THD F1_NODE_AD F1_FEAT _AD|F1_INFO |F1 RDELTA
| SCORE~] |
PRECOMPUTE NEXT
NODE ADDRESSES ¢
l l v Wi ..,
F2y Y Y Y
F2 ST F2 THD F2 LEFT_NODE_AD m
F2_RT_NODE_AD Feature Storage
F2 LEFT LEAF [|1024 x32b
F2 _RIGHT LEAF
F2_TH
Yy VY Yy vy
¢ 8 | L8 >
EX v v v v
EX ST |[EX THD |[EX LEFT_NODE_AD|[EX FEAT |EX_TH
EX_RT_NODE_AD
EX_LEFT_LEAF 'R
EX_RIGHT_LEAF <=
I
+ 614
604 T Y T
\ + * / 606
NODE_ADS LEAFS
L o —
WA |32 x 13b WA |32 x1b FIG 6

WO 2015/142595 PCT/US2015/020050

7/12

700\

DETERMINE NEXT THREAD AND ISSUE READ TO
NODE TABLE 702

l

RETRIEVE DECISION TREE NODE DATA FROM
DECISION TREE TABLE 704

- N
UNLINK THREAD FROM VES LEAF FLAG SET?
THREADS TABLE 708 = 706
_ Y,
(" SET OUTPUT VALUE)
FOR DECISION TREE NVO
L 710 y
READ FEATURE VALUE REFERENCED IN
DECISION TREE NODE 712

l

[PRECOMPUTE NEXT DECISION TREE NODES AND

OUTPUT VALUES 714

EXECUTE DECISION TREE NODE 716]

l

YES [DETERMINE NEXT DECISION TREE NODE

ALL THREADS
COMPLETE?
720

FIG. 7

WO 2015/142595 PCT/US2015/020050

8/12

800

UPSTREAM PROCESSING SYSTEM 802

[LOAD MODEL CONTEXTS ONTO DECISION TREE

[FETCH MODEL CONTEXTS FROM HOST OR

CLUSTERS 804

l

FETCH FEATURE VECTORS FROM HOST OR
UPSTREAM PROCESSING SYSTEM 806

PROVIDE FEATURE VECTORS TO FIRST]
I]

DECISION TREE CLUSTER 808

l

[RECEIVE FINAL SCORE AND COMPLETION SIGNA

FROM DECISION TREE CLUSTER 810

l

[PROVIDE FINAL SCORE TO HOST OR

DOWNSTREAM PROCESSING SYSTEM 812

FIG. 8

WO 2015/142595 PCT/US2015/020050

9/12

900\

TREE SCORER OR NEIGHBORING DECISION TREE
CLUSTER (DTC) 902

l

PROVIDE FEATURE VECTOR TO OTHER
NEIGHBORING DTC(s) 904

'

[RECEIVE FEATURE VECTOR FROM DECISION J

CAUSE EXECUTION OF PLURALITY OF DECISION
TREES WITHIN DTC 906

[J
[J
|

[RECEIVE SCORES AND COMPLETION SIGNALS]
[J
[J

FROM DECISION TREES WITHIN DTC 908

l

RECEIVE SCORES AND COMPLETION SIGNALS
FROM NEIGHBORING DTC(s) 910

l

PROCESS SCORES TO DETERMINE
ACCUMULATED SCORE 912

l

[PROPAGATE ACCUMULATED SCORES AND]
C

OMPLETION SIGNALS TO NEIGHBORING DTC(S)
AND DECISION TREE SCORER 914

FIG. 9

WO 2015/142595 PCT/US2015/020050

10/12

1 000\

IDENTIFY THRESHOLDS WITHIN PLURALITY OF
DECISION TREES ASSOCIATED WITH PARTICULAR
FEATURE 1002

DETERMINE SORTED LIST OF UNIQUE J

THRESHOLD VALUES 1004

l

[DETERMINE NUMBER OF BITS TO REPRESENT

THRESHOLD VALUES 1006
DETERMINE THRESHOLD INDEX VALUES FOR
THRESHOLD VALUES 1008

l

[REPRESENT DECISION TREES WITH THRESHOLD]

INDEX VALUES 1010

FIG. 10

WO 2015/142595 PCT/US2015/020050

11/12

’I’IOO-\\M

RECEIVE FEATURE VALUES TO BE SCORED BY A
PLURALITY OF DECISION TREES 1102

COMPARE THRESHOLD VALUES ASSOCIATED
WITH FEATURE TO FEATURE VALUE OF FEATURE
VECTOR 1104

FEATURE VALUE >
LARGEST THRESHOLD?
1106

NO

¥

SELECT SMALLEST ONE OF THRESHOLD VALUES
GRATER THAN OR EQUAL TO FEATURE VALUE
1108

SET FEATURE INDEX VALUE TO BE EQUIVALENT
TO THRESHOLD INDEX VALUE ASSOCIATED WITH
SMALLEST ONE 1110

SET FEATURE INDEX VALUE TO BE LARGER THAN
LARGEST THRESHOLD INDEX VALUE 1112

FIG. 11

PCT/US2015/020050

WO 2015/142595

12/12

S

—

00c! Emhw>w_
ONILNdNOD _
\ _

\
\
\

\
\

_
_

_
‘o
_
|

\
Z11 SHOL03A 801 S1X3LNOD T11 ¥31NA3HOS
ENIINER J13aon ONI¥OOS
— — 3341 NOISIDAQ
oLt — clcl
Y3000 HOL103A m%m_o r _w__w_mmm WIALSAS
ENINED| 1 a ONILYHYIdO
L 70C 1 AJON3AN

8l
1INI
_ J/

e ~
oLclL

(s)301A3a 1NdLNO

. y,

e ~
80¢1

(8)301A3a 1NdN|

. y,

e A
90¢1

(S)NOILOINNOD
NOILYOINNWINOD
. y,
e ~

c0¢l
(s)doss3aooud

	Abstract
	Description
	Claims
	Drawings

