0 02/101510 A2

=

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date

(10) International Publication Number

19 December 2002 (19.12.2002) PCT WO 02/101510 A2
(51) International Patent Classification’: GO6F Meadowglen Lane Apt. #220, Houston, TX 77042 (US).
HAMILTON, Josh [US/US]; 858 Azalea, Houston, TX
(21) International Application Number: PCT/US02/18781 77018 (US).

(22) International Filing Date: 13 June 2002 (13.06.2002)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:

60/297,745 13 June 2001 (13.06.2001) US

(71) Applicant (for all designated States except US): CAMI-
NUS CORPORATION [US/US]; 825 Third Avenue, 28th
Floor, New York, NY 10022 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): HAYNIE, Cyn-
thia [US/US]; 1628 Elgin, Houston, TX 77004 (US).
MOSSOP, Kevin [US/US]; 1423 Clarkdale Court, Hous-
ton, TX 77094 (US). PLETKA, John [US/US]; 3710
Gromwell Drive, Alpharetta, GA 30005 (US). CURF-
MAN, Benjamin [US/US]; 1339 Allston, Houston, TX
77008 (US). PEVER, Daryl [US/US]; 7509 Middle-
wood, Houston, TX 77063 (US). DANIELSON, Leslie
[US/US]; 3907 Oakwick Forest Drive, Missouri City,
TX 77459 (US). HUGETZ, Shannon [US/US]; 3205
Lawrence, Houston, TX 77018 (US). GILMER, Joan
[US/US]; 5901 Woodway Place Court, Houston, TX
77057 (US). STOCKTON, Sunny [US/US]; 4019 Belle-
fontaine Street, Houston, TX 77025 (US). ALEXANDER,
Mike [US/US]; 2319 Merion Drive, League City, TX
77573 (US). SAVOIE, Phil [US/US]; 2703 Sable Court,
Pearland, TX 77584 (US). KADAM, Nitin [US/US]; 9850

(74) Agents: MATTINGLY, Todd et al.; Haynes and Boone,
LLP, Suite 4300, 1000 Louisiana, Houston, TX 77220

(US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,
CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC,
LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
MX, MZ, NO, NZ, PH, PL, PT, RO, RU, SD, SE, SG, SI,
SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU,
ZA, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR,
GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent
(BE, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR,
NE, SN, TD, TG).

Declaration under Rule 4.17:
— of inventorship (Rule 4.17(iv)) for US only

Published:

without international search report and to be republished
upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: SYSTEM ARCHITECTURE AND METHOD FOR ENERGY INDUSTRY TRADING AND TRANSACTION MAN-

AGEMENT

(57) Abstract: A system architecture and method for energy industry trading and transaction management includes a business logic
server-based layer and a database layer. The business logic server-based layer includes a parameter-based configuration of at least
one business logic service. The business logic service is configurable to enable a deployment of the system to be compatible with a
respective business practice of at least one client customer. The at least one business logic service is configured to support energy
trading and transaction management and to utilize business rules operable on an event basis for processing via an API at least one
of energy trading and transaction management data, including data specific to the at least one client customer. The database layer
operatively connects to the business logic layer for storing the data processed by the business logic layer in a database.

10

15

20

25

30

35

WO 02/101510 PCT/US02/18781

SYSTEM ARCHITECTURE AND METHOD FOR ENERGY INDUSTRY TRADING AND
TRANSACTION MANAGEMENT
Background

This application claims the benefit of the earlier filed provisional application Serial No. 60/297,745,
filed June 13, 2001, the disclosure of which is incorporated bs; reference.

Over the past several years, it has become apparent that the computing architectures upon which a
business is based cannot be closed or proprietary if the business is going to have a chance of surviving. Since
no dominant software vendor has emerged within the energy industry, the typical energy company has adopted
a “best of breed” approach to fulfilling its technology needs. While this approach sounds good in theory, the
end result has been a jumble of systems that do not communicate and which force users to enter duplicate data
in multiple databases in multiple formats.

In the energy trading software market, existing products suffer from a number of limitations. The
limitations include an inability to readily adapt to a changing business environment, for example, with respect
to hourly, regulatory compliance. In addition, existing products suffer from limited extensibility. For
example, the traditional gas marketing software model couples contracts and deals with accounting via
multiple separate operations for purchase, pooling, transportation, imbalance, sale, storage, and inventory.

The markets for pipeline and gas marketing systems are rapidly changing. Present products are
unable to satisfy the needs of the new markets. Demands for new functionality from customers representing
international markets (primarily European) are continuously placing more pressure on present systems.

. Accordingly, it would be desirable to provide a method and system architecture to overcome the
problems in the art.

It would also be desirable to provide an energy trading transaction management system and software
having major functional additions in the areas of contracts, deals and pricing, operations, and accounting.

In addition, it would be desirable to provide an energy trading transaction management system and
software that includes technical/architectural opportunities with respect to scalability, being web based, and
providing integration.

Summary

According to one embodiment, a system architecture for energy industry trading and transaction
management includes a business logic server-based layer and a database layer. The business logic server-
based layer includes a parameter-based configuration of at least one business logic service. The business logic
service is configurable to enable a deployment of the system to be compatible with a respective business
practice of at least one client customer. The at least one business logic service is configured to support energy
trading and transaction management and to utilize business rules operable on an event basis for processing via
an API at least one of energy trading and transaction management data, including data specific to the at least
one client customer. The database layer operatively connects to the business logic layer for storing the data
processed by the business logic layer in a database.

Brief Description of the Drawings
Fig. 1 is a block diagram view of the system architecture according to one embodiment of the present

disclosure;

10

15

20

25

30

35

WO 02/101510 PCT/US02/18781

Fig. 2 is a block diagram view of the system architecture according to one embodiment of the present
disclosure;

Fig. 3 is a detailed block diagram view of the system architecture according to one embodiment of the
present disclosure;

Fig. 4 is a diagram view illustrating an embodiment of a SOAP packet;

Fig. 5 is a diagrammatic view of an ActiveX component contained within an HTML component as
implemented according to one embodiment of the present disclosure;

Fig. 6 is a table definition for a remote method call according to an embodiment of the present
disclosure;

Fig. 7 is a table definition for a remote method call response according to an embodiment of the
present disclosure;

Fig. 8 is a table definition for creating a remote object according to an embodiment of the present
disclosure;

Fig. 9 is a table representation of an EJB layer divided into two classes;

Fig. 10 illustrates various header tables of deal objects according to an embodiment of the present
disclosure;

Fig. 11 illustrates a flow diagram view of a Gas Marketing Business Process, according to one
embodiment of the present disclosure;

Fig. 12, 13, 14, 15 are exemplary screen views of various modules of the Gas Marketing Business
Process according to one embodiment of the present disclosure;

Fig. 16 is a diagrammatic view of an inter-facility single leg path;

Fig. 17 is a diagrammatic view of intra-facility multi-leg paths;

Fig. 18 is a diagrammatic view for nomination and re-nomination capability at a point level;

Fig. 19 is a table view of fuel based on receipt for use in illustrating net effect of a negative fuel rate;

Fig. 20 is a diagrammatic view for use in illustrating point level capacity netting;

Fig. 21 is a flow diagram view of a nomination processing use case diagram according to an
embodiment of the present disclosure;

Fig. 22 is an exemplary screen view of an operations screen layout for nomination planning according
to one embodiment of the present disclosure;

Fig. 23 is a screen view of an operations screen for nomination planning according to an embodiment
of the present disclosure;

Fig. 24 is a screen view of the operations screen in further detail;

Fig. 25 is a screen view of the operations screen in further detail;

Figs. 26, 27, 28 include a screen view of the operations screen of Fig. 25 in further detail;

Fig. 29 is a screen view of the operations screen of Fig. 25 in further detail;

Fig. 30 is a screen view of the operations screen of Fig. 25 showing additional nominations detail;

Fig. 31 is a screen view of the operations screen of Fig. 25 showing additional nominations detail;

Fig. 32 is a screen view of the operations screen of Fig. 25 showing additional nominations detail;

Fig. 33 is a screen view of the operations screen of Fig. 25 showing additional nominations detail;

2

-97/39

10

15

20

25

30

35

WO 02/101510 PCT/US02/18781

Fig. 34 is a screen view of the operations screen of Fig. 25 showing additional nominations detail;

Fig. 35 is a screen view of a whiteboard detail, for nomination planning according to one embodiment
of the present disclosure;

Fig. 36 is a further screen view of the whiteboard detail of Fig. 35;

Fig. 37 is a further screen view of the whiteboard detail of Fig. 35;

Fig. 38 is a view of an embodiment of a language translation table;

Fig. 39 is a view of an embodiment of user language profile table;

Fig. 40 illustrates a price index attribute table according to an embodiment of the present disclosure;
and

Fig. 41 is a table view of a number of deal quantities produced using the Deals Quantity Use Case,
according to one embodiment of the present disclosure.

Detailed Description

According to one embodiment, a system architecture for addressing energy trading, transaction
processing, risk management, and decision support is based upon open standards, such as SOAP and J2EE.
The system architecture includes having built-in ties into enterprise messaging systems. Accordingly, the
architecture allows nearly any client, including Visual Basic, to talk to the architecture, and allows the
architecture’s engine to run on enterprise class UNIX hardware. In addition, the architecture includes built-in
messaging configured to permit seamless integration with existing systems.

According to another embodiment, the architecture provides for extensibility, scalability, integration,
performance, and rapid development for meeting the changing requirements in energy markets. With respect
to extensibility, the architecture accommodates one or more sets of business rules of various customers. That
is, the architecture is configured to allow default system logic and logic modules, which are subject to being
customized by one or more customers, to be easily swapped out with logic customized by the one or more
customers. Accordingly, the architecture is configured to allow customization of business logic that does not
lock respective ones of the users into a particular language or protocol.

Further with respect to extensibility, the architecture of the present disclosure is configured to link its
energy market software application with other third party applications. Accordingly, the architecture is
configured to tie its functionality into the capabilities of other systems. The architecture is further adapted to
have one or more entire sub-applications or modules within the architecture be replaceable with applications
that are developed by a third party. As a result, the architecture enables a “plug-and-play” swapping of
components and subsystems that requires minimal reconfiguring, and without re-coding,

With respect to scalability, the architecture addresses both vertical and horizontal scalability. On the
vertical front, the system architecture provides an ability for its energy market software application to run on
large, enterprise strength hardware. That is, the software application and system architecture provide a cross
platform to the extent that the software application and system architecture run on commercially available
hardware, for example, UNIX mainframes from Sun Microsystems™ or IBM™, without the necessity of re-
coding.

On the horizontal front, the system architecture and its energy market software application provide
for an ability to operate on several smaller machines for load balancing and fail-over. The system architecture

2

-96/39

10

15

20

25

30

35

WO 02/101510 PCT/US02/18781

handles management of load balancing by keeping the various units of hardware synchronized. The system
architecture handles session fail-over in the event that one of the hardware units crashes.

With respect to integration, the system architecture facilitates integration of a multitude of disparate
systems. While the system architecture and energy market software application can provide a gas
management system of choice, many companies may want to run some portions of the gas management
system software with different softiware applications, for example, a Risk Management, Accounting, or
Customer Relationship Management (CRM) system. For an application’s value to be maximized, all of the
various systems should be configured to talk to each other.

The system architecture of the present disclosure utilizes enterprise messaging systems for its
integration. For example, all business logic can be called through messaging and all requests coming from a
client can be routed through messaging to be pre-processed, redirected or transformed. In addition, as data
gets changed within the system architecture, subsequent messaging messages can be sent out with the new
data information. In one embodiment, the system architecture includes TIBCO™ messaging for facilitating an
operation of the energy market software application. Alternatively, with an appropriate configuration change
and possibly, some custom code, other messaging systems can be easily supported. For example, the
messaging system may also include WebMethods™.

The system architecture and its energy market software application can be configured to handle
business for one or more energy related companies. Accordingly, stability is built into the system architecture
and energy market software application. Besides the goal of not crashing or corrupting data, the architecture
supports on-the-fly re-configuring, along with isolation of various systems making up the architecture, so as to
prevent a problem arising in one area of the architecture from affecting or bringing down the entire system.

The system architecture and energy market software application are also configured to provide for an .
acceptable performance, for example, in terms of speed. The system architecture can be configured to render a .
typical response within a few seconds. Lastly, while the architecture is necessarily complex, its design
facilitates rapid development by software application developers and for operation with respect to a given
energy market application.

Referring now to Figure 1, a system architecture 10 for energy industry trading and transaction
management includes an application server 12 and a database server 14. The application server 12 is
configured as a business logic server-based layer. In one embodiment, the business logic layer includes a
parameter-based configuration of at least one business logic service configurable to enable a deployment of
the system to be compatible with a respective business practice of at least one client customer. In one
embodiment, the applications server 12 includes a Java 2 Platform, Enterprise Edition architecture making use
Qf EJB Session Beams 16, as discussed herein.

The at least one business logic service is configured to support energy trading and transaction
management and utilize business rules operable on an event basis for processing at least one of energy trading
and transaction management data, via an API, including data specific to the at least one client customer. An
event may include at least one of a client customer request, a transaction event, a third party event, and a
system event. The business logic layer further includes a standard API for use per data object of the energy

trading and transaction management data. The database layer is operatively connected to the business logic

a4

-95/39

10

15

20

25

30

35

WO 02/101510 PCT/US02/18781

layer for storing the data processed by the business logic layer in a database 14. In one embodiment, the
applications server 12 is separate from the database server 14.

In one embodiment, the business logic layer is configured to provide flexibility, scalability, and
extensibility with the use of parameter driven business rules. In another embodiment, the business logic layer
is further implemented as a hosted application service provider (ASP). The system architecture 10 is an open
architecture configured for an ease of integration with a client system.

ASP capability enables multiple customers to utilize the single database via single instances without
having access to data of other customers. A resource identifier is included with corresponding data in the
database. Data is characterized by system level data and customer specific data. Each customer is required to
login to the system and accordingly each customer is assigned an ASP Custmﬁer ID. In this manner, the
system architecture provides a security mechanism based upon the ASP Customer ID.

The parameter-based configuration of the system architecture 10 includes base data attributes that are
date effective. The base data may include one or more of a business associate, facility, point, and accounts.
The base data may further include one or more of contract party data, deal party data, and transactional data
that are rendered date effective.

The database server 14 of the system architecture 10 further includes security features for partitioning
data within the database. In one embodiment, the applications server 12 is configured to communicate to the
database server 14 through database connectivity drivers. Data layer (DL) objects 18 (FIG. 3) contained
within a module 20 of the applications server 12 can be configured to communicate data to and from the
database via database 14 connectivity drivers.

In another embodiment, the business logic layer further includes an object-relational mapping tool 22
configured to provide access between the business logic layer and the database layer. The object-relational
mapping tool is configured to map objects to database tables 24 (FIG. 3) in the database. Objects created by
the object-relational mapping tool are used to query data in the database and to get query results back.

The system architecture 10 further includes a security layer implemented via one or more of a
security server 26, LDAP Security Database 28, and security agents 30 (FIG. 3). The security layer
operatively connects the configurable business logic server-based layer and is configured to filter requests to
the configurable business logic layer according to a system security. In one embodiment, the security layer is
further configured to provide a secure access to the configurable business logic server-based layer, and
wherein the business logic server-based layer is further configured to provide security at an object and client
company level within the system architecture.

In one embodiment, security can also be provided on a per module (or data object) basis, rendering a
finer grain security to the overall system. The security implementation provides a secure access to each
module according to a user access listing of userids having rights to access and use a respective module (or
data object).

The system architecture 10 further includes a messaging layer 32 operatively connected to the
business logic layer. The messaging layer is configured to facilitate an XML-based interchange and open

messaging transport communication link between the business logic layer and another layer.

-94/39

10

15

20

25

30

35

WO 02/101510 PCT/US02/18781

The system architecture 10 still further includes a presentation layer 34 configured to receive at least
one of a client request 36, a reporting request 38, a migration request 40, and a third party request 42. The
messaging layer operatively connects between the presentation layer and the business logic layer.
Accordingly, the messaging layer is configured to facilitate an XML-based interchange and open messaging
transport communication link between the presentation layer and the business logic layer.

In one embodiment, the system architecture further includes a simple object application protocol
(SOAP) server 44 operatively connected to the presentation layer 34 and the messaging layer 32. The simple
object application protocol server 44 is configured to provide a message based protocol to carry an XML
based payload for accessing the business logic layer 12.

SOAP provides a means for communicating between the web server 34 and the API’s of the
application server 12 via XML documents. Each module (20 a,b,c,d) of the application server 12 has its own
class factory (i.e., each module builds it own classes). The class factories and configuration files determine a
dynamic direction of a request, whether to the application server or a message. Accordingly, a dynamic proxy
is created. Similarly, the class factories and configuration files of the web server 34 provide a dynamic proxy
applicable to the JSP’s and messages. The class factory of Base Module 20a is indicated by the reference
numeral 46 in FIG. 3. The configuration file of the application server 12 is generally indicated by reference
numeral 48 of FIG. 3.

In addition, the presentation layer includes a browser based web server 34 presentation layer
configured to construct Java Server Pages, handle JSP requests, and provide a functional graphical user
interface for handling web requests via JSP controller 50 and JSP view 52 of Figs. 1-3. The presentation layer
further includes a class factory 54 and a configuration file 56 (FIG. 3). The class factory 54 is configured to
establish a category of objects defined by common properties of different objects that belong to the class,
wherein a path of an incoming request to the business logic layer is dynamically determined as a function of
the configuration file and the class factory. The path includes either a direct call from the web server 34 to the
applications server 12 or a proxy call from the web server 34, through the messaging layer 32, to the
applications server 12.

SOAP

According to one embodiment, the system architecture 10 utilizes SOAP server 44 and configuration
file 58 (Fig. 3) for enabling simple object access protocol (SOAP) for communication between software
components of the architecture, as disclosed herein. SOAP is based on extensible markup language (XML),
and is configured for accessing remote objects over a network. Accordingly, SOAP allows access to services,
objects, and servers in platform independent environments, thus acting as the common link between
heterogeneous software con;mponents. With respect to implementation, SOAP is configured to use hypertext
transfer protocol (HTML) for transport and XML for data encoding.

Utilizing SOAP provides numerous benefits. SOAP is a standard protocol and complies with
established Internet standards. SOAP is also configured to be language and platform independent. In
addition, SOAP integrates well with Microsoft development tools. Accordingly, SOAP provides simplicity

and extensibility.

-93/39

10

15

20

25

30

35

40

45

WO 02/101510 PCT/US02/18781

SOAP utilizes packets to transmit information between software components. Figure 4 provides a
diagram view depicting the structure of a SOAP packet 60. The SOAP packet 60 includes an HTTP header
62, a SOAP Action 64, SOAP-ENV: Envelop 66, and SOAP-ENV:Body 68. In addition, the SOAP-ENV:
Envelope includes one or more header elements. The SOAP-ENV:Body includes one or more objects,
methods, or parameters.

Operation of SOAP can be described generally as follows. A client executes a single method of a
function call (limited to one method or function call per HTTP request). In response, a server executes the
method or the function call and transmits a response. The client receives the response including data, and then
processes the data. Finally, the client transmits the data (updated) back to the server in another remote call.

More specifically, the client includes a software process for building the SOAP request. The
software process for the SOAP request may include XML statements. The client may also include software
processes developed using tools such as Visual Basic (VB), Microsoft SOAP toolkit, and Jscript. An example
SOAP request is shown below:

<SOAP-ENV: Envelope>
<SOAP-ENV:Body>
<findAliases ns1=“base/Alias”>
<p0>555</p0>
<p1>345</p1>
</findAliases>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

On the other hand, the server includes a software process for handling the SOAP request, performing
the requested method or function, creating the SOAP response, and transmitting the response back to the
client. The server’s software process may include a java servlet, an active server page (ASP) script code, a
COM object, or other software components adapted to perform the above functions. An example SOAP
response generated by a server is shown below:

<SOAP-ENV: Envelope>
<SOAP-ENV:Body>
<findAliasesResponse nsl=“base/Alias”>
<Name>AliasName</Name>
</findAliasesResponse>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

An example of the SOAP response generated by the server in response to an error is shown below:

<SOAP:Envelope>
<SOAP:Body>
<SOAP:Fault>
<faultcode>400</faultcode>
<faultstring>Invalid XML Document sent</faultstring>
<faultactor>Error Generator</faultactor>
</SOAP:Fault>
</SOAP:Body>
</SOAP:Envelope>
According to one embodiment, the client, written in Java Server Pages (JSP), may include a GET or a

POST method. The GET method may include the following statement, for example:

7

-92/39

10

15

20

25

30

35

WO 02/101510 PCT/US02/18781

GetObject(Object, Method, Parameters, FormatCols, TranslateCols)

In the above example, the client executes a GET request to the server. The search also returns an
XML data set to display in a data grid. In response to the GET request, the server calls EJB objects and the
specified method. Ifthe request is successfully handled, then the server translates and formats the data, and
returns the data set to the client. If the request is not successfully handled, then an error string is returned to
the client.

The POST method may be invoked by the following statement, for example:

ExecuteObject(Object, Method, Parameters)

Referring again to Figs. 1-3, the browser based web server presentation layer of the system
architecture 10 is further configured to deploy at least one item of web browser page content in a manner
wherein the deployment of the content mimics a client/server operation. Deployment of the at least one item
includes placing the at least one item into an ActiveX component 70 within an HTML component 72, as
shown in FIG. 5 and as further discussed herein.

According to another embodiment, the messaging layer 32 is configured for enabling one or more of
the following. The messaging layer 32 can be configured to enable an integration of an existing 3 party
application or business system 42 into the system architecture 10 (Figs. 1,2). The messaging layer can be
configured to process at least one of a client request 36 and a system request 12, wherein processing the
request includes at least one of capturing the request, transforming the request, and routing the request to at
least one destination 74 selected from the group consisting of a legacy system destination and a system
architecture destination 12.

The messaging layer 32 may further be configured to implement a client specified business rule prior
to accessing core business functionality within the business logic layer. The messaging layer 32 may still
further be configured to enable bi-directional communication between incompatible enterprise applications 74
of a third party (FIG. 3) and the system architecture via messages across a common platform. Lastly, the
messaging layer may be configured to enable bi-directional communications between enterprise java beans
(EJBs) 76 of the business logic layer and an external application 74.

In one embodiment, the system architecture further includes a security layer operatively connected to
the presentation layer and the business logic layer for providing a secure access to the presentation layer and
the business layer. The security layer can include an LDAP compliant database 28 server-based security layer
configured to manage userids, passwords, and roles in the system. In one embodiment, the business logic
layer includes a J2EE applications server 12, and wherein the database layer includes a database server 14
separate from the application server. The security layer further includes a means for handling EJB security,
the security means including for example a security agent 30 operatively connected to the J2EE applications
server for filtering requests to the J2EE application server. Lastly, the security layer still further including an
application level security means configured to render method level security on objects processed within the
applications server for example, via APIs and data bound objects, as further discussed herein.

In another embodiment, the system architecture further includes a secure sockets layer connection
operatively connected between a client browser and a presentation layer GUL The secure SSL connection
creates a unique session id and wherein the messaging layer is further configured to call an appropriate

8

-91/39

10

15

20

25

30

35

WO 02/101510 PCT/US02/18781

enterprise bean 76 within the business logic layer under correct credentials in response to the userid, password,
and session id.

In yet another embodiment, the business logic layer of the system architecture includes a Java 2
Platform, Enterprise Edition applications server configured for running an applications program of a hierarchy
of modules. The applications server 12 further includes a configuration file 48 (Figs. 2 and 3) adapted to
configure the hierarchy of modules for use in the parameter-based configuration of the at least one business
logic service. The hierarchy of modules includes a base module 20a, a deals module 20b, an operations
module 20c, and an accounting module 20d. The system architecture further comprises: (1) a presentation
layer configured to receive at least one of a client request 42, a reporting request 38, a migration request 40,
and a third party request 42 (FIG. 2); (2) a messaging layer operatively connected between the presentation
layer and the business logic layer, the messaging layer configured to facilitate an XM1L-based interchange and
open messaging transport communication link between the presentation layer and the business logic layer; and
(3) a security layer operatively connected to the presentation layer and the business logic layer for providing a
secure access to the presentation layer and the business layer.

As mentioned above, the business logic layer includes the applications server for running an
applications program of a hierarchy of modules 20a, 20b, 20c, and 20d (Figs. 2 and 3). For implementation of
the hierarchy of modules, the applications server includes a configuration file 48 adapted to configure the
hierarchy of medules for use in the parameter-based configuration of at least one business logic service. The
hierarchy of modules includes at least a base module 20a. The base module 20a is configured to maintain
information about baseline data required by the system architecture, including at least one selected from the
group consisting of counter-parties, pipelines, nomination points, meters, and units.

A next module in the hierarchy of modules includes a deals module 20b. The deals module 20b
includes a contract sub-module configured to maintain information about at least one selected from the groups
consisting of buy/sell, transportation, storage, pooling, and capacity release contracts that a client has with the
client’s customers; contracts and custody contracts containing base agreement information; specifications
representing terms, points, quantities, and pricing details that are used for billings and payments; and pricing
indices. The deals module can further include a deal making sub-module configured to maintain information
about transactions and deals of a client, the transactions and deals including at least one selected from the
groups consisting of buy and sell deals, broker commissions, muitiple pipelines, point-level pricing, multi-
component formula-base price calculations, and deal points, quantities and pricing details used for invoices
and remittances.

A further module in the hierarchy of modules includes an operations module 20c (Figs. 2 and 3). The
operations module 20c includes a nomination sub-module configured to receive and/or create transportation,
storage, pooling, and interconnection nominations, and to perform pool-to-pool transfers, the nomination sub-
module further configured to process various nomination models, including at least one of GISB and
international requirements. The operations module 20c may further include a capacity management and
confirmations sub-module configured to perform at least one selected from the groups consisting of schedule
pipeline capacity and prioritize contractual volumes based on parameter driven scheduling and curtailment

rules; enable a user to model a pipeline and to set constraint points and other criteria that permit tariff

9

-90/39

10

15

20

25

30

35

WO 02/101510 PCT/US02/18781

compliant reduction of flowing volumes; and obtain confirmation of nominated and/or scheduled quantities at
the nomination point level by operator, agent, or shipper. The operations module 20c may further include an
allocations and balancing sub-module configured to perform at least one selected from the groups consisting
of maintain allocations information including configurations of tiers, PDA Rules, and rules; and accept meter
and point information and calculate imbalances and point variances based on nominated, scheduled, and
measured volumes.

A yet further module in the hierarchy of modules includes an accounting module 20d. The
accounting module includes an accounting and settlement module configured to provide at least one selected
from the groups consisting of provide necessary processing to consolidate all the contracts, deals, scheduling
and allocations information for generating invoices and/or remittances for a client; support external penalty
calculations configurable for differing pipeline tariffs; specify override rates and prices, process prior month
adjustments, and calculate taxes; G/L account assignment, calculation of accruals for business not yet
finalized, and support of interfaces to external General Ledger and Accounts Receivable systems.

Further with respect to the system architecture wherein the applications server includes a Java 2
Platform, Enterprise Edition architecture, at least one module of the hierarchy of modules includes (i) a class
factory and (ii) one or more of (a) an API enterprise java bean component 76 operatively connected to an
object-relational mapping tool 22 and (b) an API enterprise java bean component operatively connected to
(b1) an EJB enterprise java bean object 78, (b2) a data layer (DL) object 18, and (b3) one or more of a class
factory and an API enterprise java bean component of another of the modules in the hierarchy of modules.
The class factory is configured to establish for a respective module a category of objects defined by common
properties of different objects that belong to the class.

Within the Base module 20a, the class factory 46 includes a base class factory configured to establish
a category of base objects defined by common properties of different objects that belong to the base class.

The base objects may include one or more of counter-parties, pipelines, nomination points, meters, and units.

Within the Deals module 20b, the respective class factory includes a deals class factory configured to
establish a category of deals objects defined by common properties of different objects that belong to the deals
class. The deals objects may include one or more of contracts, pricing, deal making, and transactions.

Within the Operations module 20c, the respective class factory includes an operations class factory
configured to establish a category of operations objects defined by common properties of different objects that
belong to the operations class. The operations objects may include one or more of nominations, capacity
management, capacity confirmations, allocations, and balancing.

Within the Accounting module 20c, the respective class factory includes an accounting class factory
configured to establish a category of accounting objects defined by common properties of different objects that
belong to the accounting class. The accounting objects may include one or more of invoices and remittances.

An advantage provided by the hierarchy of the Base, Deals, Operations, and Accounting modules, is
that a customer can choose to replace one or more modules with the customer’s own respective module in a
reverse order of the hierarchy. For example, the customer may choose to implement the customer’s own
accounting module such as illustrated by reference numeral 74, while using the Operations, Deals, and Base

modules of the system architecture. The customer may likewise choose to implement the customer’s own

10

-89/39

10

15

20

25

30

35

WO 02/101510 PCT/US02/18781

accounting module as well as the Accounting module of the system architecture. In addition, the customer
may choose to implement the customer’s own accounting module and operations module.

In the embodiment including the Java 2 Platform, Enterprise Edition applications server, the API
enterprise java bean component 76 is configured to establish a common interface of EJB enterprise java bean
components 78. The API enterprise java bean component 76 is further configured to execute an entity
validation utility for validating incoming data prior to routing the data to an EJB enterprise java bean
component 78. In addition, the application server 12 further includes a method for validating data received via
the messaging layer 32, prior to placing the data into the database 14. Accordingly, the application server 12
provides a means for performing entity validation as a standard method to do validation and provide consistent
error messages.

The EIB enterprise java bean component 78 is further configured to act as a remote object to a calling
API enterprise java bean component 76. In addition, the EJB enterprise java bean component 78 is further
configured to carry out a parameter based business rule for a respective class.

In the embodiments discussed above, the configuration file 48 contains configuration information for
the applications program. Responsive to an execution of the applications program, the applications program
accesses the configuration file 48 to identify parameters that are in effect for the at least one business logic
service.

According to another embodiment, the business logic layer includes at least one module for
performing the at least one business logic service. In this embodiment, the business logic service includes a
parameter based configuration. The parameter based configuration includes date and time effective attributes.

According to another embodiment, the web server 34 includes templates 53 for building the GUIs for
the various screen views of the applications. In one embodiment, the templates are configured to provide a
look and feel like that of separate applications. XSDs (XML Schema Documents) determine the display and
relationships. The XSDs include tree level structures, for example, Deal includes Price, Volume, Counterparty
[0-n], and Location (an object), further wherein each Counterparty includes legal name, and each Location
includes a name. All data includes data bound objects.

In one embodiment of the system architecture, the deployed web pages of an application are
configured to run as a client/server environment. Accordingly, the applications implemented via the GUIs
appear more responsive, that is, handling incremental changes within a web page without having to perform an
entire refresh of the web page. For example, the application may require serving up different languages and
data sets for translation. Implementation of the translation can include use of term tables having, for example,
term_id, termset_id, language, and term. Implementation may further include filtering data, formatting data,
and translating data via the GUI front-end.

In another embodiment, ActiveX components are contained within an HTML component (HTC) as
discussed with respect to Fig. 5. This simplifies the building of web pages, creating a layer of abstraction by
substituting out code. On the ISP side, using a function similar to the HTC, tags are customized for a given
control function. For example, tags may include <JSP: grid> or <JSP: combo box> for dynamic insertion of
appropriate data into a corresponding location on a GUI screen. In addition, the data for the tags may be

saved, for example, as a user preference.

11

-88/39

10

15

20

25

30

35

WO 02/101510 PCT/US02/18781

HIGH LEVEL OVERVIEW

On a macro level, the architecture can be divided into five different layers. The layers include a

presentation layer, a security layer, a messaging layer, a business logic layer, and a database layer. Each of the
layers is loosely coupled to the other layers. As aresult, any one or more of the layers may be swapped out
and replaced by a custom layer to meet the needs of a particular energy management application and/or
customer.

Presentation Layer

The architecture’s presentation layer is browser based. In one embodiment, a web server 34
constructs pages using Java Server Pages (JSP™) on the web server. The presentation layer also follows
W3C™ standards for HTML and JavaScript™ code, as may be appropriate for a particular implementation.
For example, a browser implementation for use in connection with the presentation layer can include
Microsoft Internet Explorer™ version 5.5 or higher, available from Microsoft™ Corporation. Accordingly,
the presentation layer is configured to support a rich, fully functional, graphical user interface (GUI).

In one embodiment, a web tier implements the presentation layer. The web tier is configured to
handle web and JSP requests, for example via a server running on a Windows™ 2000 Server operating system.
Alternatively, Solaris™, AIX™, and Linux™ may also be used to support the web tier. The application server
may include an Orion, BEA Weblogic Integration™, or IBM’s WebSphere™, or other suitable server, for
example.

Business Logic Layer

According to one embodiment, the business logic is written in Java™ and contained in stateless
session beans running in a J2EE™ environment on an application server. Data access is handled through
TopLink™ mapped objects. Top level objects follow the naming convention of <DomainObject>API. For
example, “PointAPI.” The stateless session beans are designed to manipulate complex data structures and run
processing logic. Data is passed into them using an XML mapped object. The XML mapped object is
automatically constructed from XML within the SOAP server before being passed to the bean. All of the
system’s XML bound objects have an attribute that controls it’s processing (CREATE.UPDATE.DELETE).
Accordingly, a single method (“process(DataObject)”) is generally used for all data processing requests.

Security Layer
A Lightweight Directory Access Protocol (LDAP) compliant database manages user id’s, passwords,

- and roles in the system. Accordingly, the system architecture is configured to integrate with existing security

architectures, such as Microsoft™ Windows NT™ Domain servers, or Netscape™ LDAP servers. In one
embodiment, a third party security product, for example, EnTegrity™, is configured to handle security for
EJBs and is operatively connected to the web server, filtering all requests coming in. Application level
security is handled through a built-in mechanism in J2EE that allows for very granular security down to the
method level on all objects.

Clients and/or customers desiring to access the system through the system’s web GUI must log into
the system through a Secure Sockets Layer (SSL) connection. After login, a unique session id is written as a

cookie to the user’s browser and thereafter identifies the user during a session. A session automatically

12

-87/39

10

15

20

25

30

35

WO 02/101510 PCT/US02/18781

terminates upon a timeout of 30 minutes of inactivity, the timeout being configurable by the system
administrator, for example. As part of the logon process, a user id, password, and session id are sent to the
messaging layer so that the messaging layer can call the appropriate enterprise beans under the correct
credentials.

Messaging Layer

The messaging layer offers a simple way to integrate existing business systems seamlessly into the
architecture of the present disclosure. Since all work requests from a client pass through the messaging layer,
the architecture is configured to capture, transform and route requests to different destinations.

For example, if a client company has its own accounting system that the company desires to continue
using, then by overriding the default message routing in the messaging layer, the architecture directs
accounting requests over to the legacy system. Alternatively, if a client company desires to run a legacy
system in parallel to the system architecture of the present embodiments, then the messaging layer can be
configured to direct a copy of the corresponding accounting requests/messages to the relevant accounting
system of the system architecture, as well as, over to the company’s legacy system.

In addition, if a client company has a specific workflow procedure, the messaging can be configured
to enable the particular workflow procedure to take place. For example, if the client company has a rule that
all deals must be approved by a supervisor before being entered into the database, the message to create a new
order can be captured, routed to the supervisor, then forwarded onto the Enterprise JavaBeans™ layer when
approved, without having accessed the core business functionality.

The messaging layer facilitates the creation of a very extensible architecture. While every customer
may not require or need the flexibility offered by the messaging layer, the API’s used to access backend
services can be switched to go directly to the Enterprise JavaBeans layer. This can be accomplished by
making a configuration change and then re-starting the web server. If a customer’s particular business
requirements are to go directly to the Enterprise JavaBeans layer, then the customer has an option to extend
the application via suitable Java code for implementing the interfaces of the system architecture.

In one embodiment, the messaging layer is implemented with the use of commercially available
messaging technology middleware, for example, available from TIBCO or WebMethods. The messaging
layer includes messaging software configured to enable bi-directional communications between incompatible
enterprise applications by transporting messages between the applications across a common platform. For
example, the messaging layer enables bi-directional communications between EJBs and other applications. In
addition, the interface into the messaging layer is configured in a manner so that supporting other middleware
protocols is possible with relatively minimal effort.

Database Layer

In one embodiment, the database is run on a separate server from the application server and web
server. For example, the database layer can be implemented to run on Oracle™ 8i and Microsoft SQL-Server
2000. In addition, the installation of the database is configured to run in an ASP (Application Service
Provider) mode, the database preferably including additional security features for partitioning data. The
application server communicates to the database through JDBC™ drivers. In the case of the Oracle 8i, the

database uses an Oracle JDBC-OCI driver. The Microsoft SQL-Server 2000 uses a pure Java JDBC driver.
13

-86/39

10

15

20

25

30

35

WO 02/101510 PCT/US02/18781

In another embodiment, the architecture’s database access is handled through an Object-Relational
mapping tool, such as TopLink, which is commercially available from WebGain Inc. of Santa Clara, CA. In
most instances, use of the TopLink mapping tool will not require writing actual SQL statements. Instead,
objects created from the mapping tool are used to both query the data and get the results back. With the
mapping tool, Java objects mapped to database tables are transparently stored in the relational database
without SQL coding. Accordingly, rather than using entity beans, the same effect is achieved through the
mapping tool in a much lighter weight and more flexible fashion.

IMPLEMENTATION

Implementation of the architecture according to one embodiment of the present disclosure is

discussed in further detail below.

Web Browser Presentation

As discussed herein, the presentation layer is configured to utilize a web browser or graphical user
interface (GUI). The web browser can include Microsoft Internet Explorer (IE) or any other suitable browser.
In one embodiment, the GUI is made W3C compliant, as much as possible, and may include a number of
advanced IE features. Specifically, IE behaviors are used to create client-side components, and data binding is
used to display XML data in tables. All color, font, and style details are stored in a separate CSS (Cascading
Style Sheet) file so that any changes and customizations can be easily handled without having to modify the
JSP code of the presentation layer.

In addition, the GUI is configured to be highly responsive to a system user. From the users
perspective, the GUI acts and feels like a stand-alone application, rather than a web page. The GUI
accomplishes this through rich controls, such as popup menus, calendar components, and simple form
validation used within the browser. In one embodiment, client side scripting is done in JavaScript.

In another embodiment, the controls are created using ActiveX™ to provide a desired performance
and functionality. The controls are wrapped by an HTML component (HTC) so that existing terms will not
have to change. The controls include, for example, a grid control, a combo box control, and a date picker
control.

Web Server Scripting Details

According to one embodiment, the client application is written in Java Server Pages (JSP). The client
application provides for a clean separation of the business logic and the HTML results. A “controller”
servlet/jsp page handles an initial request from a client or system user. The “controller” servelet/jsp page
takes the appropriate business actions, stores the results in a request variable, then forwards the resuits to a
view page. The view page creates the HTML needed to display the results back to the client, via the web
browser.

The benefits of the above-described client application include an ability to cleanly break the client
interface into graphical user interfaces (GUI’s), separate from business rules and work flow, without having
the business rules and work flow be concerned about the client display. In addition, the client application is
configured to the system architecture to substitute different views dynamically based upon the particular client
request. For example, if static pages were created containing different language settings, a controller
servlet/jsp page could automatically route the results to the correct langnage page based on the client’s local

14

-85/39

10

15

20

25

30

35

WO 02/101510 PCT/US02/18781

setting. In another case, an automated system might want to submit a request to a web page and get the results
back as XML. A separate .jsp page could be created to format an XML response, instead of the normal
HTML response. This can be accomplished without having to change the business logic flow of the
controller.

In addition, user profiles and customization can be stored in the database and loaded into a session
variable after a user logs into the system. Access to the user profiles and customization can be accomplished
through a design pattern similar to other database data (i.e., XmIRowsets returned from a session bean).
Controller Responsibilities

The controller is responsible for and configured to collect all information required by a view, as well
as to ensure that the information required for the action is present. The controller is further responsible for
ensuring that the user is properly logged on. The controller is still further responsible for creating a
connection to the “business abstraction layer”; calling the remote methods to execute the business logic; and
making a call to a bean to accomplish a particular action.

In connection with collecting information required by a view, the information may include data for
drop down lists, information for grids, etc. Ensuring that the information required for the action is present
may refer, for example, to checking to ensure that the user did not forget to enter any critical fields. Note,
however, the controller is only responsible for ensuring the information is there and that it can be parsed into
the correct data type. The controller is not responsible for the validity of the information.

The validity of information is the responsibility of the business logic bean. With respect to ensuring
that the user is properly logged on, action level security checks are handled by the bean. The connection to the
“business abstraction layer” can be created by a remote interface to an enterprise bean in a pure J2EE
application, or to the messaging system. In one embodiment, calls across to the enterprise beans are course
grained. In other words, the controller should be able to make one call to a bean to accomplish an action — not
a separate call for each step.

View Responsibility

The view JSP pages are responsible for the formatting of results according to needs of a
corresponding client, managing display level security, handling client side business logic, handling language
translation and unit conversion, and configuring the GUI based on user preferences and security settings.

Formatting the results according to the way the client wants them may include, for example, creating
HTML or XML to output to the client. Managing display level security may include restricting a user to a
subset of buttons or menu choices for a particular GUIL Client side business logic includes JavaScript on the
client computer. With respect to language translation and unit conversion, JSP taglibs are configured to
handle unit conversion, date/time localization, language translation and number formatting.

In one embodiment, the client presentation layer is written in JSP with an emphasis on keeping
embedded Java code to a minimum, as much as possible. The view pages are designed to fit within a template
based upon the purpose of the screen or view. Accordingly, a page type is characterized by a corresponding
template. Each individual page puts different content within a series of defining tags, which the template is
responsible for rendering. This allows the entire look and feel of the application to change simply by
modifying the template.

15

-84/39

10

15

20

25

30

35

40

WO 02/101510 PCT/US02/18781

Unlike traditional web pages, the pages of the present architecture are designed to allow a user to
submit changes and requests without requiring a reloading of the page. This is accomplished through the
SOAP interface and Javascript. All of the grids on the screen are populated post-load from a URL, for
example, via a modified SOAP call. Combo Boxes can be populated either pre-load on the JSP side or post-
load through a URL the same way the grid controls are. Complex information is submitted to the EJB layer by
embedding XML within a SOAP call. According to one embodiment, most of the business objects in the
system are modeled in XML and defined in a schema document. As a result, this XML is configured as a
primary means of manipulating data within the system.

For situations where the screen is required to manage very complex data, a mediator is created to sit
between the web page and the EJB side. The mediator is a standard Java class 80 that runs locally on the
webserver box 34 and is accessed through SOAP 44 (Fig. 3). This Java class has access to the user’s session
object, which is used to store intermediate data. The purpose of the mediator is to allow the user to manipulate
complex data in an environment that is isolated to him, tﬁen submit the changes all at once to the EJBs. It also
allows the view of the data to be customized without having to change the EJBs feeding that data.

User preferences for such things as grid column sizing and placement will be handled through a
custom JSP tag. All user preference data is stored in the system database as indexed XML strings and is
accessed through a Session bean. User preferences will be stored locally at the user’s session variable on the
webserver while the user’s session is valid.

Overview of EJB FileTypes

As mentioned, in one embodiment, the system architecture includes a J2EE application running on a
J2EE server. The J2EE application is made up of the following file types: .java, .class, jar, jsp, .jpx, and
.ejbgrp. The file type .java are Java language code files. These Java language code files are compiled to .class
files. The .class are then used to create .jar files. The .jar files contain compiled source code (.class files).
The jar files are similar to Zip files. The .jsp files are used to generate the web pages and require no
compilation. The .jpx files contain a JBuilder project and will typically reference one or more .ejbgrp files.
The .ejbgrp files represent a deployable entity that contains one or more Enterprise Java Beans. The .ejbgrp
files also contain deployment descriptors that are used by an EJB server to run. Furthermore, the .ejbgrp files
can be selected to generate .jar files.

Application Level Security

Application level security on the client side includes deciding which pages a user can view, and what
options the user has on the pages the user can view. According to one embodiment, all security configurations
are formulated within the scope of a user’s role. On the JSP page, configuration fragments are wrapped within
a taglib entry. Everything between the tags are included if the user has the proper role. A more permission
based security approach may also be used. An illustrative example of a taglib entry is provided below:

<altra:userInRole role="NominationManager”
include="true”>
<button name= “submitChanges”
action= “javascript: nomForm.submit()”>

</altra:userInRole>

16

-83/39

10

15

20

25

30

35

WO 02/101510 PCT/US02/18781

Integration vs. Extension/Customization
Although they are often lumped together, the ability to integrate with other systems is a very different

problem than the ability to extend or customize existing functionality. While both could be accomplished
either through messaging exclusively, or through EJBs exclusively, there are reasons for using different
techniques to solve different problems.

Integration

Integration is the ability to tie the system of the present embodiments with other systems, including
pre-existing systems. For example, a client company may have its own accounting system that the client
wants to use in place of the accounting system running on the system of the present disclosure. Another
scenario may include the client company having an accounting system that handles its corporate books that the
client desires to keep updated with information from the gas accounting system of the system according to
another embodiment. In the first example, the client company substitutes one system for the other. In the
second example, the client company uses the accounting system of one embodiment of the present disclosure,
while comparing the calls in real-time to drive a second system. In either instance, it is an entire subsystem
that is being affected.

In the system architecture of the present disclosure, integration is accomplished through messaging.
Integrating a client company’s pre-existing system with the system architecture of the present disclosure
involves setting up a subsystem class factory to use a proxy implementation. For example, with accounting,
this can be accomplished by setting a parameter
“Dcom.altra.accounting. AccountClassFactory=com.altra.accounting. AccountingClassFactoryProxyImpl” for
both the JSP server, as well as the EJBs server. Accordingly, objects/methods are mapped to the Application
Program Interface (API) of the client company’s system.

Extension/Customization

Extension and customization of the system architecture of the present disclosure is accomplished
through standard EJB means. This involves writing a class in Java that either extends the system bean, or
implements the system’s remote interface, and then configuring the ejb-jar.xml to point to the new bean.
While in theory this could be accomplished in the messaging layer, that technique is much more complicated,
the performance is slower and maintenance is complex. While there are some disadvantages to limiting
extensions and customizations to the EJB layer (i.e., coding is in Java, make upgrades slightly more complex),
the advantages far outweigh them.

Messaging Layer Details

A class factory provides all access to the Enterprise Java Beans. A separate class factory is provided
for every module in the system. All modules have an abstract factory class that serves as the interface to the
create functions and an EJB and Proxy implementation of the class. A runtime property with the name of the
abstract class defines which implementation is actually returned when a class factory is requested. For
example, in the base module there is an abstract class named “com.altra.base.BaseClassFactory.” To specify
that a current JVM™ should use the Proxy implementation of this class, the command line “-
Dcom.altra.base.BaseClassFactory=com.altra.base.BaseClassFactoryProxylmp!” is added when starting the
application. In the absence of specifying a proxy, the default uses the EJB implementation.

17

-82/39

10

15

20

25

30

35

40

WO 02/101510 PCT/US02/18781

If the EJB version of the class factory is used, then a createXXX(CallContext) performs a Java
Naming and Directory Interface (JNDI) lookup for the Home interface and returns the Remote Interface
created in the Home.create () method. JNDI names include “module/RemoteInterface.” For example, if there
was an object with the remote interface of “Contract” in the base module, the INDI name will be
“base/Contract.”

Every Enterprise JavaBean includes a Proxy object that implements the bean’s remote interface and
extends BaseProxy. In the implementation of each method in the remote interface, the Proxy packages the
parameters up as an array of objects and calls a method in the base class to send the message and wait for the
results. The object name is dynamically determined by the base class function getObjectNameForMessage().

According to the embodiments of the present disclosure, the purpose of messaging is integration, as
opposed to extensibility. However, since there is no way to pass transaction context information through
messaging, ACID transactions are only supported with straight EJB calls (or possibly to CORBA™ services
depending on the application service provider). ACID is an acronym used to describe the four properties of an
enterprise level transaction, i.e., atomicity, consistency, isolation, and durability. To override a certain piece
of functionality, the override is preferably done within the EJB space.

One of the purposes of creating the XML bound data objects was to get a complete set of data
processed in a single call to minimize the need for transaction control. Since most of the data processing for
the system architecture of the present disclosure is contained in a single call, this allows more freedom in
using messaging which cannot participate in multi-call transactions.

Configuring Client Messaging

A properties file, for example, “tibco.properties”, informs the client which network to connect to and
which subject prefix to use when publishing messages. The properties file is located under a directory in
which a middleware proxy application (i.e., the MiddlewareProxyApp) is started. The subjectPrefix parameter
is the prefix that will be pre-pended to all published TIBCO messages and allows different levels such as
development, QA, Production, etc. to exist on the same network bus. For example, “JEDI_D” can be used for
development, “JEDI_Q” for QA, and “JEDI” for production. When the MiddlewareProxyApp is started, the
application listens only for messages that begin with the subjectPrefix stated in its property file.

For example, one subjectPrefix could be defined by:

host=ebiz1-hou.altra.com

port=80
subjectPrefix=CAMINUS.ETMI_D
timeout=45000

Configuring The Middleware Proxy App

The Middleware Proxy App is a stand-alone application that listens for messages from the client,
makes the requested EJB call for the client, and then returns the results. The middleware proxy app is multi-
threaded and employs bean caching for all stateless session beans. The application also supports stateful
session beans through the object ID parameter (“0id”). If the client desires to create a stateful session bean,
the client can do so by sending a “CREATE_OBJECT” message to the middleware proxy app. This can be
accomplished by using a remote caller to create a remote object (i.e., RemoteCaller.createRemoteObject()).

The middleware creates the object and returns an object id to the client.
18

-81/39

10

15

20

25

30

35

40

WO 02/101510 PCT/US02/18781

To inform the Middleware Proxy App which application server to connect to, there must be an
ejbserver.properties file in the directory that the application is started from.
For example, an ejbserver.properties file could be defined by:

url=ormi://localhost/etm
icf=com.evermind.server.ApplicationClientInitial ContextFactory
user=admin

password=password

To start the Middleware Proxy App, a bat file is created and run. The following is an illustrative
example of such a bat file. If desired, using a -DDEBUG=true parameter allows the bat file to output all

messages to a console.

java —classpath
“d:\orion\lib\Middleware.jar;D:\orion\ejb.jar;D:\orion\jndi.jar;D:\orion\orion.jar;D:\orion\jdbc.jar;D:\
orion\lib\rvjpro.jar;D\orion\lib\ClientCommon.jar;D:\orion\lib\ServerCommon.jar;d:\orion\lib\Remot
elnterfaces.jar;d:\orion\lib;.” -DDEBUG=false

com.altra.middleware.tibco.MiddlewareProxyApp

API Message Protocol

Regardless of which vendor messaging system is selected for implementing messaging, the messages
passed between objects should contain the same information. The format for these definitions assumes a
“Publish/Subscribe” metaphor where the client publishes the request to a subject defined by a string. It is
assumed in all these API calls that the given subject is prefixed by a string that identifies which system it
should be running on (for example, “CAMINUS.ETM”).

In one embodiment, the API calls include a REMOTE METHOD CALL, a REMOTE METHOD
CALL RESPONSE, and CREATE REMOTE OBJECT. The REMOTE METHOD CALL defines a message
indicative that the client wants to execute a remote method, with RPC as the subject. The REMOTE
METHOD CALL RESPONSE defines a message returned by the middleware to the calling client. Lastly, the
CREATE REMOTE OBIJECT defines a message indicative that the client desires to create a remote object that
requires conversational support, for example, Statefull session beans. For the CREATE REMOTE OBJECT
api call, the reply message will be the same as the RPC call, with the result field being a string that contains
the remote ObjectID. See, for example, Figures 6, 7, and 8 containing additional detail.

EJBs Development Details

According to one embodiment, all communications end up going through a messaging layer, and only
simple Java types are supported for method parameters and return types. Simple types include String, Long,
Integer, Short, Double, Float, Character, and Boolean. One exception to this rule is the
com.altra.common.XmIRowSet. The com.altra.common.XmiRowSet provides a standard data passing
mechanism for all return types requiring complex data. In the straight EJB implementation, this is passed
around as a CachedRowSet with all the data stored internally. If the CachedRowSet is used throughout
messaging, it is converted into an XML string before being returned to the client.

Except for special cases such as user information that needs to be cached, all beans are Stateless
session beans and extend com.altra.common.ejb.BaseSessionBean. The base class includes methods for

obtaining database connections, getting user information and handling logging.
19

-80/39

10

15

20

25

30

35

WO 02/101510 PCT/US02/18781

For embodiments of the present disclosure not implemented with the use of the TopLink relational
mapping tool, alternate guidelines can be applied to the database tables. That is, a basic design philosophy for
each database table can be to have a session bean to manage the data within it. In addition, a Session bean
with the naming convention of “<DomainObject>API” can manage the coordination between them all.
Accordingly, the Session beans are responsible for Ioading and manipulating data in a database. In connection
with embodiments of the present disclosure that utilize the TopLink relational mapping tool, the “API” beans
are used.

With respect to the alternate guidelines applied to the database tables, the EJB layer is divided into
two classes — a Base class which only contains generated code and the actual bean class which extends the
Base class. The naming convention for this layer can include RemoteInterfaceBase and RemotelnterfaceEJB,
for example. Figure 9 illustrates one embodiment of the EJB layer divided into two classes.

Data Access Laver

For the most part, Enterprise beans will not talk directly to the database. According to one
embodiment, a separate object (RemoteNameDL) handles the database interaction. While the data layer
includes similar method names as the EJB layer, the methods have different responsibilities. The EJB layer is
responsible for all validations of the data and the DL layer is responsible for actually putting the data in the
database.

The data layer, like the EJB layer is split into two classes. A BeanDLBase is generated from the code
generator and contains constants for the tables and columns used by the bean, as well as a default
implementation of all the data access functions. A second class BeanDL extends BeanDLBase and is where
custom code and method overrides occur. Modifying code in the DL layer alone enables regeneration of the
underlying code.

According to one embodiment, the system is configured to manipulate the data as objects instead of
just RowSets. For certain requirements of the system, the use of Entity beans may be insufficient. In addition,
Container managed beans may lack necessary capabilities and Bean ménaged beans may be too slow for the
large volume data queries needed. Accordingly, manipulation of the data as objects can be accomplished with
the use of the TopLink relational mapping tool to manage O-R mapping and data management. O-R mapping
can be accomplished through the TopLink graphical mapping tool, then encoded into a Java class (e.g.,
etmProject.java).

In the embodiment using the TopLink relational mapping tool, data is submitted from the GUI as
XML (which is automatically converted into the corresponding Java class by the SoapServer) to the API
Session bean. The data object (following the naming convention “DomainObject Data”) validates itself and
it’s children. If the validation passes, the API bean registers it with TopLink. When the fransaction commits,
all objects contained by the current transaction are written to the database.

Header Tables

Many header tables in the system architecture are configured to provide a unique master ID key for
an associated detail table. For those header tables that serve no other “business” function, the respective
header tables have no corresponding EJB component. Rather, these header tables only have a Data Access
Layer component. Accordingly, the DL component is called by the detail table’s data access layer alone.

20

-79/39

10

15

20

25

30

35

40

WO 02/101510 PCT/US02/18781

When a record is created on a detail table, the EJB layer “create” method is called to create a detail
record. Inside the detail table’s EJB Layer “create” method, the header table’s Data Access Layer “create”
method is called to generate a new header record. The detail table’s EJB Layer “create” method will call the
EJB Layer “create” method with the ID key of the header record created. The detail table’s EJB Layer
“create” method will also return the ID key of the header record created.

‘When a record is removed on a detail table, the detail table’s EJB Layer “remove” method is called to
remove all detail records for the corresponding header record. Inside the detail table’s EIB “remove” method,
the header table’s Data Access Layer “remove” method is called to delete the corresponding header record.
This occurs after the records have been deleted from the detail table.

Note that some header tables will contain information other than an ID key for detail records.
Accordingly, these other header tables will have a corresponding EJB component.

With the embodiment of the architecture having the TopLink relational mapping tool, header tables
gain more importance once they represent the foreign key that all children point to. Every table in the
database will eventually be mapped to an object, including header tables. The data tree can either be built to
flow down the hierarchy (child has foreign key to parent) or up the hierarchy (parent has foreign key to child)
based on the domain object. For most objects, the flow is down. For example, consider the tables of FIG. 10.

In one embodiment, the object tree resembles the following:

DealHeader

+ - - -Deal

+ - - - DealLocation
+ - - - Point

+ - - - DealParty

+ - - - BusinessAssociate

The above is an illustrative example of walking down the hierarchy. Objects with foreign keys live

under the table that contains the foreign key. In one embodiment, a majority of the data objects are organized

in this manner.

According to the embodiments of the present disclosure, the energy market trading system, software,
and method are directed to energy marketing and trading, and in particular, marketing deals and nominations.
The energy market trading system provides a real-time system configured for use by traders, schedulers, and
other system users. The system matches a workflow for system users and includes a number of usability
features, as further discussed herein.

The energy market trading system is adaptable to meet a customer’s business needs and requirements.
The system includes software and hardware modules configured to provide a high degree of flexibility,
scalability, and extensibility, for example, with the use of parameter driven business rules. The system also
provides extensive hourly and sub-hourly capabilities.

System modules handle one or more of multi-currency, multi-unit, and multi-commodity energy
marketing and trading requirements. The system modules further provide for a multi-language support.
Implementation of the system can be accomplished via a hosted ASP or be locally deployable. The system is

21

-78/39

10

15

20

25

30

35

WO 02/101510 PCT/US02/18781

further characterized by an open architecture for supporting an ease of integration, as further discussed herein.

The energy market trading system, software, and method embodiments of the present disclosure
provide a model for coupling a) contracts and deals with b) accounting via a single operations model
architecture. That is, the system model operations architecture processes one or more of purchase, pooling,
transportation, imbalance, sale, storage, and inventory between a) contract and deals and b) accounting.
Functional examples of the operations model architecture include date effectiveness, deal entry, a pricing
model, position management, inventory accounts, and nominations, as further discussed below.

With respect to date and time effectiveness, the architecture is configured to include base data
attributes that are date effective. For example, base data corresponding to business associates, facilities,
points, and accounts are configured to include date effective attributes. Date effective attributes enable
tracking of changes in base data according to corresponding attributes over time. For example, a company
name may change on a particular date, as indicated via a date effective attribute. Accordingly, on any given
date, the energy trading and marketing system identifies the company by its most current name, as per the date
effective attribute. Furthermore, the base data attributes enable the energy trading and marketing system to
maintain accurate, reproducible results.

In addition to base data attributes, contract and deal parties are rendered date effective. Accordingly,
the energy trading and marketing system supports mergers, acquisitions, and reassignments. Furthermore,
with the system, all transactional data is time based. Accordingly, the system can perform auditing for all
transactional data via the date effective attributes associated with transactional data.

With respect to deal entry, the energy trading and marketing system addresses and supports a number
of deal types, including physical gas deal types, financial gas deal types, and scratchpad deals. The physical
gas deal types can include one or more of purchase, sales, transportation, capacity release, and storage. The
financial gas deal types can include one or more of swaps, futures, and options. Lastly, the scratchpad deals
provides a workspace for one or more partial deals, pending deals, and “what if” deals.

In addition to supporting different deal types, the system facilitates quick deal entry via its usability.
That is, the system provides quick deal entry with the use of multiple sets of preferences by user (search,
displays, defaults), templates, price packages, profiles/patterns, and duplicate functionality. System time
intervals include at least one of monthly, daily, hourly, sub-hourly, and patterns/profiles. The system further
provides support for deals at trading locations, as well as a portfolio/book structure for deal entry.

With respect to the pricing model, the system includes a common logic model that applies across the
entire application, including one or more of contracts, deals, purchases, sales, transportation, storage,
imbalance penalties, cash in, cash out, and inventory valuation, in any combination. The system applies
pricing with the pricing model in connection with contract, deal, and location, as well as with defaults,
overrides, and best it logic.

Accordingly, the pricing model offers flexibility and consistency. With respect to flexibility, the
pricing model includes price formulas and quantity formulas, as well as extensive tier-ing scenarios. The
pricing model utilizes any quantity type within the system. Furthermore, the pricing model offers flexibility in

price packages and templates.

22

-77/39

10

15

20

25

30

35

WO 02/101510 PCT/US02/18781

The pricing model offers familiarity and consistency for users across the system. The pricing model
includes a single pricing engine for generation of consistent results. Furthermore, a single price resolution
mechanism of the pricing model provides for easy reporting. The pricing engine includes a computer program
configured to execute instructions according to various functionalities of the pricing model, as discussed
herein, using programming techniques known in the art.

With respect to position management, the system architecture provides tracking of a deal by one or
many positions. Positions are the foundation for managing exposure in cash and future periods. The system
architecture is configured to split positions across muitiple books/portfolios. The system architecture also
provides support for transferring positions between books/portfolios. Still further, the system architecture is
configured to enable viewing of exposures by point, trading location, point groups, books and portfolios.

In connection with inventory accounts, the system architecture includes a configurable grouping
mechanism for transactions. The configurable grouping mechanism supports one or more of balance
calculations, imbalance management, cash in/cash out, imbalance trading, storage balances, interconnect
balances, pool balances, inventory valuation, and inventory penalties. The system architecture provides
support for grouping of inventory accounts for roll up purposes. The grouping mechanism utilizes price
structures for penalties, valuation, cash in, and cash out.

With respect to nominations, the system architecture includes a full featured nominations interface.
The nominations interface is configured to optimize scheduler’s workflow. In addition, the nominations
interface provides support for partial nominations (e.g., in progress), duplicate functionality, support for
hourly and sub-hourly nomination, profile/pattern support, and focuses on usability and optimizing schedulers’
workflow. Still further, the nominations interface is configured to track movements between deals and/or
inventory accounts.

Details incorporated into the system architecture of the embodiments of the present disclosure include
an object oriented design, a fully web enabled user interface, extensibility via plug in modules, use of
published API’s, security at the object and client company level, as well as, audit capabilities for all
transactional data. Extensibility via the plug in modules provides an ability to readily adapt custom
requirements into the base portion of the system architecture. The published API’s provide a standardized
mechanism for information exchange within the system architecture and with external applications as well.

The system modules communicate with one another via API’s. The API’s insulate the graphical user
interface (GUI), reports, interface and custom applications from the architecture’s database and any database
changes. In addition, the API’s use an XML-based interchange and open messaging transport. Accordingly,
the API’s facilitate real-time integration with other systems, such as, Risk, Exchange, and similar systems.
Still further, the modules of the system architecture can be extended and/or replaced if desired for a particular
implementation, via the APIL.

The system architecture according to one embodiment of the present disclosure includes a single
multi-tiered architecturé for operatively connecting different client systems into an integrated system utilizing
a common interface method.

The system architecture further provides for data migration from a source database to a target
database of the system architecture using a data preparation application, a staging preparation database, and a

23

-76/39

10

15

20

25

30

35

WO 02/101510 PCT/US02/18781

migration application. In addition, the migration application is operatively connected to the messaging layer.
Messaging and business layer logic exercises the API and provides validated database entities on the target
database.

The international pipeline and gas marketing market is following the U.S. market in its movement
towards a deregulated and unbundled marketplace. This presents the need to address non-U.S. pipeline
requirements, while maintaining GISB-compliance to address US market requirements. Accordingly, the
system architecture provides a flexible product in support of the international market, further to provide
international software that can easily handle regional settings and languages.

The system architecture of the present disclosure provides a highly scalable product that can perform
satisfactorily in both small and large implementations. The system architecture also provides a flexible
product that can be functionally configured to address the varied requirements of small and large pipelines
alike.

As energy becomes more and more deregulated, the system of the present disclosure can be adapted
to serve at least some of the business needs of the local distribution companies. These companies will need
highly flexible systems that can effectively work with other systems and the somewhat unique requirements of
the localities they serve.

The system of the present disclosure can be applied for use in the upstream production and gathering
areas of the gas marketplace, in that the system can be configured and tailored to satisfy their needs.

The system of the present disclosure offers integration, flexibility and extensibility to allow for the
incorporation of the most advanced analytics and optimization tools available in support of front office
analytics and optimizations techniques of energy marketing and trading companies.

The system further provides a web-based product to support a variety of clients and that can be
accessed through multiple browsers and platforms.

Furthermore, the system architecture integrates open browser support, e-mail, fax, instant messaging
and integration with external systems to meet the needs of increasing growth of B2B (business to business)
commerce.

The system also provides a highly scalable and configurable architecture with enhanced security and
access services to meet growing demand for an Application Service Provider system solution.

The system architecture of the present disclosure provides greater flexibility in structuring deals.
Capabilities include support for deals spanning multiple pipelines, more sophisticated deal pricing capabilities,
deal pricing at the transaction point level and user specifiable rounding techniques.

A key aspect of a good gas pipeline and marketing system is demonstrated in how meter and station
level information is entered and maintained. The system architecture of the present disclosure distinguishes
between stations of a gas pipeline and marketing system, which are logical nomination points, and meters,
which are physical measurement devices. Furthermore, certain station information, such as zone, maximum
daily capacity, taxing jurisdiction, etc. are date-sensitive in the system architecture. To meet these growing
needs of the domestic and international gas pipeline market, the system architecture restructures the way meter

and station data is retained and managed.

24

-75/39

10

15

20

25

30

35

WO 02/101510 PCT/US02/18781

With respect to providing support for hourly business processes, the system architecture supports
hourly changes to nominations and is configured to comply with GISB intra-day nomination change
requirements. The system architecture recognizes aspects of hourly business, such as individual hourly
nominations, measurement, allocations or settlement. The system architecture is further configured to
measure, allocate and calculate penalties for hourly variances. The system architecture also contemplates
future hourly pipeline services that are likely to include hourly (or time of day) service rates and invoice
settlements.

The system architecture provides support to manage customer business cycle intervals other than on a
calendar month basis. For example, using time effective base data, the system provides the functional
capability to invoice on a semi-monthly, quarterly or annual basis, as well as, on a non-calendar month
business cycle basis.

The system implements a multi-tier system architecture with clean logical componentization and
parameterization, thus providing the larger pipeline market with a highly scalable, functional and flexible
energy market trading and transaction product. The system architecture facilitates easy external customization
through applications programming interfaces (APIs) that can be configured to handle the unique needs of a
particular pipeline (such as penalty calculations).

The gas and pipeline marketing and transaction management solution of the present disclosure
addresses new and enhanced functionality as described herein as well as having an ability to address the
emerging domestic and international requirements. A brief discussion of some of the functionality of the gas
and pipeline marketing and transaction management solution are provided below.

The base information module maintains information about baseline data required by the rest of the
system, such as, Counter-Parties, Pipelines, Nomination Points, Meters, Units, Currencies, Rates etc.

The contracts module maintains information about buy/sell, transportation, storage, pooling and
capacity release contracts that the marketer or pipeline has with its customers. The contracts module includes
Title Contracts and Custody Contracts containing base agreement information, and specifications representing
terms, points, quantities and pricing details that are used for billings and payments. Additionally, pricing
indices are maintained within the contracts module.

The Deal Making module maintains information about the transactions and deals that marketers are
involved in. The module includes Buy and Sell deals along with other applicable transactions such as broker
commissions. Provisions for multiple pipelines and point-level pricing are included along with complex
multiple-component formula-based price calculations. Deals points, quantities and pricing details are used for
invoices and remittances.

The Nomination module is configured to receive and/or create transportation, storage, pooling and
interconnect nominations, and to perform pool-to-pool transfers. The module provides the capability to handle
various nomination models, including GISB and international requirements.

The capacity management and confirmations module is configured to enable scheduling of pipeline
capacity and prioritize contractual volumes based on parameter-driven scheduling and curtailment rules. The
function of the capacity management and confirmation module allows the user to model a pipeline and to set

constraint points and other criteria that permit tariff compliant reduction of flowing volumes. The module is

25

-74/39

10

15

20

25

30

35

WO 02/101510 PCT/US02/18781

also configured to provide confirmation of nominated and/or scheduled quantities at the nomination point
level by operator, agent or shipper.

The allocations and balancing module maintains allocations information including configurations of
tiers, PDA Rules, and rules. The module accepts meter and point information and calculates imbalances and
point variances based on nominated, scheduled and measured volumes.

The accounting and settlement module provides suitable processing to consolidate all contracts, deals,
scheduling and allocations information for generating invoices and/or remittances for the marketer or pipeline
customers. The module also supports external penalty calculations to be configurable with differing pipeline
tariffs. Other capabilities include specification of override rates and prices, processing of prior month
adjustments, and calculation of taxes. The accounting and settlement module also includes G/L account
assignment, calculation of accruals for business not yet finalized, and support of interfaces to external General
Ledger and Accounts Receivable systems.

GAS MARKETING BUSINESS PROCESS OVERVIEW

The following discussion relates to the flow diagram of Figure 11, which illustrate interconnections

of the various modules of the system of the present embodiments.
Imbalance CashOut-Cashin

Imbalance CashIn/CashOut is related to the requirements of Charge Processing, Charge Management,
and Inventory Account Management, which describe the balance levels and the rules surrounding the
calculation of the imbalance quantity.

The process of CashIn and CashOut involves the increase or reduction of the imbalance quantity and
creating an associated charge. A Cashln is usually from the aspect of increasing or establishing an imbalance
quantity. A CashOut is usually from the aspect of decreasing or removing an imbalance quantity. However,

these requirements do not limit the direction of imbalance adjustment.

The two methods provided to manage imbalance quantity and create imbalance charges in accounting
are Auto CashOut and Manual CashOut/CashIn. Auto CashOut uses user defined cashout rules associated with
an Inventory Account of Imbalance that will control the creation of charges and adjustment of imbalance
based on desired rules. Manual CashOut /CashIn requires the user to enter the quantity and the price for each

increase or reduction.

Prior Period Adjustments of imbalance are supported. The effect of these prior period adjustments
can cascade through many periods of imbalance. Any charges or penalty-based charges can be reversed and
adjusted.

Charge Management

Charge Management is related to the requirements of Charge Processing and Accounting
Requirements. The main business requirements related to managing generated charges are: viewing charges,
approving charges, updating charges, managing charge statuses, and finalizing charges as outlined below. In

one embodiment a user can go to one screen to accomplish one or more of these functions.

26

-73/39

10

15

20

25

30

35

WO 02/101510 PCT/US02/18781

Charge Processing
Charge Processing is related to the requirements of Price Management, Deal Maker, Accounts,

Contract Administration, Imbalance CashIn/CashOut and Gas Control. Charges produced by the Energy

Transaction Accounting System represent the types of activities priced at any of the defined objects.

Various types of charge calculations can be performed and business charges generated. The

calculation methods or algorithms can be user supplied which offers flexibility in charge production.

Various processes occur in conjunction with producing a charge or evaluating a charge for
recalculation. For example: performing a unit conversion requires the storage of utilized heating values,
removing obsolete charges that are no longer applicable, performing a currency conversion requires tracking
the currency exchange rates utilized and the requirement to evaluate existing charges to determine if a prior

period adjustment needs to be created.

Various requirements exist for Tax Charges. Taxes are significantly different from regular charges in
their timing and application. Multiple jurisdictions can apply to a location with each having multiple tax types
and multiple exemptions.

Margins, Volume Reconciliation and Valuations

Margin Analysis and Volume Reconciliation are business activities that provide summarized
information on quantities and dollars. Margin analysis places emphasis on the dollars, while volume

reconciliation places the emphasis on the quantities.

Margin analysis includes operating P&L and Balance Sheet views. These views provide
summarization and comparison of revenues vs. expenses and balance sheet items in order to estimate or
analyze the margin, assets, and liabilities of the organization. Organizations use different methods to calculate
their margin and deferrals, so there must be flexibility in defining charges as revenue, expense, asset or
liability.

Statement Management

Statement Management relates to the requirements of Charge Management and introduces the
requirements of statement generation separately from charge generation and management. Subsequent
statement generation will be using grouped charges to produce a statement.

Charges will default to be grouped by Account and manual grouping (overriding the Account) can
occur if required. Only those charges that have been approved/updated are available for the statement
generation process unless a parameter has been defined stating approval of charges is not required. Once

charges are processed for statement generation, records are written to the statement table.

When finalizing a statement (either batch or manual), the status of the charge record is marked as
'Final'. Physical separation of the statement generation process from the charge management process facilitates

the separation of the charge information from the statement information.

The print process can be separate and external to the statement generation function found in the
system. The capability to view charges is provided from the perspective of statement generation if needed for

an external process. The statement data is one of the sources for sub-ledger or GL interfaces.
27

-72/39

10

15

20

25

30

WO 02/101510 PCT/US02/18781

Accounting Support Management
Accounting Support Management has functions that will precede charge process (i.e. Price

Component definition, Tax Rate Management) while others can follow charge production (i.e. Accrual
Management or Accounting Close). Many of these functions are optional depending on the business rules to

be enforced within a company.

Accounting Management

Account Management is an integral part of the overall accounting process and requires familiarity
with the requirements for Business Associates Management. An Account is a grouping of charges for
settlement and will be used for statement generation and processing parameters. Accounts provide the ability
to group or segregate charges. Grouping all Purchase and Sales activities on one statement will support a

statement-netting requirement and can separate the statements by activity type.

Account Groups supports the linking of multiple Accounts. Account Groups allow flexibility in
determining which Business Associate(s) are responsible for the accounting and which get copies only of the

statements.

Pricing may be at the Account level, as opposed to the Contract or Deal level. For example, Broker
Fees or Subscription Fees may apply to a Business Associate, regardless of any trading or contractual activity
that may occur. The Account information may include, for example, one or more of: Entity; Business

Associate; Type of Account; Language to be used for the Statement; Currency; or Statement Terms.

Business Associate Management
A Business Associate is defined as any party with whom the owner of the system is doing business or

tracking transactions and may be a corporation, company, or an individual.

Business Associate Management includes the maintenance of all information that is associated with a
Business Associate. Most of the information will be maintainable on a date effective basis, due to the high
number of mergers, acquisitions, and name changes. The Business Associate Information change history will

be readily accessible to users.

Business Associate Management also includes the maintenance of Entity information — who is the

‘owner' of the information contained within the system, who generates statements for the customers, etc.

System users may have an interest in maintaining contact information, which is an integral part of
Business Associate Management, however that function may be limited to a group of users who will be

responsible for managing the bulk of the Business Associate information.

The EDI agreements, which are critical for Interstate Pipelines, are managed as a function of
Business Associate Management. This information includes the terms of the agreement and the data sets that

are included within the agreement.

28

-71/39

10

15

20

25

30

WO 02/101510 PCT/US02/18781

Credit Management

Credit Management consists of several key areas. Typically, the credit management team within an
organization will assume the responsibility of monitoring the outstanding credit exposures, receiving
notification when credit limits are exceeded, and setting and maintaining the credit limits for their Business

Associates. Available Credit is defined as the Credit Limit(s) less any outstanding

Credit Exposure.

Credit exposure is calculated for all Contracts and Deals that are managed within the system. In
addition, it is a requirement to allow credit exposure to be effected by transactions outside of the system,
whether they are manually entered or processed through an API. The impact of the Contract or Deal credit

exposure can also be overridden if more accurate information is available.

Credit checking will be a requirement within Credit Management, Contract Administration, Deal-
Making, Capacity Release, and Account Management. For each business activity that has pricing associations,
the credit implications must be reviewed. If the value of the deal, contract, or other credit-related business
activity exceeds the credit limit for the Business Associate, Credit Management will éither need to extend the

credit limit, or the business activity will be rejected.

Credit Management determines the action to be taken when the credit limit is exceeded by business

activities. These actions are set at the entity level, but may be over-ridden at the Business Associate level.

Facilities and Points Management

Facilities and Points management is a critical area of operational information, both from a Marketer's
perspective and a Facility Operator's perspective. Nomination, Confirmation, and Scheduling transactions are

based on facilities and points.

A Facility is a representation of either a logical or physical operational grouping of points. Examples

of facilities are Pipelines, Gathering Systems, Storage Systems, and Power Transmission Facilities.

Points are defined as a place to capture physical or conceptual business transactions within a facility.
Points are used extensively within all functional areas of an organization including Contract Administration,

Deal-making, Operations, Forecasting, and Accounting.

Not all facility types will perform the same business activities. The focus of the requirements is to
address the business needs of the FERC Regulated pipelines and other facility types, including the

international pipelines, gatherers, and transmission facilities.

The Facility information may include, one or more of: Type of Facility (Pipeline, Gathering System);
Regulatory Agency (FERC, TRRC); Operational Business Activities that a Facility performs (Nominations,
Confirmations, Scheduling, Allocations); Cycles for the Business Activities; Groupings within a Facility

(Zones); Segmentation of a Facility; and/or Defaults to be used for Facility Management,

29

-70/39

10

15

20

25

30

35

WO 02/101510 PCT/US02/18781

The Point Management information may include, one or more of: Type of Point (Transmission,
Interconnect, Pool); Defaults to be used for Point Management; Relationships of Points to each other (for
Interconnects, Hubs, etc.); Capacities of the Points; Business Associates who have an interest in the Point;

and/or Analysts who are responsible for the Point.

Inventory Account Management
An Inventory Account is a transaction grouping mechanism, combined with a set of rules and

parameters, to be used in Balancing as well as in Imbalance Trading, Cash-out, and Imbalance Valuation.

For Balancing, the calculation of Imbalance quantities, the operational transactions are aggregated
based on the Inventory Account assignments. The Inventory quantity is calculated as the Receipts for the
aggregated transactions, less any Fuel and less the Deliveries. An association is established between Accounts
and business objects to allow the accurate calculation of Inventory Quantities. An Inventory Account may be
associated with the Shipper, Contract, Contract Service, Contract Path, and/or Contract Point. The resulting

aggregation is then available to other processes that are dependent upon the Inventory Quantity.

Imbalance Trading, Cash-out, Penalties, and Valuation are all dependent upon a set of rules
associated with an Inventory Account. The type of rule, the granularity, and a price structure to be used for
valuation, cash-out, and penalties are specified. Business Associates may wish to provide customers with the
capability to have these activities at different levels of granularity (for example, Daily Cash-out but Monthly
Trading, or Hourly Penalties and Daily Cash-out and Trading), the rules for each activity may be at different
levels. It is also possible that a customer may not wish to offer all of the activities. The regulated pipelines will
be more likely to have Cash-out and Trading, while the unregulated pipelines may only need the Inventory

Accounts penalties.

Any balance left in an Inventory Account may be valued as inventory rather than cashed-out
completely. Generally, there is an Inventory Statement that is generated to reflect the starting position, the
activity, and the resuiting position. The Shipper and Operator Imbalance Inventory Accounts can be associated

to any one of the following: Shipper; Contract; Contract Service; Contract Point; and/or Contract Path.

Pooling, Storage, and Interconnect Inventory Accounts can be associated as discussed in the

following,.

Points (logical or physical): The association of the Inventory Account to one of the items listed above
will dictate how the Imbalance quantities for operational transactions are to be aggregated and a shipper may
have multiple Inventory Accounts. In addition to the multiple and flexible aggregation levels, this approach
allows the user to establish the rules at the Inventory Account level and to use those rules multiple times
without having to restate the rules each time.

The trading of Imbalance quantities between shippers requires specifying the Inventory Account at
multiple levels. There are economic factors that would cause a pipeline to force trades to occur only on
quantities within a certain market area. A pipeline has no control over the trades between shippers unless the

granularity of the Inventory Account is at that level.

30

-69/39

10

15

20

25

30

35

WO 02/101510 PCT/US02/18781

Shippers may need to group Inventory Accounts together for roll-up purposes. For example, a
Shipper may do cash-out at a Contract/Account level, but may do Imbalance Trading at a Shipper/Account
level. If a roll-up Inventory Account is used, the distribution order must be stated so that if activity occurs at a
roll-up Inventory Account it can accurately be distributed to the other Inventory Accounts. Multiple types of
Inventory Accounts will be supported. Each of the Inventory Account types will have processing and
validation rules that are specific to the type. Inventory Accounts to be supported includes at least one of the
following: Shipper Imbalance; Operator Imbalance; Storage; Interconnect; and Pooling.

The Inventory Accounts for the Shipper in the above example are: Account 1 — includes all activity
for Contract A, and all activity for Path 1 on Contract B; Account 2 — includes all activity for Contract B
except for Path 1; and Account 3 — is a Shipper Roll-up Inventory Account (note, if there were additional
contract activities for the Shipper which were not deﬁned to a different Inventory Account, the other activities
would also rolled into Inventory Account 3).

For the Imbalance Period, the following nominations/allocations occur:

Ree Fuel Del
Contract A Point 1 R—Point2 D 100 10 88
Contract B Point 1 R— Point 2 D 500 50 460
Contract B Point 1 R — Point 3 D 700 70 600

Based on the Inventory Account Groupings shown above, the Imbalance Quantity for Inventory:

Account 1 would be -8 (600 — 60 — 548).
Account 2 would be +30 (700 - 70 — 600).
Account 3 would be 22 (-8 +30).

For Imbalance Valuation, Imbalance Trading, and Cash-out, consider the following example:

A shipper has two Inventory Accounts, both with a type of 'Shipper Imbalance'. The rules
for all imbalance quantities associated with Inventory Account 1, which covers 3 of his contracts,
with the first 50% of the Imbalance Quantity is cashed out at $2.00. The remaining 50% of the
Imbalance Quantity is held in inventory and valued at $1.50. The shipper is not allowed to trade any
of his Imbalance Quantity on these 3 contracts.

The rules for Inventory Account 2, which cover all remaining contracts for the shipper, say that all

quantities associated with Inventory Account 2 are eligible for Imbalance Trading, and that all of the quantity
remaining after the Imbalance Trade window is closed is cashed out at $5.00.

The Inventory Account information may include, at least one of the following: Entity; Business
Associate; Indication of whether the Inventory Account is Volume-based or Value-based; and method to use
for valuing Accumulated transactions (LIFO, FIFO, Pro-Rata);

For each Inventory Account, the rules are specified. The rules information may include, the
following: Indication of whether the rule is a Cash-Out, Trade, Penalty, or Valuation Rule; Granularity for the
rule (hourly, daily, monthly); and Price Structure to be used.

Inventory Accounts may be grouped together for roll-up purposes. The group information may
include, at least one of the following: Indication of which Inventory Account is the Roll-up Inventory
Account; Distribution parameters for the other Inventory Accounts (if activity occurs at the roll-up Inventory

Account, how does the user wish to allocate the effects of that activity to the other Inventory Accounts).

31

-68/39

10

15

20

25

30

35

WO 02/101510 PCT/US02/18781

Resolving Prices and Quantities

Resolution is solving a pricing formula or quantity formula. The resolved price or quantity can then
be used for display or charge processing. Deal Maker, Contract Administration and Price Management are
related in connection with resolving prices and quantities.

The Price Structure contains two elements for formulas, the Price Formula and the Quantity Formula.
The user can specify simple to complex algebraic algorithms to determine a price with the Price Formula. The
Price Structure itself contains a multiplier and increment, which can adjust the resolved price or fixed price,
and is entered by the user. The Quantity Formula provides a means to reference a specific quantity on which to
base a charge or build a complex algebraic algorithm if necessary. A quantity formula is also used to specify a
TierLevel Quantity by reference. The formulas provide flexibility and extensibility.

A Price Formula can be specified on the price structure associated to an object (for example:
Contract, Deal, Deal Point, Path, etc.). The user can specify a fixed price or specify a pricing formula.
A pricing formula can be comprised of an index reference, formula or complex formula set. The
pricing formula allows for a series of algebraic commands, multiplier, increments and combinations
of indexes.

A Quantity Formula can be specified on the price structure associated to an object (for
example: Contract, Deal, Deal Point, Path, etc.). The customer can specify a reference to a quantity
type and build an algebraic relationship between various quantities. The quantity formula allows for
multipliers and specification of minimum or maximum quantities. The quantity formula is used to
determine the Billable Quantity on which a charge can be based. It can also be used to specify a Tier
Quantity.

One of the primary advantages of utilizing the new architecture is the ability to reuse or share
components. Published APIs for external use facilitate reusability. In addition, Integration Points exist for the
feed of Index values. As index values are inserted into the system, an event trigger will process pricing
formula resolution.

Pricing

Pricing is an integral part of the overall accounting process and is related to the requirements for
Contracts, Deals, Business Associates, and Accounts. The requirements of pricing are capturing pricing
information, grouping pricing information into packages for easy re-use, and maintaining indexes and
formulas.

Pricing for purchases and sales, as well as transportation rates, focus on capturing and associating
prices/rates, miscellaneous fees, charges, penalties and credits for a point, deal, contract, account, or business
associate.

A price structure is the mechanism used to associate a price with the above objects. Multiple price
structures can be associated with a single object. The word 'object' in this document refers to an item that has
its own identity in the system and to which items can be attached. A price structure also captures the
information required to generate a charge.

The Pricing information may include, one or more of: Price/Rate Information: defines the method for

determining the price (fixed value, index, formula, tiers, etc.); Quantity Information: defines the method for

32

-67/39

10

15

20

25

30

WO 02/101510 PCT/US02/18781

determining the quantity (MDQ, flow based, difference between Scheduled and Actual, etc.); General
Information: provides definition to the price structure (label, effective dates, etc.); Association method
information: enables the user to aggregate price structures at a higher level than they are applied; and Charge
Generation Information: provides the additional information the system will need to generate a charge from

the price structure.

The types of pricing that are supported via price structures include: Price structures for transactions

related to purchases and sales and price structures for transactions related to service contracts.

Transactions related to Purchases and Sales, for example:
= $2.00 per Mcf based on actual flow.
* 95% of Inside FERC First of Month posting for ANR-OK + $.05 per Dth based on deal volume.

» Avg of (98% of Inside FERC First of Month posting for ANR-OK + Inside FERC First of Month
posting for El Paso -Permian Basin + $.02) with a floor of $1.50 and a ceiling of $4.00 based on
actual flow for all points associated with a deal.

Price structures for these transactions can be associated to one or more of: Account; Contract; Deal;

and Point.

Transactions related to Service Contracts, for example:
= $.10 per Dth based on actual flow at the receipt meter for all nominations for a contract.
» Inside FERC First of Month posting for ANR-OK per Dth based on Contract MDQ + 10%.

= $.05 per Mcf based on the difference between Scheduled volumes and Actual flow volumes for all
nominations of the GISB transaction type of Current Business.

Price structures for these transactions can be associated to one or more of: Account; Contract; Path;

and Point.

Contract Administration

Capacity Administration is related to the requirements of the Business Associates, and Facilities and
Points Management requirement documents. Contract Administration is the managing of all contractual
information that is needed by operationél or accounting processes. A Contract is the legally binding agreement
between parties to provide goods or services. A Contract Service is the definitive structure within a contract

that defines the rules and requirements for further processing.

The Contract information may include, one of the following: Type of Contract (Commeodity,
Service.); Contract Parties (Counter-party, Shipper); and Contract Dates (Start, End).

The Contract Service information may include, one of the following: Type of Service
(Transportation, Purchase, Sales); Level of Service (Firm, Spot, Term); Quantities; Capacities; Points; and
Paths.

33

-66/39

10

15

20

25

30

35

WO 02/101510 PCT/US02/18781

The types of Contracts that are supported include: Commodity, Service, and Master Agreements.
Commodity contracts are used for sales or purchases of a commodity or commodities. Service contracts are
used in performance of a service. Master Agreements are used to manage Capacity Release agreements.

The types of Contract Services supported are Commodity Contract Services and Service Contract
Services.

Commodity Contract Services can include: Spot Purchase; Term Purchase; Spot Sale; and Term
Sale.

Service Contract Services can include: Firm Transportation; Interruptible Transportation; Firm
Transmission; Non-Firm Transmission; Firm Storage; Interruptible Storage; Gathering; Parking and Lending;

and Balancing,

Capacity Management
Capacity Management includes all activities that a facility's personnel or a marketer's personnel

perform on a regular basis. The facility operation's activities will include analyzing the capacity, managing the
capacity release, and managing the facility capacity auction. The marketer's activities will include analyzing
the capacity, releasing and acquiring firm capacity, and participating in facility auctions. Capacity
Management is related to the requirements for Contract Administration and Pricing Management.

A facility's capacity is the amount of space available on the facility. The capacity can be determined
for the entire pipeline, a portion or segment of the pipeline, and for specific points.

A firm transportation contract grants capacity to a service requester at one or more points along a
pipeline. Capacity is either specific to location (point) and quantity or is general to location and specific as to
quantity. A firm transportation contract gives a service requester the right to cause a transportation service
provider to receive a specific quantity of gas from that service requester at a point and/or deliver a specific
quantity of gas to that service requester at point over a specific time period.

Capacity Release is the mechanism that has been established to allow shippers the ability to release
their excess capacity to another shipper. This is an offer, bid, and award process that can be accomplished
either on the Internet or through EDI datasets.

With the advent of the capacity release market, the FERC required pipelines to openly post the deals
that their service requesters were seeking to transact. The Commission set up a process whereby all releases
would, at a minimum, be posted for informational purposes. If the release was for more than one calendar
month, the release was required to be at "Maximum Rate" or to be available for open bidding by all
prospective service requesters. The FERC required each pipeline to establish an electronic bulletin board
(EBB) through which capacity being released could be posted and offered for sale and upon which prospective
service requesters could bid, on-line, for such capacity.

Capacity Auction is the mechanism that has been established to allow pipelines the ability to auction
their excess pipeline capacity. This is an offer, bid, and award process that can be accomplished on the
Internet.

Capacity Analysis is the process that either the shipper or the pipeline uses to determine their capacity

availability and requirements. Under-utilized capacity or over-subscribed capacity could result in a pipeline

34

-65/39

10

15

20

25

30

35

WO 02/101510 PCT/US02/18781

conducting an auction or offering discounts. Underutilized capacity or oversubscribed capacity could result in
a shipper releasing capacity and amending its contract accordingly. If a shipper has a capacity deficit, it could
(by request to a pipeline) trigger a capacity auction.
Deal Management

The major business requirements of Deal Management are deal capture, confirmations, bid/offer
tracking, position management and credit checking. Deal Management is related to the requirements of the

Contracts, Business Associates, and Accounts requirement documents.

A deal is an agreement between two parties to exchange assets or provide a service. The types of
deals include physical and financial transactions for natural gas and power and deals such as purchases, sales,
transmission, transportation, storage, and capacity release. The general information captured for a deal

include:

* Deal information — contains the basic information for the deal including the counter-parties,
broker(s), and, if applicable, term/dates, contacts, contract relationship, confirmation status/date, etc.

s Deal service(s) — the deal may contain one or more services which represent the deal type, location,
service type (gas purchase, physical option, etc.), service level, term, etc.

» Deal Point(s) — the deal point provides detailed information related to the physical delivery of the
commodity associated with the deal.

s Deal Path(s) — the deal may contain one or more transportation/transmission paths, which represent
the capacity associated with the deal. The deal path will be based on the facility from which the
service is provided.

» Future Contracts — for exchange traded deals; this will reflect the contract traded, the number of
contracts/lots traded and the associated pricing.

» Storage — for storage deals (including parking and lending), this will contain information related to
the storage capacity, injection/withdrawal quantities, etc.

The types of deals which are supported include:

Example 1: A fixed price physical gas sale between XYZ Marketer and ABC LDC for $4.10 with a 6-
month term January-June 2001 for 10,000 MMBTU/Day for delivery at Transco Station 65 would be:

= Deal information — Buyer — ABC LDC, Seller — XYZ Marketer, dates 1/1/2001 — 6/30/2001

s Deal service(s) — Deal service type — Sale, Commodity — Gas, Location — Transco Station 65, Service
Level - Firm

» Deal Point(s) — Delivery Pipeline — Transco, Delivery Point — Meter 12345, Quantity — 10,000 .
MMBTU/Day.

» Deal Price - $4.10 per MMBTU
» Deal Path(s) — (Not Applicable).
= Future Contracts — (Not Applicable).

= Storage — (Not Applicable).

35

-64/39

10

15

20

25

30

35

WO 02/101510 PCT/US02/18781

Example 2: A fixed price physical power purchase between XYZ Marketer and ABC Power Marketer
brokered by 123 Broker for $50.00 per MWh with a 6 month term January-June 2001 for 50 MW/hour on
a 5x16 excluding NERC holidays for delivery at Palo Verde would be:

» Deal information — Buyer — XYZ Marketer, Seller — ABC Power Marketer, Broker — 123 Broker,
dates 1/1/2001 - 6/30/2001

= Deal service(s) — Deal service type — Purchase, Commodity — Power, Location — Palo Verde, Service
Level — Firm w/ Liquidated Damages

» Deal Point(s) — Delivery Point — Palo Verde 250 KW bus, Quantity — 50 MW/hour on a 5x16
excluding NERC holidays.

» Deal Price —

(1) $50.00 per MWh
(2) Broker Fee - $0.01 per MWh payable to 123 Broker
s Deal Path(s) — (Not Applicable).

= Future Contracts — (Not Applicable).
= Storage — (Not Applicable).

Example 3: XYZ Marketer acquires 5,000 MMBTU/Day of transportation capacity from ACME Pipeline
from Zone 1 to Zone 3 for $0.15 per MMBTU demand charge and $0.05 per MMBTU commodity
charge:

* Deal information — Buyer — XYZ Marketer, Seller — Acme Pipeline, dates 1/1/2001 — 1/31/2001

» Deal service(s) — Deal service type — Capacity Release, Commodity — Gas, Facility — Acme Pipeline,
Service Level — Firm

= Deal Point(s) — (Not Applicable).

» Deal Price —

» (1) Demand Charge -~ $0.15 per MMBTU For Zonel to Zone3 Capacity Delivered Quantities

» (2) Commodity Charge - $0.05 per MMBTU For Zonel to Zone3 Capacity Delivered Quantities
= Deal Path(s) — From Zone 1 to Zone 3, 5,000 MMBTU/Day of Capacity

* Future Contracts — (Not Applicable).

= Storage — (Not Applicable).

Division of Interest Processing

Division of Interest Processing is related to the requirements for Contract Administration. In
addition, the Interest Ownership of a wellhead is managed through the Division of Interest assignment. Three
types of interest owners are specified — Working Interest Owners, Royalty Interest Owners, and Equity Interest
Owners.

The Working Interest is specified at the Point level and may be specified for any Contract Service.
The percentage of interest for a Working Interest Owner is used to calculate the quantity that the owner is
entitled. The measured quantity is multiplied by the interest percentage, resulting in the allocated quantity to

the Working Interest Owner. A wellhead may have multiple Working Interest Owners, but the ownership

36

-63/39

10

15

20

25

30

35

WO 02/101510 PCT/US02/18781

percentages may not total up to more that 100%. Procedures must be in place to resolve situations where
undedicated interest exists (where the Working Interest Owner percentages sum up to < 100%).

The Royalty Interest is specified at the Point level and may be specified for any Business Associate.
The Royalty Interest Owners are those who share in production free of costs if and when there is production.
The Operator of the Point is responsible for providing the Royalty Interest Ownership breakdown and the
Over-riding Royalty Interest Owners must be identified.

Gas Quality Rules Processing

Gas Quality Rules Processing is related to the requirements for Contract Administration,
Measurement and Sampling Management, and Pricing Management.

Contracts (Service and Commodity) or Contract Services may have clauses to allow for penalties and
charges if the gas that is being measured is not according to specifications set forth in the contract. These
clauses, or rules, are specified at the Contract, Contract Service, or Contract Service Point level.

The value of the measured sample is compared to the Gas Quality Rule for pricing. If the measured
sample value falls outside of the terms of the gas quality rule additional charges for the Contract, Contract
Service, or Contract Service Point must be created.

There may also be situations that warrant a credit or charge if the sample falls within the terms of the
gas quality rule associated with the Contract, Contract Service, or Contract Service Point. The information
captured will support either condition.

Heat Content Rules Processing,

Heat Content Rules Processing is related to the requirements for Contract Administration and
Facilities and Point Management.

Contracts (Service and Commodity) or Contract Services may stipulate the use of a Heat Content
type. This type may be different from the default Heat Content type used in converting a volumetric quantity
to energy, or an energy quantity to volume. These clauses, or rules, are specified at the Contract, Contract
Service, or Contract Service Point level.

The Heat Content Types and their associated values are received as a function of measurement
sampling. When a volumetric quantity is nominated, scheduled, confirmed, or allocated, the appropriate Heat
Content type is critical for converting from volume to energy or energy to volume for quantity maintenance.

The hierarchy for determining the correct Heat Content value to use is Contract Service Point,
Contract Service, and then Contract. If no Heat Content rule has been specified at any of those levels, the Heat
Content of the point should be used. The default facility Heat Content should be used if there is no Heat
Content at the point.

Due to the fact that Contractual Heat Content Rules may differ from what is used by the Facility or
Point, the aggregation of quantities at a Point using the Contractual Heat Content Rules may differ from the
quantity at the Point or Facility.

Allocations Processing

Allocations Processing is related to the requirements for the overall process of providing
transportation services and/or utilizing transportation services and Nomination Processing, Confirmation

Processing, Scheduling Processing and Measurement/Sampling Management.

37

-62/39

10

15

20

25

30

35

WO 02/101510 PCT/US02/18781

Allocation Processing includes all allocation-related activities that a facility's operations personnel
perform on a regular basis. These activities include pre-determined allocation (PDA) rules maintenance,
performing validations on PDA's and allocation processing, and reviewing the allocated quantities before
publishing the allocation information to other operational areas, other facilities or marketers.

Allocation Requirements

The allocation requirements for business processes define facilities (regulated or non-regulated) that
require nominations from their shippers prior to gas flow and non-regulated facilities that utilize Division of
Interest (DOT) percentages for allocating quantities at points.

International nomination data elements are similar to North American (GISB) required elements.
Allocation Requirements also defines requirements unique to International customers, Non-regulated
customers and new/enhanced functionality requirements outside the scope of GISB.

Terminology

Allocation - Allocation is defined as the systematic distribution of measured quantities at a point that
can involve nominations, purchase and sales contracts, logical points, entities, and other objects.

Pre-Determined Allocation (PDA) - Actual flow of natural gas is allocated to the parties involved in
the transaction. These parties can include producers, operators, transporters and shippers using various
methodologies to allocate actual quantities. In order to manage the impact of actual quantities varying from
scheduled quantities, the specification of the method to be used in allocating actual quantities prior to gas flow
is imperative. PDA's accomplish this goal by securing the agreement of the allocating--and allocated--parties
on the method to be used for computing the allocation, i.e. relating scheduled quantities to actual physical
flow. The implementation of a PDA clarifies all parties' expectations and responsibilities prior to gas flow.

The list of allocation methodology types from which two parties may agree is Ranked, Pro Rata,
Percentage, Swing and Operator Provided Value.

Ranked - The quantity to be allocated utilizing this methodology is allocated by taking the individual
line item transactions which are allocated based on ranks identified for the transaction(s), with the
transaction(s) with the lowest rank value allocated before the next sequentially higher ranked transaction(s).

Pro Rata - The total quantity to be allocated is multiplied by the ratio established by taking each
individual scheduled line item and dividing it by the total of all scheduled line items applicable to the quantity
to be allocated.

Percentage - The allocation is derived by taking the total quantity to be allocated at a location and
multiplying it by the percentage(s) provided. When percentage is the only methodology provided the
percentages should total 100.

Swing - One or more of the scheduled line items, or a separate contract, is designated as the "swing".
All other scheduled line items are allocated the scheduled quantity. The line item(s) identified as "swing" are
allocated the remaining difference between total quantity to be allocated and quantities allocated to non-swing
line items, in accordance with instructions provided with the PDA. If the swing line items(s)/contract(s)are not
permitted to be allocated a quantity which would result in a negative number, the negative quantity is allocated
to the remaining scheduled line items.

Operator Provided Value - A mutually agreed upon allocation methodology that indicates that the

38

-61/39

10

15

20

25

30

35

WO 02/101510 PCT/US02/18781

operator will provide a quantity for the subject transaction(s) for use in the allocation.

Balance and Imbalance Calculation

Balance and Imbalance Calculation are related to the requirements for Nominations, Scheduling,
Allocations Processing, and Inventory Account Management.

The terms Balance and Imbalance are often interchanged within the industry. Balance will be used to
define the difference or an out-of-balance condition between two numbers and will have to be resolved (or
not) according to other requirements. A Balance is calculated for processing purposes, but never stored. An
Imbalance defines the difference between receipt, fuel, and delivery quantities. The Imbalance will be resolved
according to other requirements, i.e., Imbalance trading and Cash-out. Starting, current, and ending quantities
are associated with Imbalances.

Balance and Imbalance Calculations identify the different types and levels of imbalance and balance
calculations required throughout the project. Several of the other requirement definitions make reference to
"Balance and Imbalance Calculation" and each has different requirements on what to do with the difference
identified.

Terminology

Shipper Imbalance - The difference between receipt quantities, less fuel quantities, less delivery
quantities. Imbalance can be at different levels i.e. path, contract, shipper, agent, etc.

Point Balance (Quantity vs. quantity) - The difference between two quantity statuses at a point. One
example would be the difference between the scheduled or nominated and allocated measured quantity.
Another example would be the difference between the deal quantity and the nominated quantity. Another
Point Balance is the difference between the receipts and deliveries at a point with the same quantity status. An
example of this would be the difference between the receipt and delivery nominations at a pooling point.

Nomination Balance - The difference between the path quantities and point quantities that are
inherent in pathed non-threaded nominations model types. The quantities could be nominated, confirmed,
scheduled or allocated volumes.

Interconnect Balance - The difference between the quantities into and out of an interconnect. An
interconnect is a relationship between multiple points.

Confirmations Processing

Confirmations Processing is related to the requirements for the overall process of providing
transportation services and/or utilizing transportation services and Nomination Processing.

Confirmation processing includes ali confirmation-related activities that a facility's operations
personnel perform on a regular basis. These activities include maintaining the rules for confirmation
methodologies, processing cdnﬁrrnation requests, performing validations on confirmations, acknowledging
confirmation responses, updating quantity statuses and reviewing the confirmed quantities before publishing
the information to other operational areas for scheduling.

International confirmation data elements are similar to North American (GISB) required elements.
Where there are common data elements, the GISB version 1.4 Standards capture those requirements. The
remainder of the document focuses on requirements unique to International customers, Non-regulated

customers and new/enhanced functionality requirements outside the scope of GISB.

39

-60/39

10

15

20

25

30

35

WO 02/101510 PCT/US02/18781

Terminology
Confirmation Requester - A Service Provider (including a Point Operator) which is seeking to

confirm a quantity of gas via the information outlined in GISB Standard 1.4.3 with another Service Provider
(the Confirming Party) with respect to a nomination at a location.
Confirming Party

A Service Provider (including a Point Operator) which provides a confirmation for a quantity of gas
via the information outlined in GISB Standard 1.4.4 to another Service Provider (the Confirmation Requester)
with respect to a nomination at a location.

Confirming Parties - Refers to the Confirmation Requester and the Confirming Party.

Confirmation by Exception ("CBE") - The Confirming Parties agree that one party deems that all
requests at a location are confirmed by the other party (the CBE party) without response communication from
that party. The CBE party can take exception to the request by so informing the other party within a mutually
agreed upon time frame.

Elapsed-prorated-scheduled quantity

The portion of the scheduled quantity that would have theoretically flowed up to the effective time of
the intraday nomination being confirmed, based upon a cumulative uniform hourly quantity for each
nomination period affected.

Forecasting

Pipeline Forecasting is related to the requirements for Scheduling, Deal Management, and
Allocations Processing. Forecasting is the process by which pipelines and marketers predict information that
will affect future operations, either near-term or long-term.

Pipeline Forecasting has defined three required operating modes; Short-Term Capacity Utilization,
Short-Term Capacity Availability, and Long-Term Investment Analysis. Short-Term Capacity Utilization
involves predicting the pipeline's capacity to handle the current nomination load under impending reductions
in service capacity. Short-Term Capacity Availability is used to determine where the pipeline is currently
being under-utilized and where additional capacity sales opportunities exist. Long-Term Investment Analysis
is used to perform screening studies concerning future expansion investments for handling predicted increases
in demand for pipeline capacity.

Pipeline Forecasting for commercial operations has defined two required operating modes; to predict
demand patterns of end users and load forecasting.

Pipeline Forecasting assumes that the user is familiar with the contents of the following: Scheduling;
Deal Making; and Allocations Processing.

Imbalance Trading

Imbalance trading is an imbalance management mechanism. Imbalance trading can be done
throughout the month on the operational imbalances and at the end of the month on the actual accounting
imbalance. This process must enable shippers to trade among each other in an effort to reduce their overall
imbalance. The pipeline will determine the operational areas on their pipeline and the level that they will allow
shippers to trade imbalances. This will be similar to other offer/bid processes where shippers post imbalances

and other shippers bid or trade that imbalance. The result will be an increase or reduction in each shipper's

40

10

15

20

25

30

35

WO 02/101510 PCT/US02/18781

imbalance. Imbalance Trading is related to the requirements for Nominations, Scheduling, Allocations,
Imbalance Accounts and Balancing.

Imbalance Trading includes all activities that a facility's personnel or a marketer's personnel perform
on a regular basis. The facility operation activities include managing the imbalance on a monthly, daily,
hourly, and sub-hourly basis and provide a mechanism for the shipper to trade their imbalances. A marketer's
activities include monitoring the imbalance on an hourly, daily, and monthly basis and trading and offsetting
those imbalances.

The following definition and examples for Shipper Imbalance came directly from the GISB Flowing
Gas Related Standards (keeping the definition in whole, our requirements will also include supporting hourly
and sub-hourly processing):

Natural gas flows from source points to disposition points in accordance with the scheduled
nominations made by various parties. The actual flow of gas is then allocated among the various
parties to transactions, in accordance with pre-determined allocation methodologies. A shipper
nominates a quantity of gas at a receipt point and contracts with a pipeline to transport this quantity of
gas to a delivery point.

Allocated quantities at the receipt point and delivery point may not be the same, i.e., with
reductions for fuel quantities, over-delivery by the transportation service provider at the delivery
point, or under delivery by the transportation requester at the receipt point, the quantities at the
receipt point and delivery point may not be the same. The resulting difference is referred to as an
imbalance.

Imbalances are reported by the allocating party to the affected parties involved in the
transportation transaction. Imbalances may be reported on an hourly, daily or monthly basis and may
be resolved in a number of different ways.

The nomination starts the procedure, after which the allocation takes place. Gas is allocated
at a location level and contract level. The imbalance data set provides contract allocation information
and can be calculated using this information. This information can be a daily or a multi-day function,
or it can be final closing data for an accounting period. The monthly imbalance should be monitored
throughout the month, so the imbalance may be minimized.

As the result of FERC Order 637, pipelines will be required to provide imbalance management
services, like parking and loaning service, and greater information about the imbalance status of shippers and
the system, to make it easier for shippers to remain in balance in the first place. Pipelines also will be required
to permit third parties to offer imbalance management services that will allow shippers to avoid imbalances.

The ability to allow third parties to trade imbalances is required. Third parties are defined as
companies that do not have a transportation contract with the pipeline, but are allowed to trade imbalances.
Some type of contract and contract service will need to be established for these business associates. There will
be no transportation or commodity charges associated with these contracts or trades.

Measurement & Sampling Management
Measurement and Sampling Management supports the requirements for maintaining the measurement

data as well as other measurement information about the measurement facilities. Service providers will

41

10

15

20

25

30

35

WO 02/101510 PCT/US02/18781

regularly record measurement information for downstream processing. The measured quantities are generally
the source for Point Allocations. The measured samples will effect pricing. A meter is a representation of a
physical device that is used to record the data related to flowing gas for a facility.

This data is often collectively referred to as measurement data, and as such may include not only
volumetric quantity information, but also sampling information in the form of quality or component
specifications. Accurate and timely recording and processing of measurement data is critical because of the
downstream processes.

The measured quantity is the source for point allocations and a statement is typically based on
allocated quantities, the receipt of the measured quantity has a direct economic impact on the facility. In
addition, for those facilities that base penalties or credits on the quality of the gas, the recording and
processing of the measured samples also has a financial impact on both the facility and its customers.

Meters are associated directly with a transactional point for a facility. A point may have one or more
measurement meters associated with it — the quantity recorded for each of the measurement meters is summmed
up to the point quantity for allocation purposes. Information captured for the meter(s) will determine how the
best available quantity for the point is determined.

Nominations Processing

Nominations Processing requires familiarity with the requirements for the overall process of
providing transportation services and/or utilizing transportation services. Nominations processing includes all
nomination-related activities that a facility's operations personnel or a marketer's scheduling personnel
perform on a regular basis. These activities will differ depending on the role. The facility operation activities
include maintaining the rules for nomination acceptance for different types of nominations or services,
performing required validations on the nominations, and reviewing the nominations before publishing the
nomination information to other operational areas for scheduling or confirmation. A marketer's activities
include creating and maintaining the nominations and submitting the nominations to the appropriate facility
for further processing.

There are some International nomination data elements that are similar to North American (GISB)
required elements. There are also some requirements unique to International customers, Non-regulated
customers and new/enhanced functionality requirements outside the scope of GISB. While Cross Contract
Ranking and Title Transfer Tracking are two major issues yet to be finalized by GISB, it is contemplated that
the system architecture of the present disclosure can be configured to provide capabilities for supporting the
same.

Scheduling

Scheduling is related to the requirements for Facilities and Points Management, Contract
Administration and Nomination Processing. Scheduling is the process that occurs at a facility (Pipelines,
Gathering Systems, Storage Systems, and Power Transmission Facilities) to determine if requested
nominations individually meet pipeline nomination requirements, and, if taken as a whole, can physically be
handled by the facility.

If either of these two requirements is not met, reductions (and in rare cases increases) may be made to

the nominations. The remainder of this section will discuss this process as it applies to a pipeline, under the

42

10

15

20

25

30

35

WO 02/101510 PCT/US02/18781

assumption that most of the requirements can be applied to other types of facilities. If a specific point could
differ for other types of facilities, that will be pointed out.

The two different modes of operation for the scheduling processes, and including pipeline scheduling,
are the scheduling mode and forecasting mode. In scheduling mode, the process is run using planned
operations, usually for the next day or cycle, based upon actual transportation requested by the shippers.
Forecasting mode uses predictions of needs ranging from days to years in the future.

Storage Processing

Storage Processing requires familiarity with the requirements of providing storage services and/or
utilizing storage services and Facilities and Points Management, Contract Admin, Balancing and Imbalance
Calculation, Inventory and Imbalance Management and Nominations. Storage processing is applicable to a
facility that operates a pipeline facility as well as a storage facility, an independent third party storage service
provider and a marketer who contracts with a storage service provider for the right to store gas.

Storage processing includes all storage-related activities that a facility's operations personnel or a
marketer's scheduling personnel perform on a regular basis. These activities will differ depending on the role.
The storage facility operation activities include maintaining the rules for storage injection/withdrawal and
tracking inventory quantity before publishing the nomination information to other operational areas for
scheduling or confirmation. A marketer's activities include requesting storage injection/withdrawal and
inventory quantity exchange services and tracking inventory quantity and valuation.

Terminology used in connection with storage processing can include the following. A facility refers
to a storage facility. Storage transactions include injection, withdrawal and transfer services. Storage fields
refer to facilities that are usually natural geological reservoirs such as depleted oil or gas fields or water-
bearing sands sealed on the top by an impermeable cap rock. The facilities may be man-made or natural
caverns.

No Notice Service refers to a transportation service pursuant to which firm shippers can receive
delivery of gas on demand up to their firm entitlements on a daily basis without incurring balancing and
scheduling penalties. This "no-notice" service will enable pipeline customers (i.e. firm shippers) to continue to
receive unnominated volumes to meet unexpected requirements caused, i.e., by unexpected changes in
temperature. Pipeline customers (i.e. firm shippers) will receive varying volumes of gas to meet their
fluctuating needs during a twenty-four hour period.

For a storage service provider, Facility Operator Transfers refer to the exchange of storage quantities
between contracts of the same service subscriber or between. contracts of different service subscribers. For a
storage service user, Marketers Transfers refer to the exchange of storage quantities between its own storage
contracts or the purchase/sale of storage quantities between one or more service subscribers.

Gas Marketing Business Process

In Figure 12, a sample screen view of for Trading, Make Deal, module is shown. From the Trading,
Make Deal screen, access to one or more of the following is available: make deal, manage deal, contract
administration, confirm deals, cash position, pricing, portfolio, and service type. The various deals formulated
via a Make Deal module can be saved in one or more portfolios. The Make Deal screen includes at least a

column of Deal Group, Deal, Status, Begin Date, End Date, Type, and Level. The Make Deal screen further

43

10

15

20

25

30

35

WO 02/101510 PCT/US02/18781

includes an area for a quick deal entry, configured to receive information relating to a Deal Group, Type,
Level, Term Code, Accounting Company, Trader, Begin Date, End Date, Counterparty, Contact, Contract,
Price, Price Units, Facility, Location, Point, Quantity, Quantity Unit, Broker, Broker Contact, Region, Broker
Fee, Fee Units, and Classification. User options for the Make Deal module include Full Create, Save As New,
Save, and New.

In Figure 13, a sample screen view of for Trading, Price Formula, module is shown. User options for
the Price Formula module include Add, Delete, Save, and Export. From the Price Formula screen, access to
one or more of the following is available: make deal, manage deal, contract administration, confirm deals,
cash position, pricing, portfolio, and service type. The Price Formula module includes input for a formula
name, formula, referenced price formula, index short name, and index long name. In addition, a more detailed
display of existing formulas per formula name, formula, frequency, display flag, and currency is provided.
The Trading, Price Formula, screen includes a formula entry box, with user selectable options of Insert
Formula, Validate, and Test. The Trading, Price Formula, screen display further includes a calculator.

Figure 14 illustrates an exemplary screen display of an Operations, Nomination module. In this
embodiment, regions are provided for Supply, Services, Location, Inventory Accounts, Market, Facility
Upstream, Nomination Plan, Facility Downstream. For the Supply, the information includes at least one of
Deal, Supplier, Facility, Receipt Location, Up Ref, Rnk, Deal QTY, Avail QTY. For Services, an option for
selecting Upstream, Nomination Plan, and Downstream are provided. The Services include at least one of
counterparty, service, level, and balance. For Locations, an option for selecting Receipt and Delivery
Location is provided. Locations further include at least one of Facility, Type, Location, and Balance. For
Inventory Accounts, an option for selecting Receipt and Delivery is provided. Inventory Accounts further
include at least one of Account, Location, Available, and Balance.

Referring still to Figure 14, for the Market, the information includes at least one of Avail QTY, Deal
QTY, Rnk, Down Ref, Delivery Location, Facility, Marketer, and Deal. With respect to the Upstream
information, the Facility Upstream information includes at least one of Counterparty, Reference, Ruk, Pkg ID,
and Quantity. Further with respect to Upstream information, a Marketer Upstream information includes at
least one of Deal/Inventory, Location, Rnk, and Quantity. For the Nomination Plan, information includes at
least one of Receipt Quantity, Receipt Point, Receipt Rk, Facility, Service Contract, Nom Trans Type, Adj.
%, Adj., Path Pkg ID, Del Rnk, Del Point, and Del QTY. With respect to the Downstream information, the
Facility Downstream information includes at least one of Quantity, Pkg ID, Rnk, Reference, and Counterparty.
Further with respect to downstream information, Marketer Downstream information includes Quantity, Rk,
Location, and Deal/Inventory. User selectable options for the Nomination screen include Save, or Cancel.
Additional detail of alternate embodiments of the nominations screen are provided herein.

In Figure 15, a sample screen view of for an Accounting, Charge Detail, module is shown. From the
Accounting, Charge Detail screen, access to one or more of the following is available: Quantities, Inventory,
Charges, and Statements. The Charge Detail screen includes at least a column of Facility, Business Associate,
Transaction Type, Production Period, Deal, Deal Location, Source Location, Disposition Location, Net Out
Flag, and Price Component. The Charge detail screen further includes a pop-up display for a quick access to

charge detail, manage charge status, generate statement, remove charge from statement, statement detail,

44

10

15

20

25

30

35

WO 02/101510 PCT/US02/18781

statement account information, price structure info, add manual charge, maintain comments, update charge
quantity. User selectable options on screen may also include manage charge status, remove charge from
statement, add manual charge, and export.
NOMINATIONS
Adding Nominations

According to one embodiment, the system architecture is configured to support GISB standards
version 1.4 for North American FERC Regulated Facilities. This includes the Pathed Threaded, Pathed Non-

Threaded and Non-Pathed nomination model types. According to another embodiment, the system architecture

is further configured to support EDIGas standards for sending and receiving operation data and messages
utilized by European shippers and facilities. While the EDIGas Standards are different from the GISB
Standards, there are some commonalities. The system architecture provides various features as disclosed in
the following.

Support for a User Defined Time Period for Nominations (marketer and facility) includes the
capability of adding/updating multiple day hourly nominations without the use of profiles. For example, a
nomination effective from 9:00 am to 10:00 am could be added/updated for days 1 through 15.

Support for the capability of nominating paths on the same transportation contract using different
time periods includes providing a rule requiring that the time period for the nomination is no less than the
lowest level of granularity defined in the contract. That is, for a contract defined at a daily level, daily is
lowest level that can be nominated. It could have two paths; one nominated at a daily level and the other at a
weekly, bi-weekly or monthly level but not hourly. The weekly, bi-weekly or monthly begin/end date/times
are based upon user defined business processing needs.

The system provides an ability to create/maintain transportation (path/point level and pooling) and
storage nominations on a monthly, weekly, daily, hourly and period basis. The system also supports the use of
cycles for whatever period is defined. If for example, one side of a nomination at an interconnect has an hourly
pattern but the other does not, the side without the hourly pattern will assume a pattern pro rated to the hourly
side. While it is not a requirement that non-hourly nominations must be stored at an hourly level, it is a rule to
address a specific business condition that exists for International users.

Support for auto pooling for user defined time periods includes the following. Steps in auto pooling
involve creating relationships (links) between individual points/locations to a specified pooling point for both
receipts (deliveries) and deliveries (redeliveries). The supply or supplies are "pooled” and used to satisfy a sale
or sales. Auto pooling allows users to create multiple nominations simultaneously thereby reducing manual
intervention.

Support for providing an ability to label, store and retrieve Nomination Profiles (marketer and
facility) includes defining a profile as a pre-determined pattern of quantities that may be used in nominations
over a specified time period. In addition, the profiles can be configured to support one or more of user defined
time intervals; be date/time effective; support energy values, volumetric quantities or both; be available on any
type of nomination (point-to-point, pool, storage, park and loan, title transfer); and provide a user's ability to
generate an hourly profile from a daily nomination. In the last instance, this would allow an hourly profile to

be created from a 24 hour or daily nomination when there is no hourly variation in that nomination. For

45

10

15

20

25

30

35

WO 02/101510 PCT/US02/18781

example, a profile could be that for a given time period, time periods 1 - 3 are nominated at 10,000 units per
period for a specific path and time periods 4 - 7 should be nominated at 8,000 units per period. There could be
numerous possibilities and combinations.

Support for auto pathing/nominating on a higher level than the Nomination Period (marketer and
facility) includes, for example, providing the capability of pathing daily using hourly profiles and reduce
keystrokes by eliminating the need to create 24 individual hourly nominations. This requires that
transportation contracts and points provide the necessary flexibility to allow for nominations to be
added/updated hourly on a daily facility that has some hourly points. Conversely, the system can be
configured to provide similar flexibility to allow for daily nominations on an hourly facility that has some
daily points in order to accommodate various business models.

The system is further configured to support a user defined capability to specify a Nomination Period
other than the Default Nomination Period at a facility or entity level (marketer and facility). In addition, gas
quality and contact information are included as part of the nomination using the system architecture of the
present disclosure.

The system further supports add-nomination capabilities for European capacity releasors and
releasees. In Europe when a capacity holder releases capacity (releasor), the pipeline facility is not involved.
The facility still requires the original capacity holder to submit nominations for all the capacity (including
what was released to a third party - releasee). In addition, the system architecture can be configured to transfer
nominations from releasee to releasor, provide a mechanism for releasor to automatically and/or manually
receive and input nominations from releasee, and provide automatic and/or manual mechanisms for combining
releasee and releasor nominations.

Support for emergency override of facility's nomination period includes allowing the flexibility for a
daily facility to conduct business on an hourly basis in the event of an emergency (i.e. a kind of "switch").

Support for the capability of adding nominated quantities based upon temperature includes allowing
the user to input a temperature for the gas day being nominated. Depending on that temperature, a nominated
quantity will be determined based upon deal quantities and that nomination's corresponding temperature level
or tiers.

Support capability of nominating payback at receipt (delivery) or delivery (re-delivery) points are
included by supporting one or more of physical points, logical points or pools, and supporting a capability of
including or excluding payback from Rate generation, Imbalance calculation, and Fuel calculation. The system
architecture is further configured to support user defined rounding and normalization mechanisms.

For example, with respect to normalization, if a daily quantity is required to be nominated as an
hourly pattern and there is a remainder after dividing the daily quantity by 24 hours. As a result, users should
be able to determine how to distribute the remainder (e.g. add to last hour, first hour, etc.). With respect to
rounding, assume fuel is calculated on a monthly basis. A daily-nominated quantity of 20 per day is created
with a 2% per month fuel rate. On day 1, the fuel quantity is .4 (20 x 2%). If the proper rounding and
normélization rule(s) are not in place, the fuel for that (and subsequent) day could be 0 thereby not capturing

the correct fuel quantity.

46

10

15

20

25

30

35

WO 02/101510 PCT/US02/18781

The system architecture supports Multiple Nomination Units (marketer and facility) in the one or
more of the following: select a facility and have that facility's nomination unit be the default unit; capture both
volumetric and energy quantities on a nomination, including being able to input either quantity and have the
other automatically calculated or have the ability to override the automatic calculation; and have the option of
being able to nominate using any other unit.

With respect to a Marketer, the system is configured to support situations where a nomination is
created in unit X and is automatically converted prior to sending to a facility utilizing unit Y.

With respect to a Facility, the system is configured to support situations where a Marketer sends in a
nomination in unit A and it is automatically converted to unit B (e.g., what the Facility uses). Conversion
issues resulting from going to/from different units are addressed by the rounding and normalization
requirements described above.

The system architecture supports adding of nominations with user configurable Save capability
(Marketers and Facilities) by one or more of the following :

a) Allowing adding of nominations with capability of placing in "hold" queue. Hold queue is defined

as stored but not used in production except for real time calculation of available quantity on a

contract, path or point.

b) Allowing for Update and Delete while in "hold" queue. Only real time calculation of available

quantity on a contract, path or point would be affected. A potential capacity releasor that has a

nomination in the hold queue would not have that capacity available to release until a final

determination is made that the nomination is not needed and will not be used.

¢) Providing capability to send either all or only selected nominations that are in the hold queue into

production for further processing (i.e. confirmation, scheduling, balance management, charge

generation). This allows users to create, store, review and selectively accept, update or reject
nominations prior to releasing into the production environment.

The system architecture further provides an ability for a facility operator to have the capability to
manually add nominations received from its shippers, according to one or more of the following:

a) For pools that are supported or sanctioned by the facility (i.e. not logical pools created by and for
shipper use only), a manual add capability is provided. Facilities often designate pools by zone, segment or
point thus allowing many pools to be setup. Points within those designated zones or segments are the only
ones allowed for pool nomination purposes. Therefore a facility must input such a nomination for its shipper,
and the system architecture allows the facility to have the same ease of adding a nomination.

b) Include adding both logical and physical pool nominations and path level nominations that fully
support both North American and International data element standards. A choice of either the GISB, non-
regulated (i.e. non-FERC) or International standards would be configured at the facility level.

The system architecture is further configured to provide additional data element requirements for
non-regulated facilities. These include one or more of deals and deal points, interconnects/hubs, pools and
pooling points, volume requirements, storage data, nominated quantity Status (Nominated, Confirmed,
Scheduled), allocated, and hold. These additional data elements form the basis for a non-regulated facilities'
nomination.

47

10

15

20

25

30

35

WO 02/101510 PCT/US02/18781

Support for Cross Contract Ranking, when adding a nomination (marketer and facility), includes
configuring the system architecture with capability to set ranks on nominations across multiple transportation
contracts on all nomination model types at a single point. This further includes configuring the system
architecture to support adding nominations across multiple points and or facilities through interconnects for
Marketers.

With the system architecture, a user is able to create pre-defined (or as needed) Inter-Facility single
leg paths, including pools such as from Facility A Point 1 to Facility B Point 2, such as shown in Figure 16. In
addition, the system architecture is configured to enable a user to create pre-defined (or as needed) Intra-
Facility multi-leg paths (this is sometimes referred to as a "Meter Bounce" or "Bumping") including pools
such as shown in Figure 17. In Figure 17, A "Meter Bounce" nomination would result when a quantity is
nominated for transportation from Point 3 to Point 4 on contract X. At Point 4 the quantity would then be
transported from Point 4 on contract Y for delivery to Point 5. This same approach could be used to create
pooling nominations across multiple facilities.

For International customers, a second type of bounce or bump is as shown in Figure 18. The business
scenario shown in Figure 18 pertains to a situation where gas is flowing on Facility 2 with the physical
capability of flowing or not flowing into Facility 1. If bumping (per International usage) is allowed, then the
gas flow on Facility 2 only "bumps" I/C 2, continues down that facility and does not flow through I/C 1 into
Facility 1. If bumping is not allowed then the gas flow on Facility 2 must flow through I/C 2 to I/C 1.

The system architecture further provides support for nomination and re-nomination capability at a
point level for International users to a) specify whether or not bouncing or bumping is allowed at I/C 2, and b)
if bumping is not allowed then the gas flow on facility 2 must go through I/C 2 to I/C1. That quantity should
automatically be available at I/C 1 (See Figure 18). The system architecture also supports contract selection
for the preceding scenarios by allowing for default contracts to be defined at each point or allowing for
selection of other contracts at each point. The system further allows for configuration so paths could be
created to/from unregulated and regulated facilities (marketer).

In another embodiment, the architecture is configured to support adding Marketer Nominations at
Hubs. A hub is defined as a group of multiple facilities that interconnect with each other and allow for flow
across one or more of the facilities. A user should be able to nominate on a facility for delivery to a hub. For
example, a nominated quantity on facility A should be available for pathing on any of the facilities that fall
within the grouping of hub B. Another example is where a user would be able to specify what quantity is
available on multiple facilities. A pre-requisite is the setup of hubs in facilities management.

The architecture further supports adding of Title Transfer Tracking to Nominations (marketer and
facility). This is accomplished by providing capability of adding purchase and sales quantity transfers at a
point. Title Transfer is the change of ownership of gas between parties at a location. As such, this will become
part of the chain of business activities that will need to be nominated at a point for FERC regulated, non-
regulated, and International facilities that require this type of information.

Support for adding Storage Nomination Transfers for Facility Operators (Pipeline) and Marketers
includes configuring the system to support a Facility Operator (Pipeline) in one or more of the following: a)
between storage contracts of the same business associate and b) between storage contracts of different

48

10

15

20

25

30

35

WO 02/101510 PCT/US02/18781

business associates. The system can be further configured to support Marketers: a) between storage contracts
of the same business associate; b) between storage contracts of different business associates; c) transfer
volumes from a storage coniract to a sales commitment; and d) transfer from a purchase commitment to a
storage contract.

The system is configured to provide adding of Storage Nominations for marketer and facility where
storage nominations are added directly on a storage contract without using a transportation contract and a
nomination is added into/from storage using a transportation contract.

The system is configured to support the following parameters for adding Storage Nomination
(marketer and facility): Storage Contract; Direction; Transaction Type; Model Type; Upstream/Downstream
Contract; Upstream/Downstream Entity; Upstream/Downstream Pkg Id; Upstream/Downstream Transaction
Type; and Date/Time Effective Nomination Range.

Support of Adding Park and Loan Nominations (marketer and facility) can be accomplished by
adding a transportation nomination to move quantity to/away from a parking location. This supports both
physical and logical points. Rules are setup to define how this can be transacted and requires meter/point
designation in facility management.

The system architecture is configured to support the capability for marketers to transfer pool
imbalances to transportation contracts. Users should be able link a pool with a transportation agreement and
automatically transfer an imbalance.

The system architecture is further configured to support a Copy/Paste function for adding
nominations and profiles (marketer and facility) by allowing users to: select a single nomination or a group of
nominations and be able to copy/paste the information; have same capabilities for viewing/editing, etc., as
would a nomination added completely from start to finish; and specify what data is copied from which day(s).
For example, day 31 quantities could be copied or rolled and used to create nominations for all or a portion of
the days of the following month. Day seven's hourly profile could be used to establish hourly profiles for all or .
a portion of the days in the following month. In an alternate embodiment, a "roll" process could also be used
instead of or in addition to copy/paste.

~ The system architecture further supports a complete audit history of nominations for marketer and
facility. Original nominations and all changes can be maintained.

The system architecture is further configured to support the capability to allow marketers the option
to add/update a point on a deal from within nominations and also have the deal updated to reflect the change.
Three possible scenarios could include: a) Allow for changing the point on the deal from X to Y; b) Not
require the deal creator to designate a point and have the deal show ﬁp in the nominations area (User would
select the point anytime prior to pathing); and ¢) Adding point Y but retaining point X.

The system architecture is further configured to support the ability for facilities to identify where
points are over-nominated on contracts prior to confirmation or scheduling processing.

Updating Nominations

With respect to updating nominations, the system provides the manual capability for a facility

operator to update nominations received from its shippers. The system architecture is configured to provide

Marketers the capability of updating nominations for items such as quantity, package id, upstream/downstream

49

10

15

20

25

30

35

WO 02/101510 PCT/US02/18781

entity (i.e. all fields that were initially user input/selected should be editable including all
upstream/downstream information - non-threaded portion of pathed non-threaded model type). For pools that
are supported or sanctioned by a facility (i.e. not logical pools created by and for shipper use only), the same
manual update capability is available for the facility. This includes updating both logical and physical pools
and path level nominations that fully support both North American and International data element standards.

The system architecture is further configured to support update nomination capabilities for European
capacity releasors and releasees; support capability of marketer to update scheduled and allocated quantities
on nominations; and support Cross Contract Ranking when updating a nomination (marketer). Users are
provided the capability to update ranks on nominations across multiple transportation contracts on all
nomination model types.

The system architecture is still further configured to support updating user defined paths across
multiple facilities for Marketers. In this case, a user is able to update pre-defined paths. The system is
configured so paths can be updated to/from unregulated and regulated facilities.

With respect to updating Marketer Nominations at Hubs, the system enables a user to be able to
nominate on a facility for receipt (delivery) from to delivery (re-delivery) to a hub. Furthermore, the system
architecture is configured to support updating of Title Transfer Tracking on Nominations for marketer and
facility, by providing capability of updating purchase and sales quantity transfers at a point. The system
architecture supports updating of nominations in the "hold" queue for marketer and facility; supports user
configurable capability for a marketer to update a nomination when that nomination’s deal quantity is changed;
and supports user configurable capability for a marketer to update a deal quantity if a nominated quantity is
changed.

Deleting Nominations

The system architecture supports deleting Nominations added by a Facility or a Marketer. For
Nominations added by a Facility on behalf of Shipper the system architecture supports deleting of nominations
while in the process of adding; and supports deleting of nominations when in "hold" queue but prior to
downstream processing (i.e. confirmation, scheduling). However, the system does not allow deleting after
nominations have been used in downstream processing (i.e. confirmation, scheduling, accounting, etc.).

For Nominations received by a Facility from a Shipper the system architecture allows no deleting;
only capability to set to "unused" status. Once set to unused status, there occurs a re-calculation of contract
and facility capacity in order to update available capacity.

In connection with a Marketer the system apparatus supports deleting of nominations while in the
process of adding; and supports deleting of nominations when in "hold" queue but prior to downstream
processing (i.e. actualizing, statement generation). However, the system does not allow deleting after
nomination has been used in downstream processing including sending to facility. The system further
supports user defined choice of allowing deletion of some, all or none of the non-threaded portion of the
pathed non-threaded model type (i.e. upstfeam/downstream designations) and allows user choice of retaining

or reversing deal point update during deletion

50

10

15

20

25

30

35

WO 02/101510 PCT/US02/18781

Supporting Fuel Calculations
Regardless of whatever combination of variables fuel charges can be based on (date, facility,

contract, receipt point, delivery point by period quantity), the system is configured to enable a user to specify
fuel rates down to an hourly level. The system is further configured to support Fuel Componentization
(marketer and facility). Fuel componentization provides the flexibility of assigning multiple fuel charges to a
quantity. This allows fuel charges to be captured at the level at which it is incurred, for example, with respect
to mainline transportation fuel, plant fuel, and gathering fuel; as well as loss and unaccounted for, often
embedded in a facility's fuel rates but could not be expressed as a separate component.

While supporting fuel calculations may be initially defined at the contract/path level, the system can
be configured to provide users with the capability of adding or editing the fuel rate by component on the
nomination itself.

The system is further configured to support Matrix Level Fuel Charges (marketer and facility).

When adding/updating a nomination where the fuel rate needs maintenance, users are able to: Access
the facilities fuel matrix to specify a rate, as well as, manually specify the fuel rate. This requires that fuel
matrices be included in the data management section. Contract management section also utilizes this setup
where paths are setup that fall within the parameters of the fuel matrix (i.e. the fuel rate would display and
allow the user to accept or override). The system is also configured to delete manual overrides. If system
generated fuel charges are overridden manually, users should be able to delete the manual override and allow
system generated fuel rates to be re-instated. Lastly, the system is further configured to enter and distribute a
fixed fuel quantity through manual or automated means at a contract, path or point level. This gives users the
capability of entering a fuel rate and no subsequent processing could update it. Only manual updates would be
allowed. .

The system architecture is further configured to support Negative Fuel Charges. Due to a
combination of business processes, there is a need to manage negative fuel charges. A possible explanation for
this is a case where a shipper supplies gas with a higher heating value than what the facility delivers. The net
effect is that even though there is a positive energy fuel charge, the shipper receives more volume than what
was delivered to the facility, in effect resulting in a negative fuel rate based upon volume. See for example,
fuel based on receipt, as shown in Figure 19.

The system architecture further is configured to support user choice of Netting Fuel Charges at the
path level. Some International pipelines charge fuel based upon "Net Flow". "Net Flow" can best be defined
using an example. If a shipper sends 100 units of gas from point A to point B, and 80 units from point B to
point A, the fuel charge will only be based upon the net of 20 units of gas. The fuel charge is based on the net
movement.

Supporting Capacity Netting

The system architecture supports capacity netting at the point and path level for marketers. For
example, at a path level capacity netting results in 350 available. The net capacity utilized is 400 (Path 1 minus
Path 2). If the original path MPQ is 750, then the available path quantity is 350 (750 MPQ minus 400 net
capacity utilized). At a point level capacity netting results in, as shown in Figure 20. In Figure 20, Point A =

600 available capacity (1,000 point capacity minus 500 forward haul plus 100 backward haul capacity); and

51

10

15

20

25

30

35

WO 02/101510 PCT/US02/18781

Point B = 700 available capacity (1,100 point capacity minus 500 forward haul capacity plus 100 backward
haul capacity).
Nomination Validation

The following are key areas where validations should be supported. However, customers may require
validations configured differently or in some areas none at all. Therefore to the extent possible, validations
should be user configurable by facility with contract overrides.
Exceeding Contract and Path Maximum Period Quantity

The system is configured to provide a notification to users when adding or updating a nomination that
results in exceeding the contract, path and/or point MPQ. In this regard, a User can configure by facility to:
Ignore when exceeding MPQ; Require nomination to be reduced; Require excess nominated separately (i.e.
require new nomination); and Issue only a warning to user and allow to continue. This can be further defined
so that only certain users have this right. The system architecture is further configured to support nominations
above contract quantity with user-defined percent or volume limitations, or without percent or volume
limitations at one or more of: Contract/point level; Zone level; and Segment level. The system architecture
further supports validation that alerts user when nominations are in the "hold queue" prior to nomination
processing. In this instance, the User has a capability of ignoring and continuing process; or accepting,
rejecting or deleting nomination.
User Configurable Validation

User configurable validation includes providing a warning that deal quantities exceed transportation
quantities at one or more of Contract level; Path level; Point level; or All levels.
Validation for Ramp Rates

The system architecture is configured to support validation for ramp rates. Ramp rates are needed to
prevent changes to a nomination beyond certain pre-determined limits (either plus or minus) because flow
rates through a point/meter cannot always be changed (increased or decreased) at will on an hourly basis for
example. Ramping should support methodologies based upon a percentage of Maximum Period Quantity
(MPQ) or a fixed quantity. Flexibility is also provided in specifying how ramping impacts capacity release.
There may be situations where capacity could be released without any ramping associated with it; or ramping
could be proportional to the released volume and contract MPQ/MDQ or a fixed portion of the ramping or
none at all. A pre-requisite would be that ramp rates are defined for a facility. It has since been determined
that ramp rates will not need to be enforced at nomination time. Ramp rates will only be used (optionally) at
scheduling time.

According to one embodiment, the system is configured to notify Users when ramp rates have been
violated. The system architecture further includes rules that will determine if the user will be allowed to
override the ramp rates in adjacent time periods.

Validation for Lead Time

A validation for lead time may result from a business rule that says adds or updates to nominations
must be done within a pre-determined amount of time prior to processing. For example, a new hourly
nomination must be submitted 4 hours prior to gas flow to allow for physical constraints of the facility. This

allows a notification of users that the time frame for using the nominations process (adding or updating) is not

52

10

15

20

25

30

35

WO 02/101510 PCT/US02/18781

within pre-determined time limits. Accordingly, the system is configured to support validation for lead time at
the facility, point and contract levels. The system is further configured to support for rules that will determine
if the user will be allowed to override the lead-time rule. A pre-requisite would be that lead time rules are
defined for a facility.

Validation for Nomination Profiles

The system architecture is configured to support validation for nomination profiles which requires
that quantities for profiles are equivalent in total between different time intervals. The sum of 24 hourly
profiles will need to equal a daily profile or the sum of seven daily profiles equals one week's profile.
Validation of Storage Nominations

The system architecture is configured to provide support for validation of storage nominations in
relation to storage Ratcheting Levels. Ratchet levels (based on time and storage level) are parameters (set by
the facility) on storage contracts that limit the withdrawal and injection quantities of marketers. Setup of
ratchet levels should be on storage contract; be date/time effective; and allow for tiered level (volume and
percentage) penalty calculations. If a nomination violates a ratchet level; then the system is configured to
either require nomination within acceptable ratchet levels; or allow override of ratchet level.

Validation for Deleting Nominations

The system architecture is configured to support validation for deleting nominations by not allowing
deletion of nominations when the nomination has been used in downstream processing, and allowing deletion
of nominations if the nomination has not been used in downstream processing.

Nomination Review

The system architecture is configured to support Reviewing of Contracts Available for Nomination
by Date/time range; Facility; Points; and Quantities.

Quantities supported include one or more of: Total quantity; Released quantity (approved and
pending statuses); Available quantity (i.e. available for nomination); Path quantity; and Quantity by priority
(primary to primary, secondary to primary, secondary to secondary, etc.).

The system architecture further provides support for viewing of contract, path and point quantities in
real time. As a user is adding or updating a nomination the contract quantity information described in the
preceding section can be updated in real time.

The system architecture further provides Users capability of viewing available contract quantity at the

same level at which the contract was defined, as well as, any other user defined time intervals such as: Sub-

“hourly; Hourly; Daily; Weekly; Monthly; Seasonally; Yearly; and Life of Contract.

Users are provided capability of viewing deal quantities in relation to total, released and available
transportation quantities at the same level of detail as the deal quantities. For example, if a marketer has a sales
deal for 5,000 units at delivery point 1, the user needs to know if there is sufficient transportation capacity
available.

The system architecture further supports reviewing of nominated detail contract activity by Marketer

and Facility.

53

10

15

20

25

30

35

WO 02/101510 PCT/US02/18781

With respect to Marketer and Facility reviewing of the nominated detail contract can occur in any one
of the following manners. Filtering capabilities should be provided that allows selection at virtually any single
or group of data elements in a nomination.

Support for user defined views at the point, point/contract, contract, pool(s), facility (storage or
pipeline, whichever is applicable) and entity levels can be provided.

Support for review by cycle where cycles have been defined.

Support for review by model type; and

Support for user defined begin/end date/times can be provided.

A User may need to review a history of a nomination or selected group of nominations.

Support for the capability of automatically identifying at the end of a user defined time period, any
changes to end of day quantities that took place during that hour can also be provided.

With respect to Facility, the system is configured to support filtering capability to review nominations
by: shipper (all contracts & their nominations); shipper/contract (all nominations); pool(s) (all pools, pools by
shipper, pools by facility, pools by entity); all nominations at a point; specific shipper nominations at a point;
and entity.

Changes to a profiled nomination are available to the marketer. If a marketer sends to the facility a
nomination created using a profiled quantity and the facility updates it, then the facility must notify the
marketer.

The system architecture is further configured to support Reviewing charges for contracts for marketer
and facility considering the following: Nominated contracts, unused contracts, and user defined begin/end
date/times. With respect to Nominated Contracts (either partially or wholly), for whatever charge
methodology is used by facility (i.e. path, zone, segment, facility or entity, etc.) a capability to view total
charges by facility or entity is provided.

With respect to Unused Contracts (no nominations currently exist) the system provides capability to
view charges by contract at whatever level they were defined. This includes fixed, demand, potential
commodity and surcharges.

The system supports user defined begin/end date/times. There should be a business rule in place that
states if a firm transportation contract has been nominated on (even if only partially), then any fixed charge
should be reflected as a "Nominated Contract".

The system architecture is further configured to support Rate Overrides at whatever charge
methodology is used by a respective facility (i.e. contract, contract/path, point, segment, zone, facility or
entity, etc.). The system further supports deleting of manual rate overrides. If system generated rate charges
are overridden manually, users should be able to delete the manual override and allow system-generated rates
to be re-instated.

Support for reviewing of a nominated contract summary considers the following: Beginning Balance
(all contract types); Current Month Balance (all contract types); Cumulative Balance (all contract types
through current business); Daily Inventory Balance (storage/park and loan); Accumulated Daily Balance

(storage/park and loan); Average Daily Inventory (storage/park and loan); Max/Min Daily Inventory

54

10

15

20

25

30

35

WO 02/101510 PCT/US02/18781

(storage/park and loan); Should support user defined begin/end date/times; and Should support user-defined
selection of nominated, confirmed, scheduled or best available quantities.

Support for Reviewing of Interconnect Balances, Hubs and Pools is provided via support user defined
selection of: Begin/end date/times; Some or all of interconnecting points, hubs between 2 facilities; Some or
all of pools on a facility; Hubs and their interconnecting points across multiple facilities; Contracts between
two or more interconnecting facilities with related upstream/downstream information; Upstream/downstream
information from the respective delivering or receiving entity's point of view for interconnects, hubs and
pools.

The system architecture is further configured to support Reviewing of Time Period for Marketer's
Deal. User must be able to identify the time period of a deal (i.e. sub-hourly, hourly, daily, etc.)

Nomination Balancing

Nomination Balancing is made to be user configurable by contract and facility requiring that all
nominations (Path threaded and Pathed Non-threaded) (as well as upstream/downstream quantities) be
balanced (i.e. receipts less fuel less deliveries = zero); allowing nominations (Path threaded and Pathed Non-
threaded) (as well as upstream/downstream quantities) to be un-balanced (i.e. receipts less fuel less deliveries
<> zero); allowing Non-pathed Nominations to be either balanced or un-balanced at a contract level; allow for
pools to be out of balance with the choice of allowing the pool to remain out of balance or allowing the
transportation contract to be out of balance; when operational and business conditions permit, some facilities
will permit pools to be out of balance (usually on a temporary basis) as a convenience to shippers (For
instance, this would allow shippers time to secure additional supply or market in order to rectify pool
imbalances and not force shippers to adjust supplies or markets immediately); and support user defined
methods of balancing nominations with date range capability. Manually and Automatically (i.e. rank, rank
with quantity levels)

Volume Management

With respect to Facilities and Marketers, the system architecture is configured to support the
capability of being able to view the nominated, confirmed, scheduled and allocated quantities simultaneously
at the same level at which the contract was nominated as well as various other levels (sub-hourly, hourly,
daily, weekly, monthly, etc.).

With respect to Facilities, the system architecture is configured to support the capability of sending
confirmed, scheduled and allocated quantities to business associates, such as: EDI for FERC Regulated
facilities; EDIGas for European facilities; Caminus Web™; Downloaded reports; Internet; Auto Fax; and/or
Email

With respect to Marketers, the system architecture is configured to support the capability of receiving
confirmed, scheduled and allocated quantities from facilities. A marketer must be able to receive and merge it
with their original data. The data should not overlay existing data so that a proper audit trail can be
maintained.

Information Publishing

Facility API parameters of the system architecture are supported for exporting: Date/time range

designation for nom period; Nom type designation (transport, storage, park and loan, all); Support batch

55

10

15

20

25

30

35

40

WO 02/101510 PCT/US02/18781

processing/time schedule; and/or Data storage mechanism designation (table, comma delimited file, Excel,
Access).

Facility communications of the system architecture support: CaminusWeb; Email; Fax; Marketer's
web page; and/or Instant messaging.

Facility contact groups supported include: Facility level; Meter/point level; Contract level;
Agent/shipper level; and/or Nominating Party level. A nominating party is defined as an entity that prepares,
updates and sends nomination information either on its own behalf and or on behalf of third parties. This user-
defined level could be used if and when nominating parties are not designated or identified as either "agent" or
"shipper".

Marketer API Parameters of the system architecture are supported for exporting: Date/time range
designation for nom period; Nom type designation (transport, storage, park and loan, all); Support batch
processing/time schedule; and/or Data storage mechanism designation (table, comma delimited file, Excel,
Access).

Marketer Communications of the system architecture are supported using: CaminusWeb; Email; Fax;
Marketer's web page; and/or Instant messaging.

The system architecture is configured to provide Marketer Contact Support for user defined groups
such as: Facility level; Meter/point level; Contract level; Agent/shipper level; and/or Nominating Party level.
A nominating party is defined as an entity that prepares, updates and sends nomination information either on
its own behalf and or on behalf of third parties. This user-defined level could be used if and when nominating
parties are not designated or identified as either "agent" or "shipper".

GISB Version 1.4 Nomination Standards

With respect to the GISB version 1.4 Nominations Standards, there are three model types that can be
utilized, depending on the routing methods of the transportation service provider. The model type may be
pathed, non-pathed or pathed non-threaded.

The model type used affects the data required for a single transaction line item. All data elements
required in the nomination standards are utilized for each of the model types. The placement and number of
occurrences of the required elements may vary by model type. The transportation service provider specifies
which model (or models) is used to nominate.

» The pathed model (model type 'P') expresses a transaction from a receipt location to a delivery

location. This pathed line item depicts a single requested receipt or delivery quantity of gas for the
path and date combination.

= The non-pathed model (model type 'N') expresses a transaction at a receipt location or a delivery
location. The non-pathed transaction (line item) varies with the location of the quantity. If the
quantity is a receipt quantity, then a line item may be defined by a contract, receipt location, upstream
identifier and contract, rank (two are available), quantity type, capacity type indicator and package id
for a specified effective date range. If the quantity is a delivery quantity, the line item may be defined
by a contract, delivery location, downstream identifier and contract, rank (two are available), quantity
type, capacity type indicator and package for a specified effective date range. The non-pathed line
item depicts a single requested receipt or delivery quantity of gas for the location and date
combination.

= The pathed non-threaded model consists of two components. The components are the threaded
segment (model type 'T") and the unthreaded segment (model type 'U"). The threaded segment defines

56

10

15

20

25

30

35

40

WO 02/101510 PCT/US02/18781

the receipt location to delivery location path of gas, with its associated contract, receipt and delivery
location, quantity type and package id for a specified effective date range. The unthreaded segment
functions similar to the non-pathed model above with the exception of the usage of ranks. In the
unthreaded segment, the upstream and downstream ranks are sender's option and the receipt and
delivery ranks are not used, while in the non-pathed model the receipt and delivery ranks are sender's
option and the upstream and downstream ranks are mutually agreed upon.

The beginning date, ending date, and ending time are required data elements for all nominations. A
Transportation Service Provider may also require the beginning time in nominations. When a nomination is
submitted to request transportation of gas beginning with the start of the gas day and stopping at the end of the
gas day, the beginning time and ending time may be defaulted to the standard. In this case, the service
requester would include the beginning date and ending date for a nomination without the beginning time and
ending time.

‘Whether the model is pathed, non-pathed or pathed non-threaded, a single line item is referenced by
the nominator's tracking id. This data element accompanies every line item in the nomination transaction set. .
When the Quick Response and Scheduled Quantity transaction sets are returned to the service requester, the
line items are referenced using the nominator's tracking id. This number facilitates a quick and consistent
means of tying originating line items to their corresponding response transaction.

The service provider's activity code is assigned by the transportation service provider to identify a
combination of nomination data elements specified by the transportation service provider. It is used within the
nomination process to represent a portion of the nomination components as specified by the transportation
service provider.

For all nomination line items, the quantity type indicator is required. The quantity may be a receipt
quantity or delivery quantity or may be designated as the quantity for both the receipt and delivery point
('both’). By utilizing the GISB standard fuel calculation, both the sender and receiver of the nomination can
derive the corresponding receipt or delivery quantity when one quantity is provided.

The quantity in a nomination is always expressed as a daily (gas day) quantity, even for intraday
nominations. This holds true regardless of the model type or quantity type indicator. Thus in the case of
intraday nominations, the quantity expressed is always a daily quantity, even if the gas will not be scheduled
to flow over an entire gas day.

The transaction type is utilized to distinguish types of transactions such as fuel, overrun or payback.
For regular transportation the default is "current business".

The package ID may be utilized by the service requester to make a single nomination line item
different from another nomination line item when two or more line items are otherwise identical. For instance,
a pathed nomination line item may be for the same contract, receipt and delivery location, and upstream and
downstream parties, but the service requester needs the transactions to be unique for internal reasons. The
package ID could be used by the service requester to distinguish between the two transactions and keep them
unique. The service provider is not obligated to validate the package id, and should return the package id as
received as applicable in the dataset(s) transmitted to the service requester. When combined with all of the
other components of a nomination line item, it is used to determine if a nomination line item is unique.
Nominations — GUI

Turning now to Figure 21, a flow diagram view of a nominations processing use case diagram
57

10

15

20

25

30

35

WO 02/101510 PCT/US02/18781

according to one embodiment of the present disclosure is shown. A gas controller can possess access to a
number of modules according to a given security access, such as provided by a system administrator. The
modules can include one or more of: Describe Nomination Plan, Describe Pipeline Templates, Describe
Pipeline Configuration, and Create Pipeline Nomination. The Describe Nomination Plan module receives
input from a Maintain Nomination module and a Describe Nom Plan Reference Information Module. In
response to input from the Gas Controller, as well as, the Maintain Nomination Plan and Describe Nom Plan
Reference Information modules, the Describe Nomination Plan module is configured for describing a
nomination plan. The Describe Nomination Plan provides an output to a Manage Best Available Quantity
module.

The Describe Nom Plan Reference Information provides input to the Describe Deal Location module.
In addition, the Describe Nom Plan Reference Information and the Describe Deal Location module provide
input to a Manage Deal module.

The Create Pipeline Nomination module receives input from the Gas Controller, as well as the
Describe Pipeline Templates module, Describe Pipeline Configuration module, a View Pipeline EBB View,
and a Send Pipeline Nomination module. In response to the input, the Create Pipeline Nomination module is
configured to create a pipeline nomination.

Figure 22 is an exemplary screen view of an Operations screen layout for nomination planning
according to one embodiment of the present disclosure. The Operations screen layout includes a title bar, a
permanent display area, search criteria area, supply, services, inventories, market, and nomination plan areas.
Inventories includes pool points, storage points, and interconnects.

Figure 23 is a screen view of an Operations screen layout for nomination planning including an
example of content for the permanent display area. As shown, in one embodiment, the permanent display area
includes identification/information relating to an accounting company, facility, nomination period, flow
period, unit of measure, and options for creating aggregate or single connections. In addition, the search
criteria area includes an input box for entering a desired text to be searched and a search execution option.

Figure 24 is a screen view of the Operations screen layout for nomination planning showing further
detail of exemplary search criteria. The search criteria can be saved for subsequent usage or set as a default.
Searching is available in one or more combinations of supply, market, services, inventories, and nomination
plan. Supply attributes include Deal ID, Supplier, Facility, Group Definition, Group Name, Receipt Location,
Upstream Reference, and Available Quantity. Market attributes include Deal ID, Market, Facility, Group
Definition, Group Name, Delivery Location, Downstream Reference, and Available Quantity. Services
attributes include Counterparty, Facility, Service Agreement, Group Definition, Group Name, and Nomination
Plan Quantity including receipt, delivery, and balance.

Referring still to Figure 24, the Inventories attributes include Facility, Pooling, Storage, and
Interconnect. For Pooling, the attributes include Point, Receipt Quantity, Delivery Quantity, and Balance. For
Storage, the attributes include Point, Receipt Quantity, Delivery Quantity, and Balance. For Interconnect, the
attributes include Receipt Quantity, Delivery Quantity, and Balance. Lastly, for Nomination Plan, the
attributes include Facility, Service Agreement, Supplier, Upstream Reference, Upstream Pkg ID, Receipt
Location, Counterparty, Nomination Transaction Type, Path Pkg ID, Delivery Location, Downstream Pkg ID,

58

10

15

20

25

30

35

WO 02/101510 PCT/US02/18781

Downstream Reference, and Market. .

Figure 25 is a screen view of the Operations screen layout for nomination planning showing further
exemplary detail. The screen layout illustrates nomination planning for the accounting company Company
XYZ having a nomination period of 4/1/2001 to 4/30/2001, and with a unit of measure MMBtu. As shown,
the supply area indicates three deals, ID 1, ID 2, and ID 3. Each deal can be characterized by one or more of a
Start, End, Term Ind, Supplier, Facility, Receipt Location, Rank, Deal Quantity, and Available Quantity. The
Services area includes for one or more Facility, Service Contract, a Receipt, Delivery, and Balance. The
Inventory Area includes Pool Points, Storage Points, and Interconnects, including one or more of
Counterparties, Type, Receipt, Delivery, and Balance.

With reference still to Figure 25, the Market area indicates four deals, ID 5, ID6, ID7, and ID8. Each
deal can be characterized by one or more of an Available Quantity, Deal Quantity, Rank, Delivery Location,
Facility, Market, Term Ind, Start, and End. In the lower left hand region of the Operations, Nomination
Planning, screen view, an Upstream Information area is provided. The Upstream information includes one or
more of supplier, reference, Pkg ID, Rank and Quantity. In a lower central region of the Operations,
Nomination Planning, screen view, a Nomination Plan area is provided. The nomination plan includes a
receipt total and a delivered total. Each line of the nomination plan table, can include one or more of Receipt
Quantity, Receipt Location, Receipt Rank, Facility, Service Contract, Type, Fuel %, Fuel Quantity, Path
PkgID, Delivered Rank, Delivered Location, and Delivered Quantity. Lastly, in the lower right hand region of
the Operations, Nomination Planning, screen view, a Downstream Information area is provided. The
Downstream information includes one or more of Quantity, Rank, Pkg ID, Reference, and Market.

Referring now to Figure 26, another screen view of the Operations screen layout for nomination
planning is shown in further exemplary detail. For Deal ID 1 in the Supply table, the Receipt Location
information includes further detail for receipt location Rec2, corresponding to Upstream Information Up3.
Additional upstream information can be provided in the upstream information area of the display, as indicated
by an arrow. For Deal ID 3, the Receipt Location information includes further detail for receipt location Rec5,
corresponding to Upstream Information Up4 and UpS. Additional receipt location information can be
provided in the nomination plan information area of the display, as indicated by an arrow.

Further with reference to Figure 26, for Deal ID 5 in the Market table, the Delivery Location
information includes further detail for delivery location Dell. In particular, Dell includes Dn1, Dn2, and Dn3,
as well as respective available quantities, deal quantities, and ranks. Additional downstream information can
be provided in the downstream information area of the display, as indicated by an arrow. For Deal ID 7, the
Delivery Location information includes further detail for delivery location Del5, corresponding to
Downstream Information Dn4 and Dn5. Additional delivery location information can be provided in the
nomination plan information area of the display, as indicated by an arrow.

In Figure 27, the screen view of the Operations, Nomination Planning, shows additional exemplary
services information in the service contract column of the nomination plan information area of the display, as
indicated by an arrow. In Figure 28, the screen view of the Operations, Nomination Planning, shows
additional Inventory information in the receipt and delivery columns of the nomination plan information area

of the display, as indicated by arrows.

59

10

15

20

25

WO 02/101510 PCT/US02/18781

In Figures 29 — 34, the respective screen views of the Operations, Nomination Planning, display of
Figure 25 are shown in further exemplary detail. In particular, in Figure 29, one set of reference information
is shown depending upon which delivery or receipt location is highlighted, as indicated by the arrows. In
Figures 30 and 31, additional nominations detail is shown in the nomination plan area of the display, as well as
upstream and downstream information. In Figure 32, the additional nominations detail includes upstream
information and a corresponding nomination plan. In Figure 33, the additional nominations detail includes a
nomination plan and corresponding downstream information. In Figure 34, upstream information, a
nomination plan, and corresponding downstream information are shown.

Turning now to Figure 35, an illustrative screen view of a whiteboard detail for nomination planning
according to one embodiment is shown. The whiteboard detail enables a system user to evaluate various deal
scenarios for potential use in a given nomination plan or plans. The whiteboard detail includes a region for
Purchase, including Deal ID, Price, Quantity and Flow Unit. A region for Sales includes Flow Unit, Quantity,
Price, and Deal ID. A central region is provided for Converted data, corresponding to respective purchase and
sales deals. For each of the Purchase and Sales columns, a Deal Sub Total is provided, as well as Interconnect
Sub Total, and a respective Total Purchases/Total Sales. Any difference between the total purchases and total
sales is provided as a Difference variable. Figure 36 provides a further screen view of the whiteboard detail of
Figure 35 according to another embodiment of the present disclosure, including Deal ID, Volume, Flow Unit,
Currency, Price/Index, Current Unit, Points, Area, Region, Service, and Spot/Term Dealmaker. Figure 37
provides a further screen view of the whiteboard detail of Figure 35 according to another embodiment of the
present disclosure, for example, a whiteboard summary including for each respective pipeline, a total
difference, and a purchase, sales, and difference for a baseload, a swing, and an interconnect.

STANDARD API FOR DATE RANGE RECORDS

According to one embodiment, validation patterns are used in connection with the database tables

(entities). An exemplary table of terms, definitions, and respective database mappings is provided in the table

2

below. The terms “table”, “column” and “row” are used when referring to validations derived from the data

model.
Term Definition Database Mapping
Class For the purpose of this disclosure, a class | Table

represents an entity class, which maps to a specific

database table.
Date-Range Used in describing Date-Range classes. One or | Master ID Key Column
Object more rows in a table (or instances of a class) may

comprise a single Date-Range Object. Depending
on the date in question, a different table row will
represent the current status of the Date-Range
class.

Business Object | This refers to a specific class, “Business Object”. | BusinessObject table.
This class is used to generate unique ID keys for
several classes that share sets of intersection tables,
for identifying relationships, groups and attributes.

Instance Single item that implements a class Row
Attribute Member variable that belongs to a class Column
Role Attribute that represents an instance of another | Foreign Key Column

entity class.

60

10

15

20

25

WO 02/101510 PCT/US02/18781

Date Range Vs. Non-Date Range Class Type

Non-Date Range: The Physical Key for the class uniquely represents a single object. The class may
have attributes for a begin and end date that represents the active range of that object, but the begin and end
dates are not part of the logical key of the class. There is no way to represent an object that has different
attributes for different date ranges on this class. An example of a Non-Date Range table with begDate and
endDate attributes is the CodeValue class.

Date-Range: The class is used to represent a Date-Range Object. It has different attributes for
different date ranges. The class will contain a master ID attribute that represents a single object. The Physical
Key for the class does NOT uniquely represent a single object, but rather the definition of that object for a
date-range. The class must have attributes for a begin and end date that represents the definition of an object
for that active range. The logical key for the class must include the begin and end dates. An example of a
Date Range table is the Facility class.

Classes that use a Business Object Class may include the following. The physical key of the class is
generated from the BusinessObject class. The class is assigned a unique ID in the BusinessObjectType Class.
The classes that use the BusinessObject Class can either be Date-Range, or Non-Date Range classes. An
example of a class that uses the Business Object table is the Facility class.

The system architecture includes a standard API that is designed to be used to select, create, update,
and delete date-range records. Several tables have been created that serve only to generate Master ID keys for
arelated date-range table. Examples of these tables are the point and pointHeader tables. The pointHeader
table contains a primary key,

Further with respect to the API for date range records, the terms below represent both columns on a

typical Date Range table, and also parameters used in the API for date-range records.

Term Definition

Master _ID ID column that identifies a single object. This object may have different values on
different dates. Records that have the same Master ID value, represent the values
of a specific object for a specific instance of time.

NOTE: There will be some date-range objects that have a composite master ID
key. The API for those objects will contain the correct number of parameters
necessary to handle the composite Master ID key.

BegDate Beginning date. The date at which a set of attributes applies to an object.

EndDate Ending date. The date at which a set of attributes stops applying to an object

Attribute 1.N List of all of the attributes that apply to an object, excluding Master_ID, BegDate,
and EndDate.

Selects

Selects for a date-range record can have many different variations. Several examples of selects are
shown below:

1. Select all records for an object uniquely represented by “Master ID = 7”.

Method Returns

FindByVariableFilter Set of 0 or more
records

Attribute Operation Value

Master ID =" 7

61

10

15

20

WO 02/101510 PCT/US02/18781

2. Select an object uniquely represented by “Master_ID = 7”. Select zero or one records that exist for the date
of “10/1/2000”.

Method Returns

FindByVariableFilter Set of 0 or more
records

Atiribute Operation Value

Master ID =" 7

BegDate =" “10/1/2000”

EndDate > “10/1/2000”

3. Select an object uniquely represented by “Master_ID = 7”. Select all records that exist between the dates
of “10/1/2000” and “10/25/2000”.

Method - | Returns
FindByVariableFilter Set of 0 or more records
Attribute Operation Value

Master ID =" 7

BegDate < “10/25/2000”
EndDate > “10/1/2000”

4. Select all objects that have a name like “TIM”. Select all records that exist between the dates of
“10/1/2000” and “10/25/2000”.

Method Returns
FindByVariableFilter Set of 0 or more records
Attribute Operation Value

Name “LIKE” “TIM”
BegDate < “10/25/2000”
EndDate (> “10/1/2000”

The findByVariableFilter method allows any combination of selects using any of the attributes on an entity,

and the following allowed operations:

=< [> [<= [>= TJ< TJISNULL [ISNOTNULL | LIKE |

Inserts
An insert of a new date-range record is straightforward affair. The calling process sends the
attributes of the entity and a date-range. The information is validated and inserted. If any validation errors are

found, a compiled list of validation messages is sent to the calling process.

Method
Create

Parameters
Attribute 1..N
BegDate
EndDate

62

10

15

20

25

30

WO 02/101510 PCT/US02/18781

Returns

Value of new
Master ID

Updates
An update of an existing date-range object requires a Master_ID attribute to uniquely identify the

object to be updated. The calling process also sends the new attributes of the object and a date-range. The
information is validated and inserted. If any validation errors are found, a compiled list of validation messages

is sent to the calling process.

Method

Update

Parameters

Master 1D

Attribute 1..N

BegDate

EndDate

When a new record is saved, old records are checked to see if they overlap. They must then be

resolved. This process assures that no overlapping records are created when an update occurs.

Deletes

A delete of an object involved deleting all date-range records that are associated with that object. The
calling process sends the master_ID only. Validations are done against deleting all for that master_ID. If the
deletion passes the validations, then all records with the master ID are deleted. If any validation errors are

found, a compiled list of validation messages is sent to the calling process.

Method

Remove

Parameters

Master ID

Change Lifespan
Date-Range entities where no gaps are allowed will have additional functionality to deal with

“Lifespans”. A lifespan represents the logical beginning and ending date of a Date-Range Entity Instance.

Change Lifespan API Definition
Every date-range entity that allows no gaps, and that has a logical end date would have the following

method:

Method

ChangeL ifespan

63

10

15

20

25

WO 02/101510 PCT/US02/18781

Parameters

Master ID

BegDate

EndDate

ValidateDatal.oss

The calling process would call “ChangeLifespan” to change the lifespan of a record. The
newBeginDate or NewEndDate parameters could be null, indicating no change on that date. If
validateDateLoss is True, then a validation occurs whether any rows of data will be deleted when the date
range is changed. If any rows of data would be deleted, then an error message is sent to the calling process.

Every date-range entity that allows no gaps, and that has NO logical end date would have the

following method:

Method

ChangeLifespan

Parameters

Master 1D

BegDate

ValidateDataLoss

The calling process would call “ChangeLifespan” to change the lifespan of a record. If
validateDateLoss is True, then a validation occurs whether any rows of data will be deleted when the date
range is changed. If any rows of data would be deleted, then an error message is sent back to the calling
process.

Delete Range

Date-Range entities where gaps are allowed will have additional functionality to deal with deleting
specific ranges. These will typically be transactional records that have no single lifespan. They can go in and
out of existence.

Every date-range entity that allows gaps, would have the following method:

Method

DeleteRange

Parameters

Master 1D

BegDate

EndDate

Example : Nomination #1 might have the following date-range records:

1/1/2000 =--mmemmmmmmemmmmnnn 1/10/2000 1/10/2000 2/15/2000

If the user wanted to delete the nomination from 1/5/2000 to 2/10/2000, the user would call the
“DeleteRange” method with the master ID key, and a begDate of 1/5/2000, and an endDate of 2/10/2000.
The result would be:

1/1/2000 =memmmmmammm 1/5/2000 2/10/2000----------- 2/15/2000

Update Changed Atiribute

64

10

15

20

25

WO 02/101510 PCT/US02/18781

In one embodiment, an update of one or more attributes independent of the existing date range
records can be accomplished as follows. Several modes are identified for this.
1. Lifespan— Update Atiributes for the lifespan of the date-range object.
2. Current Date Forward — Update attributes from the current date, through the lifespan end date of the date-
range object.
3. Selected Date Range — Update attributes from the selected begin date, to the selected end date.

To meet the needs of these three modes, a standard method was introduced:

Method

UpdateChangedAttributes

Parameters

Master ID

Attribute 1

setAttrbute INull

Attribute 2

setAttrbute2Null

Attribute N

BegDate

EndDate

The calling process sends in null values for Attributes that have not changed. The calling process
sends in the changed values for the atiributes that have changed. If an attribute is needed to be set to null, then
the corresponding “setAttributeXNull” parameter is set to true. The “SetAttrbuteXNull parameters are only
included if the corresponding database column is nullable.

The BegDate and EndDate parameters have the following logic:
If the begDate parameter is null, then the lifespan begin date will be used for the begin date.
If the endDate parameter is null, then the lifespan end date will be used for the date range.

This allows for the following types of calls to be done:

Action begDate Value EndDate value
(sent by calling process.) (sent by calling process.)
Update for Lifespan Null Null
Update for current date | Populated with current date. Null
forward
Update for date range Populated with selected begin date. Populated with selected end date.

A validation is done to test for any gaps between the begin and end date of the update. If there are
any gaps where records don’t exist, then the update will fail, and a validation message will be returned.

When an update is done, all records that exist for the date range to be updated are retrieved, and the
changed attributes are merged with the existing attributes for each date range record. These merged records
are then resubmitted as regular updates through a standard “Update” method of the present embodiments.

This means that all attributes will be revalidated on an update, not just on the attributes that are
changed. Ifsomehow a record got corrupted so that it has an invalid attribute on it, the user will see a
validation message for that attribute, even if the user did not change that attribute. This means in effect, that

any invalid record must be corrected for all invalid attributes in order to change a single attribute.
65

10

15

20

25

30

35

WO 02/101510 PCT/US02/18781

2 &

This approach greatly simplifies the validation logic that is shared for the standard “create”, “update”,
and “updateChangedAttributes” methods.
API Design Standards

The business layer utilizes API’s that model a respective domain and not the underlying data model.

In other words, each API interface is made to be more object or semantic oriented rather than data centric. In
addition, the location of methods for each API design is made to be intuitive. For example, all finds for
facilities are on the facility API and any code values associated with a facility come from the facility API.

The business layer API is also made to be non-screen centric. That is, the API does not focus on
screens, although the primary consumer is the GUI. Rather the API accommodates the needs of the screens
while providing an API that can be used for other applications, such as reporting, conversion, and voice
response units. A GUI Screen may call several API classes, each API class mapping to a business object that
the GUI needs to communicate with.

API Standards

With respect to API classes, they represent domain objects that hide the physical storage in the
database. API's are not mapped to screens but to domain models. All external calls go through an API bean.
The Non-API business layer beans are not called directly from a GUIL

An API has been created for selecting lists of code values. The class is called “SystemAPI”. It
contains a method referred to as findCodeValuesByCodeType. This allows for any list of code values to be
selected back, as long as the calling process can specify the constant for the associated code type. Other API
classes would only be required to provide “find” methods for code values if there is a business requirement to
filter the code values that are sent back.

Find methods on the API’s are designed to return all columns from a database table, when selecting
from a single table. The calling process, however, can ignore any unneeded columns. Standard
findByVariableFilter methods provided on the Entity EJB’s are ﬁsed when selecting data from a single
database table.

When table joins are performed, the code sends back the columns that the calling process requires.
There would be no need to return all of the columns of all of the tables on a 5-table join. However, the code
returns any physical key columns, or foreign key columns that the calling process will need to uniquely
identify a related object.

All remove methods contain a physical key or master ID (which may be a compound key) and, if
required, a force delete argument. The force delete argument tells the remove method that the caller wants to
delete the data and disregard warnings.

Many business objects being manipulated through an API will have a single physical ID key that
maps to the name of the business object. However, the names of physical keys are documented in the API
documentation when an <entity> ID is not explicit. This relates mostly for Date-Range objects, where
Master_ID keys are used instead of physical keys to uniquely reference a business object. The Master ID key
is often related to a header, instead of the business object itself. For example: A “facility” object is uniquely
identified by a “FacilityHeader_ID” value.

GUI to API Interface Design

66

10

15

20

25

30

35

WO 02/101510 PCT/US02/18781

Sequence diagrams are useful for mapping combos, list boxes, and grids of a GUI to the
corresponding methods of an API class. They serve two purposes. First, the sequence diagrams can provide
documentation so that a GUI designer can verify that there is an existing interface for all of a respective
screen’s requirements. Secondly, the diagrams can provide documentation to the GUI developer so that the
developer knows which method on which API class to call for each screen element on a particular GUI.

API classes are defined with respect to functional areas. A single API class may be used in multiple
sequence diagrams across different functional areas. Sequence diagrams concentrate on the unique needs of a
specific GUL

Sequence and activity diagrams can be used to document business processes that occur underneath
the API class. For example, sequence diagrams can be used to show what other classes are being called by the
API class. Activity diagrams can be used to show the logical flow of complex business processes

Coding API’s for Domain objects

Each domain object identified in the system is associated with an API class. The particular class is a
stateless session bean and provides a set of methods for manipulating the domain object and all of its
associated details.

The methods for creating or updating a domain object may require XML-Bound classes to allow a
calling process the ability to send in a complex structure of data. This structure may contain collections of
domain detail information. The API class will be in charge of brokering the domain detail information to the
“Entity” EJB’s that it relates to.

Shared Domain Detail Objects that have their own API’s,

Some Domain Detail Objects are shared by more than one Domain Object. An example would be
“Groups.” Many Domain Objects have groups of other Objects. A Groups API hides the complexity of
dealing with groups. A calling process calls a Domain Object’s API to get a list of it’s detail groups. The
Domain Object would then call the Groups APIL.

If a Domain Object has Detail Objects that have their own API’s, the Domain Object can be used as a
broker for looking up existing details. A Domain Object can contain methods to manipulate
(create/update/delete) a Domain Detail Object, but this should be limited to the scope of the Domain Object.
For example, a PointAPI bean could allow functionality where points can be added to or removed from
existing groups of points. This would involve the PointAPI bean calling the GroupAPI bean. If, however, the
calling process wanted to create a new group, or a new type of group, a Generic Group Screen is provided that
calls the Group API directly.

System-Wide Utilities

The system architecture includes a number of System-Wide Utilities, several of which are presented
below. A class factory creates a corresponding class.

Utility Factory Class

In creating utility classes, most utility classes will implement an interface and are created by a factory
class, based on a customer's ASP customer ID. This allows the system to have variations in how the utility

classes work between companies. This is important for a pipeline operations product, because different

67

10

15

20

25

30

35

40

45

WO 02/101510 PCT/US02/18781

companies may have very exacting and conflicting criteria for how the system handles some math and
business operations.

In one embodiment, the factory class is com.altra.common.util.UtilityFactory. The class factory
contains a set of static create methods for use to create a utility that implements a utility interface. The utility
may be different depending on the parameter(s) sent into the create method. Typically, the create method will
only accept an ASP Customer ID as a parameter which allows for different utilities to be instantiated for
different customers.

Rounding Utlity

With respect to rounding, some companies may have different standards for rounding than others. In
order to deal with this business scenario, the utility factory creates the correct rounding utility according to the
ASP customer that is doing the rounding. For example, when the system needs to do rounding, a call is made
to:

UtilityFactory.createRoundingUtility(Integer ASPCustomer ID). As this is a static method, the system does
not instantiate the factory class.

An example (Inside a session EJB) can include the following:

double value = 1.234;
it decimalPrecision = -1;

IRoundingUtility iR oundingUtility =
UtilityFactory.createR oundingUtility(getCallContext().getAspID());

double result = iRoundingUtility.round(value, decimalPrecision);

Documentation for the iRoundingUtility.round method is as follows:

parameter value : Contains the value to round.
parameter decimalPrecision Contains the decimal place to round. Based on the
power of 10.

2 =round to nearest 100
1 =round to nearest 10
0 =round to nearest 1

-1 =round to nearest .1

-2 =round to nearest .01

returns rounded number.

Date Constants

With respect to date constraints, there are many instances where dates are specified only as
“beginning of time” and “end of time.” These are constants, so they will be uniform throughout the
application. For example, DATE_BEGINNING_OF_TIME and DATE_END_OF_TIME can be declared in a
Date Constants file, such as, com.altra.common.date. DateConstants.
Bound Data Objects

Bound data objects are business objects that can be marshaled through the system architecture of the
present embodiments. They are designed to support a configurable object state (i.e. ADD, UPDATE,
DELETE), and can be generated and validated from an XML Schema file.

68

10

15

20

25

30

35

40

45

WO 02/101510 PCT/US02/18781

In order to set up a schema, a file similar to the one below is created. An explanation of this file
structure is provided subsequently. The text in bold will be explained. The file structure of .xsd files is kept
the same for various schemas of the present embodiments, except for the <element> elements (in box), which
contain the information about the XML-Bound Objects to generate.

<?xml version="1.0"?>
<IDOCTYPE schema [

<IENTITY system_objects SYSTEM "file:./system.xsd">
>

<schema xmlns="http://www.w3.0rg/2000/10/XMLSchema"
targetNamespace="http://www.altra.com/etm/businessObjects">

&system_objects;

<annotation>
<documentation>
This contains the definitions of the business objects used by ETM
</documentation>
</annotation>

<I-- Point object and dependent objects -->
<element name=""PointData''>
<complexType>
<sequence>
<element name=""pointHeader_Id" type="int"/>
<element name="shortName" type="string"/>
<element name="begDate'' type=""DateType'/>
<element name=""heatValue'" type="float"/>
<element ref=""AliasData" maxOccurs="unbounded" minOeccurs="0"/>
</sequence>
<attributeGroup ref="CommandAtiribute"/>
</complexType>
</element>
<element name="'AliasData''>
<complexType>
<sequence>
<element name="Alias_Id" type="int"/>
<element name="shortName" type="string"/>

</sequence>
<attributeGroup ref="CommandAttribute"/>
</complexType>
</element>
</schema>
Structure Explained:
<element name="PointData"> Defines a PointData java class.
<element name="pointHeader Id" type="int"/> Defines a “pointHeader ID” member
variable of the PointData Class as type
int.
<element name="shortName" type="string"/> Defines a “shortName” member
variable of the pointData Class as type
String.
<element name="heatValue" type="float"/> Defines a “heatValue” member variable
of the PointData Class as type float.
<element name="begDate" type="DateType"/> Defines a “begDate” member variable
of the PointData Class as type

69

10

15

20

25

WO 02/101510 PCT/US02/18781

java.util. Date
<element ref="AliasData" maxOccurs="unbounded" | Defines a collection of AliasData
minOccurs="0"/> objects.

MaxOccurs=“unbounded” means that
there is no maximum limit to how many
AliasData objects can be in the
collection.

MinOccurs=“0” means that the
collection can be empty.

<element name="AliasData"> Defines an AliasData java class.
NOTE: Since the PointData class
references the AliasData class, the
definition of the AliasData class has to
be in the same file as the PointData
class.

XML Bound Data Objects

XML-Bound Data Objects are used by an API whenever the calling process needs to send collections

of data, or structures of data through the API’s method parameters.
Process Methods for XML Bound Data Objects

APT’s that allow the calling process to do creates, updates, and removes through XML-Bound Objects
have a single method, “process”. The method uses a “getCmd” method on every item in the XML-Bound
object to determine whether a Create, Update, or Remove action should be performed on that item. For
example, in one embodiment, the process method can return an “int” value. On a create, the “int” value can be
the ID Key of the first row created. On an update or remove, a zero value can be returned.

XML-Bound objects often either contain collections of other XML-Bound Object, or are collections
of XML-Bound Objects. Collections are iterated through and each item in that collection is checked to see if
it is marked for a Create, Update, or a Remove action. Ifthe item is not marked for any of these actions, it is
ignored.

It is possible that an XML-Bound object could contain a header item which is marked for no action,
and one or more detail items that are marked for some action. In this case, the header item is ignored, and the
detail items are processed. If the XML-Bound Object being processed is a related object, then the method
would include “Process<Object>", where <Object> is the name of the business object that is being changed.

Create, Update, and Remove methods.

APIs that are not using XML Bound Objects to perform creates, updates and removes utilize “create”,
“update”, and “remove” methods. The “create”, “update” and “remove” methods that manipulate a domain
object can be named, “create”, “update” and “remove”. For example, PointAPI.create() can be used to create a
new point. The “create”, “update” and “remove” methods that manipulate a detail of the domain object can
be named, “create<OBJECT>", “update<OBJECT>" and “remove<OBJECT>” where <OBJECT> is the
name of the domain detail object. For example, PointAPI.createAlias() can be used to create a new alias for a
point.

Lifespan Functionality

Some GUI’s require lifespan functionality for certain business objects. These business objects are

date-range objects that are considered to have lifespans. This means that the business object is not

70

10

15

20

25

30

35

40

WO 02/101510 PCT/US02/18781

transactional and that it could not go in and out of existence.
The API for the related business object can include public methods that correspond to the following
methods, for example:

findLifespan - Returns the absolute begin and end dates for a date-range object.
updateLifespan - Changes the absolute begin and end dates for a date-range object.
findByDates - Returns all of the date-range records for a specific date-range object.

The findLifespan and updateLifespan methods call the same methods on the related DL class. The
DL Class inherits the findLifespan and updateLifespan methods from a BaseDateRageDL class. The
findByDates method can be defined as follows:

public XmIRowSet findByDates (Integer master ID,
java.util.Date begDate,
java.util.Date endDate,
String orderBy) throws RemoteException;

The findByDates method can be implemented, for example, by calling a findByVariableFilter method on a
related “Entity” class.
Deletion by Date Range

Some API’s may require the ability to remove the definition of a business object for a date range.
These business objects are date-range object that are considered to not have lifespans. This means that the
business object is transactional and that it could go in and out of existence.

The API for the related business object can include a public method, for example, that corresponds to
the following: RemoveForDateRange. This API method can be configured to call the same method on the
related DL class.

Validation Logic Vs. Business Logic

According to one embodiment of the present disclosure, validation logic is placed in the “Entity”
EJB’s (as opposed to the API EJB’s) to enforce data integrity. This accomplishes two things. First,
validations are processed if the calling process circumvents the API and calls the Entity EIB directly.
Secondly, by having all of the validations in the “Entity” EJB’s, all validations can be done and returned to the
calling process as a package.

Business Logic that is not data integrity validation logic and involves more than one “Entity” EJB can
be placed in the API EJB. For example, when a new language is created, the

TranslationAPI.createLanguageDefinition method is called. Inside this method the following “Entity” EJB’s

are called:
I TermEJB — Store the name and description of the language in the term table. Language names
can be translated to other languages.
IL LanguageDefinitionEJB — Create a new Language Definition record. Use the Physical keys

generated by the termEJB.create methods for the name and descriptions.
1. TermSetEIB — Create a Default Term Set, related to the new language.

Remove Methods that require cascading deletes.

The API may get remove requests that require cascading deletes. Cascading deletes are handled

71

10

15

20

25

30

35

WO 02/101510 PCT/US02/18781

inside the main “Entity” EJB’s remove method. Deletes on dependant business objects are done through the
corresponding “Entity” EJB’s standard remove method. Accordingly, this assures that whatever validation
logic is placed into the “Entity” EJB for removes gets called.

API EJB’s calling “Entity” EJB and DL classes.

When an API class needs to do a create, update, or remove on a database table, then the API class
calls the “create”, “update” or “remove” method on the “entity” EJB class. The API class does not call the
“entity” DL class directly, unless validation rules are to be circumvented.

When an API class requires custom SQL that cannot be handled by the existing “Entity” EJB classes
“findByVariableFilter” method, then an API DL class is created and the custom find method is placed in the
APIDL class. The API DL class extends the com.altra.common.ejb.BaseDL class. The file is named <Domain
Object>APIDL java, where <Domain Object> is the same name used in the name of the API bean. The API
class should instantiate the DL class through the “DLClassFactory” class for the package.

In one embodiment, an API class can be configured to directly call another DL class’ find methods.
Accordingly, an API class is able to call another DL class directly for invoking a find method.

DOMAIN OBJECTS AND DOMAIN-OBJECT DETAILS

As used herein, a domain object describes a single person, place, thing, or concept. The domain
object contains sufficient detail information with it to have meaning on it’s own, without the necessary
association with other domain objects. A Domain Object keeps a consistent identity, regardless of the changes
to it’s associated detail information. Domain objects may also be referred to as Business objects.

A Domain Object Detail is a piece of information, or atiribute, that is needed to flesh out the details
of the domain object. A Domain Object Detail is ambiguous on it’s own, unless associated with a domain
object. Domain Object Detail information can have date-ranges associated with it, that give a Domain Object
different attributes on different dates.

In one embodiment, a Domain Object Detail comprises a small number of attributes, and is tightly
bound to a single Domain Object. If a Domain Object Detail has a significant number of attributes and can be
related to more than one domain object, then the Domain Object Detail is considered as a separate Domain
Object.

An example of an object that has both Domain and detail characteristics includes a Point. A Point
might be considered to be a detail of a Facility. Because it can also be thought of as a detail of Contracts and
Nominations and Deals, Point is treated as an independent Domain Object, with relationships to Facilities,
Contracts, Nominations, and Deals. ’

An illustrative example of a straight forward Domain Object/Detail determination will now be briefly
discussed. Ifyou had objects comprising: a facility, a termination date, a point, a longitude, a latitude, a
contract, a nomination, a point of view, and a quantity, then which would be a Domain Object, and which
would be a Domain Object detail? Determining which are the domain objects can be established by whether
the object can be “Pictured” or conceptualized without any association to another domain object. Determining
which are the Domain Object Details can be established by whether the object seems more like the attribute of
a domain object, and whether the object doesn’t make sense unless associated with a domain object.

A facility will have significant detail information associated with it and only it. It can be

72

10

15

20

25

30

35

WO 02/101510 PCT/US02/18781

conceptualized as an object based on information that is only associated with it. A contract, point and
nomination can also be described as domain objects under this same criteria.

A termination date, point of view, latitude, longitude, or quantity have ambiguous meanings unless
associated with some domain object. This makes the several items more like attributes than Domain objects,
and therefore should be considered Domain Object Details.

An illustrative example of an ambiguous Domain Object/Detail determination is an Address. Isita
Domain Object or a Domain Object Detail? An address can have significant detail information associated
with it. It can have street name, street number, city, state, and zip code information associated with it. It can
be conceptualized as uniquely identifying a certain spot in the world. It can also be thought of as being
ambiguous until associated with a person, place, or thing. It is certainly a necessary attribute of many possible
domain objects (House, Restaurant, Hospital, etc.).

Accordingly, the thing that will make an address a domain object, or a domain object detail is the
requirements of the product. The necessary relationships of an “address™ to different domain objects could
cause this object to be treated as a Domain Object, or Domain Object Detail.

An address can be treated as a domain object if more than one domain object would be allowed to
have an associated address. A single repository or set of tables can be used for all addresses, with foreign keys
to relate the addresses to one or more types of domain objects (such as Domain Parties and Facilities). In
addition, more than one domain object can be made to share the same address object, however, this would
make a change to the address object effect all related domain objects.

An address could be also be treated as a domain object detail, if addresses are restricted to a single
domain object. If only Domain Parties can have addresses, then it might make sense to think of addresses as a
detail of the Domain Party object. Even in this case, an address has a rich enough set of detail information

associated with it alone to be considered a Domain Object.
DYNAMIC LABELING

Dynamic labeling allows the user to modify form titles, form labels, system messages, and certain
system code data fields. This option is required for both multiple language support as well as for different
ways to refer to the same object in the same language. For example, this function can be used if a label is
displayed in English and the user wishes for that label be displayed in French. Another example of the use of
this function will be if one English user wishes to see the point where gas enters a pipeline referred to as

“Receipt Point”, and another wants to call it “Delivery Point”, while a third wants to call it “Entry Point.”

Note that for each user, the entire system will be displayed in one selected language. In other words,
all screens will be displayed in the selected language. The Deal Making screen cannot be in English while the

Allocations screen is in French for the same user.

Generation of, and maintenance of, dynamic labeling facilities involves considerable effort. In
addition to providing the functionality to make this function, additional tools are provided to reduce the effort
required for the user to generate and maintain these additional languages. Requirements for this function

include the following;:

Allow for Dynamic Modification of Form Titles - Each form has a title at the top that is used to
73

10

15

20

25

30

35

40

45

50

WO 02/101510 PCT/US02/18781

identify it, such as “Maintain Nominations.” The system provides the ability to have these titles translated into
multiple languages.

Dynamic/Translation Form Title Information
Form ID
Form Description
Title Value
Display Field Length
Language ID
Default

Allow for Dynamic Modification of all Form Labels - Throughout a form, text strings and text
blocks are used to provide descriptions, identify data fields, indicate instructions, etc. The system provides the
ability to have these strings and blocks translated into multiple languages.

Dynamic/Translation Form Label Information
Label ID
Label Description
Label Value
Display Field Length
Language ID
Default

Allow for Dynamic Modification of all System Messages - At various times, the system generates
messages to the user, usually in the form of a pop-up window. These messages can be informative (i.e. “2
Nominations Added — OK”), warnings (i.e. “Nomination Point will be deleted — OK — Cancel”), system errors
(i.e. “Statement i.d. was not set. Invoice cannot be generated — OK™), or foundation software messages (i.e.
“Column name ‘Date’ not found in table ‘Pricelndex’ — OK™). All messages that are generated from within
system code are configured to have the ability to be translated into multiple languages. Any foundation

software system messages over which there is control may also be translated, as necessary.

Dynamic/Translation System Messages Information
System Messages ID
System Messages Description
System Messages Value
Display Field Length
Language ID
Default

Allow for Dynamic Modification of System Code Data Fields - The data options for entry fields
sometimes come from entries in a code table (see RD-SYS-Objects and Codes.doc). The system architecture
is further configured with a facility to provide for translation of these fields into multiple languages.

Allow for Dynamic Modification of System Reports - All reports that are included with the system
are configured to provide for dynamic labeling of all text fields and system code fields.

Dynamic/Translation Form Label Information
Label ID
Label Description
Label Value
Language ID
Display Field Length
Default

74

10

15

20

25

30

35

WO 02/101510 PCT/US02/18781

Provide for Dynamic Field Width - The translation of words or phrases into different languages can
result in a significant variation in the size of the resulting text. It is necessary to allow for this variation, and
assure that reasonable modifications in displays and reports are automatically generated to accommodate this
variation in text length while preserving functionality and general appearance.

Provide a Description Field for Each String - It is necessary to provide descriptive text for each
string. These descriptions need only be provided once for each string, not necessarily once for each translation
of the string. An important use for this feature occurs when the same English string may be used in two or
more different contexts in different places within the system. The other language may need to provide
different translations for the different contexts. In these cases, two dictionary entries for the same, base
English string must exist. Therefore the description field can be used to differentiate the different contexts of
the otherwise-identical strings.

Allow for Language Variations - Within a single language, variations in spelling and even words can
and do exist. Examples of this include receipt/delivery points, delivery/re-delivery points, and entry/exit
points. These are all English, but different locations and facilities use different labels. The system is
configured to provide for these variations.

Provide Special Tools for Generating Language Variations - A language variation is different from a
new language in the fact that, for a variation, the vast majority of text strings are identical. A special
methodology for generating these variations is provided. One method is to generate table entries of only the
variations. Another method involves the “copying” of one language to the variation, and then modifying the
entries that are different, the method being configured for assuring that the unmodified fields remain
synchronized.

Provide Facility for Selecting a Language for Each User - Language will be selected by each
individual user, not established for all users of a database. This allows a company that has users in multiple
countries, who speak different languages, to provide each user with a system in their preferred language. The
system allows changing the language to which each user is assigned. In one embodiment, a user can select his
own language without having to rely on the system administrator to select it for him or her.

Provide Facility for Allowing a User to Override his Translation for Individual Items - On certain
occasions, a specific user may want to see a different translation of a specific text string. The system is
configured to provide ability for individual users to override the presentation of a string.

Provide Identification Facility for Forms, Reports, Fields, and Messages - When all of the text fields
are translated into a different language, it may be difficult to identify which item a user is referring to when he
or she calls customer service with a question or problem. Accordingly, numbers, codes, or other suitable
means are employed to provide positive identification of the items to which the caller is referring.

Provide Facility for Generating a New Language - Generating a new language for all screens,
reports, messages, etc. is, at best, an extremely difficult and time-consuming task. The system includes a tool
provided to help facilitate this onerous task.

One way to do this is to provide a display with the base system string on one side and a slot for
entering the new string on the other. At the other extreme, a more sophisticated implementation could display

the screen or report that contains the string, highlight the string to be translated, and provide a slot to enter the

75

10

15

20

25

30

35

WO 02/101510 PCT/US02/18781

translated string.

Whatever method is used, the system is configured to b);pass strings that the user does not need to
translate. For example, if the translation is intended only for a pipeline, there is no need to translate strings
that only occur in items dealing with purchase or sales deals.

Provide Facility for Maintaining Each Language - After the new language is generated, the system is
further configured to allow the user to maintain their new language. This may involve situations where the
user just wants to change a translation or when additional items must be added.

Provide Facility to Assist with New System Releases - When a new system release occurs, data
strings may be added or deleted from the dictionary. A user with other languages or variations in their
dictionary will have to update their dictionaries for the new release. The system is further configured to
provide such a facility.

Provide Facility for Using Different Language Variations for Different Occurrences of a Form - On
some occasions it may be desirable to use different language variations on different occurrences of the same
form. One example may be that different pipelines might be using different terms for the same thing (such as
the receipt/delivery point example stated previously). Another example could be a scheduler who may want to
see the labels displayed differently for certain pipelines, even though they are using the same language.
Another example could be the desire to show gas acquisition on a large pipeline as a “deal”, and gas
acquisitions on an owned gathering system as a “purchase.”

Provide a Single English Language Set of Strings - Accordiﬁg to one embodiment, the system
includes a single dictionary of American English versions of the strings.

Allow Users to Define Additional Strings in Their Own Language - Users are encouraged to, and
will, develop their own custom applications to work with the system software and database. In most cases
they will likely hard-code the text strings in their normal language. But in some cases they may wish to have
users in different countries see these screens in different languages. Accordingly, the system is configured to
provide them the ability to use the multi-langnage facility of the system. This involves giving them the ability
to enter their own entries in the tables, with some ability to differentiate their entries from base system entries
so database updates will not interfere with user-defined strings. '

Provide a Facility to Search The Dictionary for Existing Strings - If a new string is to be entered by
either the system manufacturer or a user, the system provides a tool to allow them to determine if the string
already exists in the dictionary.

Provide a Facility to Search Dictionary for Duplicate Strings - As strings are entered and edited, it
may be possible that duplicate strings (not involving different contexts) may find their way into the database.
Accordingly, the system is configured to identify duplicate strings so that they can be eliminated.

Identify Strings Which Are Part of the Base System - The system includes a suitable routine
necessary to differentiate between strings that are part of the base system from strings that have been entered
by the user.

Provide a Facility to Search For Missing Strings in a Language - While it is not always necessary to
translate every string into your new language, there will be situations where it will be desirable to identify

strings that do not contain a translation into a specific language. For example, if some strings on screens or

76

10

15

20

25

30

WO 02/101510 PCT/US02/18781

reports are not printing, it will be necessary to scan the dictionary to determine which strings are minus their
translation. Accordingly, the system is configured to provide a facilify to identify untranslated strings.

Provide a Facility to Assure that Source Code Can Be Connected to Specific Character Strings -
With every text string on every screen, pop-up, and report being assigned to a database table instead of
included in the source code, it can be very difficult to navigate through the code to find where a specific data
item is being generated. One way around this is to assure that copious comments are used to identify the data
fields with the text strings. However, even this method could be problematic in cases where the display
strings are changed in the database. Accordingly, the system is configured to provide a facility that
automatically generates comments in the code with the text representation of each field that is generated from
the dictionary.

Maintain a cross-reference of where each dictionary entry is being used - Keeping the database
dictionary entries clean and up-to-date can be difficult. Accordingly, the system provides a suitable tool

generated to assist with this task.

One tool for achieving this could be the generation of a cross-reference showing where each dictionary
entry is used. For example, suppose a programmer replaces a string on a screen with a different one, or if he deletes
a string or even an entire form. A decision has to be made whether the deleted string should be removed from the
dictionary, or whether it must be retained because it is being used elsewhere. In another case, if a string is changed
on one screen it may be desirable to also change it on certain other screens but not all other screens. Having a cross-

reference available can help make these decisions and can also do a great job of keeping the dictionary clean.

Maintain Language Information by ASP Customer - The application is configured to be able to
know one customer from another from both a deployable and hosted perspective. A customer will have a
default language — a user may also have a different default language. This information will be used to
determine which language to display the application if no user profile has been set up for the user currently
logged into the application.

Language Maintenance Information
Language ID
Language Name
ASP Customer ID

In one embodiment, the System does not support the translation of user-entered data from one language to
another except for a few exception system value codes such as “Receipt”/Delivery”, “Entry”/ Exit”,
“Yes”/”No”, etc. In one embodiment, the default language for the system is English and the users can
create/maintain any other language desired.
ASP IMPLEMENTATION

According to one embodiment, multiple ASP Customers can exist in the same database of the system
architecture of the present disclosure. Accordingly, the system architecture further includes an ASP function
to support a number of ASP Customers within a single database. Security is provided to prevent one ASP

customer from being able to see any data from another ASP customer, even if they are using the same

77

10

15

20

25

30

35

WO 02/101510 PCT/US02/18781

database.

According to one embodiment, database tables are created to include an attribute to designate an ASP
Customer (“ASPCustomer™). The ASP implementation of the system architecture of the present disclosure
can be accomplished, for example, using a database server, such as commercially available from Oracle. By
having an “ASPCustomer” attribute in every table, the system takes advantage of a security feature on the
database server that allows the system architecture to automatically limit every userid to only access table
rows that are assigned to the “System” or to that user’s company. In this way, no special coding is required
for the “ASPCustomer” fields — and none can be accidentally overlooked. Also, it will function regardless of
the method the user uses to access the database. While the “ASPCustomer” attribute will not be functional for
a SQL Server, having this field in the SQL Server tables will allows consistent table structures for both
DBMSs.

All system-supplied data is labeled with a standard “ASPCustomer” code of 0. All user-supplied data
is labeled with a non-zero code assigned to that ASP Customer. Accordingly, using a database security
feature, each user can access rows that contain an “ASPCustomer” of either zero or their respective assigned
code.

Any new items added by an ASP customer to a list of system-supplied data is stored with their
“ASPCustomer” code, and the security will simply retrieve both system and user data as a cohesive set. If an
ASP Customer needs to change certain system data, then that data can be converted into customer data for that
particular customer or all ASP customers using the particular database.

For Language-TermSet data, all ASP Customers will have access to any base language in the
database. Each TermSet, however, is maintained and accessed only by a single ASP Customer. This can be
accomplished by loading all Language-Base TermSet data with an “ASPCustomer” code of zero. Other
TermSets will have the “ASPCustomer” code of the user adding the respective TermSet. Accordingly, this
allows the ASP host, or an agent of the ASP host, to maintain base language sets for an installation, and allow -
any user to access them. At the same time, individual ASP Customers can create their own modified (non-
Base) TermSets for their own use without affecting other users.

LANGUAGE TRANSLATION

In one embodiment, the system architecture includes language translation. A function of the
language translation is to translate labels and grid headers which appear in user interfaces from a first language
to a second language.

Functions of the language translation may be handled at both the presentation layer and the business
layer. In such a configuration, the presentation layer is configured to perform functions related to translating
labels or header column names in the hyper text markup language (“HTML”) information generated by the
system architecture. On the other hand, the business layer is configured to perform functions related to
translating standard system messages generated by the system architecture.

Application level dictionary

To facilitate the functions related to language translation, the language translation may be configured
to include a dictionary. In one embodiment, the dictionary may be stored within a web server application
variable. In addition, the dictionary may be implemented as a hash table.

78

10

15

20

25

30

35

40

WO 02/101510 PCT/US02/18781

EJB Dictionary Generator

In order to generate the hash table and load the web server application variable for the dictionary, an
Enterprise Java Bean (“EJB”) may be used. An example embodiment of the logic configured to load the hash
table is shown below:

From each row of a language translation table, generate a key and an element. The key will be of
type String, made up of:

ItemID <Tab> LanguagelD <Tab> Term Set ID

The element will be the contents of the translation column.

In the example shown above, when the dictionary is either created or refreshed, it will be completely recreated
and loaded from the language translation table. The entire content of the language transaction table will be
loaded. The dictionary may be initialized with the number of rows from the language translation table,
because that will allow allocation of memory resources to be more efficient.

Live Dictionary Refreshes

Language translation may be configured to allow refreshes to be done manually through an “apply”
button in a “language translation setup” window. The “apply” button signals an EJB to create a new language
translation dictionary, to replace the current dictionary stored in the web server application variable. Because
dictionary is configured to be thread-safe, the replacement of the current dictionary with a newly created
dictionary may occur dynamically. For example, EJB may create a new dictionary concurrently while the
current dictionary continues to handle translations.

However, the process of modifying the web server application variable to store the new dictionary
must be synchronized. The synchronization may be performed using an application lock. An example of

embodiment of this process is shown below:

<%
dictionaryEJB.generateDictionary (); /, /* create the hash table */
Application.Lock ();
Application (“Dictionary”) = dictionaryEJB.dictionary (); /* Hand over the reference to the
new hash table dictionary */
Application.Unlock ();
%>

The process shown above is extremely fast, and users will not notice a delay in the processing time.

Translation Information in Session Variables

Login process is configured to assign two session variables to users. The session variables are
configured to provide information specific to each user in language translation. The session variables are
configured to represent the language and the term set that a specific user prefers. The language and the term
set may be selected from the userLanguageProfile table, based on the userID for the user. Login process is
configured to set the languagelID to 1 and the termSetID to 0 If the language and the term set are not found for
the userlID in the userLangnageProfile table. An example embodiment of the session variables is shown
below:

int termSetID Uniquely defines the term set used to do translation
int languageID Uniquely defines the language used to do translation

79

10

15

20

25

30

35

40

45

WO 02/101510 PCT/US02/18781

Language Translation Servlet

The system architecture includes a language translation servlet. The servlet is configured to perform
the function of language translation. In order to perform the translation function, the servlet is configured to
access the dictionary stored in the web server application variable.

According to the embodiment of the present disclosure, the servlet will be passed parameter to
facilitate the translation function. For example, following parameters may be passed to the servlet:

From HTML page:

int itemID

From the Session Variable:
int languagelD
int termSetID

ItemID uniquely defines a label, header, or a message to be translated. As discussed earlier, the
dictionary is implemented as a hash table. To facilitate the translation function, a combined key of itemID,
languagelD, and termSetID are sent to the hash table. When a term is looked up from the hash table,
following process occurs:

First, a lookup of the key will be performed for the following combination:

TtermID languageID termSetID
If the key fails to find a match with the above combination, then a second lookup will be performed
with termSetID set to 0 as shown below:

ItemID languagelD 0
If the key fails to find a match once again, another lookup will be performed with default language of
English as represented by setting languageID to 1:

ItermID 1 0
If the key fails to find a match for the final time, then itemID will be returned as a string. This
indicates to users that there was a problem with the language translation. The problem may be that
either the itemID value is not defined or the hash table was not stored correctly.

PRICE STRUCTURE

In one embodiment, the system architecture includes price structures adapted to handle all types of
pricing and valuation occurring within the system architecture. The objective of price structures is to provide
a single mechanism for capturing all possible prices within the system architecture, thereby allowing all prices
and valuations to be resolved using common routines.

Complexities of price structures are masked from users by graphic user interfaces, reducing the
amount of data entry and the amount of information communicated to users. In addition, price structures are
configured to allow users (such as data administrators) and application programming interface (“API”) to add,
edit, and delete a price structure.

A function of price structures is to provide an association mechanism. Another function of price
structures is to provide flexibility in defining quantities, prices and how they relate to each other. Price
structures are further configured to provide the system architecture with sufficient information to calculate
prices and valuations.

With respect to the association mechanism, price structures are configured to allow users to either

associate a price structure directly with the object to which it will be applied, or associate it with an object that

_is at a higher level than the object for which the price structure information is being entered. The association

80

10

15

20

25

30

35

WO 02/101510 PCT/US02/18781

mechanism reduces the amount of user data entry required, and is especially advantageous in business
scenarios where one price structure applies to multiple items.

With respect to providing flexibility in defining quantities and prices, the flexibility is achieved by
price structures’ including quantity formulas, price formulas, patterns, and multiple tiers of the same.

In more detail, the quantity formulas may be configured to facilitate derivation of total billable
quantity for a price structure. Quantity formulas may be previously defined and preloaded in the system
architecture or configured for user definition. Quantity formulas may also be configured to allow users and
APY’s to add, edit, and delete a quantity formula.

Price formulas may be configured to reference indexes, other formulas, and fixed prices. Price
formulas may also be configured to perform operations including addition, subtraction, multiplication, and
division, and functions including minimum (Min), maximum (Max), and average (Avg). Price formulas may
be further configured to allow users and API’s to add a price formula, edit a price formula, edit a search
criteria, and delete a price formula.

Patterns provide additional definition for price structures, thereby allowing prices to be defined for
specific blocks of time within a price structure’s effective date range. Patterns provide a more efficient
method of capturing time specific information than manually entering the date range for a price structure.

In another embodiment, price structures also include price components. Price components may be
configured to provide distinctive names for identifying charges associated with objects in the system
architecture. Price components may include information which determine where within a price structure a
price component may be used. Price components may also include information which determine how charges
will appear on statements, and what processes will consider the charges for a specified price component. Price
components may also be configured to allow users and API’s to add, edit and delete a price component.

In yet another embodiment, price structures further include price indexes. Price indexes may be
configured to maintain information used in price structures. Price indexes may also be configured to allow
users and API’s to add, edit, and delete a price index. Price indexes may be associated with index prices,
which may also be configured to allow users and API’s to add, edit, and delete an index price.

Information included by price structures, quantity formulas, price formulas, indexes, and index prices
may be placed under these four categories: “attribute names”, “required”, “data rules”, and “default value”.
For each entry under “attribute name”, “required” field indicates whether the data for that entry is required.
“Data rules” indicate the rules which apply to the entry, and “default value” indicates the default value for the
entry. FIG. 40 is a table describing information included by price indexes. Although entries included by other
modules (price component, price formula, etc...), may differ for each of the categories (“attribute name”,
“required”, etc...), FIG. 40 is representative of the type of information included in the various modules. Other
modules may be associated with one or more tables describing information included by each of the modules.
As discussed above, all modules are configured to allow users and API’s to at least add, edit, and delete
objects for each module. These operations modify information as described by various tables associated with
each of the modules.

PLUG-IN FUNCTIONALITY

The following terminology is used with reference to plug-in functionality according to the

81

10

15

20

25

30

35

40

WO 02/101510 PCT/US02/18781

embodiments of the present disclosure.

A Plug-In generally refers to a component that can override base functionality. The plug-in
implements a specific interface, and will be called on by a specific event. An Interface generally refers to a
definition that dictates the format of a component’s inputs and outputs. The interface is an agreement between
a calling process and a component that the component will support certain inputs and outputs. The interface
does not restrict the internal activities inside a component. An event generally refers to an activity that the
system guarantees can be intercepted by a Plug-In component. The plug-in component that will be picked to
intercept and process the event will be determined by the best-fit rules associated with the event. Best-fit rules
refer to the criteria that is used to determine which Plug-In will be used to process an event. The criteria are
established at design time, along with the interface definition.

As an example, consider a business need to allow different methods of rounding to be plugged in,
depending on what rounding method an ASP Customer prefers Because different ASP customers running on
the same system may require different rounding methods, the correct rounding method must be decided by the
ASP Customer that is doing the rounding. There is no need for rounding methods to be different for different
processes for the same ASP Customer.

Accordingly, the best fit rules for rounding are determined by the ASP Customer who the rounding
is being done for, and no other criteria.

The Interface for rounding includes:

Method: round
Inputs:
Value — amount to round
Precision — Decimal place to round to
Outputs:
RoundedValue — amount that has been rounded.

Any Plug-In component that provides the “round” method with the previously described inputs and
outputs can perform rounding.

In order for plug-ins to work, the following things must happen: the interface for the plug-in must be
defined; the data required to resolve the Best Fit rules must be defined, and the system must be written so that
whenever an event (such as rounding) occurs, that: a) the system has available in memory the data required to
resolve the correct Plug-In according to the Best Fit rules and in the case of rounding, it must have access to
the ASP Customer ID associated with the data being rounded; and b) the system must find the correct plug-in
according to best fit logic. The plug-in must implement the expected interface. Lastly, the system must call the
plug-in and get a successful result back.

In another example, there may be a business need to be able to customize certain areas of
functionality in the system architecture without affecting the base product. This need for customization falls
into several categories that have different technical requirements and complexities. A list of four different
architectural approaches to providing plug-in functionality is provided below.

Implementing Plug-In Functionality that needs to be overridable at a Product level.
If there is a need to override base functionality at a Product or system level, then this can be done

through the switching out of Enterprise Java Beans within the EBJ Server environment. A change done using

82

10

15

20

25

30

35

WO 02/101510 PCT/US02/18781

this technique requires no database tables or special logic. When this change is done to a local installation, it
would be across the entire system, regardless of ASP customers. While overriding a base functionality can be
accomplished through a switchout of an EJB, it would be technically feasible to replace a component, and then
get that component to broker out work to other components based on ASP customer information or other
information available to that component.

Implementing Plug-In Functionality that should be overridable at an ASP Customer level.

A coding technique called “Factory Classes™ is used to provide plug-in functionality at an ASP
customer level. This requires the hard coding of the ASP Customer number inside the factory class for
specific ASP customers that require a custom plug-in, instead of a default plug-in. Several plug-in
components that have been created using this coding technique, include prorating, rounding, and rounding
resolution. Rounding resolution resolves rounding errors that occur as a result of prorating.

Implementing Plug-In Functionality that should be overridable according to Best-Fit Pattern logic.

If Plug-in functionality requires best-fit logic beyond the ASP Customer ID, then it will be necessary
to store information about the plug-in to a set of database tables. The database tables should hold: the name of
the plug-in; associated best-fit information (This information will be used to determine when the plug-in
should be used); a reference to the standard best-fit logic tables; and an association to the event that the plug-in
should be associated with.

In this instance, the implementation of the plug-in functionality can take into account information
about existing System-Defined events. such as: the interface that a plug-in must implement to be used by the
event; the data required to resolve the best-fit logic pattern; and the functionality of the default plug-in that
will be called if no other plug-ins are provided, or if best-fit rules find no overriding plug-in.

Implementing Plug-In that can be added through messaging.

One advantage of using a messaging layer is to be able to tie functionality into events associated with
calls to the enterprise java bean methods. These will include the creation, updating, and removal of data.

This can also include methods that kick off business processes, such as generating a Nomination Plan, or an
Allocations process.
DEAL INFORMATION

In connection with Deal Information, a module configured according to a Describe Deal Use Case
Specification (UCS) allows a Marketer’s Dispatcher, Gas Scheduler or Gas Controller (collectively referred to
as “User”) to maintain Deal Reference (Reference Information).

“Reference Information” refers to Upstream/Downstream information (i.e. Contract, Quantity, and
Ranks) associated to the Deal Location/Point. The reference information is primarily used for Confirmation
purposes with the Facility/Pipelines. The required and optional Upstream/Downstream information will vary
by Facility and is always associated to a Deal Location that is a point. Regardless of what is required, the User
must be able to access a user interface and maintain this information from different places within the system.

The Reference Information is sometimes gathered by the User, may be provided to the User by the
Trader, obtained from an external third party(ies) or a combination thereof.

Given that different Facilities require different Reference Information (which in turn drives what the

User is required to provide to the Facility as part of an EDI Nomination), the Describe Deal UCS is a prime

83

10

15

20

25

30

WO 02/101510 PCT/US02/18781

candidate for a “Configuration Manager”. That would allow Users the capability to designate by Facility the

required and optional attributes.

The Describe Deal use case starts when the User wishes to add, edit and/or delete Reference

Information in the system.

1.
2.

3.

PR

The User specifies the function to perform (either Add, Edit, or Delete Reference Information).

The User enters or selects the Reference Information. The system retrieves and displays the

applicable Reference information, if any.

Once the User provides the requested information, one of the following sub-flows is executed.

o If the User selected “Add Reference Information” or “Edit Reference Information”, an Edit
Reference Information sub-flow is executed.

o If the User selected “Delete Reference Information”, a Delete Reference Information sub-flow
is executed.

Once the User provides the Reference Information needed, the User selects “Save”.

The system validates the Reference Information per a Reference Information Attribute Table.

A Business Rules Validation alternative flow is executed.

The system saves the new or modified Reference Information.

The use case ends.

With respect to editing reference information the User makes the desired changes or additions to

Reference Information. This includes any of the Reference Information specified in the Reference

Information Attribute Table; illustrated below.

Reference Information | Description — Data elements that comprise Reference Information for a
Attribute Table Nomination Plan.
Attribute Names Required Data Rules Default Value
This is determined by the
Deal Location(Point) Y Single Valid Value. Deal Location that the
Reference Information is
being associated to.
Upstream Contract N Should be alphanumeric.
Downstream Contract N Should be alphanumeric.
Quantity Y Float 0
From Physical Deal
Default Rank N 0-999 associated to Deal Location
. Must be the same as Deal | From Deal Quantity
Unit of Measure N Location Quantity associated to Deal Location
Granularit N Must be the same as Deal | From Deal Quantity
y Location Quantity associated to Deal Location
. From Deal Quantity
Begin Date Y Date Range Rules associated to Deal Location
From Deal Quantity
End Date Y Date Range Rules associated to Deal Location

R

With respect to deleting reference information, the following steps occur:

The system prompts the user to confirm deletion of the Reference Information.
The user verifies the deletion.

A Delete Rules Validation alternative flow is executed.

The systemn deletes the Reference Information from the system.

The use case ends.

If the use case was successful, the Reference Information is added, edited or deleted from the system.

DESCRIBE DEAL QUANTITY

A Describe Deal Quantity use case allows a Trader, Deal Administrator, Gas Scheduler or API
84

10

15

20

25

30

35

40

45

WO 02/101510 PCT/US02/18781

Interface (collectively referred to as “User”) to maintain Deal Quantities. Describe Deal Quantity can be as
simple as entering a quantity or a more complex process of identifying ranges, tolerances, patterns,
temperatures, percentages, multiple quantity types, etc. Deal Quantities may be defined and associated to Deal
Components, Deal Component Points and Deal Component Path. The Describe Deal Quantity use case will
always be invoked by another use case or via an APL

A precondition to the Describe Deal Quantity use case is that the User has identified the Object Type
and specific Object (Deal Component, Deal Component Point or Deal Component Path) for which they intend
to manage Deal Quantities. In addition, the user has identified the quantity information to be entered. This
information is expected to be available via User Profiles and Configuration Parameters. The quantity
information can include, but is not limited to, the following:

a) what classification of quantities are being entered — (e.g., Volume, Energy, Heating
Value);

b) the default Units of Measure to use with each quantity classification;

c¢) the Pressure Base information for which quantities are being recorded; and

d) quantity Type to use as a default (i.e., Deal Max Daily Quantity).

A basic flow of the Describe Deal Quantity use case includes:

1. User enters the desired Deal Quantity;

2. The system will determine the required default attributes required for Deal Quantity;

3. System validates the Deal Quantity information per the attribute tables; and

4. The use case ends. The Deal Quantity is not saved until the user selects save in the use case
invoking this use case.

If the use case was successful, then the Entered Deal Quantity is added, edited or deleted from the
system; the Calculated Deal Quantity is added, edited, or deleted from the system (the Calculated Quantity
will be used in downstream processing.); message is sent to the Charge Calculation queue; and message is sent
to the initiating use case indicating that the Deal Quantity was successfully added, updated or deleted. Ifthe
Deal Quantity was updated, the message should specify what changed.

If the system successfully attached a Deal Quantity to a given object a “Change” message will be sent
to a manage deal use case.

An advanced edit deal quantity use case starts when the user wants to enter more than a simple

quantity. The flow includes:

1. User selects Deal Quantity to manage.

2. System requests that the User specify the function to perform (Add, Edit or Delete a Deal
Quantity).
3. User provides requested information, and one of the following sub-flows is executed:

3.1. If User selects “Add a Deal Quantity or “Edit a Deal Quantity ”, the Edit a Deal
Quantity sub-flow is executed,

32 If User selects “Delete a Deal Quantity ”, the Delete a Deal Quantity sub- flow is
executed.

User selects “Save”.

System validates the Deal Quantity information per attribute tables.

A Business Rules Validation alternative flow is executed.

System saves the new or modified Deal Quantity information.

The use case ends.

RSN A

85

WO 02/101510 PCT/US02/18781

To edit a Deal Quantity the user makes the desired changes or additions to the Deal Quantity information.

Deal Quantity Atiribute Table The information in this attribute table will be the attributes that the
user will be able to view and edit when in advanced edit mode.
Attribute Names Required Data Rules Default Value
Begin Date Y From associated object
End Date Y From associated object
Quantity Type Y Valid Value From User Profile
Multiples are allowed
Ex. MDQ, MHQ, MMQ
Volume Unit N Single Valid Value From User Profile
Ex. Mcf,
Energy Unit N Single Valid Value From User Profile
Ex. Dth,
Heating Value Unit N Single Valid Value From User Profile
Ex. Dth/ Mcf
Pressure Unit N Single Valid Value From User Profile
Ex. PSI
Flow Rate Y Single Valid Value From Minimum
Ex.Monthly, Daily, Granularity of object being
Hourly associated. Ex. Deal, Deal
Component, Deal Point
Minimum Granularity Y Single Valid Value From Minimum
(Per Time Period) Examples are Monthly, Granularity of object being
Daily, Hourly, etc. associated. Ex. Deal
Component or Deal Point.
If object is “Deal” the
minimum granularity will
have to default from the
User Profile since Deals do
not have Minimum
granularity.
Pattern Y Single Valid Value From User Profile
Pattern Detail Y Valid Value From User Profile
i Multiples are allowed
Volume Quantity N Number
Energy Quantity N Number
Heating Value N Number
Pressure Base N Number
Pressure Saturation N Single Valid Value
Minimum Temperature N Number
Maximum Temperature N Number
Temperature Unit N Single Valid Value from User Profile
Load Factor Type N Valid Values of “MIN” |
or “MAX”
Load Factor Flow Rate N Single Valid Value
Load Factor Percent N Positive number

To delete a Deal Quantity, the system prompts the user to confirm deletion of the Deal Quantity; the
5 user verifies the deletion; Delete Rules Validation alternative flow is executed; the system deletes the Deal
Quantity from the system (Display UCS Message #2); and the use case ends.

To cancel a Delete, if during user verification of the Delete a Deal Quantity sub-flow, the User

86

WO 02/101510 PCT/US02/18781

decides not to delete the Deal Quantity, the delete is canceled; and the use case ends.

If a User requests to save a Deal Quantity in the Advanced Edit Deal Quantity then the rules in the
Deal Quantity Business Rules Table are validated. If no violations are found, the validation process returns to
the Advanced Edit Deal Quantity process. (If there are any violations to the rules, the system displays an
error message specifying the violation and offering the User the choice to fix the data or to cancel the add or

edit); and Use case ends. The Deal Quantity Business Rules Table is given below:

87

WO 02/101510 PCT/US02/18781

Deal Quantity Business Rules Table

Business Rule Values Action
There must be a corresponding | Pattern
Entered Quantity for every Pattern Display UCS Message
Detail defined for the specified #3
Pattern.
At least one Quantity must be | Volume Quantity vs. Energy | Display UCS Message
provided Quantity vs. Heating Value #4
Minimum Temperature must be less | Minimum Temperature vs. | Display UCS Message
than Maximum Temperature Maximum Temperature #5
Default information required Quantity Type , Display UCS Message
#6
Default information required Unit(s) Display UCS Message
#6
Default information required Flow Rate Display UCS Message
' #6
Default information required Minimum Granularity Display UCS Message
#6
Default information required Pattern Display UCS Message
#6
Default information required Pattern Detail Display UCS Message
#6
Granularity validation — Deal | Minimum Granularity

Quantity validated against deal
location if it is associated with a deal
location, or validated against deal Display UCS Message
component if it is associated with a #7

deal component. Granularity cannot
be changed to a lower granularity
than the associated object

Pattern Detail Granularity must be | Pattern Detail Display UCS Message
the same as the Minimum Granularity #8

For each Entered Quantity there must | Volume Quantity/Volume Unit

be a Unit of Measure Energy Quantity/Energy Unit Display UCS Message

Heating Value/Heating Value Unit #9
Pressure Base/Pressure Unit

For each Unit of Measure there must | Volume Unit/Volume Quantity
be a Quantity Energy Unit/Energy Quantity Display UCS Message
Heating Value Unit/Heating Value #10

Pressure Unit/Pressure Base

To assist with an understanding of various terms, the following definitions are provided, however, the
" meaning is not intended to be limited thereby. Other additional meaning may apply.

Quantity Type — some system, and some user-defined code values that describe the type of quantity
that can be added to a Deal Component, Deal Point or Deal Path.

Quantity Unit — Coupled with Flow Rate, describes the rate of flow of energy for a deal, nomination,
etc. Example is 100 Dth per Day, where Dth is the Quantity Unit.

Flow Rate — Coupled with Quantity Unit, describes the rate of flow of energy for a deal, nomination,
etc. Example is 100 Dth per Day, where Day is the Flow Rate.

Minimum Granularity — An indicator of the frequency for which the quantity may change during the

period. Will often be equal to Flow Rate.

88

10

15

20

25

WO 02/101510 PCT/US02/18781

Pattern — An identifier of the pattern of flow of energy commodity within the date range of the object.
This could mean the energy commodity flows only on certain days of the week, or certain hours of the day,
defined by the Pattern Details.

Pattern Detail — The details of the Pattern that indicate which weekdays and which hours of the day
that the energy commodity is to flow.

Minimum Temperature — For temperature tiers (often called weather options), this defines the
minimum contractual temperature for the band of temperatures applicable for a quantity.

Maximum Temperature — For temperature tiers (often called weather options), this defines the
maximum contractual temperature for the band of temperatures applicable for a quantity.

Temperature Unit — For temperature tiers (often called weather options), this defines the units of
measurement for temperature for contractual parameters specifying the band of temperatures.

Load Factor Type — Indicates whether the Load Factor percentage is a minimum (“MIN”) or a
maximum (“MAX”) under the contract.

Load Factor Percent — If minimum, describes the minimum percentage of the Maximum Quantity that
must be transacted under the contract, if maximum, describes the maximum percentage of the Maximum
Quantity that must be transacted under the contract.

Figure 41 illustrates a number of examples of deal quantities produced using the Deals Quantity Use
case. The quantity type EXP (“Expected”) identifies a particular quantity for position/risk management,
where the contractual Min and Max differ. In addition, “RTC” indicates Round The Clock to denote all hours
and all days.

Various functions of the system architecture and method embodiments as described herein, may be
implemented in computer software using programming techniques known in the art.

Although only a few exemplary embodiments of this invention have been described in detail above,
those skilled in the art will readily appreciate that many modifications are possible in the exemplary
embodiments without materially departing from the novel teachings and advantages of this invention.
Accordingly, all such modifications are intended to be included within the scope of this invention as defined in
the following claims. In the claims, means-plus-function clauses are intended to cover the structures described

herein as performing the recited function and not only structural equivalents, but also equivalent structures.

89

I S S T B N R S

b

N ORouUT s W W N

=

WO 02/101510 PCT/US02/18781

Claims

What is claimed is:

1. A system architecture for energy industry trading and transaction management comprising:

a business logic server-based layer including a parameter-based configuration of at least one
business logic service configurable to enable a deployment of said system to be compatible with a
respective business practice of at least one client customer, the at least one business logic service
configured to support energy trading and transaction management and to utilize business rules
operable on an event basis for processing via an API at least one of energy trading and transaction
management data, including data specific to the at least one client customer; and

a database layer operatively connected to said business logic layer for storing the data

processed by said business logic layer in a database.

2. The- system architecture of claim 1, wherein said business logic layer includes an
applications server, and wherein said database layer includes a database server separate from the

application server.

3. The system architecture of claim 2, wherein said business logic layer is further configured to provide

flexibility, scalability, and extensibility with the use of parameter driven business rules.

4. The system architecture of claim 2, wherein said business logic layer is implemented as a hosted

application service provider (ASP).

5. The system architecture of claim 2, wherein said system architecture is an open architecture

configured for an ease of integration with a client system.

6. The system architecture of claim 2, wherein the parameter-based configuration includes base data

attributes that are date effective.

7. The system architecture of claim 6, wherein the base data includes at least one of a business

associate, facility, point, and accounts.

8. The system architecture of claim 7, wherein the base data further includes at least one of contract

party data, deal party data, and transactional data that are rendered date effective.

9. The system architecture of claim 2, wherein the applications server includes a Java 2 Platform,

Enterprise Edition architecture.
90

N PR W N R OFE W N R RN R

[CS I S R o i *2 B VST O R N

B W N HRE U R W N R R DR R

WO 02/101510 PCT/US02/18781

10.

11.

12.

13.

14.

15.

16.

17.

18.

The system architecture of claim 2, wherein the database server is configured to operate in an

application service provider (ASP) mode.

The system architecture of claim 2, wherein the database server further includes security features for
partitioning data within the database, and wherein the applications server is configured to

communicate to the database server through database connectivity drivers.

The system architecture of claim 2, wherein said business logic layer further includes an object-
relational mapping tool configured to provide access between said business logic layer and said

database layer.

The system architecture of claim 12, wherein objects created by the object-relational mapping tool

are used to query data in the database and to get query results back.

The system architecture of claim 1, wherein said business logic layer includes an applications server
for running an applications program of a hierarchy of modules, the applications server including a
configuration file adapted to configure the hierarchy of modules for use in the parameter-based
configuration of the at least one business logic service, the hierarchy of modules including at least a

base module.

The system architecture of claim 14, wherein the base module is configured to maintain information
about baseline data required by said system architecture, including at least one selected from the

group consisting of counter-parties, pipelines, nomination points, meters, and units.

The system architecture of claim 14, wherein a next module in the hierarchy of modules includes a

deals module.

The system architecture of claim 16, wherein the deals module includes a contract sub-module
configured to maintain information about at least one selected from the groups consisting of buy/sell,
transportation, storage, pooling, and capacity release contracts that a client has with the client’s
customers; contracts and custody contracts containing base agreement information; specifications
representing terms, points, quantities, and pricing details that are used for billings and payments; and

pricing indices.

The system architecture of claim 16, wherein the deals module includes a deal making sub-module
configured to maintain information about transactions and deals of a client, the transactions and deals
including at least one selected from the groups consisting of buy and sell deals, broker commissions,

multiple pipelines, point-level pricing, multi-component formula-base price calculations, and deal
91

N B O n

F R B B S 00 U1k W R R N BB BRBEP O DN R B 0 W N R R R W DN B P

WO 02/101510 PCT/US02/18781

19.

points, quantities and pricing details used for invoices and remittances.

The system architecture of claim 16, wherein a next module in the hierarchy ~ of modules includes

an operations module.

20.

21.

22,

23.

24.

25.

The system architecture of claim 19, wherein the operations module includes a nomination sub-
module configured to receive and/or create transportation, storage, pooling, and interconnection
nominations, and to perform pool-to-pool transfers, the nomination sub-module further configured to

process various nomination models, including at least one of GISB and international requirements.

The system architecture of claim 19, wherein the operations module includes a capacity management
and confirmations sub-module configured to perform at least one selected from the groups consisting
of schedule pipeline capacity and prioritize contractual volumes based on parameter driven
scheduling and curtailment rules; enable a user to model a pipeline and to set constraint points and
other criteria that permit tariff compliant reduction of flowing volumes; and obtain confirmation of

nominated and/or scheduled quantities at the nomination point level by operator, agent, or shipper.

The system architecture of claim 19, wherein the operations module includes an allocations and
balancing sub-module configured to perform at least one selected from the groups consisting of
maintain allocations information including configurations of tiers, PDA Rules, and rules; and accept
meter and point information and calculate imbalances and point variances based on nominated,

scheduled, and measured volumes.

The system architecture of claim 19, wherein a next module in the hierarchy of modules includes an

accounting module.

The system architecture of claim 23, wherein the accounting module includes an accounting and
settlement module configured to provide at least one selected from the groups consisting of provide
necessary processing to consolidate all the contracts, deals, scheduling and allocations information
for generating invoices and/or remittances for a client; support external penalty calculations
configurable for differing pipeline tariffs; specify override rates and prices, process prior month
adjustments, and calculate taxes; G/L account assignment, calculation of accruals for business not yet

finalized, and support of interfaces to external General Ledger and Accounts Receivable systems.

The system architecture of claim 14, wherein the applications server includes a Java 2 Platform,

Enterprise Edition architecture.

26.

The system architecture of claim 25, wherein at least one module of the hierarchy of modules
92

v W 3 U W N

BoRE R
N KB O

T I
oo W

Holx WM R R U W N R R A W N H R A W N P R

WO 02/101510 PCT/US02/18781

27.

28.

29.

30.

includes:
(i) a class factory, wherein the class factory is configured to establish for the respective
module a category of objects defined by common properties of different objects that belong
to the class, and
(ii) at least one selected from the group consisting of:
(a) an API enterprise java bean component operatively connected to an object-
relational mapping tool, and
(b) an API enterprise java bean component operatively connected to at least one
selected from the group consisting of:
(b1) an EJB enterprise java bean object,
(b2) a data layer (DL) object, and

(b3) at least one selected from the group consisting of a class factory and
an API enterprise java bean component of another of the modules in the hierarchy

of modules.

The system architecture of claim 26, wherein the class factory includes a base class factory
configured to establish a category of base objects defined by common properties of different objects
that belong to a the base class, wherein the base objects include at least one selected from the group

consisting of counter-parties, pipelines, nomination points, meters, and units.

The system architecture of claim 26, wherein the class factory includes a deals class factory
configured to establish a category of deals objects defined by common properties of different objects
that belong to the deals class, wherein the deals objects include at least one selected from the group

consisting of contracts, pricing, deal making, and transactions.

The system architecture of claim 26, wherein the class factory includes an operations class factory
configured to establish a category of operations objects defined by common properties of different
objects that belong to the operations class, wherein the operations objects include at least one selected
from the group consisting of nominations, capacity management, capacity confirmations, allocations,

and balancing.

The system architecture of claim 26, wherein the class factory includes an accounting class factory
configured to establish a category of accounting objects defined by common properties of different
objects that belong to the accounting class, wherein the accounting objects include at least one

selected from the group consisting of invoices and remittances.

93

R OR W N R RN R H NP WN R B & WN R B NRE R NRE RGN R RN R NDRE BN R

WO 02/101510 PCT/US02/18781

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42,

The system architecture of claim 26, wherein the object-relational mapping tool is configured to map

objects to database tables in the database.

The system architecture of claim 26, wherein the data layer (DL) object is configured to communicate

data to and from the database via database connectivity drivers.

The system architecture of claim 26, wherein the API enterprise java bean component is configured

to establish a common interface of EJB enterprise java bean components.

The system architecture of claim 33, wherein the API enterprise java bean component is further
configured to execute an entity validation utility for validating incoming data prior to routing the data

to an EJB enterprise java bean component.

The system architecture of claim 26, wherein the EJB enterprise java bean component is configured

to act as a remote object to a calling API enterprise java bean component.

The system architecture of claim 35, wherein the EJB enterprise java bean component is further

configured to carry out a parameter based business rule for a respective class.

The system architecture of claim 14, wherein the configuration file contains configuration
information for the applications program, and responsive to an execution of the applications program,
the applications program accesses the configuration file to identify parameters that are in effect for

the at least one business logic service.

The system architecture of claim 1, wherein said business logic layer includes at least one module for
performing the at least one business logic service, the business logic service including a parameter

based configuration.

The system architecture of claim 38, wherein the parameter based configuration includes date and

time effective attributes.

The system architecture of claim 1, wherein an event can include at least one of a client customer

request, a transaction event, a third party event, and a system event.

The system architecture of claim 1, further comprising:
a security layer operatively connected to said configurable business logic server-based layer

configured to filter requests to said configurable business logic layer according to a system security.

The system architecture of claim 41, wherein said security layer is configured to provide a secure

94

H M P P W N B P O 0 39 0O O b W N R B i WO PRPR K3 O O H W N R B & W NN B B & WD

WO 02/101510 PCT/US02/18781

43.

44,

45.

46.

47.

48.

access to said configurable business logic server-based layer, and wherein said business logic server-
based layer is further configured to provide security at an object and client company level within said

system architecture.

The system architecture of claim 1, further comprising:
a messaging layer operatively connected to said business logic layer configured to facilitate
an XML-based interchange and open messaging transport communication link between said business

logic layer and another layer.

The system architecture of claim 1, further comprising:

a presentation layer configured to receive at least one of a client request, a reporting request,
a migration request, and a third party request; and

a messaging layer operatively connected between said presentation layer and said business
logic layer, said messaging layer configured to facilitate an XML-based interchange and open
messaging transport communication link between said presentation layer and said business logic

layer.

The system architecture of claim 44, further comprising a simple object application protocol (SOAP)
server operatively connected to said presentation layer and said messaging layer and configured to
provide a message based protocol to carry an XML based payload for accessing the business logic

layer.

The system architecture of claim 44, wherein said presentation layer includes a browser based web
server presentation layer configured to construct Java Server Pages, handle JSP requests, and provide
a functional graphical user interface for handling web requests, said presentation layer further
including a class factory and a configuration file, wherein the class factory is configured to establish a
category of objects defined by common properties of different objects that belong to the class, and
wherein a path of an incoming request to the business logic layer is dynamically determined as a
function of the configuration file and the class factory, the path including either a direct call from the
web server to the applications server or a proxy call from the web server, through said messaging

layer, to the applications server.
The system architecture of claim 46, wherein the browser based web server presentation layer is
further configured to deploy at least one item of web browser page content in a manner wherein the

deployment of the content mimics a client/server operation.

The system architecture of claim 47, wherein deployment of the at least one item includes placing the

at least one item into an ActiveX component within an HTML component.

95

W g U B W N K

O I
w N R O

U A W N R B U R WN R R O R W R FE NP H WD R R

WO 02/101510 PCT/US02/18781

49.

50.

51.

52.

53.

54.

The system architecture of claim 44, wherein said messaging layer is configured for one selected
from the group consisting of:

to enable an integration of an existing business system into said system architecture;

to process at least one of a client request and a system request, wherein processing the
request includes at least one of capturing the request, transforming the request, and routing the
request to at least one destination selected from the group consisting of a legacy system destination
and a system architecture destination;

to implement a client specified business rule prior to accessing core business functionality
within said business logic layer;

to enable bi-directional communication between incompatible enterprise applications of a
third party and said system architecture via messages across a common platform; and

to enable bi-directional communications between enterprise java beans (EJBs) of said

business logic layer and an external application.

The system architecture of claim 44, further comprising:
a security layer operatively connected to said presentation layer and said business logic layer

for providing a secure access to said presentation layer and said business layer.

The system architecture of claim 50, wherein said security layer is an LDAP compliant database

server-based security layer configured to manage userids, passwords, and roles in said system.

The system architecture of claim 51, wherein said business logic layer includes a J2EE applications
server, and wherein said database layer includes a database server separate from the application
server, said security layer further including a means for handling EJB security, the security means
operatively connected to said J2EE applications server for filtering requests to said J2EE application
server, said security layer still further including an application level security means configured to

render method level security on objects processed within the applications server.

The system architecture of claim 46, further including a secure sockets layer connection operatively
connected between a client browser and a presentation layer GUI, wherein the secure SSL connection
creates a unique session id and wherein said messaging layer is further configured to call an
appropriate enterprise bean within the business logic layer under correct credentials in response to the

userid, password, and session id.

The system architecture of claim 1, wherein said business logic layer includes an applications server,
the applications server including a Java 2 Platform, Enterprise Edition architecture, the applications
server for running an applications program of a hierarchy of modules, the applications server further
including a configuration file adapted to configure the hierarchy of modules for use in the parameter-

based configuration of the at least one business logic service, the hierarchy of modules including a

96

v 0 g9 O

B R B R R R
oA v A W N H o

W O g U R W NR R & WN R W N R R

=]
o

P N N S R SR T

WO 02/101510 PCT/US02/18781

55.

56.

57.

58.

59.

base module, a deals module, an operations module, and an accounting module, and

wherein said database layer includes a database server separate from the application server,
said system architecture further comprising:

a presentation layer configured to receive at least one of a client request, a reporting request,
a migration request, and a third party request;

a messaging layer operatively connected between said presentation layer and said business
logic layer, said messaging layer configured to facilitate an XML-based interchange and open
messaging transport communication link between said presentation layer and said business logic
layer; and

a security layer operatively connected to said presentation layer and said business logic layer

for providing a secure access to said presentation layer and said business layer.

The system architecture of claim 16, wherein the deals module includes a pricing engine configured
to perform at least one of price formulas, quantity formulas, indexes, tiers, and a price resolver, the

pricing engine further configured to be common across multiple aspects of a respective business.

The system architecture of claim 16, wherein the deals module includes an inventory engine
configured to perform at least one of tracking inventory, valuing inventory, accessing charges, and
assessing penalties, the inventory engine further configured to cover multiple inventory requirements

across a respective business.

A method for energy industry trading and transaction management comprising:

utilizing a business logic server-based layer having a parameter-based configuration of at
least one business logic service configurable to enable a deployment of said method system to be
compatible with a respective business practice of at least one client customer;

configuring the at least one business logic service to support energy trading and transaction
management;

utilizing business rules operable on an event basis for processing via an API at least one of
energy trading and transaction management data, including data specific to the at least one client
customer; and

storing the data processed by the business logic layer in a database.

The method of claim 57, wherein the business logic layer includes utilizing an applications server for
running an applications program of a hierarchy of modules, the applications server including a
configuration file adapted to configure the hierarchy of modules for use in the parameter-based
configuration of the at least one business logic service, the hierarchy of modules including at least a

base module.

The method of claim 58, wherein the applications server includes a Java 2 Platform, Enterprise

97

W W 9 60 v B WD R RN

N e e
A WM B o

N R OFE A WN R R &8 WN R RNDRPERR WD R R DR R

WO 02/101510 PCT/US02/18781

60.

61.

62.

63.

64.

65.

66.

Edition architecture.

The method of claim 59, wherein at least one module of the hierarchy of modules includes:
(i) a class factory, wherein the class factory is configured to establish for the respective
module a category of objects defined by common properties of different objects that belong
to the class, and
(ii) at least one selected from the group consisting of:
(a) an API enterprise java bean component operatively connected to an object-
relational mapping tool, and
(b) an API enterprise java bean component operatively connected to at least one
selected from the group consisting of:
(b1) an EJB enterprise java bean object,
(b2) a data layer (DL) object, and
(b3) at least one selected from the group consisting of a class factory and
an API enterprise java bean component of another of the modules in the

hierarchy of modules.

The method of claim 60, wherein the API enterprise java bean component is configured to establish a

common interface of EJB enterprise java bean components.

The method of claim 57, wherein the business logic layer includes at least one module for performing
the at least one business logic service, the business logic service including a parameter based

configuration.

The method of claim 61, wherein the parameter based configuration includes date and time effective

attributes.

The method of claim 57, further comprising:
operatively connecting a security layer to the configurable business logic server-based layer
and configuring the security layer to filter requests to the configurable business logic layer according

to a system security.

The method of claim 57, further comprising:
operatively connecting a messaging layer to the business logic layer and configuring the
messaging layer to facilitate an XML-based interchange and open messaging transport

communication link between the business logic layer and another layer.

The method of claim 57, further comprising:

configuring a presentation layer to receive at least one of a client request, a reporting

98

W OO g 0 WN R R O W

e T = S SR SR
U ™ W N R O

=
[¢)

WO 02/101510 PCT/US02/18781

67.

request, a migration request, and a third party request; and
operatively connecting a messaging layer between the presentation layer and the business
logic layer, and configuring the messaging layer to facilitate an XML-based interchange and open

messaging transport communication link between the presentation layer and the business logic layer.

The method of claim 57, wherein the business logic layer includes utilizing an applications server, the
applications server including a Java 2 Platform, Enterprise Edition architecture, the applications
server for running an applications program of a hierarchy of modules, the applications server further
including a configuration file adapted to configure the hierarchy of modules for use in the parameter-
based configuration of the at least one business logic service, the hierarchy of modules including a
base module, a deals module, an operations module, and an accounting module, and
wherein storing the data in a database includes utilizing a database layer that includes a database
server separate from the application server, said method further comprising:

configuring a presentation layer to receive at least one of a client request, a reporting
request, a migration request, and a third party request;

operatively connecting the presentation layer to the business logic layer via a messaging
layer, the messaging layer configured to facilitate an XML-based interchange and open messaging
transport communication link between the presentation layer and the business logic layer; and

operatively connecting a security layer to the presentation layer and the business logic layer

for providing a secure access to the presentation layer and the business layer.

929

PCT/US02/18781

WO 02/101510

| Old

a|npoy
payL
oseqele(
lanes
0Ss/ePeIO 2%
A L T
f A (00gi1L) Butbessaiy - eliD Aued payL
i 1
Y .
10]03UU0D dVOS |«

! 3
sjoalqQ yurdol ph
/

A

7 , MOIAdSH \\
Y 5 5 A
suesag
Juossesgra || e > I9)jojuo) dsr \\ Josmoig 4o
7 5 o S
2 05
aseqele(
Aunosg
dvan \
W (sydany3s 8¢ } (s)43aAY3IS 9aMm 9t IN3IND
NOILYOINddY
UNLOALIHOUY WILSAS

<l a3er \\\
J

Q

1/39

PCT/US02/18781

WO 02/101510

sinpoiy ¢ 9ld
~ uoneoyddy
Pt fued
piyl

aseqejeq
lanleg
10S/39e10

)

——

(0D4ll) 1oxoi1g abessapy a1epn8IPPIN

~ A « _
oT J\
("~ oseg + o

PV

sy2fgo
juido].

ueag

/

-—&<=

<7’

9

902
21 W (SY4aNY3S NOILYDITddY

he

W\ (S)YIANTS g3M % INTIO
JUNLOTLIHOYNY WILSAS

Qf

2/39

PCT/US02/18781

WO 02/101510

m) @ — u SS900y ueaq ||V

sjouo) by Aunoag ,
Y 8z
(009IL) Joxoig abessepy ssepapPIN P . Buibessapy
sseqeleq -t B m <> ybnoiyyr lep -
19MISg : SR : o
108S/910eI0 m ot P m m g Ireo wang
TN . “ IR EE] JEIVEIS
s (o m i Aunosg
100y ; - SR o
gyl m s /
m P mm JETVETS
E\ m m aMes dVOS iodey
| JiE j V
g " IREN o &
u m = 1
2 i “a u
E‘ 6 i .| ssen)
~x—// (Vi % enep 5
E//I\ ! aseg) | A | i oe v
1da = ar3 w P SSe|D m ”
T) S— Jadod _
// m_)m :_n_<= n “ % N
1a arg ojoe4 5 m = |
N &— 1 n wwm_o s " N 5
A N 9L - S H > ° JasMmolg oM
bt .(EMT/ 1a ar3 i m sjeidwal dsr | | S
vN \/@/ N @— wg =M k\ll lllllll m —
Z ar3 | [o5
N ~-T NEA obEd dSP
A IH—{) wudoy . —
_J\/ - L) 4] s (ORENELS
D, ~ (S)4IAYIS NOILYOddV pE g3Mm
«w <l ? \ FHNLOILIHOYY INILSAS A3Iviad
pl of

3/39

PCT/US02/18781

WO 02/101510

Apog :ANT-dVOS

adojeaug ANT-d VYOS

4/39

WO 02/101510 PCT/US02/18781

5/39

WO 02/101510 PCT/US02/18781

REMOTE METHOD CALL

Purpose: Client sends this message when he wants to execute a
remote method
Subject: RPC
Field Name Data Type Description
uid String A string that uniquely
identifies the user. This
field will be required for

every message published
on this subject. This
should be obtained by
calling a logon api.

id String This parameter is
OPTIONAL. If included

- and is not “”, it represents
an actual instance of a
remote bean., This id will
be used for stateful session
beans to tie the client to
the actual remote object.

obj String This should be the EJB
object name without any
prefix decoration

met Strin, This is the method name
g
you want to call

P Object There are 0..n of these
representing the
parameters to the method.
Ideally for performance
reasons, the object type in
the method should match
the actual parameter type
in the method. Conversion
will be supplied if the
types do not match, and
strings should always be
valid

FIG. 6

6/39

WO 02/101510 PCT/US02/18781

REMOTE METHOD CALL RESPONSE

Purpose: The middleware will return this message to the calling client
Subject: Message reply — no subject
Field Name Data Type Description
status String “OK? if it succeeded,
“FAILED?” if the call
failed
reason String This parameter is

OPTIONAL. It will only
be present if the status =
“FAILED”. This will be
the String representation
of the remote exception

result Object This is the object returned
by the method call. The
datatype of this field
should match the datatype
of the return value of the
method

FIG. 7

7/39

WO 02/101510 PCT/US02/18781

CREATE REMOTE OBJECT

Purpose: | If the client wants to create a remote object that requires
conversational suppott, (Statefull session beans for example),
he will make this call.

The reply message will be the same as the RPC call, with the
result field being a String that contains the remote Object ID
Subject: CREATEOBJECT
Field Name Data Type Description
uid String A string that uniquely
identifies the user. This
field will be required for
every message published
on this subject. This
should be obtained by
calling a logon api.
obj String This should be the EJB
object name without any
prefix decoration

FIG. 8

8/39

WO 02/101510 PCT/US02/18781

BaseBean

getCallContext ()
getDBConnection ()
logFunctions ()

BaseEJB

logAndThrowException ()
getAbout ()
resetCallContext ()
ejbActivate ()
ejbRemove ()
ejbPassivate ()
ejbCreate ()

BaseDL

buildCompareString()
buildvariableWhereClause ()
closeResources ()
executeDelete ()
executelnsert ()
executeSelect ()
executeUpdate ()
fillPlaceHolder ()
fileAllExecute ()
generatedoin ()
generateOrderBy ()
prepareQuery ()
setParam()
setVariableParam()
transform()
validateDeleteCount ()
validateUpdateCount ()
validateInsertCount ()

FIG. 9

9/39

WO 02/101510

DealHeader

dealHeaderld

DeallLocation

deall.ocationid
pointld
dealHeaderld

Point

pointlD
pointName

PCT/US02/18781

Deal

dealld
dealHeaderld
dealName
dealStatus

DealParty

dealPartyld
businessAssociateld
dealHeaderld

BusinessAssociate

businessAssociateld
businessAssoicateName

FIG. 10

10/39

PCT/US02/18781

WO 02/101510

Buissaooig
UOREUIWON

seouBequ)

b
1,00y AlojuaAuy

ujano
yses souelequ)

Buissaooiy

ableysn

by ebieyn

Buisseooid
abelio)g

Jseouejeg
aje|noe)n

Buipe.)
aoueequl|

Ll Old

uoynjosay
Ayuenp g Buroud

Jwbyy yoddng
Buyunoooy

JWIBN

wswaes

Bunjey leeg

uonel|touocddy [OA
‘uopeniep ‘uibiepy

‘Jwbpy ssjeloossy
ssauisng

‘Jwbpy Buiouyg

JWBW
Ajoeden

UIpy

10BUOD Buiyseosslo

b
sjulod/Ayioe 4

11/39

PCT/US02/18781

WO 02/101510

jouenyl P01 g _L L l.l_ N\\ %\ |“\ i

ni ooe #ist iopuesplepeaipalfamyfdny IFf sse

) e ~) n 1 _M,l - @ aﬁ »ﬁ;,_r..._ _ﬁﬁ m_ums_r@ mmu:o.}mmj Lu»mmmﬁ G _Mﬂ_ Alm_ s
-” e e e e . O T P ..

. . auc

+

< teaq | uoneassap

_ < _ [s04 41018 < |uoey < froswoo seoig 1< o B
wa 0 an Agueng < | 934 ddy [Wiod < fuogeaoy < A0y § Aaed
asn < fpoawoy I e < JdidssouD | AHedianod
[« coozie 5“ ajea pul [wozmooferausea [_ [1opes [« a0 oY jAueduioy Bupnoooy
[+ pdgfepoowel X wyy f1era [£ eseyong|edhs o __td3navfenoo eaq

. ' Anug jeaq MY

_.q)lm“ LUE ELIEN cuuy _.ﬂ W CUUCS IS LY . pRAvAIRY 85U ézcEEru us-q >=zcs_=ﬁcw

S ;@._m sajeg Z00Z LE1 L0 200210/ L0 paosddy 26-0 Appownio) 25-0 Apowiwosy
s sajes Z00%/ 1€/10] Z00zvl0] pesosddy 95-Q AJpOWWIoD 95-q AJpowon

s w4 aseyaing 200z V90| 1002 10rS0 paAoiddy [eaQaseYINdOD [Bagaseyaindod

v uwad) sa8s €001 1E/10 Z00Z/ 10 10 peAciddy S IOV ZS awoy

v Wi sajes €002 1E/10 200Z/ 407 Lo pasoiddy 1S InoY 1S INDY

v wam aseyaing €001 LE/ 0], T00Z/10/10 paaciddy Zd DY zd mi

Vi wdp 8seydind) €007/ 1£/10] - Z00Z/10¢ 10 wm}m&w . Ld AoV g oloiod [+ Hl
M— adf) H ajeq wibog ¥ oyojed [+

ofoguod F:

snye)s _

llim::,un.,.m.,..mw mﬁmmwl.l

2 PN,

_ ma& mu::wm _ c__Etcn_ _ mz_u:m _ _S_:mcn_ __mmu | m_mmo _,E .Enu _ :c:mzm_:_:__& EEES | 1eaq mm@:mE _ _mwo asew |

28 Sxely buipei] 4 1Qar

SANTNY

u_wx m_oo.p salionRd Malp %m_

12/39

PCT/US02/18781

WO 02/101510

B0 (i PPV

i W NI, | W——

__ppe] | || . e/ /S |

_ wa_ E _ asedsiyaeg _
=« L0 O]
] =
L le]z 2]

I ER) EX)y
moinin - | B|nuio

Atleq (0e)say SBMmM.
Aea (p " L)uny G Duw
Alleq . (@'s)xew (g's)xew
Aleq (0t ‘02)xew (o¥'0T)xew
Alleq Aleg sed + (9'plxew

huzw._...uw#_ ‘ e_I:E._ou_

mn. ‘ _ alwey BUoT Xapuy mn “ BN LIoys Xapy|

_.H. m BINUII0 3014d PAOUBIaLeY _ BlnuLoS m‘ m awe enuio4
m uauﬂ_ 2190 ~

g BN

yoleag Jnejep seps _§

} owen yoseag

| mah.r. alnias | olojlogd _ Busisd _ uoIsod yse) | sjeaq E._uzcu | :O_wm..._um_:_——_u_q jenue) | _mmmu. afieuey _ _Nmﬁ_ ww_NE _ o

mofio] | diaH | sHoday | sajualejid 1asq) | saploaey | BINLLLIO - 83)1d Buipeij 4 1a3r SANTWY

55¢

fapefipalian/:dny
€ —lﬂnw_ . g = »ﬁ _ %.w m_mwz.,@w sajosed fE] cuhwmmmmw_ _G mm_ @.ﬁ R L

#ds(*enuioaand

-” dsH sjoof seyloAey malp Jp3a

13/39

PCT/US02/18781

WO 02/101510

T P o - = R BT
-
. '
SRRy ¢ Lahos L
100SNAG-|Z SexaLIse1068] L | 00000t 000004 b [z 39reL FeFi06g 100GIN0'Q
fowonuit leag vonrsey | wai| Amuenn | 2065] + T 00 [ssusrawsinol coorawov] edgeuwsy|y vestooos oneao .
WRANSUMA(] 3D14IRK 00006 ssify) o0 sausng pRAND 1004, odid swdy| 3. 02SH{0'00004
00005 1066} 1 00 00 [seusngmeuno| zooL wov odd Sway| 1 0854 0'000S
00000} 1065} 0o U0 [sausngpeung| 0oL WOV eddawdy| | 0068|0'00004
00000} - 1065} ¢ [00 [ssusngwesnd| o0l 3OV odg sway| | 1066600004
09005 oasz|s [00| seusngpernol 1001 odg say vestioooos
5 1 S odd @ BLS}] O ~
\.mu..;o_ _F So0001 . {0005 15z 1 - 00 g0 alysng e .§= Wy 4| 00005 ooy poveys
o . o
a0 - a
: 1 O R =T T >
i | T8 ol6st 1 b s L. J
‘gL [1 y
“ a8t 8L 8} 1 €
— %t 8L98) 1 z
581 9258} WeNHOUSUONeasT | wenpoysencany] |
ELTLT] ajgepnay uexeaa’y wnoaay
1218 sauB slunoddy Alojuany;
i
a ang| add auny] 2066 tloosss . oo
Z0[OSNAQ ABaukq! u}uv__&(_ L02¢} 4 0'00004 0°0000} —
Z0{10SNAQ ABiaukaj athd sy 0851 110°0000L 000004 pr— wonragn Amiang [zojo0 00005 i 0854 3dg autoy| L IINAQ
0] INVIN ABauAg] adid 3wy 085} o0 - . oo I|Il|'|_c|||_|._ 20| (TDA00Z 400002] cogt| addowsy| ggosowy| 1zod
° _u:l uuza SUOIRD0 | Phtuid
0] INVHW; ABaukq adlq sty €88} Moo oa 20|00 Q00004 b 085 Sdd AUV Aoudq|00NAQ
20] INVHIN] ABauka| adkd sy 6451 Hoososr oo [colao 400001] o065 adgauay| NG| 03|
20) INVHIA PR Sthd susdy| 1066 tlosooor oo zol 0o 00004 1 085} eagousy| ABeuig|oodiAa
1) Q| 2did Juny! 3056 100005) o0 [Z0[000004 0000t 1] 0066 Sad sy BIN| INVIN
a ABaukg] adid uny| 1056 Hooooot |00 oD00SE WAy 2001, 3OV | Idd IOV Z0j 00 9oo0aL) 1066) oogouny| a0qQ| 0d34Na
RS casd] ethd ewy| 0862 Hoooos 00 00005t st €001 OV FYTE— 20| oo 000004 4 €ggl| sageuway ABeuAQIOONAG
HO S *d'a odouy

nonrao
faman

wers -
_ m_mc_&m_ mi@w:ﬁ(& sozL_| aaa_ Nﬂ:wj

w7 Esn_l .io_,.s:uaﬁ NBN_EQ_ o__I’ 20021020

UORUILION

| swop puas | ushauioy | §

m:o:m..mao <4 lgar

dey S0y wb‘x;om ey %u at

T tanjdRy PA0A U] 1000y AONeIND a1 S:Eﬂ

14/39

PCT/US02/18781

WO 02/101510

jaURY [R50 ﬁ_]] m \ %\ II.N\ —_—

auc

R Anuenp ahieyn Bm_::_

SIUBWOCTY YRR
aliiey) |enuepy ppy

" pju] AINPNNS 8y
0JU] JUNRDITY JUAWIBIRYS
[1218(] Juawar)s

et gt

i .mm::_u E:...mE uu_q

.))l i e o s e ey

EmEEEm T umhm.._u BHo0ID,

n_ Ese_c_z Addns! oml Juwae)§ woy afleyy anow ay 05 0DABS
1 m =_3E_:_E bunsw T ioz) . Hawialels ayelauan 00 00AES .
- o e e : -Smels. afireyd afeuey o5 oo
| unup Akng N) ‘ lieyaq afiey) -
uwpy ON wouel 0D 0DABS
T T gy oN 10-1002| - 02 00485
T uwpy O . 10-1002 0D 0DABS
d wnwiuy Alddns ofy . 10-l00z 0D 00ABS
,E wnuguy Addng oN 10-1002 0D 03ABS)
..... . I L4 _ 03 00485
E _ - . , adf) uxy mﬁ_uowmq
' _ I [H] ! ! X ssaumsng

| syuBwee)s | safiley) | Aojany) | m.m_w__w.:m:_o [N]
SNNENY

[reyeq ebileyn Bununodoy ¢ 1gar

__.__ o5 Au _.Ht R #ds(*e3sgabieyaybununoaefipalfayn)/fidyy ;mumm

S . e - B e - _mﬂw epeufl saworedFE) preas §3: _ 2 B 6 « 4« e

I ‘. deH Sj00) seoAed may IPd

15/39

WO 02/101510 PCT/US02/18781

Facility A -Point 1 | T — Facility B - Point 2

Interconnecting Point

FIG. 16

Facility C

o o o

Point 3 Point 4 Point 5

FIG. 17

Gas Flow

Facility 2
l Facility 1 } @ UZC

¥

b [Facility 2 |

FIG. 18

16/39

WO 02/101510 PCT/US02/18781

Ut Receipt Delivé;y Fuel Rate
Dth | 1000/1.050 Btu | $90/1.001 Btu 1
[Mcf 952 989 -3.9%

FIG. 19

| Path 1 - 500 Qty |

Point B
1,100 Qty

Point A
1,000 Qty

[Path 2 - 100 Qty |

FIG. 20

17/39

PCT/US02/18781

WO 02/101510

l¢ Ol

uopjeujwopN aujadi 4 puag

\\\. //.
MmaIA gg93 auwjadid maIAn Rl
\\.,}..././ AAucmuxmvv“.
Y \\\"!l, M
T Tl uoijeutwopn suyad
<<PUBINBE S~ IJEUlWON ladi 4 @1e81D

o ™ -
.. . <<puajxas>
S P
——
el
\~\ ‘‘‘‘‘‘‘
\\\ (s1ojoy woy)
rd
soje|dwa} auyadid aquasag i8jjonnuod seo
P - /// Ve
¢ Neez T Y
N Ay
N
\\\
£1D s|gejieay }sag abeuep
- N
{)
S e —
(teaq affeuey woyy) AAm_u.:méh_l.VIv; —
|jeag obeue iy
LT !!!I,// S e
/.‘., J Y
T N <<puadxassl
‘T <xdpn{oul>> |
uayxa>>’
<<pusIxe>> TS e uolle wiojuj
(uonesoq (20 aquosa g wou) " - aouaigyey UB|d WON 8quUISaQ
uoljeo07 |B3Q @aquosaq e e
’ N
Lo N - ./ 4
- el e
{ ¥ <<3pN[oUI> >

18/39

PCT/US02/18781

WO 02/101510

¢¢ 9ld

srenen

ue[J UOH)RUIWON

s1d 28e10)Q E

s1q100g |

:SOLI0JUdAUY

s

noBo | dion
aupedjed 40jeuas :q} 4950

Addng

Kepdsi(q yuduewnId g

puiuue|d uoneuiwonN

suonesad MOPUIA Uy

19/39

PCT/US02/18781

WO 02/101510

¢¢ Old

“noboT | dio
y pdTE

| areasn H| _Smm\o& | oquoy |aimseapy Sﬁ:EE_& mod| xogey |o)| xogien |pouad uoneunoy [Auosuds |Ayoey [fuosndsi | fueduog Bujuncaoy

suonesad() MOpPUIp UlB

20/39

PCT/US02/18781

WO 02/101510

v¢ Old

s

xel

IX81

sn

X8l

oquio)

st

sn

xal

xal

s

st

isi

yoseag 1ed1n

ypafi=od
oL

0

s

81

1811

181

1

oquo)

o
Y2188 I8

suonesadQ

IMOPUIAA Ul

21/39

PCT/US02/18781

WO 02/101510

G¢ Old

xog 1p3 |xeq ¥p3 kog NP3 Kog ¥p3 xog up3 xog ¥p3 [xogd IP3 |X0g ¥P3H 1PA| X0g s xo8 NP3 xod ¥P3| ogyp3{a up3pa ¥pakosd ¥p3
v v v v v v v v v v v v v v v v
) ¥ 2 00 | ALY ALY [Auwyj a3 dp erajsuiraddnsg
Ter : o0y |- oey-
) £ uoou}.
[+] Z uoduy)
Q | uoduy
U EIvIUY
0 1dsas| gedig
0 1asas] yadig
o raros] yadid
OMEEHNIO MBI S
1d1004d] gediyg
I IR
UL 00 vateed| yad
8 afued | vedid |ileq ool |6 6 SINIE
0oz -} sdn
2 2Aued | g edid [sieg ooc |s s 0 ooes] sedig o0z | vdn 4
vieq o0s_|vz__[vz 0 oomm._ vedid 00L S28H] vedid
9 QAued | vedid |gieg 005 |6LL 611 0 001S| vedid 0oL yoou| gedid | €S €
£ : 0 ooed| madig 005 1o9y| vedid | 2S 4
7 o 00zd| wedid :Jooz | ednf
0 00Ld| vedid ooz 298y
S aAved | vedid |ileg 009 |5t |st 1] ooey| gedid 00z tooy| vedid | 1S !
o puz | uwg | puy | seqamy | Aprony uonEs01 yusyl Ato | ALD 0 ooex| wvediq Aquwy uonea0] Lngoug dd Pyl pu3a |Uns| ai
Iseq wisy Kieayeg - 1v8g | Ay [} 001M| vedid disaey wasl (L1]}
$3id Sl it SO NG| Aiddng- -
ajeal) 8jeal) AW Jainseap joyun| 1002/ y |Pousd Mol | LO0Z/0EN | O | 100Z/Ly |poliad uojeumoN | Aurn | Aoy fzAx Aurdwod) fuedwod Bupunoday
D 2] olje O
rrie— - — — - S S ——
9 edje oje (1

suonesado

:MOPUIAA Ui

22/39

PCT/US02/18781

WO 02/101510

9¢

Old

xog 3p3 |xog ¥p3Kog npakog up3 xog 1p3 xog yp3jxoa upa|xeq upap upa

xog 3517

xog 1p3

xoa ¥pa

©0gp3 |9 ¥P3 P8 P xog up3a

v v v v v v v v v

v

v

v v v v

Z uodu

Tasos

143018

14301

1d1ead

14leoa

1ateog

TaRps

GH WL

deppddn g

“TinoboT | disy
aunedjed iojeuas :gj 19sn

2)
1)

9 0 €s €
0 2s 14
1)
0

S vedid |1lea 0 1S ‘

qQ Aunewd uajjeecy’ 0 ALD uo3woo] pui | pug [Hms] ar
0 jdjsoen

POL1ag UGRUILION EE

| fuokndsp | fuedwog Bupunosoy

:_::m_n_ :o;m:.EoZ

suonesado

IMOPUIM Ulepy

23/39

PCT/US02/18781

WO 02/101510

IXARSI =

xog yp3|xog npafos upa

Kog ¥p3

v

v

xod 31p3

X008 Ip3{xoq up3 |xoq IP3I B ¥ea

xog 157

xo8q 1p3a xod 3P3y

08 ¥P3|8 ¥pP3 pg NP jog IP3

v

v v v v v

v

v . v

v v v v

sasjsgjasddnyg

i) ™ T B
0 1410y mwn_&
0 1ds0p vodid
0 14303 wvodid
Pt MO SR IO
0 rarod] gadidg
0 1aiofal yadid
vedid:
2l 2= ooz | sdn]
/) 2Aueg | g sdig |5i80 [£ £ oo | ydn|
vied (4] ol oL 002 so9y| vedid
9 akued | vedid [clea 0 8 8 00L pooy| gedid | €S €
0 0s 0S5 i00g ooy vedid | zg 3
0 G- s -looz |:edn
0 S S 002 2oey|
] aAved | vedid |LIeag o] [s]+13 001 jooe Loey| vedid 1S 3
al pua | 1awms | puj | eyaey | Aynowy uopIsooy Xusdf ALD| ~ALD 0 ALD {.-ALD x:nz_ :c:-oo._[l— fowd pt] pul [Ung| al
1e0Q wisy AzsAl00 (L1 s} fleay 0 neay 112]¢] uunlulz wieg 1eeQ
i : ¥ : A = - Kddng PR T
ajeal) ajeal) oquo) [aimsesyy joyun| ypguidg [pousd moid| xoglen |oj{ xogjey |poiusd uojeuwoy | Avokedsip |Ayioeq | Avokndsip |Aueduon Bujunoaoy
) el Oi}eE O
suned|ed 10 IPE i _
m:O_wm._mQO SMOPUIAA UleN

24/39

PCT/US02/18781

8¢ 9Ol

25/39

xoq 3ip3|xog up3 kog up3 Kkogq up3 xog up3 x0g 1p3 (X008 up3 |xea yp3 B P3| xog 1SN xoa #pP3 xod P3| ogupalg ¥p3 Py ¥P3kog up3
v v v v v v v v v v v v v v v v
% PR vy B>) 3 Boway o] -quey | 007 ALD A0 fawvuf@In dpsxryoylaonddnsg
! S st i 1 SR asy | oey | oay 8 :
iolelsiojuse e e B et % 0 : HASS
0 £ uoouUj|
[¢] Z voou}
'] 1 uodu|
hak $ o8 : ¥iH1
) 1aias| gedid
v} 1d2015| ywod|d
0 1d:as5| yedid
o 1dt1e0d did
0 |\, raiec gl yadid
o = o
AT
ERsTIeAu :
L7 145 Toor=] gdn]
) Jhued | g edid [siea 0 3 £ ooz =] ‘vdn|
yieq 4] 0} ()% 002 go0y| vedid
9 Qfued | vedid [elea 611|611 0 00L yooud| gedid | €5 ¢
2 0 00S 1ooyl vedid | zs z
0 ~o-{ooz ¢| -gdn
1o o 002 299y
afued | vedid {L1eg 009 _fsi |5t 0 002 1o8Y| vedid | 1S 3
pumz | 34wig | puj | asnasw | Aunowa uopEee | AL | ALD) nusy uocpeoon Ayjpoeg e dd Pul | pug [Hwig| al
wiey Arenieq 190a | neay 0 3disaey B} wiey 199a
i e A L AR LD Lm0 - Alddng .
9jealn 9jeal) oquio) |ainsesiy Jojun| Wp3udg |[pousy mojj| xoglen |oj| xog[e) [pousd uojeumwoy | Auoindsip |Ayoeq | Auokudsip |Auedwor Bugunosoy
& el d Oi}E O
e - - S S— — S— — S - e
9 edjed 1ojeua Q g (] J

WO 02/101510

suoneladQ MOPUIAA we

PCT/US02/18781

WO 02/101510

6¢ Old

xo0f ¥p3{xodg ypakog up3 Kkog up3 xog pP3 xog #p3 |xog iip3|xog u_um_w np3 | xog st xo8 #P3 Xo8 IPA! ogwp3lg upabg upakog up3
v v v v v v v v v v v v v v v v
PoIySBiy st uoyeaoy 319003
410 AArpsp yorym uodn Juipusdap
UmMOoYs oq [[IM uotye uuojul
92UII9Ya1 JO 135 3u0 fjup
X
\ =
f [—
\ . i
a Aved 00s | vz vz v 1a | oos I %S fusiInd) =14 os |oos)
q Aued _ 005 | 611 ool |ooz LS
=y s P 2 .Lr-..v Ascul @3 yrreiouiiniding
0 £ uoouy
0 2 uosuj
[s] —. :ou:_
..uv] Z.Eu mﬂn.&
1] 143015 <mQ_&
0 1d20sf wadi o
S Moot B od R0 80
0 1dtead| gedid
) 1a1e0d| wedid
ar whpeE 0 1d1004]|
8 Qghped | vedid |11eg 00t |6 6
- Famy Lo 00z -} gdn
L JAued | g edid |sieg ooe |8 |8 o £ — foos | vdn
¥1eg 00S _|¥T 0 0 113 04 00L goay| yadid
9 gAyed | vedid [eleg 005 [611 o 0 00ts| vedid| |8 8 004 poay| gedid | €S €
00 | 0 o0ed| gedial {0 05 00$ 193Y| vedid | 28§ Z
o 0 00zd| vedid| {5 “i¢ 00z {=edn]
0 cora_ vadid| |S S 00z 229y
S Qahued | vedid |i1eg 009 St |st 0 00eM]| gedid| (O 001 _ j0oe 1osy| vedid | LS 3
a | ‘pua |uwig | pui | sexsem | Aaowd uo[®oo [© ALD 0 00zM| wedid ALD ALD [duey uo3es0 Anised d pul | pu3 jumg| a1
4] ydiecen
: : - :Ajddng -

E-Eilggggﬂg pouag uojeuok EEE fueduo) Bujunozoy

uruue|d UoiEUIWON

aujedjed J0)eUDS (] 435N

suonesad(MOpPUIAL utey

26/39

PCT/US02/18781

WO 02/101510

0¢ Old

xog ¥p3a[xog ¥p3 Kog ip3 kog up3 xog P33 xog up3a|xog up3[xog wpa b upa|xoa 151 xog ¥p3 xog ¥P3| ogup3|a upabg upakea upa
v v v v v v v . =V v v v v v v v
a Aued 00S ve e £18d_| 00S L %S juaiind 00S Loay 14 SZ | oos (4
a Aued 005 v +Z ¥ 1eqQ | 00S 3 %S ua4Ind 00S Loay 14 SZ | 00S (45
a Aued 00S 6 S6 € 183 | 006 %S pusind; 002 | Loay 0oL 00! | 002 1S
B L P L L Byt e ALY g seeii md A 1Y P : XLO [awwul @A gyeavpeujiionding
Mo ITEe S MO s o LSunES] [PO SHREVD KOoEOn J 2 T
1] £ uoouj
o 2 uoouy
0 1 uoouy
AR iaminiinaetaon syl
0 1d1a5| gadid
o 1a305] yadid
0 ydras| yadid
%) = 1diood
0 1djood
Y . 0 1aroed
8 afued | yedid |t1ed 0oL |6 6 onet £3110
: X 1 : ; i Aro3 —
L L 00 |:sdn
L dAued | g edid [sleq 0 oocs| gedid £ q€ - 1004 +dn
v1eQ 0 00zs| vedid| |0k [+]3 002 §99Y| vedid
9 afued | vedid [eleg 0 cors| vedg| (8 8__ {00 ool godid | €S £
) 00cd] gedid| |0 0s 00§ LoaM| vedid 2s <
1] 00zd| wvedid| |57 s “|ooz | edn|
[¢] ooLd| vedid| |[& S 002 239y
S ghAued | yedid {1180 0 ooeM| gedid| |0 004 _j002 109y vedid s 1
a | pua | umg yonany | Anioey uopeoo 0 ALD [dusd| uepwsol | Aiioedlisyddngt pup | pumg [ues| o
Azeneq [} wag djesey wasy |zeg
TR B ZAjddng ¢ ;o= . T -

(ojeasg H [oreasged] | g Jomsean jowun joozri Jponed wota | vovoeis | o | sooziv Jpouey uopewmoy EEE fueciuog Buyunozoy

uluue|d UOBLIWON

N S RN s R e R TS BTN

inoboy | djoy

e T T RS SE IE P R Ey———

auned|ed Jo0jeuag :Qj 49sN

suonesad :MOPUIAL UIR

27/39

PCT/US02/18781

WO 02/101510

L€ Ol

xog up3|xog up3kog upakog up3 xog ¥p3 X0g ip3 [xog Ap3 [xog ¥PIH P | xog IS xog 3Py Xod ¥p3| og up3alg xp3aps Wp3kon wp3
v v v v v v \' v v v v v v v v v
q Aued 005 | v¢ ve vteag | oos juaund| 0oL | vedid |,
a Aved 005 | 6LL 6L1 c1ea | oos juauno| oolM | vedig
i %S fuaunol ooiM | vedid | oos os 05 | 00s Zs
9 .x.m jualndl 0oL vadid [o]s)4 [o]0] 00L | oo2 IS
EETCTr RIS & ¥ O T wd; Y LR e bk Huwy ALD ALD [rwen[@Ixnapasassufrogddas
- : ¢ e e RE STIATE coeud - f. oen .| |- I ICIPRE EEVR EE
NonmuouiEe Ty R i 90, o HT Sty LS SRS L R LR
0 £ uoduy
") ¢ uodu|
0 L Uosuj
0 = _m.n.m. m.mn_.n_
) 1dios] yedid
0 1dios| yedid
0 tdieed| gedid
0 idicod| yadig
5 o 1diced] yedid
8 afued | vedid |iisa ool 16 & G
: L 2-- 7looz] sdn
L JAued | g edid |sieq 00E_|8 8 0 ooes] gedid] | € 0027 “pdn
Y 005 vz o o 0ozs| wedia] (2 oL 002 S99y yadid
Tﬂ QAued | vedid [eiea 005 |6tt [0 0 001 5| vedid| |8 8 004 yooy| gedid | es £
; 0 00ed| gedig] |0 05 |oog 199yl vedid | 2S 2z
7 0 00zd| vedid| |8 s ‘looz”| edn|
0 00itd| vedid| |S S 0oz 298y
118a 0 g 00z 199yl vedid | (S
uopes0 0 NuRY uojy®acT LTELE] ..-__..E:u. TR
Alesajjeq 0 jdjesey waeg

eog i [aenond) [g Tovom ol s s sz | s Jposs g [

utuue|d uoeUIWON

TR Y N R AR TR

mofioq | disH
aunedjed 10jeU3S :Ql49sSN

A A ALK AP NS

- -Kddng " " B

<« 1azr

)

E fuedwoy fujunooay

suonesddQ

IMOpPUIAA UIeN

28/39

PCT/US02/18781

WO 02/101510

¢t Old

xog yp|xoq up3 kog up3 kog upa xog 1p3 xog up3 [xog upa|xog upah wpa|xoq s xog up3 xog ¥P3| og up3|a upabs vpakoa np3a
v v v v v v v 4 v v v v v v v v
4 {ooz sdn | €S
€ |ooz vdn | €s
AL1D fywrul mIndpsoyouiaondday

[1] £ uosu]
0 Z uosu|
0 1 uosu)
° 31d 015 =
[4] tdiorg|
) Tdsors
ety B R B Rid
o] 1dfoog|
[4] 1dioog
oL [+]8 3dioog
] Ohkued | vedid |11ea 3 e et
T s
= sdn
L dAued | g edid |sieg 0 ooes] gedidl dn
yieg 0 aozs| vedid goay| vadid
9 ghued | vedid |eiea 0 gors|_vedia ¥oou] gedid | €S €
0 008d| gedia 1o9y| wadid | ezs 4
0 00zd| vedid| [S: G- Jooz:]:edn]
or oL 00Ld, <mu~|&|‘ S S 002 293y
gAued | vedid |Llea Sl 4] ooeMl gedid} |00} 001 002 109y} vadid IS L
puz | wwg | pu | sensen | Aunoes uojiso0 yunil Ao | ALD [s] 00ZM] vedid ALD | ALD [Jusy| uoped07 Ajiand dd Pul | pud |Hwms| al
wisg Aleajjeg {eeq | Ay 0 0oLM] vedid {I*AY | |veq djesey. . wiey jesg
AR ALK SR B OOPORD| i e - - iAjddng & . . - R
9)83.1) 8- 9)e3.1) MGAN [Sinseay Joun| 100Z/Lb [Polad MO | L00Z/0E/Y | O { L00Z/L/p |pobiad uojeunwon | Auew [£ypoey |ZAX Aueduo)) fuedwon Bujunosoy
D 2] Ol}e O
Ty R U — - S e ——
3 eadje d O} e < (] o (]

suonesado

IMOpPUIpE uiepy

29/39

PCT/US02/18781

WO 02/101510

¢€ Ol

xog ¥p3|xog upg kog up3 kog upa xofg #p3 xog IpAxog p3xog p3I H NPI | Xog isin xog 1p3 x0g P3| og wpala upapg upakoa wpa
v v v v v v v v v v v v v v v v
4 Aued| sug 00g | 2
3 Aped| pug 00E | 9 g8 o7 0o | ooe 0 | %0 husungl ooed g odid idicod 8
RNy o o XF RO E RN bk 4 Fe s UE S EAN Auwy il isey ALD A1D. [awsufaidnafersysnfisnddns
! i s a5 {ren, | oo | ooy | .oen 1 R
lieasisi e RIOEERIINES ke : G e ey
[£ uoou)
0 2 uoduy|
0 1 uosu)
- o [1 raros]gedig
0 1dsmsi yadig
0 raios| wadid
..,:S.._ Y
0 sdiood| yadidg
3 1d41004df yadig
8 ahved | vedid fiiea 0oL _|e 6 SRR
m e 004 | sdn
2 dhyed | g edid |s01 j00d ooc |8 e 004:) ¥dn
vied oos vz |vz 004 so9y| vodid
9 aAued | vedid [eleg 005 611 |6LL 004 ooyl gadid | €5 €
3 00s 109y| vadid zZS Z
: ooz | edn|
§ [2]$]4 298y
S afped | vedid |iiea 009 |51 Sl 002 199y| vedid 1S 1
al | pua | wmg | pul | rensen | Lrowd uojE0Y suwd} ALD | . ALD juey| uoneoo | Anoed pw |pu3 [umg| a
jeeg wiey Kisnjjeq 1weq | 1Ay jdisasy wast fLLT+]
RIS SXIE N <o Alddnsg - E -
3J231) ajealn) MENW [nseap Jouun| 100z/L/y |Pousd Moid [L00Z/08/y | O | L00Z/LY |Polad uojeumwoy | Auew | Awjoed |zax furduod) fueduio) Bujunoooy
& Bl d Olle O
s Srreeru— —— - - OUU— - - o e N— I
9 edjed J0}e d > (] .
“ Pt ¥
suonelad(:MOPUIpA Uiy

30/39

PCT/US02/18781

WO 02/101510

ve "Old

x08 up3|xod up3 kog upa Koy up3 xog up3 xog up3{xog upa[xcq wpah wpa|xog 157 xog ¥p3 xog P3| og up3jg ¥papa upakog up3a
v v v v v v v v v v v v v v v v
8 $o9M | 00L 00 8 £S
Tk Jumyy EALD dajon ~u._mlww
J . -oeu | osu . :
iy = T
0 € Uoau(
0 Z uoou|
0 } uosu|
: hikbebadiraditste Sed)
0 1d10is§ goadid
Q 1areais| yedig
0 wdias] yadld
- 0 - _mu_of_ godid
[\] 1dteod] wvedid
8 1] 1dijood
8 akued | vedid |poey ooL |6 1 .. ,
L 2. ood]-sdn
L hued | g edid [sieq o £ €100 [Fydn
v1ea) g 113 002 o9y vadid
9 akved | vedid [clea) 0 8 002 ¥o0y| gedid | €S €
o 0s os __ |oos 100d| vedid | 2S 4
ry s .. 1s" Toge | edn]
[}) S 002 299y
5 gAued | vedid {i18a [0oL 00} |o02 109yd] vadid LS 3
Qi | pua | simis | pul | sexnien | Aiowad uepeson yuen| ALD | ALD) - ALD -| AlD {quwy| uopmsoq | Amjowd ddi pul | pu3 [wes| a
1eeq usiey . . Kieajieq jveg | peay [fieay | 1vag idiessy N waey jeeg
A o4k i IRRAR LRI o R - C oo Alddng :
8jeal) 8jealn) MENN |2insea JoJun| L00Z/1p |poliad mold | L00Z/0¢l | 0 | 100Z/My |poliag uojeuwoy | Aurw | Ayioey jzax Auedwopf fueduwog Bujunoddy
) el d O - O
OO0 (o ~ .) N B ~ T
suopesadQ MOpUIpp wieln

31/39

PCT/US02/18781

WO 02/101510

SE LA

5912 soweluia
sefes may (sze'v) |los0'st SosBYAUNG [BI0L
[B101 4N Jasuucisiu] 000't) {lose'ss 1€701 gns JesuuoasRu)
| BT a ove il OOUUCSINEd UNY
Se9 SEX9 L RSuUoIsE-S (000°L) rof{ooo’t SLL'E Ba 056'C TRUUCIRIFd OD13L
{eioL qng (eeg cZe'ey) jloti'ze 18101 Gng fEeq
2B00-31UIHMS "G6I0E (00s) 'S [(005)
.+ ¥800-3LLIHM'S 449D (0002) 1o {0002)
O¥00-ISVOJ1SIMS_ ¥d9D (000s) ro_[(000°S)
90E0-YOYNYI SNV~ 00000 [1] o 10 I 005" rg_ oos’ 3d90 9900-VOYNVYOSNVHI-d
s Y0E0-VOYNVOSNWVML'S S¥.6C {000°S) ro_{{000'S) I L0t] wa €582 ¥d90 s 6000-3OVONT-d
RZLEDINGS HdDD (G28'G1) 000" 9000 01922 9200-NYO3IMNG-d
1100-LSVOD-S _ud99 (000'5) 3 ro__00S ¥dSD » SS00-VIINOY-d
§800-V1INDY-S__ 03572 (000') 3 r9_ 6295l ¥ud99 9E00-13d-00VNY-d
. GLOC-IONVITIV- U3 000G G262°L Y000-13d-00VAY-d
atlesg mn Anuenp eoud altesg
Mot
sejes PoHRAUOD eseyang

FO Won Aeydsig

: 6661 'c2 1deg #Hegseg

siweq bums, = J§ VAON oupiedig

11819 PIROHIUM

32/39

PCT/US02/18781

WO 02/101510

Y

A

1ayepIiEaq Wiy ods

89IAOS

uo)Bay

ealy

Siulod

wa se'l
win ung
Xspu|/saud

asn
Kaueuny

Wa 000001
Hun moj

BSWNJOA

1000-S4W-d

Qtleeg

33/39

PCT/US02/18781

WO 02/101510

[& D/

roeoL
Wa .oy,
ro “oujjedig
.y . wee .. wee aes ase —‘0 '-Q=~ mu
(0+5'2) (005'2) 098'y 0$0'22 0 0¥0D'2Z (0oc'6t) {000°0SE) 00S'0F g e
O " X L) 1 ., F ° s
086'¢l (000'L) 086 b1 Homv 1) {o00'21) (10 4 Sel'S GZE'LE) 00922 G9.2 _.mnuu Mﬁn
ma sojeg Yaind Hid sees yaind #$4a sojes 4dind #a seopy eujjed)
pET T LY L] Bupmg projeseg (LT ouun ¢
E "-Jua 6661 'cZ1deg :Avq sug
Arwwing pieoge)ym

34/39

WO 02/101510 PCT/US02/18781

Column Name Data Type | Length | PK | FK | Null | Default | Description
Val

Itemld Numeric 10 Y [N N A unique ID Key representing a
word or phrase that needs to be
translated.

Languageld Numeric 4 Y [N [N A unique ID Key representing a
language that can be translated
to.

TermSetld Numeric | 4 Y [N |N A unique ID Key representing a
specific set of terms that can
override the base translation of
different items in a language.
(Value of zero indicates default
terms for a language)

Translation VarChar | 255 N |N [N Translation to be returned.

PriorityKey Numeric 8 N [N [N Languageld * 10000 +
TermSetld

FIG. 38
Column Name Data Length | PK | FK [Null | Default | Description
Type Val

SystemUserld Numeric | 4 Y |Y (N A unique ID Key representing a
single user

Languageld Numeric | 4 N |Y N A unique ID Key representing a
language that can be translated
to.

TermSetld Numeric | 4 N |Y |N A unique ID Key representing a
specific set of terms that can
override the base translation of
different items in a language.
(Value of zero indicates default
terms for a language) _

FIG. 39

35/39

WO 02/101510 PCT/US02/18781
Index Attribute Table
Attribute Names Required Data Rules Default Value
Index Short Name Y Unique
Index Name Y Unique
Description N
Publication Name Y Existing Publication
Publication Frequency Y Valid Frequency
(Ex: Monthly, Weekly, Daily)
Commodity Type Y Valid Commodity Type
Currency Y Valid Currency
Currency Unit Y Valid Currency Unit
Begin Date Y Valid Date
End Date Y Valid Date

FIG. 40

36/39

WO 02/101510 PCT/US02/18781

FIG. 41 _Fe4A_

| FIG.41B
| FIG. 41C
.| Min | Load |
o e Qty [Pattern| Qty | Flow [/[Pattern] Max) Min Al Flow
ExDescription Type Unit | Rate : Detail Oty Oty Temp| F(:;::lt;;r Percent Rate
Standard Gas :
1 Energy Deal MDQRTC Dth | Day 10,000(10,000
Standard Gas |
2 Volume Deal MDQIRTC Mcf | Day 10,000, 10,000
Gas Energy
3 [Deal - MDQIRTC Dth | Month g 10,000{ 10,000
Monthly
Gas Energy |MDQRTC Dth | Day } 10,000 8,000
4Peal wMin | pyplpre | Dth | Day [9,300 9,300
fand Max ;
\Gas Energy
5 Deal w/ Min [MDQRTC Dth | Day 10,000, 10,000 80% Day
Daily LF]
\Gas Energy
6 Deal w/ Min |MDQRTC Dth | Day [z 10,000, 10,000 90% Year
\Annual LF |
Gas Energy |[MDQRTC Dth | Day 10,000 10,000 MAX | 120% Day
7 Deal w/ 20% o
[Tolerance 80% Day
Gas Energy [MDQRTC Dth | Day 1,000, 1,000
8 Deal w/ Daily o
& Monthly |MMQI|RTC Dth | Month 10,000, 10,000
Quantities £
Gas Energy |MDQRTC Dth | Day B 100, 100
9 [Deal w/ Daily
& Annual MAQRTC Dth | Year 35,000 35,000
IQuantities
Gas Energy |[MDQRTC Dth Day 10,000; 10,000 105% Day
Deal w/ Daily 95% Day
10{Tolerance + 90%Month
Monthly & od v
IAnnual LFs _ 110% Year

FIG. 41A

37/39

WO 02/101510

PCT/US02/18781

IEuropean Gas| MDQ RTC Dth 10,000) 10,0000 50
Energy Deal 12,000, 12,000 40,
1 / *“Weath
o veater 15,000 15,000
Options
MDQ OffPeak{ Dth 5004 500
12 European Gas 600 600
OffPeak Deal 600l 600
. 500 500
afoverPeak o peak | MWh 100 100
Deal
IPower
14 OffPeak Deal MDQ OffPeak] MWh 100 100
1004 1004
1004 100
100, 100

FIG. 41B

38/39

WO 02/101510

PCT/US02/18781

MDQ]24H Dth 10,000 10,000
10,000 10,000
10,000 10,000
10,000{ 10,000
10,000, 10,000
10,000 10,000
10,000 10,000,
10,000] 10,0004
10,000 10,000
10,000 10,000
Daily 10,000 10,000
15 Quantity 10,0001 10,000
captured by 10,000 10,0001
hour 10,000 10,000
10,000 10,0004
10,000 10,000
10,000{ 10,000
10,000{ 10,000
10,000 10,000
10,000 10,000
10,000] 10,0004
10,000; 10,0004
10,000 10,000
10,000 10,000
(Hourly gas DayBy
example with MDQ Hour Dth 72,0001 72,000
17 gty stated as 24,0001 24,000
daily flow 48,000 48,000
rates 72,0001 72,000
Hourby
Typical MDQ Hour Dth 3,000 3,000
18 fhourly gas 1,000, 1,000
example 2,000 2,000
3,000 3,000
Daily gas
example with
19\qty stated as |MDQ[RTC Dth 31,000] 31,000
monthly flow
rate

FIG. 41C

39/39

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

