wo 20107131023 A1 I 10KV O 00

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(10) International Publication Number

WO 2010/131023 A1

(19) World Intellectual Property Organization /’@?‘?’3\
International Bureau v{ 0
al
(43) International Publication Date \'{_5___,/
18 November 2010 (18.11.2010) PCT
(51) International Patent Classification:
GO6F 17/30 (2006.01)
(21) International Application Number:
PCT/GB2010/050754
(22) International Filing Date:
10 May 2010 (10.05.2010)
(25) Filing Language: English
(26) Publication Language: English
(30) Priority Data:
0908041.7 11 May 2009 (11.05.2009) GB
(71) Applicant (for all designated States except US): TRUE
BLUE LOGIC LIMITED [GB/GB]; 11 Alpha Road,
Stretford, Manchester, Greater Manchester M32 9JJ (GB).
(72) Inventor; and
(75) Inventor/Applicant (for US only): BASAK, Robie Ron-
jon [GB/GB]; 11 Alpha Road, Stretford, Manchester,
Greater Manchester M32 9JJ (GB).
(74) Agent: APPLEYARD LEES; 15 Clare Road, Halifax,

Yorkshire HX1 2HY (GB).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD,
SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR,
TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG,
ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, SE, SI, SK,
SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW, ML, MR, NE, SN, TD, TG).

Published:

with international search report (Art. 21(3))

(54) Title: IMPROVEMENTS IN AND RELATING TO REPLICATED FILE SERVERS

ST4: Reply contatis
token refusal?

o
S1s: Reply
-ontaing token’?

Figure 1

.o

ST3: Highest cach
ata [ails critecial

;
S17: Add to wken list

S10: Request token

6: Reply receiva
from all nodes?

imcout

(57) Abstract: Disclosed is a method of controlling the opening of a file, the file being one of a plurality of files on a replicated
file server connected to one or more other replicated file servers over a network, each of said plurality of files being associated
with a corresponding unique file token, the file token being held on one of the file servers only, the method comprising the steps
of: the file server attempts to acquire the file token; and if the file server acquires the file token, the file server permits the opening
of the file.

10

15

20

25

30

35

40

WO 2010/131023 PCT/GB2010/050754

Improvements in and relating to Replicated File Servers

Field of the Invention

The present invention relates to improvements in and relating to replicated file servers. More
particularly, but not exclusively, the present invention concerns token passing between file

sServers.

Background of the Invention

In a prior art configuration, a number of file servers are connected over a network and files are
replicated and synchronised across these file servers. Each file server is located at a node of
the network. Methods exist to ensure correct synchronisation of files and file structure across

the network on the multiple file servers. One of these methods employs the use of tokens.

EP 0 694 839 A2 uses tokens to achieve file server replication and synchronisation. A file
server at a node sends all write file system calls to all other nodes as they happen ensuring
that a read call on a node to which such a replicated write has been sent does not begin until
the write is complete. The disadvantage of this system is that the upstream bandwidth required
by a local node when performing a local write is equivalent to the number of other nodes in the
system multiplied by the size of the write. This means that local write speeds degrade to a
speed that is actually slower than if the user had opened a remote file. The realtime
bandwidth required by this system is high and, when used over the Internet, high latencies will

be experienced by users.

Tokens are more commonly used in networking technology for electrical signalling wires
connecting electrical devices rather than file servers. A token is a notional concept and was
first popularised by a token ring local area network technology as described in US patent 4 293

948. Token passing around a ring in this fashion is well understood and documented.

The principle behind tokens and token passing is that, when in a system of interconnected
nodes connected by electrical signalling wires, it is required that no two nodes perform the
same or similar operation at the same time. For example, no two electrical devices at different
nodes using a shared electrical signalling wire should be able to transmit on that wire at the
same time. A token is passed between the nodes and no node performs an operation that
must not be carried out by two nodes at once until it holds the token. No node passes on the

token until it has completed any such ongoing operation.

10

15

20

25

30

35

40

WO 2010/131023 PCT/GB2010/050754

2

The token ring technology referred to continually passes the token around in the ring of nodes
in case any node needs to use it. This even occurs when the system is idle and no electrical
devices are transmitting. Although this network activity occurs when the system is idle, this is
practical because the available bandwidth is dedicated solely to the token ring technology and

the latency over a local area network is low.

For a system of nodes connected over a wide area network (WAN), using token ring is a
problem because there is typically other traffic that also requires bandwidth. It is therefore not
practical to use up bandwidth when the system is idle. Additionally, latencies encountered on
WANSs in practice could mean that on a system with just a few nodes it would take seconds for
a token to pass all the way round a system, and tens of seconds to detect and recover a lost or
corrupted token. This sort of delay would be unacceptable to users who need to access the file
associated with the circulating token and who typically prefer delays under 200ms in order for

such delays to appear imperceptible to them.

An alternative to passing tokens around in a ring is to pass them point-to-point between nodes.
Many modern WANSs are in fact virtual private networks (VPNs) operating over the Internet
which is a packet switched network. A problem with token passing over the internet is that
tokens are passed as messages and are not guaranteed to reach their destinations. In prior art
configurations, in order to successfully pass a token between two nodes it is necessary to
transmit a message between the nodes and for both nodes to be in mutual agreement as to
whether the message was successfully transmitted. Over an unreliable medium this is
impossible and so messaging cannot be used to pass a token reliably. This problem was first
published together with its proof by Akkoyunlu et al in 1975 and is now known as the Two

Generals' Paradox.

The token ring method deals with the unreliable network and lost messages/tokens problem by
re-creating the token if the token does not pass a particular node in the ring after a fixed
amount of time. However, with point-to-point token passing this solution is not possible.
Without tokens being passed around in a ring no single node is able to perform this type of

monitoring.
An aim of the present invention is to provide a file server and method of replication that

overcomes or obviates at least one problem associated with the prior art whether mentioned

herein or not.

Summary of the Invention

According to a first aspect of the present invention there is provided a method of controlling the

opening of a file, the file being one of a plurality of files on a replicated file server connected to

10

15

20

25

30

35

WO 2010/131023 PCT/GB2010/050754

one or more other replicated file servers over a network, each of said plurality of files being
associated with a corresponding unique file token, the file token being held on one of the file
servers only, the method comprising the steps of: the file server attempts to acquire the file
token; and if the file server acquires the file token, the file server permits the opening of the

file.
Suitably, the file server attempts to acquire the file token by first checking if it holds the file
token and if it does hold the file token it permits the opening of the file without requesting the

file token from another file server.

Suitably, if the file server does not hold the file token, the file server attempts to acquire the file

token by requesting the file token from the other replicated file servers.

Suitably, the request for the file token is made by transmitting a message peer-to-peer from

the requesting file server to each of the other filer servers.

Suitably, if any of the other file servers refuses to pass the file token, the requesting file server

does not permit the opening of the file.

Suitably, if none of the other file servers have the file token, the requesting file server recreates

the file token and permits the opening of the file.

Suitably, the file token is recreated using information stored on the requesting file server.

Suitably, the file token is recreated using information stored on the requesting file server and

one or more of the other file servers.

Suitably, the file token comprises a file version and one of the plurality of other file servers
does not pass the file token if the file version of the file token is greater than the file version of
the file held on the requesting file server.

Suitably, each file server maintains a local token list of the file tokens it currently holds.
Suitably, opening a file comprises opening a file for writing or for reading.

Suitably, each file server maintains a local token cache of the file tokens it has previously held.

Suitably, the requesting file server recreates the file token using information stored in its local

token cache.

10

15

20

25

30

35

WO 2010/131023 PCT/GB2010/050754

Suitably, the requesting file server recreates the file token using information stored in its local

token cache and the local token cache of one or more of the other file servers.

Suitably, if the requesting file server has not received the file token and does not receive a
response from each of the other file servers within a defined period of time, a timeout occurs
and the requesting file server does not acquire the file token and is not permitted to open the

file.

Suitably, the files are stored in directories in a hierarchical structure where each file and
directory contained within a parent directory is a child of that parent directory, each directory
has a corresponding unique directory token held on one of the file servers only, and the
directory structure is replicated across the file servers, where a file server cannot permit the

creation of deletion of a child file or directory unless it holds the parent directory token.

Suitably, the file server first checks if it holds the directory token and if it does hold the

directory token it permits the creation or deletion of a child file or directory.

Suitably, if the file server does not hold the directory token, the file server acquires the
directory token by requesting the directory token from all other file servers; and acquires the

directory token from one of the other file servers.

Suitably, the directory token comprises directory token data relating to the creation and

deletion of first generation child entries.

Suitably, the directory token data relates to the creation and deletion of first and subsequent

generation child entries.

Suitably, each file and directory additionally comprises a name sequence number and the
directory token comprises directory token data comprising the directory name sequence
number, whereby one of the plurality of other file servers does not pass the directory token if
the directory token name sequence number is greater than the directory name sequence

number.

Suitably, when a new token is created, the parent token name sequence number is

incremented.

Suitably, when a token is deleted its parent token name sequence number is incremented.

10

15

20

25

30

35

40

45

WO 2010/131023 PCT/GB2010/050754

According to a second aspect of the present invention there is provided a file server arranged

to perform the method of the first aspect of the present invention.
According to a third aspect of the present invention there is provided a computer-readable

recording medium having recorded thereon program code instructions arrange to cause a file

server to execute the method of the first aspect of the present invention.

Brief Description of the Drawings

For a better understanding of the invention, and to show how embodiments of the same may
be carried into effect, reference will now be made, by way of example, to the accompanying
diagrammatic drawings in which:

Figure 1 shows a flow chart for a file server requesting a token;

Figure 2 shows a flow chart for a file server receiving a token request;

Figure 3 shows a flow chart for a file server requesting the creation of a file;

Figure 4 shows a flow chart for a file server receiving a creation notification;

Figure 5 shows a flow chart for a file server receiving a deletion notification; and

Figure 6 shows a flow chart for a file server requesting the deletion of a file.

Description of the Preferred Embodiments

In a first embodiment, a file server is provided. The file server is implemented using a stack-
based architecture. In this architecture, different component layers are notionally stacked
together and lower layers provide services to upper layers. The lowest component layer in this
architecture is the wide area network (WAN). A typical implementation on a WAN is the
Internet. Services provided by this component are an unreliable message passing service as
implemented for example with UDP and a reliable stream service as implemented for example
with TCP.

Sitting above the WAN is a message caching layer. The message caching layer sits beneath a
token passing layer and caches requests from, and replies to, the token passing layer so that
these can be resent and duplicates removed as required. The token passing layer passes
tokens to other file server token passing layers and communicates to an upper replicated file
system layer that the token is held. The replicated file system layer is able to lock and unlock

the tokens in the token passing layer. Tokens are described below.

Above the token passing layer is the replicated file system layer. This layer implements a fault-

tolerant, distributed multi-master replicated file system and handles the creation, modification

10

15

20

25

30

35

WO 2010/131023 PCT/GB2010/050754

and deletion of files and directories. Multi-master refers to the fact that any file server node
may initiate a change. It uses the token passing layer to determine if and when a given create,
open, rename or delete request from a user application layer, which sits above it, should
succeed. The user application layer connects the user applications to the replicated file

system.

Each instance of this stack represents a single node. The system as a whole contains a

plurality of nodes and thus a plurality of stacks.

The file server provides a file system having a lowest level root directory containing other
directories which branch off from this root directory and files which are stored in these
directories. The file server is connected to a network at a node of the network. Other file
servers are also connected to this network at their respective nodes. The file servers are
replicated in that they aim to replicate the file systems, the same directory structure and file
content, across the servers. When these servers are synchronised, the file servers are truly

replicated and the file systems are the same across all file servers.

One or more users have client computers connected to a particular file server. These client
computers access the files stored on the file server. When a file is opened by a first user on a
file server at a particular node, a second user connected to different file server at a different
node is restricted in the possible operations they can perform on that same file replicated on
their file server. Opening a file comprises opening a file for writing or for reading. These
restrictions are such that the second user’s file server effectively behaves as though the file
accessed by the first user is located on the same file server as the second user rather than a
different file server. Once changes have been made to a file system on any particular file
server, these changes are replicated and synchronised across all of the file servers on the

network.

In order to achieve the file restriction, replication and synchronisation across file servers
connected to a network, tokens are used. The principle behind tokens and token passing is
that, when in a system of interconnected nodes, it is required that no two nodes perform the
same or similar operation at the same time: a token is passed between the nodes in some
fashion; no node performs an operation that must not be carried out by two nodes at once until
it holds the token; and no node passes on the token until it has completed any such ongoing

operation.

A token comprises token data which is stored on the file server. Each file and directory on a
file system has an associated token, and whilst the file systems are replicated across different

file servers, the tokens are not. In this embodiment the token data comprises a token identifier

10

15

20

25

30

35

WO 2010/131023 PCT/GB2010/050754

and a token version. The token identifier is information relating to which file or directory it is

associated, that is, the token identifier is the full path name of a directory or file.

The token version is an integer value and corresponds to the latest available revision number
for any given file. When a file is amended, the corresponding token version is incremented by

one.

The replicated file system layer may modify the token data only if the local file server holds the
token. When a token is requested, the requesting file server makes this request subject to
some criteria which must be met for the token passing to succeed. If a file server receives a
request with criteria it will pass the criteria in the request to its replicated file system layer
together with the token data that it already holds. The replicated file system layer will then

perform the comparison and veto the request if required.

When a token is requested in this embodiment, the requesting file server makes this request
subject to the criterion that the token data that contains the file revision number is equal to or
lower than the version number of the replica of the file held on the requesting server. The
server that receives this request will only pass the token if this criterion is held. This prevents

the token being passed unless the requesting server already holds the latest version of the file.

The token is passed around between file servers and acts as a lock. If a user wishes to
perform an operation on a file stored on a particular file server, the file server must first obtain
the token before this operation can occur. If not held by the file server, the token must be
passed to it. Tokens are therefore passed point-to-point between file servers at different nodes

on a network.

Each file server maintains a local token list, a local token cache and a deleting token list. The
local token list comprises a list of token data. On any particular node a token is referred to as
being held when the corresponding token identifier is present in the local token list on that
node. Passing a token between file servers is achieved by passing the token data in a network
message over the network from one node to another. When a file server passes a token, the
token data is deleted from its local token list. When a file server is passed a token, the token
data is added to its local token list. When a file server requests a token, the rules that
determine whether the token can be passed are described below. The local token cache is
identical to the local token list except that it is used to store a copy of each token as it was last
seen, in order that lost tokens do not result in lost token data. The deleting token list comprises

a list of all token identifiers representing tokens that are in the process of being deleted.

10

15

20

25

30

35

WO 2010/131023 PCT/GB2010/050754

Referring to figures 1 and 2, a token is requested S10 by a requesting file server. The
requesting file server sends this request to all file servers on the network by broadcasting,
multicasting or sending messages in turn. When a file server receives a request S20 it
determines whether it has already made a request for the same token S21 and if it already has
an outstanding request for the same token then it refuses the request S28 and processing
terminates. If the token identifier is in the deleting token list $S29 then it refuses the request and
processing terminates. If the token identifier is not present in the local token list $23, then it
declines the request S27, sends back the token data from the cached token list if present, and
processing terminates. Otherwise it passes the corresponding token data and the criteria from
the request to the replicated file system layer for checking S22. If the result is that the token
data fails the criteria in the request then it refuses the request S28 and processing terminates.
If it does hold the token then it determines whether the token is still needed S24. If the token is
still needed it refuses the request S28 and processing terminates. If the token is not needed
then it removes the token data from its local token list S25 and passes the token to the

requesting file server S26.

Once a request for a token is made, the requesting file server waits until replies are received
S13. If a reply contains a refusal S14 then it determines that a file server already holds the
token and cannot give it up so the request fails S18 and a negative response is sent to the
replicated file system layer. If a reply contains the token S15, it adds the token to its local
token list S17, stops waiting for replies and informs the replicated file system layer that the

token is now held.

If a reply is declined because the token data held by the responding file server does not meet
the criteria in the request S14, then the requesting file server can draw the conclusion that the
token cannot be acquired at all without having to wait for any further responses from other file
servers, and the request fails S18. It then passes this negative response to the replicated file

system layer.

If a reply is declined because the token is not held, the file server continues to wait for replies.
If all file servers have replied S16 and all have declined without passing the token, then the
token is not held by any of the file servers. The requesting file server compares the token data
in its local token cache with the cached data in its the decline messages and determines which
is the most up to date. This most up to date token data is checked against the criteria in the
original request S12. If the criteria fails, then the request fails $18. Otherwise the requesting

file server adds the most up to date token data to the local token list; thus recreating the token.

10

15

20

25

30

35

WO 2010/131023 PCT/GB2010/050754

If the requesting file server is still waiting for a response after a defined period of time then
timeout occurs, the request fails S18, and a response is sent to the replicated file system layer

that the token is not available.

If two computer systems on the same file server request the same token, the file server does
not attempt to act twice but instead can either refuse the second request immediately or merge

the two requests together.

Using this mechanism, the Two Generals' Paradox is avoided by not requiring that both nodes
involved in the passing of a token agree on the result; only the node requesting the token need
know the result. The node handing over the token only needs to know if it attempted to hand
over the token to make sure that it doesn't consider itself to still have the token. A possible
consequence of this is that the token could end up lost. This is a relatively unlikely occurrence
due to the message retransmissions carried out by the message caching layer. If it does
happen then, as described above, the token can be recreated in a manner that is guaranteed

not to be carried out by more than one node at once.

A token is created when its corresponding file is created. In order to create a file it must first be
determined that an identical file has not been created on a different file server since prior to
synchronisation, this new file would not yet be replicated across all servers. To determine this,
the token for the file to be created is requested from all other file servers. If all replies are

received and the token is not held, the file can be created along with a corresponding token.

A token is therefore implicitly created when it is first used. If a node receives a request for a
token that is not in its local token list, then it acts as if the token already exists but is not held

locally.

To delete a file, a node first acquires the corresponding token using the procedure detailed
above and then deletes the file. It then adds the token data to the deleting token list and
deletes the token data from the local token list and the local token cache. The token passing
layer then sends a message to each other node stating that it holds the token and that it is
deleting the file. When a node receives such a message it informs its replicated file system
layer that the file is being deleted. The replicated file system layer then deletes the file and the
token passing layer responds back to the node that is performing the deletion confirming that
the file deletion has been successful. Retries are sent until all nodes have responded and
confirmed that they have deleted the file. Once all nodes have responded, then the node

performing the deletion removes the token from its deleting token list.

To create or delete a directory, the same process is followed as for creating or deleting a file.

10

15

20

25

30

35

WO 2010/131023 PCT/GB2010/050754

10

Providing a true, fault-tolerant replicated file system that is replicated between distant nodes
while at the same time behaving exactly the same as a non-replicated file system present only
at the user's own node is particularly difficult. To make it appear exactly the same, it would
need to reproduce local file system semantics precisely. In most cases however it is not
necessary to replicate file system semantics precisely. Exact semantics are needed for
particular specialised applications such as database engines and email server queues but
many of these applications already provide a remote network protocol and do not need

replication at the file system level.

Files being used to store common user documents are those such as word processing,
spreadsheet and presentations files. The applications that manage these files typically apply
an access pattern that requires few of the full set of file system semantics to be preserved. For
example, some of these applications may apply the following workflow: the application locks
and opens a file; the application reads the entire file into memory or into a temporary local file;
the user interacts with the application and makes changes into the application's local copy; the
user saves the document, in which case the application writes the entire local copy back to the

file, and when the user is finished, the application closes and unlocks the file.

During the entire time that the application has locked the file, another application running even
at the same site is unable to access the file. This is normal behaviour as far as both the user
and the application are concerned and indeed this mandatory locking is the default behaviour
on some operating systems. Therefore, a replicated file system is still possible even without
replicating file system semantics associated with concurrent access to single files, and such a
replicated file system will still support the use of common user applications such as word

processors, spreadsheets and presentation tools.

To prevent concurrent writes and lost updates, a node will acquire a token for a file before
opening it for writing. Lost updates are described below. This will result in an exclusive lock
equivalent to the mandatory locks used in non-replicated systems. Writes to the file will only
occur locally and will not be immediately replicated to other nodes. Other nodes will not be

able to acquire the token that corresponds to the file.

When writing is complete and the local file is closed, the node will inform all other nodes that
an update is available, and will refuse to pass the token back to a node which does not have
the latest copy. When a node receives a notification that an update is available, it will
download the file or suitable file delta to update its local replica. A file delta is the difference
between two revisions of the same file. If the file or delta is particularly large, or downloading

immediately would lead to too much bandwidth use, the file is added to a list of files to be

10

15

20

25

30

35

WO 2010/131023 PCT/GB2010/050754

11

replicated later. If updates to many nodes are required, the nodes could use a distribution
mechanism such as BitTorrent to spread out the upstream bandwidth required and improve

performance.

Typically, file systems store more data about files and directories than solely their names and
content. This extra data can include ownership information, permission bits, access control
lists and extra streams and is referred to herein as metadata. For the purposes of replication
and token passing, it is sufficient to consider this metadata as part of the file data. Like file
data, the corresponding token is held for a given file or directory while its metadata is modified;
a metadata change creates a new file or directory revision; and the metadata is replicated at

the same time as file data.

After an update has been made to a file or to file or directory metadata on one node, there is a
period of time during which this change has yet to be replicated to other nodes. For
robustness, the situation where one or more nodes are not accessible also needs to be
considered. It is a valid state of the system for different nodes to have different revisions of a

file at the same time.

It is a design requirement that lost updates are prevented. A lost update occurs when: a first
user opens a file on first node for editing; a second user opens the same file on second node
for editing; the first user then changes and saves the file; and the second user then makes
different changes and saves the file such that there are then two versions of the original file.
When replication occurs one of the versions is overwritten and the changes represented in that

file have been lost.

Token data and criteria are used to ensure that a file cannot be opened for read or write
access on a node which has a file with an old revision. All changes to files and file and
directory metadata are counted by incrementing the token data integer representing the file

version.

Each node's replicating filesystem layer keeps track of a version number against every file and
directory on the system. When acquiring a token, in order to make a modification to a
particular file or directory, the request is sent with the criterion that the token data version
number must be equal to or less than the version number that the node already holds. This
ensures that the node does not acquire the token that corresponds to a file or directory if the
local copy is out of date. If a node does have a request refused because of criteria failure, then
it is able to act by synchronizing the latest copy of the file or directory before requesting the

token again as necessary.

10

15

20

25

30

35

WO 2010/131023 PCT/GB2010/050754

12

When a node makes a change to a file or directory after it has acquired the corresponding
token, then it increments the token version number integer both in the replicating file system
layer and in the local token list before announcing the new revision to other nodes for
synchronization. This ensures that lost updates do not occur as no node is able to make a
change to a file or directory before first acquiring the corresponding token and no node can

acquire the corresponding token if it has an old version.

Whenever an operation such as a file creation, modification, or deletion fails and the cause for
the failure can automatically be eliminated, then the system eliminates the cause automatically
and retry the operation such that intermediate failure is hidden from the user. For example, if
the user attempts to open a file but a more recent version of the file is held on a different node,
the attempt to acquire the corresponding token will fail. The node on which the user made the
original request automatically replicates the newer version of the file, requests the token again,
successfully acquires it and allows the user to continue; thus the intermediate failure has been

hidden from the user.

In a second embodiment, a file server is provided having the same features of that of the first
embodiment and the token data additionally comprising an instance number and a name
sequence number (nsn). When a token is created it is assigned an instance number which
remains constant during its lifetime. This instance number is incorporated into the token
identifier such that the combination of instance number and filename are used to identify a

particular token.

Each node's replicating filesystem layer additionally keeps track of the nsn and instance
numbers as well as the version number as in the first embodiment against every file and

directory on the system. This tracking is referred to as local replica tracking.

When a token is requested in this embodiment, the requesting file server makes this request
subject to the criteria that both the sequence number and the name sequence numbers in the
token data are equal to or lower than the version number and name sequence number held
against the corresponding file in local replica tracking on the requesting server. The server
that receives this request will only pass the token if this criteria is held. This prevents the token
being passed unless the requesting server already holds both the latest version of the file and

the correct entries for any subdirectories.

Additionally each node keeps a list in the replicating filesystem layer referred to as the deletion
cache. Each entry in this list comprises a filename, a corresponding instance number and a list
of outstanding nodes. Entries in the deletion cache are expired automatically after a defined

period of time.

10

15

20

25

30

35

WO 2010/131023 PCT/GB2010/050754

13

Each file or directory is a child that sits under a parent directory in the file system. The child
has an associated child token and the parent an associated parent token. The rules for the
management of the nsn are referred to as the nsn management rules and are as follows: when
a new token is created, the parent token nsn is incremented by one and this new value is also
assigned to the nsn of the new token; and as a token is deleted, the parent token nsn is
repeatedly incremented until it is at least the value of its own nsn, with a minimum increment of
one. The value of the instance number of a new token is copied from the value of the parent
nsn after the parent nsn has been incremented in this way. Other incrementation schemes

may be possible.

As an example, following the rules above, consider the following. Tokens will be denoted
(name, instance number, nsn). A root token has values (root, 1, 1). A directory ‘foo’ is created
under root, the root nsn is incremented by one giving (root, 1, 2) and the new directory has
values (foo, 2, 2). A directory ‘bar’ is created under ‘foo’, the foo’ nsn is incremented by one
giving (foo, 2, 3) and the new directory has value (bar, 3, 3). The directory ‘bar’ is deleted, the
‘foo’ nsn is incremented by one giving (foo, 2, 4). A directory ‘bar’ is created again under foo’,

the foo’ nsn is incremented by one giving (foo, 2, 5) and the new directory (bar, 5, 5).

A token is created when its corresponding file is created. In order to create a file it must first be
determined that an identical file has not been created on a different file server since prior to

synchronisation, this new file would not yet be replicated across all servers.

To delete a token, a node first acquires the corresponding token using the procedure detailed
above. It then adds the token data to the deleting token list and deletes the token data from the
local token list and the local token cache. The token passing layer then sends a message to
each other node stating that it holds the token and that it is deleting the token. When a node
receives such a message it informs its replicated file system layer that the token is being
deleted. This is referred to herein as a deletion notification. The replicated file system layer
then acts as described below and the token passing layer responds back to the node that is
performing the deletion confirming that the token deletion has been successful. Retries are
sent until all nodes have responded and confirmed that they have deleted the token. Once all
nodes have responded, then the node performing the deletion removes the token from its

deleting token list.

Referring to figure 3, when a user attempts to create a new file or directory on a file server on
a particular node $110, the replicating file system layer first requests the token that
corresponds to the parent directory of the file or directory to be created S111. In this scenario

this token is referred to as the parent token. The parent token is requested subject to the

10

15

20

25

30

35

WO 2010/131023 PCT/GB2010/050754

14

criteria that both the version number and nsn from the local replica tracking associated with the
parent directory are equal to or exceed the corresponding version number and nsn on the
parent token being requested. If the parent token is not successfully acquired then the creation
attempt fails S119. If the parent token is successfully acquired then the nsn management rules
are followed to update the parent token $113 and to create a child token by adding a new
entry to the local token list S114. The entry in local replica tracking that corresponds to the
parent token is updated to match the updated nsn in the parent token S115. A new entry is
added to local replica tracking to match the child token that has been created S116. The
operation succeeds S117 and the new file or directory is created. The node then announces
the creation by sending a notification to each other node S118. This notification comprises the
token identifier and instance number that correspond to the file or directory that has been
created. The notification is sent in the form of a message using the message caching layer.

This type of notification is referred to herein as a creation notification.

Referring to figure 6, when a user attempts to delete a file or directory on a file server on a
particular node S140, the replicating file system layer first requests both the token that
corresponds to the parent directory of the file or directory being deleted S141 and the token
that corresponds to the file or directory being deleted S142. In this scenario, the token that
corresponds to the parent directory is referred to as the parent token and the token that
corresponds to the file or directory being deleted is referred to as the child token. Both tokens
are requested subject to the criteria that both the version numbers and nsns from local replica
tracking that are associated with the parent and child tokens respectively are equal to or
exceed the corresponding numbers on the corresponding parent and child tokens. If both
tokens are not successfully acquired then the deletion attempt fails S14A. If both tokens are
successfully acquired then the nsn of the parent token S144 and the corresponding nsn in
local replica tracking S145 is incremented following the nsn management rules, the entry
corresponding to the child token in local replica tracking is deleted S146, a corresponding
entry is added to the deletion cache S147 and the file or directory deletion proceeds as
described in the first embodiment S148. This results in the deletion of the child token which
causes the replicating file system layer on every other node to be notified of the token deletion
via each corresponding token passing layer $S130. The token identifier and instance number of
the corresponding file or directory that has been deleted is thus included in this notification.
Additionally the nsn increment that was used by the nsn management rules is added to this

notification. This type of notification is referred to herein as a deletion notification.

Referring to figure 5, when a node receives a deletion notification S130, it does the following. If
the deletion cache contains an entry with a matching token identifier and instance number
S131 then the notification is ignored S138. If local replica tracking contains an entry with a

matching token identifier but with a higher instance number S132 then the notification is

10

15

20

25

30

35

WO 2010/131023 PCT/GB2010/050754

15

ignored S138. If local replica tracking contains any entries that are children of the token
identifier in the notification S133 then the notification is ignored $138. Otherwise the token
identifier and instance number are added to the deletion cache S134, the nsn of the parent
entry in local replica tracking is incremented by the nsn increment from the notification S135
and the entry in local replica tracking with the identifier that matches the token identifier in the
notification is deleted S136. The node then deletes the file that corresponds to the deletion
notification S137.

Referring to figure 4, when a node receives a creation notification S120, it does the following. If
the deletion cache contains an entry with a matching token identifier and instance number
S121 then the notification is ignored S129. If an entry in local replica tracking with the same
identifier as the identifier in the notification exists but with a higher instance number than the
instance number in the notification $122 then the notification is ignored $129. If an entry in
local replica tracking exists with the same identifier as the identifier in the notification but with a
lower instance number than the instance number in the notification $S123 then a deletion
notification is created with the same identifier but with the lower instance number from local
replica tracking. This deletion notification is then processed as if it has arrived from the
network S124. If the deletion notification is ignored S125 then the original creation notification
is also ignored $129. Otherwise processing of the original creation notification continues. If an
identifier corresponding to the parent directory of the directory or file referred to by the
identifier in the notification does not exist in local replica tracking S126 then the notification is
ignored S129. Otherwise an entry in local replica tracking is created that corresponds to the
token identifier in the notification with the initial nsn and instance number of this entry taken
from the instance number in the notification and with a version number of zero $127. The

parent nsn in local replica tracking is then incremented by one S128.

When the acquisition of a token fails because of an nsn criteria failure, the requesting node
attempts to resynchronise the corresponding entry in local replica tracking from the node that
responded with the highest nsn in its failure reply. The requesting node holds processing on all
incoming notifications until the synchronisation is complete. The node that responds to the
synchronisation request only does so if it holds the corresponding token; otherwise the
synchronisation attempt fails. The response to the synchronisation request comprises the nsn
of the entry requested and a list of all child entries. This list is generated atomically. On
receiving the response, the requesting node updates its entries in local replica tracking to
match and then recursively synchronises any newly created child entries using the same

procedure.

In this embodiment, tokens in the system can be categorised into directory tokens and file

tokens. Directory tokens correspond to directories in the replicated file system and file tokens

10

15

20

25

30

35

WO 2010/131023 PCT/GB2010/050754

16

correspond to files in the replicated file system. Modifications to files and to file and directory
metadata are arbitrated by the use of tokens in the same manner as they are in the first
embodiment. As files cannot have children, the nsn and related management remain
effectively unused in file tokens and are only meaningful for directory tokens. Directory tokens

are acquired by a file server in the same way as file tokens.

In a third embodiment, a file server is provided having the same features of that of the second
embodiment. In addition, the replicated file system interacts with the user via hooks provided
by the operating system. For example, Linux provides FUSE for this purpose. The user can
then access the local file system as normal, and the replication layer manages replication and

intercepts file access calls such as open to make sure that tokens are present when required.

In a fourth embodiment, a file server is provided having the same features of that of the
second embodiment. In addition, software running the replicated file system on a system
provides the same interface to LAN-based non-replicated file systems using standard network
protocols. For example the replicated file system would be manifested as an application on a
system which presents an NFS or SMB/CIFS interface to client computers. A further variation
of this embodiment uses hooks provided in existing network file system serving software, such

as the vfs hooks provided with Samba.

In a fifth embodiment, a file server is provided having the same features of that of the second
embodiment. Here, the replicated filesystem is incorporated into a hardware device which can
store data. The device can link to one or more other devices to provide a distributed,
replicated, multi-master file system. By linking to other network attached storage devices with

the same capability, the user gets a fully distributed system.

The user presentation and interface is designed such that users see the system as a LAN-
based shared collaboration area with the property that it automatically synchronises to

systems at other locations.

The devices link together either by using a pre-existing VPN (for example corporate VPNs are
common), a VPN managed by the device manufacturer, a third party system (such as
Hamachi), or unencrypted. The connection can be mediated by one or more central servers
(such as with ICE/STUN/TURN and/or dynamic DNS services) to assist with locating nodes

with dynamic addresses and traversing NAT devices.

The devices can optionally be sold in multipacks already linked to make installation easy for

buyers.

10

15

20

25

30

35

40

WO 2010/131023 PCT/GB2010/050754

17

In a sixth embodiment, a file server is provided having the same features of that of the second
embodiment. Here the local file system access method is enhanced so that users do not have
to have a permanent network installation. One of the nodes in the system is presented at a
centrally accessible location and mediates connections between other nodes. The user
presentation and interface is designed so that although access to the replicated file system is
local (except for non-real-time replication and token passing latency), users see the system as

a shared, central collaboration area.

Token transfer may be managed by a combination of user intervention, automatic requests on
file access and automatic return of tokens to the central location on file closure. This

embodiment would be particularly useful for mobile users such as those using laptops.

In a seventh embodiment, a file server is provided having the same features of that of the
second embodiment. Additionally there is an extra component of the system, which is a
application that can be installed on users' systems. The application will run in the background
and send and receive information about ongoing file system operations from the replicated file

system layer and/or the file system interaction layer.

In the case that the user attempts an operation that cannot be carried out immediately, the

application will be able to prompt the user with further instructions.

For example, if a user attempts to rename a directory tree and this operation is carried out via
a file system hook, then the hook is expected to return quickly with either a success or a
failure. However, this replicated, distributed system may not be able to do so if it cannot
acquire all the required tokens quickly due to bandwidth or latency constraints. Further, if an
operation fails then the hook may only allow the system to present a small number of error
codes, none of which represent the actual error that took place. In this situation, depending on

configuration the system may do any of the following:

1. The hook returns failure, but the auxiliary application prompts the user to carry out the
same operation with a user interface that can deal appropriately with the delay,
optionally displaying progress as it does so.

2. The hook returns failure with the most appropriate code, and the auxiliary application
additionally notifies the user with a more accurate error, optionally together with
analysis, alternative options and with processes to correct the error.

3. The hook blocks until the operation is complete, but the auxiliary application notifies
the user of the reason for the delay and optionally displays progress.

4. The hook blocks until some reasonable time has been exceeded, and the auxiliary
application interacts with the user as in item 3.

10

15

20

25

30

35

40

WO 2010/131023 PCT/GB2010/050754

18

This system may apply to any operation, not just to renaming directories. For example, a delay

in acquiring a token to open a file may also present similar behaviour.

In an eighth embodiment, a file server is provided having the same features of that of the
second embodiment. Additionally the system of nodes comprises a single configuration token
with a special name in a namespace not shared by any other layer. The token data for this
configuration token is set to contain the subset of the system configuration for which

compatibility is required.

During startup, a node will acquire the configuration token and lock it by vetoing token transfer
to any other node until the startup procedure has either completed or failed. The minimum
configuration required to locate the other nodes in order to communicate and acquire the token
will be taken from either a cached previous good configuration or supplied by the system

administrator.

Once the configuration token has been acquired, the token data is examined to determine the
correct configuration, the system configures itself accordingly, the token veto is released and

startup may continue.

Alternatively, if the system administrator has specified a particular configuration, the
configuration token request may be set to contain criteria that the configuration must match the
supplied one. The startup will then only succeed if the supplied configuration matches the

configuration held on the token.

Before the configuration token data is changed, the node performing the change will first
acquire the token, lock it, and either verifiably push the new configuration data to all other
nodes or verify that the system is not running on any of the other nodes before unlocking it
again. This ensures that all nodes are running a compatible configuration and provides a

means to easily change the configuration across all nodes in a reliable manner.

In a ninth embodiment, a file server is provided having the same features of that of the second
embodiment. Additionally a read-only configuration module is provided which enables an

administrator to determine how the system handles read-only operations.

In the replicated filesystem described, a node will normally have a copy of each file but unless
the token is held there is no guarantee that the file is at the latest revision. If a token or even
the entire network is unavailable it is still possible to present the user of the replicated

filesystem with a read only copy.

10

15

20

25

30

35

40

WO 2010/131023 PCT/GB2010/050754

19

A disadvantage is that a file while opened read-only is typically not modifiable. If updates occur
on other nodes then the local node will be unable to update its live copy until the local access
is closed and in typical use this time delay may be measured over days, if for example a file
has been left open. The read-only configuration module allows the administrator to select the
option to present the user with a warning using the auxilliary GUI if this occurs. A second
selectable option is to go without this feature in order to avoid confusing users with out of date

copies.

Additionally, a node will allow and count multiple opens to a single file and not treat the file as
closed until all handles have been closed. Whilst the system uses mandatory locking between
different nodes, it may permit concurrent access on a single node without affecting integrity to

support these programs.

In a tenth embodiment, a file server is provided having the same features of that of the second
embodiment. Additionally, means are provided for dealing with stuck tokens where in case of
network partitioning, a token may end up on the opposite side of the partition from where it is

needed.

1. The user could specify for each file or set of files which nodes have priority for the
tokens, and each node could automatically pass the token to the priority site once the
token is no longer required.

2. When a stuck token does occur, the token could be transferred manually if
communication between the two sites by some other means is possible for example
telephone or fax. When the node requesting the token fails to acquire it because not
all nodes are reachable, it could generate a request code for the token based on the
token request message. The user could communicate this request code to a user at
the other side of the partition, and a reply code could be sent back in the same way.

3. If a node has become unavailable permanently, then a user or administrator can
declare this to one of the other nodes. That node will then contact all the remaining
nodes to remove the lost node from the set of nodes in the system. Once this is
complete, any node can appropriate any of the stuck tokens in the usual manner.

In an eleventh embodiment, a file server is provided having the same features of that of the
second embodiment. Additionally, means are provided to ensure temporary files are not
replicated. The system may match these files by examining their hidden status or by matching
their filenames against a set of patterns, and bypass usual access control through the

replicated file system so that their use is entirely local and not replicated.

In a twelfth embodiment, a file server is provided having the same features of that of the

second embodiment. Additionally, standard access control features are provided. Access

10

15

20

25

30

35

WO 2010/131023 PCT/GB2010/050754

20

control is available to the administrator as an independent option on each connected file
server.

When access control is enabled on a particular node, the administrator chooses the
authentication realm to which the given node belongs. Nodes on the system of connected file
servers do not necessarily have to belong to the same authentication realm or any

authentication realm.

Access control lists are maintained for each file on a given node in the same manner as in
existing implementations and is replicated as file metadata in the same manner as in the first

embodiment.

When nodes on the system of connected file servers do not all belong to the same
authentication realm, access control lists may contain entries that refer to security identifiers
which cannot be understood by a particular node. In this embodiment, access control ignores

such entries while acting on the remaining entries as normal.

Attention is directed to all papers and documents which are filed concurrently with or previous
to this specification in connection with this application and which are open to public inspection
with this specification, and the contents of all such papers and documents are incorporated

herein by reference.

All of the features disclosed in this specification (including any accompanying claims, abstract
and drawings), and/or all of the steps of any method or process so disclosed, may be
combined in any combination, except combinations where at least some of such features

and/or steps are mutually exclusive.

Each feature disclosed in this specification (including any accompanying claims, abstract and
drawings) may be replaced by alternative features serving the same, equivalent or similar
purpose, unless expressly stated otherwise. Thus, unless expressly stated otherwise, each

feature disclosed is one example only of a generic series of equivalent or similar features.

The invention is not restricted to the details of the foregoing embodiment(s). The invention
extends to any novel one, or any novel combination, of the features disclosed in this
specification (including any accompanying claims, abstract and drawings), or to any novel one,

or any novel combination, of the steps of any method or process so disclosed.

10

15

20

25

30

35

WO 2010/131023 PCT/GB2010/050754

21

Claims

1. A method of controlling the opening of a file, the file being one of a plurality of files on a
replicated file server connected to one or more other replicated file servers over a network,
each of said plurality of files being associated with a corresponding unique file token, the file
token being held on one of the file servers only, the method comprising the steps of:

the file server attempts to acquire the file token; and

if the file server acquires the file token, the file server permits the opening of the file.

2. The method of claim 1, wherein the file server attempts to acquire the file token by first
checking if it holds the file token and if it does hold the file token it permits the opening of the

file without requesting the file token from another file server.

3. The method of claim 2, wherein if the file server does not hold the file token, the file
server attempts to acquire the file token by requesting the file token from the other replicated

file servers.

4. The method of claim 3, wherein the request for the file token is made by transmitting a

message peer-to-peer from the requesting file server to each of the other file servers.

5. The method of claim 3 or claim 4, wherein if any of the other file servers refuses to

pass the file token, the requesting file server does not permit the opening of the file.

6. The method of any one of claims 3 — 5, wherein if none of the other file servers have
the file token, the requesting file server recreates the file token and permits the opening of the

file.

7. The method of claim 6, wherein the file token is recreated using information stored on

the requesting file server.

8. The method of claim 7, wherein the file token is recreated using information stored on

the requesting file server and one or more of the other file servers.

9. The method of any one of claims 3 — 8, wherein the file token comprises a file version
and one of the plurality of the other file servers does not pass the file token if the file version

of the file token is greater than the file version of the file held on the requesting file server.

10

15

20

25

30

35

WO 2010/131023 PCT/GB2010/050754

22

10. The method of any preceding claim, wherein each file server maintains a local token list

of the file tokens it currently holds.

11. The method of any preceding claim, wherein opening a file comprises opening a file for

writing or for reading.

12. The method of any preceding claim, wherein each file server maintains a local token

cache of the file tokens it has previously held.

13. The method of claim 12, wherein the requesting file server recreates the file token

using information stored in its local token cache.

14. The method of claim 13, wherein the requesting file server recreates the file token
using information stored in its local token cache and the local token cache of one or more of

the other file servers.

15. The method of any one of claims 3 — 14, wherein if the requesting file server has not
received the file token and does not receive a response from each of the other file servers
within a defined period of time, a timeout occurs and the requesting file server does not

acquire the file token and is not permitted to open the file.

16. The method of any preceding claim, wherein the files are stored in directories in a
hierarchical structure where each file and directory contained within a parent directory is a
child of that parent directory, each directory has a corresponding unique directory token held
on one of the file servers only, and the directory structure is replicated across the file servers,
where a file server does not permit the creation or deletion of a child file or directory unless it

holds the parent directory token.

17. The method of claim 16, wherein the file server first checks if it holds the directory
token and if it does hold the directory token it permits the creation or deletion of a child file or

directory.

18. The method of claim 17, wherein if the file server does not hold the directory token, the
file server acquires the directory token by requesting the directory token from all other file

servers; and acquires the directory token from one of the other file servers.

19. The method of any one of claims 16 — 18, wherein the directory token comprises

directory token data relating to the creation and deletion of first generation child entries.

10

15

20

25

WO 2010/131023 PCT/GB2010/050754

23

20. The method of claim 19, wherein the directory token data relates to the creation and

deletion of first and subsequent generation child entries.

21. The method of any one of claims 16 — 20 wherein each file and directory additionally
comprises a name sequence number and the directory token comprises directory token data
comprising the directory name sequence number, whereby one of the plurality of other file
servers does not pass the directory token if the directory token name sequence number is

greater than the directory name sequence number.

22. The method of any claim 21 wherein when a new token is created, the parent token

name sequence number is incremented.

23. The method of claim 22 wherein, when a token is deleted, its parent token name

sequence number is incremented.

24. Afile server arranged to perform the method of any preceding claim.

25. A computer-readable recording medium having recorded thereon program code

instructions arrange to cause a file server to execute the method of any of claims 1 — 23

26. A method of controlling the opening of a file substantially as described with reference to

figures 1 — 6 of the accompanying drawings.

27. A file server as described with reference to figures 1 — 6 of the accompanying

drawings.

WO 2010/131023

1/6

[SIO: Request tokerD

/813: Wait for repl3/

eply

14: Reply contain
token refusal?

S15: Reply
ontains token?

S16: Reply received
from all nodes?

fyes yes yes
S12: Highest cached
data fails criteria?
no
S17: Add to token list yes

S19: Proceed

S18: Fail

Figure 1

PCT/GB2010/050754

limeout

WO 2010/131023

2/6

PCT/GB2010/050754

(SZO: Token request receivecD

no

§29: Token in deletifiy
token list?

323: Token 11t
local list?

€S

822: Criteria failure

in upper layer?

yes no

no

no

S25: Remove from local list

/ S27: Decline reques/

S26: Approve request
and pass token

S21: Request for
ame token pending?

yes

€S

yes

S28: Refuse request /

Figure 2

WO 2010/131023 PCT/GB2010/050754

3/6

(Sl 10: User create requesa

/Sl 11: Request parent toke/

112: Parent toke
acquired?

S113: Update parent token

!

S114: Appropriate child token

S115: Update parent nsn in
local replica tracking

l

S116: Add child to local
replica tracking

I I

[Sl 17: Permit user requesa (Sl 19: Fail user requesg

\

S118: Send creation
notification

End

Figure 3

WO 2010/131023 PCT/GB2010/050754

4/6

(8120: Creation notification receive(a

121: Entry 18
deletion cache?

122: Same entry exists
xith higher instance numbg

123: Same entry exists
xjth lower instance numbg

yes

S124: Process deletion
notification

S: Deletion notificatio

pes ignored?

yes

S127: Add child to local

© replica tracking
no
A
S128: Update parent nsn in
local replica tracking
S129: End

Figure 4

WO 2010/131023 PCT/GB2010/050754

5/6

(8130: Deletion notification receivea

131: Entry 110
deletion cachel

132: Same entry exists
ith higher instance numbg

S134: Add entry to
deletion cache

yes

S135: Update parent nsn in

local replica tracking pes

yes

S136: Delete entry from
local replica tracking

l

S137: Delete corresponding file

End (S 138: Notification 1 gnorea

Figure 5

WO 2010/131023 PCT/GB2010/050754

6/6

(8140: User delete requesa

/8141: Request parent toker/ /8142: Request child toker/

S143: Both
okens acquired?

S144: Update parent token

l

S145: Update parent nsn in
local replica tracking

/

S146: Delete entry from
local replica tracking

l

S147: Add entry to
deletion cache

l

S148: Delete token

l .

(8149: Permit user requesg (Sl4A: Fail user requesa

N

no

End

Figure 6

INTERNATIONAL SEARCH REPORT

International application No

PCT/GB2010/050754

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6F17/30
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

GO6F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulied during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* | Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

X US 2008/319996 Al (COOK STEVEN D [US])
25 December 2008 (2008-12-25)
paragraph [0008] - paragraph [0009]
paragraph [0021] - paragraph [0023]

A US 5 689 706 A (RAO CHUNG-HWA HERMAN [US]
ET AL) 18 November 1997 (1997-11-18)
* abstract

column 2, line 40 - column 3, 1line 17

A EP 0 720 091 A2 (IBM [US])
3 July 1996 (1996-07-03)
* abstract

page 1, line 7 - line 12
column 6, line 42 - column 8, line 30

_____ o

1-27

1-27

1-27

m Further documents are listed in the continuation of Box C. [l See patent family annex.

* Special categories of cited documents :

*A" document defining the general state of the art which is not
considered to be of particular relevance

P document published prior to the international filing date but

T later document published after the internationat filing date
or priority date and not in conflict with the application but
cited to understand the principie or theory underlying the

invention
"E* earlier document but published on or after the international *X* document of particular relevance; the claimed invention
filing date cannot be considered novel or cannot be considered to
L document which may throw doubts on priority claim(s) or involve an inventive step when the document is taken alone
w_{u;;h 1S C"elg 1o esiaph'sh the publlcauonigaée of another *Y* document of particular relevance; the claimed invention
citation or other special reason (as specified) cannot be considered to involve an inventive step when the
0O document referring to an oral disclosure, use, exhibition or document is combined with one or more other such docu-
other means ments, such combination being obvious to a person skilled
in the art.

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016 de Castro Palomares

later than the priority date claimed *&" document member of the same patent family
Date of the actual completion of the international search Date of mailing of the international search report
16 July 2010 28/07/2010
Name and mailing address of the ISA/ Authorized officer

Formn PCT/ISA/210 (second sheet) (April 2005)

page 1 of 2

INTERNATIONAL SEARCH REPORT

international application No

PCT/GB2010/050754

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

A

US 2009/049153 A1 (MCFADDEN RENATA RAND
[US] ET AL) 19 February 2009 (2009-02-19)
* abstract

paragraph [0006]

paragraph [0028] - paragraph [0030]

EP 0 694 839 A2 (AT & T CORP [US])

31 January 1996 (1996-01-31)

cited in the application

* abstract

page 3, line 1 - line 25

page 11, line 27 - page 12, line 45

1-27

1-27

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

page 2 of 2

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/GB2010/050754
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 2008319996 Al 25-12-2008 CN 101329681 A 24-12-2008
US 5689706 A 18-11-1997 NONE
EP 0720091 A2 03-07-1996 DE 69521016 D1 28-06-2001
JP 3062070 B2 10-07-2000
JP 8263355 A 11-10-1996
us 5634122 A 27-05-1997
US 2009049153 Al 19-02-2009 NONE
EP 0694839 A2 31-01-1996 CA 2152528 Al 30-01-1996
DE 69522394 D1 04-10-2001
DE 69522394 T2 23-05-2002
JP 3476973 B2 10-12-2003
JP 9091185 A 04-04-1997
JP 2003263355 A 19-09-2003

Fomm PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - claims
	Page 23 - claims
	Page 24 - claims
	Page 25 - drawings
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - wo-search-report
	Page 32 - wo-search-report
	Page 33 - wo-search-report

