

(1) Veröffentlichungsnummer: 0 269 957 B1

EUROPÄISCHE PATENTSCHRIFT (12)

(51) Int. Cl.⁵: **H01J** 61/073 45 Veröffentlichungstag der Patentschrift: 03.03.93

(21) Anmeldenummer: 87117106.2

(2) Anmeldetag: 19.11.87

(54) Einseitig gequetschte Hochdruckentladungslampe.

Priorität: 01.12.86 DE 3641045

(43) Veröffentlichungstag der Anmeldung: 08.06.88 Patentblatt 88/23

45 Bekanntmachung des Hinweises auf die Patenterteilung: 03.03.93 Patentblatt 93/09

84) Benannte Vertragsstaaten: **BE DE FR GB IT**

(56) Entgegenhaltungen: FR-A- 2 445 615

GB-A- 524 574 GB-A- 2 126 415 US-A- 3 851 207 73) Patentinhaber: Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH **Hellabrunner Strasse 1** W-8000 München 90(DE)

(2) Erfinder: Gosslar, Achim Ouiddestrasse 43 W-8000 München 83(DE) Erfinder: Heider, Jürgen, Dr. Säbener Strasse 116 W-8000 München 90(DE)

Anmerkung: Innerhalb von neun Monaten nach der Bekanntmachung des Hinweises auf die Erteilung des europäischen Patents kann jedermann beim Europäischen Patentamt gegen das erteilte europäische Patent Einspruch einlegen. Der Einspruch ist schriftlich einzureichen und zu begründen. Er gilt erst als eingelegt, wenn die Einspruchsgebühr entrichtet worden ist (Art. 99(1) Europäisches Patentübereinkommen).

10

15

20

40

Beschreibung

Die Erfindung geht aus von einer einseitig gequetschten Hochdruckentladungslampe nach dem Oberbegriff des Anspruchs 1.

Derartige Hochdruckentladungslampen sind aus den DE-A 32 32 207 und 32 42 840 bekannt. Sie zeichnen sich durch relativ niedrige Leistungen (35 W-150 W) aus, so daß sie auch für die Innenraumbeleuchtung eingesetzt werden können.

Die Lebensdauer dieser Lampen ist dadurch eingeschränkt, daß die aggressive Füllung eine schnelle Korrosion der Elektroden bewirkt. Besonders stark tritt dieses Problem bei Füllungen auf, die einen hohen Anteil an Zinnhalogeniden enthalten. Des weiteren hat sich gezeigt, daß sich im Betrieb aufgrund der hohen Belastung der gewendelte Teil der Elektroden verbiegt, wodurch sich der Elektrodenabstand verändert. Es treten daher im Betrieb der Lampe störende Leistungsschwankungen auf.

In der EP-A 156 383 und der US-A 4 415 829 werden einseitig gequetschte Hochdruckentladungslampen beschrieben, bei denen auf einer leicht abgewinkelten Elektrode, bei der Spitze und Schaft aus einem einzigen Teil bestehen, ein separates Wendelteil aufgeschoben ist. Dies dient beispielsweise dazu, den Bogenansatz durch eine Änderung des elektrischen Feldes zu verbessern.

Die US-A 3 851 207 diskutiert eine zweiseitig verschlossene Natriumdampflampe, deren Füllung keine Halogenide aufweist. Eine der axial angeordneten Elektroden besitzt ein Wendelteil mit Kernstift. Diese Anordnung hängt mit der Aufheizung des Natrium-Amalgam-Reservoirs zusammen.

Aufgabe der Erfindung ist es, das Lebensdauerverhalten dieser Lampen zu verbessern und die störenden Leistungsschwankungen zu verringern.

Diese Aufgabe wird durch das kennzeichnende Merkmal des Anspruchs 1 gelöst. Weitere vorteilhafte Ausgestaltungen können den Unteransprüchen entnommen werden.

Ein wesentlicher Vorteil der Erfindung besteht darin, daß die Korrosion der Elektroden durch den Einbau eines Kernstifts stark eingeschränkt wird. Der dafür verantwortliche Mechanismus ist noch nicht aufgeklärt. Vermutlich bedingt die durch den Kernstift hervorgerufene Änderung des Temperaturprofils entlang der Elektroden eine positive Veränderung um Halogenkreislauf, wodurch sich der Wolframabbau nicht mehr überwiegend an den relativ kalten Stellen am Elektrodenschaft in der Nähe der Einquetschung vollzieht.

Der Einbau des Kernstifts führt außerdem vorteilhaft zu einer erhöhten Wärmekapazität der Elektroden insbesondere im Bereich des Wendelteils. Gleichzeitig ist die Wärmeableitung entlang des Elektrodenschafts gering, da der Durchmesser des

Elektrodendrahtes klein gehalten werden kann. Insgesamt ergibt sich dadurch zum einen eine gleichmäßigere Temperaturverteilung im Entladungsvolumen, wodurch die Abhängigkeit der Farbtemperatur von der Brennlage reduziert wird. Zum anderen wird die Zeit vom elektrischen Durchschlag bis zur Bogenübernahme verkürzt, so daß die Zündwilligkeit der Lampe verbessert wird. Die erhöhte Wärmekapazität vermindert zudem auch die Amplitude der mit der Frequenz der Wechselspannung verknüpften periodischen Temperaturschwankungen an den Elektroden und erniedrigt damit die Wiederzündspitze.

Ein weiterer Vorteil der Erfindung besteht darin, daß der Kernstift das Wendelteil mechanisch stabilisiert und dessen Verbiegen verhindert. Die bisher auftretenden Leistungsschwankungen werden deshalb weitgehend beseitigt.

Die Erfindung ermöglicht eine gezielte Beeinflussung und Optimierung wichtiger Parameter bei einseitig gequetschten Metallhalogenidentladungslampen. Ein besonders vorteilhaftes Verhältnis zwischen hoher Wärmekapazität an der Elektrodenspitze (d.i. im Bereich des Wendelteils) und geringer Wärmeableitung entland des Elektrodenschaftes läßt sich erzielen, wenn der Kernfaktor der Elektrode ≥ 100 % ist. Der Kernfaktor ist durch das Verhältnis zwischen dem Durchmesser des Kernstifts und dem Durchmesser des Elektrodendrahtes gegeben (vgl. z.B. US-PS 4 208 609).

Bei konventionellen Lampen sind Spitze und Schaft der Elektrode aus einem Stück Draht gefertigt. Dieser Draht ist mit einer Substanz mit geringer Elektronenaustrittsarbeit (ThO2) dotiert. Ein möglichst geringer Thoriumgehalt ist wünschenswert, um nicht das Farbspektrum der Lampe zu verfälschen. Die Verwendung eines separaten Kernstifts erlaubt es, nur den Bereich der Elektrodenspitze zu dptieren. Dadurch wird ein Fehlbetrieb verhindert, bei dem der Bogen sich zwischen den beiden Elektrodenschäften in der Nähe der Quetschdichtung ausbildet. Bei konventionellen Lampen erleichterte die unvermeidliche Mit-Dotierung des Schaftes diese Fehlfunktion. Durch Dotierung des Kernstiftes, ohne jedoch gleichzeitig den Elektrodenschaft zu dotieren, wird daher die Zuverlässigkeit des Lampenbetriebs erhöht.

Ein weiterer Vorteil ergibt sich, wenn der Kernstift auf dem der Entladung zugewandten Ende des Wendelteils übersteht. Da bei kleinwattigen Lampenversionen (z.B. 35 W) der Kernstift einen relative kleinen Durchmesser aufweist, wird somit der Bogenansatz erleichtert und stabilisiert. Dasselbe Ziel wird bisher bei zweiseitig gequetschten Lampen dadurch erreicht, daß auf einen geraden Elektrodenschaft eine Wendel aufgeschoben wird. Das Einsetzen eines Kernstifts ist jedoch herstellungstechnisch wesentlich günstiger, da hier die Befesti-

55

gung durch einfaches Klemmen erfolgen kann.

Bei höherwattigen Lampenversionen (z.B. 150 W) mit relativ großem Durchmesser des Kernstifts ist es dagegen vorteilhaft, wenn der Kernstift entladungsseitig mit der Spitze des Wendelteils abschließt. Die Befestigung kann hier entweder durch einfaches Klemmen erfolgen oder durch Verschmelzen von Kernstift und Wendelteil am entladungsseitigen Ende. Dabei bildet sich eine Kuppe, die wiederum einen stabilen Bogenansatz ermöglicht.

Der Kernstift steht vorteilhaft auch an dem der Entladung abgewandten Ende des Wendelteils über. Dadurch läßt sich die Temperatur in diesem wandnahen Bereich des Gefäßvolumens auf einfache Weise - durch die Länge des überstehenden Teils des Kernstifts - regeln. Insbesondere können dadurch unerwünschte Kühlstellen vermieden wer-

Besonders vorteilhaft erweist sich die korrosionshemmende Wirkung des Kernstifts bei Lampen mit Füllungen, deren Zusätze eine sehr hohe chemische Aggressivität gegenüber Einbauteilen aufweisen; dies gilt insbesondere für Zinnhalogenide, die zum Erzielen warmer Lichtfarben benötigt werden.

Die Erfindung wird anhand der folgenden Ausführungsbeispiele näher erläutert. Es zeigt

- Figur 1 eine Hochdruckentladungslampe mit einseitig gequetschtem Entladungsgefäß
- Figur 2 ein bevorzugtes Ausführungsbeispiel der erfindungsgemäßen Elektrode für die Hochdruckentladungslampe der Figur 1
- eine um 90° gedrehte Ansicht der in Figur 3 Figur 2 gezeigten Elektrode
- Figur 4 ein anderes bevorzugtes Ausführungsbeispiel der erfindungsgemäßen Elektrode
- Figur 5 einen Vergleich des Temperaturverlaufs entlang von Elektroden gemäß Figur 2, die entweder mit oder ohne Kernstift ausgerüstet sind
- Figur 6 einen Vergleich der Abweichung von der ursprünglichen Brennspannung als Funktion der Betriebsdauer für dieselben Elektrodenformen
- Figur 7 ein weiteres bevorzugtes Ausführungsbeispiel der erfindungsgemäßen Elektrode

In Figur 1 ist der Aufbau einer Hochdruckentladungslampe 1 mit einer Leistungsaufnahme von 150 W gezeigt. Die Lampe 1 besteht aus einem einseitig gequetschten Entladungsgefäß 2 aus Quarzglas, das von einem ebenfalls einseitig gequetschten Außenkolben 3, ebenfalls aus Quarzglas, umschlossen ist. Die Elektroden 4, 5 (in sche-

matischer Darstellung) sind mittels Folien 6, 7 gasdicht in das Entladungsgefäß 2 eingeschmolzen und über die Stromzuführungen 8, 9, die Dichtungsfolien 10, 11 des Außenkolbens 3 und über weitere kurze Stromzuführungen 12, 13 mit den elektrischen Anschlüssen eines Keramiksockels (nicht gezeigt) verbunden. In die Quetschung des Entladungsgefäßes 2 ist zusätzlich - über ein Drahtstück - ein auf einem Metallplättchen aufgebrachres Gettermaterial 14 potentialfrei eingeschmolzen. Als Füllung enthält das Entladungsgefäß 2 neben Quecksilber (15 mg) und einen Edelgas auch Metalljodide und -bromide von Natrium, Zinn, Thallium, Indium und Lithium (insgesamt 2,3 mg Metallhalogenide und zusätzlich 0,2 mg Zinn). Der Betriebsdruck beträgt ca. 35 bar. Die Lampe 1 weist bei einem Nennstrom von 1,8 A eine Lichtausbeute von 83 lm/W auf.

Figur 2 zeigt eine erfindungsgemäße Elektrode 4, 5 für die Hochdruckentladungslampe der Figur 1. Sie weist einen geraden Schaft 15 von 8,7 mm Länge und ein angeformtes Wendelteil 16 mit 2 1/4 Windungen mit einem Außendurchmesser von 1,50 mm auf, wobei der Schaft 15 und das Wendelteil 16 aus einem einzigen Drahtstück mit einem Drahtdurchmesser von 0,5 mm bestehen. Das Wendelteil 16 ist gegenüber dem Schaft 15 um etwa 90° abgewinkelt, wodurch die Entladung quer zu den beiden Schäften 15 verläuft. (Aus fertigungstechnischen Gründen ist das Wendelteil um weniger als 90° abgewinkelt; der genaue Wert hängt vom Durchmesser des Elektrodendrahtes und der Wendelsteigung ab.) Die lichte Weite zwischen den Windungen des Wendelteils 16 - mit einem inneren Durchmesser von 0,45 mm - beträgt 0,05 mm. Die Elektroden 4, 5 bestehen aus undotiertem Wolfram und enthalten keinen Emitter. In den Windungen des Wendelteils 16 ist ein Kernstift 17 aus Wolfram, das mit 0,7 Gew.-% Thoriumdioxid angereichert ist, eingesetzt. Der Kernstift 17 ist somit ebenfalls nahezu im 90°-Winkel zum Schaft 15 angeordnet. Der Kernstift 17 hat eine Länge von 1,9 mm und einen Durchmesser von 0,50 mm, so daß der Kernfacktor 100 % beträgt. Der Kernstift 17 schließt dabei mit seinem der Entladung zugewandten Ende mit der Spitze des Wendelteils 16 ab, wobei der Elektrodenabstand 6,5 mm beträgt. An dem der Entladung abgewandten Ende des Wendelteils steht der Kernstift 17 0,2 mm über. Die Befestigung der Kernstifts 17 im Wendelteil 16 erfolgt dabei in denkbar enfacher Weise durch reines Klemmen.

Eine um 90° gedrehte Seitenansicht dieser Elektrode 4, 5 zeigt Figur 3. Die Mittelachse des Wendelteils 16 einschließlich des Kernstifts 17 ist seitlich gegen den Schaft 15 versetzt. Dies rührt daher, daß Wendelteil 16 und Schaft 15 aus einem Stück gefertigt sind, wobei der Schaft 15 beim

10

15

25

35

40

50

55

Wendelvorgang tangential vom Wendelteil 16 weggeführt ist. Infolgedessen werden die beiden Elektroden 4, 5 in der Lampe so angeordnet, daß die Mittelachsen der beiden Wendelteile zueinander ausgerichtet sind.

Eine andere Möglichkeit der Befestigung ist in Figur 4 gezeigt. Dabei ist der Kernstift 17 (Durchmesser 0,5 mm) entladungsseitig mit dem Wendelteil 16 (Innendurchmesser 0,55 mm) verschmolzen. Diese Art der Befestigung bietet den Vorteil, daß die Toleranzen in den Abmessungen des Kernstiftes 17 und des Wendelteils 16 wesentlich unkritischer sind. Außerdem ergibt sich durch den Schmelzvorgang an der Elektrodenspitze eine Kuppe 18, die einen stabilen Bogensatz gewährleistet.

Die früher verwendete Elektrodenform entspricht der in Figur 2 beschriebenen Ausführungsform, jedoch ohne Kernstift. Ein Vergleich des Betriebsverhaltens von Lampen mit und ohne Kernstift liefert folgende Ergebnisse:

Bei Verwendung von Elektroden mit Kernstift ist die Elektrodenkorrosion in der Lampe deutlich herabgesetzt. Die mittlere Lebensdauer konnte um etwa 20 % gegenüber Lampen ohne Kernstift gesteigert werden.

Den Temperaturverlauf entlang der Elektroden zeigt Figur 5. Die entsprechenden Meßpunkte sind in Figur 2 markiert. Bei Verwendung von Elektroden mit Kernstift (Kurve I) ist entsprechend der größeren Wärmekapazität im Bereich des Wendelteils 16 der Temperaturabfall vom Bogenansatz (an der Kernstiftspitze, Meßpunkt a) bis zum Ende der Wendel (Meßpunkt b, c) deutlich geringer als bei der kernstiftlosen Elektrode (Kurve II). Dagegen ist der Temperaturabfall im Bereich des Schaftes (Meßpunkte d, e; der Meßpunkt e liegt in der Nähe der Innenwand der Quetschung) bei der Elektrode mit Kernstift (Kurve I) wesentlich stärker ausgeprägt, was einer reduzierten Wärmeableitung entlang des Schaftes 15 zur Quetschung hin entspricht. Der von der Entladung abgewandte, überstehende Teil des Kernstifts (Meßpunkt c') zeigt ein anomales Temperaturverhalten, da hier die Temperatur gegenüber dem Meßpunkt c wieder etwas ansteigt. Die beobachtete reduzierte Elektrodenkorrosion hängt wahrscheinlich mit diesem deutlich veränderten Temperaturverlauf zusammen.

Einen Vergleich der Leistungsschwankungen der beiden Lampentypen zeigt Figur 6. Als Maß für die Leistungsschwankungen dient die Variation Δ U_B der Brennspannung U_B (in Prozent); der absolute Wert der Brennspannung beträgt dabei etwa 100 V. Typisch für Elektroden ohne Kernstift (Kurve II) ist dabei der starke Abfall der Brennspannung (max. 12 %) während der ersten tausend Stunden Betriebsdauer. Dieses Verhalten wird durch eine Verringerung des Elektrodenabstands infolge des

Verbiegens des Wendeldrahtes hervorgerufen. Die verbesserte Stabilisierung bei Elektroden mit Kernstift (Kurve I) zeigt sich in dem wesentlich geringeren Abfall der Brennspannung (max. 2,5 %).

Ein Maß für die Beurteilung der Zündwilligkeit ist das Verhältnis (U_W/U_B) von Wiederzündspannung (U_W) zu Brennspannung (U_B) einer Lampe. Je kleiner dieses Verhältnis ist, umso besser ist die Bogenübernahme. Bei den Lampen, deren Elektrode einen Kernstift enthält, ist erwartungsgemäß die Zündwilligkeit besser $(U_W/U_B = 1,52)$ als bei Lampen mit kernstiftlosen Elektroden $(U_W/U_B = 1,56)$.

Bei einem weiteren Ausführungsbeispiel einer Hochdruckentladungslampe, die jedoch nur 35 W Leistungsaufnahme besitzt, sind die Elektroden 4, 5 (Figur 7) aus einem undotierten Wolframdraht mit einem Drahtdurchmesser von 0,25 mm hergestellt. Der gerade Schaft 15 hat eine Länge von 5,7 mm und das angeformte Wendelteil 16 mit 1 1/4 Windungen hat eine Höhe von 0,80 mm. Der Kernstift 17 (aus mit 0,7 % ThO₂ angereichertem Wolfram) hat eine Länge von 1,2 mm und einen Durchmesser von 0,3 mm, so daß der Kernfaktor 120 % beträgt; er steht mit seinem der Entladung zugewandten Ende 0.3 mm über das Wendelteil 16 über, wobei der Elektrodenabstand 4 mm beträgt. An dem der Entladung abgewandten Ende steht der Kernstift 17 um 0,2 mm über. Die Füllung des Entladungsgefäßes ist ähnlich dem ersten Ausführungsbeispiel, jedoch ist das Brom durch Jod ersetzt und ein zusätzlicher Überschuß an Zinn eingebracht. Auch diese Lampe zeigt ähnlich verbesserte Betriebseigenschaften wie die im ersten Ausführungsbeispiel gezeigte Lampe.

Zur Erzielung anderer Farbtemperaturen und Lichtfarben können auch Füllungen mit anderen Metallen und Halogeniden verwendet werden, beispielsweise wird durch eine Füllung mit Jodiden des Natrium und Thallium sowie mehrerer Seltener Erden (Dy, Ho, Tm) eine höhere Farbtemperatur erzielt.

Die genauen Abmessungen der Elektroden einschließlich des jeweils zu verwendenden Kernstiftes hängen von der Geometrie des Entladungsgefäßes und der Leistungsaufnahme der Lampe ab. Es muß dabei ein Kompromiß zwischen der Eindämmung der Elektrodenkorrosion und guter Zündwilligkeit gefunden werden. Dabei hat auch die Zusammensetzung der Lampenfüllung Einfluß auf die Elektrodenabmessungen.

Patentansprüche

- Einseitig gequetschte Hochdruckentladungslampe kleiner Leistung mit folgenden Merkmalen:
 - ein Entladungsgefäß (2) aus Quarzglas, das eventuell von einem Außenkolben (3)

20

25

35

40

umgeben ist

- einer Füllung aus Quecksilber und Edelgas mit Zusätzen an Metall-Halogeniden
- zwei Elektroden (4, 5) mit geraden, zueinander parallelverlaufenden Schäften (15) und an den Schäften (15) angeformten Wendelteilen (16), die jeweils gegenüber dem Schaft (15) um etwa 90° abgewinkelt sind und sich gegenüberstehen, wobei der Schaft (15) und das Wendelteil (16) aus einem einzigen Drahtstück bestehen,

dadurch gekennzeichnet, daß jedes Wendelteil (16) mit einem Kernstift (17) ausgestattet ist.

- 2. Hochdruckentladungslampe nach Anspruch 1, dadurch gekennzeichnet, daß bei beiden Elektroden der Kernfaktor des Systems Wendelteil (16) - Kernstift (17) ≥ 100 % ist.
- 3. Hochdruckentladungslampe nach Anspruch 1, dadurch gekennzeichnet, daß die Elektroden (4, 5) aus undotiertem Wolfram bestehen, während die Kernstifte (17) aus Wolfram bestehen, das mit Substanzen, die eine niedrige Elektronenaustrittsarbeit aufweisen, dotiert ist.
- Hochdruckentladungslampe nach Anspruch 1, dadurch gekennzeichnet, daß der Kernstift (17) entladungsseitig mit der Spitze des Wendelteils (16) abschließt.
- 5. Hochdruckentladungslampe nach Anspruch 1, dadurch gekennzeichnet, daß der Kernstift (17) entladungsseitig über das Wendelteil (16) übersteht.
- 6. Hochdruckentladungslampe nach Anspruch 4 oder 5, dadurch gekennzeichnet, daß der Kernstift (17) im Wendelteil (16) eingeklemmt ist.
- Hochdruckentladungslampe nach Anspruch 4, dadurch gekennzeichnet, daß der Kernstift (17) entladungsseitig mit dem Wendelteil (16) verschmolzen ist.
- 8. Hochdruckentladungslampe nach Anspruch 1, dadurch gekennzeichnet, daß der Kernstift (17) an dem der Entladung abgewandten Ende des Wendelteils (16) übersteht.
- Hochdruckentladungslampe nach Anspruch 1, dadurch gekennzeichnet, daß die Füllung außerdem reines Metall enthält.
- 10. Hochdruckentladungslampe nach Anspruch 1 oder 9, dadurch gekennzeichnet, daß die Füllungszusätze als wesentlichen Bestandteil Zinn

enthalten.

Claims

- **1.** Low power, high-pressure discharge lamp with a single pinch having the following features:
 - a discharge vessel (2) composed of quartz glass which is possibly surrounded by an external bulb (3)
 - a filling composed of mercury and noble gas with additives of metal halides
 - two electrodes (4, 5) having straight shafts (15), running parallel to one another, and helical parts (16), which are integrally formed on the shafts (15), are in each case bent through approximately 90° with respect to the shaft (15) and face one another, the shaft (15) and the helical part (16) being composed of a single wire piece,

characterised in that each helical part (16) is a equipped with a core pin (17).

- 2. High-pressure discharge lamp according to Claim 1, characterised in that, in the case of both electrodes, the core factor of the helical part (16) core pin (17) system is ≥ 100 %.
- 3. High-pressure discharge lamp according to Claim 1, characterised in that the electrodes (4, 5) are composed of undoped tungsten, while the core pins (17) are composed of tungsten which is doped with substances which have a low electron emission work function.
- **4.** High-pressure discharge lamp according to Claim 1, characterised in that the core pin (17) is terminated on the discharge side by the tip of the helical part (16).
- 5. High-pressure discharge lamp according to Claim 1, characterised in that the core pin (17) projects beyond the helical part (16) on the discharge side.
- 6. High-pressure discharge lamp according to Claim 4 or 5, characterised in that the core pin (17) is clamped in the helical part (16).
- 7. High-pressure discharge lamp according to Claim 4, characterised in that the core pin (17) is fused to the helical part (16) on the discharge side.
- 8. High-pressure discharge lamp according to Claim 1, characterised in that the core pin (17) projects at the end of the helical part (16) facing away from the discharge.

5

10

15

20

25

30

40

45

50

 High-pressure discharge lamp according to Claim 1, characterised in that the filling additionally contains pure metal.

9

10. High-pressure discharge lamp according to Claim 1 or 9, characterised in that the filling additives contain tin as the essential component.

Revendications

- 1. Lampe à décharge à haute pression et de faible puissance, à pincement unilatéral, présentant les particularités suivantes :
 - une enceinte de décharge (2) en verre quartzeux, qui est éventuellement entourée par une ampoule extérieure (3),
 - un remplissage formé de mercure et d'un gaz rare avec des additifs formés d'halogénures métalliques,
 - deux électrodes (4,5) possédant des tiges rectilignes (15) parallèles entre elles, et des parties ou portions de filament hélicoïdal (16), qui sont formées sur les tiges (15), sont repliés approximativement à 90° respectivement par rapport à la tige (15) et sont disposés en vis-à-vis, la tige (15) et la partie de filament hélicoïdal (16) étant constituées par un seul morceau de fil,

caractérisée par le fait que chaque partie de filament hélicoïdal (16) est équipée d'une tige formant noyau (17).

- 2. Lampe à décharge à haute pression suivant la revendication 1, caractérisée par le fait que pour les deux électrodes, le facteur de noyau du système partie de filament hélicoïdal (16)tige formant noyau (17) est ≥ 100 %.
- 3. Lampe à décharge à haute pression suivant la revendication 1, caractérisée par le fait que les électrodes (4,5) sont constituées par du tungstène non dopé, tandis que les tiges formant noyaux (17) sont formées de tungstène qui est dopé par des substances pour lesquelles le travail de sortie des électrons est faible.
- 4. Lampe à décharge à haute pression suivant la revendication 1, caractérisée par le fait que la tige formant noyau (17) se termine, du côté de la décharge, au niveau de la pointe de la partie de filament hélicoïdal (16).
- 5. Lampe à décharge à haute pression suivant la revendication 1, caractérisée par le fait que la tige formant noyau (17) fait saillie au-delà de la partie de filament hélicoïdal (16), du côté de la

décharge.

- 6. Lampe à décharge à haute pression suivant la revendication 4 ou 5, caractérisée par le fait que la tige formant noyau (17) est bloquée par serrage dans la partie de filament hélicoïdal (16).
- 7. Lampe à décharge à haute pression suivant la revendication 4, caractérisée par le fait que la tige formant noyau (17) est réunie par fusion, du côté de la décharge, à la partie de filament hélicoïdal (16).
- 8. Lampe à décharge à haute pression suivant la revendication 1, caractérisée par le fait que la tige formant noyau (17) fait saillie au niveau de l'extrémité, tournée à l'opposé de la décharge, de la partie de filament hélicoïdal (16).
- Lampe à décharge à haute pression suivant la revendication 1, caractérisée par le fait que le remplissage comporte en outre un métal pur.
- 10. Lampe à décharge à haute pression suivant la revendication 1 ou 9, caractérisée par le fait que les additifs de remplissage comportent de l'étain comme constituant principal.

55

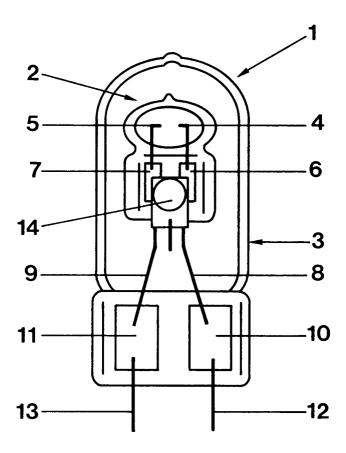
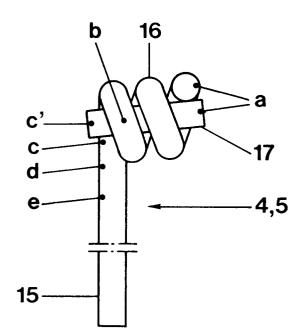



FIG. 1

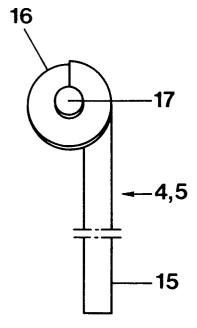
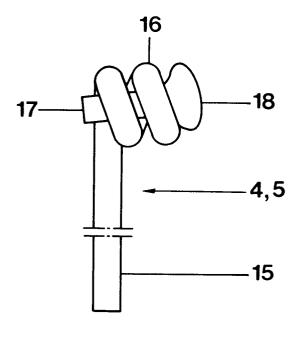



FIG. 2

FIG.3

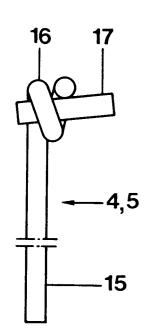


FIG. 4

FIG. 7

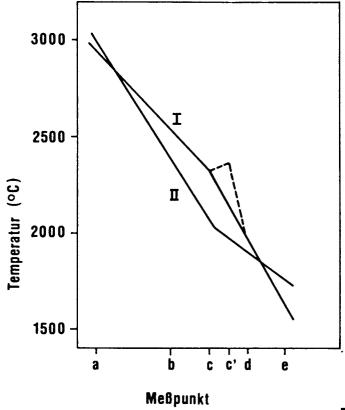


FIG.5

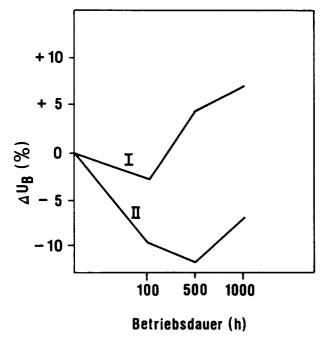


FIG.6