

Office de la Propriété Intellectuelle du Canada

Un organisme d'Industrie Canada Canadian Intellectual Property Office

An agency of Industry Canada

CA 2047498 C 2001/10/02

(11)(21) 2 047 498

(12) BREVET CANADIEN CANADIAN PATENT

(13) **C**

(22) Date de dépôt/Filing Date: 1991/07/22

(41) Mise à la disp. pub./Open to Public Insp.: 1992/01/24

(45) Date de délivrance/Issue Date: 2001/10/02

(30) Priorités/Priorities: 1990/07/23 (90201987.6) EP;

1990/08/09 (90202164.1) EP

(51) Cl.Int.⁵/Int.Cl.⁵ A23J 1/20

(72) Inventeurs/Inventors:

Cain, Frederick William, NL; Decio, Maurizio, NL;

van Bodegom, Bertus Marinus, NL; van Gastel, Hubertus Cornelis, NL;

Visser, Johannes, NL

(73) Propriétaire/Owner: UNILEVER PLC, GB

(74) Agent: RIDOUT & MAYBEE

(54) Titre: DISPERSIONS DE PROTEINES DANS LES PRODUITS ALIMENTAIRES

(54) Title: PROTEIN DISPERSIONS IN FOOD PRODUCTS

(57) Abrégé/Abstract:

The invention concerns casein-containing dispersions, optionally mixed with denatured protein containing compounds. The pH of the mixture is 4.8-5.2, which pH is regulated by stopping of the milk fermentation by heating. The dispersions can be used as fat replacer in food products such as dressings, toppings, mayonnaises, frozen deserts, cheese products, spreads.

Abstract

The invention concerns casein-containing dispersions, optionally mixed with denatured protein containing compounds. The pH of the mixture is 4.8-5.2, which pH is regulated by stopping of the milk fermentation by heating. The dispersions can be used as fat replacer in food products such as dressings, toppings, mayonnaises, frozen deserts, cheese products, spreads.

Protein dispersions in food products

In the last years it has become common practice to use low amounts of fats in food products. Therefore quite a lot of fat replacers have been developed, which can be used in food products in order to replace at least part of the fat, normally present in the food product. These fat replacers must give a fatty mouthfeel, whereas they also must take over the fat functionality of the fat in the food products.

Compounds from which it is stated in the prior art to meet these requirements are e.g. polyol fatty acid polyesters and non-aggregated denatured proteins with a specific particle size distribution.

Recently the use of substantially non-aggregated casein micelles as fat replacer in food products has been described (EP 345 226). These casein containing products are obtained from skim milk, preferably from ultrafiltered skim milk. Through the ultra filtration most of the lactose is removed from the casein product. In order to obtain non-aggregated casein micelles it is essential that the pH remains above 5.6. Below pH 5.6 aggregation of the micelles occurs.

In this EP application nothing is said about the use of aggregated casein micelles obtained from yoghurt or quark.

In EP 344 651 a method is disclosed for the preparation
of edible products, in particular breadspreads, in which
a mixture of a dewatered quark or yoghurt and an
unsaturated oil is used. In this application, however,
nothing is said about the ratio of protein: lactose in
the dewatered product. As the yoghurt or quark is not
heated the dewatered product will contain live
microorganisms, which will cause that the pH of the
product is always about 4.0. Moreover nothing is
disclosed about the use of this dewatered product in

frozen dessert.

In Food Microstructure vol. 2 (1983) pages 51-66 a yoghurt product is described with a dry matter content of 10-15% and a pH = 4.0. This product is obtained by centrifuging a yoghurt. The product shows a casein to non-casein protein ratio of about 4.6:1 to 1.1:1.

From EP 240 326 soft ice compositions are known, wherein a dried natural yoghurt powder, containing live bacilli, 10 is present. The dried natural yoghurt powder can be obtained by known methods. Nothing is disclosed about the pH of such a composition. As these yoghurt powders are obtained from natural yoghurt with a pH = 4.1-4.6, 15 the pH of the dried powder will most probably be in the same range. Another consequence of the use of dried, natural yoghurt will be that the lactose: casein ratio in the dried product will be the same as in the natural yoghurt. Therefore the use of these dried products in food products, e.g. in frozen dessert will automatically 20 lead to the introduction of quite a lot of lactose in the frozen dessert, with all the known disadvantageous effects.

From US 4 307 123 it is known to prepare dry freezer

mixes, which are preparable with water. In these mixes

1,5-20% of a protein source is present. This protein

source can be yoghurt solids prepared by fermentation of

a milk compound. These proteins do not necessarily contain

live active cultures and can have a blend taste. However

in this specification only the use of a yoghurt-like

protein source, in the form of a dried yoghurt solid,

mixed with corn syrup solids, as available from Stauffer

Chemical Company, is disclosed.

We have now found new casein containing products, that
show very good properties as a fat replacer, e.g. the
fatty mouthfeel of these products is excellent. These
products can be used in a number of food products
wherein it can replace at least part of the fat normally

present in the food product.

The product according to this invention therefore comprises a concentrated casein containing dispersion of substantially aggregated casein, preferably obtained

- from yoghurt and/or quark, which dispersion has a dry matter content of 10-80 wt%, preferably of 10-40 wt%, a pH of 4.8-5.2, whereas the weight ratio protein : lactose in the dispersion varies from 2.1 to 10:1, and the dispersion is free from live, milk fermenting bacteria.
- 10 Preferred dry matter contents are 12 to 20 wt%. A useful product is obtained, when the pH of the dispersion is 4.9-5.1. This product does not show an acidic taste.

Although the weight ratio protein: lactose can vary between 2:1 and 10:1, we prefer to use weight ratios of 2.5:1 to 6:1, most preferably 3:1 to 5:1.

More specifically a product according to the invention comprises a mixture of a concentrated casein containing dispersion especially obtained from yoghurt or quark of 20 substantially aggregated casein, which dispersion has a dry matter content of 10-80 wt%, preferably 10-40 wt%, a pH of 4.8 - 5.2, whereas the weight ratio protein: lactose in the dispersion varies from 2.1 to 10:1 which 25 dispersion is free from live, milk fermenting bacteria and a denatured protein particles containing aqueous dispersion that contains particles with a mean particle size, when measured dry of more than 0.6 μ m. More preferably the mean particle size of the denatured protein is more than 1.5 μ m, in particular 2.0-20 μ m, 30 when measured according to the technique described in EP 250 623 or EP 323 529.

Although in the yoghurt or quark dispersion the weight ratio protein: lactose can vary between 2:1 and 10:1, we prefer to use weight ratios of 2.5:1 to 6:1, most preferably 3:1 to 5:1.

The taste of the denatured, non-aggregated protein particles with a particle size, that is unsuitable for organoleptic purposes according to EP 250 623, because of the large particle size, is improved by mixing those particles with the concentrated yoghurt or quark. Therefore good results are obtained, when the concentrated yoghurt or quark and the denatured protein product are first made separately, after which the fractions are mixed.

The mixing of the two fractions should be done in such a way that the dry matter content of the mixed product is 10-30 wt%. This can be achieved by a) mixing of a concentrated yoghurt or quark with a high dry matter content (40-80 wt%) with a denatured protein containing dispersion with a relatively low dry matter content (5-20 wt%) or b) mixing of a concentrated yoghurt or quark with a relatively low dry matter content (10-25 wt%) with a nearly dry denatured protein containing product, as can be obtained from the protein dispersion.

Of course it is also possible to mix two fractions with dry matter contents in accordance with that of the desired end product.

Another way to come to the desired product is by mixing first of natural yoghurt or quark with the denatured protein containing dispersion and than removing a part, preferably at least 40% of the water, until in the end product the required ratio lactose: casein for the yoghurt or quark fraction is obtained.

30

35

However, the best results are obtained when the denatured protein dispersion is added to the milk product before it is fermented, then adding the bacteria culture and fermenting the mixture. After separation of part of the waterlayer, e.g. by centrifugation a mixture according to the invention is obtained, consisting mainly of concentrated casein and

denatured protein.

The ratio in which the two fractions can be mixed can vary considerably. As long as the ratio of casein to non-casein protein in the end product is between 0.3 and 3.0 an useful end product is obtained.

The product according to the invention cannot be made by first mixing a yoghurt or quark fraction into an undenatured protein containing solution and than heating the mixture to denature the protein.

In addition to the components present in our dispersions we prefer to use a gelling agent in our casein-containing dispersions. Preferred gelling or stabilising agents are kappa- and iota carrageenan, gelatin, gelling starch, xanthan gum, alginate, agar, gellan, pectin, guar gum, locust bean gum, microcrystalline cellulose or cellulose powder. The gelling agent is preferably added to the fermented product before it is heated in order to stop the fermentation.

The mixtures can be used in several food products.

Excellent frozen desserts, toppings, dressings, cheeseproducts mayonnaises, low fat spreads and zero fat

spreads are obtained by incorporating into the products
of 2 to 90 wt% of the casein, or casein and denatured
protein containing dispersions.

Especially by incorporation of 2 - 60 wt% of the casein
dispersions in toppings, toppings with excellent
properties are obtained. Similarly the dressings
contain preferably 5 to 50 wt% of the dispersion, the
mayonnaises 5 to 60 wt%, the low fat spreads 5 to 80 wt%
and the zero fat spreads 5 to 90 wt%. The frozen dessert
can contain 2-85 wt% of this dispersion.

The dispersions of concentrated, substantially aggregated casein micelles can easily be obtained from

milk products by adding milk fermenting bacteria, e.g. Lactobacillus bulgaricus, Lactobacillus acidophilus, Bifido bacteria Langem, Bifido bacteria breve, S. cremoris, S. diacetylactus, S. lactus, Leuconostoc cremoris, or S. thermophilus, to the milk product, fermenting the milk at normal temperature conditions (32-42°C) until the pH = 4.8-5.2, stopping the fermentation by heating the fermented milk above 70°C and removing 45 to 75% on weight basis of the water layer of the fermented product. This last step can be 10 performed by centrifugation or ultra filtration of the fermented product. The fermentation is preferably stopped at pH = 4.9-5.1. As fermenting agent also mixtures of yeasts and the above mentioned bacteria can be used. As has been disclosed above the fermentation can also be performed in the presence of denatured (whey) protein particles.

For the centrifugation an MSE-coolspin** centrifuge can be used. Centrifugation times being 10 - 45 minutes at 3,500 - 7,000 rpm (RCF: about 5000 q).

When ultra filtration is applied, this should be carried out using a membrane that passes lactose, water and other soluble milk products, whereas the casein micelles are retained. A membrane with a rating of 8,000 - 15,000 Daltons is very suitable.

In this separation process at least 40 wt% of the lactose originally present in the yoghurt or quark is removed via the water layer.

It is also possible to prepare a casein dispersion with a pH= 4.8-5.2 by the following process:

1) wash a casein dispersion with pH 4.0-4.6 with skimmed milk

35

^{**}trade-mark

7

- 2) concentrate it by centrifugation to 20 60% of its original weight
- 3) wash it with water
- 4) concentrate it to 15 80% of its original weight.

5

10

In this way a product can be obtained that does not show the particular acidic taste of yoghurt, when the pH of the yoghurt or quark is adjusted to 4.8 - 5.2 before the centrifugation takes place. However, the pH decreases again, because of a fermentation that can perform as live bacteria are still present in the product.

The invention also concerns the use of aggregated casein containing dispersions in food products wherein the casein dispersions according to the invention are used as fat replacer in toppings, dressings, mayonnaise, low fat spreads, zero fat spreads, cheese products, or frozen desserts.

The processing for the manufacturing of the different products is illustrated with the following examples:

Example I

Preparation of casein-dispersion:

25

A. Fat free yoghurt was centrifuged in a MSE coolspin** centrifuge for 30 min. at 4200 rpm. 50% whey was decanted from the yoghurt. This led to a product with the following characteristic:

30

visc. (Pa.S) 2.25
% dry matter 12
pH 4.0
D 3.2

35

The pH of this product was adjusted by adding skim milk (< 1% fat) in an amount that was about equal to the amount of concentrated yoghurt. The pH of

^{**}trade-mark

this product was 4.9. The mixture obtained was centrifuged again to a d.m. content of 15%. The product was stored at 0.5°C. The product displayed a sweet/cheesy taste. After storage for 1 week at 0.5°C the pH of the product was 4.4, whereas the viscosity was now at 20°C: 160 (Haake VT 02). This product still had a sweet/cheesy taste, however the mouthfeel was quite dry/chalky. Some noticeable lumps were present in the product.

10

5

To skimmed milk a culture of Lactobacillus bulgaricus was added. The milk was fermented at 40°C. During the fermentation the pH was measured. The moment a pH of 5.0 was reached, 0.1 wt% of 15 xanthan gum was added to the mixture and the partially fermented milk product was heated to a temperature of 75°C for 15 secs. The heated product, that no longer contained live bacteria, was centrifuged in a MSE coolspin** centrifuge for 30 20 min at 4200 rpm. 50% of the whey was decanted from the product. In this way a concentrated, yoghurtlike product with a dry matter content of 23% and a pH = 5.0 was obtained. After 1 week storage at 0.5°C the product displayed 25 the following characteristics: d.m. content 23% pH 5.0 viscosity at 20°C: 15 (Haake VT 02) The product tasted quite neutral, had a pleasant,

30

35

IC A mixture of skimmed milk and 15 wt% of centrifuged denatured whey protein with a mean particle size, when measured dry, of 0.8 μm, prepared according to the process described in EP 347 237, was made. This mixture was fermented and treated in the same way as described in IB. In this way a product was obtained that displayed the following

smooth mouthfeel, although it was a bit slimy.

^{**}trade-mark

9

characteristics:

d.m. content: 20%

pH = 4.9

pH, after storage at 0.5°C for 1 week: 4.8 viscosity at 20°C: 47 (Haake VT 02)
The taste of this product was the same as that of product IB. However, the typical aftertaste, that is connected with the denatured whey protein, was almost completely masked.

10

5

Example II

Preparation of French Dressing

A water phase (ambient T) containing water, sugar,

cider, vinegar, fructose, brine, flavour and tomato

paste is mixed with an oil phase, containing oil,

xanthan gum, prop.glyc.alg., EDTA and onion powder using

an Ultra Turrax** mixer. After 10 min. mixing a second

oil phase is added, containing oil, mustard flower,

paprika oleoresin, garlic concentrate and another mixing for 5 min. with the Ultra Turrax** is carried out. The obtained mixture is homogenized, using a Prestomill**: setting 8 slit width 0°.

This way an emulsion is obtained with a droplet size of $10-12 \mu m$.

At this stage the product of example IB is brought into the mixture and mixing is performed (5 min Ultra Turrax). The pH is adjusted to 3.1-3.3 and another homogenisation takes place with the Prestomill: setting 30 3 slit width 400°.

This way the following french dressing is obtained, which has excellent taste properties.

**trade-marks

10

	Soy bean oil:	15.7 wt
	concentrated yoghurt	
	(pH = 5.0) d.m. 23%:	20.0
	water:	32.8
5	vinegar	10.3
	HCl	0.45
	sugar	7.77
	sugar syrup	7.3
	NaCl	1.38
10	tomato paste	3.32
	p.g.a. / xanthan gum-	
	mixture	0.64
	flavours	0.28

15

Example III

20 Sunflower oil

Preparation of spreadable mayonnaise

In a way similar to the method described in example II a mayonnaise with the following composition is produced:

40.0%

	Whole egg	14.0
	Wine vinegar (10%)	3.0
	Salt	1.6
	Inst. clear gel	1.5
25	Papr. oleo resin	0.003
	β-carotene (0.4%)	0.1
	Concentr. yoghurt; d.m. 23%	30.0
	pH 5.0	
	Blue cheese	0.25
30	Cheese	0.5
	GFS gum	0.2
	Lacprodan 80**	2.0
	Lactose	2.5
	Water	:o 100%
35	pH: 3.7 (with 18% HC1)	
	·	

^{**}trade-mark

Example IV

Preparation of a topping (for spaghetti).

A topping was made in a way similar to the methods of examples II and III, which had the following composition:

	Butter fat	25.0%
	Olive oil	5.0
10	Tomato pastè (28% d.m.)	30.0
	Conc. yoghurt d.m. 23%	8.0
	pH 5.0	
15	Parmesan cheese	10.0
	gelatine (UG 719 N)	1.0
	Lacprodan 80**	1.5
	Salt	1.2
	Bouillon powder'	0.7
20	Onion powder	0.2
	K-sorbate	0.2
	Remirise AP**	0.5
	Water	to 100%
	pH 4.7 (no correction)	

Example V

25 Preparation of ice-cream

A water continuous emulsion was made of the ingredients mentioned in table I in the given amounts.

Table I

		wt%
30	Butter fat	1.8
	yogh-like prod. of example IB	8.0
	SMP	10.0
	Sugar	14.0
	glucose-solids	4.0
35	stabiliser/emulsifier	0.8
	flavour	0.04
•	water	balance to 100%
	**trade-marks	

The emulsion was homogenised at 20°C using a single stage Rannie (P = 150-180 bar) homogeniser. The homogenised product was pasteurised at 85°C for 20 secs. The pasteurised product was cooled in a heat-exchanger to 8°C. The cooled product was left overnight at this temperature. The mixture so obtained was fed to a continuous ice-cream freezer (MFSO-Technoho**), while air was introduced, to cool the product to -5°C. This way an excellent ice-cream was obtained, that showed an overrun of 100%, an acceptable texture and an excellent taste (not acidic, no after taste). The melt down of this product was slightly better, than the melt down of an ice-cream, that contained 1.5 wt% butterfat and 8.5 wt% denatured, whey protein.

Example VI Preparation of frozen desert

15

35

Five different water continuous emulsions were prepared with the compositions, mentioned in table II.

20	<u>table II</u>					
	composition	1	2	3	4	5
	Butterfat	10	2	2	2	2
	SMP	63	63	· 63	63	63
25	Saccharose	27	27	27	27	27
	Flavour casein disp.	0.02	0.02	0.02	0.02	0.02
	(ex IB) denat.whey		8.00		4.00	
30	protein disp mixture	. *		8.00	4.00	
	of ex.IC	-			_	8.00

^{*} made according to process of EP 347.237

From these compositions ice creams were made in the usual way (cf. ex V). The taste of these products were tested by a panel.

^{**}trade-mark

L 7265 (R)

The results being:
mixt 1 - mixt 2 - mixt 5 > mixt 4 >> mixt 3.

The product of composition 5 did not show an after taste, whereas the creaminess was improved, compared with the products of composition 4 or of composition 3. Therefore it is advantageous to add denatured whey protein to the milk before the fermentation is performed.

10

CLAIMS:

- 1. A mixture of a concentrated casein containing dispersion, wherein the casein is substantially aggregated, which dispersion has a dry matter content of 10--80 wt%, a pH of 4.8 5.2, and wherein the weight ratio protein: lactose in this dispersion varies from 2:1 to 10-1 which dispersion is free from live, milk fermenting bacteria and denatured protein particles containing aqueous dispersion, that contains particles with a mean particle size, when measured dry, of more than $0.6~\mu\mathrm{m}$.
- 2. Mixture according to claim 1, wherein the dry matter content varies from 10 to 30 wt%.
- 3. Mixture according to claim 1, wherein the weight ratio protein: lactose in the concentrated casein containing dispersion is 2.5:1 to 6:1, and wherein the mixture optionally contains a gelling agent.
- 4. Mixture according to claim 1, wherein the weight ratio casein protein: non-casein protein is 0.3-3.0.
- 5. Topping characterised by the presence of 2 to 60 wt% of at least one of the products of claims 1 4.
- 6. Dressing, characterised by the presence of 5 to 50 wt% of at least one of the products of claims 1 4.
- 7. Mayonnaise characterised by the presence of 5 to 60 wt% of at least one of the products of claims 1 4.
- 8. Low fat spreads characterised by the presence of 5 to 80 wt% of at least one of the products of claims 1 4.

- 9. Zero fat spreads characterised by the presence of 5 to 90 wt% of at least one of the products of claims 1 4.
- 10. Frozen dessert characterised by the presence of 2-85 wt% of at least one of the products of claims 1 4.
- 11. Topping, dressing, mayonnaise, frozen dessert, low fat spread or zero fat spreads according to the claims 5 10, wherein in addition to the mixture of claims 1 4 also a gelling agent is present.
- 12. Food products according to claim 11, wherein the gelling agent is chosen from the group: Kappa- and iota carrageenen, gelatin, gelling starch, xanthan gum, agar, alginate, gellan, pectin and microcrystalline cellulose.

The state of the s

RIDOUT & MAYBEE Toronto, Canada

Patent Agents

1. In the State of the Control of th

- --