
DE69910219T220040617
ß (19)
Bundesrepublik Deutschland
Deutsches Patent- und Markenamt
(10) DE 699 10 219 T2 2004.06.17

(12) Übersetzung der europäischen Patentschrift

(97) EP 1 101 172 B1
(21) Deutsches Aktenzeichen: 699 10 219.7
(86) PCT-Aktenzeichen: PCT/US99/05716
(96) Europäisches Aktenzeichen: 99 912 573.5
(87) PCT-Veröffentlichungs-Nr.: WO 99/048029
(86) PCT-Anmeldetag: 16.03.1999
(87) Veröffentlichungstag

der PCT-Anmeldung: 23.09.1999
(97) Erstveröffentlichung durch das EPA: 23.05.2001
(97) Veröffentlichungstag

der Patenterteilung beim EPA: 06.08.2003
(47) Veröffentlichungstag im Patentblatt: 17.06.2004

(51) Int Cl.7: G06F 17/30

(54) Bezeichnung: TRANSFORMATION DER PERSPEKTIVE AUF TABELLEN VON RELATIONALEN DATENBANKEN

(30) Unionspriorität:
39728 16.03.1998 US

(73) Patentinhaber:
Microsoft Corp., Redmond, Wash., US

(74) Vertreter:
Strehl, Schübel-Hopf & Partner, 80538 München

(84) Benannte Vertragsstaaten:
AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT,
LI, LU, MC, NL, PT, SE

(72) Erfinder:
GRAEFE, Goetz, Bellevue, US; ALGER, Jeff,
Redmond, US

Anmerkung: Innerhalb von neun Monaten nach der Bekanntmachung des Hinweises auf die Erteilung des europä-
ischen Patents kann jedermann beim Europäischen Patentamt gegen das erteilte europäische Patent Einspruch
einlegen. Der Einspruch ist schriftlich einzureichen und zu begründen. Er gilt erst als eingelegt, wenn die Ein-
spruchsgebühr entrichtet worden ist (Art. 99 (1) Europäisches Patentübereinkommen).

Die Übersetzung ist gemäß Artikel II § 3 Abs. 1 IntPatÜG 1991 vom Patentinhaber eingereicht worden. Sie wurde
vom Deutschen Patent- und Markenamt inhaltlich nicht geprüft.
1/19

DE 699 10 219 T2 2004.06.17
Beschreibung

Hintergrund der Erfindung

[0001] Die vorliegende Erfindung betrifft die elektronische Datenverarbeitung und insbesondere neue Anfra-
geoperationen für die Manipulation von Tabellen in relationalen Datenbanken.
[0002] Eine Datenbank ist eine Ansammlung von Daten in einer organisierten Struktur. Eine typische Daten-
bank ist in einem Computer als eine Gruppe von Datensätzen gespeichert, die jeweils eine Anzahl von Feldern
zum Aufnehmen von Dateneinträgen einer bestimmten Art, wie Zeichenketten, Zahlen oder Zeigern auf Daten,
die sich irgendwo anders befinden, aufweisen. Eine relationale Datenbank weist eine beliebige Anzahl recht-
eckiger Tabellen auf. Jede Tabelle weist eine Gruppe von Datensätzen auf, wobei jeder Datensatz als eine Zei-
le der Tabelle bezeichnet wird. Jeder Datensatz in derselben Tabelle weist die gleiche Anzahl von Feldern auf.
(Einige Felder in einem Datensatz können jedoch keine Daten enthalten, was durch einen NULL-Wert ange-
geben wird.) Die Felder einer Tabelle bilden einen Satz von Spalten, die festgelegte Namen aufweisen können,
die nicht Teil der Daten selbst sind. Die Datensätze weisen keine externen Angaben auf, um sie individuell zu
identifizieren. Vielmehr wird auf sie durch einen Schlüssel zugegriffen, der aus dem Inhalt irgendeiner Kombi-
nation der Felder besteht, so daß eine relationale Datenbank als ein Software-implementierter, nach dem Inhalt
adressierbarer Speicher angesehen werden kann.
[0003] Ein Datenbankmanagementsystem (DBMS oder Datenbanksystem) ist eine Computersoftware zum
Speichern, Unterhalten und Durchsuchen der Daten in einer Datenbank. Ein DBMS weist gewöhnlich Einrich-
tungen zum Erhöhen der Leistungsfähigkeit, der Zuverlässigkeit und der Integrität, wie Indizes, Protokolle und
Datensatzsperren, auf. Es weist stets eine oder mehrere Schnittstellen zum Finden bestimmter Daten aus der
Datenbank, und um diese Anfragen einer Suchmaschine zu präsentieren, auf. Die Maschine durchsucht die
Datenbank und gibt dem Benutzer ein Ergebnis, gewöhnlich in Form einer relationalen Tabelle, zurück, das die
Spezifikationen der Anfrage erfüllt.
[0004] Die am weitesten verbreitete Schnittstelle für relationale Datenbanken ist die strukturierte Anfra-
gesprache ("Structured Query Language") (SQL). Wenngleich viele Varianten dieser Schnittstellensprache
existieren, wurden vom American National Standards Institute (ANSI) und der International Standards Organi-
zation (ISO) Standardversionen definiert. Die meisten gegenwärtigen kommerziellen Verwirklichungen von
SQL folgen diesen Standardversionen, wenngleich viele von ihnen Sprachenkonstruktionen zusätzlich zu den
im Standard definierten oder mit einem anderen Grad an Konformität aufweisen.
[0005] Relationale Datenbanken und relationale Anfragesprachen behandeln Daten als einen Satz rechtecki-
ger Tabellen. Viele Datenbanken sind jedoch konzeptionell mehrdimensional und beruhen auf Achsen, wie der
Zeit {Tag, Monat, Jahr}, dem Ort {Laden, Stadt, Staat}, der Kategorie {Produkt, Produktgruppe}, einem Agie-
renden {Angestellter, Abteilung, Zweig}, der Bezahlung {Bargeld, Scheck, Kredit} usw. Ein Benutzer findet es
häufig nützlich, solche Daten als eine Ansammlung von Ansammlungen anzusehen, und möchte sie aus ver-
schiedenen Perspektiven betrachten. In dem vorstehenden Beispiel ist eine Perspektive eine Ansammlung von
Datensätzen, wobei jeder Datensatz einen Ort repräsentiert und eine Ansammlung monatlicher Verkaufsdaten
für diesen Ort enthält, eine andere Perspektive sieht eine Ansammlung von Datensätzen (also Zeilen einer Ta-
belle), wobei jeder einen bestimmten Zeitpunkt bezeichnet und die Felder jedes Datensatzes (also die Spalten
der Tabelle) Verkaufszahlen für die verschiedenen Kategorien enthalten.
[0006] In dieser Hinsicht wäre die Fähigkeit zum Transformieren einer Datenbanktabelle von einer Perspek-
tive in eine andere, also zum Drehen der Dimensionen der Daten, ein wertvoller Zusatz zu den herkömmlichen
Fähigkeiten einer Anfragesprache, wie SQL. In diesem Zusammenhang bedeutet das Drehen von Perspekti-
ven oder Dimensionen das Tauschen einer in einer Tabelle als ein Spaltensatz dargestellten Dimension gegen
eine als ein Zeilensatz dargestellte Dimension. Herkömmliche relationale DBMS-Produkte und -Normen wei-
sen keine direkte Operation zum Drehen von Perspektiven auf. Wenngleich es möglich ist, SQL-Anfragen zum
indirekten Erreichen dieser Wirkung zu formulieren, sind diese Anfragen groß, komplex, fehleranfällig, langsam
und schwer zu wirksamen Ausführungsplänen zu optimieren, selbst wenn eine Parallelverarbeitung verfügbar
ist.
[0007] Einige herkömmliche Tabellenkalkulationsprogramme ermöglichen es einem Benutzer, Daten in einem
vom Benutzer gewählten Rechteck von Zellen in der gleichen Weise auszutauschen, in der eine Matrix-Alge-
bra-"Transponierungsoperation" ein Matrixelement aij zu aji relokalisiert. Beim Pivot-Tabellen-Merkmal von Mi-
crosoft Excel wählt ein Benutzer beispielsweise ein Rechteck von Zellen, kopiert es in eine Zwischenablage,
zeigt auf eine Zielzelle und führt nach dem Auswählen von "Transponieren" aus einem Optionsmenü eine "Ein-
füge-Speziell-Operation" aus. Mit einem Paket kompatibler Anwendungsprogramme, wie Microsoft Office,
kann ein Benutzer sogar Daten aus einer Datenbanktabelle in der Datenbankkomponente von Microsoft Ac-
cess auswählen, sie als ein einzelnes Objekt in die Excel-Komponente als ein Rechteck von Tabellenkalkula-
tionszellen übertragen, die Zellen transponieren und die Zellen dann als eine Ansammlung von Datensätzen
in dem transponierten Format in die Access-Datenbank zurückübertragen. Pivot-Operationen bei Tabellenkal-
2/19

DE 699 10 219 T2 2004.06.17
kulationen sind in J. C. Nossiter, Using Excel 5 For Windows Que Corp, 1995 und in B. Desmarais, "Using the
Microsoft Excel Pivot Table for Reliability Applications", IEEE 34th Annual Spring Reliability Symposium (18.
April 1996), S. 79–81, beschrieben.
[0008] Das Transponieren von Dateneinträgen auf diese Weise ist sowohl umständlich als auch funktionell
beschränkt. Selbst bei kleinen Datenbanken ist das Aufrufen eines anderen Anwendungsprogramms lediglich
zum Ausführen einer einzigen Anfrage verschwenderisch. Für große Datenbanken macht die übliche Anforde-
rung, daß transponierte Daten im Speicher vorhanden sind, dieses Verfahren unmöglich. Für Client-/Server-Ar-
chitekturen, bei denen Host-basierte Suchmaschinen verwendet werden, gibt es keine Möglichkeit, eine Ver-
bindung mit einem Tabellenkalkulationsprogramm herzustellen, um die Operation auszuführen. In jeder Um-
gebung erfordert eine Transposition über ein Tabellenkalkulations-Arbeitsblatt einen manuellen Eingriff, so daß
es dabei nicht möglich ist, daß eine Transposition einen internen Teil einer Anfrage innerhalb eines Datenbank-
programms bildet. Diese externen Operationen können nicht an den hockentwickelten Reformulierungs-, Um-
schreib- und anderen Optimierungsprozeduren herkömmlicher Datenbank-Anfrageprozessoren und anderer
Suchmaschinen teilnehmen. Auf einer eher konzeptionellen Ebene verhindern grundlegende Unterschiede
zwischen Tabellenkalkulations-Arbeitsblättern und relationalen Datenbanktabellen die gewünschten Transpo-
sitionstypen. Beispielsweise sind die Namen der Spalten oder Felder in einer Datenbanktabelle kein Teil der
Tabelle selbst, und sie bilden keinen Datensatz der Tabelle in der Weise, in der Spaltenköpfe in einem Tabel-
lenkalkulations-Arbeitsblatt eine Zeile von Zellen innerhalb des Arbeitsblatts sind. Das Transponieren eines
Rechtecks von Zellen in einem Tabellenkalkulations-Arbeitsblatt kann eine Zellenspalte demgemäß nicht in die
Spaltennamen umwandeln, wenn die Zeilen des Tabellenkalkulations-Arbeitsblatts den Datenbankprogram-
men Datensätze in einer Tabelle zurückgeben.
[0009] Einige nicht-relationale Datenbanksysteme weisen Operationen auf, die Pivotisierungsoperationen bei
Tabellenkalkulations-Arbeitsblättern ähneln. OLAP (rechnergestützte analytische Verarbeitung – on-line ana-
lytical processing) kann eine Drehoperation an einem mehrdimensionalen "Datenkubus" ausführen, wie in U.
Flohr, "OLAP by Web", Byte, September 1997, S. 81–84, in E. Lindholm u. a., "Datamation's Feature Summary:
OLAP Servers", Datamation, Mai 1985, S. 70–71, in M. Frank, "BrioQuery 3.5", DBMS Online, Februar 1996,
in "OLAP and OLAP Server Definitions", (OLAP Council, 1995) und in C. B. Darling "Think Outside the OLAP
Box", Datamation, 15. April 1996, S. 88–92, erwähnt wurde.
[0010] Die Ausführungsmaschine des Microsoft-SQL-Server-Produkts hat eine streng interne Operation zum
Aufteilen jedes Eintrags einer Tabellenaktualisierung mit der Form (Zeilenkennung, alte Werte, neue Werte)
innerhalb eines Stroms von Aktualisierungseinträgen in einen "Löscheintrag" und einen "Einfügungseintrag",
wodurch gewisse Zeilen- und Spaltenwerte ausgetauscht werden, und eine ähnliche Operation zum Zusam-
menfassen eines "Löscheintrags" und eines "Einfügungseintrags" zu einem "Aktualisierungseintrag". Diese
Operationen stehen Benutzern nicht zur Verfügung und können nicht an Benutzeranfragen teilnehmen. Das
heißt, daß der Anfrageprozessor sie nur intern verwendet, um die wirksame Ausführung bestimmter Funktio-
nen zu erleichtern, die während des Aktualisierens von Datenbanken ausgeführt werden.
[0011] Demgemäß könnte die Datenbanktechnik durch Bereitstellen einer Einrichtung zur schnellen, wirksa-
men Drehung von Perspektiven, insbesondere für relationale Datenbanken, erheblich erweitert werden. Wei-
terhin besteht ein Bedarf an Drehungs- oder Transpositionsoperationen, deren Semantik und Syntax sich gut
in Anfragesprachen, wie SQL, als natürliche Erweiterungen integrieren lassen und welche in herkömmlich or-
ganisierten Datenbank-Anfrageprozessoren und anderen Suchmaschinen optimiert und ausgeführt werden
können, ohne zusätzliche komplexe oder idiosynkratische Einrichtungen hinzuzufügen.

Zusammenfassung der Erfindung

[0012] Die in den Ansprüchen 1, 11 und 17 definierte vorliegende Erfindung sieht eine "Pivotisierungsopera-
tion" zum Transformieren der Zeilen (Datensätze) und Spalten (Felder) einer Tabelle vor, wobei dieser Begriff
in einer relationalen Datenbank definiert ist, um verschiedene Perspektiven für die Dateneinträge in der Tabelle
bereitzustellen. Die Operation akzeptiert eine Eingangstabelle und eine Pivotisierungsspezifikation und er-
zeugt eine Ausgangstabelle. Sie findet in der Schnittstellensprachen-Organisation so statt, daß sie leicht in
herkömmliche Datenbank-Anfrageprozessoren, Suchmaschinen und Server integriert werden kann. Die Ope-
ration gibt Daten in den Feldern spezifizierter Tabellendatensätze in das gleiche Feld verschiedener Datensät-
ze, wobei die Werte von einer oder mehreren festgelegten Tabellenspalten als die Namen der Felder selbst
verwendet werden. Daten in allen weiteren Spalten werden in einer pivotisierten Tabelle entsprechend den Da-
tenwerten gruppiert.
[0013] Es ist manchmal einfacher, andere relationale Operationen an einer Datenbanktabelle aus einer an-
deren Perspektive auszuführen, selbst wenn das Endergebnis die ursprüngliche Perspektive aufweist. Daher
sieht die in den Ansprüchen 7, 15 und 19 definierte Erfindung auch eine "Entpivotisierungsoperation" als eine
Umkehrung der Pivotisierungseinrichtung vor. Es ist weiterhin manchmal erwünscht, eine gespeicherte Tabelle
oder ein Zwischenergebnis zu entpivotisieren.
3/19

DE 699 10 219 T2 2004.06.17
[0014] Diese Operationen vereinfachen zusammen mit einer einfachen und intuitiven Art des Aufnehmens
von ihnen in Datenbankanfragen das Schreiben von Anfragen und machen sie weniger fehleranfällig. Sie ver-
ringern oder beseitigen beispielsweise den Bedarf, Tabellen mit sich selbst zu verbinden. Das Verfahren zum
Aufrufen der Operationen ermöglicht ein tiefes Einbetten mehrerer Operationen mit einer einfachen und mäch-
tigen Syntaxerweiterung und einer wohldefinierten Semantik und wendet ein vertrautes Programmiersprachen-
paradigma an. Durch das Zulassen von Text als Verfahrensargumente in Anfragen werden die Mächtigkeit und
die Einfachheit der Verwendung der erweiterten SQL-Sprache verbessert. Weiterhin kann das Erweitern des
auf diese Weise verfügbaren Satzes relationaler Algebraausdrücke auf nichtprozedurale Anfrageausdrücke
auch auf andere Operationen, wie Probe, Oben und Rang ("sample, top and rank") angewendet werden.
[0015] Pivotisierungs- und Entpivotisierungsoperationen gemäß der Erfindung sind schon an sich mit vielen
Typen von Datenmanipulationsprogrammen und Systemarchitekturen, insbesondere solchen, die relationale
Datenbanken aufweisen, kompatibel. Diese Operationen können sowohl auf der Sprachenebene (beispiels-
weise durch intuitive Erweiterungen von SQL und anderen Anfragesprachen) als auch auf der Verarbeitungs-
ebene (beispielsweise Anfrageoptimierung und -ausführung) in solche Systeme integriert werden.
[0016] Beim Integrieren von Daten von mehreren Datenbanken in eine einzige Daten-Warenhaus-Datenbank
tritt häufig eine "Impedanzfehlanpassung" auf, wenn die mehreren Datenquellen voneinander verschiedene
Formen oder Zeilen-/Spaltenverhältnisse aufweisen. Fast nach Definition können solche Datenbanken sehr
groß sein. Das Normieren dieser Daten kann vom Zusammenhang abhängen, wobei das Speichern von Daten
in pivotisierter Form oder eine Perspektive für ein Schema optimal oder sogar erforderlich sein kann, während
für ein anderes Schema die entpivotisierte Form bevorzugt oder erforderlich sein kann. Daher kann das Hin-
zufügen von Pivotisierungs- und Entpivotisierungsoperationen die Kombination von Daten von verschiedenen
Quellen, insbesondere bei großen Datenmengen, sehr begünstigen.
[0017] Die gemäß der Erfindung vorgesehenen neuen Operationen beschleunigen, selbst bei begrenzten
Systemressourcen, auch die DBMS-Verarbeitung niedrigerer Ebene. Die erweiterbare Syntax und die klare
Semantik der neuen Operationen erleichtern das automatische Erzeugen und Optimieren komplexer Anfragen,
insbesondere beim Umschreiben von Anfragen für eine wirksamere Ausführung. Selbst rein interne
DBMS-Funktionen, wie die Aktualisierungsverarbeitung für die Index- und Integritätserhaltung und andere
Zwecke, können profitieren. Die Verarbeitung von SQL-Anfragen, die IN-, ODER- und VEREINIGUNGS-Anfra-
gen ("IN, OR and UNION queries") beinhalten, kann erweitert werden. Viele Optimierungstechniken, die bereits
für GRUPPIEREN-NACH-Anfragen ("GROUP BY queries") verwendet werden, sind routinemäßig an das Ver-
arbeiten von Pivotisierungs- und Entpivotisierungsanfragen anpaßbar. Herkömmliche Ausführungsalgorith-
men, die Parallelverarbeitungstechniken für diese Anfragen aufweisen, gelten für das Pivotisieren von Tabellen
oder Anfrageergebnissen unter Einschluß nicht sortierter und partitionierter Tabellen und Ergebnisse.
[0018] Andere Merkmale und Vorteile der Erfindung sowie Variationen, die innerhalb des Schutzumfangs der
Erfindung liegen, werden Fachleuten beim Lesen der folgenden detaillierten Beschreibung einfallen.

Kurzbeschreibung der Zeichnung

[0019] Fig. 1 ist ein Blockdiagramm einer Computernetzwerkumgebung für die Erfindung.
[0020] Fig. 2 ist ein Diagramm eines Datenbankmanagementsystems zum Aufnehmen der Erfindung.
[0021] Fig. 3 ist ein Flußdiagramm der vom DBMS aus Fig. 2 ausgeführten Funktionen.
[0022] Fig. 4 zeigt Beispiele von Pivotisierungs- und Entpivotisierungsoperationen gemäß der Erfindung.
[0023] Fig. 5 ist ein Flußdiagramm einer Pivotisierungsoperation gemäß der Erfindung.
[0024] Fig. 6 ist ein Flußdiagramm einer Entpivotisierungsoperation.

Detaillierte Beschreibung

Als Beispiel dienende Betriebsumgebung

[0025] Datenbankmanagementsysteme werden in vielen verschiedenen Typen von Datenverarbeitungssys-
temen, einschließlich alleinstehender Personalcomputer, Mittelrechner und Großrechner, Peer-to-Peer- und
Client/Server-Netzwerke und verteilter Weitbereichssysteme vieler Architekturen, implementiert. Alle Daten-
verarbeitungssysteme sind geeignete Umgebungen für die vorliegende Erfindung. Die Erfindung wird jedoch
zu Erläuterungszwecken in Zusammenhang mit einem in Fig. 1 dargestellten herkömmlichen Client/Ser-
ver-Computersystem 100 beschrieben. Netzwerkleitungen 110 verbinden eine Anzahl von Personalcomputern
(PCs) 120 über Netzwerkadapter 121 und 131 mit einem Server 130. Der Server 130 weist ein Speicherunter-
system 132 zum Aufnehmen der großen Datenmengen in typischen Unternehmensdatenbanken auf. Andere
Systemarchitekturen sind auch geeignete Umgebungen für die Erfindung. Beispielsweise können die Einheiten
120 mit einem Großrechner oder einem Mittelrechner 130 verbundene Endgeräte sein, oder die Einheit 130
kann selbst einen PC aufweisen, der mit PCs 120 in einem Peer-to-Peer-Netzwerk gekoppelt ist. Für kleine
4/19

DE 699 10 219 T2 2004.06.17
und mittlere Datenbanken kann das Gesamtsystem 100 einen einzigen PC aufweisen, der sowohl als Client
als auch als Server wirkt. Ebenso kann der Dateispeicher unter einer Anzahl verschiedener Maschinen verteilt
sein. Fig. 1 zeigt schematische Darstellungen eines externen Speichermediums 133, das Client- und Ser-
ver-Software zum Verteilen und Herunterladen zu Clients aufweist, und eines anderen Mediums 134 in der Art
einer Diskette zum Speichern von Datenbanktabellen außerhalb des Rechners.
[0026] Fig. 1A und die folgende Erörterung sollen eine kurze allgemeine Beschreibung eines Personalcom-
puters 120 liefern. Wenngleich dies nicht erforderlich ist, wird die Erfindung im allgemeinen Zusammenhang
Computer-ausführbarer Anweisungen, wie Programmodule, die von einem Personalcomputer ausgeführt wer-
den, beschrieben. Generell umfassen Programmodule Routinen, Programme, Objekte, Komponenten, Daten-
strukturen usw., die bestimmte Aufgaben ausführen oder bestimmte abstrakte Datentypen implementieren.
Weiterhin werden Fachleute verstehen, daß die Erfindung zusammen mit anderen Computersystemkonfigura-
tionen, einschließlich handgehaltener Vorrichtungen, Mehrprozessorsysteme, Mikroprozessor-basierter oder
programmierbarer Endverbraucherelektronik, Netzwerk-PCs, Minicomputer, Mittelrechner und dergleichen,
verwirklicht werden kann. Die Erfindung kann auch in verteilten Computerumgebungen verwirklicht werden, in
denen Aufgaben durch Fernverarbeitungsvorrichtungen ausgeführt werden, die über ein Kommunikationsnetz-
werk miteinander verbunden sind. In einer verteilten Computerumgebung können sich Programmodule sowohl
in lokalen als auch in fernen Speichervorrichtungen befinden.
[0027] Fig. 2 ist ein Blockdiagramm eines typischen herkömmlichen Client/Server-Datenbankmanagement-
systems 200, das in dem System 100 aus Fig. 2 arbeiten kann. Ein Client-Anwendungsprogramm 210 wird
innerhalb jedes PCs 120 unter einem PC-Betriebssystem 220, wie Microsoft Windows 95, ausgeführt. Unter
anderen Funktionen enthält die Client-Anwendung 210 eine Einrichtung 211 zum Annehmen von Datenbank-
anfragen von einem Benutzer an einem PC 120. Zusätzlich zu Benutzereingaben können andere Anwen-
dungsprogramme 230, die in einigen der PCs 120 ausgeführt werden, über vordefinierte Host-Sprachen-An-
wendungsprogrammschnittstellen (APIs) 231 Anfragen an den DBMS-Client 210 richten.
[0028] Innerhalb des Servers 130 wird eine DBMS-Serveranwendung 240 in der Art des Microsoft-SQL-Ser-
vers unter einem Server-Betriebssystem 250, wie Microsoft Windows NT, ausgeführt. Das DBMS-Programm
240 liefert Dienste zum Erzeugen, Anfragen, Unterhalten und Modifizieren einer Anzahl durch eine Datenbank
260 beispielhaft angegebener relationaler Datenbanken. Das Programm 240 kann die Dateisystemdienste 251
des Betriebssystems 250 einsetzen oder sein eigenes Dateisystem bereitstellen. Das Betriebssystem 250
könnte eine getrennte Ausprägung der gesamten DBMS-Anwendung für jede Anforderung von einem Client
210 ausführen. Zum Erzielen einer höheren Wirksamkeit weist das Programm 240 jedoch jeder Client-Verbin-
dung einen getrennten Teilprozeß 242 im DBMS-Kern zu. Weiterhin kann dieser Teilprozeß ein maschinenspe-
zifischer Betriebssystem-Teilprozeß sein, der alle Mechanismen von Windows NT zum Prozeßspeicherschutz,
für einen besseren Zugriff auf Speichervorrichtungen usw. mitführt. Eine Suchmaschine 241 verarbeitet Anfra-
gen und andere Anforderungen von einzelnen Clients 210, die auf Tabellen 261 einer Datenbank 260 gerichtet
sind, wie nachstehend vollständiger beschrieben wird. Sie erzwingt auch die Datenbankintegrität mit herkömm-
lichen Einrichtungen zum Sperren von Datensätzen, für atomare Transaktionen usw. Beim Microsoft-SQL-Ser-
ver ist die Schnittstellensprache zwischen der Anfrageeinrichtung 211 und der Suchmaschine 241 Trans-
act-SQL, welche die meisten Funktionen der Standard-ANSI-SQL-89- und ANSI-SQL-92-Sprachen zuzüglich
Erweiterungen zum Bereitstellen einer größeren Flexibilität und Programmierbarkeit, bereitstellt.
[0029] Fig. 3 zeigt einige übliche Funktionen 300 der Suchmaschine 241 aus Fig. 2 zum Verarbeiten einer
von einer der Client-Anwendungen 210 übertragenen Anfrage. SQL ist eine nicht-prozedurorientierte Sprache,
weil eine SQL-Anfrage eine Spezifikation von Eigenschaften oder Prädikaten eines gewünschten Ergebnisses
statt einer Folge von Schritten zum Erhalten des Ergebnisses ist. Das heißt, daß eine Anfrage wie WÄHLE
Jahr, Quartal, Verkäufe AUS Narrow, WOBEI Verkäufe < (WÄHLE DURCHSCHNITT (Verkäufe) AUS Narrow)
GEORDNET NACH Jahr, Quartal die Eigenschaften einer Ausgangstabelle spezifiziert. Die Spalten der Aus-
gangstabelle entsprechen den mit Jahr, Quartal und Verkäufe bezeichneten Spalten, die einer mit Narrow be-
zeichneten Eingangstabelle entnommen werden. Die Ausgangstabellen-Zeilen (Datensätze) sind nach dem
Jahr und dann nach dem Quartal innerhalb jedes Jahr-Werts zu ordnen (also zu sortieren). Die Datensätze von
der Eingangstabelle, die in der Ausgabe auftreten, sind nur jene, bei denen der Wert von Verkäufe kleiner ist
als der Durchschnittswert aller Werte von Verkäufe in der mit Narrow bezeichneten Tabelle. Die eingebettete
Unteranfrage WÄHLE DURCHSCHNITT (Verkäufe) AUS Narrow erzeugt eine Tabelle, die nur eine einzige
Spalte und eine einzige Zeile aufweist, welche den Durchschnittswert von Verkäufe in der Narrow-Tabelle ent-
hält . Die Art und die Folge, in der auf die Datensätze der Eingangstabelle zugegriffen wird, und andere Ein-
zelheiten der Prozedur oder des Plans zum Aufbauen der Ausgangstabelle sind durch die Anfrage selbst nicht
definiert.
[0030] Wenn die Suchmaschine 241 eine Anfrage empfängt, versetzt sie die Anfrage mit einem Parser in eine
interne oder mit einem Token versehene Form, wie in Schritt 310 dargestellt ist. Der Prüfschritt 320 gewähr-
leistet, daß die in der Anfrage benannten Daten in der Datenbank tatsächlich existieren, und es werden darin
Daten- und Integritätsbedingungen geprüft. Er kann gewisse Teile der Anfrage, wie Makros und Ansichten, bei
5/19

DE 699 10 219 T2 2004.06.17
321 erweitern. Der Ausgang 322 teilt dem Benutzer oder einer anderen Anfragequelle jegliche Fehler mit. Alle
Suchmaschinen außer den sehr stark eingeschränkten führen bei der Anfrage eine umfangreiche Optimierung
aus, wie in Schritt 330 angegeben ist. Die Optimierung kann ein Umschreiben der Anfrage durch Kombinieren
oder Aufteilen von Abschnitten der Anfrage, Neuanordnen von Operationen und Unteranfragen usw. und an-
dere Verfahren, wie eine Ablaufsteuerung von Zugriffen auf die Datensätze gespeicherter Datenbanktabellen
und das Modifizieren von Funktionen, einschließen. Für jede Kandidatenausführungsstrategie wird ein Kosten-
wert berechnet, der die Rechenzeit oder Betriebsmittel darstellt, welche zum Ausführen der Anfrage unter Ver-
wendung dieser Strategie erforderlich sind, und es wird dann eine Strategie unter allen möglichen Kandidaten
ausgewählt. Wenngleich die Technik zum Entwickeln dieser Optimierer komplex und geheimnisvoll ist, sind
Personen, die darin bewandert sind, in der Lage, herkömmliche Optimierer so anzupassen, daß sie neue An-
fragefunktionen verschiedener Typen aufweisen, wobei Entwickler von Übersetzern für andere, eher prozedur-
orientierte Sprachen auch routinemäßig Optimierer dieser allgemeinen Klasse konstruieren. In einem Über-
sichtsartikel von M. Jarke und J. Koch "Query Optimization in Database Systems", ACM Computing Surveys
16, 2 (Juni 1984), S. 111 ist der Aufbau von Datenbankanfrageoptimierern in weiteren Einzelheiten erörtert.
[0031] Die Ausgabe von Schritt 330 ist ein Anfragebeurteilungsplan (oder einfach ein "Plan",) zum Beantwor-
ten der Anfrage. In Schritt 340 wird dieser Plan zu einer prozedurorientierten Form kompiliert, die gewöhnlich
als ein herkömmlicher Funktionsbaum dargestellt wird. In Schritt 350 kann dann ein einfacher Baumdurchlau-
falgorithmus zum Ausführen des Plans in bezug auf die Datenbankobjekte ablaufen gelassen werden. Die Aus-
gabe des Schritts 350 ist das Ergebnis der Anfrage in Form einer Ausgangstabelle, die an die Anfragequelle
zurückgegeben wird. Andere Suchmaschinen als die hier beschriebene können die einzelnen Schritte 300
kombinieren oder aufteilen oder Schritte fortlassen oder hinzufügen. Ein anderer Übersichtsartikel von G. Gra-
efe "Query Evaluation Techniques for Large Databases", ACM Computing Surveys 25, 2 (Juni 1993), S. 73,
auf den hiermit verwiesen sei, richtet sich auf den Gegenstand der Anfrageausführung und zitiert eine Anzahl
von Bezügen, in denen zusätzliche Beschreibungen und Erörterungen enthalten sind. Wiederum sind die
Schritte der neuesten Suchmaschinen speziell für eine leichte Erweiterbarkeit ausgelegt, um neuer Syntax,
neuen Anfragefunktionen, Optimierungskenntnissen und Ausführungstechnologie Rechnung zu tragen.

Pivotisierungs- und Entpivotisierungsoperationen

[0032] Fig. 4 zeigt die Struktur einer Pivotisierungsoperation gemäß der Erfindung. Diese Operation paßt in
die Hierarchie von SQL-Operationen auf der Ebene einer relationalen Algebra.
[0033] Personen, die relationale Datenbanksysteme und Schnittstellen entwickeln, teilen die Anfrageverar-
beitung in drei Ebenen ein. Weil die mathematische Relationstheorie den konzeptionellen Rahmen für diesen
Typ von Datenbanken bereitstellt, werden die erste und die zweite Ebene häufig als die relationale Analysis
und die relationale Algebra bezeichnet.
[0034] Die relationale Analysis beschäftigt sich wie jede Analysis mit der Beschreibung oder Spezifikation ho-
her Ebene eines gewünschten Ergebnisses, ohne jegliche Operationen, Prozeduren oder ein anderes Verfah-
ren zum Erhalten des Ergebnisses zu benennen. Das heißt, daß sie lediglich die Definition einer gewünschten
Ergebnisrelation (Tabelle) durch bestehende Relationen in einer Datenbank ausdrückt. Die Anfrage WÄHLE
employee.name, department.name AUS employee, department WOBEI employee.dept_id = depart-
ment.dept_id beschreibt beispielsweise die Eigenschaften und Bedingungen einer Ausgangstabelle in bezug
auf eine oder mehrere Eingangstabellen für ein typisches Element der Ergebnisbeziehung sowie eine Qualifi-
kation, die die definierende Eigenschaft der Ergebniselemente darstellt. Die relationale Analysis liefert die
Grundlage für ein formales, exaktes Verständnis von Datenbanken, Tabellen ("Relationen") und Anfragen, und
sie hat in den Anfragekomponenten der Datenbanksprache SQL, nun eine ANSI/ISO-Norm, eine kommerzielle
Verwirklichung gefunden. Wegen der wichtigen Rolle, die SQL in Datenbankmanagementprodukten spielt, ist
für das Erweitern der Datenbankfunktionalität auf die wirkliche Welt erforderlich, daß jede hinzugefügte Funk-
tionalität zu einer syntaktisch und semantisch sauberen Erweiterung der SQL-Sprache wird.
[0035] Die relationale Algebra ist eher operationsorientiert als die relationale Analysis (jedoch damit äquiva-
lent). Operationen oder Funktionen bei der relationalen Algebra benötigen eine oder mehrere Eingangstabel-
len und erzeugen entsprechend einer Regel eine Ausgangstabelle. Die relationale Operation VERBINDE [em-
ployee.dept_id = department.dept_id] (employee, department) kombiniert beispielsweise die Tabellen emplo-
yee und department entlang einer in beiden Tabellen mit dept_id bezeichneten Spalte oder einem damit be-
zeichneten Feld. (Dies ist analog mit einer Operation in der Art der Addition, welche zwei Zahlen benötigt und
eine dritte erzeugt, so wie die Operation "4 + 5" beispielsweise "9" erzeugt.) Schlüsselcharakteristiken der re-
lationalen Algebra bestehen darin, daß (1) Operationen Objekte desselben Typs, nämlich Relationen, benöti-
gen und erzeugen, (2) Operationen in beliebig komplexe Strukturen eingebettet werden können und (3) neue
Operationen hinzugefügt werden können. Bei der relationalen Algebra weisen Eingangsobjekte nicht nur Ein-
gaben auf, sondern sie können auch Kennzeichen mitführen, die zusätzliche Informationen bezeichnen. In
dem unmittelbar zuvor angegebenen Beispiel spezifiziert die Verbindungsoperation nicht nur die zwei relatio-
6/19

DE 699 10 219 T2 2004.06.17
nalen Algebraausdrücke, nämlich die zwei Tabellen (employee, department), die zu verbinden sind, sondern
sie benennt auch ein "Verbindungsprädikat", welches spezifiziert, wie sie zu verbinden sind, nämlich entlang
gleichen Werten einer bestimmten Spalte in jeder Tabelle [employee.dept_id = department.dept_id].
[0036] Einige sehr nützliche Anfrageoperationen lassen sich auf der Ebene der relationalen Analysis nur
schwer ausdrücken, sie lassen sich jedoch leicht und sauber in die Ebene der relationalen Algebra integrieren.
Beispielsweise läßt sich die Operation ÄUSSERES VERBINDEN, eine Variante der relationalen Verbindungs-
operation, nicht leicht und sauber in die einfache WÄHLE ... AUS ... WOBEI-Anfragesyntax einpassen. Daher
ermöglicht ANSI/ISO einen begrenzten Satz relationaler Algebraausdrücke an Stelle von Tabellen in der
AUS-Klausel, beispielsweise WÄHLE employee.name department.name AUS employee LINKES ÄUSSERES
VERBINDEN department BEI employee.dept_id = department.dept_id. Das heißt, daß es einen Vorläufer für
das Erweitern einer relationalen Analysisanfrage mit einem relationalen Algebraausdruck gibt, wenngleich die-
se Erweiterungen bisher auf Variationen von Verbindungsoperationen beschränkt waren. Relationale Algebra-
operationen nehmen häufig an der Optimierung von Anfragen mit Auswahlen, Projektionen, Aggregationen
und anderen nicht prozeduralen Spezifikationen auf der relationalen Analysisebene teil, wie in Block 330 in
Fig. 3 angegeben ist.
[0037] Anfrageausführungspläne bilden die dritte und niedrigste Ebene der Anfrageverarbeitung. Wenngleich
das Einbetten relationaler Algebraoperationen eine Ausführungsreihenfolge angeben kann, treten Algorithmen
oder Sätze bestimmter Anweisungen zum Erzeugen von Zwischenergebnissen auf der Ebene von Ausfüh-
rungsplänen statt auf den höheren Ebenen auf. Es gibt beispielsweise drei Grundverfahren zum Ausführen re-
lationaler Verbindungsoperationen, nämlich eingebettete Schleifen, Verschmelzen-Verbinden und Hash-Ver-
binden, und jedes Verfahren weist eine große Anzahl von Varianten auf. Ausführungspläne geben klar die
Wahlmöglichkeiten unter diesen Alternativen an, und sie sind in Block 340 in Fig. 3 auf der niedrigsten Ebene
der Anfrageverarbeitung formuliert.
[0038] Weil die relationale Anfrageverarbeitung sehr genau und innerhalb eines definierten Strukturrahmens
festgelegt ist, ist es wichtig, jegliche neue Funktionalitäten auf allen drei Ebenen zu definieren, nämlich Spra-
chenerweiterungen, relationale Algebraoperationen und Ausführungspläne. Die Erfindung kann die Pivotisie-
rungs- und Entpivotisierungsfunktionen als neue relationale Algebraoperationen bereitstellen, die als Erweite-
rungen der Sprache explizit an SQL-Anfragen teilnehmen.
[0039] Die formale Definition einer Pivotisierungsoperation für eine Eingabe Tabelle-Ausdruck in der ersten
Normalform, die ein gültiger Anfrageausdruck ist, ist: Table.PIVOT (<value_column> FÜR <pivot_column> IN
(<pivot_list)), und die pivotisierte Ausgangstabvelle ist dann auch eine gültige Tabelle mit der ersten Normal-
form. Der nächste Ausdruck zwischen den äußersten Klammern bildet die Spezifikation der Pivotisierungso-
peration. Die ersten beiden Spalten in der Pivotisierungsspezifikation müssen Spalten in der Eingangstabelle
der Pivotisierungsoperation sein. Diese Spalten erscheinen nicht in der Ausgangstabelle der Pivotisierungso-
peration. Vielmehr definiert jeder Wert in der Pivotisierungsliste innerhalb der Pivotisierungsspezifikation eine
neue Spalte in der Ausgangstabelle der Pivotisierungsoperation. In der Eingangstabelle erscheinen Elemente
in der Pivotisierungsliste als Werte in der Pivot-Spalte. Entsprechende Werte in der Wertspalte werden zu Wer-
ten in den neuen Spalten in der Ausgangstabelle. Alle Spalten der Eingangstabelle, die nicht in der Pivotisie-
rungsspezifikation enthalten sind und als "Gruppenspalten" bezeichnet werden, werden in die Ausgangstabelle
übertragen.
[0040] In dem in Fig. 4 angegebenen Beispiel 400 wird durch Pivotisieren der Eingangstabelle 410 in Über-
einstimmung mit der Spezifikation 420 eine Ausgangstabelle 430 erzeugt. Die mit Quartal bezeichnete Pi-
vot-Spalte 411 in der mit Narrow bezeichneten Eingangstabelle 410 wird zu vier Spalten 431, 432, 433 und 434
in der Ausgangstabelle 430. Die Namen dieser Spalten sind die bestimmten Werte Frühling, Sommer, Herbst,
Winter, die als Werte in der Spalte 411 auftreten und die auch nach dem Schlüsselwort IN in 420 in der Wertliste
auftreten. Die Verkaufszahlen in der Wertspalte 412 erscheinen als Werte in entsprechenden der vier Spalten
431–434, die jedoch pivotisiert oder gedreht sind, so daß die Verkaufszahlen für denselben Gebiet und das-
selbe Jahr in derselben Zeile liegen. Gruppierungsspalten 413–414 erscheinen als Spalten 435– 436 in der
Ausgangstabelle 430. In der Ausgangstabelle sind die Zeilen nach gleichen Werten der ersten Gruppierungs-
spalte 413 und dann nach gleichen Werten der zweiten Gruppierungsspalte 414 gruppiert, als ob die Spezifi-
kation 420 eine SQL-Klausel der Form GRUPPIEREN NACH Gebiet, Jahr enthalten würde. In diesem Beispiel
besteht die Wirkung der Pivotisierungsoperation darin, die Perspektive zu modifizieren, aus der die Daten be-
trachtet werden. Die Eingangstabelle 410 stellt. Datentrends in erster Linie nach dem Jahr für die Narrow-Ge-
biete einer Firma dar, während die Ausgangstabelle 430 ein saisonales Verfolgen nach Quartalen ermöglicht.
(Es sei hier daran erinnert, daß die Zeilen in einer relationalen Tabelle keine Namen aufweisen und keine Rei-
henfolge haben. Spalten haben keine Namen und sind sortiert, so daß sie in der Reihenfolge präsentiert wer-
den, in der ihre Namen in einer Anfrage auftreten.) Die Pivotisierungsoperation wandelt eine Eingangstabelle
mit relativ vielen Zeilen und relativ wenigen Spalten in eine Ergebnistabelle mit weniger Zeilen und mehr Spal-
ten um.
[0041] Die pivotisierten Spalten in der Ausgangstabelle weisen denselben Datentyp (numerisch, varchar
7/19

DE 699 10 219 T2 2004.06.17
usw.) wie die Daten in der Wertspalte der Eingangstabelle auf. Die Wertspalte, die Pivot-Spalte und pivotisierte
Spalten weisen einfache Daten an Stelle berechneter Ausdrücke auf. Die Reihenfolge der Spalten in beiden
Tabellen ist nicht wesentlich, wie bei ANSI SQL, wobei Spalten nur nach dem Namen und nicht nach der Po-
sition angesprochen werden können. Wenngleich die Tabelle 430 als nach Werten von Gruppierungsspalten
Gebiet und Jahr sortiert dargestellt ist, beinhaltet die Pivotisierungsoperation keine bestimmte Sortierung oder
Reihenfolge der Zeilen.
[0042] Wie vorstehend erwähnt wurde, erscheint eine Zeile in der Eingangstabelle nicht in der Ausgabe, falls
ihr Wert nicht in der Pivot-Liste auftritt. Die Zeilen der Eingangstabelle sind in bezug auf die Definition der
Gleichheit nach gleichen Werten beliebiger Gruppierungsspalten gruppiert. Innerhalb jeder Gruppe hat jede
Zeile der Eingangstabelle in der Pivot-Spalte einen jeweils bestimmten Wert. Jede Gruppe führt zu einer Aus-
gangszeile. Für Ausgangsspalten, die keine entsprechende Eingangszeile aufweisen, ist der Wert NULL, ein
in SQL definierter spezieller Wert.
[0043] Fig. 5 ist ein Flußdiagramm 500 der von den Modulen 300 in Fig. 3 von der Suchmaschine 241 in
Fig. 2 für eine Pivotisierungsoperation ausgeführten Schritte. Ein Block 510 empfängt eine Anfrage von einem
Benutzer an einem Client-Endgerät 120 in Fig. 1 oder von einer anderen Quelle, wie hier beschrieben wurde.
In Schritt 520 wird identifiziert oder ausgewählt, welche Tabelle 261 in der Datenbank 260 als die Eingangsta-
belle der Operation dienen soll. In Schritt 521 wird identifiziert, welche Spalte der Eingangstabelle als die Pi-
vot-Spalte dienen soll, und in Schritt 522 wird identifiziert, welche Pivot-Spaltenwerte auf der Pivot-Liste an der
Pivotisierung teilnehmen, und in Schritt 523 wird ausgewählt, welche Spalte der Eingangstabelle die Wertspal-
te ist. In Schritt 530 wird der Ausgang als eine andere Tabelle 261 konstruiert. In Schritt 531 wird eine getrennte
pivotisierte Spalte für jeden Dateneintragswert in die Pivot-Liste eingetragen. In Schritt 532 werden die Grup-
pierungsspalten konstruiert, falls vorhanden. (Wie vorstehend erwähnt wurde, sind dies jegliche zusätzliche
Spalten der Eingangstabelle, die nicht in der Pivotisierungsspezifikation identifiziert sind.) In Schritt 540 werden
die Dateneintragswerte der Wertspalte in die Zeilen der Ausgangstabelle eingefügt, wie zuvor beschrieben
wurde, wobei ein Verfahren in einer Transposition besteht, wie durch Schritt 541 angegeben ist. Eine andere
Möglichkeit zum Ausdrücken dieser Transposition besteht darin, daß jeder Dateneintrag in der Wertspalte in
eine der pivotisierten Spalten gegeben wird, nämlich in die Spalte, deren Name dem Datenwert in der Pi-
vot-Spalte der Eingangstabelle gleicht. In Schritt 550 werden die Zeilen der Ausgangstabelle nach gleichen
Werten beliebiger Gruppierungsspalten gruppiert. Schließlich wird in Schritt 560 die Ausgangstabelle in der
Datenbank 260 aus Fig. 2 gespeichert.
[0044] Die Entpivotisierungsoperation ist die Umkehrung der Pivotisierungsoperation und ist formal als
(table_expression|query_expression>.UNPIVOT (<value_column> FÜR <pivot_column> IN (<column_list>)
definiert. Die Bedeutungen der Terme gleichen denen bei der Pivotisierungsoperation. Durch Anwenden einer
Pivotisierungs- und einer Entpivotisierungsoperation mit derselben Spezifikation auf eine Eingangstabelle wird
die Eingangstabelle in ihren Ausgangszustand zurückversetzt. In dem in Fig. 4 dargestellten Beispiel wird die
Tabelle 410 durch Anwenden der Entpivotisierungsoperation 440 auf die pivotisierte Tabelle 430 wiederherge-
stellt, wobei die zwei benannten Spalten Verkäufe 412 und Quartal 411 die Spalten 431–434 ersetzen.
[0045] Andere Datenbanksystemoperationen können als Umkehrungen jeder anderen angesehen werden,
wie die Gruppierungs/Aufteilungs- und Verschmelzungs/Zusammenführungs-Paare, die in M. Gyssens u. a.
"Tables as a Paradigm for Querying and Restructuring", PROCEEDINGS 1996 ACM SIGMOD INTL. CONF.
ON MANAGEMENT OF DATA, Montreal, Que., Kanada, 3.–6. Juni 1996, S. 93–103 erwähnt sind. Pivotisie-
rung/Entpivotisierung sind auch Umkehrungen voneinander.
[0046] Für jede Zeile in einer Eingangstabelle erzeugt die Entpivotisierungsoperation allgemein eine Zeile ei-
ner Ausgangstabelle für jede pivotisierte Spalte. (Ein Null-Wert in einer pivotisierten Spalte erzeugt jedoch kei-
ne Ausgangszeile.) Alle Spalten in der Pivot-Liste müssen denselben Datentyp bei der Eingabe aufweisen, und
die Einträge in der Wertspalte der Ausgabe weisen diesen Typ auf. Durch das Entpivotisieren einer Tabelle wird
die Anzahl ihrer Zeilen erhöht und die Anzahl ihrer Spalten verringert. Wiederum ist mit der Entpivotisierungs-
operation keine Zeilensortierung bei der Ausgabe verbunden, wenngleich in Fig. 4 eine nach Gruppierungs-
spaltenwerten sortierte Tabelle 410 dargestellt ist.
[0047] Fig. 6 ist ein Flußdiagramm 600 der von den Modulen 300 in Fig. 3 der Suchmaschine 241 in Fig. 2
ausgeführten Schritte für eine Entpivotisierungsoperation. In Schritt 610 werden die Entpivotisierungsoperation
und ihre Spezifikation empfangen. Weil die Entpivotisierung als die Umkehrung der Pivotisierung definiert ist
und eine pivotisierte Tabelle genau zu ihrer entpivotisierten Form wiederherstellt, ist die Spezifikation einer Ent-
pivotisierung nicht komplementär zu derjenigen für eine Pivotisierung, sondern sie weist vielmehr genau die
gleiche Form auf wie diejenige der Spezifikation, die die pivotisierte Tabelle zuerst erzeugt hat, wie bei 440 in
Fig. 4 dargestellt ist. Wiederum kann in Schritt 610 die Operation von einer Benutzeranfrage oder einer ande-
ren Quelle empfangen werden. In Schritt 620 wird die pivotisierte Tabelle, wie 261, die zu entpivotisieren ist,
identifiziert oder ausgewählt. Diese Tabelle braucht nicht tatsächlich in einer vorhergehenden Operation pivo-
tisiert worden zu sein, dies ist jedoch normalerweise der Fall, so daß die Pivotisierungsoperation im allgemei-
nen verwendet wird, um eine anfängliche Drehung von Perspektiven zu erreichen und das Entpivotisieren im
8/19

DE 699 10 219 T2 2004.06.17
allgemeinen nur verwendet wird, um eine Tabelle in einer sauberen, einfachen Weise in eine ursprüngliche,
entpivotisierte Form zurückzuführen. In Schritt 621 wird die Pivot-Liste der Spezifikation verwendet, um anzu-
geben, welche Spalten die zu drehenden oder transponierenden pivotisierten Spalten sind. In den Schritten
622 und 623 werden die Namen der Wertspalte und der Pivot-Spalte identifiziert. Diese Namen werden in die
Spezifikation aufgenommen, weil sie an keiner Stelle innerhalb der pivotisierten Tabelle auftreten (zumindest
sofern eine vorhergehende Pivotisierung keine Seitentabelle erhalten hat, die diese Informationen enthält).
[0048] In Schritt 630 wird die Pivot-Tabelle aufgebaut, die durch die Entpivotisierungsoperation zu erzeugen
ist. In den Schritten 631 und 632 werden die Pivot- und Wertspalten in der Pivot-Tabelle unter Verwendung der
in den Schritten 622 und 623 zugeführten Namen gebildet. In Schritt 633 werden Gruppierungsspalten in der
Pivot-Tabelle eingerichtet, wobei jeweils eine für jede der Spalten der pivotisierten Tabelle eingerichtet wird, die
nicht in der in Schritt 610 empfangenen Entpivotisierungsspezifikation enthalten sind. In Schritt 640 werden die
Dateneinträge von der pivotisierten Tabelle in die in den vorhergehenden Schritten aufgebaute entpivotisierte
Tabelle transponiert. Namen der pivotisierten Spalten werden zu Dateneinträgen in verschiedenen Zeilen, und
die Dateneinträge in der pivotisierten Spalte gehen in die neue Wertspalte in den Zeilen mit den jeweils glei-
chen Pivot-Spaltenwerten wie der Name der pivotisierten Spalte in der Originaltabelle (pivotisierten Tabelle),
in der sie sich befunden haben, über. In Schritt 650 werden Zeilen nach gleichen Werten der Gruppierungs-
spalten-Zeilen gruppiert. In Schritt 660 wird die Tabelle in der Datenbank 260 aus Fig. 2 gespeichert.
[0049] Korrelationsvariablen sind innerhalb der Spezifikation von Pivotisierungs- und Entpivotisierungsopera-
tionen nicht zulässig, weil die Pivot-, Wert- und pivotisierten Spalten einfache Daten und keine berechneten
Werte sind. Diese neuen Operationen haben keine Bedeutung dafür, ob oder welche Korrelationsvariablen in
einem Anfrageausdruck, auf den die Operationen angewendet werden, zulässig sind. Falls ANSI SQL das De-
finieren von Tabellen- und Spalten-Aliases für einen Anfrageausdruck zuläßt, in dem eine Pivotisierungs- oder
Entpivotisierungsoperation nicht auftritt, ist es annehmbar, solche Aliases für den Anfrageausdruck einschließ-
lich einer Pivotisierungs-/Entpivotisierungsoperation, jedoch nicht für den Anfrageausdruck ohne die Operati-
on, zu definieren. Falls beispielsweise Table1 AS Table2 (col1, col2) zulässig ist, dann ist Table1.PIVOT (...)
AS Table2 (col1, col2, ...) zulässig, jedoch Table1 AS Table2 (col1, col2).PIVOT (...) nicht zulässig.
[0050] Die Pivotisierungs- und die Entpivotisierungsoperationen können in Block 330 in Fig. 3 eine. beliebige
Anzahl herkömmlicher Optimierungstechniken verwenden. Weil diese Operationen Teil der relationalen Alga-
braebene sind, kann ein algebraischer Anfrageoptimierer am geeignetsten sein, um Optimierungstechniken zu
verwirklichen. Es können auch andere Optimierungsrahmen anwendbar sein.
[0051] Einige zusätzliche Optimierungstechniken können spezifische Eigenschaften der neuen Operationen
verwenden. Offensichtlich kann ein benachbartes Paar von Pivotisierungs- und Entpivotisierungsoperationen
einander aufheben, und sie können dann aus einer Anfrage entfernt werden. Ein Optimierer sollte erkennen,
daß die Gruppierungsspalten in der pivotisierten Ausgangstabelle die Pivot- und Wertspalten funktionell fest-
legen und daher einen relationalen Schlüssel der Ergebnistabelle bilden. (Dies ähnelt sehr den Gruppierungs-
spalten bei einer herkömmlichen GRUPPIERENNACH-Operation.) Bei einer entpivotisierten Ausgangstabelle
bestimmen die Gruppierungsspalten zusammen mit der Pivot-Spalte die Wertspalte. Diese Eigenschaften kön-
nen das Schätzen der Anzahl der Ausgangszeilen unterstützen, um eine Selektivitätsschätzung und eine An-
fragekostenberechnung zum Vergleichen alternativer Ausführungspläne auszuführen. Sie können auch beim
Erzeugen von Bedingungen zum Anwenden von Neuschreibregeln beim Vereinfachen der Ausführung einer
Anfrage nützlich sein. Falls eine Tabelle vertikal partitioniert ist, können eine Operation zum Wiederzusammen-
setzen vollständiger Zeilen und eine nachfolgende Entpivotisierung einander aufheben, wodurch beide Ope-
rationen beseitigt werden.
[0052] Eine konzeptionelle Ähnlichkeit der Pivotisierungsoperation mit einer SQL-Klausel GRUPPIEREN
NACH ermöglicht, daß viele Techniken und Regeln zum Optimieren von Anfragen, die diese Klausel aufwei-
sen, ebenso für die neuen Operationen geeignet sind. Typische Beispiele umfassen: (1) das Ziehen einer Pi-
votisierung über ein Verbinden, um die Gruppierungs-Eingabegröße zu verringern oder um einen wirksameren
Verbindungsalgorithmus zu ermöglichen, (2) das Drücken einer Pivotisierung unter ein Verbinden, um die Ver-
bindungseingabe zu verringern oder um wirksamere Ausführungspläne für die Pivotisierung einzusetzen, (3)
das Verschmelzen zweier benachbarter Pivotisierungen, wobei effektiv eine von ihnen beseitigt wird, und (4)
das Aufteilen einer Pivotisierung in zwei Teile, wobei dann einer der Teile durch eine Verbindung oder über eine
Prozeßgrenze als eine lokale/globale Aggregation in einer parallelen Ausführungsumgebung gedrückt wird. Im
allgemeinen können ein Anfrageprädikat an den Gruppierungsspalten und eine Projektionsoperation unter Ein-
schluß von Ausdrücken, die zusätzliche Spalten berechnen, ebenso wie eine Gruppierungsoperation, durch
eine Pivotisierungs-/Entpivotisierungsoperation (entweder darüber oder darunter) bewegt werden.
[0053] Bestimmte Anfrageprädikate lassen sich wirksamer implementieren und auch einfacher ausdrücken,
wenn sie als Prädikate (also als Qualifikationen) in bezug auf eine Pivot-Ergebnistabelle behandelt werden.
Beispielsweise läßt sich das Vergleichen zweier pivotisierter Spalten miteinander einfach ausdrücken und wirk-
sam implementieren, während dasselbe Prädikat, wenn es auf die Pivot-Eingangstabelle angewendet wird,
komplexe und unwirksame, verschachtelte Anfragen erfordert. Daher kann das Umschreiben der Anfrage, so
9/19

DE 699 10 219 T2 2004.06.17
daß sie eine Pivotisierungs/Auswahl/Entpivotisierungs-Operationsfolge enthält, zum Optimieren solcher Anfra-
gen verwendet werden. Es sei beispielsweise eine Anfrage zum Auswählen von Tabellenzeilen betrachtet, bei
der die Verkäufe im Herbst die Verkäufe im Frühling in der Tabelle 410 in Fig. 4 übersteigen. Die pivotisierte
Tabelle 430 kann diese Anfrage als einen Vergleich zwischen den Frühling- und Herbst-Spalten 431 und 433
Rechnung tragen, während es bei der ursprünglichen Tabelle 410 erforderlich ist, die Tabelle mit sich selbst zu
verbinden, um den Vergleich vorzunehmen. Unter Verwendung der Tabellen aus Fig. 4 könnte eine solche grö-
ßere Anfrage unter Verwendung von Pivotisierungs- und Entpivotisierungsoperationen (in einem herkömmli-
chen Mehrzeilenformat) die folgende sein:

[0054] Für den Block 340 in Fig. 3 nützliche Ausführungspläne können von Fachleuten aus herkömmlichen
Plänen zum Gruppieren von Operationen abgeleitet werden. Insbesondere werden sofort Pläne einfallen, die
auf dem Verschleifen, Indexieren, Streamen, Sortieren und Hashen beruhen. Ein frühes Aggregations-Sortie-
ren und ein Hybrid-Hashen sind verwendbare Varianten. Pivotisierungs-/Entpivotisierungsoperationen sind für
Parallelausführungsumgebungen, einschließlich paralleler Algorithmen, wie Cluster-Maschinen mit einem ge-
teilten Speicher, einem verteilten Speicher und einer geteilten Platte, geeignet. Die lokale/globale Aggregation
wurde bereits als eine Möglichkeit erwähnt.
[0055] Entpivotisierungsoperationen benötigen nur einen Plan mit einer einzigen Eingabe und einer einzigen
Ausgabe, der mehrere Ausgangsdatensätze für jeden Eingangsdatensatz erzeugt. Diese Operation kann leicht
parallel an Cluster-Maschinen mit einem geteilten Speicher, einem verteilten Speicher und einer geteilten Plat-
te ausgeführt werden.

Variationen und Erweiterungen

[0056] Eine Anzahl von Varianten und Erweiterungen der vorstehenden Ausführungsform können für einige
Anwendungen, ob für sich oder in Kombination mit jeder anderen, verwendbar sein. Die offensichtlichsten sind
natürlich das Ersetzen oder Erweitern von Notationskonventionen, wie der Punktaufruftrenner, und das Neua-
nordnen von Komponenten.
[0057] Die bisher beschriebenen Pivotisierungs- und Entpivotisierungsoperation beschränken die Spaltenna-
men in der pivotisierten Tabelle oder Ausgangstabelle. Spaltennamen bei der Standard-SQL müssen Zeichen-
folgen ohne Leerstellen sein. Weil Spaltenwerte Leerstellen aufweisen können und das Pivotisieren Werte zu
Namen ändert, kann leicht ein Verfahren entwickelt werden, um angegebene Bezeichner und Literale als Spal-
tennamen zu verwenden. Es wäre in gleicher Weise einfach, Spaltenwerte mit anderen Datentypen als Zei-
chenketten als druckbare und lesbare Darstellungen für Spaltennamen darzustellen. Herkömmliche Namens-
manipulationen, wie das Verketten von Namen, könnten verwendbar sein. Beispielsweise könnte eine Pi-
vot-Liste Spalten-Aliases unter Verwendung eines Schlüsselworts, wie ALS aus SQL, enthalten. (Falls in Fig. 4
die Quartals-Werte "1" bis "4" an Stelle der Jahreszeitennamen wären, könnte die Spezifikation von 420 fol-
gendermaßen aussehen: (Verkäufe FÜR Quartal IN (1 ALS "Frühling", 2 ALS "Sommer", 3 ALS "Herbst", 4 ALS
"Winter").) zusätzlich könnte ALS verwendet werden, um Pivot-Ergebnisspalten in einem beliebigen Zusam-
menhang umzubenennen, und benutzerdefinierte Funktionen könnten zum Umwandeln komplexer Spaltenna-
men oder zum Anpassen von Namen an spezifische Beschränkungen einer SQL-Implementation zugeführt
werden.
[0058] Semantische Erweiterungen könnten das Pivotisieren und Entpivotisieren mehrerer Spalten in einem
einzigen Schritt enthalten. Beispielsweise ersetzt die Operation 450 in Fig. 4 die drei Spalten 411, 412 und 414
durch acht Spalten an Stelle der vier Spalten 431–434 der Ergebnistabelle 430. Das heißt, daß der Satz von
Pivot-Spalten ein kartesisches oder äußeres Produkt aller Pivot-Listen darstellt. Eine Konvention zum Bezeich-
nen der Pivot-Spalten könnte lediglich das Verketten der Namen, wie Verkäufe_1996_Frühling usw. beinhal-
ten. Eine Mehrspalten-Entpivotisierungsoperation mit derselben Spezifikation könnte solche Namen wieder in
ihre ursprüngliche Form decodieren, um eine wahre Umkehrung für diese Erweiterung bereitzustellen. Eine
weitere Erweiterung würde ein Mehrspalten-Pivotisieren in Schritten ermöglichen. Es könnte beispielsweise er-
wünscht sein, eine weitere Pivotisierung auf die bereits pivotisierte Tabelle 430 um die Spalte 436 anzuwen-
den, um die vorstehend beschriebenen acht Spalten zu erzeugen. Statt die Tabelle 430 zu entpivotisieren und
dann eine Mehrspalten-Pivotisieren anzuwenden, ermöglicht eine erweiterte Form eine Liste von Spalten an
Stelle der Wertspalte, beispielsweise Wide.PIVOT ((Frühling, Sommer, Herbst, Winter) FÜR Jahr IN (1996,
10/19

DE 699 10 219 T2 2004.06.17
1997)). Der Optimierer 340 und der Compiler 350 können diese Operationen einfach zu einem einzigen Aus-
führungsplan zusammenfassen.
[0059] Die Pivotisierungsoperation (jedoch nicht die Entpivotisierungsoperation) kann herkömmliche
SQL-Aggregations- oder Gruppierungsfunktionen, wie MIN, SUM, AVG und sogar COUNT (Minimum, Summe,
Durchschnitt und Zählwert) für die Wertspalte in Schritt 540 unterstützen. In diesem Fall kann die Beschrän-
kung auf eine einzige Zeile je Gruppe aufgehoben werden. Natürlich könnte sich der Typ der neuen Spalte von
demjenigen der ursprünglichen unterscheiden. Das folgende Beispiel, das auf Fig. 4 beruht, zeigt eine Anfrage
unter Verwendung einer Aggregation:
(WÄHLE Jahr, Quartal, Verkäufe AUS Narrow) PIVOT (SUM(Verkäufe) FÜR Quartal IN (Frühling, Sommer,
Herbst, Winter)
[0060] Diese Anfrage faßt Verkäufe für die Gebiete Ost und West zu einer einzigen Summe zusammen, die
die gesamte Firma für jedes Jahr darstellt. Bei Versionen, bei denen Gruppierungsfunktionen zulässig sind,
könnte die Implementation die implizite Anwendung einer bestimmten Funktion, wie SUM, in allen Fällen spe-
zifizieren, in denen eine Pivotisierungsoperation andernfalls duplizierte Primärschlüssel in verschiedenen Zei-
len der pivotisierten Tabelle erzeugen würde. Pivotisierungen mit einer Gruppierung können nicht umgekehrt
werden, weil bei der Aggregation Informationseinzelheiten verlorengehen, und die gruppierte Ausgabe bei der
Standard-SQL kann aus dem gleichen Grunde nicht umgekehrt werden. Wenngleich diese Erweiterung das
Funktionieren einer Entpivotisierung als eine wahre Umkehrung verhindert, bewahrt eine Ausführungsform die-
se Fähigkeit durch Hinzufügen einer internen "Seitentabelle", die alle ursprünglichen Werte speichert.
[0061] Eine andere mächtige Erweiterung bietet die weitere Möglichkeit, die Liste von Literalspaltennamen
bei einer Pivotisierungs- oder Entpivotisierungsoperation mit einer WAHL-Anfrage zu ersetzen. Bei einer kom-
plexeren Verarbeitung würde die Hilfsanfrage zuerst ablaufen und dann die Liste pivotisierter Spalten unter
Verwendung des Ergebnisses der Hilfsanfrage gebunden werden, so daß die Hilfsanfrage eine verschachtelte
Compilierung und Ausführung in den Blöcken 340 und 350 in Fig. 3 erfordert. Die Ausführung erfordert das
Berechnen des Anfrageausdrucks, der zu pivotisieren ist, sowie das Ausführen einer Anfrage in bezug auf das
Ergebnis.
[0062] Die Pivot-Spezifikation könnte die Pivot-Liste vollständig fortlassen, und sie könnte stattdessen eine
Standard-Anfrage bereitstellen. Beispielsweise könnte durch Fortlassen der Klausel IN (Frühling, Sommer,
Herbst, Winter) in der Anfrage 420 eine Standard-Anfrage WÄHLE BESTIMMTES Quartal AUS Narrow ersetzt
werden. Weil hierdurch bewirkt wird, daß die Anfrage 420 zweimal auf die Eingangstabelle Bezug nimmt, wäre
es nützlich, einen zweckgebundenen Namen für eine Operations-Eingangstabelle, analog dem Namen "this"
in C++, einzuführen. Die Operation 420 könnte dann zu folgendem werden:
Narrow.PIVOT (Verkäufe FÜR WÄHLE BESTIMMTES Quartal AUS EINGABE).
[0063] Statt eine Pivot-Liste zu benötigen, könnte die Entpivotisierungsoperation eine Spezifikation von allen
außer den pivotisierten Spalten in der Eingabe der Operation ermöglichen. In dem wie vorstehend angegeben
modifizierten Beispiel 400 könnte die inverse Operation folgendermaßen spezifiziert werden (siehe 440 in
Fig. 4):
Wide.UNPIVOT (Verkäufe FÜR Quartal IN (Frühling, Sommer, Herbst, Winter))
oder folgendermaßen (460, Fig. 4):
Wide.UNPIVOT (Verkäufe ÜBER (Gebiet, Jahr)).
[0064] Das Unterstützen von UBER in diesem Zusammenhang erfordert das Bestimmen des Satzes pivoti-
sierter Spalten von der Eingangstabelle und damit die Fähigkeit zum Verarbeiten von Hilfsanfragen, wie vor-
stehend beschrieben wurde. Die IN- und ÜBER-Klauseln können kombiniert werden, wodurch ermöglicht wird,
daß eine oder mehrere Spalten zu einer pivotisierten Spalte sowie einer Gruppierungsspalte werden. Eine Si-
tuation, in der dies aus der Perspektive der Anwendung sinnvoll sein könnte, besteht im Einschluß der Früh-
lingsverkäufe in jede ausgegebene Zeile, um die Berechnung des Verkaufszuwachses seit dem ersten Quartal
für jedes folgende Quartal zu ermöglichen.
[0065] In manchen Tabellen kann ein Spaltensatz mehr oder weniger orthogonal oder unabhängig sein, und
es ist beispielsweise wahrscheinlich, daß die mit "Stadt" und "Monat" bezeichneten Spalten für alle Städte für
alle Monate Tabelleneinträge aufweisen. Andere Spaltensätze sind hierarchisch, wie beispielsweise in einer
"Orte"-Tabelle mit "Staat"-, "Stadt"- und "Laden"-Spalten, und ihre Daten sind spärlich, so daß sehr wenige
Städte in mehreren Staaten auftreten und wenige Städte mehrere Läden aufweisen. Im letztgenannten Fall
führt die Verwendung von zwei IN-Klauseln zu einer plumpen Syntax und Semantik bei einer Pivotisierungso-
peration. Die Verwendung einer Liste von Pivot-Spalten an Stelle einer einzigen Pivot-Spalte vermindert dieses
Problem jedoch. Das ANSI-SQL-Konzept von "Zeilenwerten" ist für diesen Fall geeignet. Typischerweise,
wenn auch nicht immer, ist es bequemer, eine Anfrage als die Pivot-Liste statt als eine Liste von Literalspal-
tennamen zu spezifizieren. Eine als Beispiel dienende Form könnte beispielsweise die folgende sein: Locati-
ons.PIVOT (Verkaufsvolumen FÜR (Stadt, Laden) IN (WÄHLE Stadt, Laden AUS Geschäften)).
[0066] Die Pivotisierungs- oder Entpivotisierungsoperationen könnten auch bei der internen Operation von
Anfrageprozessoren 300 in Fig. 3 verwendbar sein. Zusätzlich müssen Referenzintegritätskonstanten nur für
11/19

DE 699 10 219 T2 2004.06.17
gelöschte Kandidatenschlüssel und neue Fremdschlüssel erzwungen werden, und unter Verwendung eines Pi-
votisierens bzw. eines Entpivotisierens oder einer ähnlichen Drehung könnten Lösch- und Einfügungseinträge,
die zum selben Schlüsselwert gehören, zusammengefaßt werden, wodurch einige Integritätsprüfungen als re-
dundant beseitigt werden könnten. Weiterhin kann bei einer herkömmlichen Anfrage mit einer sehr großen
IN-Klausel unter Verwendung herkömmlicher Verbindungsverfahren, wie Schleifen, Indexierungen, Ver-
schmelzungen und Hash-Verbindungen und ihrer Parallelverarbeitungsvarianten, eine von der Suchmaschine
implizit aufgerufene interne Entpivotisierungsoperation eine einzige sehr komplexe Zeile, die viele Literale oder
Parameter als Spalten enthält, in einen Zeilensatz abbilden, der mit Datenbanken abgeglichen werden kann.
Ähnliche interne Aufrufe von Pivotisierungs- bzw. Entpivotisierungsoperationen können in ODER- und VEREI-
NIGUNGS-Anfragen ("OR and UNION queries"), die häufig mit IN-Klauseln äquivalent sind, nützlich sein.

Patentansprüche

1. Von einem Computer (500) durchgeführtes Verfahren zum Transformieren von Daten von einer unpivo-
tisierten Eingangstabelle (410) einer relationalen Datenbank in eine pivotisierte Ausgangstabelle (430),
dadurch gekennzeichnet, daß alle folgenden Schritte vollständig innerhalb des relationalen Datenbankma-
nagementsystems (200) ausgeführt werden, um Tabellen zu verarbeiten, die Zeilen und Spalten von Einträgen
mit Datenwert-Einträgen sowie getrennt von den und in einem anderen Format als die Datenwert-Einträge ge-
speicherte Spaltennamen aufweisen, ohne daß auf ein und von einem anderen Gesamttabellenformat konver-
tiert wird, mit folgenden vom Computer ausgeführten Schritten:
Auswählen (521) des getrennt gespeicherten Namens einer ersten Spalte der Eingangstabelle als Pivot-Spal-
te,
Wählen (523) des getrennt gespeicherten Namens einer zweiten Spalte der Eingangstabelle als Wertspalte,
Umwandeln (531) eines Satzes von Einträgen, die als Datenwerte in der Pivot-Spalte gespeichert sind, direkt
in Einträge, die als Spaltennamen-Einträge in der Ausgangstabelle gespeichert sind, die pivotisierte Spalten in
der Ausgangstabelle benennen,
Anordnen (540) von Einträgen, die als Datenwerte in der Pivot-Spalte gespeichert sind, in entsprechende Da-
tenwert-Einträge in entsprechend unterschiedlichen pivotisierten Spalten der Ausgangstabelle, und
Speichern (560) der Ausgangstabelle direkt in dem Datenbankmanagementsystem, ohne sie in ein anderes
oder aus einem anderen Format zu konvertieren.

2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der Anordnungsschritt für jeden Daten-
wert-Eintrag in der Wertspalte, der in der gleichen Zeile der Eingangstabelle wie ein bestimmter aus dem Satz
an Datenwert-Einträgen in der Pivot-Spalte angeordnet ist, ein Anordnen des bestimmten einen Daten-
wert-Eintrags in einer gewissen der pivotisierten Spalten der pivotisierten Ausgangstabelle umfaßt, wobei die
gewisse pivotisierte Spalte einen Namen aufweist, der dem bestimmten einen Datenwert-Eintrag in der Pi-
vot-Spalte entspricht.

3. Verfahren nach Anspruch 1, gekennzeichnet durch einen weiteren Schritt zum Auswählen (522) gewis-
ser aus dem Satz an Datenwert-Einträgen in der Pivot-Spalte als Pivot-Liste, wobei der Umwandlungsschritt
lediglich Datenwert-Einträge in der Pivot-Liste in die Spaltennamen-Einträge umwandelt.

4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß der Umwandlungsschritt keine Zeilen in der
Eingangstabelle mit NULL-Datenwert-Einträgen in die Pivot-Spalte umwandelt.

5. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Eingangstabelle mindestens eine andere
Spalte (413) als die Pivot- und die Wertspalte aufweist.

6. Verfahren nach Anspruch 5, gekennzeichnet durch ein Gruppieren (532) der Zeilen der Ausgangstabel-
len im Hinblick auf gleiche Werte der Datenwert-Einträge in der genannten mindestens einen anderen Spalte.

7. Von einem Computer ausgeführtes Verfahren (600) zum Transformieren von Daten von einer pivotisier-
ten Eingangstabelle (430) einer relationalen Datenbank in eine unpivotisierte Ausgangstabelle (410),
dadurch gekennzeichnet, daß alle folgenden Schritte direkt innerhalb eines relationalen Datenbankmanage-
mentsystems (200) ausgeführt werden, um Tabellen zu verarbeiten, die Zeilen und Spalten von Einträgen mit
Datenwerten sowie Einträge mit Spaltennamen, die getrennt von den und in einem anderen Format als die Da-
tenwert-Einträge gespeichert sind, aufweisen, ohne daß eine Konvertierung in ein anderes oder aus einem an-
deren Gesamttabellenformat durchgeführt wird, mit den folgenden vom Computer ausgeführten Schritten:
Auswählen (623) des getrennt gespeicherten Namens einer ersten der Spalten der Eingangstabelle als Pi-
vot-Spalte,
12/19

DE 699 10 219 T2 2004.06.17
Auswählen (621) mehrerer der getrennt gespeicherten Namen der Spalten der Eingangstabelle als Pivot-Liste,
Erzeugen (632) einer Wertspalte in der Ausgangstabelle mit einem ausgewählten Namen, der in einem Spal-
tennamen-Eintrag gespeichert ist, und mit mehreren getrennt gespeicherten Datenwert-Einträgen,
Anordnen (640) von Einträgen, die als Spaltennamen-Einträge in der Pivot-Liste gespeichert sind, in entspre-
chenden Datenwert-Einträgen in entsprechend unterschiedlichen der Wertspalte der Ausgangstabelle, und
Speichern (660) der Ausgangstabelle direkt in dem Datenbankmanagementsystem, ohne daß sie in ein ande-
res oder aus einem anderen Format konvertiert wird.

8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, daß der Anordnungsschritt für jeden bestimmten
Datenwert-Eintrag in jeder bestimmten Spalte der Eingangstabellen-Spalten in der Pivot-Liste ein Anordnen
des bestimmten Datenwert-Eintrags in einem solchen Datenwert-Eintrag der Wertspalte der unpivotisierten
Ausgangstabelle in einer Zeile umfaßt, die auch einen Datenwert-Eintrag in der Pivot-Spalte entsprechend der
bestimmten Spalte der Eingangstabelle enthält.

9. Verfahren nach Anspruch 7, dadurch gekennzeichnet, daß die Eingangstabelle mindestens eine andere
Spalte (435) als die Spalten in der Pivot-Liste aufweist.

10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, daß ein Gruppierungsschritt die Zeilen der Aus-
gangstabelle im Hinblick auf gleiche Werte der Datenwert-Einträge in der genannten mindestens einen ande-
ren Spalte gruppiert.

11. Relationales Datenbanksystem (200) mit einer Anzahl an Clients (210) und einer Suchmaschine (240)
mit Modulen zum Parsen (310), Optimieren (330) und Ausführen (350) einer Anfrage (420, 450) von einem der
Clients, die eine Pivotisierungsoperation enthält, die angibt:
eine relationale Eingangstabelle (410) mit Zeilen und Spalten von Datenwerten und mit Spaltennamen, die ge-
trennt von den Datenwerten in den Spalten gespeichert sind,
einen Namen einer Pivot-Spalte (411) in der Eingangstabelle, und
einen Namen einer Wertspalte (412) in der Eingangstabelle,
dadurch gekennzeichnet, daß die Suchmaschine Datenwerte in der Wertspalte um die Pivot-Spalte transpo-
niert, wobei sie mindestens einige der Datenwerte in getrennt gespeicherte und formatierte Spaltennamen um-
wandelt, so daß sie eine pivotisierte Ausgangstabelle direkt aus der Eingangstabelle aufbaut, ohne eine der
beiden Tabellen in ein anderes oder aus einem anderen Format zu konvertieren.

12. System nach Anspruch 11, wobei die Pivotisierungsoperation außerdem eine Pivot-Liste (522) von Da-
tenwerten in der Pivot-Spalte angibt, dadurch gekennzeichnet, daß die Datenwerte in der Pivot-Spalte auf-
grund der Dateneinträge in der Pivot-Liste transponiert werden.

13. System nach Anspruch 12, wobei die Eingangstabelle andere Spalten (413) als die Pivot- und die
Wertspalte aufweist, dadurch gekennzeichnet, daß die Suchmaschine Zeilen der Ausgangstabelle im Hinblick
auf gleiche Werte der Datenwert-Einträge in den anderen Spalten gruppiert (550).

14. System nach Anspruch 12, wobei eine Anfrage (440, 460) von einem der Clients eine Entpivotisie-
rungsoperation umfaßt, die angibt:
eine pivotisierte relationale Eingangstabelle (430) mit Zeilen und Spalten von Datenwerten und mit Spaltenna-
men, die getrennt von den Datenwerten in den Spalten gespeichert sind,
einen Namen (411) für eine Wertspalte,
einen Namen (412) für eine Pivot-Spalte, und
eine Pivot-Liste mit Namen von mindestens einigen der Spalten (431 bis 434) in der pivotisierten Eingangsta-
belle,
dadurch gekennzeichnet, daß die Suchmaschine die Spaltennamen in der Pivot-Liste um die Pivot-Spalte
transponiert (600), wobei sie diese Spaltennamen in getrennt gespeicherte und formatierte Datenwerte um-
wandelt, so daß sie eine unpivotisierte Ausgangstabelle direkt aus der Eingangstabelle aufbaut, ohne eine von
beiden Tabellen in ein anderes oder aus einem anderen Format zu konvertieren.

15. Relationales Datenbanksystem (200) mit einer Anzahl an Clients (210) und einer Suchmaschine (240)
mit Modulen zum Parsen (310), Optimieren (330) und Ausführen (350) einer Anfrage (440, 460) von einem der
Clients, die eine Entpivotisierungsoperation enthält, die angibt:
eine relationale Eingangstabelle (430) mit Zeilen und Spalten von Datenwerten und mit Spaltennamen, die ge-
trennt von den Datenwerten in den Spalten gespeichert sind,
einen Namen für eine Pivot-Spalte (412), und
13/19

DE 699 10 219 T2 2004.06.17
eine Pivot-Liste mit Namen von mindestens einigen der Spalten (431 bis 434) in der Eingangstabelle,
dadurch gekennzeichnet, daß die Suchmaschine die Spaltennamen in der Pivot-Liste um die Pivot-Spalte
transponiert (600), wobei sie diese Namen in getrennt gespeicherte und formatierte Datenwerte umwandelt,
so daß sie eine pivotisierte Ausgangstabelle direkt aus der Eingangstabelle aufbaut, ohne eine von beiden Ta-
bellen in ein anderes oder aus einem anderen Format zu konvertieren.

16. System nach Anspruch 15, wobei die Eingangstabelle andere Spalten (435) als die Pivot- und die
Wertspalte aufweist, dadurch gekennzeichnet, daß die Suchmaschine Zeilen der Ausgangstabelle im Hinblick
auf gleiche Werte der Datenwert-Einträge in den anderen Spalten gruppiert.

17. Medium (133) mit Darstellungen von Anweisungen, um einen geeignet programmierten Computer zu
veranlassen, ein Verfahren (500) zum Transformieren von Daten aus einer unpivotisierten Eingangstabelle
(410) einer relationalen Datenbank in eine pivotisierte Ausgangstabelle (430) auszuführen,
dadurch gekennzeichnet, daß alle folgenden Schritte vollständig innerhalb eines relationalen Datenbankma-
nagementsystems (200) ausgeführt werden, um Tabellen zu verarbeiten, die Zeilen und Spalten von Einträgen
mit Datenwert-Einträgen sowie Einträge mit Spaltennamen, die getrennt von den und in einem anderen Format
als die Datenwert-Einträge gespeichert werden, aufweisen, ohne daß eine Konvertierung in ein anderes oder
aus einem anderen Gesamttabellenformat stattfindet, mit den folgenden Schritten:
Auswählen (521) des getrennt gespeicherten Namens einer ersten der Spalten der Eingangstabelle als Pi-
vot-Spalte,
Auswählen (523) des getrennt gespeicherten Namens einer zweiten der Spalten der Eingangstabelle als
Wertspalte,
Umwandeln (531) eines Satzes an Einträgen, die als Datenwerte in der Wertspalte gespeichert sind, direkt in
Einträge, die als Spaltennamen-Einträge in der Ausgangstabelle, gespeichert sind, die pivotisierte Spalten in
der Ausgangstabelle benennen,
Anordnen (540) von Einträgen, die als Datenwerte in der Pivot-Spalte gespeichert sind, in entsprechende Da-
tenwert-Einträge in entsprechend unterschiedlichen der pivotisierten Spalten der Ausgangstabelle, und
Speichern (560) der Ausgangstabelle direkt in dem Datenbankmanagementsystem, ohne sie in ein anderes
oder aus einem anderen Format zu konvertieren.

18. Medium nach Anspruch 17 mit Darstellungen von Anweisungen, um einen geeignet programmierten
Computer zu veranlassen, ein Verfahren zum Transponieren von Daten aus einer pivotisierten Eingangstabelle
einer relationalen Datenbank in eine unpivotisierte Ausgangstabelle in der gleichen relationalen Datenbank zu
transformieren,
dadurch gekennzeichnet, daß alle folgenden Schritte vollständig innerhalb eines relationalen Datenbankma-
nagementsystems ausgeführt werden, um Tabellen zu verarbeiten, die Zeilen und Spalten von Einträgen mit
Datenwerten sowie Datenwerte mit Spaltennamen, die getrennt von den und in einem anderen Format als die
Datenwerteinträge gespeichert sind, aufweisen, ohne daß eine Umwandlung in ein anderes oder aus einem
anderen Gesamttabellenformat stattfindet, wobei die Schritte aufweisen:
Auswählen des getrennt gespeicherten Namens einer ersten der Spalten der Eingangstabelle als Pivot-Spalte,
Auswählen einer Vielzahl der getrennt gespeicherten Namen der Spalten der Eingangstabelle als Pivot-Liste,
in der Ausgangstabelle Erzeugen einer Pivot-Spalte mit einem ausgewählten Namen, der in einem Spaltenna-
men-Eintrag gespeichert ist, und einer Vielzahl getrennt gespeicherten Datenwert-Einträge,
Umwandeln der Spaltennamen-Einträge in der Pivot-Liste in Datenwert-Einträge in der Pivot-Spalte,
in der Ausgangstabelle Erzeugen einer Wertspalte mit einem ausgewählten Namen, der in einem Spaltenna-
men-Eintrag gespeichert ist und einer Vielzahl separat gespeicherter Datenwert-Einträge,
Anordnen von Einträgen, die als Spaltennamen-Einträge in der Pivot-Liste gespeichert sind, in entsprechende
Datenwert-Einträge in entsprechend unterschiedlichen der Wertspalte der Ausgangstabelle, und
Speichern der Ausgangstabelle direkt in dem Datenbankmanagementsystem, ohne sie in ein anderes oder aus
einem anderen Format umzuwandeln.

19. Medium (133) mit Darstellungen von Anweisungen, um einen geeignet programmierten Computer zu
veranlassen, ein Verfahren (600) zum Transformieren von Daten aus einer pivotisierten Eingangstabelle (430)
einer relationalen Datenbank in eine unpivotisierte Ausgangstabelle (410) umzuwandeln,
dadurch gekennzeichnet, daß alle folgenden Schritte vollständig innerhalb eines relationalen Datenbank-ma-
nagementsystems (200) ausgeführt werden, um Tabellen zu verarbeiten, die Zeilen und Spalten von Einträgen
mit Datenwerten sowie Einträge mit Spaltennamen, die getrennt von den und in einem anderen Format als die
Datenwert-Einträge gespeichert sind, aufweisen, ohne daß eine Umwandlung in ein anderes oder aus einem
anderen Tabellenformat stattfindet, mit den folgenden Schritten:
Auswählen (623) des getrennt gespeicherten Namens einer ersten der Spalten der Eingangstabelle als Pi-
14/19

DE 699 10 219 T2 2004.06.17
vot-Spalte,
Auswählen (621) einer Vielzahl der getrennt gespeicherten Namen der Spalten der Eingangstabelle als Pi-
vot-Liste,
in der Ausgangstabelle Erzeugen (632) einer Wertspalte mit einem ausgewählten Namen, der in einem Spal-
tennamen-Eintrag gespeichert ist, und einer Vielzahl getrennt gespeicherter Datenwert-Einträge,
Anordnen (640) von Einträgen, die als Spaltennamen-Einträge in der Pivot-Liste gespeichert sind, in entspre-
chende Datenwert-Einträge in entsprechenden anderen der Wertspalte der Ausgangstabelle, und
Speichern (660) der Ausgangstabelle direkt in dem Daten bankmanagementsystem, ohne sie in ein anderes
oder aus einem anderen Format zu konvertieren.

Es folgen 4 Blatt Zeichnungen
15/19

DE 699 10 219 T2 2004.06.17
Anhängende Zeichnungen
16/19

DE 699 10 219 T2 2004.06.17
17/19

DE 699 10 219 T2 2004.06.17
18/19

DE 699 10 219 T2 2004.06.17
19/19

	Titelseite
	Beschreibung
	Patentansprüche
	Anhängende Zeichnungen

