

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

(43) International Publication Date
06 August 2020 (06.08.2020)

(10) International Publication Number

WO 2020/160514 A1

(51) International Patent Classification:

CI2N 15/62 (2006.01) CI2N 15/10 (2006.01)
CI2N 15/11 (2006.01)

Massachusetts 02139 (US). YU, Yi; 26 Landsdowne Street, 2nd Floor, Cambridge, Massachusetts 02139 (US).

(21) International Application Number:

PCT/US2020/016285

(74) Agent: HUNTER-ENSOR, Melissa; Greenberg Traurig, LLP, One International Place, Suite 2000, Boston, MA 02110 (US).

(22) International Filing Date:

31 January 2020 (31.01.2020)

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, WS, ZA, ZM, ZW.

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

62/799,702 31 January 2019 (31.01.2019) US

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,

(71) Applicant: BEAM THERAPEUTICS INC. [US/US]; 26 Landsdowne Street, 2nd Floor, Cambridge, Massachusetts 02139 (US).

(72) Inventors: SLAYMAKER, Ian; 26 Landsdowne Street, 2nd Floor, Cambridge, Massachusetts 02139 (US). GEHRKE, Jason Michael; 26 Landsdowne Street, 2nd Floor, Cambridge, Massachusetts 02139 (US). GAUDELLI, Nicole; 26 Landsdowne Street, 2nd Floor, Cambridge,

(54) Title: NUCLEOBASE EDITORS HAVING REDUCED NON-TARGET DEAMINATION AND ASSAYS FOR CHARACTERIZING NUCLEOBASE EDITORS

Structural basis for bystander mutagenesis

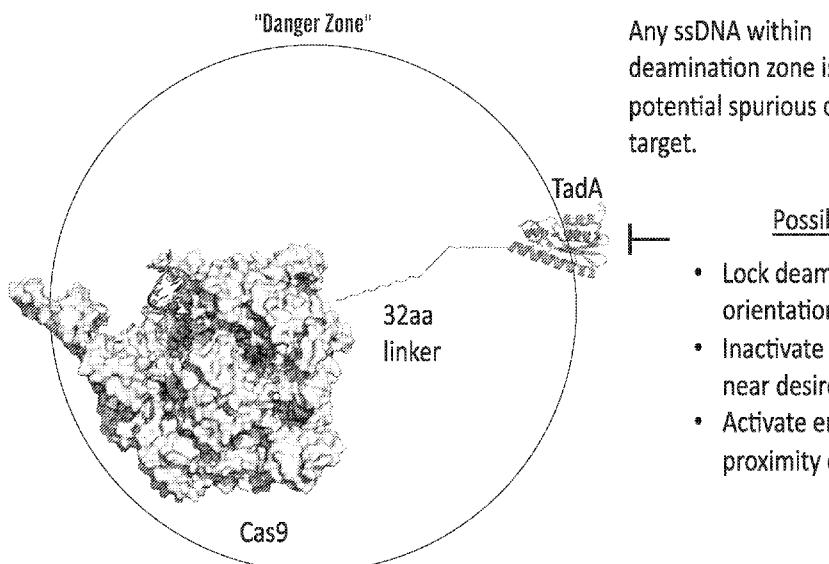


FIG. 1

(57) Abstract: The invention features base editors having reduced non-target deamination, methods of using the base editors, and assays for characterizing base editors as having decreased non-target deamination, e.g. compared to programmed, on-target deamination.

MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

- *as to applicant's entitlement to apply for and be granted a patent (Rule 4.17(ii))*
- *as to the applicant's entitlement to claim the priority of the earlier application (Rule 4.17(iii))*

Published:

- *with international search report (Art. 21(3))*

**NUCLEOBASE EDITORS HAVING REDUCED NON-TARGET DEAMINATION
AND ASSAYS FOR CHARACTERIZING NUCLEOBASE EDITORS**

CROSS-REFERENCE

5 This application claims the benefit of U.S. Provisional Patent Application No. 62/799,702, filed January 31, 2019, the contents of which are incorporated herein by reference in its entirety.

BACKGROUND OF THE INVENTION

10 Deaminases combined with the precise targeting of CRISPR-Cas proteins, termed nucleobase editors, have the ability to introduce specific point mutations into target polynucleotides. Nucleobase editors induce base changes without introducing double-stranded DNA breaks, and include adenosine base editors that convert target A•T to G•C and cytidine base editors that convert target C•G to T•A. However, introduction of nucleobase 15 editors in cells has the potential to generate undesired base editor-associated edits, including genome-wide spurious deamination, bystander mutation, and target proximal edits. Spurious deamination events may occur throughout the genome, catalyzed by the base editor deamination domain acting independently of targeted base editing via programming of CRISPR-Cas domain by a guide RNA. Without being bound by theory, genome-wide 20 spurious deamination events have the potential to occur where a single stranded DNA substrate is formed, for example due to “DNA breathing” or at DNA replication forks. Target proximal edits are base editing events that occur outside the on-target sequence, but are within ~ 200bp upstream or downstream of the targeted region. Bystander mutations are 25 mutations that occur within the on-target, Cas9/sgRNA guided, base editing window which are not the desired target nucleobase. Bystander mutation may result in either silent mutation (no amino acid change) or non-synonymous mutation (amino acid change). Thus, there is a need for base editors having reduced non-target deamination.

SUMMARY OF THE INVENTION

30 As described below, the present invention features nucleobase editor compositions and methods and assays for characterizing nucleobase editors as having decreased non-target deamination, e.g. compared to programmed, on-target deamination.

Compositions and articles defined by the invention were isolated or otherwise manufactured in connection with the examples provided below. Other features and

advantages of the invention will be apparent from the detailed description, and from the claims.

In one aspect provided herein is a fusion protein comprising a deaminase inserted within a flexible loop of a Cas9 polypeptide, wherein the fusion protein comprises the 5 structure:

NH2-[N-terminal fragment of a Cas9]-[deaminase]-[C-terminal fragment of a Cas9]-COOH, wherein each instance of “]-[“ is an optional linker.

In one aspect provided herein is a fusion protein comprising a deaminase flanked by a N-terminal fragment and a C-terminal fragment of a Cas9 polypeptide, wherein the C-10 terminus of the N terminal fragment or the N-terminus of the C terminal fragment comprises a part of a flexible loop of the Cas9 polypeptide.

In some embodiments, the deaminase of the fusion protein deaminates a target nucleobase in a target polynucleotide sequence. In some embodiments, the flexible loop comprises an amino acid in proximity to the target nucleobase when the fusion protein 15 deaminates the target nucleobase. In some embodiments, the flexible loop comprises a part of an alpha-helix structure of the Cas9 polypeptide. In some embodiments, the target nucleobase is deaminated with lower off-target deamination as compared to an end terminus fusion protein comprising the deaminase fused to a N terminus or a C terminus of SEQ ID NO: 1.

20 In some embodiments, the target nucleobase is 1-20 nucleobases away from a Protospacer Adjacent Motif (PAM) sequence in the target polynucleotide sequence. In some embodiments, the target nucleobase is 2-12 nucleobases upstream of the PAM sequence. In some embodiments, the flexible loop comprises a region selected from the group consisting of amino acid residues at positions 530-537, 569-579, 686-691, 768-793, 943-947, 1002-25 1040, 1052-1077, 1232-1248, and 1298-1300 as numbered in SEQ ID NO: 1, or a corresponding region thereof. In some embodiments, the deaminase is inserted between amino acid positions 768-769, 791-792, 792-793, 1015-1016, 1022-1023, 1026-1027, 1029-1030, 1040-1041, 1052-1053, 1054-1055, 1067-1068, 1068-1069, 1247-1248, or 1248-1249 as numbered in SEQ ID NO: 1 or corresponding amino acid positions thereof.

30 In some embodiments, the deaminase is inserted between amino acid positions 768-769, 792-793, 1022-1023, 1026-1027, 1040-1041, 1068-1069, or 1247-1248 as numbered in SEQ ID NO: 1 or corresponding amino acid positions thereof. In some embodiments, the deaminase is inserted between amino acid positions 1016-1017, 1023-1024, 1029-1030,

1040-1041, 1069-1070 or 1247-1248 as numbered in SEQ ID NO: 1 or corresponding amino acid positions thereof.

In some embodiments, the N-terminal fragment comprises amino acid residues 1-529, 538-568, 580-685, 692-942, 948-1001, 1026-1051, 1078-1231, and/or 1248-1297 of the Cas9 polypeptide as numbered in SEQ ID NO: 1, or corresponding residues thereof. In some embodiments, the C-terminal fragment comprises amino acid residues 1301-1368, 1248-1297, 1078-1231, 1026-1051, 948-1001, 692-942, 580-685, and/or 538-568 of the Cas9 polypeptide as numbered SEQ ID NO: 1, or corresponding residues thereof. In some embodiments, the N terminal fragment or the C terminal fragment of the Cas9 polypeptide binds the target polynucleotide sequence.

In some embodiments, the N- terminal fragment or the C-terminal fragment of the Cas9 polypeptide comprises a DNA binding domain. In some embodiments, the N-terminal fragment or the C-terminal fragment comprises a RuvC domain. In some embodiments, the N-terminal fragment or the C terminal fragment comprises a HNH domain. In some embodiments, neither of the N-terminal fragment and the C-terminal fragment comprises a HNH domain. In some embodiments, neither of the N-terminal fragment and the C-terminal fragment comprises a RuvC domain. In some embodiments, the Cas9 polypeptide comprises a partial or complete deletion in one or more structural domains. In some embodiments, the deaminase is inserted at the partial or complete deletion position of the Cas9 polypeptide.

In some embodiments, the deletion is within a RuvC domain. In some embodiments, the deletion is within an HNH domain. In some embodiments, the deletion bridges a RuvC domain and a C-terminal domain, a L-I domain and a HNH domain, or a RuvC domain and a L-I domain. In some embodiments, the Cas9 polypeptide comprises a deletion of amino acids 1017-1069 as numbered in SEQ ID NO: 1 or corresponding amino acids thereof. In some embodiments, the Cas9 polypeptide comprises a deletion of amino acids 792-872 as numbered in SEQ ID NO: 1 or corresponding amino acids thereof. In some embodiments, the Cas9 polypeptide comprises a deletion of amino acids 792-906 as numbered in SEQ ID NO: 1 or corresponding amino acids thereof.

In one aspect, provided herein is a fusion protein comprising a deaminase inserted within a Cas9 polypeptide, wherein the fusion protein comprises the structure:

NH2-[N-terminal fragment of a Cas9]-[deaminase]-[C-terminal fragment of a Cas9]-COOH, wherein each instance of “]-[“ is an optional linker, wherein the Cas9 polypeptide comprises a complete deletion of a HNH domain, and wherein the deaminase is inserted at the deletion position.

In some embodiments, the C terminal amino acid of the N terminal fragment is amino acid 791 as numbered in SEQ ID NO: 1. In some embodiments, the N terminal amino acid of the C terminal fragment is amino acid 907 as numbered in SEQ ID NO: 1. In some embodiments, the N terminal amino acid of the C terminal fragment is amino acid 873 as numbered in SEQ ID NO: 1.

5 In one aspect provided herein is a fusion protein comprising a deaminase inserted within a Cas9 polypeptide, wherein the fusion protein comprises the structure:

NH2-[N-terminal fragment of a Cas9]-[deaminase]-[C-terminal fragment of a Cas9]-COOH, wherein each instance of “]-[“ is an optional linker, and wherein the Cas9 comprises 10 a complete deletion of a RuvC domain and wherein the deaminase is inserted at the deletion position.

In some embodiments, the deaminase is a cytidine deaminase or an adenosine deaminase. In some embodiments, the cytidine deaminase is an APOBEC cytidine deaminase, an activation induced cytidine deaminase (AID), or a CDA. In some 15 embodiments, the APOBEC deaminase is APOBEC1, APOBEC2, APOBEC3A, APOBEC3B, APOBEC3C, APOBEC3D, APOBEC3E, APOBEC3F, APOBEC3G, APOBEC3H, or APOBEC4. In some embodiments, the APOBEC deaminase is rAPOBEC1. In some embodiments, the fusion protein of any one of aspects above further comprises a UGI domain.

20 In some embodiments, the adenosine deaminase is a TadA deaminase. In some embodiments, the TadA deaminase is a modified TadA. In some embodiments, the TadA deaminase is a TadA 7.10. In some embodiments, the adenosine deaminase is a TadA dimer. In some embodiments, the TadA dimer comprises a TadA 7.10 and a wild type TadA. In some 25 embodiments, the optional linker comprises (SGGS)_n, (GGGS)_n, (GGGGS)_n, (G)_n, (EAAAK)_n, (GGS)_n, SGSETPGTSESATPES, or (XP)_n motif, or a combination thereof, wherein n is independently an integer between 1 and 30.

In some embodiments, the N terminal fragment of the Cas9 polypeptide is fused to the deaminase without a linker. In some embodiments, the C terminal fragment of the Cas9 is fused to the deaminase without a linker. In some embodiments, the fusion protein of any one 30 of aspects above, further comprises an additional catalytic domain.

In some embodiments, the additional catalytic domain is a second deaminase. In some embodiments, the second deaminase is fused to the N terminus or the C terminus of the fusion protein. In some embodiments, the deaminase is a cytidine deaminase or an adenosine deaminase. In some embodiments, the fusion protein of any one of aspects above further

comprises a nuclear localization signal. In some embodiments, the nuclear localization signal is a bipartite nuclear localization signal. In some embodiments, the Cas9 polypeptide is a *Streptococcus pyogenes* Cas9 (SpCas9), *Staphylococcus aureus* Cas9 (SaCas9), *Streptococcus thermophilus* 1 Cas9 (St1Cas9), or variants thereof. In some embodiments, the 5 Cas9 polypeptide is a modified Cas9 and has specificity for an altered PAM. In some embodiments, the Cas9 polypeptide is a nickase. In some embodiments, the Cas9 polypeptide is nuclease inactive. In some embodiments, the fusion protein of any one of aspects above in complex with a guide nucleic acid sequence to effect deamination of the target nucleobase. In some embodiments, the fusion protein is further complexed with the target polynucleotide.

10 Provided herein is a polynucleotide encoding the fusion protein of any one of aspects above.

Provided herein is an expression vector comprising the polynucleotide described above.

15 In some embodiments, the expression vector is a mammalian expression vector. In some embodiments, the vector is a viral vector selected from the group consisting of adeno-associated virus (AAV), retroviral vector, adenoviral vector, lentiviral vector, Sendai virus vector, and herpesvirus vector. In some embodiments, the vector comprises a promoter.

Provided herein is a cell comprising the fusion protein of any one of aspects above, the polynucleotide described above, or the vector described above.

20 In some embodiments, the cell is a bacterial cell, plant cell, insect cell, a human cell, or mammalian cell.

Provided herein is a kit comprising the fusion protein of any one of aspects above, the polynucleotide described above, or the vector described above.

25 Provided herein is a method for base editing comprising contacting a polynucleotide sequence with the fusion protein of any one of aspects above, wherein the deaminase of the fusion protein deaminates a nucleobase in the polynucleotide, thereby editing the polynucleotide sequence.

30 In some embodiments, the method further comprises contacting the target polynucleotide sequence with a guide nucleic acid sequence to effect deamination of the target nucleobase.

In one aspect, provided herein is a method for editing a target nucleobase in a target polynucleotide sequence, the method comprising: contacting the target polynucleotide sequence with a fusion protein comprising a deaminase flanked by a N-terminal fragment and a C-terminal fragments of a Cas9 polypeptide, wherein the deaminase of the fusion

protein deaminates the target nucleobase in the target polynucleotide sequence, and wherein the C-terminus of the N terminal fragment or the N-terminus of the C terminal fragment comprises a part of a flexible loop of the Cas9 polypeptide.

Provided herein is a method for editing a target nucleobase in a target polynucleotide sequence, the method comprising: contacting the target polynucleotide sequence with a fusion protein comprising a deaminase inserted within a flexible loop of a Cas9 polypeptide, wherein the fusion protein comprises the structure NH2-[N-terminal fragment of a Cas9]-[deaminase]-[C-terminal fragment of a Cas9]-COOH, wherein each instance of “]-“ is an optional linker, wherein the deaminase of the fusion protein deaminates the target nucleobase in the target polynucleotide sequence.

In some embodiments, the method further comprises contacting the target polynucleotide sequence with a guide nucleic acid sequence to effect deamination of the target nucleobase. In some embodiments, the guide nucleic acid sequence comprises a spacer sequence complementary to a protospacer sequence of the target polynucleotide sequence, thereby forming a R-loop. In some embodiments, the target nucleobase is deaminated with lower off-target deamination as compared to an end terminus method comprising the deaminase fused to a N terminus or a C terminus of SEQ ID NO: 1. In some embodiments, the deaminase of the fusion protein deaminates no more than two nucleobases within the range of the R-loop. In some embodiments, the target nucleobase is 1-20 nucleobases away from a PAM sequence in the target polynucleotide sequence. In some embodiments, the target nucleobase is 2-12 nucleobases upstream of the PAM sequence.

In some embodiments, the flexible loop comprises an amino acid in proximity to the target nucleobase when the deaminase of the fusion protein deaminates the target nucleobase. In some embodiments, the flexible loop comprises a region selected from the group consisting of amino acid residues at positions 530-537, 569-579, 686-691, 768-793, 943-947, 1002-1040, 1052-1077, 1232-1248, and 1298-1300 as numbered in SEQ ID NO: 1, or a corresponding region thereof. In some embodiments, the deaminase is inserted between amino acid positions 768-769, 791-792, 792-793, 1015-1016, 1022-1023, 1026-1027, 1029-1030, 1040-1041, 1052-1053, 1054-1055, 1067-1068, 1068-1069, 1247-1248, or 1248-1249 as numbered in SEQ ID NO: 1 or corresponding amino acid positions thereof. In some embodiments, the deaminase is inserted between amino acid positions 768-769, 792-793, 1022-1023, 1026-1027, 1040-1041, 1068-1069, or 1247-1248 as numbered in SEQ ID NO: 1 or corresponding amino acid positions thereof. In some embodiments, the deaminase is inserted between amino acid positions 1016-1017, 1023-1024, 1029-1030, 1040-1041, 1069-

1070 or 1247-1248 as numbered in SEQ ID NO: 1 or corresponding amino acid positions thereof.

In some embodiments, the N-terminal fragment comprises amino acid residues 1-529, 538-568, 580-685, 692-942, 948-1001, 1026-1051, 1078-1231, and/or 1248-1297 of the Cas9 polypeptide as numbered in SEQ ID NO: 1, or corresponding residues thereof. In some embodiments, the C-terminal fragment comprises amino acid residues 1301-1368, 1248-1297, 1078-1231, 1026-1051, 948-1001, 692-942, 580-685, and/or 538-568 of the Cas9 polypeptide as numbered SEQ ID NO: 1, or corresponding residues thereof. In some embodiments, the N terminal fragment or the C terminal fragment of the Cas9 polypeptide binds the target polynucleotide sequence. In some embodiments, the N-terminal fragment or the C-terminal fragment comprises a RuvC domain. In some embodiments, the N-terminal fragment or the C-terminal fragment comprises a HNH domain. In some embodiments, neither of the N-terminal fragment and the C-terminal fragment comprises a HNH domain. In some embodiments, neither of the N-terminal fragment and the C-terminal fragment comprises a RuvC domain.

In some embodiments, the Cas9 polypeptide comprises a partial or complete deletion in one or more structural domains. In some embodiments, the deaminase is inserted at the partial or complete deletion position of the Cas9 polypeptide. In some embodiments, the deletion is within a RuvC domain. In some embodiments, the deletion is within an HNH domain. In some embodiments, the deletion bridges a RuvC domain and a C-terminal domain, a L-I domain and a HNH domain, or a RuvC domain and a L-I domain. In some embodiments, the Cas9 polypeptide comprises a deletion of amino acids 1017-1069 as numbered in SEQ ID NO: 1 or corresponding amino acids thereof.

In some embodiments, the Cas9 polypeptide comprises a deletion of amino acids 792-872 as numbered in SEQ ID NO: 1 or corresponding amino acids thereof. In some embodiments, the Cas9 polypeptide comprises a deletion of amino acids 792-906 as numbered in SEQ ID NO: 1 or corresponding amino acids thereof. In some embodiments, the deaminase is a cytidine deaminase. In some embodiments, the deaminase is an adenosine deaminase. In some embodiments, the Cas9 polypeptide is a modified Cas9 and has specificity for an altered protospacer-adjacent motif (PAM). In some embodiments, the Cas9 polypeptide is a nickase. In some embodiments, the Cas9 polypeptide is nuclease inactive.

In some embodiments, the contacting is performed in a cell. In some embodiments, the cell is a mammalian cell or a human cell. In some embodiments, the cell is a pluripotent cell. In some embodiments, the cell is in vivo or ex vivo. In some embodiments, the

contacting is performed in a population of cells. In some embodiments, the population of cells are mammalian cells or human cells.

In one aspect provided herein is a method for treating a genetic condition in a subject, the method comprising: administering to the subject a fusion protein comprising a deaminase flanked by a N-terminal fragment and a C-terminal fragment of a Cas9 polypeptide or a polynucleotide encoding the fusion protein, and a guide nucleic acid sequence or a polynucleotide encoding the guide nucleic acid sequence, wherein the guide nucleic acid sequence directs the fusion protein to deaminate a target nucleobase in a target polynucleotide sequence of the subject, thereby treating the genetic condition.

10 Provided herein is a method for treating a genetic condition in a subject, the method comprising: administering to the subject a fusion protein comprising a deaminase inserted within a flexible loop of a Cas9 polypeptide, wherein the fusion protein comprises the structure NH₂-[N-terminal fragment of a Cas9]-[deaminase]-[C-terminal fragment of a Cas9]-COOH, wherein each instance of “]-[“ is an optional linker, wherein the deaminase of 15 the fusion protein deaminates the target nucleobase in the target polynucleotide sequence of the subject, thereby treating the genetic condition.

20 In some embodiments, the C-terminus of the N terminal fragment or the N-terminus of the C terminal fragment comprises a part of a flexible loop of the Cas9 polypeptide. In some embodiments, the method further comprises administering to the subject a guide nucleic acid sequence to effect deamination of the target nucleobase. In some embodiments, the target nucleobase comprises a mutation associated with the genetic condition. In some embodiments, the deamination of the target nucleobase replaces the target nucleobase with a wild type nucleobase. In some embodiments, the deamination of the target nucleobase replaces the target nucleobase with a non-wild type nucleobase, and wherein the deamination 25 of the target nucleobase ameliorates symptoms of the genetic condition.

25 In some embodiments, the target polynucleotide sequence comprises a mutation associated with the genetic condition at a nucleobase other than the target nucleobase. In some embodiments, the deamination of the target nucleobase ameliorates symptoms of the genetic condition. In some embodiments, the target nucleobase is 1-20 nucleobases away from a PAM sequence in the target polynucleotide sequence. In some embodiments, the target nucleobase is 2-12 nucleobases upstream of the PAM sequence. In some embodiments, the flexible loop comprises an amino acid in proximity to the target nucleobase when the deaminase of the fusion protein deaminates the target nucleobase.

In some embodiments, the flexible loop comprises a region selected from the group consisting of amino acid residues at positions 530-537, 569-579, 686-691, 768-793, 943-947, 1002-1040, 1052-1077, 1232-1248, and 1298-1300 as numbered in SEQ ID NO: 1, or a corresponding region thereof.

5 In some embodiments, the deaminase is inserted between amino acid positions 768-769, 791-792, 792-793, 1015-1016, 1022-1023, 1026-1027, 1029-1030, 1040-1041, 1052-1053, 1054-1055, 1067-1068, 1068-1069, 1247-1248, or 1248-1249 as numbered in SEQ ID NO: 1 or corresponding amino acid positions thereof. In some embodiments, the deaminase is inserted between amino acid positions 768-769, 792-793, 1022-1023, 1026-1027, 1040-1041, 10 1068-1069, or 1247-1248 as numbered in SEQ ID NO: 1 or corresponding amino acid positions thereof. In some embodiments, the deaminase is inserted between amino acid positions 1016-1017, 1023-1024, 1029-1030, 1040-1041, 1069-1070 or 1247-1248 as numbered in SEQ ID NO: 1 or corresponding amino acid positions thereof.

In some embodiments, the N-terminal fragment comprises amino acid residues 1-529, 15 538-568, 580-685, 692-942, 948-1001, 1026-1051, 1078-1231, and/or 1248-1297 of the Cas9 polypeptide as numbered in SEQ ID NO: 1, or corresponding residues thereof. In some embodiments, the C-terminal fragment comprises amino acid residues 1301-1368, 1248-1297, 1078-1231, 1026-1051, 948-1001, 692-942, 580-685, and/or 538-568 of the Cas9 polypeptide as numbered SEQ ID NO: 1, or corresponding residues thereof. In some 20 embodiments, the N terminal fragment or the C terminal fragment of the Cas9 polypeptide binds the target polynucleotide sequence. In some embodiments, the N-terminal fragment or the C-terminal fragment comprises a RuvC domain. In some embodiments, the N-terminal fragment or the C-terminal fragment comprises a HNH domain.

In some embodiments, neither of the N-terminal fragment and the C-terminal 25 fragment comprises a HNH domain. In some embodiments, neither of the N-terminal fragment and the C-terminal fragment comprises a RuvC domain. In some embodiments, the Cas9 polypeptide comprises a partial or complete deletion in one or more structural domains. In some embodiments, the deaminase is inserted at the partial or complete deletion position of the Cas9 polypeptide. In some embodiments, the deletion is within a RuvC domain. In 30 some embodiments, the deletion is within an HNH domain. In some embodiments, the deletion bridges a RuvC domain and a C-terminal domain, a L-I domain and a HNH domain, or a RuvC domain and a L-I domain. In some embodiments, the Cas9 polypeptide comprises a deletion of amino acids 1017-1069 as numbered in SEQ ID NO: 1 or corresponding amino acids thereof.

In some embodiments, the Cas9 polypeptide comprises a deletion of amino acids 792-872 as numbered in SEQ ID NO: 1 or corresponding amino acids thereof. In some embodiments, the Cas9 polypeptide comprises a deletion of amino acids 792-906 as numbered in SEQ ID NO: 1 or corresponding amino acids thereof. In some embodiments, the 5 deaminase is a cytidine deaminase. In some embodiments, the deaminase is an adenosine deaminase. In some embodiments, the Cas9 polypeptide is a modified Cas9 and has specificity for an altered PAM. In some embodiments, the Cas9 polypeptide is a nickase. In some embodiments, the Cas9 polypeptide is nuclease inactive. In some embodiments, the subject is a mammal. In some embodiments, the subject is a human.

10 Provided herein is a protein library for optimized base editing comprising a plurality of fusion proteins, wherein each one of the plurality of fusion proteins comprises a deaminase flanked by a N-terminal fragment and a C-terminal fragment of a Cas9 polypeptide, wherein the N-terminal fragment of each one of the fusion proteins differs from the N-terminal fragments of the rest of the plurality of fusion proteins or wherein the C-terminal fragment of each one of the fusion proteins differs from the C-terminal fragments of the rest of the plurality of fusion proteins, wherein the deaminase of each one of the fusion proteins deaminates a target nucleobase in proximity to a Protospacer Adjacent Motif (PAM) sequence in a target polynucleotide sequence, and wherein the N terminal fragment or the C terminal fragment binds the target polynucleotide sequence.

15 20 In some embodiments, for each nucleobase from 1 to 20 nucleobases away of the PAM sequence, at least one of the plurality of fusion proteins deaminates the nucleobase. In some embodiments, the C-terminus of the N terminal fragment or the N-terminus of the C terminal fragment of the Cas9 polypeptide of each one of the plurality of fusion proteins comprises a part of a flexible loop of the Cas9 polypeptide. In some embodiments, at least 25 one of the plurality of fusion proteins deaminates the target nucleobase with lower off-target deamination as compared to an end terminus fusion protein comprising the deaminase fused to a N terminus or a C terminus of SEQ ID NO: 1. In some embodiments, at least one of the plurality of the fusion proteins deaminates a target nucleobase 2-12 nucleobases upstream of the PAM sequence. In some embodiments, the C-terminus of the N terminal fragment or the 30 N-terminus of the C terminal fragment of a fusion protein of the plurality comprises an amino acid in proximity to the target nucleobase when the fusion protein deaminates the target nucleobase.

In some embodiments, the deaminase of at least one of the fusion proteins is between amino acid positions 768-769, 791-792, 792-793, 1015-1016, 1022-1023, 1026-1027, 1029-

1030, 1040-1041, 1052-1053, 1054-1055, 1067-1068, 1068-1069, 1247-1248, or 1248-1249 as numbered in SEQ ID NO: 1 or corresponding amino acid positions thereof. In some embodiments, the deaminase of at least one of the fusion proteins is between amino acid positions 768-769, 792-793, 1022-1023, 1026-1027, 1040-1041, 1068-1069, or 1247-1248 as 5 numbered in SEQ ID NO: 1 or corresponding amino acid positions thereof. In some embodiments, the deaminase of at least one of the fusion proteins is between amino acid positions 1016-1017, 1023-1024, 1029-1030, 1040-1041, 1069-1070 or 1247-1248 as numbered in SEQ ID NO: 1 or corresponding amino acid positions thereof. In some embodiments, the deaminase is an adenosine deaminase. In some embodiments, the 10 deaminase is a cytidine deaminase.

In some embodiments, the Cas9 polypeptide is a *Streptococcus pyogenes* Cas9 (SpCas9), *Staphylococcus aureus* Cas9 (SaCas9), *Streptococcus thermophilus* 1 Cas9 (St1Cas9), or variants thereof. In some embodiments, the Cas9 polypeptide is a modified Cas9 and has specificity for an altered protospacer-adjacent motif (PAM). In some 15 embodiments, the Cas9 polypeptide is a nickase. In some embodiments, the Cas9 polypeptide is nuclease inactive.

Definitions

20 Unless defined otherwise, all technical and scientific terms used herein have the meaning commonly understood by a person skilled in the art to which this invention belongs. The following references provide one of skill with a general definition of many of the terms used in this invention: Singleton et al., *Dictionary of Microbiology and Molecular Biology* (2nd ed. 1994); *The Cambridge Dictionary of Science and Technology* (Walker ed., 1988); 25 The *Glossary of Genetics*, 5th Ed., R. Rieger et al. (eds.), Springer Verlag (1991); and Hale & Marham, *The Harper Collins Dictionary of Biology* (1991). As used herein, the following terms have the meanings ascribed to them below, unless specified otherwise.

30 Unless defined otherwise, all technical and scientific terms used herein have the meaning commonly understood by a person skilled in the art to which this invention belongs. The following references provide one of skill with a general definition of many of the terms used in this invention: Singleton et al., *Dictionary of Microbiology and Molecular Biology* (2nd ed. 1994); *The Cambridge Dictionary of Science and Technology* (Walker ed., 1988); The *Glossary of Genetics*, 5th Ed., R. Rieger et al. (eds.), Springer Verlag (1991); and Hale &

Marham, The Harper Collins Dictionary of Biology (1991). As used herein, the following terms have the meanings ascribed to them below, unless specified otherwise.

By “adenosine deaminase” is meant a polypeptide or fragment thereof capable of catalyzing the hydrolytic deamination of adenine or adenosine. In some embodiments, the deaminase or deaminase domain is an adenosine deaminase catalyzing the hydrolytic deamination of adenosine to inosine or deoxy adenosine to deoxyinosine. In some embodiments, the adenosine deaminase catalyzes the hydrolytic deamination of adenine or adenosine in deoxyribonucleic acid (DNA). The adenosine deaminases (e.g. engineered adenosine deaminases, evolved adenosine deaminases) provided herein may be from any organism, such as a bacterium. In some embodiments, the deaminase or deaminase domain is a variant of a naturally-occurring deaminase from an organism. In some embodiments, the deaminase or deaminase domain does not occur in nature. For example, in some embodiments, the deaminase or deaminase domain is at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75% at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to a naturally-occurring deaminase. In some embodiments, the adenosine deaminase is from a bacterium, such as, *E. coli*, *S. aureus*, *S. typhi*, *S. putrefaciens*, *H. influenzae*, or *C. crescentus*. In some embodiments, the adenosine deaminase is a TadA deaminase. In some embodiments, the TadA deaminase is an *E. coli* TadA (ecTadA) deaminase or a fragment thereof.

For example, the truncated ecTadA may be missing one or more N-terminal amino acids relative to a full-length ecTadA. In some embodiments, the truncated ecTadA may be missing 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 6, 17, 18, 19, or 20 N-terminal amino acid residues relative to the full length ecTadA. In some embodiments, the truncated ecTadA may be missing 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 6, 17, 18, 19, or 20 C-terminal amino acid residues relative to the full length ecTadA. In some embodiments, the ecTadA deaminase does not comprise an N-terminal methionine. In some embodiments, the TadA deaminase is an N-terminal truncated TadA. In particular embodiments, the TadA is any one of the TadA described in PCT/US2017/045381, which is incorporated herein by reference in its entirety.

In certain embodiments, the adenosine deaminase comprises the amino acid sequence: MSEVEFSHEYWMRHALTLAKRAWDEREPVGAVLVHNNRVIDEGWNRPIGRHDPT AHAEIMALRQGGLVMQNYRLIDATLYVTLEPCVMCAGAMIHSRIGRVVFGARDAKT

GAAGSLMDVLHHPGMNHRVEITEGILADEC A ALLSDFFRMRRQEIKAQKKAQSSTD, which is termed “the TadA reference sequence”.

In some embodiments the TadA deaminase is a full-length *E. coli* TadA deaminase. For example, in certain embodiments, the adenosine deaminase comprises the amino acid sequence:

5 MRRAFITGVFFLSEVEFSHEYWMRHALTLAKRAWDEREVPGAVLVHNNRVIGEG
WNRPIGRHDPTAHAEIMALRQGGLVMQNYRLIDATLYVTLEPCVMCAGAMIHSRIG
RVVFGARDAKTGAAGSLMDVLHHPGMNHRVEITEGILADEC A ALLSDFFRMRRQEIK
KAQKKAQSSTD.

10 It should be appreciated, however, that additional adenosine deaminases useful in the present application would be apparent to the skilled artisan and are within the scope of this disclosure. For example, the adenosine deaminase may be a homolog of adenosine deaminase acting on tRNA (AD AT). Exemplary AD AT homologs include, without limitation:

15 *Staphylococcus aureus* TadA:

MGSHMTNDIYFMTLAI EAKKAAQLGEVPIGAIITK DDEVIA RAHNLRETLQQPTAH
AEHIAIERAAKVLGSWRLEGCTL YVTLEPCVMCAGTIVMSRIPRVVYGA DDPKGGS
GS LMNLLQQS NFNHRAIVDKG VLKE AC S TLLTTFFKNLRANKKS TN

20 *Bacillus subtilis* TadA:

MTQDEL YMKEAIKEAKKAEEKGEVPIGAVL VINGEIIARAHNLRETEQR SIAHAEM L
VIDEACKALGTWRLEGATLYVTLEPCPM CAGAVVLSRVEKVVFGAFDPKGGS
GTLMN LLQEERFNHQAEVVSGVLEEECGGMLSAFFREL RKKKAARKNLSE

25 *Salmonella typhimurium* (*S. typhimurium*) TadA:

MPPAFITGVTSLS DVELDHEYWMRHALTLAKRAWDEREVPGAVLVHNHRVIGEG
WNRPIGRHDPTAHAEIMALRQGGLVLQNYRLLDTTL YVTLEPCVMCAGAMVHSRIG
RVVFGARDAKTGAAGSLIDVLHHPGMNHRVEIIEGVLRDECATLLSDFFRMRRQEIK
ALKKADRAEGAGPAV

30

Shewanella putrefaciens (*S. putrefaciens*) TadA:

MDE YWMQVAMQM AEKAEAAGE VPVGA VLVKDGQQIATGYNLS IS QHDPT
AHAEI

LCLRSAGKKLENYRLLDATLYITLEPCAMCAGAMVHSRIARVYVGARDEKTGAAGT
VVNLLQHPAFNHQVEVTSGVLAEACSAQLSRFFKRRDEKKALKLAQRAQQGIE

Haemophilus influenzae F3031 (*H. influenzae*) TadA:

5 MDAAKVRSEFDEKMMRYALELADKAEALGEIPVGAVLVDDARNIIGEGWNLSIVQS
DPT AH AEIIALRNG AKNIQN YRLLNS TLY VTLEPCTMC AG AILHS RIKRLVFG
AS D YK

TGAIGSRFHFFDDYKMNHTLEITSGVLAEECSQKLSTFFQKRREEKKIEKALLKSLSD
K

10

Caulobacter crescentus (*C. crescentus*) TadA:

MRTDESEDQDHMMRLALDAARAEEEAGETPVGAVILDPSSTGEVIATAGNGPIAAH
DPTAHAEIAAMRAAAAKLGNYRLTDLTVVTLEPCTMCAGAISHARIGRVVFGADD
PKGGAVVHGPKFFAQPTCHWRPEVTGGVLADESADLLRGFFRARRKAKI

15

Geobacter sulfurreducens (*G. sulfurreducens*) TadA:

MSSLKKTPIRDDAYWMGKAIREAAKAAARDEVPIGAVIVRDGAVIGRGNHLREGSN
DPSAHAEMIAIRQAARRSANWRLTGATLYVTLEPCLMCMGAIILARLERVVFGCYDP
KGGAAGSLYDLSADPRLNHQVRLSPGVCQEECGTMLSDFFRDLRRRKAKATPALF

20 IDERKVPPEP

TadA7.10

MSEVEFSHEYWMRHALTLAKRARDEREVPVGAVLVNNRVIGEGWNRAIGLHDPT
AHAEIMALRQGGLVMQNYRLIDATLYVTFEPCVMCAGAMIHSRIGRVVFGVRNAKT
25 GAAGSLMDVLHYPGMNHRVEITEGILADECACALLCYFFRMPRQVFNAQKKAQSSTD

Exemplary sequences containing TadA7.10 or TadA7.10 variants include

GSSGSETPGTSESATPESSGSEVEFSHEYWMRHALTLAKRARDEREVPVG
AVLVLNNRVIGEGWNRAIGLHDPTAHAEIMALRQGGLVMQNYRLIDATLY
30 VTFEPCVMCAGAMIHSRIGRVVFGVRNAKTGAAGSLMDVLHYPGMNHRVE
ITEGILADECACALLCYFFRMPRQVFNAQKKAQSSTD

TadA7.10 CP65

TAHAEIMALRQGGLVMQNYRLIDATLYVTFEPCVMCAGAMIHSRIGRVVF

GVRNAKTGAAGSLMDVLHYPGMNHRVEITEGILADECACALLCYFFRMPRQ
VFNAQKKAQSSTDGSSGSETPGTSESATPESSGSEVEFSHEYWMRHALTL
AKRARDEREVPVGAVLVNNRVIGEGWNRAIGLHDP

5 TadA7.10 CP83

YRLIDATLYVTFEPCVMCAGAMIHSRIGRVVFGVRNAKTGAAGSLMDVLH
YPGMNHRVEITEGILADECACALLCYFFRMPRQVFNAQKKAQSSTDGSSGS
ETPGTSESATPESSGSEVEFSHEYWMRHALTLAKRARDEREVPVGAVLVL
NNRVIGEGWNRAIGLHDPTAHAEIMALRQGGLVMQ

10

TadA7.10 CP136

MNHRVEITEGILADECACALLCYFFRMPRQVFNAQKKAQSSTDGSSGSETP
GTSESATPESSGSEVEFSHEYWMRHALTLAKRARDEREVPVGAVLVNNR
VIGEGWNRAIGLHDPTAHAEIMALRQGGLVMQNYRLIDATLYVTFEPCVM
15 CAGAMIHSRIGRVVFGVRNAKTGAAGSLMDVLHYPG

TadA7.10 C-truncate

GSSGSETPGTSESATPESSGSEVEFSHEYWMRHALTLAKRARDEREVPVG
AVLVNNRVIGEGWNRAIGLHDPTAHAEIMALRQGGLVMQNYRLIDATLY
20 VTFEPCVMCAGAMIHSRIGRVVFGVRNAKTGAAGSLMDVLHYPGMNHRVE
ITEGILADECACALLCYFFRMPRQVFN

TadA7.10 C-truncate 2

GSSGSETPGTSESATPESSGSEVEFSHEYWMRHALTLAKRARDEREVPVG
25 AVLVNNRVIGEGWNRAIGLHDPTAHAEIMALRQGGLVMQNYRLIDATLY
VTFEPCVMCAGAMIHSRIGRVVFGVRNAKTGAAGSLMDVLHYPGMNHRVE
ITEGILADECACALLCYFFRMPRQ

TadA7.10 delta59-66+C-truncate

30 GSSGSETPGTSESATPESSGSEVEFSHEYWMRHALTLAKRARDEREVPVG
AVLVNNRVIGEGWNRAHAEIMALRQGGLVMQNYRLIDATLYVTFEPCVM
CAGAMIHSRIGRVVFGVRNAKTGAAGSLMDVLHYPGMNHRVEITEGILAD
ECAALLCYFFRMPRQVFN

TadA7.10 delta 59-66

GSSGSETPGTSESATPESSGSEVEFSHEYWMRHALTLAKRARDEREVPVG
AVLVLNRRVIGEGWNRAHAEIMALRQGGLVMQNYRLIDATLYVTFEPCVM
CAGAMIHSRIGRVRVFGVRNAKTGAAGSLMDVLHYPGMNHRVEITEGILAD

5 ECAALLCYFFRMPRQVFNAQKKAQSSTD

By "agent" is meant any small molecule chemical compound, antibody, nucleic acid molecule, or polypeptide, or fragments thereof.

By "alter a mutation"

By "alteration" is meant a change in the structure, expression levels or activity of a 10 gene or polypeptide as detected by standard art known methods such as those described herein. As used herein, an alteration (e.g., increase or decrease) includes a 10% change in expression levels, a 25% change, a 40% change, and a 50% or greater change in expression levels.

15 By "analog" is meant a molecule that is not identical, but has analogous functional or structural features. For example, a polynucleotide analog retains the biological activity of a corresponding naturally-occurring polynucleotide while having certain modifications that enhance the analog's function relative to a naturally occurring polynucleotide. Such modifications could increase the polynucleotide's affinity for DNA, half-life, and/or nuclease resistance. An analog may include an unnatural nucleotide or amino acid.

20 In this disclosure, "comprises," "comprising," "containing" and "having" and the like can have the meaning ascribed to them in U.S. Patent law and can mean "includes," "including," and the like; "consisting essentially of" or "consists essentially" likewise has the meaning ascribed in U.S. Patent law and the term is open-ended, allowing for the presence of more than that which is recited so long as basic or novel characteristics of that which is 25 recited is not changed by the presence of more than that which is recited, but excludes prior art embodiments.

30 By "base editor (BE)," or "nucleobase editor (NBE)" is meant an agent that binds a polynucleotide and has nucleobase modifying activity. In one embodiment, the agent is a fusion protein comprising a domain having base editing activity, i.e., a domain capable of modifying a base (e.g., A, T, C, G, or U) within a nucleic acid molecule (e.g., DNA). In some embodiments, the domain having base editing activity is capable of deaminating a base within a nucleic acid molecule. In some embodiments, the base editor is capable of deaminating a base within a DNA molecule. In some embodiments, the base editor is capable of deaminating a cytosine (C) or an adenine within DNA. In some embodiments, the base

editor is a cytidine base editor (CBE). In some embodiments, the base editor is an adenosine base editor (ABE). In some embodiments, the base editor is an adenosine base editor (ABE) and a cytidine base editor (CBE). In some embodiments, the base editor is a nuclease-inactive Cas9 (dCas9) fused to an adenosine deaminase. In some embodiments, the Cas9 is a circular 5 permutant Cas9 (e.g., spCas9 or saCas9). Circular permutant Cas9s are known in the art and described, for example, in Oakes et al., *Cell* 176, 254–267, 2019. In some embodiments, the base editor is fused to an inhibitor of base excision repair, for example, a UGI domain. In some embodiments, the fusion protein comprises a Cas9 nickase fused to a deaminase and an inhibitor of base excision repair, such as a UGI domain. In other embodiments the base editor 10 is an abasic base editor.

In some embodiments, an adenosine deaminase is evolved from TadA. In some embodiments, the polynucleotide programmable DNA binding domain is a CRISPR associated (e.g., Cas or Cpf1) enzyme. In some embodiments, the base editor is a catalytically dead Cas9 (dCas9) fused to a deaminase domain. In some embodiments, the 15 base editor is a Cas9 nickase (nCas9) fused to a deaminase domain. In some embodiments, the deaminase domain is a N-terminal or C-terminal fragment of the polynucleotide programmable DNA binding domain. In some embodiments, the deaminase is flanked by an N-terminal and C-terminal fragment of a polynucleotide programmable DNA binding domain. In some embodiments, the deaminase domain is inserted into a site of the 20 polynucleotide programmable DNA binding domain. In some embodiments, the base editor is fused to an inhibitor of base excision repair (BER). In some embodiments, the inhibitor of base excision repair is a uracil DNA glycosylase inhibitor (UGI). In some embodiments, the inhibitor of base excision repair is an inosine base excision repair inhibitor. Details of base editors are described in International PCT Application Nos. PCT/2017/045381 25 (WO2018/027078) and PCT/US2016/058344 (WO2017/070632), each of which is incorporated herein by reference for its entirety. Also see Komor, A.C., *et al.*, “Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage” *Nature* 533, 420-424 (2016); Gaudelli, N.M., *et al.*, “Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage” *Nature* 551, 464-471 (2017); Komor, 30 A.C., *et al.*, “Improved base excision repair inhibition and bacteriophage Mu Gam protein yields C:G-to-T:A base editors with higher efficiency and product purity” *Science Advances* 3:eaao4774 (2017), and Rees, H.A., *et al.*, “Base editing: precision chemistry on the genome and transcriptome of living cells.” *Nat Rev Genet.* 2018 Dec;19(12):770-788. doi:

10.1038/s41576-018-0059-1, the entire contents of which are hereby incorporated by reference.

In some embodiments, the deaminase domain is inserted into regions of the polynucleotide programmable DNA binding domain. In some embodiments, the insertion site 5 is determined by structural analysis of an napDNAbp. In some embodiments, the insertion site is a flexible loop. In some embodiments, the deaminase domain is inserted into a site in the polynucleotide programmable DNA binding domain, wherein the site is selected from at least one from a group of amino acid positions consisting of 1029, 1026, 1054, 1022, 1015, 1068, 1247, 1040, 1248, and 768. In some embodiments, the deaminase domain is inserted in 10 place of a domain of polynucleotide programmable DNA binding domain. In some embodiments, the domain is selected from the group consisting of RuvC, Rec1, Rec2, and HNH. In some embodiments, the deaminase domain is inserted in place of a range of amino acid residues in the polynucleotide programmable DNA binding domain, wherein in the range of amino acid residues are selected from a group consisting of residues 530-537, 569- 15 579, 686-691, 768-793, 943-947, 1002-1040, 1052-1077, 1232-1248, and 1298-1300 of Cas9 as numbered in SEQ ID NO:1 or corresponding positions thereof. It would be apparent to the skilled artisan how to identify homologous regions in a different polynucleotide programmable DNA binding domain by comparing the Cas9 amino acid sequence. In some embodiments, the base editor comprises more than one deaminase domain inserted into more 20 than one site of a polynucleotide programmable DNA binding domain, wherein the sites are described above.

In some embodiments, base editors are generated by cloning an adenosine deaminase variant (e.g., TadA*7.10) into a scaffold that includes a circular permutant Cas9 (e.g., spCas9) and a bipartite nuclear localization sequence. Circular permutant Cas9s are known 25 in the art and described, for example, in Oakes *et al.*, Cell 176, 254–267, 2019. Exemplary circular permutant sequences are set forth below, in which the bold sequence indicates sequence derived from Cas9, the italics sequence denotes a linker sequence, and the underlined sequence denotes a bipartite nuclear localization sequence.

CP5 (with MSP “NGC=Pam Variant with mutations Regular Cas9 likes NGG” PID=Protein 30 Interacting Domain and “D10A” nickase):

E **I**IGKATAKYFFYSNIMNFFKTE *I*TLANGE **I**RKRPLIE *T*NGE **T**GE *I*VWDKGRDFATVRKVLSM
PQVNIVKKTEVQTGGFSKES *S*ILPKRNSDKLIA**R**KKDWDPKKYGGFMQPTVAYSVLVVAKVEK
GKS**K**KLKSVKELLGI *T*IMERSSFEKNP**I**D**F**LEAKGYKEVKKDLI**I**IKLPKYS**L**FE**E**NGRKRM
LASAKFLQKGNE**L**ALPSKYVNFLY**L**ASHYE**K**LKGSPEDNE**Q**KQLF**V**E**Q**HKHYL**D**E**I**IEQ**I**SE

FSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPRAFKYFDTTIARKEYR
STKEVLDATLIHQSIITGLYETRIDLSQLGGDGGSGGSGSGSGSGSGSGMDKKYSIGLAI
GTNSVGWAVITDEYKVPSSKKFKVLGNTDRHSIKKNLIGALLFDSETAEATRLKRTARRYT
RRKNRICYLQEIFSNEAKVDDSFHRLLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTI
5 YHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVKLFIQLVQTYNQLFE
ENPINASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKNFDLA
EDAQLQLSKDTYDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASM
IKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKM
DGTEELLVKLNREDLLRKQRTFDNGSIPHQIHLGEHLAILRRQEDFYPFLKDNREKIEKILT
10 FRIPIYYVGPLARGNSRFAMTRKSEETITPWNFEVVDKGASAQSFIERNMTNFDKNLPNEKV
LPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYF
KKIECFDSVEISGVEDRFNASLGTYHDLLKIKDKFLDNEENEDILEDIVLTTLFEDREM
IEERLKTYAHLFDDKVMKQLKRRRTGWRGRLSRKLINGIRDQSGKTIIDFLKSDGFANRNF
15 MQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVKVMGRHK
PENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYLQ
NGRDMYVDQELDINRLSDYDVDHIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEEVVKKM
KNYWRQQLNAKLTQRFNDLTKAERGGLSELDKAGFIKRQLVETRQITKHVAQILD SRMNT
KYDENDKLIREVKVITLKSCLVSDFRKDFQFYKVREINNYHHADAYLNAVGTALIKKPK
LESEFVYGDYKYYDVRKMIAKSEQEGADKRTADGSEFESPKKKRKV*

20 The nucleobase components and the polynucleotide programmable nucleotide binding component of a base editor system may be associated with each other covalently or non-covalently. For example, in some embodiments, the deaminase domain can be targeted to a target nucleotide sequence by a polynucleotide programmable nucleotide binding domain. In some embodiments, a polynucleotide programmable nucleotide binding domain can be fused or linked to a deaminase domain. In some embodiments, a polynucleotide programmable nucleotide binding domain can target a deaminase domain to a target nucleotide sequence by non-covalently interacting with or associating with the deaminase domain. For example, in some embodiments, the nucleobase editing component, e.g., the deaminase component can comprise an additional heterologous portion or domain that is capable of interacting with, associating with, or capable of forming a complex with an additional heterologous portion or domain that is part of a polynucleotide programmable nucleotide binding domain. In some embodiments, the additional heterologous portion may be capable of binding to, interacting with, associating with, or forming a complex with a polypeptide. In some embodiments, the additional heterologous portion may be capable of binding to, interacting with, associating

25

30

with, or forming a complex with a polynucleotide. In some embodiments, the additional heterologous portion may be capable of binding to a guide polynucleotide. In some embodiments, the additional heterologous portion may be capable of binding to a polypeptide linker. In some embodiments, the additional heterologous portion may be capable of binding 5 to a polynucleotide linker. The additional heterologous portion may be a protein domain. In some embodiments, the additional heterologous portion may be a K Homology (KH) domain, a MS2 coat protein domain, a PP7 coat protein domain, a SfMu Com coat protein domain, a steril alpha motif, a telomerase Ku binding motif and Ku protein, a telomerase Sm7 binding motif and Sm7 protein, or a RNA recognition motif.

10 A base editor system may further comprise a guide polynucleotide component. It should be appreciated that components of the base editor system may be associated with each other via covalent bonds, noncovalent interactions, or any combination of associations and interactions thereof. In some embodiments, a deaminase domain can be targeted to a target nucleotide sequence by a guide polynucleotide. For example, in some embodiments, the 15 nucleobase editing component of the base editor system, e.g., the deaminase component, can comprise an additional heterologous portion or domain (e.g., polynucleotide binding domain such as an RNA or DNA binding protein) that is capable of interacting with, associating with, or capable of forming a complex with a portion or segment (e.g., a polynucleotide motif) of a guide polynucleotide. In some embodiments, the additional heterologous portion or domain 20 (e.g., polynucleotide binding domain such as an RNA or DNA binding protein) can be fused or linked to the deaminase domain. In some embodiments, the additional heterologous portion may be capable of binding to, interacting with, associating with, or forming a complex with a polypeptide. In some embodiments, the additional heterologous portion may be capable of binding to, interacting with, associating with, or forming a complex with a 25 polynucleotide. In some embodiments, the additional heterologous portion may be capable of binding to a guide polynucleotide. In some embodiments, the additional heterologous portion may be capable of binding to a polypeptide linker. In some embodiments, the additional heterologous portion may be capable of binding to a polynucleotide linker. The additional heterologous portion may be a protein domain. In some embodiments, the additional 30 heterologous portion may be a K Homology (KH) domain, a MS2 coat protein domain, a PP7 coat protein domain, a SfMu Com coat protein domain, a sterile alpha motif, a telomerase Ku binding motif and Ku protein, a telomerase Sm7 binding motif and Sm7 protein, or a RNA recognition motif.

In some embodiments, a base editor system can further comprise an inhibitor of base excision repair (BER) component. It should be appreciated that components of the base editor system may be associated with each other via covalent bonds, noncovalent interactions, or any combination of associations and interactions thereof. The inhibitor of BER component 5 may comprise a base excision repair inhibitor. In some embodiments, the inhibitor of base excision repair can be a uracil DNA glycosylase inhibitor (UGI). In some embodiments, the inhibitor of base excision repair can be an inosine base excision repair inhibitor. In some embodiments, the inhibitor of base excision repair can be targeted to the target nucleotide sequence by the polynucleotide programmable nucleotide binding domain. In some 10 embodiments, a polynucleotide programmable nucleotide binding domain can be fused or linked to an inhibitor of base excision repair. In some embodiments, a polynucleotide programmable nucleotide binding domain can be fused or linked to a deaminase domain and an inhibitor of base excision repair. In some embodiments, a polynucleotide programmable nucleotide binding domain can target an inhibitor of base excision repair to a target 15 nucleotide sequence by non-covalently interacting with or associating with the inhibitor of base excision repair. For example, in some embodiments, the inhibitor of base excision repair component can comprise an additional heterologous portion or domain that is capable of interacting with, associating with, or capable of forming a complex with an additional heterologous portion or domain that is part of a polynucleotide programmable nucleotide 20 binding domain. In some embodiments, the inhibitor of base excision repair can be targeted to the target nucleotide sequence by the guide polynucleotide. For example, in some embodiments, the inhibitor of base excision repair can comprise an additional heterologous portion or domain (e.g., polynucleotide binding domain such as an RNA or DNA binding protein) that is capable of interacting with, associating with, or capable of forming a complex 25 with a portion or segment (e.g., a polynucleotide motif) of a guide polynucleotide. In some embodiments, the additional heterologous portion or domain of the guide polynucleotide (e.g., polynucleotide binding domain such as an RNA or DNA binding protein) can be fused or linked to the inhibitor of base excision repair. In some embodiments, the additional heterologous portion may be capable of binding to, interacting with, associating with, or 30 forming a complex with a polynucleotide. In some embodiments, the additional heterologous portion may be capable of binding to a guide polynucleotide. In some embodiments, the additional heterologous portion may be capable of binding to a polypeptide linker. In some embodiments, the additional heterologous portion may be capable of binding to a polynucleotide linker. The additional heterologous portion may be a protein domain. In some

embodiments, the additional heterologous portion may be a K Homology (KH) domain, a MS2 coat protein domain, a PP7 coat protein domain, a SfMu Com coat protein domain, a sterile alpha motif, a telomerase Ku binding motif and Ku protein, a telomerase Sm7 binding motif and Sm7 protein, or a RNA recognition motif.

5 By “base editing activity” is meant acting to chemically alter a base within a polynucleotide. In one embodiment, a first base is converted to a second base. In one embodiment, the base editing activity is cytidine deaminase activity, e.g., converting target C•G to T•A. In another embodiment, the base editing activity is adenosine deaminase activity, e.g., converting A•T to G•C.

10 The term “Cas9” or “Cas9 domain” refers to an RNA-guided nuclease comprising a Cas9 protein, or a fragment thereof (e.g., a protein comprising an active, inactive, or partially active DNA cleavage domain of Cas9, and/or the gRNA binding domain of Cas9). A Cas9 nuclease is also referred to sometimes as a casn1 nuclease or a CRISPR (clustered regularly interspaced short palindromic repeat)-associated nuclease. CRISPR is an adaptive immune system that provides protection against mobile genetic elements (viruses, transposable elements and conjugative plasmids). CRISPR clusters contain spacers, sequences complementary to antecedent mobile elements, and target invading nucleic acids. CRISPR clusters are transcribed and processed into CRISPR RNA (crRNA). In type II CRISPR systems correct processing of pre-crRNA requires a trans-encoded small RNA (tracrRNA), 15 endogenous ribonuclease 3 (rnc) and a Cas9 protein. The tracrRNA serves as a guide for ribonuclease 3-aided processing of pre-crRNA. Subsequently, Cas9/crRNA/tracrRNA endonucleolytically cleaves linear or circular dsDNA target complementary to the spacer. The target strand not complementary to crRNA is first cut endonucleolytically, then trimmed 3'-5' exonucleolytically. In nature, DNA-binding and cleavage typically requires protein and 20 both RNAs. However, single guide RNAs (“sgRNA”, or simply “gNRA”) can be engineered so as to incorporate aspects of both the crRNA and tracrRNA into a single RNA species. See, e.g., Jinek M., Chylinski K., Fonfara I., Hauer M., Doudna J.A., Charpentier E. *Science* 25 337:816-821(2012), the entire contents of which is hereby incorporated by reference. Cas9 25 recognizes a short motif in the CRISPR repeat sequences (the PAM or protospacer adjacent motif) to help distinguish self versus non-self. Cas9 nuclease sequences and structures are well known to those of skill in the art (see, e.g., “Complete genome sequence of an M1 strain 30 of *Streptococcus pyogenes*.” Ferretti *et al.*, J.J., McShan W.M., Ajdic D.J., Savic D.J., Savic G., Lyon K., Primeaux C., Sezate S., Suvorov A.N., Kenton S., Lai H.S., Lin S.P., Qian Y., Jia H.G., Najar F.Z., Ren Q., Zhu H., Song L., White J., Yuan X., Clifton S.W., Roe B.A.,

McLaughlin R.E., Proc. Natl. Acad. Sci. U.S.A. 98:4658-4663(2001); “CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III.” Deltcheva E., Chylinski K., Sharma C.M., Gonzales K., Chao Y., Pirzada Z.A., Eckert M.R., Vogel J., Charpentier E., Nature 471:602-607(2011); and “A programmable dual-RNA-guided DNA endonuclease in 5 adaptive bacterial immunity.” Jinek M., Chylinski K., Fonfara I., Hauer M., Doudna J.A., Charpentier E. *Science* 337:816-821(2012), the entire contents of each of which are incorporated herein by reference). Cas9 orthologs have been described in various species, including, but not limited to, *S. pyogenes* and *S. thermophilus*. Additional suitable Cas9 nucleases and sequences will be apparent to those of skill in the art based on this disclosure, 10 and such Cas9 nucleases and sequences include Cas9 sequences from the organisms and loci disclosed in Chylinski, Rhun, and Charpentier, “The tracrRNA and Cas9 families of type II CRISPR-Cas immunity systems” (2013) RNA Biology 10:5, 726-737; the entire contents of which are incorporated herein by reference.

A nuclease-inactivated Cas9 protein may interchangeably be referred to as a “dCas9” 15 protein (for nuclease-“dead” Cas9) or catalytically inactive Cas9. Methods for generating a Cas9 protein (or a fragment thereof) having an inactive DNA cleavage domain are known (See, e.g., Jinek *et al.*, *Science*. 337:816-821(2012); Qi *et al.*, “Repurposing CRISPR as an RNA-Guided Platform for Sequence-Specific Control of Gene Expression” (2013) *Cell*. 28;152(5):1173-83, the entire contents of each of which are incorporated herein by 20 reference). For example, the DNA cleavage domain of Cas9 is known to include two subdomains, the HNH nuclease subdomain and the RuvC1 subdomain. The HNH subdomain cleaves the strand complementary to the gRNA, whereas the RuvC1 subdomain cleaves the non-complementary strand. Mutations within these subdomains can silence the nuclease activity of Cas9. For example, the mutations D10A and H840A completely inactivate the 25 nuclease activity of *S. pyogenes* Cas9 (Jinek *et al.*, *Science*. 337:816-821(2012); Qi *et al.*, *Cell*. 28;152(5):1173-83 (2013)). In some embodiments, a Cas9 nuclease has an inactive (e.g., an inactivated) DNA cleavage domain, that is, the Cas9 is a nickase, referred to as an “nCas9” protein (for “nickase” Cas9). In some embodiments, proteins comprising fragments 30 of Cas9 are provided. For example, in some embodiments, a protein comprises one of two Cas9 domains: (1) the gRNA binding domain of Cas9; or (2) the DNA cleavage domain of Cas9. In some embodiments, proteins comprising Cas9 or fragments thereof are referred to as “Cas9 variants.” A Cas9 variant shares homology to Cas9, or a fragment thereof. For example, a Cas9 variant is at least about 70% identical, at least about 80% identical, at least about 90% identical, at least about 95% identical, at least about 96% identical, at least about

97% identical, at least about 98% identical, at least about 99% identical, at least about 99.5% identical, or at least about 99.9% identical to wild type Cas9. In some embodiments, the Cas9 variant may have 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50 or more amino acid changes compared to wild type Cas9. In some embodiments, the Cas9 variant comprises a fragment of Cas9 (e.g., a gRNA binding domain or a DNA-cleavage domain), such that the fragment is at least about 70% identical, at least about 80% identical, at least about 90% identical, at least about 95% identical, at least about 96% identical, at least about 97% identical, at least about 98% identical, at least about 99% identical, at least about 99.5% identical, or at least about 99.9% identical to the corresponding fragment of wild type Cas9. In some embodiments, the fragment is at least 30%, at least 35%, at least 40%, at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95% identical, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% of the amino acid length of a corresponding wild type Cas9.

In some embodiments, the fragment is at least 100 amino acids in length. In some embodiments, the fragment is at least 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000, 1050, 1100, 1150, 1200, 1250, or at least 1300 amino acids in length. In some embodiments, wild type Cas9 corresponds to Cas9 from *Streptococcus pyogenes* (NCBI Reference Sequence: NC_017053.1, nucleotide and amino acid sequences as follows).

ATGGATAAGAAA TACTCAATAGGCTTAGATATCGGCACAAATAGCGTCGGATGGCGGTGAT
CACTGATGATTATAAGGTTCCGTCTAAAAGTTCAAGGTTCTGGAAATACAGACCGCCACA
25 GTATCAAAAAAAATCTTATAGGGCTCTTTATTGGCAGTGGAGAGACAGCGGAAGCGACT
CGTCTCAAACGGACAGCTCGTAGAAGGTATACACGTCGGAAGAATCGTATTGTTATCTACA
GGAGATTTTCAAATGAGATGGCGAAAGTAGATGATAGTTCTTCATCGACTTGAAGAGT
CTTTTTGGTGGAAAGAACAGAACAGCATGAACGTACCTATTTGGAAATATAGTAGAT
GAAGTTGCTTATCATGAGAAATATCCAACCTATCTATCTCGAAAAAAATTGGCAGATT
30 TACTGATAAAGCGGATTGCGCTTAATCTATTGGCCTAGCGCATATGATTAAGTTCGTG
GTCATTTTGATTGAGGGAGATTAAATCCTGATAATAGTGTGGACAAACTATTATC
CAGTTGGTACAAATCTACAATTATTGAAGAAAACCCTATTAACGCAAGTAGAGT
TGCTAAAGCGATTCTTCTGCACGATTGAGTAAATCAAGACGATTAGAAAATCTCATTGCTC
AGCTCCCCGGTGAGAAGAGAAATGGCTTGGAAATCTCATTGCTTGTCAATTGGATTG

ACCCCTAATTTAAATCAAATTTGATTGGCAGAAGATGCTAAATTACAGCTTCAAAAGA
TACTTACGATGATGATTAGATAATTATTGGCGCAAATTGGAGATCAATATGCTGATTGT
TTTGGCAGCTAAGAATTATCAGATGCTATTTCAGATATCCTAAGAGTAAATAGT
GAAATAACTAAGGCTCCCTATCAGCTCAATGATTAAGCGCTACGATGAACATCATCAAGA
5 CTTGACTCTTTAAAAGCTTAGTCGACAACAACCTCCAGAAAAGTATAAGAAATCTTT
TTGATCAATCAAAAAACGGATATGCAGGTTATATTGATGGGGAGCTAGCCAAGAAGAATT
TATAAAATTATCAAACCAATTAGAAAAAATGGATGGTACTGAGGAATTATTGGTAAACT
AAATCGTGAAGATTGCTGCGCAAGCAACGGACCTTGACAACGGCTCTATTCCCCATCAA
TTCACTGGGTGAGCTGCATGCTATTGAGAAGACAAGAAGACTTTATCCATTAAAA
10 GACAATCGTGAGAAGATTGAAAAATCTTGACTTTGAAATTCCATTATTATGTTGGTCCATT
GGCGCGTGGCAATAGCTTTGCATGGATGACTCGGAAGTCTGAAGAAACAATTACCCAT
GGAATTGAGAAGATTGTCGATAAAGGTGCTCAGCTCAATCATTATTGAACGCATGACA
AACTTGATAAAAATCTCAAATGAAAAAGTACTACCAAAACATAGTTGCTTATGAGTA
TTTACGGTTATAACGAATTGACAAAGGTCAAATATGTTACTGAGGAATGCGAAAACCAG
15 CATTCTTCAGGTGAACAGAAGAAAGCATTGTTACTCTTCAAAACAAATCGAAAA
GTAACCGTTAAGCAATTAAAAGAAGATTATTCAAAAAAATAGAATGTTGATAGTGTGA
AATTTCAGGAGTGAAGATAGATTAAATGCTCATTAGGCGCCTACCATGATTGCTAAAAA
TTATTAAAGATAAAGATTGGATAATGAAGAAATGAAGATATCTTAGAGGATATTGTT
TTAACATTGACCTTATTGAAGATAGGGGATGATTGAGGAAAGACTAAAACATATGCTCA
20 CCTCTTGATGATAAGGTGATGAAACAGCTAAACGTCGCCGTATACTGGTTGGGACGTT
TGTCTCGAAAATTGATTAATGGTATTAGGGATAAGCAATCTGGCAAAACAATTAGATT
TTGAAATCAGATGGTTGCCAATCGCAATTATGCAGCTGATCCATGATGATAGTTGAC
ATTAAAGAAGATATTCAAAGCACAGGTCTGGACAAGGCCATAGTTACATGAACAGA
TTGCTAACTTAGCTGGCAGTCCTGCTATTAAAAAGGTATTTACAGACTGTAAAATTGTT
25 GATGAACTGGTCAAAGTAATGGGCATAAGCCAGAAAATCGTTATTGAAATGGCACGTGA
AAATCAGACAACCTAAAAGGCCAGAAAATCGCGAGAGCGTATGAAACGAATCGAAGAAG
GTATCAAAGAATTAGGAAGTCAGATTCTAAAGAGCATCCTGTTGAAAATACTCAATTGCAA
AATGAAAAGCTCTATCTATTACAAATGGAAGAGACATGTATGTTGACCAAGAATT
AGATATTAAATCGTTAAGTGATTATGATGTCGATCACATTGTTCCACAAAGTTTATTAAAG
30 ACGATTCAATAGACAATAAGGTACTAACGCGTTCTGATAAAAATCGTGTAAATCGGATAAC
GTTCCAAGTGAAGAAGTAGTCAAAAGATGAAAAACTATTGGAGACAACCTCTAAACGCCAA
GTTAACACTCAACGTAAGTTGATAATTAAACGAAAGCTGAACGTGGAGGTTGAGTGAAC
TTGATAAAAGCTGGTTATCAAACGCCATTGGTTGAAACTCGCCAAATCACTAACGATGTG
GCACAAATTGGATAGTCGATGAATAACTAAATACGATGAAAATGATAACTTATTGAGA

GGTAAAGTGATTACCTAAAATCTAAATTAGTTCTGACTTCCGAAAAGATTCATTCT
 ATAAAGTACGTGAGATTAACAATTACCATCATGCCATGATGCGTATCTAAATGCCGTGTT
 GGAAGTCTTGATTAAGAAATATCCAAAACCTGAATCGGAGTTGTCTATGGTATTATAA
 AGTTATGATGTCGTTAAGTCTGAGCAAGAAATAGGCAAAGCAACCGCAA
 5 AATATTCTTTACTCTAATATCATGAACCTCTCAAAACAGAAATTACACTTGCAAATGGA
 GAGATTGCAAACGCCCTTAATCGAAACTAATGGGAAACTGGAGAAATTGTCTGGATAA
 AGGGCGAGATTTGCCACAGTGCAGTAACTGATGGCCATGCCCAAGTCAATATTGTCAAGA
 AAACAGAAGTACAGACAGGCAGGATTCTCAAGGAGTCAATTACCAAAAAGAAATTGGAC
 AAGCTTATTGCTCGTAAAAAGACTGGATCCAAAAAAATATGGTGGTTGATAGTCCAAC
 10 GGTAGCTTATTGAGCTAGTGGTCTAGTGGGAAAGGGAAATCGAAGAAGTTAAAAT
 CCGTTAAAGAGTTACTAGGGATCACAATTATGGAAAGAAGTTCTTTGAAAAAAATCCGATT
 GACTTTAGAAGCTAAAGGATATAAGGAAGTTAAAAAGACTTAATCATTAAACTACCTAA
 ATATAGTCTTTGAGTTAGAAAACGGTCGAAACGGATGCTGGCTAGTGCCGGAGAATTAC
 AAAAGGAAATGAGCTGGCTTGCCAAGCAAATATGTGAATTTTATTTAGCTAGTCAT
 15 TATGAAAAGTTGAAGGGTAGTCCAGAAGATAACGAACAAAACAATTGTTGTGGAGCAGCA
 TAAGCATTATTTAGATGAGATTGGAGCAAATCAGTGAATTCTAAGCGTGTATTTAG
 CAGATGCCATTAGATAAGTTCTAGTGCATATAACAAACATAGAGACAAACAAATACGT
 GAACAAGCAGAAAATTATTCAATTACGTTGACGAATCTTGGAGCTCCGCTGCTTT
 TAAATATTTGATACAACAATTGATCGTAAACGATATACGTCTACAAAAGAAGTTTAGATG
 20 CCACTCTTATCCATCAATCCATCACTGGCTTATGAAACACGCATTGATTGAGTCAGCTA
 GGAGGTGACTGA

MDKKYSIGLDIGTNSVGAVITDDYKVPSSKKFKVLGNTDRHSIKKNLIGALLFGSGETAEAT
 RLKRTARRRYTRRKNRICYLQEISNEMAKVDDSFHRLEESFLVEEDKKHERHPIFGNIVD
 25 EVAYHEKYPTIYHLRKKLADSTDKADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLF
 QLQIYNQLFEENPINASRVDAKAILSARLSKSRRLENLIAQLPGEKRNGLFGNLIALSLGL
 TPNFKSNFDLAEDAKLQLSKDTYDDLDNLLAQIGDQYADLFLAAKNLSDAIIILSDILRVNS
 EITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEF
 YKFIKPILEKMDGTEELLVKLNRDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLK
 30 DNREKIEKILTFRIPYYVGPLARGNSRFAMTRKSEETITPWNFEVVDKGASAQSIERMT
 NFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRK
 VTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGAYHDLLKIIKDKDFLDNEENEDILEDIV
 LTLTLFEDRGMIEERLKYAHLFDDKVMKQLKRRRTGWRSLRKLINGIRDQSGKTI
 LKSDGFANRNFMLIHDDSLTFKEDIQKAQVSGQGHSLHEQIANLAGSPAIIKGILQTVKIV

DELVKVMGHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQLQ
NEKLYLYLQNGRDMYVDQELDINRLSDYD�HIVPQSFIKDDSIDNKVLTRSDKNRGKSDN
VPSEEVVKKMKNYWRQLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQITKHV
AQILDSRMNTKYDENDKLIREVKVITLKSKLVDFRKDFQFYKVREINNYHHAHDAYLNAV
5 GTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEITLANG
EIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKESILPKRNSD
KLIARKKDWDPKYGGFDSPTVAYSVLVVAKVEKGKSKLKSVKELLGITIMERSSFEKNPI
DFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLASAGELQKGNELALPSKYVNFLYLASH
YEKLKGSPEDNEQKQLFVEQHKHYLDEIEQISEFSKRVILADANLDKVLSAYNKHRDKPIR
10 EQAENIIHLFTLTNLGAPAAFKYFDTTIDRKKRYTSTKEVLDATLIHQSITGLYETRIDSQL
GGD
 (single underline: HNH domain; double underline: RuvC domain)

In some embodiments, wild type Cas9 corresponds to, or comprises the following

15 nucleotide and/or amino acid sequences:

ATGGATAAAAAGTATTCTATTGGTTAGACATCGGCACTAATTCCGTTGGATGGGCTGTCAT
 AACCGATGAATACAAAGTACCTCAAAGAAATTAAAGGTGTTGGGAACACAGACCGTCATT
 CGATTAAAAGAATCTTATCGGTGCCCTCCTATTGATAGTGGC~~AAACGGCAGAGGCGACT~~
20 CGCCTGAAACGAACCGCTCGGAGAAGGTATAACGTCGCAAGAACCGAATATGTTACTTACA
 AGAAATTAGCAATGAGATGCCAAAGTTGACGATTCTTCACCGTTGGAAGAGT
 CCTTCCTTGTCAAGAGGACAAGAACATGAACGGCACCCATCTTGAAACATACTAGAT
 GAGGTGGCATATCATGAAAAGTACCCAACGATTATCACCTCAGAAAAAGCTAGTTGACTC
 AACTGATAAAGCGGACCTGAGGTTAATCTACTTGGCTCTGCCATATGATAAAGTTCCGTG
25 GGCACTTCTATTGAGGGT~~GATCTAAATCCG~~ACACTCGGATGTCGACAAACTGTTCATC
 CAGTTAGTACAAACCTATAATCAGTTGTTGAAGAGAACCC~~TATAAATGCAAGTGGCGT~~GGAA
 TGC~~GAAGG~~CTATTCTAGCGCCGCCTCTAAATCCGACGGCTAGAAAACCTGATCGCAC
 AATTACCCGGAGAGAAGAAAATGGTTGTTGGTAACCTTATAGCGCTCTCACTAGGCCTG
 ACACCAAATTAAAGTCGAAC~~TT~~CGACTTAGCTGAAGATGCCAATTGCAGCTTAGTAAGGA
30 CACGTACGATGACGATCTGACAATCTACTGGCACAATTGGAGATCAGTATGCGGACTTAT
 TTTGGCTGCCAAAACCTAGCGATGCAATCCTCTATCTGACATACTGAGAGTTAATACT
 GAGATTACCAAGGCGCC~~TT~~ATCCGCTTCAATGATCAAAGGTACGATGAACATCACCAAGA
 CTTGACACTTCTCAAGGCCCTAGTCCGT~~CAGCAACTGC~~CTGAGAAATATAAGGAATATTCT
 TTGATCAGTCGAAAACGGGTACGCAGGTTATATTGACGGCGGAGCGAGTCAAGAGGAATT~~C~~

TACAAGTTATCAAACCCATATTAGAGAAGATGGATGGACGGAAGAGTTGCTTGAAACT
CAATCGCGAAGATCTACTGCGAAAGCAGCGGACTTCGACAACGGTAGCATTCCACATCAA
TCCACTTAGCGAATTGCATGCTATACTTAGAAGGCAGGAGGATTTATCCGTTCTCAA
GACAATCGTAAAAGATTGAGAAAATCTAACCTTCGACATACCTACTATGTGGGACCCCT
5 GGCCCGAGGGAACTCTCGGTTCGCATGGATGACAAGAAAGTCGAAGAAACGATTACTCCAT
GGAATTTGAGGAAGTTGTCGATAAAGGTGCGTCAGCTCAATCGTCATCGAGAGGATGACC
AACTTTGACAAGAATTACCGAACGAAAAAGTATTGCCTAAGCACAGTTACTTACGAGTA
TTTCACAGTGTACAATGAACACTCACGAAAGTTAAGTATGTCACTGAGGGCATGCGTAAACCCG
CCTTCTAAGCGGAGAACAGAACAGAAAGCAATAGTAGATCTGTTATTCAAGACCAACCGCAA
10 GTGACAGTTAAGCAATTGAAAGAGGACTACTTTAAGAAAATTGAATGCTCGATTCTGCGA
GATCTCCGGGGTAGAAGATCGATTTAATGCGTCACTGGTACGTATCATGACCTCCTAAAGA
TAATTAAAGATAAGGACTTCCTGGATAACGAAGAGAACAGATATCTTAGAAGATATAGTG
TTGACTCTTACCTCTTGAGATCGGGAAATGATTGAGGAAAGACTAAAAACATACGCTCA
CCTGTTGACGATAAGGTTATGAAACAGTTAAAGAGGCGTCGCTACGGCTGGGACGAT
15 TGTCGCGGAAACTTATCAACGGATAAGAGAACAGCAAAGTGGTAAACTATTCTCGATTT
CTAAAGAGCGACGGCTTCGCAATAGGAACCTTATGCAGCTGATCCATGATGACTCTTAAC
CTTCAAAGAGGATATACAAAGGCACAGGTTCCGGACAAGGGACTCATTGCACGAACATA
TTGCGAATCTGCTGGTTCGCCAGCCATCAAAAGGCATACTCCAGACAGTCAGTAGTG
GATGAGCTAGTTAAGGTATGGGACGTACAAACCGAAAACATTGTAATCGAGATGGCACCG
20 CGAAAATCAAACGACTCAGAAGGGCAAAAAACAGTCGAGAGCGGATGAAGAGAACAG
AGGGTATTAAAGAACTGGCAGCCAGATCTAAAGGAGCATCCTGTGGAAAATACCCAATTG
CAGAACGAGAAACTTACCTCTATTACCTACAAATGGAAGGGACATGTATGTTGATCAGGA
ACTGGACATAACCCTTATCTGATTACGACGTCGATCACATTGTACCCAAATCCTTTGA
AGGACGATTCAATCGACAATAAGTGTACGCTACGCTCGGATAAGAACCGAGGGAAAAGTGAC
25 AATGTTCCAAGCGAGGAAGTCGAAAGAAAATGAAGAACACTATTGGCGGCAGCTCTAAATGC
GAAACTGATAACGCAAAGAAAGTTGATAACTAAACTAAAGCTGAGAGGGTGGCTGTCTG
AACTTGACAAGGCCGGATTATTAAACGTCAGCTCGTGGAAACCCGCCAAATCACAAAGCAT
GTTGCACAGATACTAGATTCCGAATGAATACGAAATACGACGAGAACGATAAGCTGATTG
GGAAGTCAAAGTAATCACTTAAAGTCAAAATTGGTGTGGACTTCAGAAAGGATTTCAAT
30 TCTATAAAGTTAGGGAGATAAAACTACCACCATGCGCACGACGCTTATCTTAATGCCGTC
GTAGGGACCGCACTCATTAAGAAATACCGAAGCTAGAAAGTGTAGTTGTATGGTATT
CAAAGTTATGACGTCCGTAAGATGATCGCAGAACAGGGAGATAGGCAAGGCTACAG
CCAAATACTCTTTATTCTAACATTATGAATTCTTAAGACGGAAATCACTCTGGCAAAC
GGAGAGATACGCAAACGACCTTAATTGAAACCAATGGGAGACAGGTGAAATCGTATGGGA

TAAGGGCCGGGACTTCGCGACGGTGAGAAAAGTTGTCCATGCCCAAGTCAACATAGTAA
 AGAAAACGTGAGGTGCAGACCGGAGGGTTCAAAGGAATCGATTCTCCAAAAGGAATAGT
 GATAAGCTCATCGCTCGTAAAAGGACTGGGACCCGAAAAGTACGGTGGCTCGATAGCCC
 TACAGTTGCCTATTCTGTCCTAGTAGTGGCAAAAGTTGAGAAGGGAAAATCCAAGAAACTGA
 5 AGTCAGTCAAAGAATTATTGGGGATAACGATTATGGAGCGCTCGTCTTGAAAAGAACCCC
 ATCGACTTCCTTGAGGCAGAAAGGTTACAAGGAAGTAAAAAAGGATCTCATAATTAAACTACC
 AAAGTATAGTCTGTTGAGTTAGAAAATGGCGAAAACGGATGTTGGCTAGGCCGGAGAGC
 TTCAAAAGGGAACGAACTCGCACTACCGTCTAAATACGTGAATTCTGTATTTAGCGTCC
 CATTACGAGAAGTTGAAAGGTTACCTGAAGATAACGAACAGAAGCAACTTTGAGCA
 10 GCACAAACATTATCTCGACGAAATCATAGAGCAAATTGGAATTCAAGTAAGAGAGTCATCC
 TAGCTGATGCCAATCTGGACAAAGTATTAAGCGCATACAACAAGCACAGGGATAAACCCATA
 CGTGAGCAGGCGAAAATATTATCCATTGTTACTCTTACCAACCTCGCGCTCCAGCCGC
 ATTCAAGTATTTGACACAACGATAGATCGCAAACGATACTTCTACCAAGGAGGTGCTAG
 15 ACGCGACACTGATTCAACATCCATCACGGATTATATGAAACTCGGATAGATTGTCACAG
 CTTGGGGGTGACGGATCCCCAAGAAGAAGAGGAAAGTCTCGAGCGACTACAAAGACCATGA
 CGGTGATTATAAAGATCATGACATCGATTACAAGGATGACGATGACAAGGCTGCAGGA

MDKKYSIGLAIGTNSVGAVITDEYKVPSSKKVLGNTDRHSIKKNLIGALLFDSETAEAT
 RLKRTARRRYTRRKNRICYLQEIFSNEAKVDDSFHRLLEESFLVEEDKKHERHPIFGNIVD
 20 EVAYHEKYPTIYHLRKKLVDSSTDKADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFI
 QLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGL
 TPNFKSNFDLAEDAKLQLSKDTYDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNT
 EITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEF
 YKFIKPILEKMDGTEELLVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLK
 25 DNREKIEKILTFRIPYYVGPLARGNSRFAMTRKSEETITPWNFEVVVDKGASAQSIERMT
 NFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRK
 VTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLKIIKDKDFLDNEENEDILEDIV
 LTTLTFEDREMIEERLKYAHLFDDKVMQLKRRRTGWRRLSRKLINGIRDKQSGKTILD
 LKSDGFANRNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAICKGILQTVKVV
 30 DELVKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQL
QNEKLYLYLQNGRDMYVDQELDINRLSDYDVEDHIVPQSFLKDDSDIDNKVLTRSDKNRGKSD
NVPSEEVVKMKNYWRQLLNALKITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQITKH
VAQILDSRMNTKYDENDKLIREVKVITLKSCLVSDFRKDFQFYKVREINNYHHAHDAYLNAV
VGTALIKKYPKLESEFVYGDYKVDVRKMIAKSEOEIGKATAKYFFYSNIMNFFKTEITLAN

GEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKESILPKRNS
 DKLIAKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKLKSVKELLGITIMERSSFEKNP
 IDFLEAKGYKEVKKDLI~~IKLPKYS~~FELENGRKMLASAGELQKGNELALPSKYVNFLYLAS
 HYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHDKPI
 5 REQAENI~~IL~~HLFTLTNLGAPAAFKYFD~~TT~~IDRKRYTSTKEVLDATL~~I~~HQSITGLYETRIDLSQ
 LGGD

(single underline: HNH domain; double underline: RuvC domain)

In some embodiments, wild type Cas9 corresponds to Cas9 from *Streptococcus*
 10 *pyogenes* (NCBI Reference Sequence: NC_002737.2 (nucleotide sequence as follows); and
 Uniprot Reference Sequence: Q99ZW2 (amino acid sequence as follows).

ATGGATAAGAAATACTCAATAGGCTTAGATATCGGCACAAATAGCGTCGGATGGCGGTGAT
 CACTGATGAATATAAGGTTCCGTCTAAAAGTTCAAGGTTCTGGAAATACAGACGCCACA
 15 GTATCAAAAAAAATCTTATAGGGCTCTTATTGACAGTGGAGAGACAGCGGAAGCGACT
 CGTCTCAAACGGACAGCTCGTAGAAGGTATACACGTCGGAAGAATCGTATTGTTATCTACA
 GGAGATTTTCAAATGAGATGGCGAAAGTAGATGATAGTTCTTCATCGACTTGAAGAGT
 CTTTTGGTGGAAAGAAGACAAGAACGATGAACGTCATCCTATTGGAAATATAGTAGAT
 GAAGTTGCTTATCATGAGAAATATCCA~~ACTAT~~CATCTGC~~GG~~AAAAAATTGGTAGATT
 20 TACTGATAAAGCGGATTGCGCTTAATCTATTGGCCTTAGCGCATATGATTAAGTTCTG
 GTCATTGGATTGAGGGAGATTAAATCCTGATAATAGT~~GATGTGG~~ACAACTATTATC
 CAGTTGGTACAAACCTACAATTATTGAAGAAAACCCTATTACGCAAGTGGAGTAGA
 TGCTAAAGCGATTCTTCTGCACGATTGAGTAAATCAAGACGATTAGAAAATCTCATTGCTC
 AGCTCCCGGTGAGAAGAAAATGGCTATTGGAAATCTCATTGCTTGT~~CATTGG~~TTG
 25 ACCCCTAATTAAATCAAATTGATTGGCAGAAGATGCTAAATTACAGCTTCAAAAGA
 TACTTACGATGATGATTAGATAATTATTGGCGCAAATTGGAGATCAATATGCTGATTG
 TTTGGCAGCTAAGAATTATCAGATGCTATTACTTCAGATATCCTAAGAGTAAATC
 GAAATAACTAAGGCTCCCTATCAGCTTCAATGATTAACGCTACGATGAACATCATCAAGA
 CTTGACTCTTTAAAAGCTTAGTCGACAACAAC~~TTCC~~CAGAAAAGTATAAGAAATCTT
 30 TTGATCAATCAAAAACGGATATGCAGGTTATTGATGGGGAGCTAGCCAAGAAGAATT
 TATAAATTATCAAACCAATTAGAAAAAATGGATGGTACTGAGGAATTATTGGTGAACACT
 AAATCGTGAAGATTGCTGCGCAAGCAACGGACCTTGACAACGGCTCTATTCCCCATCAA
 TTCACTGGGTGAGCTGCATGCTATTGAGAAGACAAGAAGACTTTATCCATT~~TTT~~AAA
 GACAATCGTGAGAAGATTGAAAAAATCTGACTTTCGAATT~~CCTT~~ATTATGTTGGTCCATT

GGCGCGTGGCAATAGTCGTTGCATGGATGACTCGGAAGTCTGAAGAACAAATTACCCAT
GGAATTGAAAGAAGTTGTCGATAAAGGTGCTTCAGCTCAATCATTATTGAACGCATGACA
AACTTGATAAAAATCTCCAAATGAAAAAGTACTACCAAAACATAGTTGCTTATGAGTA
TTTACGGTTATAACGAATTGACAAAGGTCAAATATGTTACTGAAGGAATGCGAAAACCAG
5 CATTCTTCAGGTGAACAGAAGAAAGCCATTGTTACTCTCAAAACAAATCGAAAA
GTAACCGTTAAGCAATTAAAAGAAGATTATTCAAAAAAATAGAATGTTGATAGTGTGA
AATTCAGGAGTGAAGATAGATTAAATGCTCATTAGGTACCTACCATGATTGCTAAAAA
TTATTAAAGATAAAGATTGGATAATGAAGAAAATGAAGATATCTTAGGGATATTGTT
TTAACATTGACCTTATTGAAGATAGGGAGATGATTGAGGAAAGACTAAAACATATGCTCA
10 CCTCTTGATGATAAGGTGATGAAACAGCTTAAACGTCGCCGTATACTGGTTGGGACGTT
TGTCTGAAAATTGATTAATGGTATTAGGGATAAGCAATCTGGCAAAACAATTAGATT
TTGAAATCAGATGGTTGCCAATCGCAATTATGCAGCTGATCCATGATGATAGTTGAC
ATTAAAGAACATTCAAAAGCACAAGTGTCTGGACAAGGCATAGTTACATGAACATA
TTGCAAATTAGCTGGTAGCCCTGCTATTAAAAAGGTATTTACAGACTGTAAAAGTTGTT
15 GATGAATTGGTCAAAGTAATGGGCGGCATAAGCCAGAAAATACGTTATTGAAATGGCACG
TGAAAATCAGACAACCTCAAAAGGGCCAGAAAAATTGCGAGAGCGTATGAAACGAATCGAAG
AAGGTATCAAAGAATTAGGAAGTCAGATTCTAAAGAGCATCCTGTTGAAAATACTCAATTG
CAAAATGAAAGCTCTATCTATTATCTCAAAATGGAAGACACATGTATGTGGACCAAGA
ATTAGATATTAAATCGTTAAGTGATTATGATGTCGATCACATTGTTCCACAAAGTTCTTA
20 AAGACGATTCAATAGACAATAAGGTCTAACGCGTTGATAAAAATCGGGTAAATCGGAT
AACGTTCCAAGTGAAGAAGTAGTCAGAAAGATGAAAACATTGGAGACAACCTCTAAACGC
CAAGTTAATCACTCAACGTAAGTTGATAATTAAACGAAAGCTGAACGTTGGAGGTTGAGTG
AACTTGATAAAAGCTGGTTATCAAACGCCATTGGTGAACACTGCCAAATCACTAACGAT
GTGGCACAAATTGGATAGTCGATGAATACTAAATACGATGAAAATGATAAAACTTATTG
25 AGAGGTAAAGTGATTACCTTAAATCTAAATTAGTTCTGACTTCCGAAAAGATTCCAAT
TCTATAAAAGTACGTGAGATTAACAATTACCATCATGCCATGATGCGTATCTAAATGCCGTC
GTTGGAACTGCTTGATTAAGAAATATCCAAAACCTGAATCGGAGTTGTCTATGGTGATTA
TAAAGTTATGATGTTGCTAAATGATTGCTAAGTCTGAGCAAGAAATAGGCAAAGCAACCG
CAAAATATTCTTTACTCTAATATCATGAACCTCTCAAAACAGAAATTACACTTGCAAAT
30 GGAGAGATTGCAAACGCCCTCTAACGAAACTAATGGGAAACTGGAGAAATTGTCGGGA
TAAAGGGCGAGATTGCCACAGTGCAGCAAAGTATTGTCATGCCCAAGTCATATTGTC
AGAAAACAGAAGTACAGACAGGCAGGATTCTCAAGGAGTCATTTACCAAAAGAAATTG
GACAAGCTTATTGCTCGTAAAAAGACTGGGATCCAAAAAAATATGGTGGTTGATAGTC
AACGGTAGCTATTAGTCAGTCCAGTGGTGCTAAGGTGGAAAAGGGAAATCGAAGAAGTTAA

AATCCGTTAAAGAGTTACTAGGGATCACAATTATGGAAAGAAGTTCTTGAAAAAAATCCG
ATTGACTTTAGAAGCTAAAGGATATAAGGAAGTTAAAAAGACTTAATCATTAAACTACC
TAAATATAGTCTTTGAGTTAGAAAACGGTCGTAAACGGATGCTGGCTAGTGCCGGAGAAT
TACAAAAAGAAATGAGCTGGCTGCCAAGCAAATATGTGAATTTTATATTAGCTAGT
5 CATTATGAAAAGTTGAAGGGTAGTCCAGAAGATAACGAACAAAACAATTGTTGTGGAGCA
GCATAAGCATTATTAGATGAGATTATTGAGCAAATCAGTGAATTTCTAAGCGTGTATT
TAGCAGATGCCAATTAGATAAAGTCTTAGTGCATATAACAAACATAGAGACAAACCAATA
CGTGAACAAGCAGAAAATATTATTACATTATTACGTTGACGAATCTGGAGCTCCGCTGC
TTTAAATATTGATACAACAATTGATCGTAAACGATATAACGTCTACAAAAGAAGTTAG
10 ATGCCACTCTTATCCATCAATCCATCACTGGCTTATGAAACACGCATTGATTGAGTCAG
CTAGGAGGTGACTGA

MDKKYSIGLDIGTNVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETAEAT
RLKRTARRRYTRRKNRICYLQEISNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVD
15 EVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVKLF
QLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGL
TPNFKNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNT
EITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEF
YKFIKPILEKMDGTEELLVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLK
20 DNREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEVVVDKGASAQSIERMT
NFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRK
VTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLIKIIDKDFLDNEENEDILEDIV
LTTLFEDREMIEERLKYAHLFDDKVMQQLKRRRTGWRGLSRKLINGIRDQSGKTILD
LKSDGFANRNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAICKGILQTVKVV
25 DELVKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQL
QNEKLYLYLQNGRDMDYVDQELDINRLSDYDVDHIVPQSFNKDDSDNKLTRSDKNRGKSD
NVPSEEVVKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKQLVETRQITKH
VAQILDLSRMNTKYDENDKLIREVKVITLKSCLVSDFRKDFQFYKREINNYHHAHDAYLNAV
VGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEITLAN
30 GEIRKRPLIETNGETGEIWWDKGDFATVRKVL SMPQVNIVKKTEVQTGGFSKESILPKRNS
DKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKKLKSVKELLGITIMERSSFEKNP
IDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKMLASAGELQKGNELALPSKYVNFLYLAS
HYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPI

REQAENI IHLFTLTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATL¹IHQSI²TGLYETRIDLSQ³
LGGD (SEQ ID NO: 1. single underline: HNH domain; double underline: RuvC domain)

In some embodiments, Cas9 refers to Cas9 from: *Corynebacterium ulcerans* (NCBI Refs: NC_015683.1, NC_017317.1); *Corynebacterium diphtheriae* (NCBI Refs: 5 NC_016782.1, NC_016786.1); *Spiroplasma syrphidicola* (NCBI Ref: NC_021284.1); *Prevotella intermedia* (NCBI Ref: NC_017861.1); *Spiroplasma taiwanense* (NCBI Ref: NC_021846.1); *Streptococcus iniae* (NCBI Ref: NC_021314.1); *Belliella baltica* (NCBI Ref: NC_018010.1); *Psychroflexus torquis* (NCBI Ref: NC_018721.1); *Streptococcus thermophilus* (NCBI Ref: YP_820832.1), *Listeria innocua* (NCBI Ref: NP_472073.1), 10 *Campylobacter jejuni* (NCBI Ref: YP_002344900.1) or *Neisseria meningitidis* (NCBI Ref: YP_002342100.1) or to a Cas9 from any other organism.

In some embodiments, dCas9 corresponds to, or comprises in part or in whole, a Cas9 amino acid sequence having one or more mutations that inactivate the Cas9 nuclease activity. For example, in some embodiments, a dCas9 domain comprises D10A and an H840A 15 mutation or corresponding mutations in another Cas9. In some embodiments, the dCas9 comprises the amino acid sequence of dCas9 (D10A and H840A):

MDKKYSIGLAIGTNSVGAWITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETAEAT
RLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVD
20 EVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFI
QLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGL
TPNFKSNFDLAEDAKLQLSKDTYDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNT
EITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEF
YKFIKPILEKMDGTEELLVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLK
25 DNREKIEKILTFRIPYYVGPLARGNSRFAMTRKSEETITPWNFEEVVDKGASAQSFIERMT
NFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRK
VTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIV
LTLTLFEDREMIEERLKYAHLFDDKVMQQLKRRRYTGWRGLSRKLINGIRDQSGKTILD
LKSDGFANRNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIIKGILQTVKVV
30 DELVKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIELGQSQILKEHPVENTQ
QNEKLYLYLQNGRDMYVDQELDINRLSDYDVAIPQSFLKDDSIDNKVLTRSDKNRGKSD
NVPSEEVVKMKNYWRQLNAKLITQRKFDNLTKAERGGISELDKAGFIKRQLVETRQITKH
VAQILDSRMNTKYDENDKIREVKVITLKSKLVSDFRKDFQFYKVREINNYHHADAYLNAV
VGTALIKKYPKLESEFVYGDYKVDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEITLAN

GEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKESILPKRNS
DKLIARKKDWDPKYGGFDSPTVAYSVLVVAKVEKGKSKLKSVKELLGITIMERSSFEKNP
IDFLEAKGYKEVKKDLI~~IKLPKYSILFELENGRKMLASAGELQKGNEALALPSKYVNFLYLAS~~
HYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPI
5 REQAENI~~IIHLFTLTNLGAPAAFKYFD~~TTIDRKRYTSTKEVLDATL~~IHQ~~SITGLYETRIDLSQ
LGGD

(single underline: HNH domain; double underline: RuvC domain).

10 In some embodiments, the Cas9 domain comprises a D10A mutation, while the residue at position 840 remains a histidine in the amino acid sequence provided above, or at corresponding positions in any of the amino acid sequences provided herein.

15 In other embodiments, dCas9 variants having mutations other than D10A and H840A are provided, which, e.g., result in nuclease inactivated Cas9 (dCas9). Such mutations, by way of example, include other amino acid substitutions at D10 and H840, or other substitutions within the nuclease domains of Cas9 (e.g., substitutions in the HNH nuclease subdomain and/or the RuvC1 subdomain). In some embodiments, variants or homologues of dCas9 are provided which are at least about 70% identical, at least about 80% identical, at least about 90% identical, at least about 95% identical, at least about 98% identical, at least about 99% identical, at least about 99.5% identical, or at least about 99.9% identical. In 20 some embodiments, variants of dCas9 are provided having amino acid sequences which are shorter, or longer, by about 5 amino acids, by about 10 amino acids, by about 15 amino acids, by about 20 amino acids, by about 25 amino acids, by about 30 amino acids, by about 40 amino acids, by about 50 amino acids, by about 75 amino acids, by about 100 amino acids or more.

25 In some embodiments, Cas9 fusion proteins as provided herein comprise the full-length amino acid sequence of a Cas9 protein, e.g., one of the Cas9 sequences provided herein. In other embodiments, however, fusion proteins as provided herein do not comprise a full-length Cas9 sequence, but only one or more fragments thereof. Exemplary amino acid sequences of suitable Cas9 domains and Cas9 fragments are provided herein, and additional 30 suitable sequences of Cas9 domains and fragments will be apparent to those of skill in the art.

In some embodiments, Cas9 refers to Cas9 from: *Corynebacterium ulcerans* (NCBI Refs: NC_015683.1, NC_017317.1); *Corynebacterium diphtheriae* (NCBI Refs: NC_016782.1, NC_016786.1); *Spiroplasma syrphidicola* (NCBI Ref: NC_021284.1); *Prevotella intermedia* (NCBI Ref: NC_017861.1); *Spiroplasma taiwanense* (NCBI Ref:

NC_021846.1); *Streptococcus iniae* (NCBI Ref: NC_021314.1); *Belliella baltica* (NCBI Ref: NC_018010.1); *Psychroflexus torquisI* (NCBI Ref: NC_018721.1); *Streptococcus thermophilus* (NCBI Ref: YP_820832.1); *Listeria innocua* (NCBI Ref: NP_472073.1); *Campylobacter jejuni* (NCBI Ref: YP_002344900.1); or *Neisseria meningitidis* (NCBI Ref: YP_002342100.1).

5 It should be appreciated that additional Cas9 proteins (e.g., a nuclease dead Cas9 (dCas9), a Cas9 nickase (nCas9), or a nuclease active Cas9), including variants and homologs thereof, are within the scope of this disclosure. Exemplary Cas9 proteins include, without limitation, those provided below. In some embodiments, the Cas9 protein is a nuclease dead Cas9 (dCas9). In some embodiments, the Cas9 protein is a Cas9 nickase (nCas9). In some embodiments, the Cas9 protein is a nuclease active Cas9.

10 Exemplary catalytically inactive Cas9 (dCas9):
DKKYSIGLAIGTNSVGWAVITDEYKVPSSKKFKVLGNTDRHSIKKNLIGALLFDGETA
EATRLKRTARRRYTRRKNRICYLQEIFSNEAKVDDSSFFHRLEESFLVEEDKKHERH
15 PIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDL
NPDNSDVKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPGE
KKNGLFGNLIALSLGLTPNFKNFDLAEDAKLQLSKDTYDDLDNLLAQIGDQYADL
FLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKY
KEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQRTF
20 DNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRFAW
MTRKSEETITPWNFEVVVDKGASAQSIERMTNFDKNLPNEKVLPHSLLYEYFTVY
NELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDS
VEISGVEDRFNASLGYHDLLKIIKDKDFLDNEENEDILEDIVLTLLTFEDREMIEERL
KTYAHLFDDKVMKQLKRRRYTGWRGRLSRKLINGIRDQSGKTIIDFLKSDGFANRN
25 FMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIIKGILQTVKVVDELVK
VMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQL
QNEKLYLYLQNGRDMYVDQELDINRLSDYDVDAIVPQSQLKDDSIDNKVLTRSDK
NRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIK
RQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSCLVSDFRKDFQFYKV
30 REINNYHHAHDAYLNAVVGTLALKYPKLESEFVYGDYKVDVRKMIAKSEQEIGK
ATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSM
PQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWPKKYGGFDSPTVAYSVLVV
AKVEKGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIILPKYSLFE
LENGRKRMLASAGELQKGNELALPSKYVNFLYLAHYEKLKGSPEDNEQKQLFVEQ

HKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGA
PAAFKYFDTTIDRKRYTSTKEVLDATLIHQHSITGLYETRIDLSQLGGD

Exemplary catalytically Cas9 nickase (nCas9):

5 DKKYSIGLAIGTNSVGAVITDEYKPSKKFKVLGNTDRHSIKKNLIGALLFDGETA
EATRLKRTARRRYTRRKNRICYLQEIFSNEAKVDDSSFFHRLEESFLVEEDKKHERH
PIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDL
NPDNSDVKLFQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPGE
KKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQLSKDTYDDLDNLLAQIGDQYADL
10 FLAAKNLSDAILLSDILRVNTEITKAPLSASMIKYDEHHQDLTLLKALVRQQLPEKY
KEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQRTF
DNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRFAW
MTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVY
NELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDS
15 VEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTFEDREMIEERL
KTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDQSGKTILDFLKSDFANRN
FMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIIKGILQTVKVVDELVK
VMGRHKPENIVIEMARENQTTKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQL
QNEKLYLYLQNGRDMYVDQELDINRLSDYDVDHIVPQSQLKDDSIDNKVLTRSDK
20 NRGKSDNVPSEEVVKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIK
RQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSCLVSDFRKDFQFYKV
REINNYHHAHDAYLNAVVGTLALKYKPLESEFVYGDYKVDVRKMIAKSEQEIGK
ATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSM
PQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDPKYGGFDSPTVAYSVLVV
25 AKVEKGKSKKLKSVKELLGITIMERSFEKNPIDFLEAKGYKEVKKDLIILPKYSLFE
LENGRKRMLASAGELQKGNELALPSKYVNFLYLA SHYEKLKGSPEDNEQKQLFVEQ
HKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGA
PAAFKYFDTTIDRKRYTSTKEVLDATLIHQHSITGLYETRIDLSQLGGD

30 Exemplary catalytically active Cas9:

DKKYSIGLDIGTNSVGAVITDEYKPSKKFKVLGNTDRHSIKKNLIGALLFDGETA
EATRLKRTARRRYTRRKNRICYLQEIFSNEAKVDDSSFFHRLEESFLVEEDKKHERH
PIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDL
NPDNSDVKLFQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPGE

KKNGLFGNLIALSLGLTPNFKNFDLAEDAKLQLSKDTYDDLDNLLAQIGDQYADL
FLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKY
KEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQRTF
DNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRFAW
5 MTRKSEETITPWNFEEVVDKGASAQSFIERMNTFDKNLPNEKVLPKHSLLYEYFTVY
NELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDS
VEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTTLFEDREMIEERL
KTYAHLFDDKVMKQLKRRRTGWRGLSRKLINGIRDQSGKTILDFLKSDGFANRN
FMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIIKGILQTVKVVDELVK
10 VMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQL
QNEKLYLYLQNGRDMYVDQELDINRLSDYDVDHIVPQSQLKDDSIDNKVLTRSDK
NRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIK
RQLVETRQITKHVAQILDLSRMNTKYDENDKLIREVKVITLKSCLVSDFRKDFQFYKV
REINNYHHAHDAYLNAVVTALIKKYPKLESEFVYGDYKVDVRKMIAKSEQEIGK
15 ATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSM
PQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWPKKYGGFDSPTVAYSVLVV
AKVEKGKSKKLKSVKELLGITIMERSFEKNPIDFLEAKGYKEVKKDLIILPKYSLFE
LENGRKMLASAGELQKGNELALPSKYVNFLYASHYEKLKGSPEDNEQKQLFVEQ
HKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGA
20 PAAFKYFDTTIDRKRYTSTKEVLDATLIHQHSITGLYETRIDLSQLGGD.

In some embodiments, Cas9 refers to a Cas9 from archaea (e.g. nanoarchaea), which constitute a domain and kingdom of single-celled prokaryotic microbes. In some embodiments, Cas9 refers to CasX or CasY, which have been described in, for example, Burstein et al., "New CRISPR-Cas systems from uncultivated microbes." *Cell Res.* 2017 Feb 21. doi: 10.1038/cr.2017.21, the entire contents of which is hereby incorporated by reference. Using genome-resolved metagenomics, a number of CRISPR-Cas systems were identified, including the first reported Cas9 in the archaeal domain of life. This divergent Cas9 protein was found in little-studied nanoarchaea as part of an active CRISPR-Cas system. In bacteria, two previously unknown systems were discovered, CRISPR-CasX and CRISPR-CasY, which are among the most compact systems yet discovered. In some embodiments, Cas9 refers to CasX, or a variant of CasX. In some embodiments, Cas9 refers to a CasY, or a variant of CasY. It should be appreciated that other RNA-guided DNA binding proteins may be used as a nucleic acid programmable DNA binding protein (napDNAbp), and are within the scope of this disclosure.

In some embodiments, the nucleic acid programmable DNA binding protein (napDNAbp) of any of the fusion proteins provided herein may be a CasX or CasY protein. In some embodiments, the napDNAbp is a CasX protein. In some embodiments, the napDNAbp is a CasY protein. In some embodiments, the napDNAbp comprises an amino acid sequence that is at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at ease 99.5% identical to a naturally-occurring CasX or CasY protein. In some embodiments, the napDNAbp is a naturally-occurring CasX or CasY protein. In some embodiments, the napDNAbp comprises an amino acid sequence that is at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at ease 99.5% identical to any CasX or CasY protein described herein. It should be appreciated that CasX and CasY from other bacterial species may also be used in accordance with the present disclosure.

15 CasX (uniprot.org/uniprot/F0NN87; uniprot.org/uniprot/F0NH53)

>tr|F0NN87|F0NN87_SULIH CRISPR-associated Casx protein OS = *Sulfolobus islandicus* (strain HVE10/4) GN = SiH_0402 PE=4 SV=1
MEVPLYNIFGDNYIIQVATEAENSTIYNNKVEIDDEELRNVLNLAYKIAKNNEAAAE
RRGKAKKKKGEEGETTSNIILPLSGNDKNPWTETLKCYNFPTTVALSEVFKNFSQV
20 KECEEVSAPSFKPEFYEFGRSPGMVERTRRKLEVEPHYLIIAAAGWVLTRLGKAK
VSEGDYVGVNFTPTRGILYSLIQNVNGIVPGIKPETAFLWIARKVVSSVTNPNVSV
VRIYTISDAVGQNPTTINGFSIDLTKLLEKRYLLSERLEAIARNALSISSNMRERYIVL
ANYIYEYLTG SKRLEDLLYFANRDLIMNLNSDDGKVRDLKLISAYVNGELIRGEG

25 >tr|F0NH53|F0NH53_SULIR CRISPR associated protein, Casx OS = *Sulfolobus islandicus* (strain REY15A) GN=SiRe_0771 PE=4 SV=1

MEVPLYNIFGDNYIIQVATEAENSTIYNNKVEIDDEELRNVLNLAYKIAKNNEAAAE
RRGKAKKKKGEEGETTSNIILPLSGNDKNPWTETLKCYNFPTTVALSEVFKNFSQV
KECEEVSAPSFKPEFYKFGRSPGMVERTRRKLEVEPHYLIMAAAGWVLTRLGKA
30 KVSEGDYVGVNFTPTRGILYSLIQNVNGIVPGIKPETAFLWIARKVVSSVTNPNVSV
VVIYTISDAVGQNPTTINGFSIDLTKLLEKRDLLSERLEAIARNALSISSNMRERYIV
LANYIYEYLTGSKRLEDLLYFANRDLIMNLNSDDGKVRDLKLISAYVNGELIRGEG

CasY (ncbi.nlm.nih.gov/protein/APG80656.1)

>APG80656.1 CRISPR-associated protein CasY [uncultured Parcubacteria group bacterium]

MSKRHPRISGVKGYRLHAQRLEYTGKSGAMRTIKYPLYSSPSGGRTVPREIVSAINDD
YVGLYGLSNFDDLYNAEKRNEEKVYSVLDFWYDCVQYGAVENTAPGLKNVAEV

5 RGGSYELTKTLKGSHLYDELQIDKVIKFLNKKEISRANGSLDKLKKDIIDCFKAEYRE
RHKDQCNKLADDIKNACKDAGASLGERQKKLFRDFFGISEQSENDKPSFTNPLNLTC
CLLPFDTVNNNNRGEVLFNKLKEYAQKLDKNEGSLEMWEYIGIGNSGTAFSNFLG
EGFLGRLRENKITEKKAMMDITDAWRGQEQQEELEKRLRILAALTIKLREPKF DNH
WGGYRSDINGKLSSWLQNYINQTVKIKEDLKGHKDLKAKEMINRFGESDTKEEA
10 VVSSLLESIEKIVPDDSADDEKPDIPAIAYRRFLSDGRLTLNRFVQREDVQEALIKERL
EAEKKKKKRKKKSDAEDEKE TIDFKELFPHLAKPLKLVPNFYGDSKRELYKKYK
NAAIYTDALWKA VEKIYKSAFSSSLKNSFFDTDFDKDFFIKRLQKIFS VYRRFNDKW
KPIVKNSFAPYCDIVSLAENEVLYKPKQSR SRKSAIDKNRVR LPSTENIAKAGIALA
RELSVAGFDWKDLLKKEEHEEYIDLIELHKTALALLAVTETQLDISALDFVENGTV
15 KDFMKTRDGNLVLEGRFLEMFSQSIVFSELRGLAGLMSRKEFITS AIQTMNGKQAE
LLYIPHEFQS AKITTPKEMSRAFLDLAPAEFATSLEPESLSEK SLLKLKQMRYYPHYFG
YELTRTGQGIDGGVAENALRLEKSPVKKREIKCKQYKTLGRGQNKIVLYVRSSYYQT
QFLEWFLHRPKNVQTDVAVSGSFLIDEKKVKTRWNYDALTVALEPVSGSERVFVSQ
PFTIFPEKSAEEEGQR YLGIDIGEYGIAYTALEITGDSAKILDQNFISDPQLKTLREEVK
20 GLKLDQRRGTAMPSTK IARIRESLVHSLRNRIHH LALKHKAKIVYELEVSRFEEGKQ
KIKK VYATLKKADVYSEIDADKNLQTTVWGKLA VASEISAS YTSQFCGACKKLWRA
EMQVDETITTQELIGTVRVIKG GTLIDA KDFMRPPIFDENDTPFPK YRDFCDKHHISK
KMRGN SCLFICPFCRANADADIQASQTIA LLRYVKEEK VEDYFERFRKLKN IKV LG
QM KKI

25 By “cytidine deaminase” is meant a polypeptide or fragment thereof capable of catalyzing a deamination reaction that converts an amino group to a carbonyl group. In one embodiment, the cytidine deaminase converts cytosine to uracil or 5-methylcytosine to thymine. PmCDA1, which is derived from *Petromyzon marinus* (*Petromyzon marinus* cytosine deaminase 1, “PmCDA1”), AID (Activation-induced cytidine deaminase; AICDA), which is derived from a mammal (e.g., human, swine, bovine, horse, monkey etc.), and APOBEC are exemplary cytidine deaminases.

The base sequence and amino acid sequence of PmCDA1 and the base sequence and amino acid sequence of CDS of human AID are shown herein below:

>tr|A5H718|A5H718_PETMA Cytosine deaminase OS=Petromyzon marinus OX=7757
PE=2 SV=1

MTDAEYVRIHEKLDIYTFKKQFFNNKKSVSHRCYVLFELKRRGERRACFWGYAVNKPQSG
TERGIHAEIFSIRKVEEYLRDNPQGFTINWYSSWSPCADCAEKILEWYNQELRGNGHTLK

5 IWACKLYYEKNARNQIGLWNLRDNGVGLNVMVSEHYQCCRKIFIQSSHNLNRWLEKT
LKRAEKRRSELSIMIQVKILHTKSPAV

>EF094822.1 Petromyzon marinus isolate PmCDA.21 cytosine deaminase mRNA,
complete cds

10 TGACACGACACAGCCGTGTATATGAGGAAGGGTAGCTGGATGGGGGGGGGGGGAAACGTTCAGAGAGGA
CATTAGCGAGCGTCTGGTGGCCTTGAGTCTAGACACCTGCAGACATGACCGACGCTGAGTACGTGA
GAATCCATGAGAAAGTTGGACATCTACACGTTAACGAAACAGTTTCAACAACAAAAATCCGTGTCGA
TAGATGCTACGTTCTTTGAATTAAAACGACGGGTGAACGTAGAGCGTGTGTTGGGCTATGCTGTG
AATAAACACAGAGCGGGACAGAACGTGGAATTCACGCCAAATCTTAGCATTAGAAAAGTCGAAGAAT
15 ACCTGCGCGACAACCCCGACAATTACGATAAAATTGGTACTCATCCTGGAGTCCTGTGCAGATTGCGC
TGAAAAGATCTTAGAATGGTATAACCAGGAGCTGCGGGGGACGCCACACTTGAAAATCTGGGCTTGC
AAACTCTATTACGAGAAAATGCGAGGAATCAAATTGGGCTGTGGAACCTCAGAGATAACGGGTTGGGT
TGAATGTAATGGTAAGTGAACACTACCAATGTTGCAGGAAAATATTCAATCGTCGCACAATCAATT
GAATGAGAATAGATGGCTTGAGAAGACTTGAAGCGAGCTGAAAACGACGGAGCAGTTGTCCATTATG
20 ATTCAAGGTAAAAATACTCCACACCACTAACAGAGTCCTGCTGTTAACAGGCTATGCGGATGGTTTC

>tr|Q6QJ80|Q6QJ80_HUMAN Activation-induced cytidine deaminase OS=Homo
sapiens OX=9606 GN=AICDA PE=2 SV=1

MDSLLMNRRKFLYQFKNVRWAKGRRETYLCYVVKRRDSATSFSLDFGYLRNKGCHVELL
25 FLRYISDWLDLPGRCYRVTWFTSWSPCYDCARHVADFLRGNPNLSLRIFTARLYFCEDRK
AEPEGLRRLHRAGVQIAIMTFKAPV

>NG_011588.1:5001-15681 Homo sapiens activation induced cytidine deaminase
(AICDA), RefSeqGene (LRG_17) on chromosome 12

30 AGAGAACCATCATTAAATTGAAGTGAGATTTCTGGCCTGAGACTTGCAAGGGAGGCAAGAAGACACTCTG
GACACCACTATGGACAGGTAAAGAGGCAGTCTCTCGTGGGTGATTGCACTGCCCTCCTCAGAGCAA
ATCTGAGTAATGAGACTGGTAGCTATCCCTTCTCATGTAAGTGTCTGACTGATAAGATCAGCTTGAT
CAATATGCATATATATTTTGATCTGTCCTCTTCTATTAGATCTTACGCTGTCAGCCAAAT
TCTTCTGTTTCAGACTCTCTGATTTCCCTCTTTCTATTGAGCTGTCAGGCAAAGAAGTAGTGTGCGTACAATGTA
35 CTGATTGTCCTGAGATTGTACCATGGTGAAACTAATTATGTAATAATATTACATAGCAAATCTT
TAGAGACTCAAATCATGAAAAGGTAAATGCAAGTACTGTACTAAAAACGGTAGTGTCTAATTTCGTAAATA
TTTGTAATATTCAACAGTAAAACAATTGAAAGACACACTTCTAGGGAGGCCTACTGAAATAATT
AGCTATAGTAAGAAAATTGTAATTAGAAATGCCAAGCATTCTAAATTGCTTGAAAGTCACTAT
GATTGTGTCATTATAAGGAGACAAATTCAAGCAAGTTATTAAATGTTAACGGCCAATTGTTAGG
40 CAGTTAACGGCACTTTACTATTAACTAATCTTCCATTGTTCAAGACGTAGCTTAACCTACCTCTTAGG
TGTGAATTGGTTAAGGTCCCTCATATGTCTTATGTGCAAGTTTGTAGGTTATTGTCAAGAACTTA

TTCTATTCTACATTATGATTACTATGGATGTATGAGAATAACACCTAACCTTACCTCAAT
 TTAACCTCTTATAAAGAACTTACATTACAGAATAAAAGATTTTAAAAATATTTTTGTAGAGACA
 GGGTCTTAGCCCAGCCGAGGCTGGTCTCTAAGTCCTGGCCAAGCGATCCTCCTGCCTGGCCTCTAA
 GTGCTGGAATTATAGACATGAGCCATCACATCCAATACAGAATAAAAGATTTAATGGAGGATTTAAT
 5 GTTCTTCAGAAAATTTCTTGAGGTAGACAATGTCAAATGTCTCCTCAGTTACACTGAGATTTGAAA
 ACAAGTCTGAGCTATAGGTCTGTGAAGGGCATTGGAAATACTTGTCAAAGTAAATGGAAAGCAA
 AGGTAAAATCAGCAGTTGAAATTAGAGAAAGACAGAAAAGGAGAAAGATGAAATTCAACAGGACAGAA
 GGGAAATATATTATCATTAAGGAGGACAGTATCTGTAGAGCTCATTAGTGTAGGGCAAATGACTGGTCA
 GGATTATTTAACCCGCTTGTTCGGTTGCACGGCTGGGATGCAGCTAGGGTCTGCCTCAGGGAG
 10 CACAGCTGTCCAGAGCAGCTGTCAAGCCTGAAACACTCCCTCGTAAAGTCCTCCTACTCAG
 GACAGAAATGACGAGAACAGGGAGCTGGAAACAGGCCCTAACAGAGAAGGAAAGTAATGGATCAACAA
 AGTTAACTAGCAGGTCAAGGATCACGCAATTCACTCTGACTGGTAACATGTGACAGAAACAGTGTAA
 GGCTTATTGTATTTCATGTAGAGTAGGACCCAAAATCCACCCAAAGTCCTTATCTATGCCACATCCT
 TCTTATCTATACCCAGGACACTTTCTCTTATGATAAGGCTCTCTCTCTCCACACACACACAC
 15 AC
 TGTAGATCCTCTGCCTTCTCATCTACACAGCCCAGGAGGGTAAGTTAATATAAGAGGGATTTATTGGT
 AAGAGATGATGCTTAATCTGTTAACACTGGCCTCAAAGAGAGAATTCTTCTGTACTTATTAA
 GCACCTATTATGTGTTGAGCTTATATACAAAGGGTTATTATATGCTAATATAGTAATAGTAATGGTGG
 TTGGTACTATGGTAATTACCAAAATTATTATCCTTAAAGACAATCTCACCTGTTACCCAGGCTG
 20 TTAGTATTCACTTATGTTTTATGTTTGATTTTAAAGACAATCTCACCTGTTACCCAGGCTG
 GAGTGCAGTGGTGCAATCATAGCTTCTGCAGTCTGAACTCCTGGCCTCAAGCAATCCTCCTGCCTGG
 CCTCCCAAAGTGTGGGATACAGTCATGAGCCACTGCATCTGGCCTAGGATCCATTAGATTAAAATATG
 CATTAAATTAAATAATGGCTAATTTCACCTTATGTAATGTGTACTGGCAATAATCTAGT
 TTGCTGCTAAAGTTAAAGTCTTCCAGTAAGCTTCTGTACGTGAGGGAGACATTAAAGTGAAC
 25 AGACAGCCAGGTGTGGCTCACGCTGTAAATCCAGCACTCTGGGAGGCTGAGGTGGTGGATCGCTT
 GAGCCCTGGAGTTCAAGACCAGCCTGAGCAACATGGCAAACAGCTGTTCTATAACAAAATTAGCCGGG
 CATGGTGCATGTGCCTGTGGTCCAGCTACTAGGGGCTGAGGCAGGAGAATGTTGGAGGCCAGGAGG
 TCAAGGCTGCACTGAGCAGTGCCTGCCTGCACACTCCAGCCTGGGTGACAGGACCAGACCTGCCTCA
 AAAAATAAGAAGAAAATTAAAAATAATGGAAACAACAAAGAGCTGTTGTCCTAGATGAGCTACT
 30 TAGTTAGGCTGATATTGGTATTTAACTTTAAAGTCAGGGCTGTCAACCTGCACTACATTAAAAT
 ATCAATTCTCAATGTATATCCACACAAAGACTGGTACGTGAATGTTCAAGTACCTTATTCAACAAACC
 CCAAAGTAGAGACTATCAAATATCCATCAACAAAGTGAACAAATAACAAAATGTGCTATATCCATGCAA
 TGGAAATACCACCTGCAGTACAAAGAAGCTACTGGGATGAATCCAAAGTCATGACGCTAAATGAAAG
 AGTCAGACATGAAGGAGGAGATAATGTATGCCATACGAAATTCTAGAAAATGAAAGTAACCTATAGTTAC
 35 AGAAAGCAAATCAGGGCAGGCATAGAGGCTCACACCTGTAATCCCAGCACTTGAGAGGCCACGTGGAA
 GATTGCTAGAACTCAGGAGTTCAAGACCAGCCTGGCAACACAGTGAAACTCCATTCTCCACAAAATGG
 GAAAAAAAGAAAGCAAATCAGTGGTGTCTGTGGGAGGGGAAGGGACTGCAAAGAGGGAGAAGCTCTG
 GTGGGGTGGGGTGGTGGTGGTGGTGGTGGTGGTGGTGGTGGTGGTGGTGGTGGTGGTGGTGGTGGTGG
 AATATTCTGTAGAATTATGCATCTTAAATGGTGGAGTTACTGTATGTAATTACCTCAATGTAAGAA
 40 AAAATAATGTGTAAGAAAACCTTCAATTCTCTGCCAGCAAACGTTATTCAAATTCTGAGCCCTTACT
 TCGCAAATTCTCTGCACCTCTGCCCGTACCATAGGTGACAGCACTAGCTCCACAAATTGGATAATGC

ATTTCTGGAAAAGACTAGGGACAAATCCAGGCATCACTGTGCTTCATATCAACCATGCTGTACAGCT
 TGTGTTGCTGTCTGCAGCTGCAATGGGACTCTGATTCTTAAGGAACTTGGGTTACAGAGTATTT
 CCACAAATGCTATTCAAATTAGTGCTATGATATGCAAGACACTGTGCTAGGAGCCAGAAAACAAAGAGG
 AGGAGAAATCAGTCATTATGTGGGAACAACATAGCAAGATATTAGATCATTGACTAGTTAAAAAGC
 5 AGCAGAGTACAAATCACACATGCAATCAGTATAATCCAAATCATGTAAATATGTGCCTGTAGAAAGACT
 AGAGGAATAAACACAAGAATCTAACAGTCATTGCTATTAGACACTAAGTCTAATTATTATTAGACA
 CTATGATATTGAGATTAAAAATCTTAATATTAAAATTTAGAGCTCTTCTATTTCATAGTAT
 TCAAGTTGACAATGATCAAGTATTACTCTTCTTTTTTTTTTTGAGATGGAGTT
 10 TGGTCTTGTGCCATGCTGGAGTGGATGGCATGACCAGCTCACTGCAACCTCCACCTCCTGGGTC
 AAGCAAAGCTGTCGCCTCAGCCTCCGGTAGATGGGATTACAGGCAGCCACACTCGGCTAATG
 TTTGTATTAGTAGAGATGGGTTACCATGTTGGCCAGGCTGGCTCAAACCTCCTGACCTCAGAGG
 ATCCACCTGCCTCAGCCTCCAAAGTGCTGGATTACAGATGTAGGCCACTGCGCCGGCCAAGTATTGC
 TCTTATACATTAAAAACAGGTGTGAGCCACTGCGCCAGGTATTGCTCTTACATTAAAAATA
 15 GGCCGGTGCAGTGGCTCACGCCTGTAATCCAGCACTTGGGAAGCCAAGGCCAGGAGGAGAACACCCGAGGT
 CAGGAGTCCAAGGCCAGCCTGGCAAGATGGTGAACACCCGTCTCTATTAAAAACAAACATTACCTGG
 GCATGATGGTGGCGCCTGTAATCCCAGCTACTCAGGAGGCTGAGGCCAGGAGGATCCGGAGCCTGGCA
 GATCTGCCTGAGCCTGGGAGGTTGAGGCTACAGTAAGCCAAGATCATGCCAGTATACTTCAGCCTGGCG
 ACAAAAGTGAGACCGTAACAAAAAAATTAAAAAGAAATTAGATCAAGATCCAACGTGAAAA
 20 AGTGGCCTAACACCCACATTAAGAGTTGGAGTTATTCTGCAGGCAGAAGAGAACATCAGGGGTCT
 TCAGCATGGGAATGGCATGGTGCACCTGGTTTGTGAGATCATGGTGGTACAGTGTGGGAATGTTAT
 TTTGGAGGGACTGGAGGCAGACAGACGGTTAAAGGCCAGCACAACAGATAAGGAGGAAGAAGATGAGG
 GCTTGGACCGAAGCAGAGAAGAGCAAACAGGGAGGTACAAATTCAAGAAATATTGGGGGTTGAATCA
 ACACATTAGATGATTAATTAAATATGAGGACTGAGGAATAAGAAATGAGTCAGGATGGTCCAGGCTG
 25 CTAGGCTGCTTACCTGAGGTGCAAAGTCAGGAGTGGCAGTTAGGACAGGGCAGTTGAGGAATA
 TTGTTTGATCATTGAGTTGAGGTACAAGTTGGACACTTAGTAAAGACTGGAGGGAAATCTGAAT
 ATACAATTATGGGACTGAGGAACAAGTTATTGTTGTTCTGTTCTTGTGAAGAACAAATT
 AATTGTAATCCAAGTCAGCATCTAGAAGACAGTGGCAGGAGGTGACTGTCTGTGGTAAGGGTT
 30 GGGGTCTTGTGAGTATCTCTCAATTGGCCTAAATATAAGCAGGAAAGAGGTTATGATGGATTCCA
 GGCTCAGCAGGGCTCAGGAGGCTCAGGCAGCCAGCAGAGGAGTCAGAGCATCTTGGTTAGCCC
 AAGTAATGACTCCTAAAAAGCTGAAGGAAATCCAGAGTGACCAGATTATAAACTGTAACCTGCATT
 TTCTCTCCCTCTCACCCACAGCCTCTGATGAACCGGAGGAAGTTCTTACCAATTCAAAATGTC
 CGCTGGCTAAGGGTCGGCGTGAGACCTACCTGTGCTACGTAGTGAAGAGGCGTGACAGTGTACATCCT
 35 TTTCACTGGACTTGGTTATCTCGAATAAGGTATCAATTAAAGTCGGCTTGCAAGCAGTTAATGGT
 CAACTGTGAGTGCTTTAGAGCCACCTGCTGATGGTATTACTTCATCCTTTGGCATTGTC
 ATCACATTCTCAAATCCTTTTTATTCTTTCCATGTCCATGCACCCATATTAGACATGGCCCAA
 40 AATATGTAATTCTTCCCTCTACATGGTCGTAGGCCAGTGAATACATTCAACATGGTACATCCT
 GAAAATCAGAGAAGCCTGGCTGATGATTAATTAAATTGATCTTCGGCTACCCGAGAGAATTACATT

CCAAGAGACTTCTCACCAAAATCCAGATGGGTTACATAAACTCTGCCACGGTATCTCCTCTCC
 TAACACGCTGTGACGCTGGGCTTGGTGAATCTCAGGGAAAGCCTCGTGGGTTGGAAGGTATCGTCTG
 GCTCGTTGTTGATGGTATATTACCATGCAATTCTTGCCTACATTGTATTGAATAACATCCAAATC
 TCCTTCCTATTGGTGCACATGACACATTCTATTCAAGAGGCTTGATTTATCAAGCACTTCATTAC
 5 TTCTCATGGCAGTGCCTATTACTCTCTTACAATACCCATCTGCTGCTTACCAAAATCTATTCCCT
 TTTCAGATCCTCCAAATGGTCCCTCATAAACTGTCCTGCCTCACCTAGTGGTCCAGGTATATTCCACA
 ATGTTACATCAACAGGCACCTCTAGCCATTTCCTCTCAAAAGGTGCAAAAGCAACTTCATAAACACA
 AATTAAATCTTCGGTGAGGTAGTGTGATGCTGCTCCCTCCAACTCAGCGCACTTCGTCTTCATTCC
 10 ACAAAACCCATAGCCTCCTCACTCTGAGGACTAGTGCTGCCAAGGGTCAGCTTACCTACTGGT
 TGCTCTTTGAGCAAGTTGCTTAGCCTCTGTAAACACAAGGACAATAGCTGCAAGCATCCCCAAAGATC
 ATTGCAGGAGACAATGACTAAGGCTACCAGAGCCGATAAAAGTCAGTGAATTAGCGTGGCCTCTC
 TGTCTCCAGAACGGCTGCCAGTGGATTGCTCTCCCGTACATCTGGACTGGGACCTAGACCC
 TGGCCGCTGCTACCGCGTACCTGGTTACCTCCTGGAGCCCGTACGACTGTGCCGACATGTGGCC
 GACTTCTGCAGGGAACCCAACCTCAGTCTGAGGATCTCACCGCGCCTCTACTCTGTGAGGACC
 15 GCAAGGCTGAGCCGAGGGCTCGGGCGCTGCACCGCGCCGGGTGCAAATAGCCATCATGACCTCAA
 AGGTGCAAAGGGCCTCCGCGCAGGCGCAGTGCAGCAGGCCGATTGGGATTGCGATGCGGAATGAAT
 GAGTTAGTGGGAAAGCTCGAGGGGAAGAAGTGGCGGGATTCTGGTCACCTCTGGAGGCCGAAATTAAA
 GATTAGAAGCAGAGAAAAGAGTGAATGGCTCAGAGACAAGGCCCGAGGAATGAGAAAATGGGCCAGG
 GTTGCTTCTTCCCTCGATTGGAACCTGAACCTGCTCTACCCCCATATCCCGCCTTTTCTTCTT
 20 TTTTTTTTTGAAGATTATTTACTGCTGGAATACTTTGTAGAAAACCACGAAAGAACTTCAAAGCC
 TGGGAAGGGCTGCATGAAATTCACTCAGTTCTCCAGACAGCTCGGCGCATCTTGGTAAGGGCT
 TCCTCGCTTTAAATTCTTCTTCTACAGTCTTTGGAGTTCTGTATATTCTTATATTCTT
 TTATTGTTCAATCACTCAGTTCTCATCTGATGAAAACCTTATTCTCCACATCAGCTTTCTTC
 TGCTGTTCACCACTCAGAGCCCTCTGTAAGGTTCTTCCCTTCTGGTCAGAATTCTTCTCCTTT
 25 CATCTTAAATTCTGCTCTCCAGGGTTCGTTCTTCTGGTCAGAATTCTTCTCCTTT
 TTTTTTTTTTTTTAAACAAACAAAAACCCAAAAACTCTTCCAATTACTTTCTT
 CCAACATGTTACAAAGCCATCCACTCAGTTAGAAGACTCTCCGGCCCAACGACCCCAACCTCGTTT
 GAAGCCATTCACTCAATTGCTCTCTTCTACAGGCCGTATGAGGTTGATGACTACGAGACG
 CATTGTAATTGGACTTGATAGCAACTTCCAGGAATGTCACACACGATGAAATATCTCTGCTGAAG
 30 ACAGTGGATAAAAACAGTCCTCAAGTCTCTGTGTTTATTCTCAACTCTCACTTCTTAGAGTT
 ACAGAAAAATATTATACGACTCTTAAAAGATCTATGCTTGAAGAAGAGAACACAGGTC
 TGGCCAGGGACGTGCAATTGGTCAGTTGAATGCAACATTGCCCCTACTGGGATAACAGAACT
 GCAGGACCTGGAGCATCTAAAGTGTCAACGTTCTATGACTTTAGGTAGGATGAGAGCAGAAGGT
 AGATCCTAAAAGCATGGTGAGAGGATCAAATGTTTATATCACACCTTATTATTGATTCACTT
 35 AGTTAACAGTGGTGTAGTGTAGATTTCTATTCTTCCCTGACGTTACTTCAAGTAACACAAA
 CTCTCCATCAGGCCATGATCTATAGGACCTCTAACATGAGAGTATCTGGGTGATTGTGACCCAAACCAT
 CTCTCCAAAGCATTAAATCCAATCATGCGCTGTATGTTAACATCAGCAGAAGCATGTTTATGTTG
 ACAAAAGAAGATTGTTATGGTGGGATGGAGGTATAGACCATGATGGTCACCTCAAGCTACTTTAAT
 AAAGGATCTTAAATGGCAGGAGGACTGTGAACAAGACACCCCTAATAATGGTTGATGCTGAAGTAGC
 40 AAATCTCTGGAAACGCAAACCTTTAAGGAAGTCCCTAATTAGAAACACCCACAAACTTCACATATC
 ATAATTAGCAAACATTGGAAGGAAGTTGCTGAATGTTGGGAGAGGAAATCTATTGGCTCTCGTGGG

TCTCTTCATCTCAGAAATGCCAATCAGGTCAAGGTTGCTACATTTGTATGTGTGTGATGCTTCTCCCA
AAGGTATATTAACATATAAGAGAGTTGACAAAACAGAATGATAAAGCTGCGAACCGTGGCACACGCT
CATAGTTCTAGCTGCTTGGGAGGTTGAGGAGGGAGGATGGCTGAACACAGGTGTTCAAGGCCAGCTGG
GCAACACATAACAAGATCCTGTCTCTCAAAAAAAAAAAAAAGAAAGAGAGAGGGCCGGCGTGGTG
5 GCTCACGCCTGTAATCCCAGCACTTGGGAGGCCGAGCGGGCGGATCACCTGTGGTCAGGAGTTGAGA
CCAGCCTGGCCAACATGGAAAACCCCGTCTGACTCAAATGCAAAATTAGCCAGGCCTGGTAGCAGG
CACCTGTAATCCCAGCTACTTGGGAGGCTGAGGCAGGAGAATCGCTGAACCCAGGAGGTGGAGGTTGCA
GTAAGCTGAGATCGTGCCTGCACTCCAGCCTGGCGACAAGAGCAAGACTCTGTCTCAGAAAAAAA
AAAAAAAGAGAGAGAGAGAGAAACAATATTGGGAGAGAAGGATGGGAAGCATTGCAAGGAAAT
10 TGTGCTTATCCAACAAAATGTAAGGAGCCAATAAGGGATCCCTATTGTCCTTTGGTGTCTATTGT
CCCTAACAACTGTCTTGACAGTGAGAAAATATTCAAATAACCATATCCCTGTGCCGTATTACCTAG
CAACCTTGCAATGAAGATGAGCAGATCCACAGGAAACTGAAATGCACAACGTCTTATTTAATCTTA
TTGTACATAAGTTGTAAGAGTTAAAAATTGTTACTTCATGTATTCAATTATTTATATTATTTG
CGTCTAATGATTTTATTAACATGATTCCTTCTGATATATTGAAATGGAGTCTCAAAGCTTCATAA
15 ATTTATAACTTTAGAAAATGATTCTAATAACAACGTATGTAATTGAAACATTGCACTGAAATGGTGTACGAA
GCCATTTCTCTGATTTAGTAAACTTTATGACAGCAAATTGCTTCTGGCTCACTTCATACTAGTTA
AATAATGATAAAATTTGGAAGCTGTGAAGATAAAACCAAATAATATAAAAGTGTATT
ATGAAGTTAAAATAAAATCAGTATGATGGAATAACTTG

20 Apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like (APOBEC) is a family of evolutionarily conserved cytidine deaminases. Members of this family are C-to-U editing enzymes. The N-terminal domain of APOBEC like proteins is the catalytic domain, while the C-terminal domain is a pseudocatalytic domain. More specifically, the catalytic domain is a zinc dependent cytidine deaminase domain and is important for cytidine deamination. APOBEC family members include APOBEC1, APOBEC2, APOBEC3A, APOBEC3B, APOBEC3C, APOBEC3D ("APOBEC3E" now refers to this), APOBEC3F, APOBEC3G, APOBEC3H, APOBEC4, and Activation-induced (cytidine) deaminase. A number of modified cytidine deaminases are commercially available, including but not limited to SaBE3, SaKKH-BE3, VQR-BE3, EQR-BE3, VRER-BE3, YE1-BE3, EE-BE3, 25 YE2-BE3, and YEE-BE3, which are available from Addgene (plasmids 85169, 85170, 85171, 85172, 85173, 85174, 85175, 85176, 85177).

30 Other exemplary deaminases that can be fused to Cas9 according to aspects of this disclosure are provided below. It should be understood that, in some embodiments, the active domain of the respective sequence can be used, e.g., the domain without a localizing signal 35 (nuclear localization sequence, without nuclear export signal, cytoplasmic localizing signal).

Human AID:

MDSLLMNRRKFLYQFKNVRWAKGRRETYLCYVVKRRDSATS FSLDFGYLRNKNGCHVELLFL
 RYISDWLDLDPGRCYRVTWFTSWSPCYDCARHVADFLRGNPNL~~S~~ RIFTARLYFCEDRKAEP
 GLRRLHRAGVQIAIMTFKDYFYCWNTFVENHERTFKAWEGLHENSVRLSRQLRRILLPLYEV

5 DDLRAFRTLGL (underline: nuclear localization sequence; double underline: nuclear
 export signal)

Mouse AID:

MDSLLMKQKKFLYHFKNVRWAKGRHETYL CYVVKRRDSATSCSLDFGHLRNKSGCHVELLFL
 10 RYISDWLDLDPGRCYRVTWFTSWSPCYDCARHVAEFLRWNPNL~~S~~ RIFTARLYFCEDRKAEP
 GLRRLHRAGVQIGIMTFKDYFYCWNTFVENRERTFKAWEGLHENSVRLTRQLRRILLPLYEV
DDLRAFRMLGF

(underline: nuclear localization sequence; double underline: nuclear export signal)

Dog AID:

MDSLLMKQRKFLYHFKNVRWAKGRHETYL CYVVKRRDSATS FSLDFGHLRNKSGCHVELLFL
 RYISDWLDLDPGRCYRVTWFTSWSPCYDCARHVADFLRGYPNL~~S~~ RIFTARLYFCEDRKAEP
 GLRRLHRAGVQIAIMTFKDYFYCWNTFVENREKTFKAWEGLHENSVRLSRQLRRILLPLYEV
DDLRAFRTLGL (underline: nuclear localization sequence; double underline: nuclear
 20 export signal)

Bovine AID:

MDSLLKKQRQFLYQFKNVRWAKGRHETYL CYVVKRRDSPTS FSLDFGHLRNKAGCHVELLFL
 RYISDWLDLDPGRCYRVTWFTSWSPCYDCARHVADFLRGYPNL~~S~~ RIFTARLYFCDKERKAEP
 25 EGLRRLHRAGVQIAIMTFKDYFYCWNTFVENHERTFKAWEGLHENSVRLSRQLRRILLPLYEV
VDDLRAFRTLGL (underline: nuclear localization sequence; double underline: nuclear
 export signal)

Rat AID

MAVGSKPKAALVGPHWERERIWCFLCSTGLGTQQTGQTSRWLRPAATQDPVSPPRSLLMKQR
 KFLYHFKNVRWAKGRHETYL CYVVKRRDSATS FSLDFGYLRNKSGCHVELLFL RYISDWLDL
 PGRCYRVTWFTSWSPCYDCARHVADFLRGNPNL~~S~~ RIFTARLTGWGALPAGLMSPARPSDYF

YCWN~~T~~VENHERTFKAWEG~~L~~HENS~~V~~RLS~~R~~RLR~~I~~LL~~P~~LYEV~~D~~DLRDAF~~R~~TLGL

(underline: nuclear localization sequence; double underline: nuclear export signal)

Mouse APOBEC-3

5 MGP~~F~~CLGCSHRKC~~Y~~SPIRNLISQETFKFHFKNLGYAKGRKDTFLCYEVTRKDCDSPVSLHHGVFKNKD
NIHAEICFLYWFHDKVLKVLSPREEFKITWYMSWSPCFCAEQIVRFLATHHNLSLDIFSSRLYNQD
PETQQNL~~C~~RLVQEGAQVAAMDL~~Y~~EFKKC~~WKKF~~VDNGGRRFRPWKRLLTNFRYQDSKLQEI~~LR~~PCYIPV
PSSSS~~T~~LSN~~I~~CLTKGLP~~E~~TRFC~~V~~EGRRMDPL~~S~~EEEFYSQFY~~N~~QRVKHL~~C~~YYH~~R~~M~~K~~P~~Y~~LCYQLEQFNG
QAP~~L~~KG~~C~~LL~~S~~EKG~~K~~QHAE~~I~~*LFLDKIRSMELSQV*T~~I~~TCYL~~T~~WSPCPNCAWQ~~L~~A~~F~~K~~R~~DRP~~D~~L~~I~~L~~H~~IY~~T~~
10 RLYFHWKRPFQKGLCSLWQSGILVDVMDLPQFTDCWTNFVNPKRPFWPWKG~~E~~IISRRTQ~~R~~RLRRIK
SWGLQDLVNDFGNLQLGPPMS (italic: nucleic acid editing domain)

Rat APOBEC-3:

MGP~~F~~CLGCSHRKC~~Y~~SPIRNLISQETFKFHFKNRL~~Y~~AIDRKDTFLCYEVTRKDCDSPVSLHHGVFKNK
15 DNIHAEICFLYWFHDKVLKVLSPREEFKITWYMSWSPCFCAEQV~~L~~RFLATHHNLSLDIFSSRLYNIR
DPENQQNL~~C~~RLVQEGAQVAAMDL~~Y~~EFKKC~~WKKF~~VDNGGRRFRPWKKLLTNFRYQDSKLQEI~~LR~~PCYIP
V~~P~~SSSS~~T~~LSN~~I~~CLTKGLP~~E~~TRFC~~V~~ERRRV~~H~~LL~~S~~EEEFYSQFY~~N~~QRVKHL~~C~~YYH~~G~~V~~K~~P~~Y~~LCYQLEQF~~N~~
GQAP~~L~~KG~~C~~LL~~S~~EKG~~K~~QHAE~~I~~*LFLDKIRSMELSQV*I~~I~~TCYL~~T~~WSPCPNCAWQ~~L~~A~~F~~K~~R~~DRP~~D~~L~~I~~L~~H~~IY~~T~~
SRLYFHWKRPFQKGLCSLWQSGILVDVMDLPQFTDCWTNFVNPKRPFWPWKG~~E~~IISRRTQ~~R~~RLHRIK
20 ESWGLQDLVNDFGNLQLGPPMS (italic: nucleic acid editing domain)

Rhesus macaque APOBEC-3 G:

MVEPMDPRTFVSNFNNRP~~I~~LSGLNTVWL~~C~~CEV~~K~~TKDPSG~~P~~PLDAK~~I~~*FQGKVYSKAKYHPEM*
FLRFWFHKWRQLHHDQ~~E~~YKVTWYV~~S~~WSP~~C~~TRCANSVATFLAKDPKV~~T~~LT~~I~~FVARLYYFWKP~~D~~Y
25 Q~~O~~ALRILCQKRG~~G~~PHATMK~~I~~MNYNEFQDCWNKFVDGRGKPFKPRNNLPKHY~~T~~LLQATLGELL
RHLMDPGTFTSNFNNKPWVGQHETYL~~C~~YKVERLHNDTWVPLNQHRGFLRNQAPNIHGFPKG
RHAELCFLDLIPFWKLDGQQYRVT~~C~~FTSWSPCFSCAQEMAKFISNNEHVS~~C~~I~~F~~AARIYDDQ
GRYQEGLRALHRDGAKIAMMNYSEFEYC~~W~~DTFVDRQGRPFQPWDGLDEHSQALSGRLRAI
(italic: nucleic acid editing domain; underline: cytoplasmic localization signal)

30

Chimpanzee APOBEC-3 G:

MKPHFRNPVERMYQDTFSDNFY~~N~~RP~~I~~LSHRNTVWL~~C~~YEV~~K~~TKGPSR~~P~~PLDAK~~I~~*FRGQVYSKLYHPEM*
RFFHWFSKWRKLH~~R~~DQ~~E~~YEV~~T~~WY~~I~~SWSP~~C~~TK~~C~~TRDVATFLAEDPKV~~T~~LT~~I~~FVARLYYFWDPDYQ~~E~~ALR
35 SLCQKRDG~~P~~RTMK~~I~~MNYDEFQHCWSKFVYSQREL~~F~~EPWN~~N~~LPKYYILLHIMLGEILRH~~S~~MDP~~P~~PTFTS
NFNNELWVRGRHETYL~~C~~YEVERLHNDTWVLLNQRRGFLCNQAPHKHG~~F~~LEGR~~H~~AELCFLDV~~I~~PFWKLD

*LH*QDYRVCFTSWSPCFSCAQEMAKFISNNKHVSLCIFAARIYDDQGRCQEGLRTLAKAGAKISIMTY
SEFKHCWDTFVDHQGCPFQPWDGLEEHSQLSGRLRAILQNQGN

(italic: nucleic acid editing domain; underline: cytoplasmic localization signal)

5 Green monkey APOBEC-3G:

MNPQIRNMVEQMEPDI*FVYYFNNRPILSGRNTWLCYEVTKDPSGPPLDANI*FQGKLYPEAKDHPEM
KFLHWFRKWRQL*HRDQEYEVTWYVSWSPCTRCANSVAT*FLAEDPKVTLTIFVARLYYFWKPDYQQALR
ILCQERGGPHATMKIMNYNE*FQHCWNEFVDGQGKPFKPRKNLPKHYTLLHATLGELLRHVMDPGTFTS*
NFNNKPVVSGQRETYLCYKVERSHNDTWVLLNQHRGFLRNQAPDRHGFPKGR*HAELCFLDLIPFWKLD*

10 DQQYRVCFTSWSPCFSCAQKMAKFISNNKHVSLCIFAARIYDDQGRCQEGLRTL*HRDGAKIAVMNYS*
EFEYCWDTFVDRQGRPFQPWDGLDEHSQALSGRLRAI

(italic: nucleic acid editing domain; underline: cytoplasmic localization signal)

Human APOBEC-3G:

15 MKPHFRNTVERMYRDTFSYNFYNRPILSRRNTWLCYEVTKGPSRPLDAKIFRGQVYSELKYHPEM
RFHHWFSKWRKL*HRDQEYEVTWYISWSPCTKCTRDMAT*FLAEDPKVTLTIFVARLYYFWDPDYQEALR
SLCQKRDGPRATMKIMNYDE*FQHCWSKFVYSQRELFE*PWNNLPKYYILLHIMLGE*ILRHSM*DPPTFTF
NFNNEPWVGRRHETYL*CYEVERMHNDTWVLLNQRRGFLCNQAPHKHG*FLEGRA*HAELCFLDVIPFWKLD*
LDQDYRVCFTSWSPCFSCAQEMAKFISKNKHVSLCIFTARIYDDQGRCQEGLRTL*AEGAKISIMTY*

20 SEFKHCWDTFVDHQGCPFQPWDGLDEHSQDLSGRLRAILQNQEN

(italic: nucleic acid editing domain; underline: cytoplasmic localization signal)

Human APOBEC-3F:

25 MKPHFRNTVERMYRDTFSYNFYNRPILSRRNTWLCYEVTKGPSRPLDAKIFRGQVYSQPEH*HAEM*
CFLSWFCGNQLPAYKCFQITWFVSWTPCPDCVAKLAEFLAEHPNVTLT*ISAARLYYYWERDYRRALCR*
LSQAGARVKIMDDEEFAYCWENFVYSEGQPFMPWYKFDDNYAFLHRTLKEILRNPM*EAAMYPHIFYFHF*
KNLRKAYGRNESWLCFTMEVKHHSPVSWKRGFRNQVDPE*THCHAERCFLSWFCDDILSPNTNYEV*
WYTSWSPCPECAGEVAEFLARHSNVNLTIFTARLYYFWDTDYQEGLRSLSQEGASVE*IMGYKDFKYCW*

30 ENFVYNNDDEPKPWKGLKYNFLFLDSKLQEILE

(italic: nucleic acid editing domain)

Human APOBEC-3B:

35 MNPQIRNPMERMYRDTFYDNFENEPILYGRSYTWLCYEVKIKRGRSNLLWDTGVFRGQVYFKPQY*HAE*
MCFLSWFCGNQLPAYKCFQITWFVSWTPCPDCVAKLAEFLSEHPNVTLT*ISAARLYYYWERDYRRALC*
RLSQAGARVTIMDYEEFAYCWENFVYNEGQQFMPWYKFDENYAFLHRTLKEILRYLMDPDTFTFN*FNN*

DPLVLRRRQTYLCYEVERLDNGTWVLMDQHMGFLCNEAKNLLCGFYGRHAELRF^{LDL}VPSLQLDPAQI
 YRV^TWF^ISWS^PCF^SWG^CAGEVRAFLQENTHVR^LR^IF^AARIYDYDPLYKEALQMLRDAGAQVSIMTYDE
 FEYCWDTFVYRQGCPQPWDGLEEHSQLSGRLRAILQNQGN

(italic: nucleic acid editing domain)

5

Rat APOBEC-3B:

MQPQGLGPNA^MGPVCLGCSHRRPYS^SIRNPLK^KLYQQT^FYFHFKNVRYAWGRKNNFLCYEVNGMDCA
 LPVPLRQGVFRKQGH^IHAE^LCF^IYWFHD^KVL^RV^LSPMEEFKV^TWYMSW^SPCSK^CAEQVARFLAAHRNL
 SLAIFSSRLYYYL^RNP^NYQQKLCRL^IQEGVHVAAMDLPEFKKCWNKFVDNDGQPFRPMRLR^INFSFY
 10 DCKLQE^IFSRMNLLREDV^FYLQFNN^NSHRV^KPV^QNRYYRRKSYLCYQ^LERANGQ^EPLKG^YLLKKGEQH
 VEILFLEKMRSMELSQVR^ITCYLT^WSP^CPC^NCA^RQLAAFKKDHP^DL^IL^RIY^TSRLYFWRKKFQ^KGLCTL
 WRSGI^HVDVMDLPQFADCWTNFVNPQRPFRP^WNELEKNSWRIQ^RRLRRIKESWGL

Bovine APOBEC-3B:

15 DGWEVA^FRS^RGT^VLKAGVLGV^SMTEG^WAGSGH^PQGAC^VW^TPG^TR^NT^MNLL^RE^VLF^KQQ^FGNQ^PR^VP^AP
 YYRRK^TYLCYQLKQRNDLTLDRGCFRNKKQR^HAERFIDKINS^LDLNPSQSYK^ICY^IT^WSP^CPC^NC^AE
 LVNFITRNNHLK^LE^IFASR^LYFHW^IKSF^KM^GLQDLQNAG^IS^VAVM^TH^TE^FEDCWEQ^FVDNQ^SRP^FQ^PW
 DKLEQYSASIRRLQR^IL^TAPI

20 **Chimpanzee APOBEC-3B:**

MNPQ^IRNP^MEW^MYQRT^FYYNFENEP^ILYGR^SYT^WLCYEV^KIRR^GH^SN^LL^WDTGV^FR^GQ^MYSQ^PEHHAE
 MCFLSWFCGNQL^SAYKCF^QIT^WF^VSW^TPC^PDC^VAKL^AKFLAE^HPNV^TLT^IS^AAR^LYYWERDYR^RALC
 RLSQAGARV^KIMD^DEEFAYC^WENF^VYNEG^QPF^MP^WYKF^DD^NYAF^LH^RTL^KE^II^RH^LMD^PD^TFT^FN^FNN
 DPLVLRR^HQTYLCYEVERLDNGTWVLMDQHMGFLCNEAKNLLCGFYGRHAELRF^{LDL}VPSLQLDPAQI
 25 YRV^TWF^ISWS^PCF^SWG^CAGQVRAFLQENTHVR^LR^IF^AARIYDYDPLYKEALQMLRDAGAQVSIMTYDE
 FEYCWDTFVYRQGCPQPWDGLEEHSQLSGRLRAILQ^VRASSLCM^VPHR^{PP}QQSPG^PCL^LC^SEP
 PLGSLLPTGR^PAP^SLP^FL^LT^ASFS^FPPP^ASL^PPL^PSL^SL^SPG^HLP^VPS^FH^SLT^SCSI^QPP^CSSR^IRET
 EGWASVSKEGRDLG

30 **Human APOBEC-3C:**

MNPQ^IRNP^MKAM^YPG^TF^FQ^QFK^NL^WE^AND^RNET^WL^CFT^VE^GI^KR^RS^VV^WK^TG^VF^RN^QV^DSE^TH^CA^E
 RCFLSWFCDD^IL^SP^NT^KYQV^TW^YT^WS^SPC^PDC^GAGE^VA^EFL^AR^HS^NV^NL^TI^FT^AR^LYYF^QYPC^YQ^EGLR
 SLSQEGV^AVEIMDYEDFKY^CWENF^VYNDNEPF^KPK^GL^KT^NF^RLL^KR^RL^RESLQ

Gorilla APOBEC3C

MNPQIRNPMKAMYPGTFYFQFKNLWEANDRNETWLCFTVEGIKRRSVVSWKTGVFRNQVDSETH*CHAE*
*RCFLSWECDDILSPNTNYQVTWYTSWSPCPECAGEVAEFLARHSNVNLTI*FTARLYYFQDTDYQEGLR
 SLSQEGVAVKIMDYKDFKYCWENFVYNDEPFKPWKGKYNFRFLKRRLQEILE

5 (italic: nucleic acid editing domain)

Human APOBEC-3 A:

MEASPASGPRHLM~~DPH~~IFTSNFNNGIGRHKT~~Y~~LCYEVERLDNGTSVKMDQHRGFLHNQAKNLLCGFYG
 RHAELRF~~FL~~LVPSLQLDPAQTYRV~~T~~WFISWSPCFSWG~~C~~AGEVRAFLQENTHVRLRIFAARIYDYDPLY

10 KEALQMLRDAGAQVSIMTYDEFKHCWDTFVDHQGCPFQPWDGLDEHSQALSGRLRAILQNQGN

(italic: nucleic acid editing domain)

Rhesus macaque APOBEC-3 A:

MDGSPASRPRHLM~~DP~~NTFTFNFNN~~D~~LSVRGRHQ~~T~~YLCYEVERLDNGTWVPM~~DERR~~GFLCNKAKNVPCG
 15 DYGCHVELRF~~L~~CEVPSWQLDPAQTYRV~~T~~WFISWSPCFRRGCAGQVRVFLQENKHVRLRIFAARIYDYD
 PLYQEALRTL~~D~~AGAQVSIMTYEEFKHCWDTFVDRQGRP~~F~~QPWDGLDEHSQALSGRLRAILQNQGN

(italic: nucleic acid editing domain)

Bovine APOBEC-3 A:

MDEYTF~~T~~ENFNNQGWPSK~~T~~YLCYEMERLDG~~D~~ATIPLDEYKG~~F~~VRNKG~~D~~QPEKPC*HAELYFLGKIHSW*
*NLDRNQHYRLTCFISWSPCYDCAQKLTTFLKENHHISLHILASRYTHNRFGCHQSGLCELQAA*GARI
 TIMTFEDFKHCWETFVDHK~~G~~KP~~F~~QPWEGLNVKSQALCTELQAILKTQ~~Q~~N

(italic: nucleic acid editing domain)

25 Human APOBEC-3H:

MALLTAETFRLQFNNKRR~~L~~RRPYYPRK~~A~~LLCYQLTPQ~~N~~G~~S~~PT~~R~~GYFENKKC*HAEICFINEIKSMGL*
*DETQCYQVTCYLTWSPCSSCA*ELVDFIKAH~~D~~H~~L~~NLG~~I~~FASRLYYHWCKPQQKGL~~L~~CGSQVPVEVM
 GFPKFADCWENFVDHEKPLSFNPYKMLEELDKNSRAIKRRLERIKIPGVRAQGRYMDILCDAEV

(italic: nucleic acid editing domain)

30

Rhesus macaque APOBEC-3H:

MALLTAKTFSLQFNNKRRVNKPYYPRK~~A~~LLCYQLTPQ~~N~~G~~S~~PT~~R~~GH~~L~~KNKKDHAEIRFINKIKSMGL
*DETQCYQVTCYLTWSPCPSCAG*ELVDFIKAH~~R~~H~~L~~NLRIFASRLYYHWRPNYQEG~~LLL~~CGSQVPVEVM
 GLPEFTDCWENFVDHKEPPSFNPSEKLEELDKNSQAIK~~R~~RLERIKPSV~~D~~VLENGLRS~~L~~Q~~L~~GPVTPSS

35 SIRNSR

Human APOBEC-3D:

MNPQIRNPMERMYRDTFYDNFENEPILYGRSYTWLCYEVKIKRGRSNLLWDTGVFRGPVLPKRQSNHR
 QEVYFRFEN*HAEMCFLSWFCGNRL*PANRRFQITWFVSWNPCLPCVVKVTKFLAEHPNVTLTISAARLY
 5 YYRDRDWRWVLLRLHKAGARVKIMDYEDFAYCWNFVCNEGQPFMPWYKFDDNYASLHRTLKEILRNP
 MEAMYPHIFYFHKNLLKACGRNESWLCFTMEVTKHSAVFRKRGVFRNQVDPETHC*HAERCFLSWFC*
DDILSPNTNYEVTWYTSWSPCPECAGEVAEFLARHSNVNLTIIFTARLCYFWDTDYQEGLCQLSQEGAS
 VKIMGYKDFVSCWKNFVYSDDEPFKPWKGLQTNFRLLKRLREILQ

(italic: nucleic acid editing domain)

10

Human APOBEC-1:

MTSEKGPSTGDPTLRRRIEPWEFDVFYDPRELKEA~~CLLYEIKWGMRSRKIWRSSGKNTTNHVEVNFIK~~
 KFTSERDFHPSMCSITWFLSWSPCWECSQAIREFLSRHPGVT~~LVIYVARLFWHMDQQNRQGLRDLVN~~
 SGVTIQIMRASEYYHCWRNFVN~~YPPGDEAHWPQYPLWMMLYALELHCIIILSLPPCLKISRRWQNHLT~~
 15 FFRLHLQNCHYQTIPPHILLATGLIHP~~PSVAWR~~

Mouse APOBEC-1 :

MSSETGPVAVDPTLRRRIEPHEFEVFFDPRELKET~~CLLYEINWGGRH~~S~~IVRHTSQNTSNHVEVN~~FIE~~~~
 KFTTERYFRPNTRCSITWFLSWSPC~~G~~ECSRAITEFLSRHPV~~T~~LF~~IYIARLYHHTDQRNRQGLRDLIS~~
 SGVTIQIMTEQ~~EYCYC~~W~~RNFVN~~Y~~PPSNEAYWPRYPHLWVKLYV~~LELYC~~I~~ILGLPPCLK~~I~~LR~~R~~KQPQLT
 20 FFTITLQ~~TCHYQRLPPH~~LLWAT~~GLK~~

Rat APOBEC-1 :

MSSETGPVAVDPTLRRRIEPHEFEVFFDPRELKET~~CLLYEINWGGRH~~S~~IVRHTSQNTNKHVEVN~~FIE~~~~
 KFTTERYFCPNTRCSITWFLSWSPC~~G~~ECSRAITEFLSRYP~~H~~V~~T~~LF~~IYIARLYHADPRNRQGLRDLIS~~
 SGVTIQIMTEQ~~E~~SGYCW~~RNFVN~~Y~~SPSNEAHWPRYPHLWVR~~LYV~~LELYC~~I~~ILGLPPCLN~~ILRR~~KQPQLT~~
 FFTIALQ~~SCHYQRLPPH~~ILWAT~~GLK~~

Human APOBEC-2:

30 MAQKEEA~~AVATEAASQNGE~~LENLDDPEKLKELIELPPFEIVTGERLPANFFKFQFRNVEYSSGRNKT
 FLCYVVEAQGKGGQVQASRGY~~LEDEHAAH~~EEAFFNTILPAFD~~P~~ALR~~Y~~N~~T~~WYVSSSPCAACADRII
 KTLSKT~~KNL~~RLL~~L~~LVGRLFM~~WEEPEI~~Q~~A~~ALKKL~~E~~AGCKLRIMK~~P~~QDFEYVWQNF~~V~~QE~~E~~GESKA~~F~~Q~~P~~
 WEDIQENFLY~~YEE~~KLADILK

Mouse APOBEC-2:

MAQKEEAAEAAAAPASQNGDDLENLEDPEKLKELIDLPPFEIVTGVRLPVNFFKFQFRNVEYSSGRNKT
 FLCYVVEVQSKGGQAQATQGYLEDEHAGAHAAEAFFNTILPAFDPALKYNVTWYVSSSPCAACADRIL
 KTLSKTKNLRLLILVSRLFMWEEPEVQAALKLKEAGCKLRIMKPQDFEYIWQNFVEQEEGESKAFEP
 5 WEDIQENFLYYEEKLADILK

Rat APOBEC-2:

MAQKEEAAEAAAAPASQNGDDLENLEDPEKLKELIDLPPFEIVTGVRLPVNFFKFQFRNVEYSSGRNKT
 FLCYVVEAQSKGGVQATQGYLEDEHAGAHAAEAFFNTILPAFDPALKYNVTWYVSSSPCAACADRIL
 10 KTLSKTKNLRLLILVSRLFMWEEPEVQAALKLKEAGCKLRIMKPQDFEYLWQNFVEQEEGESKAFEP
 WEDIQENFLYYEEKLADILK

Bovine APOBEC-2:

MAQKEEAAAAAE PASQNGEEVENLEDPEKLKELIELPPFEIVTGERLPAHYFKFQFRNVEYSSGRNKT
 15 FLCYVVEAQSKGGVQASRGYLEDEHATNHAAEAFFNSIMPTFDPALRYMVTWYVSSSPCAACADRIV
 KTLNKTKNLRLLILVGRLFMWEEPEIQAALRKLKEAGCRLRIMKPQDFEYIWQNFVEQEEGESKAFEP
 WEDIQENFLYYEEKLADILK

Petromyzon marinus CDA1 (pmCDA1)

20 MTDAEYVRIHEKLDIYTFKKQFFNNKKSVSHRCYVLFELKRRGERRACFWGYAVNKPQSGTERGIHAE
 IFSIRKVEEYLRDNGPQFTINWYSSWSPCADCAEKILEWYNQELRGNGHTLKIWACKLYYEKNARNQI
 GLWNLRDNGVGLNVMVSEHYQCCRKIFIQSSHNLNENRWLEKTLKRAEKRRSELSFMIQVKILHTTK
 SPAV

25 Human APOBEC3G D316R D317R

MKPHFRNTVERMYRDTFSYNFYNRPILSRRNTVWLCYEVKTKGPSRPLDAKIFRGQVYSELKYHPEM
 RFFHWFSKWRKLHRDQEYEVTWYISWSPCTKCTRDMATFLAEDPKVTLTIFVARLYYFWDPDYQEALR
 SLCQKRDGPRATMKNYDEFQHCKWSKFVYSQRELFEPEWNNLPKYYILLHFMLGEILRHSMDPPTFTFN
 FNNEPWVRGRHETYLCEVERMHNDTWVLLNQRRGFLCNQAPHKHGFLEGRHAELCFLDVIPFWKLDL
 30 DQDYRVTC
 FTSWSPCFSCAQEMAKFISKKHVSLCIFTARIYRRQGRCQEGLRTLAEAGAKISFTYSEFKHCWDTEV
 DHQGCPFQPWDGLDEHSQDLSGRLRAILQNQEN

Human APOBEC3G chain A

MDPPTFTFNNEPWGRHETYLCYEVERMHNDTWVLLNQRRGFLCNQAPHKHGFLEGRHAELCFLDV
IPFWKLDLDQDYRVCFTSWSPCFSCAQEMAKFISKNKHVSLCIFTARIYDDQGRCQEGLRTLAEAGA
KISF TYSEFKHCWDTFVDHQGCPFQPWDGLD EHSQDLSGRLRAILQ

5

Human APOBEC3G chain A D120R D121R

MDPPTFTFNNEPWVRGRHETYLCYEVERMHNDTWVLLNQRRGFLCNQAPHKHGFLEGRHAELCFLD
VIPFWKLDLDQDYRVCFTSWSPCFSCAQEMAKFISKNKHVSLCIFTARIYRRQGRCQEGLRTLAEAG
AKISFMTYSEFKHCWDTFVDHQGCPFQPWDGLDEHSQDLSGRLRAILQ

10 The term "deaminase" or "deaminase domain" refers to a protein or fragment thereof that catalyzes a deamination reaction.

"Detect" refers to identifying the presence, absence or amount of the analyte to be detected. In one embodiment, a sequence alteration in a polynucleotide or polypeptide is detected. In another embodiment, the presence of indels is detected.

15 By "detectable label" is meant a composition that when linked to a molecule of interest renders the latter detectable, via spectroscopic, photochemical, biochemical, immunochemical, or chemical means. For example, useful labels include radioactive isotopes, magnetic beads, metallic beads, colloidal particles, fluorescent dyes, electron-dense reagents, enzymes (for example, as commonly used in an ELISA), biotin, digoxigenin, or 20 haptens.

25 By "fragment" is meant a portion of a polypeptide or nucleic acid molecule. This portion contains, at least about 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, or 90% of the entire length of the reference nucleic acid molecule or polypeptide. A fragment may contain 10, 20, 30, 40, 50, 60, 70, 80, 90, or 100, 200, 300, 400, 500, 600, 700, 800, 900, or 1000 nucleotides or amino acids.

"Hybridization" means hydrogen bonding, which may be Watson-Crick, Hoogsteen or reversed Hoogsteen hydrogen bonding, between complementary nucleobases. For example, adenine and thymine are complementary nucleobases that pair through the formation of hydrogen bonds.

30 The term "inhibitor of base repair" or "IBR" refers to a protein that is capable in inhibiting the activity of a nucleic acid repair enzyme, for example a base excision repair enzyme. In some embodiments, the IBR is an inhibitor of inosine base excision repair. Exemplary inhibitors of base repair include inhibitors of APE1, Endo III, Endo IV, Endo V, Endo VIII, Fpg, hOGG1, hNEIL1, T7 Endol, T4PDG, UDG, hSMUG1, and hAAG. In some

embodiments, the IBR is an inhibitor of Endo V or hAAG. In some embodiments, the IBR is a catalytically inactive EndoV or a catalytically inactive hAAG.

The terms "isolated," "purified," or "biologically pure" refer to material that is free to varying degrees from components which normally accompany it as found in its native state.

5 "Isolate" denotes a degree of separation from original source or surroundings. "Purify" denotes a degree of separation that is higher than isolation. A "purified" or "biologically pure" protein is sufficiently free of other materials such that any impurities do not materially affect the biological properties of the protein or cause other adverse consequences. That is, a nucleic acid or peptide of this invention is purified if it is substantially free of cellular material, viral material, or culture medium when produced by recombinant DNA techniques, or chemical precursors or other chemicals when chemically synthesized. Purity and homogeneity are typically determined using analytical chemistry techniques, for example, polyacrylamide gel electrophoresis or high performance liquid chromatography. The term "purified" can denote that a nucleic acid or protein gives rise to essentially one band in an 10 electrophoretic gel. For a protein that can be subjected to modifications, for example, phosphorylation or glycosylation, different modifications may give rise to different isolated 15 proteins, which can be separately purified.

By "isolated polynucleotide" is meant a nucleic acid (e.g., a DNA) that is free of the genes which, in the naturally-occurring genome of the organism from which the nucleic acid 20 molecule of the invention is derived, flank the gene. The term therefore includes, for example, a recombinant DNA that is incorporated into a vector; into an autonomously replicating plasmid or virus; or into the genomic DNA of a prokaryote or eukaryote; or that exists as a separate molecule (for example, a cDNA or a genomic or cDNA fragment produced by PCR or restriction endonuclease digestion) independent of other sequences. In 25 addition, the term includes an RNA molecule that is transcribed from a DNA molecule, as well as a recombinant DNA that is part of a hybrid gene encoding additional polypeptide sequence.

By an "isolated polypeptide" is meant a polypeptide of the invention that has been separated from components that naturally accompany it. Typically, the polypeptide is 30 isolated when it is at least 60%, by weight, free from the proteins and naturally-occurring organic molecules with which it is naturally associated. Preferably, the preparation is at least 75%, more preferably at least 90%, and most preferably at least 99%, by weight, a polypeptide of the invention. An isolated polypeptide of the invention may be obtained, for example, by extraction from a natural source, by expression of a recombinant nucleic acid

encoding such a polypeptide; or by chemically synthesizing the protein. Purity can be measured by any appropriate method, for example, column chromatography, polyacrylamide gel electrophoresis, or by HPLC analysis.

The term "linker," as used herein, refers to a bond (e.g., covalent bond), chemical

5 group, or a molecule linking two molecules or moieties, e.g., two domains of a fusion protein. In some embodiments, a linker joins a gRNA binding domain of an RNA-programmable nuclease, including a Cas9 nuclease domain, and the catalytic domain of a nucleic-acid editing protein (e.g., cytidine or adenosine deaminase). In some embodiments, a linker joins a dCas9 and a nucleic-acid editing protein. Typically, the linker is positioned between, or
10 flanked by, two groups, molecules, or other moieties and connected to each one via a covalent bond, thus connecting the two. In some embodiments, the linker is an amino acid or a plurality of amino acids (e.g., a peptide or protein). In some embodiments, the linker is an organic molecule, group, polymer, or chemical moiety. In some embodiments, the linker is 5-200 amino acids in length, for example, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,
15 25, 35, 45, 50, 55, 60, 60, 65, 70, 70, 75, 80, 85, 90, 90, 95, 100, 101, 102, 103, 104, 105, 110, 120, 130, 140, 150, 160, 175, 180, 190, or 200 amino acids in length. Longer or shorter linkers are also contemplated. In some embodiments, a linker comprises the amino acid sequence SGSETPGTSESATPES, which may also be referred to as the XTEN linker. In some embodiments, a linker comprises the amino acid sequence SGGS. In some
20 embodiments, a linker comprises (SGGS)_n, (GGGS)_n, (GGGGS)_n, (G)_n, (EAAAK)_n, (GGS)_n, SGSETPGTSESATPES, or (XP)_n motif, or a combination of any of these, wherein n is independently an integer between 1 and 30, and wherein X is any amino acid. In some embodiments, n is 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, or 15.

In some embodiments, the domains of the nucleobase editor are fused via a linker that

25 comprises the amino acid sequence of SGGSSGSETPGTSESATPESSGGGS, SGGSSGGSSGSETPGTSESATPESSGGSSGGGS, or GGSGGSPGSPAGSPTSTEEGTSESATPESGPGTSTEPSEGSAPGSPAGSPTSTEEGTSTE PSEGSAPGTSTEPSEGSAPGTSESATPESGPGSEPATSGGSGGS. In some embodiments, domains of the nucleobase editor are fused via a linker comprising the amino acid sequence
30 SGSETPGTSESATPES, which may also be referred to as the XTEN linker. In some embodiments, the linker is 24 amino acids in length. In some embodiments, the linker comprises the amino acid sequence SGGSSGGSSGSETPGTSESATPES. In some embodiments, the linker is 40 amino acids in length. In some embodiments, the linker comprises the amino acid sequence

SGGSSGGSSGSETPGTSESATPESSGGSSGGSSGGSSGGS. In some embodiments, the linker is 64 amino acids in length. In some embodiments, the linker comprises the amino acid sequence

SGGSSGGSSGSETPGTSESATPESSGGSSGGSSGGSSGSETPGTSESATPESSGGS

- 5 SGGS. In some embodiments, the linker is 92 amino acids in length. In some embodiments, the linker comprises the amino acid sequence

PGSPAGSPTSTEEGTSESATPESGPGTSTEPSEGSAPGSPAGSPTSTEEGTSTEPSEGSAP
GTSTEPSEGSAPGTSESATPESGPGSEPATS.

The term “mutation,” as used herein, refers to a substitution of a residue within a sequence, *e.g.*, a nucleic acid or amino acid sequence, with another residue, or a deletion or insertion of one or more residues within a sequence. Mutations are typically described herein by identifying the original residue followed by the position of the residue within the sequence and by the identity of the newly substituted residue. Various methods for making the amino acid substitutions (mutations) provided herein are well known in the art, and are provided by, 10 for example, Green and Sambrook, *Molecular Cloning: A Laboratory Manual* (4th ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (2012)).

The terms “nucleic acid” and “nucleic acid molecule,” as used herein, refer to a compound comprising a nucleobase and an acidic moiety, *e.g.*, a nucleoside, a nucleotide, or a polymer of nucleotides. Typically, polymeric nucleic acids, *e.g.*, nucleic acid molecules

20 comprising three or more nucleotides are linear molecules, in which adjacent nucleotides are linked to each other via a phosphodiester linkage. In some embodiments, “nucleic acid” refers to individual nucleic acid residues (*e.g.* nucleotides and/or nucleosides). In some embodiments, “nucleic acid” refers to an oligonucleotide chain comprising three or more individual nucleotide residues. As used herein, the terms “oligonucleotide” and

25 “polynucleotide” can be used interchangeably to refer to a polymer of nucleotides (*e.g.*, a string of at least three nucleotides). In some embodiments, “nucleic acid” encompasses RNA as well as single and/or double-stranded DNA. Nucleic acids may be naturally occurring, for example, in the context of a genome, a transcript, an mRNA, tRNA, rRNA, siRNA, snRNA, a plasmid, cosmid, chromosome, chromatid, or other naturally occurring nucleic acid

30 molecule. On the other hand, a nucleic acid molecule may be a non-naturally occurring molecule, *e.g.*, a recombinant DNA or RNA, an artificial chromosome, an engineered genome, or fragment thereof, or a synthetic DNA, RNA, DNA/RNA hybrid, or including non-naturally occurring nucleotides or nucleosides. Furthermore, the terms “nucleic acid,” “DNA,” “RNA,” and/or similar terms include nucleic acid analogs, *e.g.*, analogs having other

than a phosphodiester backbone. Nucleic acids can be purified from natural sources, produced using recombinant expression systems and optionally purified, chemically synthesized, *etc.* Where appropriate, e.g., in the case of chemically synthesized molecules, nucleic acids can comprise nucleoside analogs such as analogs having chemically modified bases or sugars, and backbone modifications. A nucleic acid sequence is presented in the 5' to 3' direction unless otherwise indicated. In some embodiments, a nucleic acid is or comprises natural nucleosides (e.g. adenosine, thymidine, guanosine, cytidine, uridine, deoxyadenosine, deoxythymidine, deoxyguanosine, and deoxycytidine); nucleoside analogs (e.g., 2-aminoadenosine, 2-thiothymidine, inosine, pyrrolo-pyrimidine, 3-methyl adenosine, 5-methylcytidine, 2-aminoadenosine, C5-bromouridine, C5-fluorouridine, C5-iodouridine, C5-propynyl-uridine, C5-propynyl-cytidine, C5-methylcytidine, 2-aminoadenosine, 7-deazaadenosine, 7-deazaguanosine, 8-oxoadenosine, 8-oxoguanosine, O(6)-methylguanine, and 2-thiocytidine); chemically modified bases; biologically modified bases (e.g., methylated bases); intercalated bases; modified sugars (2'-e.g.,fluororibose, ribose, 2'-deoxyribose, arabinose, and hexose); and/or modified phosphate groups (e.g., phosphorothioates and 5'-N-phosphoramidite linkages).

The term “nuclear localization sequence,” “nuclear localization signal,” or “NLS” refers to an amino acid sequence that promotes import of a protein into the cell nucleus. Nuclear localization sequences are known in the art and described, for example, in Plank *et al.*, International PCT application, PCT/EP2000/011690, filed November 23, 2000, published as WO/2001/038547 on May 31, 2001, the contents of which are incorporated herein by reference for their disclosure of exemplary nuclear localization sequences. In other embodiments, the NLS is an optimized NLS described, for example, by Koblan *et al.*, *Nature Biotech.* 2018 doi:10.1038/nbt.4172. In some embodiments, an NLS comprises the amino acid sequence KRTADGSEFESPKKRKV, KRPAATKKAGQAKKKK, KKTELQTTNAENTKKL, KRGINDRNFWRGENGRKTR, RKSGKIAAIVVKRPRK, PKKKRKV, or MDSLLMNRRKFLYQFKNVRWAKGRRETYLC.

The disclosure provides nucleic acid programmable nucleic-acid (e.g., DNA or RNA) binding proteins. The nucleic acid programmable nucleic-acid binding protein can be, for example, "nucleic acid programmable DNA binding protein" or "napDNAbp". The term "nucleic acid programmable DNA binding protein" or "napDNAbp" refers to a protein that associates with a nucleic acid (e.g., DNA or RNA), such as a guide nucleic acid, that guides the napDNAbp to a specific nucleic acid sequence. For example, a Cas9 protein can associate with a guide RNA that guides the Cas9 protein to a specific DNA sequence that is

complementary to the guide RNA. In some embodiments, the napDNAbp is a Cas9 domain, for example a nuclease active Cas9, a Cas9 nickase (nCas9), or a nuclease inactive Cas9 (dCas9). Examples of nucleic acid programmable DNA binding proteins include, without limitation, Cas9 (e.g., dCas9 and nCas9), CasX, CasY, Cpf1, Cas12b/C2c1, and Cas12c/C2c3.

- 5 Other nucleic acid programmable DNA binding proteins are also within the scope of this disclosure, although they may not be specifically listed in this disclosure.

As used herein, "obtaining" as in "obtaining an agent" includes synthesizing, purchasing, or otherwise acquiring the agent.

The term "RNA-programmable nuclease," and "RNA-guided nuclease" are used with

- 10 (e.g., binds or associates with) one or more RNA(s) that is not a target for cleavage. In some embodiments, an RNA-programmable nuclease, when in a complex with an RNA, may be referred to as a nuclease:RNA complex. Typically, the bound RNA(s) is referred to as a guide RNA (gRNA). gRNAs can exist as a complex of two or more RNAs, or as a single RNA molecule. gRNAs that exist as a single RNA molecule may be referred to as single-guide
15 RNAs (sgRNAs), though "gRNA" is used interchangeably to refer to guide RNAs that exist as either single molecules or as a complex of two or more molecules. Typically, gRNAs that exist as single RNA species comprise two domains: (1) a domain that shares homology to a target nucleic acid (e.g., and directs binding of a Cas9 complex to the target); and (2) a domain that binds a Cas9 protein. In some embodiments, domain (2) corresponds to a
20 sequence known as a tracrRNA, and comprises a stem-loop structure. For example, in some embodiments, domain (2) is identical or homologous to a tracrRNA as provided in Jinek et al., Science 337:816-821(2012), the entire contents of which is incorporated herein by reference. Other examples of gRNAs (e.g., those including domain 2) can be found in U.S. Provisional Patent Application, U.S.S.N. 61/874,682, filed September 6, 2013, entitled
25 "Switchable Cas9 Nucleases And Uses Thereof," and U.S. Provisional Patent Application, U.S.S.N. 61/874,746, filed September 6, 2013, entitled "Delivery System For Functional Nucleases," the entire contents of each are hereby incorporated by reference in their entirety. In some embodiments, a gRNA comprises two or more of domains (1) and (2), and may be referred to as an "extended gRNA." For example, an extended gRNA will, e.g., bind two or
30 more Cas9 proteins and bind a target nucleic acid at two or more distinct regions, as described herein. The gRNA comprises a nucleotide sequence that complements a target site, which mediates binding of the nuclease:RNA complex to said target site, providing the sequence specificity of the nuclease:RNA complex. In some embodiments, the RNA-programmable nuclease is the (CRIS PR-associated system) Cas9 endonuclease, for example,

Cas9 (Csnl) from *Streptococcus pyogenes* (see, e.g., "Complete genome sequence of an M1 strain of *Streptococcus pyogenes*." Ferretti J.J., McShan W.M., Ajdic D.J., Savic D.J., Savic G., Lyon K., Primeaux C, Sezate S., Suvorov A.N., Kenton S., Lai H.S., Lin S.P., Qian Y., Jia H.G., Najar F.Z., Ren Q., Zhu H., Song L., White J., Yuan X., Clifton S.W., Roe B.A.,

5 McLaughlin R.E., Proc. Natl. Acad. Sci. U.S.A. 98:4658-4663(2001); "CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III." Deltcheva E., Chylinski K., Sharma CM., Gonzales K., Chao Y., Pirzada Z.A., Eckert M.R., Vogel J., Charpentier E., Nature 471:602-607(2011).

The term "recombinant" as used herein in the context of proteins or nucleic acids
10 refers to proteins or nucleic acids that do not occur in nature, but are the product of human engineering. For example, in some embodiments, a recombinant protein or nucleic acid molecule comprises an amino acid or nucleotide sequence that comprises at least one, at least two, at least three, at least four, at least five, at least six, or at least seven mutations as compared to any naturally occurring sequence.

15 By "reduces" is meant a negative alteration of at least 10%, 25%, 50%, 75%, or 100%.

By "reference" is meant a standard or control condition.

A "reference sequence" is a defined sequence used as a basis for sequence comparison. A reference sequence may be a subset of or the entirety of a specified sequence; 20 for example, a segment of a full-length cDNA or gene sequence, or the complete cDNA or gene sequence. For polypeptides, the length of the reference polypeptide sequence will generally be at least about 16 amino acids, at least about 20 amino acids, more at least about 25 amino acids, and even more preferably about 35 amino acids, about 50 amino acids, or about 100 amino acids. For nucleic acids, the length of the reference nucleic acid sequence 25 will generally be at least about 50 nucleotides, at least about 60 nucleotides, at least about 75 nucleotides, and about 100 nucleotides or about 300 nucleotides or any integer thereabout or therebetween.

By "specifically binds" is meant a nucleic acid molecule, polypeptide, or complex thereof (e.g., a nucleic acid programmable DNA binding domain and guide nucleic acid), 30 compound, or molecule that recognizes and binds a polypeptide and/or nucleic acid molecule of the invention, but which does not substantially recognize and bind other molecules in a sample, for example, a biological sample.

Nucleic acid molecules useful in the methods of the invention include any nucleic acid molecule that encodes a polypeptide of the invention or a fragment thereof. Such

nucleic acid molecules need not be 100% identical with an endogenous nucleic acid sequence, but will typically exhibit substantial identity. Polynucleotides having "substantial identity" to an endogenous sequence are typically capable of hybridizing with at least one strand of a double-stranded nucleic acid molecule. Nucleic acid molecules useful in the 5 methods of the invention include any nucleic acid molecule that encodes a polypeptide of the invention or a fragment thereof. Such nucleic acid molecules need not be 100% identical with an endogenous nucleic acid sequence, but will typically exhibit substantial identity. Polynucleotides having "substantial identity" to an endogenous sequence are typically capable of hybridizing with at least one strand of a double-stranded nucleic acid molecule.

10 By "hybridize" is meant pair to form a double-stranded molecule between complementary polynucleotide sequences (e.g., a gene described herein), or portions thereof, under various conditions of stringency. (See, e.g., Wahl, G. M. and S. L. Berger (1987) *Methods Enzymol.* 152:399; Kimmel, A. R. (1987) *Methods Enzymol.* 152:507).

For example, stringent salt concentration will ordinarily be less than about 750 mM 15 NaCl and 75 mM trisodium citrate, preferably less than about 500 mM NaCl and 50 mM trisodium citrate, and more preferably less than about 250 mM NaCl and 25 mM trisodium citrate. Low stringency hybridization can be obtained in the absence of organic solvent, e.g., formamide, while high stringency hybridization can be obtained in the presence of at least about 35% formamide, and more preferably at least about 50% formamide. Stringent 20 temperature conditions will ordinarily include temperatures of at least about 30° C, more preferably of at least about 37° C, and most preferably of at least about 42° C. Varying additional parameters, such as hybridization time, the concentration of detergent, e.g., sodium dodecyl sulfate (SDS), and the inclusion or exclusion of carrier DNA, are well known to those skilled in the art. Various levels of stringency are accomplished by combining these 25 various conditions as needed. In a one: embodiment, hybridization will occur at 30° C in 750 mM NaCl, 75 mM trisodium citrate, and 1% SDS. In another embodiment, hybridization will occur at 37° C in 500 mM NaCl, 50 mM trisodium citrate, 1% SDS, 35% formamide, and 100 .mu.g/ml denatured salmon sperm DNA (ssDNA). In another embodiment, hybridization will occur at 42° C in 250 mM NaCl, 25 mM trisodium citrate, 1% SDS, 50% formamide, 30 and 200 µg/ml ssDNA. Useful variations on these conditions will be readily apparent to those skilled in the art.

For most applications, washing steps that follow hybridization will also vary in stringency. Wash stringency conditions can be defined by salt concentration and by temperature. As above, wash stringency can be increased by decreasing salt concentration or

by increasing temperature. For example, stringent salt concentration for the wash steps will preferably be less than about 30 mM NaCl and 3 mM trisodium citrate, and most preferably less than about 15 mM NaCl and 1.5 mM trisodium citrate. Stringent temperature conditions for the wash steps will ordinarily include a temperature of at least about 25° C, more

5 preferably of at least about 42° C, and even more preferably of at least about 68° C. In an embodiment, wash steps will occur at 25° C in 30 mM NaCl, 3 mM trisodium citrate, and 0.1% SDS. In a more preferred embodiment, wash steps will occur at 42° C in 15 mM NaCl, 1.5 mM trisodium citrate, and 0.1% SDS. In a more preferred embodiment, wash steps will occur at 68° C in 15 mM NaCl, 1.5 mM trisodium citrate, and 0.1% SDS. Additional 10 variations on these conditions will be readily apparent to those skilled in the art.

Hybridization techniques are well known to those skilled in the art and are described, for example, in Benton and Davis (Science 196:180, 1977); Grunstein and Hogness (Proc. Natl. Acad. Sci., USA 72:3961, 1975); Ausubel et al. (Current Protocols in Molecular Biology, Wiley Interscience, New York, 2001); Berger and Kimmel (Guide to Molecular Cloning 15 Techniques, 1987, Academic Press, New York); and Sambrook et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press, New York.

By "substantially identical" is meant a polypeptide or nucleic acid molecule exhibiting at least 50% identity to a reference amino acid sequence (for example, any one of the amino acid sequences described herein) or nucleic acid sequence (for example, any one of the nucleic acid sequences described herein). In one embodiment, such a sequence is at least 60%, 80% or 85%, 90%, 95% or even 99% identical at the amino acid level or nucleic acid to the sequence used for comparison.

Sequence identity is typically measured using sequence analysis software (for example, Sequence Analysis Software Package of the Genetics Computer Group, University 25 of Wisconsin Biotechnology Center, 1710 University Avenue, Madison, Wis. 53705, BLAST, BESTFIT, GAP, or PILEUP/Prettybox programs). Such software matches identical or similar sequences by assigning degrees of homology to various substitutions, deletions, and/or other modifications. Conservative substitutions typically include substitutions within the following groups: glycine, alanine; valine, isoleucine, leucine; 30 aspartic acid, glutamic acid, asparagine, glutamine; serine, threonine; lysine, arginine; and phenylalanine, tyrosine. In an exemplary approach to determining the degree of identity, a BLAST program may be used, with a probability score between e^{-3} and e^{-100} indicating a closely related sequence.

By "subject" is meant a mammal, including, but not limited to, a human or non-human mammal, such as a bovine, equine, canine, ovine, or feline. Subjects include livestock, domesticated animals raised to produce labor and to provide commodities, such as food, including without limitation, cattle, goats, chickens, horses, pigs, rabbits, and sheep.

5 The term "target site" refers to a sequence within a nucleic acid molecule that is modified by a nucleobase editor. In one embodiment, the target site is deaminated by a deaminase or a fusion protein comprising a deaminase (e.g., cytidine or adenine deaminase).

Because RNA-programmable nucleases (e.g., Cas9) use RNA:DNA hybridization to target DNA cleavage sites, these proteins are able to be targeted, in principle, to any sequence 10 specified by the guide RNA. Methods of using RNA-programmable nucleases, such as Cas9, for site-specific cleavage (e.g., to modify a genome) are known in the art (see e.g., Cong, L. et ah, Multiplex genome engineering using CRISPR/Cas systems. *Science* 339, 819-823 (2013); Mali, P. et ah, RNA-guided human genome engineering via Cas9. *Science* 339, 823-826 (2013); Hwang, W.Y. et ah, Efficient genome editing in zebrafish using a CRISPR-Cas 15 system. *Nature biotechnology* 31, 227-229 (2013); Jinek, M. et ah, RNA-programmed genome editing in human cells. *eLife* 2, e00471 (2013); Dicarlo, J.E. et ah, Genome engineering in *Saccharomyces cerevisiae* using CRISPR-Cas systems. *Nucleic acids research* (2013); Jiang, W. et ah RNA-guided editing of bacterial genomes using CRISPR-Cas systems. *Nature biotechnology* 31, 233-239 (2013); the entire contents of each of which are 20 incorporated herein by reference).

Ranges provided herein are understood to be shorthand for all of the values within the range. For example, a range of 1 to 50 is understood to include any number, combination of numbers, or sub-range from the group consisting 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 25 41, 42, 43, 44, 45, 46, 47, 48, 49, or 50.

Unless specifically stated or obvious from context, as used herein, the term "or" is understood to be inclusive. Unless specifically stated or obvious from context, as used herein, the terms "a", "an", and "the" are understood to be singular or plural.

Unless specifically stated or obvious from context, as used herein, the term "about" is 30 understood as within a range of normal tolerance in the art, for example within 2 standard deviations of the mean. About can be understood as within 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, 0.5%, 0.1%, 0.05%, or 0.01% of the stated value. Unless otherwise clear from context, all numerical values provided herein are modified by the term about.

The recitation of a listing of chemical groups in any definition of a variable herein includes definitions of that variable as any single group or combination of listed groups. The recitation of an embodiment for a variable or aspect herein includes that embodiment as any single embodiment or in combination with any other embodiments or portions thereof.

5 Any compositions or methods provided herein can be combined with one or more of any of the other compositions and methods provided herein.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 depicts a model of an adenosine nucleobase editor and provides in part a
10 structural basis for bystander mutagenesis.

FIG. 2 is a model depicting prediction of the location of target DNA for base editing.

FIG. 3 depicts a model showing positions of a deaminase domain in proximity to the
locations of target DNA in FIG. 2.

FIG. 4 is a model of an adenosine nucleobase editor depicting regions identified
15 where one or more deaminase domains may be inserted into Cas9. Loops (yellow) that are in
proximity to where a deaminase domain may target single stranded DNA (magenta). Regions
of interest include those marked A, B, C, D, E, F, G, and H.

FIG. 5 is a magnified view of the model in FIG. 4, showing residues in regions B, C,
D, E, and F.

20 FIG. 6 is a magnified view of the model in FIG. 4, showing residues in regions F, G,
and H.

FIG. 7 is a magnified view of the model in FIG. 4, showing residues in regions A, B,
C, D, and E.

FIG. 8 depicts a high-throughput *in vitro* deamination assay. Spurious deamination of
25 the probe can be distinguished from on-target deamination by comparing reactions containing
nucleobase editor with an on-target probe containing a substrate for the base editor and a
reaction in the absence of the base editor containing a probe for detecting off-target
deamination.

FIG. 9 is a graph depicting results of a fluorescence assay for off-target deamination.

30 FIG. 10 is a graph depicting a comparison of adenosine base editor (ABE) v. an ABE
system with TadA *in trans*.

FIG. 11 depicts potential substrates for spurious off-target base editing.

FIG. 12 depicts an assay to evaluate the activities of deaminases *in cis* and *in trans*.

FIG. 13 is a graph depicting the activities of rAPOBEC1 in the *in cis-in trans* assay.

FIG. 14 is a graph depicting the activities of TadA-TadA7.10 in the *in cis-in trans* assay.

FIG. 15 depicts that lower *in trans* activity was observed for TadA-TadA7.10 in base editor context (*in trans* ABE).

5 FIG. 16 is a graph depicting the results of dose-response for expression of GFP.

Titration of pmaxGFP plasmid with empty vector resulted in decreased expression level of GFP.

FIG. 17 is a graph depicting dose-response for *in-cis* and *in-trans* activities of adenosine nucleobase editor ABE.

10 FIG. 18 is a graph depicting dose-response for *in-cis* and *in-trans* activities of cytidine nucleobase editor BE4.

FIG. 19 is a graph showing the results of screening of deaminases for reduced spurious deamination. The deaminases ppAPOBEC-2 (10), mAPOBEC-2 (8), mAPOBEC-3(12), and mfAPOBEC-4 (22) showed high *in cis/in trans* activity.

15 FIGs. 20A-Q depict base editing activity of the editors examined. FIG. 20A is a schematic of ABE7.10, with TadA fused to Cas9 by an XTEN linker. FIG. 20B-Q show base editing activity of exemplary internal fusion base editors in percentage A to G deamination on the targeting strand within the range of the R-loop with target sequences GAACACAAAGCATAGACTGC (HEK2) and GGACAGCTTTCCTAGACAG (T39).

20 FIG. 20B, editing activity of ABE7.10. FIG. 20C, editing activity of ISLAY008. FIG. 20D, editing activity of ISLAY003. FIG. 20E, editing activity of ISLAY002. FIG. 20F, editing activity of ISLAY007. FIG. 20G, editing activity of ISLAY001. FIG. 20H, editing activity of ISLAY005. FIG. 20I, editing activity of ISLAY006. FIG. 20J, editing activity of ISLAY004. FIG. 20K, editing activity of ISLAY021. FIG. 20L, editing activity of ISLAY031. FIG. 20M, 25 editing activity of ISLAY020. FIG. 20N, editing activity of ISLAY036. FIG. 20O, editing activity of ISLAY035. FIG. 20P, editing activity of ISLAY028. FIG. 20Q, editing activity of ISLAY009.

FIGs. 21A-B show schematics of exemplary base editors. FIG. 21A shows a schematic of exemplary base editor ABE7.10 and exemplary base editors (IBE002, IBE004, 30 IBE005, IBE006, IBE008, IBE009, and IBE020). FIG. 21B shows a spatial cartoon representation of the above base editors, showing the location of deaminase insertion.

FIGs. 22A – D depict base editing efficiency of exemplary internal fusion base editors compared to ABE7.10 at 29 different genomic targets. FIG. 22A shows editing efficiency is normalized to ABE7.10 editing at the best position. FIG. 22B shows max editing efficiency

of IBEs summarized and compared to ABE7.10. FIG. 22C shows a Gaussian smoothed representation of the peak editing position for each base editor. FIG. 22D shows a heatmap of normalized editing from the 29 tested targets.

FIG. 23 depicts spurious deamination measured by trans editing assay as 29 different targets normalized to ABE7.10 at each site.

FIGs. 24A-F show the percent editing of A-base editors at 6 genomic loci: HEK4 (FIG. 24A), FANCF (FIG. 24B), HEK-3 (FIG. 24C), HEK2-YY (FIG. 24D), EMX1 (FIG. 24E), HEK2 (FIG. 24F). X-axis: nucleobase positions with 1 being furthest from the PAM and 20 being PAM proximal (PAM being positions 21-23). Y axis: percentage of A to G editing measured by Illumina sequencing.

FIGs. 25A-F Percent editing of C-base editors at 6 genomic loci: HEK4 (FIG. 25A), FANCF (FIG. 25B), HEK-3 (FIG. 25C), HEK2-YY (FIG. 25D), EMX1 (FIG. 25E), HEK2 (FIG. 25F). X-axis: nucleobase positions with 1 being furthest from the PAM and 20 being PAM proximal (PAM being positions 21-23). Y axis: percentage of A to G editing measured by Illumina sequencing.

DETAILED DESCRIPTION OF THE INVENTION

As described below, the present invention features base editors having reduced non-target deamination, methods of using the base editors, and assays for characterizing base editors as having decreased non-target deamination, e.g. compared to programmed, on-target deamination.

Adenosine deaminases

In some embodiments, the nucleobase editors of the invention comprise an adenosine deaminase domain. In some embodiments, the adenosine deaminases provided herein are capable of deaminating adenine. In some embodiments, the adenosine deaminases provided herein are capable of deaminating adenine in a deoxyadenosine residue of DNA. The adenosine deaminase may be derived from any suitable organism (e.g., *E. coli*). In some embodiments, the adenine deaminase is a naturally-occurring adenosine deaminase that includes one or more mutations corresponding to any of the mutations provided herein (e.g., mutations in ecTadA). One of skill in the art will be able to identify the corresponding residue in any homologous protein, e.g., by sequence alignment and determination of homologous residues. Accordingly, one of skill in the art would be able to generate mutations in any naturally-occurring adenosine deaminase (e.g., having homology to ecTadA) that

corresponds to any of the mutations described herein, e.g., any of the mutations identified in ecTadA. In some embodiments, the adenosine deaminase is from a prokaryote. In some embodiments, the adenosine deaminase is from a bacterium. In some embodiments, the adenosine deaminase is from *Escherichia coli*, *Staphylococcus aureus*, *Salmonella typhi*,
5 *Shewanella putrefaciens*, *Haemophilus influenzae*, *Caulobacter crescentus*, or *Bacillus subtilis*. In some embodiments, the adenosine deaminase is from *E. coli*.

In one embodiment, a fusion protein of the invention comprises a wild-type TadA is linked to TadA7.10, which is linked to Cas9 nickase. In particular embodiments, the fusion proteins comprise a single TadA7.10 domain (e.g., provided as a monomer). In other 10 embodiments, the ABE7.10 editor comprises TadA7.10 and TadA(wt), which are capable of forming heterodimers. The relevant sequences follow:

TadA(wt):

15 SEVEFSHEYWMRHALTLAKRAWDEREPVGAVLVHNNRVIGEGWNRPIGRHDPTAHAEIM
ALRQGGLVMQNYRLIDATLYVTLEPCVMCAGAMIHSRIGRVVFGARDAKTGAAGSLMDVL
HHPGMNHRVEITEGILADECAALLSDFFRMRRQEIKAQKKAQSSTD

TadA7.10:

20 SEVEFSHEYWMRHALTLAKRARDEREPVGAVLVNNRVIGEGWNRAIGLHDPTAHAEIMA
LRQGGLVMQNYRLIDATLYVTFEPCVMCAGAMIHSRIGRVVFGVRNAKTGAAGSLMDVLH
YPMGMNHRVEITEGILADECAALLCYFFRMPRQVFNAQKKAQSSTD

25 In some embodiments, the adenosine deaminase comprises an amino acid sequence that is at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to any one of the amino acid sequences set forth in any of the adenosine deaminases provided herein. It should be appreciated that adenosine deaminases provided 30 herein may include one or more mutations (e.g., any of the mutations provided herein). The disclosure provides any deaminase domains with a certain percent identiy plus any of the mutations or combinations thereof described herein. In some embodiments, the adenosine deaminase comprises an amino acid sequence that has 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 21, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 35, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, or more mutations compared to a reference sequence, or any of the adenosine deaminases provided herein. In some embodiments, the adenosine deaminase comprises an amino acid sequence that has at least 5, at least 10, at least

15, at least 20, at least 25, at least 30, at least 35, at least 40, at least 45, at least 50, at least 60, at least 70, at least 80, at least 90, at least 100, at least 110, at least 120, at least 130, at least 140, at least 150, at least 160, or at least 170 identical contiguous amino acid residues as compared to any one of the amino acid sequences known in the art or described herein.

5 In some embodiments, the adenosine deaminase comprises a D108X mutation in the TadA reference sequence, or a corresponding mutation in another adenosine deaminase, where X indicates any amino acid other than the corresponding amino acid in the wild-type adenosine deaminase. In some embodiments, the adenosine deaminase comprises a D108G, D108N, D108V, D108A, or D108Y mutation in TadA reference sequence, or a corresponding mutation in another adenosine deaminase. It should be appreciated, however, that additional deaminases may similarly be aligned to identify homologous amino acid residues that can be mutated as provided herein.

10 10 In some embodiments, the adenosine deaminase comprises an A106X mutation in TadA reference sequence, or a corresponding mutation in another adenosine deaminase, where X indicates any amino acid other than the corresponding amino acid in the wild-type adenosine deaminase. In some embodiments, the adenosine deaminase comprises an A106V mutation in TadA reference sequence, or a corresponding mutation in another adenosine deaminase.

15 15 In some embodiments, the adenosine deaminase comprises a E155X mutation in TadA reference sequence, or a corresponding mutation in another adenosine deaminase, where the presence of X indicates any amino acid other than the corresponding amino acid in the wild-type adenosine deaminase. In some embodiments, the adenosine deaminase comprises a E155D, E155G, or E155V mutation in TadA reference sequence, or a corresponding mutation in another adenosine deaminase.

20 20 In some embodiments, the adenosine deaminase comprises a D147X mutation in TadA reference sequence, or a corresponding mutation in another adenosine deaminase, where the presence of X indicates any amino acid other than the corresponding amino acid in the wild-type adenosine deaminase. In some embodiments, the adenosine deaminase comprises a D147Y, mutation in TadA reference sequence, or a corresponding mutation in another adenosine deaminase.

25 25 It should be appreciated that any of the mutations provided herein (e.g., based on the ecTadA amino acid sequence of TadA reference sequence) may be introduced into other adenosine deaminases, such as *S. aureus* TadA (saTadA), or other adenosine deaminases (e.g., bacterial adenosine deaminases). It would be apparent to the skilled artisan how to are

homologous to the mutated residues in ecTadA. Thus, any of the mutations identified in ecTadA may be made in other adenosine deaminases that have homologous amino acid residues. It should also be appreciated that any of the mutations provided herein may be made individually or in any combination in ecTadA or another adenosine deaminase. For example,

5 an adenosine deaminase may contain a D108N, a A106V, a E155V, and/or a D147Y mutation in TadA reference sequence, or a corresponding mutation in another adenosine deaminase. In some embodiments, an adenosine deaminase comprises the following group of mutations (groups of mutations are separated by a ";" in TadA reference sequence, or corresponding mutations in another adenosine deaminase: D108N and A106V; D108N and 10 E155V; D108N and D147Y; A106V and E155V; A106V and D147Y; E155V and D147Y; D108N, A106V, and E55V; D108N, A106V, and D147Y; D108N, E55V, and D147Y; A106V, E55V, and D147Y; and D108N, A106V, E55V, and D147Y. It should be appreciated, however, that any combination of corresponding mutations provided herein may be made in an adenosine deaminase (e.g., ecTadA).

15 In some embodiments, the adenosine deaminase comprises one or more of a H8X, T17X, L18X, W23X, L34X, W45X, R51X, A56X, E59X, E85X, M94X, I95X, V102X, F104X, A106X, R107X, D108X, K110X, M118X, N127X, A138X, F149X, M151X, R153X, Q154X, I156X, and/or K157X mutation in TadA reference sequence, or one or more corresponding mutations in another adenosine deaminase, where the presence of X indicates 20 any amino acid other than the corresponding amino acid in the wild-type adenosine deaminase. In some embodiments, the adenosine deaminase comprises one or more of H8Y, T17S, L18E, W23L, L34S, W45L, R51H, A56E, or A56S, E59G, E85K, or E85G, M94L, 1951, V102A, F104L, A106V, R107C, or R107H, or R107P, D108G, or D108N, or D108V, or D108A, or D108Y, K110I, M118K, N127S, A138V, F149Y, M151V, R153C, Q154L, 25 I156D, and/or K157R mutation in TadA reference sequence, or one or more corresponding mutations in another adenosine deaminase.

In some embodiments, the adenosine deaminase comprises one or more of H8X, D108X, and/or N127X mutation in TadA reference sequence, or one or more corresponding mutations in another adenosine deaminase, where X indicates the presence of any amino acid.

30 In some embodiments, the adenosine deaminase comprises one or more of a H8Y, D108N, and/or N127S mutation in TadA reference sequence, or one or more corresponding mutations in another adenosine deaminase.

In some embodiments, the adenosine deaminase comprises one or more of H8X, R26X, M61X, L68X, M70X, A106X, D108X, A109X, N127X, D147X, R152X, Q154X,

E155X, K161X, Q163X, and/or T166X mutation in TadA reference sequence, or one or more corresponding mutations in another adenosine deaminase, where X indicates the presence of any amino acid other than the corresponding amino acid in the wild-type adenosine deaminase. In some embodiments, the adenosine deaminase comprises one or more of H8Y, R26W, M61I, L68Q, M70V, A106T, D108N, A109T, N127S, D147Y, R152C, Q154H or Q154R, E155G or E155V or E155D, K161Q, Q163H, and/or T166P mutation in TadA reference sequence, or one or more corresponding mutations in another adenosine deaminase.

In some embodiments, the adenosine deaminase comprises one, two, three, four, five, or six mutations selected from the group consisting of H8X, D108X, N127X, D147X,

10 R152X, and Q154X in TadA reference sequence, or a corresponding mutation or mutations in another adenosine deaminase, where X indicates the presence of any amino acid other than the corresponding amino acid in the wild-type adenosine deaminase. In some embodiments, the adenosine deaminase comprises one, two, three, four, five, six, seven, or eight mutations selected from the group consisting of H8X, M61X, M70X, D108X, N127X, Q154X, E155X, 15 and Q163X in TadA reference sequence, or a corresponding mutation or mutations in another adenosine deaminase, where X indicates the presence of any amino acid other than the corresponding amino acid in the wild-type adenosine deaminase. In some embodiments, the adenosine deaminase comprises one, two, three, four, or five, mutations selected from the group consisting of H8X, D108X, N127X, E155X, and T166X in TadA reference sequence, 20 or a corresponding mutation or mutations in another adenosine deaminase, where X indicates the presence of any amino acid other than the corresponding amino acid in the wild-type adenosine deaminase. In some embodiments, the adenosine deaminase comprises one, two, three, four, five, or six mutations selected from the group consisting of H8X, A106X, D108X, mutation or mutations in another adenosine deaminase, where X indicates the presence of any 25 amino acid other than the corresponding amino acid in the wild-type adenosine deaminase. In some embodiments, the adenosine deaminase comprises one, two, three, four, five, six, seven, or eight mutations selected from the group consisting of H8X, R126X, L68X, D108X, N127X, D147X, and E155X in TadA reference sequence, or a corresponding mutation or 30 mutations in another adenosine deaminase, where X indicates the presence of any amino acid other than the corresponding amino acid in the wild-type adenosine deaminase. In some embodiments, the adenosine deaminase comprises one, two, three, four, or five, mutations selected from the group consisting of H8X, D108X, A109X, N127X, and E155X in TadA reference sequence, or a corresponding mutation or mutations in another adenosine

deaminase, where X indicates the presence of any amino acid other than the corresponding amino acid in the wild-type adenosine deaminase.

In some embodiments, the adenosine deaminase comprises one, two, three, four, five, or six mutations selected from the group consisting of H8Y, D108N, N127S, D147Y, R152C, and Q154H in TadA reference sequence, or a corresponding mutation or mutations in another adenosine deaminase. In some embodiments, the adenosine deaminase comprises one, two, three, four, five, six, seven, or eight mutations selected from the group consisting of H8Y, M61I, M70V, D108N, N127S, Q154R, E155G and Q163H in TadA reference sequence, or a corresponding mutation or mutations in another adenosine deaminase. In some embodiments, the adenosine deaminase comprises one, two, three, four, or five, mutations selected from the group consisting of H8Y, D108N, N127S, E155V, and T166P in TadA reference sequence, or a corresponding mutation or mutations in another adenosine deaminase. In some embodiments, the adenosine deaminase comprises one, two, three, four, five, or six mutations selected from the group consisting of H8Y, A106T, D108N, N127S, E155D, and K161Q in TadA reference sequence, or a corresponding mutation or mutations in another adenosine deaminase. In some embodiments, the adenosine deaminase comprises one, two, three, four, five, six, seven, or eight mutations selected from the group consisting of H8Y, R126W, L68Q, D108N, N127S, D147Y, and E155V in TadA reference sequence, or a corresponding mutation or mutations in another adenosine deaminase. In some embodiments, the adenosine deaminase comprises one, two, three, four, or five, mutations selected from the group consisting of H8Y, D108N, A109T, N127S, and E155G in TadA reference sequence, or a corresponding mutation or mutations in another adenosine deaminase.

In some embodiments, the adenosine deaminase comprises one or more of the or one or more corresponding mutations in another adenosine deaminase. In some embodiments, the adenosine deaminase comprises a D108N, D108G, or D108V mutation in TadA reference sequence, or corresponding mutations in another adenosine deaminase. In some embodiments, the adenosine deaminase comprises a A106V and D108N mutation in TadA reference sequence, or corresponding mutations in another adenosine deaminase. In some embodiments, the adenosine deaminase comprises R107C and D108N mutations in TadA reference sequence, or corresponding mutations in another adenosine deaminase. In some embodiments, the adenosine deaminase comprises a H8Y, D108N, N127S, D147Y, and Q154H mutation in TadA reference sequence, or corresponding mutations in another adenosine deaminase. In some embodiments, the adenosine deaminase comprises a H8Y, R24W, D108N, N127S, D147Y, and E155V mutation in TadA reference sequence, or

corresponding mutations in another adenosine deaminase. In some embodiments, the adenosine deaminase comprises a D108N, D147Y, and E155V mutation in TadA reference sequence, or corresponding mutations in another adenosine deaminase. In some embodiments, the adenosine deaminase comprises a H8Y, D108N, and S 127S mutation in

5 TadA reference sequence, or corresponding mutations in another adenosine deaminase. In some embodiments, the adenosine deaminase comprises a A106V, D108N, D147Y and E155V mutation in TadA reference sequence, or corresponding mutations in another adenosine deaminase.

In some embodiments, the adenosine deaminase comprises one or more of a, S2X,

10 H8X, I49X, L84X, H123X, N127X, I156X and/or K160X mutation in TadA reference sequence, or one or more corresponding mutations in another adenosine deaminase, where the presence of X indicates any amino acid other than the corresponding amino acid in the wild-type adenosine deaminase. In some embodiments, the adenosine deaminase comprises one or more of S2A, H8Y, I49F, L84F, H123Y, N127S, I156F and/or K160S mutation in
15 TadA reference sequence, or one or more corresponding mutations in another adenosine deaminase.

In some embodiments, the adenosine deaminase comprises an L84X mutation adenosine deaminase, where X indicates any amino acid other than the corresponding amino acid in the wild-type adenosine deaminase. In some embodiments, the adenosine deaminase comprises an L84F mutation in TadA reference sequence, or a corresponding mutation in another adenosine deaminase.

In some embodiments, the adenosine deaminase comprises an H123X mutation in TadA reference sequence, or a corresponding mutation in another adenosine deaminase, where X indicates any amino acid other than the corresponding amino acid in the wild-type adenosine deaminase. In some embodiments, the adenosine deaminase comprises an H123Y mutation in TadA reference sequence, or a corresponding mutation in another adenosine deaminase.

In some embodiments, the adenosine deaminase comprises an I157X mutation in TadA reference sequence, or a corresponding mutation in another adenosine deaminase, where X indicates any amino acid other than the corresponding amino acid in the wild-type adenosine deaminase. In some embodiments, the adenosine deaminase comprises an I157F mutation in TadA reference sequence, or a corresponding mutation in another adenosine deaminase.

In some embodiments, the adenosine deaminase comprises one, two, three, four, five, six, or seven mutations selected from the group consisting of L84X, A106X, D108X, H123X, D147X, E155X, and I156X in TadA reference sequence, or a corresponding mutation or mutations in another adenosine deaminase, where X indicates the presence of any amino acid

5 other than the corresponding amino acid in the wild-type adenosine deaminase. In some embodiments, the adenosine deaminase comprises one, two, three, four, five, or six mutations selected from the group consisting of S2X, I49X, A106X, D108X, D147X, and E155X in TadA reference sequence, or a corresponding mutation or mutations in another adenosine deaminase, where X indicates the presence of any amino acid other than the corresponding

10 amino acid in the wild-type adenosine deaminase. In some embodiments, the adenosine deaminase comprises one, two, three, four, or five, mutations selected from the group consisting of H8X, A106X, D108X, N127X, and K160X in TadA reference sequence, or a corresponding mutation or mutations in another adenosine deaminase, where X indicates the presence of any amino acid other than the corresponding amino acid in the wild-type

15 adenosine deaminase.

In some embodiments, the adenosine deaminase comprises one, two, three, four, five, six, or seven mutations selected from the group consisting of L84F, A106V, D108N, H123Y, D147Y, E155V, and I156F in TadA reference sequence, or a corresponding mutation or mutations in another adenosine deaminase. In some embodiments, the adenosine deaminase

20 comprises one, two, three, four, five, or six mutations selected from the group consisting of S2A, I49F, A106V, D108N, D147Y, and E155V in TadA reference sequence.

In some embodiments, the adenosine deaminase comprises one, two, three, four, or five, mutations selected from the group consisting of H8Y, A106T, D108N, N127S, and K160S in TadA reference sequence, or a corresponding mutation or mutations in another

25 adenosine deaminase.

In some embodiments, the adenosine deaminase comprises one or more of a E25X, R26X, R107X, A142X, and/or A143X mutation in TadA reference sequence, or one or more corresponding mutations in another adenosine deaminase, where the presence of X indicates any amino acid other than the corresponding amino acid in the wild-type adenosine

30 deaminase. In some embodiments, the adenosine deaminase comprises one or more of E25M, E25D, E25A, E25R, E25V, E25S, E25Y, R26G, R26N, R26Q, R26C, R26L, R26K, R107P, R07K, R107A, R107N, R107W, R107H, R107S, A142N, A142D, A142G, A143D, A143G, A143E, A143L, A143W, A143M, A143S, A143Q and/or A143R mutation in TadA reference sequence, or one or more corresponding mutations in another adenosine deaminase. In some

embodiments, the adenosine deaminase comprises one or more of the mutations described herein corresponding to TadA reference sequence, or one or more corresponding mutations in another adenosine deaminase.

5 In some embodiments, the adenosine deaminase comprises an E25X mutation in TadA reference sequence, or a corresponding mutation in another adenosine deaminase, where X indicates any amino acid other than the corresponding amino acid in the wild-type adenosine deaminase. In some embodiments, the adenosine deaminase comprises an E25M, E25D, E25A, E25R, E25V, E25S, or E25Y mutation in TadA reference sequence, or a corresponding mutation in another adenosine deaminase.

10 In some embodiments, the adenosine deaminase comprises an R26X mutation in TadA reference sequence, or a corresponding mutation in another adenosine deaminase, where X indicates any amino acid other than the corresponding amino acid in the wild-type adenosine deaminase. In some embodiments, the adenosine deaminase comprises R26G, R26N, R26Q, R26C, R26L, or R26K mutation in TadA reference sequence, or a corresponding mutation in another adenosine deaminase.

15 In some embodiments, the adenosine deaminase comprises an R107X mutation in TadA reference sequence, or a corresponding mutation in another adenosine deaminase, where X indicates any amino acid other than the corresponding amino acid in the wild-type adenosine deaminase. In some embodiments, the adenosine deaminase comprises an R107P, R107K, R107A, R107N, R107W, R107H, or R107S mutation in TadA reference sequence, or a corresponding mutation in another adenosine deaminase.

20 In some embodiments, the adenosine deaminase comprises an A142X mutation in TadA reference sequence, or a corresponding mutation in another adenosine deaminase, where X indicates any amino acid other than the corresponding amino acid in the wild-type adenosine deaminase. In some embodiments, the adenosine deaminase comprises an A142N, A142D, A142G, mutation in TadA reference sequence, or a corresponding mutation in another adenosine deaminase.

25 In some embodiments, the adenosine deaminase comprises an A143X mutation in TadA reference sequence, or a corresponding mutation in another adenosine deaminase, where X indicates any amino acid other than the corresponding amino acid in the wild-type adenosine deaminase. In some embodiments, the adenosine deaminase comprises an A143D, A143G, A143E, A143L, A143W, A143M, A143S, A143Q and/or A143R mutation in TadA reference sequence, or a corresponding mutation in another adenosine deaminase.

In some embodiments, the adenosine deaminase comprises one or more of a H36X, N37X, P48X, I49X, R51X, M70X, N72X, D77X, E134X, S 146X, Q154X, K157X, and/or K161X mutation in TADA REFERENCE SEQUENCE, or one or more corresponding mutations in another adenosine deaminase, where the presence of X indicates any amino acid other than the corresponding amino acid in the wild-type adenosine deaminase. In some embodiments, the adenosine deaminase comprises one or more of H36L, N37T, N37S, P48T, P48L, I49V, R51H, R51L, M70L, N72S, D77G, E134G, S 146R, S 146C, Q154H, K157N, and/or K161T mutation in TadA reference sequence, or one or more corresponding mutations in another adenosine deaminase.

10 In some embodiments, the adenosine deaminase comprises an H36X mutation in TadA reference sequence, or a corresponding mutation in another adenosine deaminase, where X indicates any amino acid other than the corresponding amino acid in the wild-type adenosine deaminase. In some embodiments, the adenosine deaminase comprises an H36L mutation in TadA reference sequence, or a corresponding mutation in another adenosine deaminase.

15 In some embodiments, the adenosine deaminase comprises an N37X mutation in TadA reference sequence, or a corresponding mutation in another adenosine deaminase, where X indicates any amino acid other than the corresponding amino acid in the wild-type adenosine deaminase. In some embodiments, the adenosine deaminase comprises an N37T, or N37S mutation in TadA reference sequence, or a corresponding mutation in another adenosine deaminase.

20 In some embodiments, the adenosine deaminase comprises an P48X mutation in TadA reference sequence, or a corresponding mutation in another adenosine deaminase, where X indicates any amino acid other than the corresponding amino acid in the wild-type adenosine deaminase. In some embodiments, the adenosine deaminase comprises an P48T, or P48L mutation in TadA reference sequence, or a corresponding mutation in another adenosine deaminase.

25 In some embodiments, the adenosine deaminase comprises an R51X mutation in TadA reference sequence, or a corresponding mutation in another adenosine deaminase, where X indicates any amino acid other than the corresponding amino acid in the wild-type adenosine deaminase. In some embodiments, the adenosine deaminase comprises an R51H, or R51L mutation in TadA reference sequence, or a corresponding mutation in another adenosine deaminase.

In some embodiments, the adenosine deaminase comprises an S146X mutation in TadA reference sequence, or a corresponding mutation in another adenosine deaminase, where X indicates any amino acid other than the corresponding amino acid in the wild-type adenosine deaminase. In some embodiments, the adenosine deaminase comprises an S 146R, 5 or S 146C mutation in TadA reference sequence, or a corresponding mutation in another adenosine deaminase.

In some embodiments, the adenosine deaminase comprises an K157X mutation in TadA reference sequence, or a corresponding mutation in another adenosine deaminase, where X indicates any amino acid other than the corresponding amino acid in the wild-type 10 adenosine deaminase. In some embodiments, the adenosine deaminase comprises a K157N mutation in TadA reference sequence, or a corresponding mutation in another adenosine deaminase.

In some embodiments, the adenosine deaminase comprises an P48X mutation in TadA reference sequence, or a corresponding mutation in another adenosine deaminase, 15 where X indicates any amino acid other than the corresponding amino acid in the wild-type adenosine deaminase. In some embodiments, the adenosine deaminase comprises a P48S, P48T, or P48A mutation in TadA reference sequence, or a corresponding mutation in another adenosine deaminase.

In some embodiments, the adenosine deaminase comprises an A142X mutation in TadA reference sequence, or a corresponding mutation in another adenosine deaminase, 20 where X indicates any amino acid other than the corresponding amino acid in the wild-type adenosine deaminase. In some embodiments, the adenosine deaminase comprises a A142N mutation in TadA reference sequence, or a corresponding mutation in another adenosine deaminase.

25 In some embodiments, the adenosine deaminase comprises an W23X mutation in TadA reference sequence, or a corresponding mutation in another adenosine deaminase, where X indicates any amino acid other than the corresponding amino acid in the wild-type adenosine deaminase. In some embodiments, the adenosine deaminase comprises a W23R, or W23L mutation in TadA reference sequence, or a corresponding mutation in another 30 adenosine deaminase.

In some embodiments, the adenosine deaminase comprises an R152X mutation in TadA reference sequence, or a corresponding mutation in another adenosine deaminase, where X indicates any amino acid other than the corresponding amino acid in the wild-type adenosine deaminase. In some embodiments, the adenosine deaminase comprises a R152P, or

R52H mutation in TadA reference sequence, or a corresponding mutation in another adenosine deaminase.

In one embodiment, the adenosine deaminase may comprise the mutations H36L, R51L, L84F, A106V, D108N, H123Y, S 146C, D147Y, E155V, I156F, and K157N. In some 5 embodiments, the adenosine deaminase comprises the following combination of mutations relative to TadA reference sequence, where each mutation of a combination is separated by a " " and each combination of mutations is between parentheses: (A106V_D108N), (R107C_D108N), (H8Y_D108N_S 127S_D 147Y_Q154H), (H8Y_R24W_D108N_N127S_D147Y_E155V), 10 (D108N_D147Y_E155V), (H8Y_D108N_S 127S), (H8Y_D108N_N127S_D147Y_Q154H), (A106V_D108N_D147Y_E155V) (D108Q_D147Y_E155V) (D108M_D147Y_E155V), (D108L_D147Y_E155V), (D108K_D147Y_E155V), (D108I_D147Y_E155V), 15 (D108F_D147Y_E155V), (A106V_D108N_D147Y), (A106V_D108M_D147Y_E155V), (E59A_A106V_D108N_D147Y_E155V), (E59A_cat dead_A106V_D108N_D147Y_E155V), (L84F_A106V_D108N_H123Y_D147Y_E155V_I156Y), 20 (L84F_A106V_D108N_H123Y_D147Y_E155V_I156F), (D103A_D014N), (G22P_D 103 A_D 104N), (G22P_D 103 A_D 104N_S 138 A), (D 103 A_D 104N_S 138A), (R26G_L84F_A106V_R107H_D108N_H123Y_A142N_A143D_D147Y_E155V_I156F), 25 (E25G_R26G_L84F_A106V_R107H_D108N_H123Y_A142N_A143D_D147Y_E155V_I156F), (E25D_R26G_L84F_A106V_R107K_D108N_H123Y_A142N_A143G_D147Y_E155V_I156F), (R26Q_L84F_A106V_D108N_H123Y_A142N_D147Y_E155V_I156F), 30 (E25M_R26G_L84F_A106V_R107P_D108N_H123Y_A142N_A143D_D147Y_E155V_I156F), (R26C_L84F_A106V_R107H_D108N_H123Y_A142N_D147Y_E155V_I156F), (L84F_A106V_D108N_H123Y_A142N_A143L_D147Y_E155V_I156F), (R26G_L84F_A106V_D108N_H123Y_A142N_D147Y_E155V_I156F), (E25A_R26G_L84F_A106V_R107N_D108N_H123Y_A142N_A143E_D147Y_E155V_I156F), (R26G_L84F_A106V_R107H_D108N_H123Y_A142N_A143D_D147Y_E155V_I156F), 35 (A106V_D108N_A142N_D147Y_E155V), (R26G_A106V_D108N_A142N_D147Y_E155V), (E25D_R26G_A106V_R107K_D108N_A142N_A143G_D147Y_E155V),

(R26G_A106V_D108N_R107H_A142N_A143D_D147Y_E155V),
(E25D_R26G_A106V_D108N_A142N_D147Y_E155V),
(A106V_R107K_D108N_A142N_D147Y_E155V),
(A106V_D108N_A142N_A143G_D147Y_E155V),
5 (A106V_D108N_A142N_A143L_D147Y_E155V),
(H36L_R51L_L84F_A106V_D108N_H123Y_S 146C_D147Y_E155V_I156F_K157N),
(N37T_P48T_M70L_L84F_A106V_D108N_H123Y_D147Y_I49V_E155V_I156F),
(N37S_L84F_A106V_D108N_H123Y_D147Y_E155V_I156F_K161T),
(H36L_L84F_A106V_D108N_H123Y_D147Y_Q154H_E155V_I156F),
10 (N72S_L84F_A106V_D108N_H123Y_S 146R_D147Y_E155V_I156F),
(H36L_P48L_L84F_A106V_D108N_H123Y_E134G_D147Y_E155V_I156F),
57N),
(H36L_L84F_A106V_D108N_H123Y_S 146C_D147Y_E155V_I156F),
(L84F_A106V_D108N_H123Y_S 146R_D147Y_E155V_I156F_K161T),
15 (N37S_R51H_D77G_L84F_A106V_D108N_H123Y_D147Y_E155V_I156F),
(R51L_L84F_A106V_D108N_H123Y_D147Y_E155V_I156F_K157N),
(D24G_Q71R_L84F_H96L_A106V_D108N_H123Y_D147Y_E155V_I156F_K160E),
(H36L_G67V_L84F_A106V_D108N_H123Y_S 146T_D147Y_E155V_I156F),
20 (Q71L_L84F_A106V_D108N_H123Y_L137M_A143E_D147Y_E155V_I156F),
(E25G_L84F_A106V_D108N_H123Y_D147Y_E155V_I156F_Q159L),
(L84F_A91T_F104I_A106V_D108N_H123Y_D147Y_E155V_I156F),
25 (N72D_L84F_A106V_D108N_H123Y_G125A_D147Y_E155V_I156F),
(P48S_L84F_S97C_A106V_D108N_H123Y_D147Y_E155V_I156F),
(W23G_L84F_A106V_D108N_H123Y_D147Y_E155V_I156F),
(D24G_P48L_Q71R_L84F_A106V_D108N_H123Y_D147Y_E155V_I156F_Q159L),
30 (L84F_A106V_D108N_H123Y_A142N_D147Y_E155V_I156F),
(H36L_R51L_L84F_A106V_D108N_H123Y_A142N_S 146C_D147Y_E155V_I156F_K157N),
(N37S_L84F_A106V_D108N_H123Y_A142N_D147Y_E155V_I156F_K161T),
(L84F_A106V_D108N_D147Y_E155V_I156F),
(R51L_L84F_A106V_D108N_H123Y_S 146C_D147Y_E155V_I156F_K157N_K161T),
(L84F_A106V_D108N_H123Y_S 146C_D147Y_E155V_I156F_K161T),
35 (L84F_A106V_D108N_H123Y_S 146C_D147Y_E155V_I156F_K157N_K160E_K161T),
(L84F_A106V_D108N_H123Y_S 146C_D147Y_E155V_I156F_K157N_K160E), (R74Q
L84F_A106V_D108N_H123Y_D147Y_E155V_I156F),

(R74A_L84F_A106V_D108N_H123Y_D147Y_E155V_I156F),
(L84F_A106V_D108N_H123Y_D147Y_E155V_I156F),
(R74Q_L84F_A106V_D108N_H123Y_D147Y_E155V_I156F),
(L84F_R98Q_A106V_D108N_H123Y_D147Y_E155V_I156F),
5 (L84F_A106V_D108N_H123Y_R129Q_D147Y_E155V_I156F),
(P48S_L84F_A106V_D108N_H123Y_A142N_D147Y_E155V_I156F), (P48S_A142N),
(P48T_I49V_L84F_A106V_D108N_H123Y_A142N_D147Y_E155V_I156F_L157N),
(P48T_I49V_A142N),
(H36L_P48S_R51L_L84F_A106V_D108N_H123Y_S 146C_D147Y_E155V_I156F
10 _K157N),
(H36L_P48S_R51L_L84F_A106V_D108N_H123Y_S
146C_A142N_D147Y_E155V_I156F
(H36L_P48T_I49V_R51L_L84F_A106V_D108N_H123Y_S 146C_D147Y_E155V_I156F
_K157N),
15 (H36L_P48T_I49V_R51L_L84F_A106V_D108N_H123Y_A142N_S
146C_D147Y_E155V_I156F _K157N),
(H36L_P48A_R51L_L84F_A106V_D108N_H123Y_S 146C_D147Y_E155V_I156F
_K157N),
(H36L_P48A_R51L_L84F_A106V_D108N_H123Y_A142N_S
20 146C_D147Y_E155V_I156F _K157N),
(H36L_P48A_R51L_L84F_A106V_D108N_H123Y_S
146C_A142N_D147Y_E155V_I156F _K157N),
(W23L_H36L_P48A_R51L_L84F_A106V_D108N_H123Y_S 146C_D147Y_E155V_I156F
_K157N),
25 (W23R_H36L_P48A_R51L_L84F_A106V_D108N_H123Y_S 146C_D147Y_E155V_I156F
_K157N),
(W23L_H36L_P48A_R51L_L84F_A106V_D108N_H123Y_S 146R_D147Y_E155V_I156F
_K161T),
(H36L_P48A_R51L_L84F_A106V_D108N_H123Y_S
30 146C_D147Y_R152H_E155V_I156F _K157N),
(H36L_P48A_R51L_L84F_A106V_D108N_H123Y_S 146C_D147Y_R152P_E155V_I156F
_K157N),
(W23L_H36L_P48A_R51L_L84F_A106V_D108N_H123Y_S
146C_D147Y_R152P_E155V_I156F _K157N),

- (W23L_H36L_P48A_R51L_L84F_A106V_D108N_H123Y_A142A_S 146C_D147Y_E155
V_I156F_K157N),
(W23L_H36L_P48A_R51L_L84F_A106V_D108N_H123Y_A142A_S
146C_D147Y_R152P_E155V_I156F_K157N),
5 (W23L_H36L_P48A_R51L_L84F_A106V_D108N_H123Y_S 146R_D147Y_E155V_I156F
_K161T),
(W23R_H36L_P48A_R51L_L84F_A106V_D108N_H123Y_S
146C_D147Y_R152P_E155V_I156F_K157N),
(H36L_P48A_R51L_L84F_A106V_D108N_H123Y_A142N_S 146C_D147Y_R152P_E155
10 V_I156F_K157N).

Cytidine deaminase

In one embodiment, a fusion protein of the invention comprises a cytidine deaminase. In some embodiments, the cytidine deaminases provided herein are capable of deaminating 15 cytosine or 5-methylcytosine to uracil or thymine. In some embodiments, the cytosine deaminases provided herein are capable of deaminating cytosine in DNA. The cytidine deaminase may be derived from any suitable organism. In some embodiments, the cytidine deaminase is a naturally-occurring cytidine deaminase that includes one or more mutations corresponding to any of the mutations provided herein. One of skill in the art will be able to 20 identify the corresponding residue in any homologous protein, e.g., by sequence alignment and determination of homologous residues. Accordingly, one of skill in the art would be able to generate mutations in any naturally-occurring cytidine deaminase that corresponds to any of the mutations described herein. In some embodiments, the cytidine deaminase is from a prokaryote. In some embodiments, the cytidine deaminase is from a bacterium. In some 25 embodiments, the cytidine deaminase is from a mammal (e.g., human).

In some embodiments, the cytidine deaminase comprises an amino acid sequence that is at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to any one of the cytidine deaminase amino acid sequences set forth herein. It 30 should be appreciated that cytidine deaminases provided herein may include one or more mutations (e.g., any of the mutations provided herein). The disclosure provides any deaminase domains with a certain percent identity plus any of the mutations or combinations thereof described herein. In some embodiments, the cytidine deaminase comprises an amino acid sequence that has 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22,

21, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, or more mutations compared to a reference sequence, or any of the cytidine deaminases provided herein. In some embodiments, the cytidine deaminase comprises an amino acid sequence that has at least 5, at least 10, at least 15, at least 20, at least 25, at least 5 30, at least 35, at least 40, at least 45, at least 50, at least 60, at least 70, at least 80, at least 90, at least 100, at least 110, at least 120, at least 130, at least 140, at least 150, at least 160, or at least 170 identical contiguous amino acid residues as compared to any one of the amino acid sequences known in the art or described herein.

A fusion protein of the invention comprises a nucleic acid editing domain. In some 10 embodiments, the nucleic acid editing domain can catalyze a C to U base change. In some embodiments, the nucleic acid editing domain is a deaminase domain. In some embodiments, the deaminase is a cytidine deaminase or an adenosine deaminase. In some embodiments, the deaminase is an apolipoprotein B mRNA-editing complex (APOBEC) family deaminase. In some embodiments, the deaminase is an APOBEC1 deaminase. In some embodiments, the 15 deaminase is an APOBEC2 deaminase. In some embodiments, the deaminase is an APOBEC3 deaminase. In some embodiments, the deaminase is an APOBEC3 A deaminase. In some embodiments, the deaminase is an APOBEC3B deaminase. In some embodiments, the deaminase is an APOBEC3C deaminase. In some embodiments, the deaminase is an APOBEC3D deaminase. In some embodiments, the deaminase is an APOBEC3E deaminase. 20 In some embodiments, the deaminase is an APOBEC3F deaminase. In some embodiments, the deaminase is an APOBEC3G deaminase. In some embodiments, the deaminase is an APOBEC3H deaminase. In some embodiments, the deaminase is an APOBEC4 deaminase. In some embodiments, the deaminase is an activation-induced deaminase (AID). In some 25 embodiments, the deaminase is a vertebrate deaminase. In some embodiments, the deaminase is an invertebrate deaminase. In some embodiments, the deaminase is a human, chimpanzee, gorilla, monkey, cow, dog, rat, or mouse deaminase. In some embodiments, the deaminase is a human deaminase. In some embodiments, the deaminase is a rat deaminase, e.g., rAPOBEC1. In some embodiments, the deaminase is a Petromyzon marinus cytidine deaminase 1 (pmCD1). In some embodiments, the deaminase is a human APOBEC3G. In 30 some embodiments, the deaminase is a fragment of the human APOBEC3G. In some embodiments, the deaminase is a human APOBEC3G variant comprising a D316R D317R mutation. In some embodiments, the deaminase is a fragment of the human APOBEC3G and comprising mutations corresponding to the D316R D317R mutations. In some embodiments, the nucleic acid editing domain is at least 80%, at least 85%, at least 90%, at least 92%, at

least 95%, at least 96%, at least 97%, at least 98%, at least 99%), or at least 99.5% identical to the deaminase domain of any deaminase described herein.

In certain embodiments, the fusion proteins provided herein comprise one or more features that improve the base editing activity of the fusion proteins. For example, any of the 5 fusion proteins provided herein may comprise a Cas9 domain that has reduced nuclease activity. In some embodiments, any of the fusion proteins provided herein may have a Cas9 domain that does not have nuclease activity (dCas9), or a Cas9 domain that cuts one strand of a duplexed DNA molecule, referred to as a Cas9 nickase (nCas9).

10 *Cas9 domains of Nucleobase Editors*

In some aspects, a nucleic acid programmable DNA binding protein (napDNAbp) is a Cas9 domain. Non-limiting, exemplary Cas9 domains are provided herein. The Cas9 domain may be a nuclease active Cas9 domain, a nuclease inactive Cas9 domain, or a Cas9 nickase. In some embodiments, the Cas9 domain is a nuclease active domain. For example, 15 the Cas9 domain may be a Cas9 domain that cuts both strands of a duplexed nucleic acid (e.g., both strands of a duplexed DNA molecule). In some embodiments, the Cas9 domain comprises any one of the amino acid sequences as set forth herein. In some embodiments the Cas9 domain comprises an amino acid sequence that is at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to any one of the amino acid 20 sequences set forth herein. In some embodiments, the Cas9 domain comprises an amino acid sequence that has 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 21, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50 or more or more mutations compared to any one of the amino acid sequences set forth 25 herein. In some embodiments, the Cas9 domain comprises an amino acid sequence that has at least 10, at least 15, at least 20, at least 30, at least 40, at least 50, at least 60, at least 70, at least 80, at least 90, at least 100, at least 150, at least 200, at least 250, at least 300, at least 350, at least 400, at least 500, at least 600, at least 700, at least 800, at least 900, at least 1000, at least 1100, or at least 1200 identical contiguous amino acid residues as compared to 30 any one of the amino acid sequences set forth herein.

In some embodiments, the Cas9 domain is a nuclease-inactive Cas9 domain (dCas9). For example, the dCas9 domain may bind to a duplexed nucleic acid molecule (e.g., via a gRNA molecule) without cleaving either strand of the duplexed nucleic acid molecule. In some embodiments, the nuclease-inactive dCas9 domain comprises a D10X mutation and a

H840X mutation of the amino acid sequence set forth herein, or a corresponding mutation in any of the amino acid sequences provided herein, wherein X is any amino acid change. In some embodiments, the nuclease-inactive dCas9 domain comprises a D10A mutation and a H840A mutation of the amino acid sequence set forth herein, or a corresponding mutation in 5 any of the amino acid sequences provided herein. As one example, a nuclease-inactive Cas9 domain comprises the amino acid sequence set forth in Cloning vector pPlatTET-gRNA2 (Accession No. BAV54124).

MDKKYSIGLAIGTNSVGWAVITDEYKVPSSKKFKVLGNTDRHSIKKNLIGALLFDSGE
10 TAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSSFFHRLEESFLVEEDKKHE
RHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEG
DLNPNDNSDVKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLP
GEKKNGLFGNLIALSGLTPNFKSNFDLAEDAKLQLSKDTYDDLDNLLAQIGDQYA
DLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPE
15 KYKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQ
RTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRF
AWMTRKSEETITPWNFEVVVDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFT
VYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECF
DSVEISGVEDRFNASLGYHDLLKIIKDKDFLDNEENEDILEDIVLTTLFEDREMIEE
20 RLKTYAHLFDDKVMKQLKRRRYTGWGRSLRKLINGIRDQSGKTILDPLKSDGFAN
RNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIIKGILQTVKVVDEL
VKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENT
QLQNEKLYLYLQNGRDMYVDQELDINRLSDYDVDAIVPQSLKDDSIDNKVLTRS
DKNRGKSDNVPSEEVVKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAG
25 FIKRQLVETRQITKHVAQILDLSRMNTKYDENDKLIREVKVITLKSCLVSDFRKDFQFY
KVREINNYHHAHDAYLNAVVGTLIKKYPKLESEFVYGDYKVDVRKMIAKSEQEI
GKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVL
SMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWPKKYGGFDSPVAYSVL
VVAKVEKGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIILPKYS
30 LFELENGRKMLASAGELQKGNELALPSKYVNFLYASHYEKLKGSPEDNEQKQLF
VEQHKHYLDEIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTN
LGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQSTGLYETRIDLSQLGGD (see, e.g.,
Qi *et al.*, “Repurposing CRISPR as an RNA-guided platform for sequence-specific control of

gene expression.” *Cell.* 2013; 152(5):1173-83, the entire contents of which are incorporated herein by reference).

Additional suitable nuclease-inactive dCas9 domains will be apparent to those of skill in the art based on this disclosure and knowledge in the field, and are within the scope of this disclosure. Such additional exemplary suitable nuclease-inactive Cas9 domains include, but are not limited to, D10A/H840A, D10A/D839A/H840A, and D10A/D839A/H840A/N863A mutant domains (See, *e.g.*, Prashant *et al.*, CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. *Nature Biotechnology.* 2013; 31(9): 833-838, the entire contents of which are incorporated herein by reference). In some embodiments the dCas9 domain comprises an amino acid sequence that is at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to any one of the dCas9 domains provided herein. In some embodiments, the Cas9 domain comprises an amino acid sequences that has 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 21, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50 or more or more mutations compared to any one of the amino acid sequences set forth herein. In some embodiments, the Cas9 domain comprises an amino acid sequence that has at least 10, at least 15, at least 20, at least 30, at least 40, at least 50, at least 60, at least 70, at least 80, at least 90, at least 100, at least 150, at least 200, at least 250, at least 300, at least 350, at least 400, at least 500, at least 600, at least 700, at least 800, at least 900, at least 1000, at least 1100, or at least 1200 identical contiguous amino acid residues as compared to any one of the amino acid sequences set forth herein.

In some embodiments, the Cas9 domain is a Cas9 nickase. The Cas9 nickase may be a Cas9 protein that is capable of cleaving only one strand of a duplexed nucleic acid molecule (*e.g.*, a duplexed DNA molecule). In some embodiments the Cas9 nickase cleaves the target strand of a duplexed nucleic acid molecule, meaning that the Cas9 nickase cleaves the strand that is base paired to (complementary to) a gRNA (*e.g.*, an sgRNA) that is bound to the Cas9. In some embodiments, a Cas9 nickase comprises a D10A mutation and has a histidine at position 840. In some embodiments the Cas9 nickase cleaves the non-target, non-base-edited strand of a duplexed nucleic acid molecule, meaning that the Cas9 nickase cleaves the strand that is not base paired to a gRNA (*e.g.*, an sgRNA) that is bound to the Cas9. In some embodiments, a Cas9 nickase comprises an H840A mutation and has an aspartic acid residue at position 10, or a corresponding mutation. In some embodiments the Cas9 nickase comprises an amino acid sequence that is at least 60%, at least 65%, at least 70%, at least

75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to any one of the Cas9 nickases provided herein. Additional suitable Cas9 nickases will be apparent to those of skill in the art based on this disclosure and knowledge in the field, and are within the scope of this disclosure.

5

Cas9 Domains with Reduced PAM Exclusivity

Typically, Cas9 proteins, such as Cas9 from *S. pyogenes* (spCas9), require a canonical NGG PAM sequence to bind a particular nucleic acid region, where the “N” in “NGG” is adenosine (A), thymidine (T), or cytosine (C), and the G is guanosine. This may limit the ability to edit desired bases within a genome. In some embodiments, the base editing fusion proteins provided herein may need to be placed at a precise location, for example a region comprising a target base that is upstream of the PAM. See e.g., Komor, A.C., *et al.*, “Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage” *Nature* 533, 420-424 (2016), the entire contents of which are hereby incorporated by reference. Accordingly, in some embodiments, any of the fusion proteins provided herein may contain a Cas9 domain that is capable of binding a nucleotide sequence that does not contain a canonical (e.g., NGG) PAM sequence. Cas9 domains that bind to non-canonical PAM sequences have been described in the art and would be apparent to the skilled artisan. For example, Cas9 domains that bind non-canonical PAM sequences have been described in Kleinstiver, B. P., *et al.*, “Engineered CRISPR-Cas9 nucleases with altered PAM specificities” *Nature* 523, 481-485 (2015); and Kleinstiver, B. P., *et al.*, “Broadening the targeting range of *Staphylococcus aureus* CRISPR-Cas9 by modifying PAM recognition” *Nature Biotechnology* 33, 1293-1298 (2015); the entire contents of each are hereby incorporated by reference. Several PAM variants are described at Table 1 below:

25

Table 1. Cas9 proteins and corresponding PAM sequences

Variant	PAM
spCas9	NGG
spCas9-VRQR	NGA
spCas9-VRER	NGCG
xCas9 (sp)	NGN

saCas9	NNGRRT
saCas9-KKH	NNNRRT
spCas9-MQKSER	NGCG
spCas9-MQKSER	NGCN
spCas9-LRKIQK	NGTN
spCas9-LRVSQK	NGTN
spCas9-LRVSQK	NGTN
Cpf1	5' (TTTV)

In some embodiments, the Cas9 domain is a Cas9 domain from *Staphylococcus aureus* (SaCas9). In some embodiments, the SaCas9 domain is a nuclease active SaCas9, a nuclease inactive SaCas9 (SaCas9d), or a SaCas9 nickase (SaCas9n). In some embodiments, 5 the SaCas9 comprises a N579A mutation, or a corresponding mutation in any of the amino acid sequences provided herein.

In some embodiments, the SaCas9 domain, the SaCas9d domain, or the SaCas9n domain can bind to a nucleic acid sequence having a non-canonical PAM. In some embodiments, the SaCas9 domain, the SaCas9d domain, or the SaCas9n domain can bind to a 10 nucleic acid sequence having a NNGRRT PAM sequence. In some embodiments, the SaCas9 domain comprises one or more of a E781X, a N967X, and a R1014X mutation, or a corresponding mutation in any of the amino acid sequences provided herein, wherein X is any amino acid. In some embodiments, the SaCas9 domain comprises one or more of a E781K, a N967K, and a R1014H mutation, or one or more corresponding mutation in any of 15 the amino acid sequences provided herein. In some embodiments, the SaCas9 domain comprises a E781K, a N967K, or a R1014H mutation, or corresponding mutations in any of the amino acid sequences provided herein.

Exemplary SaCas9 sequence

20 KRNYILGLDIGITSVGYGIIDYETRDVIDAGVRLFKEANVENNEGRRSKRGARRLKRR
RRHRIQRVKLLFDYNLLTDHSELSGINPYEARVKGLSQKLSEEEFSALLHLAKRR

GVHNVNEVEEDTGNELSTKEQISRNSKALEEKYVAELQLERLKKDGEVRGSINRFKT
 SDYVKEAKQLKVQKAYHQLDQSFIDTYIDLLETRRTYYEGPGEGSPFGWKDIKEW
 YEMLMGHCTYFPEELRSVKYAYNADLYNALNDLNNLVITRDENEKLEYYEKFQIIEN
 VFKQKKKPTLKQIAKEILVNEEDIKGYRVTSTGKPEFTNLKVYHDIKDITARKEIIENA
 5 ELLDQIAKILTIYQSSEDIQEELTNLSEL TQEEIEQISNLKGYTGTHNLSLKAINLILDE
 LWHTNDNQIAIFNRLKLVPKKVDSLQQKEIPTTLVDDFILSPVVKRSFIQSIVINAIIK
 KYGLPNDIIIELAREKNSKDAQKMINEMQKRNQRTNERIEEIRTTGKENAKYLIEKIK
 LHDMQEGKCLYSLEAIPLEDLLNNPFPNYEVDHIIIPRSVSFDNSFNNKVLVKQEENSKK
 GN RTPFQYLSSSDSKISYETFKKHILNLAKGKGRISKTKEYLLEERDINRFSVQKDFI
 10 NRNLVDTRYATRGLMNLRSYFRVNNLDVKVKSINGGFTSFLRRKWKFKERNKG
 YKHHAEALIIANADFIFKEWKLLDKAKKVMENQMFEEKQAESMPEIETEQEYKEIF
 ITPHQIKHIKDFKDYK YSHRVDKKPNRELINDTLYSTRKDDKGNTLIVNNLNGLYDK
 DNDKLKKLINKSPEKLLMYHDPQTYQKLKLIMEQYGDEKNPLYKYYETGNYLTK
 YSKKDNGPVIKKIKYYGNKLNAHLDITDDYPNSRNKVVKLSLKPYRFDVYLDNGVY
 15 KFVTVKNLDVIKKENYYEVNSKCYEEAKLKKISNQAEFIASFYNNDLIKINGELYR
 VIGVNNNDLLNRIEVNMIDITYREYLENMNDKRPPRIIKTIASKTQSICKYSTDILGNLY
 EVKSKKHPQIIKKG

Residue N579 above, which is underlined and in bold, may be mutated (e.g., to a A579) to yield a SaCas9 nickase.

20

Exemplary SaCas9n sequence

KRNYILGLDIGITSVGYGIIDYETRDVIDAGVRLFKEANVENNEGRRSKRGARRLKRR
 RRHRIQRVKLLFDYNLLTDHSELSGINPYEARVKGLSQKLSEEEFSAALLHLAKRR
 GVHNVNEVEEDTGNELSTKEQISRNSKALEEKYVAELQLERLKKDGEVRGSINRFKT
 25 SDYVKEAKQLKVQKAYHQLDQSFIDTYIDLLETRRTYYEGPGEGSPFGWKDIKEW
 YEMLMGHCTYFPEELRSVKYAYNADLYNALNDLNNLVITRDENEKLEYYEKFQIIEN
 VFKQKKKPTLKQIAKEILVNEEDIKGYRVTSTGKPEFTNLKVYHDIKDITARKEIIENA
 ELLDQIAKILTIYQSSEDIQEELTNLSEL TQEEIEQISNLKGYTGTHNLSLKAINLILDE
 LWHTNDNQIAIFNRLKLVPKKVDSLQQKEIPTTLVDDFILSPVVKRSFIQSIVINAIIK
 KYGLPNDIIIELAREKNSKDAQKMINEMQKRNQRTNERIEEIRTTGKENAKYLIEKIK
 LHDMQEGKCLYSLEAIPLEDLLNNPFPNYEVDHIIIPRSVSFDNSFNNKVLVKQEEASKK
 GN RTPFQYLSSSDSKISYETFKKHILNLAKGKGRISKTKEYLLEERDINRFSVQKDFI
 NRNLVDTRYATRGLMNLRSYFRVNNLDVKVKSINGGFTSFLRRKWKFKERNKG
 YKHHAEALIIANADFIFKEWKLLDKAKKVMENQMFEEKQAESMPEIETEQEYKEIF

ITPHQIKHIKDFKDYKYSHRVDKKPNRELINDTLYSTRKDDKGNTLIVNNLNGLYDK
 DNDKLKKLINKSPEKLLMYHHDPPQTYQKLKLIMEQYGDEKNPLYKYYEETGNYLT
 YSKKDNGPVIKKIKYYGNKLNNAHLDITDDYPNSRNKVVKLSLKPYRFDVYLDNGVY
 KFVTVKNLDVIKKENYYEVNSKCYEEAKKKISNQAEFIASFYNNNDLIKINGELYR
 5 VIGVNNNDLLNRIEVNMIDITYREYLENMNDKRPPRIIKTIASKTQSICKYSTDILGNLY
 EVKSKKHPQIICKKG

Residue A579 above, which can be mutated from N579 to yield a SaCas9 nickase, is underlined and in bold.

10 **Exemplary SaKKH Cas9**

KRNYILGLDIGITSGVGYGIIDYETRDVIDAGVRLFKEANVENNEGRRSKRGARRLKRR
 RRHRIQRVKKLLFDYNLLTDHSELSGINPYEARVKGLSQKLSEEEFSAALLHLAKRR
 GVHNVNEVEEDTGNELSTKEQISRNSKALEEKYVAELQLERLKKDGEVRGSINRFKT
 SDYVKEAKQLKVQKAYHQLDQSFIDTYIDLLETRRTYYEGPGEGSPFGWKDIKEW
 15 YEMLMGHCTYFPEELRSVKYAYNADLYNALNDLNNLVITRDENEKLEYYEKFQIIEN
 VFKQKKKPTLKQIAKEILVNEEDIKGYRVTSTGKPEFTNLKVYHDIKDITARKEIIENA
 ELLDQIAKILTIYQSSEDIQEELTNLSEL TQEEIEQISNLKGYTGTHNLSLKAINLILDE
 LWHTNDNQIAIFNRLKLVPKKVDSLQQKEIPTLVDDFILSPVVKRSFIQSIVINAIK
 KYGLPNIDIIELAREKNSKDAQKMINEMQKRNQRTNERIEEII~~RTG~~KENAKYLIEKIK
 20 LHDMQEKGCLYSLEAIPLEDLLNNPFNYEVDHII~~PR~~SVDNSFNNKVLVKQEEASK
 GNRTPFQYLSSSDSKISYETFKKHILNLAKGKGRISKTKKEYLLEERDINRFSVQKDFI
 NRNLVDTRYATRGLMNLRSYFRVNNLDVKVKSINGGFTSFLRRKWFKKERNKG
 YKHHaedalIIANADFIFKEWKKLDKAKKVMENQMFEKQAESMPEIETEQEYKEIF
 ITPHQIKHIKDFKDYKYSHRVDKKPNRKLINDTLYSTRKDDKGNTLIVNNLNGLYDK
 25 DNDKLKKLINKSPEKLLMYHHDPPQTYQKLKLIMEQYGDEKNPLYKYYEETGNYLT
 YSKKDNGPVIKKIKYYGNKLNNAHLDITDDYPNSRNKVVKLSLKPYRFDVYLDNGVY
 KFVTVKNLDVIKKENYYEVNSKCYEEAKKKISNQAEFIASFYKNNDLIKINGELYRV
 IGVVNNNDLLNRIEVNMIDITYREYLENMNDKRPPHIIKTIASKTQSICKYSTDILGNLYE
 VKSKKHPQIICKKG.

30 Residue A579 above, which can be mutated from N579 to yield a SaCas9 nickase, is underlined and in bold. Residues K781, K967, and H1014 above, which can be mutated from E781, N967, and R1014 to yield a SaKKH Cas9 are underlined and in italics.

In some embodiments, the Cas9 domain is a Cas9 domain from *Streptococcus pyogenes* (SpCas9). In some embodiments, the SpCas9 domain is a nuclease active SpCas9,

a nuclease inactive SpCas9 (SpCas9d), or a SpCas9 nickase (SpCas9n). In some embodiments, the SpCas9 comprises a D9X mutation, or a corresponding mutation in any of the amino acid sequences provided herein, wherein X is any amino acid except for D. In some embodiments, the SpCas9 comprises a D9A mutation, or a corresponding mutation in 5 any of the amino acid sequences provided herein. In some embodiments, the SpCas9 domain, the SpCas9d domain, or the SpCas9n domain can bind to a nucleic acid sequence having a non-canonical PAM. In some embodiments, the SpCas9 domain, the SpCas9d domain, or the SpCas9n domain can bind to a nucleic acid sequence having an NGG, a NGA, or a NGCG PAM sequence. In some embodiments, the SpCas9 domain comprises one or 10 more of a D1134X, a R1334X, and a T1336X mutation, or a corresponding mutation in any of the amino acid sequences provided herein, wherein X is any amino acid. In some embodiments, the SpCas9 domain comprises one or more of a D1134E, R1334Q, and T1336R mutation, or a corresponding mutation in any of the amino acid sequences provided herein. In some embodiments, the SpCas9 domain comprises a D1134E, a R1334Q, and a 15 T1336R mutation, or corresponding mutations in any of the amino acid sequences provided herein. In some embodiments, the SpCas9 domain comprises one or more of a D1134X, a R1334X, and a T1336X mutation, or a corresponding mutation in any of the amino acid sequences provided herein, wherein X is any amino acid. In some embodiments, the SpCas9 domain comprises one or more of a D1134V, a R1334Q, and a T1336R mutation, or a 20 corresponding mutation in any of the amino acid sequences provided herein. In some embodiments, the SpCas9 domain comprises a D1134V, a R1334Q, and a T1336R mutation, or corresponding mutations in any of the amino acid sequences provided herein. In some embodiments, the SpCas9 domain comprises one or more of a D1134X, a G1217X, a R1334X, and a T1336X mutation, or a corresponding mutation in any of the amino acid 25 sequences provided herein, wherein X is any amino acid. In some embodiments, the SpCas9 domain comprises one or more of a D1134V, a G1217R, a R1334Q, and a T1336R mutation, or a corresponding mutation in any of the amino acid sequences provided herein. In some embodiments, the SpCas9 domain comprises a D1134V, a G1217R, a R1334Q, and a T1336R mutation, or corresponding mutations in any of the amino acid sequences provided 30 herein.

In some embodiments, the Cas9 domains of any of the fusion proteins provided herein comprises an amino acid sequence that is at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to a Cas9 polypeptide described herein. In

some embodiments, the Cas9 domains of any of the fusion proteins provided herein comprises the amino acid sequence of any Cas9 polypeptide described herein. In some embodiments, the Cas9 domains of any of the fusion proteins provided herein consists of the amino acid sequence of any Cas9 polypeptide described herein.

5

Exemplary SpCas9

DKKYSIGLDIGTNSVGWAVITDEYKVPSSKKFKVLGNTDRHSIKKNLIGALLFDSGETA
EATRLKRTARRRYTRRKNRICYLQEIFSNEAKVDDSSFFHRLEESFLVEEDKKHERH
PIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKAIDLRLIYLALAHMIKFRGHFLIEGDL
10 NPDNSDVKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPGE
KKNGLFGNLIALSGLTPNFKSNFDLAEDAKLQLSKDTYDDLDNLLAQIGDQYADL
FLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKY
KEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQRTF
DNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRFAW
15 MTRKSEETITPWNFEVVVDKGASAQSFIERMNTNFDKNLPNEKVLPHSLLYEYFTVY
NELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDS
VEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTFEDREMIEERL
KTYAHLFDDKVMKQLRRRTGWRGLSRKLINGIRDQSGKTILDFLKSDFANRN
FMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIIKGILQTVKVVDELVK
20 VMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQL
QNEKLYLYLQNGRDMYVDQELDINRLSDYDVDHIVPQSLKDDSIDNKVLTRSDK
NRGKSDNVPSEEVVKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIK
RQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYKV
REINNYHHAHDAYLNAVVGTLIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGK
25 ATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSM
PQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDPKYGGFDSPTVAYSVLVV
AKVEKGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIILPKYSLFE
LENGRKRMLASAGELQKGNELALPSKYVNFLYLAHYEKLKGSPEDNEQKQLFVEQ
HKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLNLGA
30 PAAFKYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGD

Exemplary SpCas9n

DKKYSIGLAIGTNSVGWAVITDEYKVPSSKKFKVLGNTDRHSIKKNLIGALLFDSGETA
EATRLKRTARRRYTRRKNRICYLQEIFSNEAKVDDSSFFHRLEESFLVEEDKKHERH

PIFGNIVDEVAYHEKYPTIYHLRKKLVSTDKAIDLRLIYLALAHMIKFRGHFLIEGDL
 NPDNSDVKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPGE
 KKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQLSKDTYDDLDNLLAQIGDQYADL
 FLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKY
 5 KEIFFDQSNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQRTF
 DNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRFAW
 MTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDKNLPNEKVLPHSLLYEYFTVY
 NELTKVVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDS
 VEISGVEDRFNASLGYHDLLKIKDKDFLDNEENEDILEDIVLTTLFEDREMIEERL
 10 KTYAHLFDDKVMKQLKRRRTGWRGLSRKLINGIRDQSGKTILDFLKSDFANRN
 FMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIIKGILQTVKVVDELVK
 VMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEDIKELGSQILKEHPVENTQL
 QNEKLYLYLQNGRDMDYVDQELDINRLSDYDVDHIVPQSLKDDSIDNKVLTRSDK
 NRGKSDNVPSEEVVKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIK
 15 RQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSCLVSDFRKDFQFYKV
 REINNYHHAHDAYLNAVVGTLIKKYPKLESEFVYGDYKVDVRKMIAKSEQEIGK
 ATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSM
 PQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDPKYGGFDSPTVAYSVLVV
 AKVEKGKSKKLKSVKELLGITIMERSFEKNPIDFLEAKGYKEVKKDLIILPKYSLFE
 20 LENGRKMLASAGELQKGNELALPSKYVNFLYASHYEKLKGSPEDNEQKQLFVEQ
 HKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLNLGA
 PAAFKYFDTTIDRKRYTSTKEVLDATLIHQHSITGLYETRIDLSQLGGD

Exemplary SpEQR Cas9

25 DKKYSIGLAIGTNSVGWAVITDEYKVPSSKKFKVLGNTDRHSIKKNLIGALLFDGETA
 EATRLKRTARRRYTRRKNRICYLQEIFSNEAKVDDSFHRLEESFLVEEDKKHERH
 PIFGNIVDEVAYHEKYPTIYHLRKKLVSTDKAIDLRLIYLALAHMIKFRGHFLIEGDL
 NPDNSDVKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPGE
 KKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQLSKDTYDDLDNLLAQIGDQYADL
 FLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKY
 30 KEIFFDQSNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQRTF
 DNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRFAW
 MTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDKNLPNEKVLPHSLLYEYFTVY
 NELTKVVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDS

VEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTFEDREMIEERL
 KTYAHLFDDKVMKQLRRTYTGWGRLSRKLINGIRDKQSGKTILDFLKSDFANRN
 FMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIIKGILQTVKVVDELVK
 VMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQL
 5 QNEKLYLYLQNGRDMYVDQELDINRLSDYDVDHIVPQSLKDDSIDNKVLTRSDK
 NRGKSDNVPSEEVVKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIK
 RQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSCLVSDFRKDFQFYKV
 REINNYHHAHDAYLNAVVGTLIKKYPKLESEFVYGDYKVDVRKMIAKSEQEIGK
 ATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSM
 10 PQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFESPTVAYSVLVV
 AKVEKGKSKKLKSVKELLGITIMERSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFE
 LENGRKMLASAGELQKGNELALPSKYVNFLYLAHYEKLKGSPEDNEQKQLFVEQ
 HKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLNLGA
 PAAFKYFDTTIDRKQYRSTKEVLDATLIHQHSITGLYETRIDLSQLGGD

15 Residues E1134, Q1334, and R1336 above, which can be mutated from D1134,
 R1334, and T1336 to yield a SpEQR Cas9, are underlined and in bold.

Exemplary SpVQR Cas9

DKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDGETA
 20 EATRLKRTARRRYTRRKRNRCYLQEIFSNEAKVDDSSFHRLEESFLVEEDKKHERH
 PIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKAIDLRIYLAHMIKFRGHFLIEGDL
 NPDNSDVKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPGE
 KKNGLFGNLIALSGLTPNFKNFDLAEDAKLQLSKDTYDDLDNLLAQIGDQYADL
 FLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKY
 25 KEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQRTF
 DNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRFAW
 MTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVY
 NELTKVKYVTEGMRKPAFLSGEQQKAIVDLLKTNRKVTVKQLKEDYFKKIECFDS
 VEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTFEDREMIEERL
 30 KTYAHLFDDKVMKQLRRTYTGWGRLSRKLINGIRDKQSGKTILDFLKSDFANRN
 FMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIIKGILQTVKVVDELVK
 VMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQL
 QNEKLYLYLQNGRDMYVDQELDINRLSDYDVDHIVPQSLKDDSIDNKVLTRSDK
 NRGKSDNVPSEEVVKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIK

RQLVETRQITKHVAQILDLSRMNTKYDENDKLIREVKVITLKSCLVSDFRKDFQFYKV
 REINNYHHAHDAYLNAVVGTLIKKYPKLESEFVYGDYKVDVRKMIAKSEQEIGK
 ATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSM
 PQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWPKKYGGFYSPTVAYSVLVV
 5 AKVEKGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLI~~IKLPKYS~~LF
 LENGRKRMLASAGELQKGNELALPSKYVNFLYASHYEKLKGSPEDNEQKQLFVEQ
 HKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTNLGA
 PAAFKYFDTTIDRKQYRSTKEVLDATLIHQHSITGLYETRIDLSQLGGD

Residues V1134, Q1334, and R1336 above, which can be mutated from D1134,

10 R1334, and T1336 to yield a SpVQR Cas9, are underlined and in bold.

Exemplary SpVRER Cas9

DKKYSIGLAIGTNSVGWAVITDEYKVPSSKKFKVLGNTDRHSIKKNLIGALLFDGETA
 EATRLKRTARRRYTRRKNRICYLQEIFSNEAKVDDSSFFHRLEESFLVEEDKKHERH
 15 PIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKAIDLRLIYLALAHMIKFRGHFLIEGDL
 NPDNSDVKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPGE
 KKNGLFGNLIALSLGLTPNFKNFDLAEDAKLQLSKDTYDDLDNLLAQIGDQYADL
 FLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKY
 KEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQRTF
 20 DNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRFAW
 MTRKSEETITPWNFEVVVDKGASAQSIERMTNFDKNLPNEKVLPHSLLYEYFTVY
 NELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDS
 VEISGVEDRFNASLGYHDLLKIIKDKDFLDNEENEDILEDIVLTLLFEDREMIEERL
 KTYAHLFDDKVMQLKRRRYTGWRGRLSRKLINGIRDQSGKTLDFLKSDFANRN
 25 FMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIIKGILQTVKVVDELVK
 VMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQLKEHPVENTQL
 QNEKLYLYLQNGRDMYVDQELDINRLSDYDVDHIVPQSQLKDDSIDNKVLTRSDK
 NRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIK
 RQLVETRQITKHVAQILDLSRMNTKYDENDKLIREVKVITLKSCLVSDFRKDFQFYKV
 30 REINNYHHAHDAYLNAVVGTLIKKYPKLESEFVYGDYKVDVRKMIAKSEQEIGK
 ATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSM
 PQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWPKKYGGFYSPTVAYSVLVV
 AKVEKGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLI~~IKLPKYS~~LF
 LENGRKRMLASARELQKGNELALPSKYVNFLYASHYEKLKGSPEDNEQKQLFVEQ

HKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGA
PAAFKYFDTTIDR**K**YE**R**STKEVLDATLIHQSQLGGD.

Residues V1134, R1217, Q1334, and R1336 above, which can be mutated from
5 D1134, G1217, R1334, and T1336 to yield a SpVRER Cas9, are underlined and in bold.
The Cas9 nuclease has two functional endonuclease domains: RuvC and HNH. Cas9
undergoes a conformational change upon target binding that positions the nuclease domains
to cleave opposite strands of the target DNA. The end result of Cas9-mediated DNA
cleavage is a double-strand break (DSB) within the target DNA (~3-4 nucleotides upstream
10 of the PAM sequence). The resulting DSB is then repaired by one of two general repair
pathways: (1) the efficient but error-prone non-homologous end joining (NHEJ) pathway; or
(2) the less efficient but high-fidelity homology directed repair (HDR) pathway.

The “efficiency” of non-homologous end joining (NHEJ) and/or homology directed
repair (HDR) can be calculated by any convenient method. For example, in some cases,
15 efficiency can be expressed in terms of percentage of successful HDR. For example, a
surveyor nuclease assay can be used to generate cleavage products and the ratio of products
to substrate can be used to calculate the percentage. For example, a surveyor nuclease
enzyme can be used that directly cleaves DNA containing a newly integrated restriction
sequence as the result of successful HDR. More cleaved substrate indicates a greater percent
20 HDR (a greater efficiency of HDR). As an illustrative example, a fraction (percentage) of
HDR can be calculated using the following equation [(cleavage products)/(substrate plus
cleavage products)] (e.g., (b+c)/(a+b+c), where “a” is the band intensity of DNA substrate
and “b” and “c” are the cleavage products).

In some cases, efficiency can be expressed in terms of percentage of successful
25 NHEJ. For example, a T7 endonuclease I assay can be used to generate cleavage products
and the ratio of products to substrate can be used to calculate the percentage NHEJ. T7
endonuclease I cleaves mismatched heteroduplex DNA which arises from hybridization of
wild-type and mutant DNA strands (NHEJ generates small random insertions or deletions
30 (indels) at the site of the original break). More cleavage indicates a greater percent NHEJ (a
greater efficiency of NHEJ). As an illustrative example, a fraction (percentage) of NHEJ can
be calculated using the following equation: $(1 - (1 - (b+c)/(a+b+c))^{1/2}) \times 100$, where “a” is the
band intensity of DNA substrate and “b” and “c” are the cleavage products (Ran *et. al.*, 2013
Sep. 12; 154(6):1380-9; and Ran *et al.*, Nat Protoc. 2013 Nov.; 8(11): 2281-2308).

The NHEJ repair pathway is the most active repair mechanism, and it frequently causes small nucleotide insertions or deletions (indels) at the DSB site. The randomness of NHEJ-mediated DSB repair has important practical implications, because a population of cells expressing Cas9 and a gRNA or a guide polynucleotide can result in a diverse array of 5 mutations. In most cases, NHEJ gives rise to small indels in the target DNA that result in amino acid deletions, insertions, or frameshift mutations leading to premature stop codons within the open reading frame (ORF) of the targeted gene. The ideal end result is a loss-of-function mutation within the targeted gene.

While NHEJ-mediated DSB repair often disrupts the open reading frame of the gene, 10 homology directed repair (HDR) can be used to generate specific nucleotide changes ranging from a single nucleotide change to large insertions like the addition of a fluorophore or tag.

In order to utilize HDR for gene editing, a DNA repair template containing the 15 desired sequence can be delivered into the cell type of interest with the gRNA(s) and Cas9 or Cas9 nickase. The repair template can contain the desired edit as well as additional homologous sequence immediately upstream and downstream of the target (termed left & right homology arms). The length of each homology arm can be dependent on the size of the change being introduced, with larger insertions requiring longer homology arms. The repair template can be a single-stranded oligonucleotide, double-stranded oligonucleotide, or a 20 double-stranded DNA plasmid. The efficiency of HDR is generally low (<10% of modified alleles) even in cells that express Cas9, gRNA and an exogenous repair template. The efficiency of HDR can be enhanced by synchronizing the cells, since HDR takes place during the S and G2 phases of the cell cycle. Chemically or genetically inhibiting genes involved in NHEJ can also increase HDR frequency.

In some embodiments, Cas9 is a modified Cas9. A given gRNA targeting sequence 25 can have additional sites throughout the genome where partial homology exists. These sites are called off-targets and need to be considered when designing a gRNA. In addition to optimizing gRNA design, CRISPR specificity can also be increased through modifications to Cas9. Cas9 generates double-strand breaks (DSBs) through the combined activity of two nuclease domains, RuvC and HNH. Cas9 nickase, a D10A mutant of SpCas9, retains one 30 nuclease domain and generates a DNA nick rather than a DSB. The nickase system can also be combined with HDR-mediated gene editing for specific gene edits.

In some cases, Cas9 is a variant Cas9 protein. A variant Cas9 polypeptide has an amino acid sequence that is different by one amino acid (e.g., has a deletion, insertion, substitution, fusion) when compared to the amino acid sequence of a wild type Cas9 protein.

In some instances, the variant Cas9 polypeptide has an amino acid change (e.g., deletion, insertion, or substitution) that reduces the nuclease activity of the Cas9 polypeptide. For example, in some instances, the variant Cas9 polypeptide has less than 50%, less than 40%, less than 30%, less than 20%, less than 10%, less than 5%, or less than 1% of the nuclease activity of the corresponding wild-type Cas9 protein. In some cases, the variant Cas9 protein has no substantial nuclease activity. When a subject Cas9 protein is a variant Cas9 protein that has no substantial nuclease activity, it can be referred to as “dCas9.”

5 In some cases, a variant Cas9 protein has reduced nuclease activity. For example, a variant Cas9 protein exhibits less than about 20%, less than about 15%, less than about 10%, less than about 5%, less than about 1%, or less than about 0.1%, of the endonuclease activity of a wild-type Cas9 protein, e.g., a wild-type Cas9 protein.

10 In some cases, a variant Cas9 protein can cleave the complementary strand of a guide target sequence but has reduced ability to cleave the non-complementary strand of a double stranded guide target sequence. For example, the variant Cas9 protein can have a mutation (amino acid substitution) that reduces the function of the RuvC domain. As a non-limiting example, in some embodiments, a variant Cas9 protein has a D10A (aspartate to alanine at amino acid position 10) and can therefore cleave the complementary strand of a double stranded guide target sequence but has reduced ability to cleave the non-complementary strand of a double stranded guide target sequence (thus resulting in a single strand break 15 (SSB) instead of a double strand break (DSB) when the variant Cas9 protein cleaves a double stranded target nucleic acid) (see, for example, Jinek *et al.*, *Science*. 2012 Aug. 17; 337(6096):816-21).

20 In some cases, a variant Cas9 protein can cleave the non-complementary strand of a double stranded guide target sequence but has reduced ability to cleave the complementary strand of the guide target sequence. For example, the variant Cas9 protein can have a mutation (amino acid substitution) that reduces the function of the HNH domain (RuvC/HNH/RuvC domain motifs). As a non-limiting example, in some embodiments, the variant Cas9 protein has an H840A (histidine to alanine at amino acid position 840) mutation and can therefore cleave the non-complementary strand of the guide target sequence but has 25 reduced ability to cleave the complementary strand of the guide target sequence (thus resulting in a SSB instead of a DSB when the variant Cas9 protein cleaves a double stranded guide target sequence). Such a Cas9 protein has a reduced ability to cleave a guide target sequence (e.g., a single stranded guide target sequence) but retains the ability to bind a guide target sequence (e.g., a single stranded guide target sequence).

In some cases, a variant Cas9 protein has a reduced ability to cleave both the complementary and the non-complementary strands of a double stranded target DNA. As a non-limiting example, in some cases, the variant Cas9 protein harbors both the D10A and the H840A mutations such that the polypeptide has a reduced ability to cleave both the 5 complementary and the non-complementary strands of a double stranded target DNA. Such a Cas9 protein has a reduced ability to cleave a target DNA (e.g., a single stranded target DNA) but retains the ability to bind a target DNA (e.g., a single stranded target DNA).

As another non-limiting example, in some cases, the variant Cas9 protein harbors W476A and W1126A mutations such that the polypeptide has a reduced ability to cleave a 10 target DNA. Such a Cas9 protein has a reduced ability to cleave a target DNA (e.g., a single stranded target DNA) but retains the ability to bind a target DNA (e.g., a single stranded target DNA).

As another non-limiting example, in some cases, the variant Cas9 protein harbors P475A, W476A, N477A, D1125A, W1126A, and D1127A mutations such that the 15 polypeptide has a reduced ability to cleave a target DNA. Such a Cas9 protein has a reduced ability to cleave a target DNA (e.g., a single stranded target DNA) but retains the ability to bind a target DNA (e.g., a single stranded target DNA).

As another non-limiting example, in some cases, the variant Cas9 protein harbors H840A, W476A, and W1126A, mutations such that the polypeptide has a reduced ability to 20 cleave a target DNA. Such a Cas9 protein has a reduced ability to cleave a target DNA (e.g., a single stranded target DNA) but retains the ability to bind a target DNA (e.g., a single stranded target DNA). As another non-limiting example, in some cases, the variant Cas9 protein harbors H840A, D10A, W476A, and W1126A, mutations such that the polypeptide has a reduced ability to cleave a target DNA. Such a Cas9 protein has a reduced ability to 25 cleave a target DNA (e.g., a single stranded target DNA) but retains the ability to bind a target DNA (e.g., a single stranded target DNA). In some embodiments, the variant Cas9 has restored catalytic His residue at position 840 in the Cas9 HNH domain (A840H).

As another non-limiting example, in some cases, the variant Cas9 protein harbors, 30 H840A, P475A, W476A, N477A, D1125A, W1126A, and D1127A mutations such that the polypeptide has a reduced ability to cleave a target DNA. Such a Cas9 protein has a reduced ability to cleave a target DNA (e.g., a single stranded target DNA) but retains the ability to bind a target DNA (e.g., a single stranded target DNA). As another non-limiting example, in some cases, the variant Cas9 protein harbors D10A, H840A, P475A, W476A, N477A, D1125A, W1126A, and D1127A mutations such that the polypeptide has a reduced ability to

cleave a target DNA. Such a Cas9 protein has a reduced ability to cleave a target DNA (e.g., a single stranded target DNA) but retains the ability to bind a target DNA (e.g., a single stranded target DNA). In some cases, when a variant Cas9 protein harbors W476A and W1126A mutations or when the variant Cas9 protein harbors P475A, W476A, N477A,

5 D1125A, W1126A, and D1127A mutations, the variant Cas9 protein does not bind efficiently to a PAM sequence. Thus, in some such cases, when such a variant Cas9 protein is used in a method of binding, the method does not require a PAM sequence. In other words, in some cases, when such a variant Cas9 protein is used in a method of binding, the method can include a guide RNA, but the method can be performed in the absence of a PAM sequence
10 (and the specificity of binding is therefore provided by the targeting segment of the guide RNA). Other residues can be mutated to achieve the above effects (i.e., inactivate one or the other nuclease portions). As non-limiting examples, residues D10, G12, G17, E762, H840, N854, N863, H982, H983, A984, D986, and/or A987 can be altered (i.e., substituted). Also, mutations other than alanine substitutions are suitable.

15 In some embodiments, a variant Cas9 protein that has reduced catalytic activity (e.g., when a Cas9 protein has a D10, G12, G17, E762, H840, N854, N863, H982, H983, A984, D986, and/or a A987 mutation, e.g., D10A, G12A, G17A, E762A, H840A, N854A, N863A, H982A, H983A, A984A, and/or D986A), the variant Cas9 protein can still bind to target DNA in a site-specific manner (because it is still guided to a target DNA sequence by a guide
20 RNA) as long as it retains the ability to interact with the guide RNA.

In some embodiments, the variant Cas protein can be spCas9, spCas9-VRQR, spCas9-VRER, xCas9 (sp), saCas9, saCas9-KKH, spCas9-MQKSER, spCas9-LRKIQK, or spCas9-LRVSQI.

25 Alternatives to *S. pyogenes* Cas9 can include RNA-guided endonucleases from the Cpf1 family that display cleavage activity in mammalian cells. CRISPR from *Prevotella* and *Francisella* 1 (CRISPR/Cpf1) is a DNA-editing technology analogous to the CRISPR/Cas9 system. Cpf1 is an RNA-guided endonuclease of a class II CRISPR/Cas system. This acquired immune mechanism is found in *Prevotella* and *Francisella* bacteria. Cpf1 genes are associated with the CRISPR locus, coding for an endonuclease that use a guide RNA to find
30 and cleave viral DNA. Cpf1 is a smaller and simpler endonuclease than Cas9, overcoming some of the CRISPR/Cas9 system limitations. Unlike Cas9 nucleases, the result of Cpf1-mediated DNA cleavage is a double-strand break with a short 3' overhang. Cpf1's staggered cleavage pattern can open up the possibility of directional gene transfer, analogous to traditional restriction enzyme cloning, which can increase the efficiency of gene editing.

Like the Cas9 variants and orthologues described above, Cpf1 can also expand the number of sites that can be targeted by CRISPR to AT-rich regions or AT-rich genomes that lack the NGG PAM sites favored by SpCas9. The Cpf1 locus contains a mixed alpha/beta domain, a RuvC-I followed by a helical region, a RuvC-II and a zinc finger-like domain. The Cpf1 5 protein has a RuvC-like endonuclease domain that is similar to the RuvC domain of Cas9. Furthermore, Cpf1 does not have a HNH endonuclease domain, and the N-terminal of Cpf1 does not have the alpha-helical recognition lobe of Cas9. Cpf1 CRISPR-Cas domain architecture shows that Cpf1 is functionally unique, being classified as Class 2, type V 10 CRISPR system. The Cpf1 loci encode Cas1, Cas2 and Cas4 proteins more similar to types I and III than from type II systems. Functional Cpf1 doesn't need the trans-activating CRISPR RNA (tracrRNA), therefore, only CRISPR (crRNA) is required. This benefits genome 15 editing because Cpf1 is not only smaller than Cas9, but also it has a smaller sgRNA molecule (proximately half as many nucleotides as Cas9). The Cpf1-crRNA complex cleaves target DNA or RNA by identification of a protospacer adjacent motif 5'-YTN-3' in contrast to the G-rich PAM targeted by Cas9. After identification of PAM, Cpf1 introduces a sticky-end-like 20 DNA double- stranded break of 4 or 5 nucleotides overhang.

Fusion proteins comprising two napDNAbp, a Deaminase Domain

Some aspects of the disclosure provide fusion proteins comprising a napDNAbp 25 domain having nickase activity (e.g., nCas domain) and a catalytically inactive napDNAbp (e.g., dCas domain) and a nucleobase editor (e.g., adenosine deaminase domain, cytidine deaminase domain), where at least the napDNAbp domains are joined by a linker. It should be appreciated that the Cas domains may be any of the Cas domains or Cas proteins (e.g., dCas9 and nCas9) provided herein. In some embodiments, any of the Cas domains, DNA 30 binding protein domains, or Cas proteins include, without limitation, Cas9 (e.g., dCas9 and nCas9), Cas12a/Cpf1, Cas12b/C2cl, Cas12c/C2c3, Cas12d/CasY, Cas12e/CasX, Cas12g, Cas12h, and Cas12i. One example of a programmable polynucleotide-binding protein that has different PAM specificity than Cas9 is Clustered Regularly Interspaced Short Palindromic Repeats from *Prevotella* and *Francisella*1 (Cpf1). Similar to Cas9, Cpf1 is also a 35 class 2 CRISPR effector. For example and without limitation, in some embodiments, the fusion protein comprises the structure, where the deaminase is adenosine deaminase or cytidine deaminase:

NH₂-[deaminase]-[nCas domain]-[dCas domain]-COOH;

NH₂-[deaminase]-[dCas domain]-[nCas domain]-COOH;
NH₂-[nCas domain]-[dCas domain]-[deaminase]-COOH;
NH₂-[dCas domain]-[nCas domain]-[deaminase]-COOH;
NH₂-[nCas domain]-[deaminase]-[dCas domain]-COOH;
5 NH₂-[dCas domain]-[deaminase]-[nCas domain]-COOH;

In some embodiments, the “-” used in the general architecture above indicates the presence of an optional linker. In some embodiments, the deaminase and a napDNAAbp (e.g., Cas domain) are not joined by a linker sequence, but are directly fused. In some 10 embodiments, a linker is present between the deaminase domain and the napDNAAbp. In some embodiments, the deaminase or other nucleobase editor is directly fused to dCas and a linker joins dCas and nCas9. In some embodiments, the deaminase and the napDNAAbps are fused via any of the linkers provided herein. For example, in some embodiments the deaminase and the napDNAAbp are fused via any of the linkers provided below in the section 15 entitled “Linkers”. In some embodiments, the dCas domain and the deaminase are immediately adjacent and the nCas domain is joined to these domains (either 5’ or 3’) via a linker.

Fusion proteins with Internal Insertions

20 The disclosure provides fusion proteins comprising a heterologous polypeptide fused to a nucleic acid programmable nucleic acid binding protein, for example, a napDNAAbp. A heterologous polypeptide can be a polypeptide that is not found in the native or wild-type napDNAAbp polypeptide sequence. The heterologous polypeptide can be fused to the napDNAAbp at a C-terminal end of the napDNAAbp, an N-terminal end of the napDNAAbp, or 25 inserted at an internal location of the napDNAAbp. In some embodiments, the heterologous polypeptide is inserted at an internal location of the napDNAAbp.

30 In some embodiments, the heterologous polypeptide is a deaminase or a functional fragment thereof. For example, a fusion protein can comprise a deaminase flanked by an N-terminal fragment and a C-terminal fragment of a Cas9 polypeptide. The deaminase in a fusion protein can be a cytidine deaminase. The deaminase in a fusion protein can be an adenosine deaminase.

The deaminase can be a circular permutant deaminase. For example, the deaminase can be a circular permutant adenosine deaminase or a circular permutant cytidine deaminase. In some embodiments, the deaminase is a circular permutant TadA, circularly permuted at

amino acid residue 116 as numbered in the TadA reference sequence. In some embodiments, the deaminase is a circular permutant TadA, circularly permuted at amino acid residue 136 as numbered in the TadA reference sequence. In some embodiments, the deaminase is a circular permutant TadA, circularly permuted at amino acid residue 65 as numbered in the 5 TadA reference sequence.

The fusion protein can comprise more than one deaminase. The fusion protein can comprise, for example, 1, 2, 3, 4, 5 or more deaminases. In some embodiments, the fusion protein comprises one deaminase. In some embodiments, the fusion protein comprises two deaminases. The two or more deaminases in a fusion protein can be an adenosine deaminase, 10 cytidine deaminase, or a combination thereof. The two or more deaminases can be homodimers. The two or more deaminases can be heterodimers. The two or more deaminases can be inserted in tandem in the napDNAbp. In some embodiments, the two or more deaminases may not be in tandem in the napDNAbp.

In some embodiments, the napDNAbp in the fusion protein is a Cas9 polypeptide or a 15 fragment thereof. The Cas9 polypeptide can be a variant Cas9 polypeptide. In some embodiments, the Cas9 polypeptide is a Cas9 nickase (nCas9) polypeptide or a fragment thereof. In some embodiments, the Cas9 polypeptide is a nuclease dead Cas9 (dCas9) polypeptide or a fragment thereof. The Cas9 polypeptide in a fusion protein can be a full-length Cas9 polypeptide. In some cases, the Cas9 polypeptide in a fusion protein may not be 20 a full length Cas9 polypeptide. The Cas9 polypeptide can be truncated, for example, at a N-terminal or C-terminal end relative to a naturally-occurring Cas9 protein. The Cas9 polypeptide can be a circularly permuted Cas9 protein.

The Cas9 polypeptide can be a fragment, a portion, or a domain of a Cas9 polypeptide, that is still capable of binding the target polynucleotide and a guide nucleic acid sequence.

25 In some embodiments, the Cas9 polypeptide is a *Streptococcus pyogenes* Cas9 (SpCas9), *Staphylococcus aureus* Cas9 (SaCas9), *Streptococcus thermophilus* 1 Cas9 (St1Cas9), or fragments or variants thereof.

The Cas9 polypeptide of a fusion protein can comprise an amino acid sequence that is at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, 30 at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to a naturally-occurring Cas9 polypeptide.

The Cas9 polypeptide of a fusion protein can comprise an amino acid sequence that is at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%,

at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to the Cas9 amino acid sequence set forth in SEQ ID NO: 1.

The heterologous polypeptide (e.g., deaminase) can be inserted in the napDNAbp (e.g., Cas9) at a suitable location, for example, such that the napDNAbp retains its ability to bind the target polynucleotide and a guide nucleic acid. A deaminase can be inserted into a napDNAbp without compromising function of the deaminase (e.g., base editing activity) or the napDNAbp (e.g., ability to bind to target nucleic acid and guide nucleic acid). A deaminase can be inserted in the napDNAbp at, for example, a disordered region or a region comprising a high temperature factor or B-factor as shown by crystallographic studies.

Regions of a protein that are less ordered, disordered, or unstructured, for example solvent exposed regions and loops, can be used for insertion without compromising structure or function. A deaminase can be inserted in the napDNAbp in a flexible loop region or a solvent-exposed region. In some embodiments, the deaminase is inserted in a flexible loop of the Cas9 polypeptide.

In some embodiments, the insertion location of a deaminase is determined by B-factor analysis of the crystal structure of Cas9 polypeptide. In some embodiments, the deaminase is inserted in regions of the Cas9 polypeptide comprising higher than average B-factors (e.g., higher B factors compared to the total protein or the protein domain comprising the disordered region). B-factor or temperature factor can indicate the fluctuation of atoms from their average position (for example, as a result of temperature-dependent atomic vibrations or static disorder in a crystal lattice). A high B-factor (e.g., higher than average B-factor) for backbone atoms can be indicative of a region with relatively high local mobility. Such a region can be used for inserting a deaminase without compromising structure or function. A deaminase can be inserted at a location with a residue having a $\text{C}\alpha$ atom with a B-factor that is 50%, 60%, 70%, 80%, 90%, 100%, 110%, 120%, 130%, 140%, 150%, 160%, 170%, 180%, 190%, 200%, or greater than 200% more than the average B-factor for the total protein. A deaminase can be inserted at a location with a residue having a $\text{C}\alpha$ atom with a B-factor that is 50%, 60%, 70%, 80%, 90%, 100%, 110%, 120%, 130%, 140%, 150%, 160%, 170%, 180%, 190%, 200% or greater than 200% more than the average B-factor for a Cas9 protein domain comprising the residue. Cas9 polypeptide positions comprising a higher than average B-factor can include, for example, residues 768, 792, 1052, 1015, 1022, 1026, 1029, 1067, 1040, 1054, 1068, 1246, 1247, and 1248 as numbered in SEQ ID No:1. Cas9 polypeptide regions comprising a higher than average B-factor can include, for example, residues 792-872, 792-906, and 2-791 as numbered in SEQ ID No:1.

A heterologous polypeptide (e.g., deaminase) can be inserted in the napDNAbp at an amino acid residue selected from the group consisting of: 768, 791, 792, 1015, 1016, 1022, 1023, 1026, 1029, 1040, 1052, 1054, 1067, 1068, 1069, 1246, 1247, and 1248 as numbered in SEQ ID NO: 1, or a corresponding amino acid residue in another Cas9 polypeptide. In some 5 embodiments, the heterologous polypeptide is inserted between amino acid positions 768-769, 791-792, 792-793, 1015-1016, 1022-1023, 1026-1027, 1029-1030, 1040-1041, 1052-1053, 1054-1055, 1067-1068, 1068-1069, 1247-1248, or 1248-1249 as numbered in SEQ ID NO: 1 or corresponding amino acid positions thereof. In some embodiments, the heterologous polypeptide is inserted between amino acid positions 769-770, 792-793, 793-794, 1016-1017, 10 1023-1024, 1027-1028, 1030-1031, 1041-1042, 1053-1054, 1055-1056, 1068-1069, 1069-1070, 1248-1249, or 1249-1250 as numbered in SEQ ID NO: 1 or corresponding amino acid positions thereof. In some embodiments, the heterologous polypeptide replaces an amino acid residue selected from the group consisting of: 768, 791, 792, 1015, 1016, 1022, 1023, 1026, 1029, 1040, 1052, 1054, 1067, 1068, 1069, 1246, 1247, and 1248 as numbered in SEQ ID 15 NO: 1, or a corresponding amino acid residue in another Cas9 polypeptide. It should be understood that the reference to SEQ ID NO: 1 with respect to insertion positions is for illustrative purpose. The insertions as discussed herein are not limited to the Cas9 polypeptide sequence of SEQ ID NO: 1, but include insertion at corresponding locations in variant Cas9 polypeptides, for example a Cas9 nickase (nCas9), nuclease dead Cas9 (dCas9), a Cas9 20 variant lacking a nuclease domain, a truncated Cas9, or a Cas9 domain lacking partial or complete HNH domain.

A heterologous polypeptide (e.g., deaminase) can be inserted in the napDNAbp at an amino acid residue selected from the group consisting of: 768, 792, 1022, 1026, 1040, 1068, and 1247 as numbered in SEQ ID NO: 1, or a corresponding amino acid residue in another 25 Cas9 polypeptide. In some embodiments, the heterologous polypeptide is inserted between amino acid positions 768-769, 792-793, 1022-1023, 1026-1027, 1029-1030, 1040-1041, 1068-1069, or 1247-1248 as numbered in SEQ ID NO: 1 or corresponding amino acid positions thereof. In some embodiments, the heterologous polypeptide is inserted between amino acid positions 769-770, 793-794, 1023-1024, 1027-1028, 1030-1031, 1041-1042, 30 1069-1070, or 1248-1249 as numbered in SEQ ID NO: 1 or corresponding amino acid positions thereof. In some embodiments, the heterologous polypeptide replaces an amino acid residue selected from the group consisting of: 768, 792, 1022, 1026, 1040, 1068, and 1247 as numbered in SEQ ID NO: 1, or a corresponding amino acid residue in another Cas9 polypeptide.

A heterologous polypeptide (e.g., deaminase) can be inserted in the napDNAbp at an amino acid residue shown in Fig. 4, Fig. 5, Fig. 6, or Fig. 7, or a corresponding amino acid residue in another Cas9 polypeptide. A heterologous polypeptide (e.g., deaminase) can be inserted in the napDNAbp at an amino acid residue selected from the group consisting of:

5 1002, 1003, 1025, 1052-1056, 1242-1247, 1061-1077, 943-947, 686-691, 569-578, 530-539, and 1060-1077 as numbered in SEQ ID NO: 1, or a corresponding amino acid residue in another Cas9 polypeptide. The deaminase can be inserted at the N-terminus or the C-terminus of the residue or replace the residue. In some embodiments, the deaminase is inserted at the C-terminus of the residue.

10 In some embodiments, an ABE (e.g., TadA) is inserted at an amino acid residue selected from the group consisting of: 1015, 1022, 1029, 1040, 1068, 1247, 1054, 1026, 768, 1067, 1248, 1052, and 1246 as numbered in SEQ ID NO: 1, or a corresponding amino acid residue in another Cas9 polypeptide. In some embodiments, an ABE (e.g., TadA) is inserted in place of residues 792-872, 792-906, or 2-791 as numbered in SEQ ID NO: 1, or a corresponding amino acid residue in another Cas9 polypeptide. In some embodiments, the ABE is inserted at the N-terminus of an amino acid selected from the group consisting of: 1015, 1022, 1029, 1040, 1068, 1247, 1054, 1026, 768, 1067, 1248, 1052, and 1246 as numbered in SEQ ID NO: 1, or a corresponding amino acid residue in another Cas9 polypeptide. In some embodiments, the ABE is inserted at the C-terminus of an amino acid selected from the group consisting of: 1015, 1022, 1029, 1040, 1068, 1247, 1054, 1026, 768, 1067, 1248, 1052, and 1246 as numbered in SEQ ID NO: 1, or a corresponding amino acid residue in another Cas9 polypeptide. In some embodiments, the ABE is inserted to replace an amino acid selected from the group consisting of: 1015, 1022, 1029, 1040, 1068, 1247, 1054, 1026, 768, 1067, 1248, 1052, and 1246 as numbered in SEQ ID NO: 1, or a corresponding amino acid residue in another Cas9 polypeptide.

15 In some embodiments, a CBE (e.g., APOBEC1) is inserted at an amino acid residue selected from the group consisting of: 1016, 1023, 1029, 1040, 1069, and 1247 as numbered in SEQ ID NO: 1, or a corresponding amino acid residue in another Cas9 polypeptide. In some embodiments, the ABE is inserted at the N-terminus of an amino acid selected from the group consisting of: 1016, 1023, 1029, 1040, 1069, and 1247 as numbered in SEQ ID NO: 1, or a corresponding amino acid residue in another Cas9 polypeptide. In some embodiments, the ABE is inserted at the C-terminus of an amino acid selected from the group consisting of: 1016, 1023, 1029, 1040, 1069, and 1247 as numbered in SEQ ID NO: 1, or a corresponding amino acid residue in another Cas9 polypeptide. In some embodiments, the ABE is inserted

to replace an amino acid selected from the group consisting of: 1016, 1023, 1029, 1040, 1069, and 1247 as numbered in SEQ ID NO: 1, or a corresponding amino acid residue in another Cas9 polypeptide.

In some embodiments, the deaminase is inserted at amino acid residue 768 as numbered in SEQ ID NO: 1, or a corresponding amino acid residue in another Cas9 polypeptide. In some embodiments, the ABE is inserted at the N-terminus of amino acid 768 as numbered in SEQ ID NO: 1, or a corresponding amino acid residue in another Cas9 polypeptide. In some embodiments, the ABE is inserted at the C-terminus of amino acid 768 as numbered in SEQ ID NO: 1, or a corresponding amino acid residue in another Cas9 polypeptide. In some embodiments, the ABE is inserted to replace amino acid 768 as numbered in SEQ ID NO: 1, or a corresponding amino acid residue in another Cas9 polypeptide.

In some embodiments, the deaminase is inserted at amino acid residue 791 as numbered in SEQ ID NO: 1, or a corresponding amino acid residue in another Cas9 polypeptide. In some embodiments, the ABE is inserted at the N-terminus of amino acid 791 as numbered in SEQ ID NO: 1, or a corresponding amino acid residue in another Cas9 polypeptide. In some embodiments, the ABE is inserted at the C-terminus of amino acid 791 as numbered in SEQ ID NO: 1, or a corresponding amino acid residue in another Cas9 polypeptide. In some embodiments, the ABE is inserted to replace amino acid 791 as numbered in SEQ ID NO: 1, or a corresponding amino acid residue in another Cas9 polypeptide.

In some embodiments, the deaminase is inserted at amino acid residue 792 as numbered in SEQ ID NO: 1, or a corresponding amino acid residue in another Cas9 polypeptide. In some embodiments, the ABE is inserted at the N-terminus of amino acid 792 as numbered in SEQ ID NO: 1, or a corresponding amino acid residue in another Cas9 polypeptide. In some embodiments, the ABE is inserted at the C-terminus of amino acid 792 as numbered in SEQ ID NO: 1, or a corresponding amino acid residue in another Cas9 polypeptide. In some embodiments, the ABE is inserted to replace amino acid 792 as numbered in SEQ ID NO: 1, or a corresponding amino acid residue in another Cas9 polypeptide.

In some embodiments, the deaminase is inserted at amino acid residue 1016 as numbered in SEQ ID NO: 1, or a corresponding amino acid residue in another Cas9 polypeptide. In some embodiments, the ABE is inserted at the N-terminus of amino acid 1016 as numbered in SEQ ID NO: 1, or a corresponding amino acid residue in another Cas9

polypeptide. In some embodiments, the ABE is inserted at the C-terminus of amino acid 1016 as numbered in SEQ ID NO: 1, or a corresponding amino acid residue in another Cas9 polypeptide. In some embodiments, the ABE is inserted to replace amino acid 1016 as numbered in SEQ ID NO: 1, or a corresponding amino acid residue in another Cas9 polypeptide.

5

In some embodiments, the deaminase is inserted at amino acid residue 1022 as numbered in SEQ ID NO: 1, or a corresponding amino acid residue in another Cas9 polypeptide. In some embodiments, the ABE is inserted at the N-terminus of amino acid 1022 as numbered in SEQ ID NO: 1, or a corresponding amino acid residue in another Cas9

10 polypeptide. In some embodiments, the ABE is inserted at the C-terminus of amino acid 1022 as numbered in SEQ ID NO: 1, or a corresponding amino acid residue in another Cas9 polypeptide. In some embodiments, the ABE is inserted to replace amino acid 1022 as numbered in SEQ ID NO: 1, or a corresponding amino acid residue in another Cas9 polypeptide.

15 In some embodiments, the deaminase is inserted at amino acid residue 1023 as numbered in SEQ ID NO: 1, or a corresponding amino acid residue in another Cas9 polypeptide. In some embodiments, the ABE is inserted at the N-terminus of amino acid 1023 as numbered in SEQ ID NO: 1, or a corresponding amino acid residue in another Cas9 polypeptide. In some embodiments, the ABE is inserted at the C-terminus of amino acid 1023 as numbered in SEQ ID NO: 1, or a corresponding amino acid residue in another Cas9 polypeptide. In some embodiments, the ABE is inserted to replace amino acid 1023 as numbered in SEQ ID NO: 1, or a corresponding amino acid residue in another Cas9 polypeptide.

20 In some embodiments, the deaminase is inserted at amino acid residue 1026 as numbered in SEQ ID NO: 1, or a corresponding amino acid residue in another Cas9 polypeptide. In some embodiments, the ABE is inserted at the N-terminus of amino acid 1026 as numbered in SEQ ID NO: 1, or a corresponding amino acid residue in another Cas9 polypeptide. In some embodiments, the ABE is inserted at the C-terminus of amino acid 1026 as numbered in SEQ ID NO: 1, or a corresponding amino acid residue in another Cas9 polypeptide. In some embodiments, the ABE is inserted to replace amino acid 1026 as numbered in SEQ ID NO: 1, or a corresponding amino acid residue in another Cas9 polypeptide.

30

In some embodiments, the deaminase is inserted at amino acid residue 1029 as numbered in SEQ ID NO: 1, or a corresponding amino acid residue in another Cas9

polypeptide. In some embodiments, the ABE is inserted at the N-terminus of amino acid 1029 as numbered in SEQ ID NO: 1, or a corresponding amino acid residue in another Cas9 polypeptide. In some embodiments, the ABE is inserted at the C-terminus of amino acid 1029 as numbered in SEQ ID NO: 1, or a corresponding amino acid residue in another Cas9

5 polypeptide. In some embodiments, the ABE is inserted to replace amino acid 1029 as numbered in SEQ ID NO: 1, or a corresponding amino acid residue in another Cas9 polypeptide.

In some embodiments, the deaminase is inserted at amino acid residue 1040 as numbered in SEQ ID NO: 1, or a corresponding amino acid residue in another Cas9

10 polypeptide. In some embodiments, the ABE is inserted at the N-terminus of amino acid 140 as numbered in SEQ ID NO: 1, or a corresponding amino acid residue in another Cas9 polypeptide. In some embodiments, the ABE is inserted at the C-terminus of amino acid 1040 as numbered in SEQ ID NO: 1, or a corresponding amino acid residue in another Cas9 polypeptide. In some embodiments, the ABE is inserted to replace amino acid 1040 as numbered in SEQ ID NO: 1, or a corresponding amino acid residue in another Cas9

15 polypeptide.

In some embodiments, the deaminase is inserted at amino acid residue 1052 as numbered in SEQ ID NO: 1, or a corresponding amino acid residue in another Cas9 polypeptide. In some embodiments, the ABE is inserted at the N-terminus of amino acid 1052 as numbered in SEQ ID NO: 1, or a corresponding amino acid residue in another Cas9

20 polypeptide. In some embodiments, the ABE is inserted at the C-terminus of amino acid 1052 as numbered in SEQ ID NO: 1, or a corresponding amino acid residue in another Cas9 polypeptide. In some embodiments, the ABE is inserted to replace amino acid 1052 as numbered in SEQ ID NO: 1, or a corresponding amino acid residue in another Cas9

25 polypeptide.

In some embodiments, the deaminase is inserted at amino acid residue 1054 as numbered in SEQ ID NO: 1, or a corresponding amino acid residue in another Cas9 polypeptide. In some embodiments, the ABE is inserted at the N-terminus of amino acid 1054 as numbered in SEQ ID NO: 1, or a corresponding amino acid residue in another Cas9

30 polypeptide. In some embodiments, the ABE is inserted at the C-terminus of amino acid 1054 as numbered in SEQ ID NO: 1, or a corresponding amino acid residue in another Cas9 polypeptide. In some embodiments, the ABE is inserted to replace amino acid 1054 as numbered in SEQ ID NO: 1, or a corresponding amino acid residue in another Cas9 polypeptide.

In some embodiments, the deaminase is inserted at amino acid residue 1067 as numbered in SEQ ID NO: 1, or a corresponding amino acid residue in another Cas9 polypeptide. In some embodiments, the ABE is inserted at the N-terminus of amino acid 1067 as numbered in SEQ ID NO: 1, or a corresponding amino acid residue in another Cas9 polypeptide. In some embodiments, the ABE is inserted at the C-terminus of amino acid 1067 as numbered in SEQ ID NO: 1, or a corresponding amino acid residue in another Cas9 polypeptide. In some embodiments, the ABE is inserted to replace amino acid 1067 as numbered in SEQ ID NO: 1, or a corresponding amino acid residue in another Cas9 polypeptide.

10 In some embodiments, the deaminase is inserted at amino acid residue 1068 as numbered in SEQ ID NO: 1, or a corresponding amino acid residue in another Cas9 polypeptide. In some embodiments, the ABE is inserted at the N-terminus of amino acid 1068 as numbered in SEQ ID NO: 1, or a corresponding amino acid residue in another Cas9 polypeptide. In some embodiments, the ABE is inserted at the C-terminus of amino acid 1068 as numbered in SEQ ID NO: 1, or a corresponding amino acid residue in another Cas9 polypeptide. In some embodiments, the ABE is inserted to replace amino acid 1068 as numbered in SEQ ID NO: 1, or a corresponding amino acid residue in another Cas9 polypeptide.

15 In some embodiments, the deaminase is inserted at amino acid residue 1069 as numbered in SEQ ID NO: 1, or a corresponding amino acid residue in another Cas9 polypeptide. In some embodiments, the ABE is inserted at the N-terminus of amino acid 1069 as numbered in SEQ ID NO: 1, or a corresponding amino acid residue in another Cas9 polypeptide. In some embodiments, the ABE is inserted at the C-terminus of amino acid 1069 as numbered in SEQ ID NO: 1, or a corresponding amino acid residue in another Cas9 polypeptide. In some embodiments, the ABE is inserted to replace amino acid 1069 as numbered in SEQ ID NO: 1, or a corresponding amino acid residue in another Cas9 polypeptide.

20 In some embodiments, the deaminase is inserted at amino acid residue 1246 as numbered in SEQ ID NO: 1, or a corresponding amino acid residue in another Cas9 polypeptide. In some embodiments, the ABE is inserted at the N-terminus of amino acid 1246 as numbered in SEQ ID NO: 1, or a corresponding amino acid residue in another Cas9 polypeptide. In some embodiments, the ABE is inserted at the C-terminus of amino acid 1246 as numbered in SEQ ID NO: 1, or a corresponding amino acid residue in another Cas9 polypeptide. In some embodiments, the ABE is inserted to replace amino acid 1246 as

numbered in SEQ ID NO: 1, or a corresponding amino acid residue in another Cas9 polypeptide.

In some embodiments, the deaminase is inserted at amino acid residue 1247 as numbered in SEQ ID NO: 1, or a corresponding amino acid residue in another Cas9 polypeptide. In some embodiments, the ABE is inserted at the N-terminus of amino acid 1247 as numbered in SEQ ID NO: 1, or a corresponding amino acid residue in another Cas9 polypeptide. In some embodiments, the ABE is inserted at the C-terminus of amino acid 1247 as numbered in SEQ ID NO: 1, or a corresponding amino acid residue in another Cas9 polypeptide. In some embodiments, the ABE is inserted to replace amino acid 1247 as numbered in SEQ ID NO: 1, or a corresponding amino acid residue in another Cas9 polypeptide.

In some embodiments, the deaminase is inserted at amino acid residue 1248 as numbered in SEQ ID NO: 1, or a corresponding amino acid residue in another Cas9 polypeptide. In some embodiments, the ABE is inserted at the N-terminus of amino acid 1248 as numbered in SEQ ID NO: 1, or a corresponding amino acid residue in another Cas9 polypeptide. In some embodiments, the ABE is inserted at the C-terminus of amino acid 1248 as numbered in SEQ ID NO: 1, or a corresponding amino acid residue in another Cas9 polypeptide. In some embodiments, the ABE is inserted to replace amino acid 1248 as numbered in SEQ ID NO: 1, or a corresponding amino acid residue in another Cas9 polypeptide.

In some embodiments, a heterologous polypeptide (e.g., deaminase) is inserted in a flexible loop of a Cas9 polypeptide. The flexible loop portions can be selected from the group consisting of 530-537, 569-570, 686-691, 943-947, 1002-1025, 1052-1077, 1232-1247, or 1298-1300 as numbered in SEQ ID NO: 1, or a corresponding amino acid residue in another Cas9 polypeptide. The flexible loop portions can be selected from the group consisting of: 1-529, 538-568, 580-685, 692-942, 948-1001, 1026-1051, 1078-1231, or 1248-1297 as numbered in SEQ ID NO: 1, or a corresponding amino acid residue in another Cas9 polypeptide.

A heterologous polypeptide (e.g., deaminase) can be inserted into a Cas9 polypeptide region corresponding to amino acid residues: 1017-1069, 1242-1247, 1052-1056, 1060-1077, 1002 – 1003, 943-947, 530-537, 568-579, 686-691, 1242-1247, 1298 – 1300, 1066-1077, 1052-1056, or 1060-1077 as numbered in SEQ ID NO: 1, or a corresponding amino acid residue in another Cas9 polypeptide.

A heterologous polypeptide (e.g., deaminase) can be inserted in place of a deleted region of a Cas9 polypeptide. The deleted region can correspond to an N-terminal or C-terminal portion of the Cas9 polypeptide. In some embodiments, the deleted region corresponds to residues 792-872 as numbered in SEQ ID NO: 1, or a corresponding amino acid residue in another Cas9 polypeptide. In some embodiments, the deleted region corresponds to residues 792-906 as numbered in SEQ ID NO: 1, or a corresponding amino acid residue in another Cas9 polypeptide. In some embodiments, the deleted region corresponds to residues 2-791 as numbered in SEQ ID NO: 1, or a corresponding amino acid residue in another Cas9 polypeptide. In some embodiments, the deleted region correspond to residues 1017-1069 as numbered in SEQ ID NO: 1, or corresponding amino acid residues thereof.

A heterologous polypeptide (e.g., deaminase) can be inserted within a structural or functional domain of a Cas9 polypeptide. A heterologous polypeptide (e.g., deaminase) can be inserted between two structural or functional domains of a Cas9 polypeptide. A heterologous polypeptide (e.g., deaminase) can be inserted in place of a structural or functional domain of a Cas9 polypeptide, for example, after deleting the domain from the Cas9 polypeptide. The structural or functional domains of a Cas9 polypeptide can include, for example, RuvC I, RuvC II, RuvC III, Rec1, Rec2, PI, or HNH.

In some embodiments, the Cas9 polypeptide lacks one or more domains selected from the group consisting of: RuvC I, RuvC II, RuvC III, Rec1, Rec2, PI, or HNH domain. In some embodiments, the Cas9 polypeptide lacks a nuclease domain. In some embodiments, the Cas9 polypeptide lacks a HNH domain. In some embodiments, the Cas9 polypeptide lacks a portion of the HNH domain such that the Cas9 polypeptide has reduced or abolished HNH activity.

In some embodiments, the Cas9 polypeptide comprises a deletion of the nuclease domain and the deaminase is inserted to replace the nuclease domain. In some embodiments, the HNH domain is deleted and the deaminase is inserted in its place. In some embodiments, one or more of the RuvC domains is deleted and the deaminase is inserted in its place.

A fusion protein comprising a heterologous polypeptide can be flanked by a N-terminal and a C-terminal fragment of a napDNAbp. In some embodiments, the fusion protein comprises a deaminase flanked by a N-terminal fragment and a C-terminal fragment of a Cas9 polypeptide. The N terminal fragment or the C terminal fragment can bind the target polynucleotide sequence. The C-terminus of the N terminal fragment or the N-terminus of the C terminal fragment can comprise a part of a flexible loop of a Cas9 polypeptide. The

C-terminus of the N terminal fragment or the N-terminus of the C terminal fragment can comprise a part of an alpha-helix structure of the Cas9 polypeptide. The N- terminal fragment or the C-terminal fragment can comprise a DNA binding domain. The N-terminal fragment or the C-terminal fragment can comprise a RuvC domain. The N-terminal fragment or the C- 5 terminal fragment can comprise a HNH domain. In some embodiments, neither of the N- terminal fragment and the C-terminal fragment comprises a HNH domain.

In some embodiments, the C-terminus of the N terminal Cas9 fragment comprises an amino acid that is in proximity to a target nucleobase when the fusion protein deaminates the target nucleobase. In some embodiments, the N-terminus of the C terminal Cas9 fragment 10 comprises an amino acid that is in proximity to a target nucleobase when the fusion protein deaminates the target nucleobase. The insertion location of different deaminases can be different in order to have proximity between the target nucleobase and an amino acid in the C-terminus of the N terminal Cas9 fragment or the N-terminus of the C terminal Cas9 fragment. For example, the insertion position of an ABE can be at an amino acid residue 15 selected from the group consisting of: 1015, 1022, 1029, 1040, 1068, 1247, 1054, 1026, 768, 1067, 1248, 1052, and 1246 as numbered in SEQ ID NO: 1, or a corresponding amino acid residue in another Cas9 polypeptide. A suitable insertion position of a CBE can be an amino acid residue selected from the group consisting of: 1016, 1023, 1029, 1040, 1069, and 1247 20 as numbered in SEQ ID NO: 1, or a corresponding amino acid residue in another Cas9 polypeptide. In certain embodiments, the insertion of the ABE can be inserted to the N terminus or the C terminus of any one of the above listed amino acid residues. In some embodiment, the insertion of the ABE can be inserted to replace any one of the above listed amino acid residues.

The N-terminal Cas9 fragment of a fusion protein (i.e. the N-terminal Cas9 fragment 25 flanking the deaminase in a fusion protein) can comprise the N-terminus of a Cas9 polypeptide. The N-terminal Cas9 fragment of a fusion protein can comprise a length of at least about: 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1100, 1200, or 1300 amino acids. The N-terminal Cas9 fragment of a fusion protein can comprise a sequence corresponding to amino acid residues: 1-56, 1-95, 1-200, 1-300, 1-400, 1-500, 1-600, 1-700, 30 1-718, 1-765, 1-780, 1-906, 1-918, or 1-1100 as numbered in SEQ ID NO: 1, or a corresponding amino acid residue in another Cas9 polypeptide. The N-terminal Cas9 fragment can comprise a sequence comprising at least: 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% sequence identity to amino acid residues: 1-56, 1-95, 1-200, 1-

300, 1-400, 1-500, 1-600, 1-700, 1-718, 1-765, 1-780, 1-906, 1-918, or 1-1100 as numbered in SEQ ID NO: 1, or a corresponding amino acid residue in another Cas9 polypeptide.

The C-terminal Cas9 fragment of a fusion protein (i.e. the C-terminal Cas9 fragment flanking the deaminase in a fusion protein) can comprise the C-terminus of a Cas9

5 polypeptide. The C-terminal Cas9 fragment of a fusion protein can comprise a length of at least about: 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1100, 1200, or 1300 amino acids. The C-terminal Cas9 fragment of a fusion protein can comprise a sequence corresponding to amino acid residues: 1099-1368, 918-1368, 906-1368, 780-1368, 765-1368, 718-1368, 94-1368, or 56-1368 as numbered in SEQ ID NO: 1, or a corresponding amino acid residue in another Cas9 polypeptide. The N-terminal Cas9 fragment can comprise a sequence comprising at least: 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% sequence identity to amino acid residues: 1099-1368, 918-1368, 906-1368, 780-1368, 765-1368, 718-1368, 94-1368, or 56-1368 as numbered in SEQ ID NO: 1, or a corresponding amino acid residue in another Cas9 polypeptide.

10 The N-terminal Cas9 fragment and C-terminal Cas9 fragment of a fusion protein taken together may not correspond to a full-length naturally occurring Cas9 polypeptide sequence, for example, as set forth in SEQ ID NO: 1.

15 The fusion protein described herein can effect targeted deamination with reduced deamination at non-target sites (e.g., off-target sites), such as reduced genome wide spurious deamination. The fusion protein described herein can effect targeted deamination with reduced bystander deamination at non-target sites. The undesired deamination or off-target deamination can be reduced by at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, at least 95%, or at least 99% compared with, for example, an end terminus fusion protein comprising the deaminase fused to a N terminus or a C terminus of a Cas9 polypeptide. The undesired deamination or off-target deamination can be reduced by at least one-fold, at least two-fold, at least three-fold, at least four-fold, at least five-fold, at least tenfold, at least fifteen fold, at least twenty fold, at least thirty fold, at least forty fold, at least fifty fold, at least 60 fold, at least 70 fold, at least 80 fold, at least 90 fold, or at least 100 fold, compared with, for example, an end terminus fusion protein comprising the deaminase fused to a N terminus or a C terminus of a Cas9 polypeptide.

20 In some embodiments, the deaminase of the fusion protein deaminates no more than two nucleobases within the range of a R-loop. In some embodiments, the deaminase of the fusion protein deaminates no more than three nucleobases within the range of the R-loop. In

some embodiments, the deaminase of the fusion protein deaminates no more than 2, 3, 4, 5, 6, 7, 8, 9, or 10 nucleobases within the range of the R-loop. A R-loop is a three-stranded nucleic acid structure including a DNA:RNA hybrid, a DNA:DNA or a RNA: RNA complementary structure and the associated with single-stranded DNA. As used herein, a R-loop may be

5 formed when a target polynucleotide is contacted with a CRISPR complex or a base editing complex, wherein a portion of a guide polynucleotide, e.g. a guide RNA, hybridizes with and displaces with a portion of a target polynucleotide, e.g. a target DNA. In some embodiments, a R-loop comprises a hybridized region of a spacer sequence and a target DNA complementary sequence. A R-loop region may be of about 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 10 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, or 50 nuclebase pairs in length. In some embodiments, the R-loop region is about 20 nucleobase pairs in length. It should be understood that, as used herein, a R-loop region is not limited to the target DNA strand that hybridizes with the guide polynucleotide. For example, editing of a target nucleobase within a R-loop region may be to 15 a DNA strand that comprises the complementary strand to a guide RNA or may be to a DNA strand that is the opposing strand of the strand complementary to the guide RNA. In some embodiments, editing in the region of the R-loop comprises editing a nucleobase on non-complementary strand (protospacer strand) to a guide RNA in a target DNA sequence.

The fusion protein described herein can effect target deamination in an editing window different from canonical base editing. In some embodiments, a target nucleobase is from about 1 to about 20 bases upstream of a PAM sequence in the target polynucleotide sequence. In some embodiments, a target nucleobase is from about 2 to about 12 bases upstream of a PAM sequence in the target polynucleotide sequence. In some embodiments, a target nucleobase is from about 1 to 9 base pairs, about 2 to 10 base pairs, about 3 to 11 base pairs, about 4 to 12 base pairs, about 5 to 13 base pairs, about 6 to 14 base pairs, about 7 to 15 base pairs, about 8 to 16 base pairs, about 9 to 17 base pairs, about 10 to 18 base pairs, about 11 to 19 base pairs, about 12 to 20 base pairs, about 1 to 7 base pairs, about 2 to 8 base pairs, about 3 to 9 base pairs, about 4 to 10 base pairs, about 5 to 11 base pairs, about 6 to 12 base pairs, about 7 to 13 base pairs, about 8 to 14 base pairs, about 9 to 15 base pairs, about 10 to 16 base pairs, about 11 to 17 base pairs, about 12 to 18 base pairs, about 13 to 19 base pairs, about 14 to 20 base pairs, about 1 to 5 base pairs, about 2 to 6 base pairs, about 3 to 7 base pairs, about 4 to 8 base pairs, about 5 to 9 base pairs, about 6 to 10 base pairs, about 7 to 11 base pairs, about 8 to 12 base pairs, about 9 to 13 base pairs, about 10 to 14 base pairs, about 11 to 15 base pairs, about 12 to 16 base pairs, about 13 to 17 base pairs, about 14 to 18 base

5 pairs, about 15 to 19 base pairs, about 16 to 20 base pairs, about 1 to 3 base pairs, about 2 to 4 base pairs, about 3 to 5 base pairs, about 4 to 6 base pairs, about 5 to 7 base pairs, about 6 to 8 base pairs, about 7 to 9 base pairs, about 8 to 10 base pairs, about 9 to 11 base pairs, about 10 to 12 base pairs, about 11 to 13 base pairs, about 12 to 14 base pairs, about 13 to 15 base pairs, about 14 to 16 base pairs, about 15 to 17 base pairs, about 16 to 18 base pairs, about 17 to 19 base pairs, about 18 to 20 base pairs away or upstream of the PAM sequence. In some embodiments, a target nucleobase is about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, or more base pairs away or upstream of the PAM sequence. In some embodimentns, a target nucleobase is about 1, 2, 3, 4, 5, 6, 7, 8, or 9 base pairs upstream of the 10 PAM sequence. In some embodiments, a target nucleobase is about 2, 3, 4, or 6 base pairs upstream of the PAM sequence.

15 Accordingly, also provided herein are fusion protein libraries and method for using same to optimize base editing that allow for alternative preferred base editing windows compared to canonical base editors, e.g. BE4. In some embodiments, the disclosure provides a protein library for optimized base editing comprising a plurality of fusion proteins, wherein each one of the plurality of fusion proteins comprises a deaminase flanked by a N-terminal fragment and a C-terminal fragment of a Cas9 polypeptide, wherein the N-terminal fragment of each one of the fusion proteins differs from the N-terminal fragments of the rest of the plurality of fusion proteins or wherein the C-terminal fragment of each one of the fusion 20 proteins differs from the C-terminal fragments of the rest of the plurality of fusion proteins, wherein the deaminase of each one of the fusion proteins deaminates a target nucleobase in proximity to a Protospacer Adjacent Motif (PAM) sequence in a target polynucleotide sequence, and wherein the N terminal fragment or the C terminal fragment binds the target polynucleotide sequence. In some embodiments, for each nucleobase within a CRISPR R-loop, at least one of the plurality of fusion proteins deaminates the nucleobase. In some 25 embodiments, for each nucleobase within of a target polynucleotide from 1 to 20 base pairs away of a PAM sequence, at least one of the plurality of fusion proteins deaminates the nucleobase. In some embodiments, provided herein is a kit comprising the fusion protein library that allows for optimized base editing.

30 The fusion protein can comprise more than one heterologous polypeptide. For example, the fusion protein can additionally comprise one or more UGI domains and/or one or more nuclear localization signals. The two or more heterologous domains can be inserted in tandem. The two or more heterologous domains can be inserted at locations such that they are not in tandem in the NapDNAbp.

A fusion protein can comprise a linker between the deaminase and the napDNAbp polypeptide. The linker can be a peptide or a non-peptide linker. For example, the linker can be an XTEN, (GGGS)n, (GGGGS)n, (G)n, (EAAAK)n, (GGS)n, SGSETPGTSESATPES. In some embodiments, the fusion protein comprises a linker between the N-terminal Cas9 fragment and the deaminase. In some embodiments, the fusion protein comprises a linker between the C-terminal Cas9 fragment and the deaminase. In some embodiments, the N-terminal and C-terminal fragments of napDNAbp are connected to the deaminase with a linker. In some embodiments, the N-terminal and C-terminal fragments are joined to the deaminase domain without a linker. In some embodiments, the fusion protein comprises a linker between the N-terminal Cas9 fragment and the deaminase, but does not comprise a linker between the C-terminal Cas9 fragment and the deaminase. In some embodiments, the fusion protein comprises a linker between the C-terminal Cas9 fragment and the deaminase, but does not comprise a linker between the N-terminal Cas9 fragment and the deaminase.

Exemplary TadA or TadA7.10 sequence set forth below:

15 SEVEFSHEYWMRHALTLAKRARDEREVPVGAVLVLNNR VIGEGWNRAIGL
HDPTAHAEIMALRQGGLVMQNYRLIDATLYVTFEPCVMCAGAMIHSRIGR
VVFGVRNAKTGAAGSLMDVLHYPGMNHR VEITEGILADECACALLCYFFRM
PRQVFNAQKKAQSSTD

20 GSSGSETPGTSESATPESSGSEVEFSHEYWMRHALTLAKRARDEREVPVG
AVLVLNNRVIGEGWNRAIGLHDPTAHAEIMALRQGGLVMQNYRLIDATLY
VTFEPCVMCAGAMIHSRIGR VVFGVRNAKTGAAGSLMDVLHYPGMNHR VE
ITEGILADECACALLCYFFRMPRQVFNAQKKAQSSTD

25 TAHAEIMALRQGGLVMQNYRLIDATLYVTFEPCVMCAGAMIHSRIGRVVF
GVRNAKTGAAGSLMDVLHYPGMNHR VEITEGILADECACALLCYFFRMPRQ
VFNAQKKAQSSTDGSSGSETPGTSESATPESSGSEVEFSHEYWMRHALTL
AKRARDEREVPVGAVLVLNNRVIGEGWNRAIGLHDP

30 YRLIDATLYVTFEPCVMCAGAMIHSRIGRVVFGVRNAKTGAAGSLMDVLH
YPGMNHR VEITEGILADECACALLCYFFRMPRQVFNAQKKAQSSTDGSSGS
ETPGTSESATPESSGSEVEFSHEYWMRHALTLAKRARDEREVPVGAVLVL

NNRVIGEGWNRAIGLHDPTAHAEIMALRQGGLVMQN

MNHRVEITEGILADECACALLCYFFRMPRQVFNAQKKAQSSTDGSSGSETP

GTSESATPESSGSEVEFSHEYWMRHALTLAKRARDEREVPVGAVLVNNR

5 VIGEGWNRAIGLHDPTAHAEIMALRQGGLVMQNYRLIDATLYVTFEPCVM
CAGAMIHSRIGRVVFGVRNAKTGAAGSLMDVLHYPG

GSSGSETPGTSESATPESSGSEVEFSHEYWMRHALTLAKRARDEREVPVG

AVLVLNRRIGEGWNRAIGLHDPTAHAEIMALRQGGLVMQNYRLIDATLY

10 VTFEPCVMCAGAMIHSRIGRVVFGVRNAKTGAAGSLMDVLHYPGMNHRVE
ITEGILADECACALLCYFFRMPRQVFN

GSSGSETPGTSESATPESSGSEVEFSHEYWMRHALTLAKRARDEREVPVG

AVLVLNRRIGEGWNRAIGLHDPTAHAEIMALRQGGLVMQNYRLIDATLY

15 VTFEPCVMCAGAMIHSRIGRVVFGVRNAKTGAAGSLMDVLHYPGMNHRVE
ITEGILADECACALLCYFFRMPRQ

GSSGSETPGTSESATPESSGSEVEFSHEYWMRHALTLAKRARDEREVPVG

AVLVLNRRIGEGWNRAHAEIMALRQGGLVMQNYRLIDATLYVTFEPCVM

20 CAGAMIHSRIGRVVFGVRNAKTGAAGSLMDVLHYPGMNHRVEITEGILAD
ECAALLCYFFRMPRQVFN

GSSGSETPGTSESATPESSGSEVEFSHEYWMRHALTLAKRARDEREVPVG

AVLVLNRRIGEGWNRAHAEIMALRQGGLVMQNYRLIDATLYVTFEPCVM

25 CAGAMIHSRIGRVVFGVRNAKTGAAGSLMDVLHYPGMNHRVEITEGILAD
ECAALLCYFFRMPRQVFNAQKKAQSSTD

101 Cas9 TadAins 1015

MDKKYSIGLAIGTNSVGWAVITDEYKVPSSKKFKVLGNTDRHSIKKNLIGA

30 LLFDSGETAETRLKRTARRRYTRRKNRICYLQEIFSNEAKVDDSFH

LEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKAD
LRLIYLALAHMFKFRGHFLIEGDLNPDNSDVKLFIQLVQTYNQLFEENP
INASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTP
NFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAI
5 LLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEI
FFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLR
KQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPY
YVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIERMNTFDK
NLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVD
10 LLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKI
IKDKDFLDNEENEDILEDIVLTTLFEDREMIEERLKTYAHLFDDKVMKQ
LKRRRYTGWGRSLRKLINGIRDQSGKTILDFLKSDFANRNFMQLIHDD
SLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIIKGILQTVKVVDELVKV
MGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHP
15 VENTQLQNEKLYLYLQNGRDMYVDQELDINRLSDYDVDHIVPQSLKDD
SIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNL
TKAERGGLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLI
REVKVITLKSCLVSDFRKDFQFYKvreINNYHHAHDAYLNAVVGTLIKK
YPKLESEFVYGDYKVGSSETPGTSESATPESSGSEVEFSHEYWMRHAL
20 TLAKRARDEREVPVGAVLVNNRIGEGWNRAIGLHDPTAHAEIMALRQG
GLVMQNYRLIDATLYVTFEPVCVMCAGAMIHSRIGRVVFGVRNAKTGAAGS
LMDVLHYPGMNHRVEITEGILADECACALLCYFFRMPRQVFNAQKKAQSST
DYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIE
TNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKESILPKR
25 NSDKLIARKKDWDPKYGGFDSPTVAYSVLVAKVEKGKSKKLKSVKELL
GITIMERSSFEKNPIDFLEAKGYKEVKKDLIILPKYSLFELENGRKRML
ASAGELQKGNELALPSKYVNFLYLA SHYEKLKGSPEDNEQKQLFVEQHKK
YLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFT
LTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQ SITGLYETRIDLSQ
30 LGGD

102 Cas9 TadAins 1022

MDKKYSIGLAIGTNSVGWAVITDEYK VPSKKFKVLGNTDRHSIKKNLIGA
LLFDSGETAETRLKRTARRRYTRRKNRICYLQEIFSNE MAKVDDSFH
5 LEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKAD
LRLIYLA LAHMIKFRGHFLIEGDLNP DNSDVKLFIQLVQTYNQLFEENP
INASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTP
NFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAI
LLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEI
10 FFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLR
KQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPY
YVGPLARGNSRF AWMTRKSEETITPWNFEVV DKGASAQS FIERMTNFDK
NLPNEKVL PKHSLLYEYFTVYNELTKV KYVTEGMRKPAFLSGEQKKAIVD
LLFKTNRKVTVKQLKEDYF KKIECFDSVEISGV EDRFNASLGTYHDLLKI
15 IKDKDFLDNEENEDILEDIVLTTLFEDREMIEERLKTYAHLFDDKVMKQ
LKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRNFMQLIHDD
SLTFKEDIQKAQVSGQGDSLHEHIANLAGSPA IKKGILQTVKVVDELVKV
MGRHKPENIVIEMARENQTTKGQKNSRERMKRIEEGIKELGSQILKEHP
VENTQLQNEKLYLYLQNGRDMYVDQELDINRLSDYD VDHIVPQSFLKDD
20 SIDNKVLTRSDKNRGKSDNVPSEEVKKMKNYWRQLNAKLITQRKFDNL
TKAERGGLSELDKAGFIKRQLVETRQITKHVAQILD SRMNTKYDENDKLI
REVKVITLKS KLVSDFRKDFQFYKVREINNYHIAHDAYLNAV VGTALIKK
YPKLESEFVYGDYKVYDVRKMIGSSGSETPGTSESATPESSGSEVEFSHE
YWMRHALT LAKRARDEREVPVGAVLVLNNRVIGEGWNRAIGLHDPTAHAE
25 IMALRQGGLVMQNYRLIDATLYVTFEPCVMCAGAMIHSRIGRVVFGVRNA
KTGAAGSLMDVLHYPGMNHRVEITEGILA DECA ALLCYFFRMPRQVFNAQ
KKAQSSTD AKSEQEIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIE
TNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKESILPKR
NSDKLIARKKD WDPKKYGGFDSP TVA YSVL VVAKVEKGKS KKLKSVKELL
30 GITIMERSSFEKNPIDFLEAKGYKEVKKDLIILPKYSLFELENGRKRLM

ASAGELQKGNELALPSKYVNFLYLA SHYEKLKGSPEDNEQKQLFVEQH KH
YLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFT
LTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQ SITGLYETRIDLSQ
LGGD

5

103 Cas9 TadAins 1029

MDKKYSIGLAIGTNSVGWAVITDEYKVP SKFKVLGNTDRHSIKKNLIGA
LLFD SGETAEATRLKRTARRYTRRKNR ICYLQEIFSNE MAKVDD SFFHR
LEESFLVEEDKKHERHP IFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKAD
10 LRLIYLALAHMIKFRGHFLIEGDLNPDNSDVKLF IQLVQTYNQLFEENP
INASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTP
NFKSNFDLAEDA KLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAI
LLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEI
FFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLV KLNREDLLR
15 KQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPY
YVGPLARGNSRF AWMTRKSEETITPWNFEEVVDKGASAQS FIERMTNFDK
NLPNEK VLPKHSLLYEYFTVYNELTKV KYVTEGMRKPAFLSGEQKKAIVD
LLFKTNRKVTVKQLKEDYFKKIECFDSVEISGV EDRFNASL GTYHDLLKI
IKDKDFLDNEENEDILEDIVLT LTFEDREMIEERLKTYAHLFDDKVMKQ
20 LKRRRYTGWGR LS RKLINGIRDQSGKTILD FLKSDGFANRNF MQLIHDD
SLTFKEDIQKAQVSGQGDSLHEHIANLAGSPA IKKGILQTVKVVDELVKV
MGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEGIKE LGSQ ILKEHP
VENTQLQNEKLYLYLQNGRDMYVDQELDINRLSDYD VDHIVPQSFLKDD
SIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNL
25 TKAERGGLSELDKAGFIKRQLVETRQITKHVAQILD SRMNTKYDENDKLI
REVKVITLKS KLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVG TALIKK
YPKLESEFVYGDYKVYDVRKMIAKSEQEIGSSGSETPGTSESATPESSGS
EVEFSHEYWMRHALTLAKRARDEREVPVGAVLVLNNR VIGEGWNRAIGLH
DPTAHAEIMALRQGGLVMQNYRLIDATLYVTFEPCVMCAGAMIHSRIGRV
30 VFGVRNAKTGAAGSLMDVLHYPGMNHRVEITEGILA DECA ALLCYFFRMP

RQVFNAQKKAQSSTDGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIE
TNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKESILPKR
NSDKLIARKKDWDPKYGGFDSPTVAYSVLVVAKVEKGKSKKLKSVKELL
GITIMERSSEKNPIDFLEAKGYKEVKKDLIILPKYSLFELENGRKML

5 ASAGELQKGNELALPSKYVNFLYLA SHYEKLKGSPEDNEQKQLFVEQHKH
YLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFT
LTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQ SITGLYETRIDLSQ
LGGD

10 103 Cas9 TadAins 1040

MDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGA
LLFDSGETAETRLKRTARRRYTRRKNRICYLQEIFSNE MAKVDDSFH
LEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKAD
LRLIYLALAHMIKFRGHFLIEGDLNPDNSDVKLFIQLVQTYNQLFEENP

15 INASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTP
NFKNFNLDAEDAKLQLSKDTYDDLDNLLAQIGDQYADLFLAAKNLSDAI
LLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEI
FFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLR
KQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPY

20 YVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQS FIERMTNFDK
NLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVD
LLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKI
IKDKDFLDNEENEDILEDIVLTTLFEDREMIEERLKTYAHLFDDKVMKQ
LKRRRYTGWGRLSRKLINGIRDQSGKTILDPLKSDGFANRNFMQLIHDD

25 SLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIIKGILQTVKVVDELVKV
MGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHP
VENTQLQNEKLYLYLQNQGRDMYVDQELDINRLSDYDVDHIVPQSLKDD
SIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNL
TKAERGGLSELDKAGFIKRQLVETRQITKHVAQILD SRMNTKYDENDKLI
30 REVKVITLKS KLVSDFRKDFQFYKVREINNYHHAHDAYLNAV VGTALIKK

YPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSGSSGSETPGT
 SESATPESSGSEVEFSHEYWMRHALTLAKRARDEREVPVGAVLVNNRVI
 GEGWNRAIGLHDPTAHAEIMALRQGGLVMQNYRLIDATLYVTFEPCVMCA
 GAMIHRSIRGVVFGVRNAKTGAAGSLMDVLHYPGMNHRVEITEGILADEC
 5 AALLCYFFRMPRQVFNAQKKAQSSTDNIMNFFKTEITLANGEIRKRPLIE
 TNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKESILPKR
 NSDKLIARKKDWDPKYGGFDSPTVAYSVLVVAKEKGKSKKLKSVKELL
 GITIMERSSEKNPIDFLEAKGYKEVKKDLIILPKYSLFELENGRKML
 ASAGELQKGNELALPSKYVNFLYLA SHYEKLKGSPEDNEQKQLFVEQHKH
 10 YLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFT
 LTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQHSITGLYETRIDLSQ
 LGGD

105 Cas9 TadAins 1068

15 MDKKYSIGLAIGTNSVGWAVITDEYKVPSSKKFKVLGNTDRHSIKKNLIGA
 LLFDSGETAETRLKRTARRRYTRRKNRICYLQEIFSNE MAKVDDSFHRL
 LEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKAD
 LRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFQLVQTYNQLFEENP
 INASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTP
 20 NFKSNFDLAEDAKLQLSKDTYDDLDNLLAQIGDQYADLFLAAKNLSDAI
 LLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEI
 FFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLR
 KQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPY
 YVGPLARGNSRAWMTRKSEETITPWNFEEVVDKGASAQSFIERMNFDK
 25 NLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVD
 LLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKI
 IKDKDFLDNEENEDILEDIVLTLLFEDREMIEERLKTYAHLFDDKVMKQ
 LKRRRYTGWGRLSRKLINGIRDQSGKTILDFLKSDGFANRNFMQLIHDD
 SLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIIKGILQTVKVVDELVKV
 30 MGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHP

VENTQLQNEKLYLYLQNGRDMYVDQELDINRLSDYDVDHIVPQSFLKDD
 SIDNKVLTRSDKNRGKSDNVPSEEVVKMKNYWRQLLNAKLITQRKFDNL
 TKAERGGLSELDKAGFIKRQLVETRQITKHVAQILDLSRMNTKYDENDKLI
 REVKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTLI
 5 YPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEI
 TLANGEIRKRPLIETNGEGSSGSETPGTSESATPESSGSEVEFSHEYWMR
 HALTLAKRARDEREVPVGAVLVNNRVIGEGWNRAIGLHDPTAHAEIMAL
 RQGGLVMQNYRLIDATLYVTFEPVCVMCAGAMIHSRIGRVVFGVRNAKTGA
 AGSLMDVLHYPGMNHRVEITEGILADECACALLCYFFRMPRQVFNAQKKAQ
 10 SSTDTGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKESILPKR
 NSDKLIARKKDWDPKYGGFDSPVTAVSVLVAKVEKGKSKKLKSVKELL
 GITIMERSSEKNPIDFLEAKGYKEVKKDLIILPKYSLFELENGRKRL
 ASAGELQKGNELALPSKYVNFLYLA SHYEKLKGSPEDNEQKQLFVEQHKH
 YLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFT
 15 LTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQ SITGLYETRIDLSQ
 LGGD

106 Cas9 TadAins 1247

MDKKYSIGLAIGTNSVGWAVITDEYK VPSKKFKVLGNTDRHSIKKNLIGA
 20 LLFDSETAEATRLKRTARRYTRRKNRICYLQEIFSNEAKVDDSSFFHR
 LEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKAD
 LRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFQLVQTYNQLFEENP
 INASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTP
 NFKNFDLAEDAQLQLSKDTYDDLDNLLAQIGDQYADLFLAAKNLSDAI
 25 LLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEI
 FFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLR
 KQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPY
 YVGPLARGNSRFAMTRKSEETITPWNFEVVDKGASAQS FIERMTNFDK
 NLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVD
 30 LLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKI

IKDKDFLDNEENEDILEDIVLTTLFEDREMIEERLKYAHLFDDKVMKQ
 LKRRRYTGWGRLSRKLINGIRDQSGKTILDFLKSDFANRNFMQLIHDD
 SLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIIKGILQTVKVVDELVKV
 MGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEGLGSQLKEHP
 5 VENTQLQNEKLYLYLQNGRDMYVDQELDINRLSDYDVDHIVPQSFLKDD
 SIDNKVLTRSDKNRGKSDNVPSEEVVKMKNYWRQLLNAKLITQRKFDNL
 TKAERGGLSELDKAGFIKRQLVETRQITKHVAQILDLSRMNTKYDENDKLI
 REVKVITLKSCLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTLIKK
 YPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEI
 10 TLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVL SMPQVNIVKKTEV
 QTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVE
 KGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIILPK
 YSLFELENGRKRMLASAGELQKGNELALPSKYVNFLYLA SHYEKLKGSS
 GSETPGTSESATPESSGSEVEFSHEYWMRHALTLAKRARDEREVPVGAVL
 15 VLNNRVIGEGWNRAIGLHDPTAHAEIMALRQGGLVMQNYRLIDATLYVTF
 EPCVMCAGAMIHSRIGRVVFGVRNAKTGAAGSLMDVLHYPGMNHRVEITE
 GILADECAALLCYFFRMPRQVFNAQKKAQSSTDSPEDNEQKQLFVEQHKH
 YLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFT
 LTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQ SITGLYETRIDLSQ
 20 LGGD

107 Cas9 TadAins 1054

MDKKYSIGLAIGTNSVGWAVITDEYKVPSSKKFKVLGNTDRHSIKKNLIGA
 LLFDSGETAETRLKRTARRRYTRRKNRICYLQEIFSNEAKVDDSFH
 25 LEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKAD
 LRLIYLALAHMIKFRGHFLIEGDLNPDNSDVKLFIQLVQTYNQLFEENP
 INASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTP
 NFKNFDLAEDAQLQLSKDTYDDLDNLLAQIGDQYADLFLAAKNLSDAI
 LLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEI
 30 FFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLR

KQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPY
YVGPLARGNSRFAMTRKSEETITPWNFEVVDKGASAQSFIERNMTNFDK
NLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVD
LLFKTNRKVTVKQLKEDYFKKIECFDSWEISGVEDRFNASLGTYHDLLKI
5 IKDKDFLDNEENEDILEDIVLTLLFEDREMIEERLKYAHLFDDKVMKQ
LKRRRYTGWGRLSRKLINGIRDQSGKTILDFLSDGFANRNFMQLIHDD
SLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIIKGILQTVKVVDELVKV
MGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHP
VENTQLQNEKLYLYLQNGRDMYVDQELDINRLSDYDVDHIVPQSFLKDD
10 SIDNKVLTRSDKNRGKSDNVPSEEVVKMKNYWRQLLNAKLITQRKFDNL
TKAERGGLSELDKAGFIKRQLVETRQITKHVAQILDLSRMNTKYDENDKLI
REVKVITLKSCLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTLIJKK
YPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEI
TLANGSSGSETPGTSESATPESSGSEVEFSHEYWMRHALTLAKRARDERE
15 VPVGAVLVNNRVIGEGWNRAIGLHDPTAHEIMALRQGGLVMQNYRLID
ATLYVTFEPCVMCAGAMIHSRIGRVVFGVRNAKTGAAGSLMDVLHYPGMN
HRVEITEGILADECACALLCYFFRMPRQVFNAQKKAQSSTDGEIRKRPLIE
TNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKESILPKR
NSDKLIARKKDWDPKYGGFDSPTVAYSVLVVAKVEKGKSKKLKSVKELL
20 GITIMERSSFEKNPIDFLEAKGYKEVKKDLIILPKYSLFELENGRKML
ASAGELQKGNELALPSKYVNFLYASHYEKLKGSPEDNEQKQLFVEQHKH
YLDEIIEQISEFSKRVILADANLDKVL SAYNKHRDKPIREQAENIIHLFT
LTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQ SITGLYETRIDLSQ
LGGD

25

108 Cas9 TadAins 1026

MDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGA
LLFDSEGETAEATRLKRTARRYTRRKNRICYLQEIFSNEAKVDDSFH
LEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKAD
30 LRLIYLALAHMIKFRGHFLIEGDLNPDNSDVKLFIQLVQTYNQLFEENP

INASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTP
NFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAI
LLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEI
FFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLR
5 KQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPY
YVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIERNFDK
NLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVD
LLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKI
IKDKDFLDNEENEDILEDIVLTTLFEDREMIEERLKTYAHLFDDKVMKQ
10 LKRRRYTGWGRSLRKLINGIRDQSGKTILDFLKSDFANRNFMQLIHDD
SLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIIKGILQTVKVVDELVKV
MGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHP
VENTQLQNEKLYLYLQNGRDMYVDQELDINRLSDYDVDHIVPQSLKDD
SIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNL
15 TKAERGGLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLI
REVKVITLKSCLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTLI
YPKLESEFVYGDYKVYDVRKMIAKSEGSSGSETPGTSESATPESSGSEVE
FSHEYWMRHALTLAKRARDEREVPVGAVLVLNNRVIGEGWNRAIGLHDPT
AHAEIMALRQGGLVMQNYRLIDATLYVTFEPCVMCAGAMIHSRIGRVVFG
20 VRNAKTGAAGSLMDVLHYPGMNHRVEITEGILADECACALLCYFFRMPRQV
FNAQKKAQSSTDQEIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIE
TNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKESILPKR
NSDKLIARKKDWDPKYGGFDSPTVAYSVLVAKVEKGKSKKLKSVKELL
GITIMERSSEFKNPIDFLEAKGYKEVKKDLIILPKYSLFELENGRKRL
25 ASAGELQKGNELALPSKYVNFLYLA SHYEKLKGSPEDNEQKQLFVEQHKK
YLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFT
LTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQ SITGLYETRIDLSQ
LGGD

MDKKYSIGLAIGTNSVGWAVITDEYKVPSSKKFKVLGNTDRHSIKKNLIGA
LLFDSEGETAEATRLKRTARRYTRRKNRICYLQEIFSNEAKVDDSFHRL
LEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKAD
LRLIYLALAHMIKFRGHFLIEGDLNPDNSDVKLFIQLVQTYNQLFEENP
5 INASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTP
NFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAI
LLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEI
FFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLR
KQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPY
10 YVGPLARGNSRFAWMTRKSEETITPWNFEVVVDKGASAQSFIERNMTNFDK
NLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVD
LLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKI
IKDKDFLDNEENEDILEDIVLTTLFEDREMIEERLKYAHLFDDKVMKQ
LKRRRYTGWGRLSRKLINGIRDQSGKTILDFLKSDGFANRNFMQLIHDD
15 SLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIIKGILQTVKVVDELVKV
MGRHKPENIVIEMARENQGSSGSETPGTSESATPESSGSEVEFSHEYWMR
HALTLAKRARDEREVPVGAVLVNNRVIGEGWNRAIGLHDPTAHAEIMAL
RQGGLVMQNYRLIDATLYVTFEPVCVMCAGAMIHSRIGRVVFGVRNAKTGA
AGSLMDVLHYPGMNHRVEITEGILADECACALLCYFFRMPRTTQKGQKNSR
20 ERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYLQNGRDMYVDQEL
DINRLSDYDVDHIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEEVVKK
MKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQIT
KHVAQILDSRMNTKYDENDKLIREVKVITLKSCLVSDFRKDFQFYKVREI
NNYHHAHDAYLNAVVGTLIKKYPLESEFVYGDYKVYDVRKMIAKSEQE
25 IGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGR
DFATVRKVLSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWD
KKYGGFDSPTVAYSVLVVAKVEKGKSKKLKSVKELLGITIMERSSFEKNP
IDFLEAKGYKEVKKDLIILPKYSLFELENGRKMLASAGELQKGNELAL
PSKYVNFLYLA SHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSK
30 RVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFKYFD

TTIDRKRYTSTKEVLDATLIHQHSITGLYETRIDLSQLGGD

110.1 Cas9 TadAins 1250

MDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGA
5 LLFDSEGETAEATRLKRTARRRYTRRKNRICYLQEIFSNEAKVDDSSFFHR
LEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKAD
LRLIYLALAHMIKFRGHFLIEGDLNPDNSDVKLFIQLVQTYNQLFEENP
INASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTP
NFKSNFDLAEDAQLQLSKDTYDDLDNLLAQIGDQYADLFLAAKNLSDAI
10 LLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEI
FFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLR
KQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPY
YVGPLARGNSRFAWMTRKSEETITPWNFEVVVDKGASAQSIERMTNFDK
NLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVD
15 LLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKI
IKDKDFLDNEENEDILEDIVLTTLFEDREMIEERLKYAHLFDDKVMKQ
LKRRRYTGWGRLSRKLINGIRDQSGKTILDFLKSDGFANRNFMQLIHDD
SLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIIKGILQTVKVVDELVKV
MGRHKPENIVIEMARENQTTKGQKNSRERMKRIEEGIKELGSQILKEHP
20 VENTQLQNEKLYLYLQNGRDMYVDQELDINRLSDYDVDHIVPQSFLKDD
SIDNKVLTRSDKNRGKSDNVPSEEVVKMKNYWRQLLNAKLITQRKFDNL
TKAERGGLSELDKAGFIKRQLVETRQITKHVAQILDLSRMNTKYDENDKLI
REVKVITLKSCLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTLIKK
YPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEI
25 TLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEV
QTGGFSKESILPKRNSDKLIARKKDWDPKYGGFDSPTVAYSVLVVAKVE
KGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIILPK
YSLFELENGRKMLASAGELQKGNELALPSKYVNFLYLAHYEKLKGSPG
SSGSETPGTSESATPESSGSEVEFSHEYWMRHALTLAKRARDEREVPVGA
30 VLVLNNRVIGEGWNRAIGLHDPTAHAEIMALRQGGLVMQNYRLIDATLYV

TFEPCVMCAGAMIHSRIGRVVFGVRNAKTGAAGSLMDVLHYPGMNHRVEI
TEGILADECACALLCYFFRMPREDNEQKQLFVEQHKHYLDEIIEQISEFSK
RVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFKYFD
TTIDRKRYTSTKEVLDATLIHQHSITGLYETRIDLSQLGGD

5

110.2 Cas9 TadAins 1250

MDKKYSIGLAIGTNSVGWAVITDEYKVPSSKKFKVLGNTDRHSIKKNLIGA
LLFDSGETAETRLKRTARRRYTRRKNRICYLQEIFSNEAKVDDSSFFHR
LEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKAD
10 LRLIYLALAHMIKFRGHFLIEGDLNPDNSDVKLFIQLVQTYNQLFEENP
INASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTP
NFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAI
LLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEI
FFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLR
15 KQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPY
YVGPLARGNSRFAMTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDK
NLPNEKVLPHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVD
LLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKI
IKDKDFLDNEENEDILEDIVLTLLFEDREMIEERLKYAHLFDDKVMKQ
20 LKRRRYTGWGRSLRKLINGIRDQSGKTILDFLKSDGFANRNFMQLIHDD
SLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIIKGILQTVKVVDELVKV
MGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEGLGSQILKEHP
VENTQLQNEKLYLYLQNGRDMYVDQELDINRLSDYDVDHIVPQSFLKDD
SIDNKVLTRSDKNRGKSDNVPSEEVVKMKNYWRQLLNAKLITQRKFDNL
25 TKAERGGLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLI
REVKVITLKSCLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTLIKK
YPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEI
TLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLMPQVNIVKKTEV
QTGGFSKESILPKRNSDKLIARKKDWDPKYGGFDSPTVAYSVLVAKVE
30 KGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIILPK

YSLFELENGRKMLASAGELQKGNELALPSKYVNFLYASHYEKLKGSPG
SSGSSGSETPGTSESATPESSGSEVEFSHEYWMRHALTLAKRARDEREVP
VGAVLVNNRVIGEGWNRAIGLHDPTAHAEIMALRQGGLVMQNYRLIDAT
LYVTFEPVCVMCAGAMIHSRIGRVVFGVRNAKTGAAGSLMDVLHYPGMNHR
5 VEITEGILADECALLCYFFRMPREDNEQKQLFVEQHKHYLDEIIEQISE
FSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFK
YFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGD

110.3 Cas9 TadAins 1250

10 MDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGA
LLFDSEGETAEATRLKRTARRRYTRRKNRICYLQEIFSNEAKVDDSFHRL
LEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKAD
LRLIYLALAHMIKFRGHFLIEGDLNPDNSVDKLFQLVQTYNQLFEENP
INASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTP
15 NFKNFDLAEDAQLQLSKDTYDDLDNLLAQIGDQYADLFLAAKNLSDAI
LLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEI
FFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLR
KQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPY
YVGPLARGNSRFAMTRKSEETITPWNFEVVVDKGASAQSFIERNMTFDK
20 NLPNEKVLPHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVD
LLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKI
IKDKDFLDNEENEDILEDIVLTLLFEDREMIEERLKYAHLFDDKVMKQ
LKRRRYTGWGRLSRKLINGIRDQSGKTILDFLKSDFANRNFMQLIHDD
SLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIIKGILQTVKVVDELVKV
25 MGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHP
VENTQLQNEKLYLYLQNNGRDMYVDQELDINRLSDYDVDHIVPQSFLKDD
SIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNWRQLLNAKLITQRKFDNL
TKAERGGLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLI
REVKVITLKSCLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTLIKK
30 YPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEI

TLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEV
 QTGGFSKESILPKRNSDKLIARKKDWPKKYGGFDSPTVAYSVLVAKVE
 KGKSKKLKSVKELLGITIMERSFEKNPIDFLEAKGYKEVKKDLIILPK
 YSLFELENGRKRMLASAGELQKGNELALPSKYVNFLYLA SHYEKLKGSPG
 5 SSGSSGSETPGTSESATPESGSSSGSEVEFSHEYWMRHALTLAKRARDER
 EVPVGAVLVNNRVIGEGWNRAIGLHDPTAHAEIMALRQGGLVMQNYRLI
 DATLYVTFEPCVMCAGAMIHSRIGRVVFGVRNAKTGAAGSLMDVLHYPGM
 NHRVEITEGILADECACALLCYFFRMPREDNEQKQLFVEQHKHYLDEIIEQ
 ISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPA
 10 AFKYFDTTIDRKRYTSTKEVLDATLIHQSTGLYETRIDLSQLGGD

110.4 Cas9 TadAins 1250

MDKKYSIGLAIGTNSVGWAVITDEYKVPSSKKFKVLGNTDRHSIKKNLIGA
 LLFDSEGETAEATRLKRTARRRYTRRKNRICYLQEIFSNE MAKVDDSFH
 15 LEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKAD
 LRLIYLALAHMIKFRGHFLIEGDLNPNSDVKLFIQLVQTYNQLFEENP
 INASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTP
 NFKSNFDLAEDAQLQLSKDTYDDLDNLLAQIGDQYADLFLAAKNLSDAI
 LLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEI
 20 FFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLR
 KQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPY
 YVGPLARGNSRFAMTRKSEETITPWNFEVVVDKGASAQS FIERMTNFDK
 NLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVD
 LLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKI
 25 IKDKDFLDNEENEDILEDIVLTLLFEDREMIEERLKTYAHLFDDKVMKQ
 LKRRRYTGWGRLSRKLINGIRDQSGKTILDFLKSDGFANRNFMQLIHDD
 SLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIIKGILQTVKVVDELVKV
 MGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHP
 VENTQLQNEKLYLYLQNGRDMYVDQELDINRLSDYDVDHIVPQSFLKDD
 30 SIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLNAKLITQRKFDNL

TKAERGGLSELDKAGFIKRQLVETRQITKHVAQILD SRMNTKYDENDKLI
REVKVITLKS KL VSDFRKDFQFYKVREINNYHHAHDAYLNAV VGTALIKK
YPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEI
TLANGEIRKRPLIETNGETGEIWWDKGRDFATVRKVLSMPQVNIVKKTEV
5 QTGGFSKESILPKRNSDKLIARKKD WDPKKYGGFDSPTVAYSVLVVAKVE
KGKSKKLKSVKELLGITIMERSFEKNPIDFLEAKGYKEVKKDLIILPK
YSLFELENGRKRMLASAGELQKGNELALPSKYVNFLYLA SHYEKLKGSPG
SSGSSGSETPGTSESATPESGSSSGSEVEFSHEYWMRH ALT LAKRARDER
EVPVGAVLVLNNRVIGEGWNRAIGLHDPTAHAEIMALRQGGLVMQNYRLI
10 DATLYVTFEPVCVMCAGAMIHSRIGRVVFGVRNAKTGAAGSLMDVLHYPGM
NHRVEITEGILA DECA ALLCYFFMRREDNEQKQLFVEQHKHYLDEIIEQ
ISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPA
AFKYFDTTIDRKRYTSTKEVLDATLIHQ SITGLYETRIDLSQLGGD

15 110.5 Cas9 TadAins 1249

MDKKYSIGLAIGTNSVGWAVITDEYK VPSKKFKVLGNTDRHSIKKNLIGA
LLFDSGETA EATRLKRTARRYTRRKNRICYLQEIFSNE MAKVDD SFFHR
LEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKAD
LRLIYLALAHMIKFRGHFLIEGDLNP DNSDVDKLFIQLVQTYNQLFEENP
20 INASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTP
NFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAI
LLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEI
FFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLR
KQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPY
25 YVGPLARGNSRF AWMTRKSEETITPWNFEEVVDKGASAQS FIERMTNFDK
NLPNEKVL PKHSLLYEYFTVYNELTKV KYVTEGMRKPAFLSGEQKKAIVD
LLFKTNRKVTVKQLKEDYFKKIECFDSVEISGV EDRFNASLGTYHDLLKI
IKDKDFLDNEENEDILEDIVLT LTFEDREMIEERLKTYAHLFDDKVMKQ
LKRRRYTGWGRLSRKLINGIRDQSGKTILDFLKSDGFANRNF MQLIHDD
30 SLTFKEDIQKAQVSGQGDSLHEHIANLAGSPA IKKGILQTVKVVDELVKV

MGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEKGKELGSQILKEHP
 VENTQLQNEKLYLYLQNGRDMYVDQELDINRLSDYDVDHIVPQSFLKDD
 SIDNKVLTRSDKNRGKSDNVPSEEVVKMKNYWRQLLNAKLITQRKFDNL
 TKAERGGLSELDKAGFIKRQLVETRQITKHVAQILDLSRMNTKYDENDKLI
 5 REVKVITLKSCLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTLIKK
 YPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEI
 TLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEV
 QTGGFSKESILPKRNSDKLIARKKDWDPKYGGFDSPTVAYSVLVVAKVE
 KGKSKKLKSVKELLGITIMERSFEKNPIDFLEAKGYKEVKKDLIILKLPK
 10 YSLFELENGRKRMLASAGELQKGNELALPSKYVNFLYASHYEKLKGSGS
 SGSSGSETPGTSESATPESGSSSGSEVEFSHEYWMRHALTAKRARDERE
 VPVGAVLVNNRIGEGWNRAIGLHDPTAHAEIMALRQGGLVMQNYRLID
 ATLYVTFEPCVMCAGAMIHSRIGRVVFGVRNAKTGAAGSLMDVLHYPGMN
 HRVEITEGILADECACALLCYFFRMRRPEDNEQKQLFVEQHKKHYLDEIIEQ
 15 ISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPA
 AFKYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGD

110.5 Cas9 TadAins delta 59-66 1250

MDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGA
 20 LLFDSEGETAEATRLKRTARRYTRRKNRICYLQEIFSNEAKVDDSSFFHR
 LEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKAD
 LRLIYLALAHMIKFRGHFLIEGDLNPDNSDVKLFIQLVQTYNQLFEENP
 INASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTP
 NFKNFNLDAEDAKLQLSKDTYDDLDNLLAQIGDQYADLFLAAKNLSDAI
 25 LLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEI
 FFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLR
 KQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPY
 YVGPLARGNSRFAWMTRKSEETITPWNFEVVDKGASAQSFIERNTFDK
 NLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVD
 30 LLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKI

IKDKDFLDNEENEDILEDIVLTTLFEDREMIEERLKYAHLFDDKVMKQ
 LKRRRYTGWGRLSRKLINGIRDQSGKTILDFLKSDFANRNFMQLIHDD
 SLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIIKGILQTVKVVDELVKV
 MGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEGLGSQLKEHP
 5 VENTQLQNEKLYLYLQNGRDMYVDQELDINRLSDYDVDHIVPQSFLKDD
 SIDNKVLTRSDKNRGKSDNVPSEEVVKMKNYWRQLLNAKLITQRKFDNL
 TKAERGGLSELDKAGFIKRQLVETRQITKHVAQILDLSRMNTKYDENDKLI
 REVKVITLKSCLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTLIKK
 YPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEI
 10 TLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEV
 QTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVAKVE
 KGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIILPK
 YSLFELENGRKMLASAGELQKGNELALPSKYVNFLYLAHYEKLKGSPG
 SSGSSGSETPGTSESATPESGSSGSEVEFSHEYWMRHALTLAKRARDERE
 15 VPVGAVLVNNRIVGEGWNRAHAEIMALRQGGLVMQNYRLIDATLYVTFE
 PCVMCAGAMIHSRIGRVVFGVRNAKTGAAGSLMDVLHYPGMNHRVEITEG
 ILADECAALLCYFFRMPRQVFNAQKKAQSSTDDEDNEQKQLFVEQHKHYLD
 EIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTN
 LGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQSLTGLYETRIDLSQLGG
 20 D

110.6 Cas9 TadAins 1251

MDKKYSIGLAIGTNSVGWAVITDEYKVPSSKKFKVLGNTDRHSIKKNLIGA
 LLFDSEGETAEATRLKRTARRRYTRRKNRICYLQEIFSNEAKVDDSSFFHR
 25 LEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKAD
 LRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFQLVQTYNQLFEENP
 INASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTP
 NFKNFDLAEDAQLQLSKDTYDDLDNLLAQIGDQYADLFLAAKNLSDAI
 LLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEI
 30 FFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLR

KQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPY
YVGPLARGNSRFAWMTRKSEETITPWNFEVVVDKGASAQSFIERNMTNFDK
NLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVD
LLFKTNRKVTVKQLKEDYFKKIECFDSWEISGVEDRFNASLGTYHDLLKI
5 IKDKDFLDNEENEDILEDIVLTLLFEDREMIEERLKYAHLFDDKVMKQ
LKRRRYTGWGRLSRKLINGIRDQSGKTILDFLSDGFAANRNFMQLIHDD
SLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIIKGILQTVKVVDELVKV
MGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHP
VENTQLQNEKLYLYLQNGRDMYVDQELDINRLSDYDVDHIVPQSFLKDD
10 SIDNKLTRSDKNRGKSDNVPSEEVVKMKNYWRQLLNAKLITQRKFDNL
TKAERGGLSELDKAGFIKRQLVETRQITKHVAQILDLSRMNTKYDENDKLI
REVKVITLKSCLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTLIJKK
YPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEI
TLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVL SMPQVNIVKKTEV
15 QTGGFSKESILPKRNSDKLIARKKDWDPKYGGFDSPTVAYSVLVVAKVE
KGKSKKLKSVKELLGITIMERSFEKNPIDFLEAKGYKEVKKDLIILPK
YSLFELENGRKMLASAGELQKGNELALPSKYVNFLYLA SHYEKLKGSPE
GSSGSSGSETPGTSESATPESGSSSGSEVEFSHEYWMRHALTLAKRARDE
REVPVGAVLVLNNRVIGEGWNRAIGLHDPTAHAEIMALRQGGLVMQNYRL
20 IDATLYVTFEPVCVMCAGAMIHSRIGRVVFGVRNAKTGAAGSLMDVLHYPG
MNHRVEITEGILA DECAALLCYFFMR RDNEQKQLFVEQHKHYLDEIIEQ
ISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPA
AFKYFDTTIDRKRYTSTKEVLDATLIHQ SITGLYETRIDLSQLGGD

25 110.7 Cas9 TadAins 1252

MDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGA
LLFDSEGETAEATRLKRTARRRYTRRKNRICYLQEIFSNE MAKVDDSFH
LEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKAD
LRLIYLALAHMIKFRGHFLIEGDLNPDNSDVKLFIQLVQTYNQLFEENP
30 INASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTP

NFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAI
 LLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEI
 FFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLR
 KQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPY
 5 YVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIERNFSDK
 NLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVD
 LLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKI
 IKDKDFLDNEENEDILEDIVLTLLFEDREMIEERLKYTAHLFDDKVMKQ
 LKRRRYTGWGRLSRKLINGIRDQSGKTILDFLKSDFANRNFMQLIHDD
 10 SLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIIKGILQTVKVVDELVKV
 MGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHP
 VENTQLQNEKLYLYLQNNGRDMYVDQELDINRLSDYDVDHIVPQSFLKDD
 SIDNKVLTRSDKNRGKSDNVPSEEVVKMKNYWRQLLNAKLITQRKFDNL
 TKAERGGLSELDKAGFIKRQLVETRQITKHVAQILDLSRMNTKYDENDKLI
 15 REVKVITLKSCLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTLIKK
 YPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEI
 TLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEV
 QTGGFSKESILPKRNSDKLIARKKDWDPKYGGFDSPTVAYSVLVVAKVE
 KGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIILPK
 20 YSLFELENGRKMLASAGELQKGNELALPSKYVNFLYLAHYEKLKGSPE
 DGSSGSSGSETPGTSESATPESGSSSGSEVEFSHEYWMRHALTLAKRARD
 EREVPVGAVLVLNNRVIGEGWNRAIGLHDPTAHAEIMALRQGGLVMQNYR
 LIDATLYVTFEPVCVMCAGAMIHSRIGRVVFGVRNAKTGAAGSLMDVLHYP
 GMNHRVEITEGILADECACALLCYFFRMRNEQKQLFVEQHKHYLDEIIEQ
 25 ISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPA
 AFKYFDTTIDRKRYTSTKEVLDATLIHQSLTGLYETRIDLSQLGGD

110.8 Cas9 TadAins delta 59-66 C-truncate 1250

MDKKYSIGLAIGTNSVGWAVITDEYKVPSSKKFKVLGNTDRHSIKKNLIGA
 30 LLFDSGETAETRLKRTARRRYTRRKNRICYLQEIFSNEAKVDDSFH

LEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKAD
LRLIYLALAHMFKFRGHFLIEGDLNPNSDVKLFIQLVQTYNQLFEENP
INASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTP
NFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAI
5 LLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEI
FFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLR
KQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPY
YVGPLARGNSRFAMTRKSEETITPWNFEEVVDKGASAQSIERMTNFDK
NLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVD
10 LLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKI
IKDKDFLDNEENEDILEDIVLTTLFEDREMIEERLKTYAHLFDDKVMKQ
LKRRRYTGWGRSLRKLINGIRDQSGKTILDFLKSDFANRNFMQLIHDD
SLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIIKGILQTVKVVDELVKV
MGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHP
15 VENTQLQNEKLYLYLQNGRDMYVDQELDINRLSDYDVDHIVPQSLKDD
SIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNL
TKAERGGLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLI
REVKVITLKSCLVSDFRKDFQFYKvreINNYHHAHDAYLNAVVGTLIKK
YPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEI
20 TLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLMPQVNIVKKTEV
QTGGFSKESILPKRNSDKLIARKKDWDPKYGGFDSPTVAYSVLVVAKVE
KGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIILKPK
YSLFELENGRKMLASAGELQKGNELALPSKYVNFLYLAHYEKLKGSPG
SSGSETPGTSESATPESSGSEVEFSHEYWMRHALTLAKRARDEREVPVGA
25 VLVLNNRVIGEGWNRAHAEIMALRQGGLVMQNYRLIDATLYVTFEPVCMD
AGAMIHSRIGRVVFGVRNAKTGAAGSLMDVLHYPGMNHRVEITEGILADE
CAALLCYFFRMPRQEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADA
NLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFKYFDTTIDRKR
YTSTKEVLDATLIHQSIITGLYETRIDLSQLGGD

111.1 Cas9 TadAins 997

MDKKYSIGLAIGTNSVGWAVITDEYK VPSKKFKVLGNTDRHSIKKNLIGA
LLFDSGETAETRLKRTARRRYTRRKNRICYLQEIFSNE MAKVDDSSFFHR
LEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKAD
5 LRLIYLALAHMIKFRGHFLIEGDLNPDNSDVKLFIQLVQTYNQLFEENP
INASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTP
NFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAI
LLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEI
FFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLR
10 KQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPY
YVGPLARGNSRFAMTRKSEETITPWNFEVVDKGASAQSFIERMNFDK
NLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVD
LLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKI
IKDKDFLDNEENEDILEDIVLTTLFEDREMIEERLKTYAHLFDDKVMKQ
15 LKRRRYTGWGRLSRKLINGIRDQSGKTILDFLKSDGFANRNFMQLIHDD
SLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIIKGILQTVKVVDELVKV
MGRHKPENIVIEMARENQTTKGQKNSRERMKRIEEGIKELGSQILKEHP
VENTQLQNEKLYLYLQNGRDMYVDQELDINRLSDYDVDHIVPQSFLKDD
SIDNKVLTRSDKNRGKSDNVPSEEVVKMKNYWRQLLNAKLITQRKFDNL
20 TKAERGGLSELDKAGFIKRQLVETRQITKHVAQILD SRMNTKYDENDKLI
REVKVITLKS KLVSDFRKDFQFYKVREINNYHHAHDAYLNAV VGTALSHE
YWMRHALT LAKRARDEREVPVGAVLV LNNR VIGEGWNRAIGLHDPTAHAE
IMALRQGGLVMQNYRLIDATLYVTFEP CVM CAGAMIHSRIGRVVFGVRNA
KTGAAGSLMDVLHYPGMNHR VEITEGILA DECA ALLCYFFRMPRQVFNAQ
25 KKAQSSTDGSSGSETPGTSESATPESSGIKKYPKLESEFVYGDYK VYDVR
KMIAKSEQEIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGET
GEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKESILPKRNSDKL
IARKKDWDPKKYGGFDSP TVA YSVL VVAKVEKGKSKKLKSVKELLGITIM
ERSSFEKNPIDFLEAKGYKEVKKDLIJKLPK YSLFELENGRKMLASAGE
30 LQKG NELALPSKYVNFLYLA SHYEKLKGSPEDNEQKQLFVEQHKHYLDEI

IEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLG
APAAFKYFDTTIDRKRYTSTKEVLDATLIHQSQITGLYETRIDLSQLGGD

111.2 Cas9 TadAins 997

5 MDKKYSIGLAIGTNSVGWAVITDEYKVPSSKKFKVLGNTDRHSIKKNLIGA
LLFDSEGETAEATRLKRTARRRYTRRKNRICYLQEIFSNEAKVDDSSFFHR
LEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKAD
LRLIYLALAHMIKFRGHFLIEGDLNPDNSDVKLFIQLVQTYNQLFEENP
INASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTP
10 NFKSNFDLAEDAQLQLSKDTYDDDDLDNLLAQIGDQYADLFLAAKNLSDAI
LLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEI
FFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLR
KQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPY
YVGPLARGNSRFAWMTRKSEETITPWNFEVVVDKGASAQSFIERNMTNFDK
15 NLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVD
LLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKI
IKDKDFLDNEENEDILEDIVLTLLFEDREMIEERLKTYAHLFDDKVMKQ
LKRRRYTGWGRSLRKLINGIRDQSGKTILDFLKSDGFANRNFMQLIHDD
SLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIIKGILQTVKVVDELVKV
20 MGRHKPENIVIEMARENQTTKGQKNSRERMKRIEGIKEGLGSQILKEHP
VENTQLQNEKLYLYLQNGRDMYVDQELDINRLSDYDVDHIVPQSFLKDD
SIDNKVLTRSDKNRGKSDNVPSEEVVKMKNYWRQLLNAKLITQRKFDNL
TKAERGGLSELDKAGFIKRQLVETRQITKHVAQILDLSRMNTKYDENDKLI
REVKVITLKSCLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTLALSHE
25 YWMRHALTAKRARDEREVPVGAVLVNNRVIGEGWNRAIGLHDPTAHAE
IMALRQGGLVMQNYRLIDATLYVTFEPCVMCAGAMIHSRIGRVVFGVRNA
KTGAAGSLMDVLHYPGMNHRVEITEGILADECACALLCYFFRMPRQVFNAQ
KKAQSSSTDGSSGSSGSETPGTSESATPESSGGSSIKKYPKLESEFVYGDY
KVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLI
30 ETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKESILPK

RNSDKLIARKKDWDPKYGGFDSPTVAYSVLVVAKVEKGKSKKLKSVKEL
LGITIMERSFEKNPIDFLEAKGYKEVKKDLIILPKYSLFELENGRKRM
LASAGELQKGNELALPSKYVNFLYLA SHYEKLKGSPEDNEQKQLFVEQHK
HYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLF
5 TLTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQ SITGLYETRIDLS
QLGGD

112 delta HNH TadA

MDKKYSIGLAIGTNSVGWAVITDEYKVP SKFKVLGNTDRHSIKKNLIGA
10 LLFD SGETAEATRLKRTARRRYTRRKNRICYLQEIFSNE MAKVDDSFHRL
LEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKAD
LRLIYLALAHMIKFRGHFLIEGDLNPNSDVKLFIQLVQTYNQLFEENP
INASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTP
NFKSNFDLAEDAQLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAI
15 LLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEI
FFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLR
KQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPY
YVGPLARGNSRF AWMTRKSEETITPWNFEVVDKGASAQS FIERMTNF D
NLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVD
20 LLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKI
IKDKDFLDNEENEDILEDIVLTLLFEDREMIEERLKYAHLFDDKVMKQ
LKRRRYTGWGRSLRKLINGIRDQSGKTILDFLKSDGFANRNF MQLIHDD
SLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIIKGILQTVKVVDELVKV
MGRHKPENIVIEMARENQTTKGQKNSRERMKRIEEGKELGSEVEFSHE
25 YWMRHALT LAKRARDEREVPVGAVLV LNNRVIGEGWNRAIGLHDPTAHAE
IMALRQGGLVMQNYRLIDATLYVTFEP CVMCAGAMIHSRIGRVVFGVRNA
KTGAAGSLMDVLHYPGMNHRVEITEGILA DECA ALLCYFFRMP RQVFNAQ
KKAQSSTDGG LSELDKAGFIKRQLVETRQITKHVAQILD SRMNTK YDEND
KLIREVKVITLKS KLVSDFRKDFQFYKVREINNYHHAHDAYLNAV VGTAL
30 IKKYPKLESEFVYGDYK VYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFK

TEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKK
TEVQTGGFSKESILPKRNSDKLIARKKDWDPKYGGFDSPTVAYSVLVVA
KVEKGKSKKLKSVKELLGITIMERSFEKNPIDFLEAKGYKEVKKDLIIK
LPKYSLFELENGRKRMLASAGELQKGNELALPSKYVNFLYLA SHYEKLKG
5 SPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKH
RDKPIREQAENIIHLFTLTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATL
IHQSITGLYETRIDLSQLGGD

113 N-term single TadA helix trunc 165-end

10 MSEVEFSHEYWMRHALTLAKRARDEREVPVGAVLVLNNRVIGEGWNRAIG
LHDPTAHAEIMALRQGGLVMQNYRLIDATLYVTFEPCVMCAGAMIHSRIG
RVVFGVRNAKTGAAGSLMDVLHYPGMNHRVEITEGILADECACALLCYFFR
MPRSGGSSGGSSGSETPGTSESATPESSGGSSGGSDKKYSIGLAIGTNSV
GWA VITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETAETRLKR
15 TARRRYTRRKNRICYLQEIFSNE MAKVDDSFHRL EESFLVEEDKKHERH
PIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKA DLRLIYLALAHMIKFRG
HFLIEGDLNPDNSVDKLFQLVQTYNQLFEENPINASGVDAKAILSARL
SKSRRLENLIAQLPGEKKNGLFGNLIALSGLTPNFKSNFDLAEDAKLQL
SKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILSDILRVNTEITKAP
20 LSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQS KNGYAGYIDGG
ASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQRTFDNGSIPHQIHL
GELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRFAWMT
RKSEETITPWNFEEVVDKGASAQS FIERMTNFDKNLPNEKVL PKHSLLYE
YFTVYNELTKV KYVTEGMRKPAFLSGEQKKAIVDLLKTNRKVTVKQLKE
25 DYFKKIECFDSVEISGVEDRFNASL GTYHDLLKIIKDKDFLDNEENEDIL
EDIVLTTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKL
INGIRDQSGKTILD FLKSDGFANRNF MQLIHDDSLTFKEDIQKAQVSGQ
GDSLHEHIANLAGSPA IKKGILQTVKVVDELVKVMGRHKPENIVIEMARE
NQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYL
30 QNGRDMYVDQELDINRLSDYD VDHIVPQSFLKDDSIDNKVLTRSDKNRGK

SDNVPSEEVKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGF
IKRQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDF
RKDFQFYKVREINNYHHAHDAYLNAVVGTLALKYKPKLESEFVYGDYKVV
DVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETN
5 GETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKESILPKRNS
DKLIARKKDWDPKYGGFDSPTVAYSVLVAKVEKGKSKKLKSVKELLGI
TIMERSSFEKNPIDFLEAKGYKEVKKDLIILPKYSLFELENGRKMLAS
AGELQKGNELALPSKYVNFLYLAHYEKLKGSPEDNEQKQLFVEQHKHYL
DEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLT
10 NLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLG
GD

114 N-term single TadA helix trunc 165-end delta 59-65
MSEVEFSHEYWMRHALTAKARDEREVPVGAVLVLNNRVIGEGWNRTAH
15 AEIMALRQGGLVMQNYRLIDATLYVTFEPCVMCAGAMIHSRIGRVVFGVR
NAKTGAAGSLMDVLHYPGMNHRVEITEGILADECACALLCYFFRMPRSGGS
SGGSSGSETPGTSESATPESSGGSSGGSDKKYSIGLAIGTNSVGWAVITD
EYKVPSSKKFKVLGNTDRHSIKKNLIGALLFDGETAEATRLKRTARRYT
RRKNRICYLQEIFSNEAKVDDSFHRLEESFLVEEDKKHERHPIFGNIV
20 DEVAYHEKYPTIYHLRKKLVSTDKAIDLILYLAHMIKFRGHFLIEGD
LNPDNSDVKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLE
NLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQLSKDTYDD
DLDNLLAQIGDQYADLFLAAKNLSDAILSDILRVNTEITKAPLSASMIK
RYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEFY
25 KFIKPILEKMDGTEELLVKLNREDLLRKQRTFDNGSIPHQIHLGELHAIL
RRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRFAMTRKSEETI
TPWNFEVVDKGASAQSFIERMTNFDKNLPNEKVLPHSLLYEYFTVYNE
LTKVKYVTEGMRKPAFLSGEQKKAIVDLLKTNRKVTVKQLKEDYFKKIE
CFDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTL
30 TLFEDREMIEERLKTYAHLFDDKVMKQLKRRRTGWRGLSRKLINGIRDK

QSGKTIIDFLKSDGFANRNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEH
IANLAGSPAIIKGILQTVKVVDELVKVMGRHKPENIVIEMARENQTTQKG
QKNSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYLQNNGRDMY
VDQELDINRLSDYDVDHIVPQSLKDDSIDNKVLTRSDKNRGKSDNVPSE
5 EVVKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVE
TRQITKHVAQILDLSRMNTKYDENDKLIREVKVITLKSCLVSDFRKDFQFY
KVREINNYHHAHDAYLNAVVGTLIKKYPKLESEFVYGDYKVDVRKMIA
KSEQEIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIV
WDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARK
10 KDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKKLKSVKELLGITIMERS
FEKNPIDFLEAKGYKEVKKDLIILPKYSLFELENGRKRMLASAGELQKG
NELALPSKYVNFLYLAHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQI
SEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAA
FKYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGD

15

115.1 Cas9 TadAins1004

MDKKYSIGLAIGTNSVGWAVITDEYK VPSKKFKVLGNTDRHSIKKNLIGA
LLFDSGETAETRLKRTARRRYTRRKNRICYLQEIFSNEAKVDDSSFFHR
LEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKAD
20 LRLIYLALAHMIKFRGHFLIEGDLNPDNSDVKLFIQLVQTYNQLFEENP
INASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTP
NFKSNFDLAEDAKLQLSKDTYDDLDNLLAQIGDQYADLFLAAKNLSDAI
LLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEI
FFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLR
25 KQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPY
YVGPLARGNSRFAMTRKSEETITPWNFEVVDKGASAQSFIERNMTNFDK
NLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVD
LLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKI
IKDKDFLDNEENEDILEDIVLTLLFEDREMIEERLKTYAHLFDDKVMKQ
30 LKRRRYTGWGRLSRKLINGIRDQSGKTIIDFLKSDGFANRNFMQLIHDD

SLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIIKGILQTVKVVDELVKV
 MGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEKGELGSQILKEHP
 VENTQLQNEKLYLYLQNQGRDMYVDQELDINRLSDYDVDHIVPQSFLKDD
 SIDNKVLTRSDKNRGKSDNVPSEEVVKMKNYWRQLLNAKLITQRKFDNL
 5 TKAERGGLSELDKAGFIKRQLVETRQITKHVAQILDLSRMNTKYDENDKLI
 REVKVITLKSCLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTLIKK
 YPKGSSGSETPGTSESATPESSGSEVEFSHEYWMRHALTLAKRARDEREV
 PVGAVLVNNRVIGEGWNRAIGLHDPTAHAEIMALRQGGLVMQNYRLIDA
 TLYVTFEPCVMCAGAMIHSRIGRVVFGVRNAKTGAAGSLMDVLHYPGMNH
 10 RVEITEGILADECACALLCYFFRMPRQLESEFVYGDYKVDVORKMIAKSEQ
 EIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKG
 RDFATVRKVLSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWD
 PKKYGGFDSPTVAYSVLVVAKVEKGKSKKLKSVKELLGITIMERSSFEKN
 PIDFLEAKGYKEVKKDLIILPKYSLFELENGRKRLMASAGELQKGNELA
 15 LPSKYVNFLYLAHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFS
 KRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFKYF
 DTTIDRKRYTSTKEVLDATLIHQHSITGLYETRIDLSQLGGD

115.2 Cas9 TadAins1005

20 MDKKYSIGLAIGTNSVGWAVITDEYKVPSSKKFKVLGNTDRHSIKKNLIGA
 LLFDSGETAETRLKRTARRRYTRRKNRICYLQEIFSNEAKVDDSSFFHR
 LEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKAD
 LRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFQLVQTYNQLFEENP
 INASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTP
 25 NFKSNFDLAEDAKLQLSKDTYDDLDNLLAQIGDQYADLFLAAKNLSDAI
 LLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEI
 FFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLR
 KQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPY
 YVGPLARGNSRFAMTRKSEETITPWNFEVVVDKGASAQSIERMTNFDK
 30 NLPNEKVLPHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVD

LLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKI
IKDKDFLDNEENEDILEDIVLTLLFEDREMIEERLKYAHLFDDKVMKQ
LKRRRYTGWGRLSRKLINGIRDQSGKTILDFLKSDFANRNFMQLIHDD
SLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIIKGILQTVKVVDELVKV
5 MGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHP
VENTQLQNEKLYLYLQNGRDMYVDQELDINRLSDYDVDHIVPQSFLKDD
SIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNL
TKAERGGLSELDKAGFIKRQLVETRQITKHVAQILD SRMNTKYDENDKLI
REVKVITLKSCLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTLIKK
10 YPKLGSSGSETPGTSESATPESSGSEVEFSHEYWMRHALTLAKRARDERE
VPVGAVLVLNNRVIGEGWNRAIGLHDPTAHAEIMALRQGGLVMQNYRLID
ATLYVTFEPCVMCAGAMIHSRIGRVVFGVRNAKTGAAGSLMDVLHYPGMN
HRVEITEGILADECACALLCYFFRMPRQESEFVYGDYKVDVRKMIAKSEQ
EIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKG
15 RDFATVRKVL SMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWD
PKKYGGFDSP TVA YSVL VVAKVEKGKSKKLKSVKELLGITMERSSFEKN
PIDFLEAKGYKEVKKDLIILPKYSLFELENGRKRLMASAGELQKGNELA
LPSKYVNFLYLA SHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFS
KRVILADANLDKVL SAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFKYF
20 DTTIDRKRYTSTKEVLDATLIHQ SITGLYETRIDLSQLGGD

115.3 Cas9 TadAins1006

MDKKYSIGLAIGTNSVGWAVITDEYKVPSSKKFKVLGNTDRHSIKKNLIGA
LLFDSGETAETRLKRTARRRYTRRKNRICYLQEIFSNE MAKVDDSSFFHR
25 LEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKAD
LRLIYLALAHMIKFRGHFLIEGDLNPDNSDVKLFIQLVQTYNQLFEENP
INASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTP
NFKSNFDLAEDA KLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAI
LLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEI
30 FFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLR

KQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPY
YVGPLARGNSRFAWMTRKSEETITPWNFEVVVDKGASAQSFIERNMTNFDK
NLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVD
LLFKTNRKVTVKQLKEDYFKKIECFDSWEISGVEDRFNASLGTYHDLLKI
5 IKDKDFLDNEENEDILEDIVLTLLFEDREMIEERLKYAHLFDDKVMKQ
LKRRRYTGWGRLSRKLINGIRDQSGKTILDFLSDGFANRNFMQLIHDD
SLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIIKGILQTVKVVDELVKV
MGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHP
VENTQLQNEKLYLYLQNGRDMYVDQELDINRLSDYDVDHIVPQSFLKDD
10 SIDNKLTRSDKNRGKSDNVPSEEVVKMKNYWRQLLNAKLITQRKFDNL
TKAERGGLSELDKAGFIKRQLVETRQITKHVAQILDLSRMNTKYDENDKLI
REVKVITLKSCLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTLAKRARDER
YPKLEGSSGSETPGTSESATPESSGSEVEFSHEYWMRHALTLAKRARDER
EVPVGAVLVNNRVIGEGWNRAIGLHDPTAHAEIMALRQGGLVMQNYRLI
15 DATLYVTFEPVCVMCAGAMIHSRIGRVVFGVRNAKTGAAGSLMDVLHYPGM
NHRVEITEGILADECACALLCYFRMPHQSEFVYGDYKVDVRKMIAKSEQ
EIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKG
RDFATVRKVLSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWD
PKKYGGFDSPTVAYSVLVVAKVEKGKSKKLKSVKELLGITIMERSSFEKN
20 PIDFLEAKGYKEVKKDLIILPKYSLFELENGRKMLASAGELQKGNELA
LPSKYVNFLYLAHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFS
KRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFKYF
DTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGD

25 115.4 Cas9 TadAins1007

MDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGA
LLFDSGETAEARLKRTRRRYTRRKNRICYLQEIFSNEMAKVDDSFHRL
LEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKAD
LRLIYLALAHMIKFRGHFLIEGDLNPDNSDVKLFIQLVQTYNQLFEENP
30 INASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTP

NFKSNFDLAEDAKLQLSKDTYDDLDNLLAQIGDQYADLFLAAKNLSDAI
LLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEI
FFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLR
KQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPY
5 YVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIERNFDK
NLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVD
LLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKI
IKDKDFLDNEENEDILEDIVLTTLFEDREMIEERLKYTAHLFDDKVMKQ
LKRRRYTGWGRLSRKLINGIRDQSGKTILDFLKSDFANRNFMQLIHDD
10 SLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIIKGILQTVKVVDELVKV
MGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHP
VENTQLQNEKLYLYLQNNGRDMYVDQELDINRLSDYDVDHIVPQSFLKDD
SIDNKVLTRSDKNRGKSDNVPSEEVVKMKNYWRQLLNAKLITQRKFDNL
TKAERGGLSELDKAGFIKRQLVETRQITKHVAQILDLSRMNTKYDENDKLI
15 REVKVITLKSCLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTLAKK
YPKLESGSSGSETPGTSESATPESSGSEVEFSHEYWMRHALTAKRARDE
REVPVGAVLVNNRVIGEGWNRAIGLHDPTAHAEIMALRQGGLVMQNYRL
IDATLYVTFEPVCVMCAGAMIHSRIGRVVFGVRNAKTGAAGSLMDVLHYPG
MNHRVEITEGILADECACALLCYFFRMPRQEJVYGDYKVYDVRKMIAKSEQ
20 EIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKG
RDFATVRKVLSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWD
PKKYGGFDSPTVAYSVLVVAKVEKGKSKKLKSVKELLGITMERSSFEKN
PIDFLEAKGYKEVKKDLIILPKYSLFELENGRKRMLASAGELQKGNELA
LPSKYVNFLYLAHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFS
25 KRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFKYF
DTTIDRKRYTSTKEVLDATLIHQSQITGLYETRIDLSQLGGD

116.1 Cas9 TadAins C-term truncate2 792

MDKKYSIGLAIGTNSVGWAVITDEYKVPSSKKFKVLGNTDRHSIKKNLIGA
30 LLFDSGETAETRLKRTARRRYTRRKNRICYLQEIFSNEAKVDDSFHRL

LEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKAD
LRLIYLALAHMFKFRGHFLIEGDLNPNSDVKLFIQLVQTYNQLFEENP
INASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTP
NFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAI
5 LLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEI
FFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLR
KQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPY
YVGPLARGNSRFAMTRKSEETITPWNFEEVVDKGASAQSFIERMNTFDK
NLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVD
10 LLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKI
IKDKDFLDNEENEDILEDIVLTTLFEDREMIEERLKTYAHLFDDKVMKQ
LKRRRYTGWGRSLRKLINGIRDQSGKTILDFLKSDFANRNFMQLIHDD
SLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIIKGILQTVKVVDELVKV
MGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGGSSGSETP
15 GTSESATPESSGSEVEFSHEYWMRHALTLAKRARDEREVPVGAVLVLNNR
VIGEGWNRAIGLHDPTAHAEIMALRQGGLVMQNYRLIDATLYVTFEPCVM
CAGAMIHSRIGRVVFGVRNAKTGAAGSLMDVLHYPGMNHRVEITEGILAD
ECAALLCYFFRMPRQSQILKEHPVENTQLQNEKLYLYLQNGRDMYVDQE
LDINRLSDYDVDHIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEEVVK
20 KMKNYWRQLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQI
TKHVAQILDLSRMNTKYDENDKLIREVKVITLKSCLVSDFRKDFQFYKVRE
INNYHHAHDAYLNAVVGTLIKKYPKLESEFVYGDYKVDVRKMIAKSEQ
EIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKG
RDFATVRKVLSMPQVNIVKKTEVTGGFSKESILPKRNSDKLIARKKDWD
25 PKKYGGFDSPTVAYSVLVVAKVEKGKSKKLKSVKELLGITIMERSSFEKN
PIDFLEAKGYKEVKKDLIILPKYSLFELENGRKMLASAGELQKGNELA
LPSKYVNFLYLAHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFS
KRVILADANLDKVLSAYNKHRDKPIREQAENIHLFTLTNLGAPAAFKYF
DTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGD

116.2 Cas9 TadAins C-term truncate2 791

MDKKYSIGLAIGTNSVGWAVITDEYK VPSKKFKVLGNTDRHSIKKNLIGA
LLFDSGETAETRLKRTARRRYTRRKNRICYLQEIFSNE MAKVDDSSFFHR
LEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKAD
5 LRLIYLALAHMIKFRGHFLIEGDLNPDNSDVKLFIQLVQTYNQLFEENP
INASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTP
NFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAI
LLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEI
FFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLR
10 KQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPY
YVGPLARGNSRFAWMTRKSEETITPWNFEVVDKGASAQSFIERMNFDK
NLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVD
LLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKI
IKDKDFLDNEENEDILEDIVLTTLFEDREMIEERLKTYAHLFDDKVMKQ
15 LKRRRYTGWGRLSRKLINGIRDQSGKTILDFLKSDGFANRNFMQLIHDD
SLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIIKGILQTVKVVDELVKV
MGRHKPENIVIEMARENQTTKGQKNSRERMKRIEEGIKELGSSGSETPG
TSESATPESSGSEVEFSHEYWMRHALTLAKRARDEREVPVGA VLVLNNRV
IGEGWNRAIGLHDPTAHAEIMALRQGGLVMQNYRLIDATLYVTFEPCVMC
20 AGAMIHSRIGRVVFGVRNAKTGAAGSLMDVLHYPGMNHRVEITEGILADE
CAALLCYFFRMPRQGSQILKEHPVENTQLQNEKLYLYLQNGRDMYVDQE
LDINRLSDYDVDHIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEEVVK
KMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQI
TKHVAQILDLSRMNTKYDENDKLIREVKVITLKSCLVSDFRKDFQFYKVRE
25 INNYHHAHDAYLNAVVGTLIKKYPKLESEFVYGDYKVDVRKMIAKSEQ
EIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKG
RDFATVRKVLSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWD
PKKYGGFDSPTVAYSVLVAKEKGKSKKLKSVKELLGITIMERSSFEKN
PIDFLEAKGYKEVKKDLIILPKYSLFELENGRKRLASAGELQKGNELA
30 LPSKYVNFLYLA SHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFS

KRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFKYF
DTTIDRKRYTSTKEVLDATLIHQSQITGLYETRIDLSQLGGD

116.3 Cas9 TadAins C-term truncate2 790

5 MDKKYSIGLAIGTNSVGWAVITDEYKVPSSKKFKVLGNTDRHSIKKNLIGA
LLFDSEGETAEATRLKRTARRRYTRRKNRICYLQEIFSNEAKVDDSSFFHR
LEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKAD
LRLIYLALAHMIKFRGHFLIEGDLNPDNSDVKLFIQLVQTYNQLFEENP
INASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTP
10 NFKSNFDLAEDAQLQLSKDTYDDDDLDNLLAQIGDQYADLFLAAKNLSDAI
LLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEI
FFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLR
KQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPY
YVGPLARGNSRFAWMTRKSEETITPWNFEVVVDKGASAQSFIERNMTNFDK
15 NLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVD
LLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKI
IKDKDFLDNEENEDILEDIVLTLLFEDREMIEERLKYAHLFDDKVMKQ
LKRRRYTGWGRSLRKLINGIRDQSGKTILDFLKSDGFANRNFMQLIHDD
SLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIIKGILQTVKVVDELVKV
20 MGRHKPENIVIEMARENQTTKGQKNSRERMKRIEGIKEGSSGSETPGT
SESATPESSGSEVEFSHEYWMRHALTAKRARDEREVPVGAVLVNNRVI
GEGWNRAIGLHDPTAHAEIMALRQGGLVMQNYRLIDATLYVTFEPCVMCA
GAMIHSRIGRVVFGVRNAKTGAAGSLMDVLHYPGMNHRVEITEGILADEC
AALLCYFFRMPRQLGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQE
25 LDINRLSDYDVDHIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEEVVK
KMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQI
TKHVAQILDLSRMNTKYDENDKLIREVKVITLKSCLVSDFRKDFQFYKVRE
INNYHHAHDAYLNAVVGTLIKKYPKLESEFVYGDYKVDVRKMIAKSEQ
EIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKG
30 RDFATVRKVLSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWD

PKKYGGFDSPTVAYSVLVAKVEKGKSKKLKSVKELLGITIMERSSEKN
PIDFLEAKGYKEVKKDLIILPKYSLFELENGRKRMLASAGELQKGNELA
LPSKYVNFLYLAHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFS
KRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFKYF
5 DTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGD

117 Cas9 delta 1017-1069

MDKKYSIGLAIGTNSVGWAVITDEYVPSKKFKVLGNTDRHSIKKNLIGA
LLFDSGETAETRLKRTARRRYTRRKNRICYLQEIFSNEAKVDDSSFFHR
10 LEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKAD
LRLIYLALAHMIKFRGHFLIEGDLNPDNSDVKLFIQLVQTYNQLFEENP
INASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTP
NFKSNFDLAEDAQLQLSKDTYDDLDNLLAQIGDQYADLFLAAKNLSDAI
LLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEI
15 FFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLR
KQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPY
YVGPLARGNSRFAWMTRKSEETITPWNFEVVVDKGASAQSFIERNTFDK
NLPNEKVLPKHSLLYEYFTVYNELTKVKVYVTEGMRKPAFLSGEQKKAIVD
LLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKI
20 IKDKDFLDNEENEDILEDIVLTTLFEDREMIEERLKYAHLFDDKVMKQ
LKRRRYTGWGRSLRKLINGIRDQSGKTILDFLSDGFANRNFMQLIHDD
SLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIIKGILQTVKVVDELVKV
MGRHKPENIVIEMARENQTTKGQKNSRERMKRIEEGIKELGSQILKEHP
VENTQLQNEKLYLYLQNNGRDMYVDQELDINRLSDYDVDHIVPQSFLKDD
25 SIDNKVLTRSDKNRGKSDNVPSEEVVKMKNYWRQLLNAKLITQRKFDNL
TKAERGGLSELDKAGFIKRQLVETRQITKHVAQILDLSRMNTKYDENDKLI
REVKVITLKSCLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTLIKK
YPKLESEFVYGDYKVYSSGSEVEFSHEYWMRHALTLAKRARDEREVPVGA
VLVLNNRVIGEGWNRAIGLHDPTAHAEIMALRQGGLVMQNYRLIDATLYV
30 TFEPCVMCAGAMIHSRIGRVVFGVRNAKTGAAGSLMDVLHYPGMNHRVEI

TEGILADECAALLCYFFRMPRQVFNAQKKAQSSTDGEIVWDKGRDFATVR
KVL SMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWP KKYGGF
DSPTVAYSVLVVAKVEKGKSKKLKSVKELLGITMERSFEKNPIDFLEA
KGYKEVKKDLI KLPK YSLF ELENGRK RMLASAGELQKG NELALPSKYVN
5 FLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKR VILAD
ANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFKYFDTTIDRK
RYTSTKEVLDATLIHQ SITGLYETRIDLSQLGGD

118 Cas9 TadA-CP116ins 1067

10 MDKKYSIGLAIGTNSVGWAVITDEYK VPSKKFKVLGNTDRHSIKKNLIGA
LLFDSGETA EATRLKRTARRRYTRRKNRICYLQEIFSNE MAKVDDSF FHR
LEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKAD
LRLIYLALAHMIKFRGHFLIEGDLNP DNSVDKLF IQLVQTYNQLFEENP
INASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTP
15 NFKNF DLAEDA KQLSKDTYDDDLDNLLA QIGDQYADLFLAAKNLSDAI
LLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEI
FFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLR
KQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPY
YVGPLARGNSRF AWMTRKSEETITPWNFEVVDKGASAQS FIERMTNF D
20 NLPNEKVL PKHSLLYEYFTVYNELTKV KYVTEGMRKPAFLSGEQKKAIVD
LLFKTNRKVTVKQLKEDYFKKIECFDSVEISGV EDRFNASLGTYHDLLKI
IKDKDFLDNEENEDILEDIVLT LTFEDREMIEERLKTYAHLFDDKVMKQ
LKRRRYTGWGRLSRK LINGIRDQSGKTILD FLKSDGFANRNF MQLIHDD
SLTFKEDIQKAQVSGQGDSLHEHIANLAGSPA IKKGILQTVKVVDELVKV
25 MGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHP
VENTQLQNEKLYLYLQNGRDMYVDQELDINRLSDYD VDHIVPQSFLKDD
SIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNL
TKAERGGLSELDKAGFIKRQLVETRQITKHVAQILD SRMNTKYDENDKLI
REVKVITLKS KLVSDFRKDFQFYKVREINNYHHAHDAYLNAV VGTALIKK
30 YPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEI

TLANGEIRKRPLIETNMNHRVEITEGILADECACALLCYFFRMPRFQVFNAQ
KKAQSSSTDGSSGSETPGTSESATPESSGSEVEFSHEYWMRHALTLAKRAR
DEREVPVGAVLVNNRVIGEGWNRAIGLHDPTAHAEIMALRQGGLVMQNY
RLIDATLYVTFEPCVMCAGAMIHSRIGRVVFGVRNAKTGAAGSLMDVLHY
5 PGGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKESILPKR
NSDKLIARKKDWDPKYGGFDSPPTVAYSVLVAKVEKGKSKKLKSVKELL
GITIMERSSFEKNPIDFLEAKGYKEVKKDLIILPKYSLFELENGRKRLML
ASAGELQKGNELALPSKYVNFLYLAHYEKLKGSPEDNEQKQLFVEQHKH
YLDEIIEQISEFSKRVILADANLDKVL SAYNKHRDKPIREQAENIIHLFT
10 LTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLHQ SITGLYETRIDLSQ
LGGD

119 Cas9 TadAins 701

MDKKYSIGLAIGTNSVGWAVITDEYKVPSSKKFKVLGNTDRHSIKKNLIGA
15 LLFDSEGETAEATRLKRTARRRYTRRKNRICYLQEIFSNEAKVDDSFHR
LEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKAD
LRLIYLALAHMIKFRGHFLIEGDLNPDNSVDKLFQLVQTYNQLFEENP
INASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTP
NFKSNFDLAEDAKLQLSKDTYDDLDNLLAQIGDQYADLFLAAKNLSDAI
20 LLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLKALVRQQLPEKYKEI
FFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLR
KQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPY
YVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSIERMTNFDK
NLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVD
25 LLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKI
IKDKDFLDNEENEDILEDIVLTTLFEDREMIEERLKTYAHLFDDKVMKQ
LKRRRYTGWGRLSRKLINGIRDQSGKTILDFLKSDFANRNFMQLIHDD
SGSSGSETPGTSESATPESSGSEVEFSHEYWMRHALTLAKRARDEREVPV
GAVLVNNRVIGEGWNRAIGLHDPTAHAEIMALRQGGLVMQNYRLIDATL
30 YVTFEPCVMCAGAMIHSRIGRVVFGVRNAKTGAAGSLMDVLHYPGMNHRV

EITEGILADEC AALLCYFFRMPRQVFNAQKKAQSSTDLTFKEDIQKAQVS
GQGDSLHEHIANLAGSPAIIKGILQTVKVVDELVKVMGRHKPENIVIEMA
RENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYLY
YLQNNGRDMYVDQELDINRLSDYDVDHIVPQSFLKDDSIDNKVLTRSDKNR

5 GKSDNPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKA
GFIKRQLVETRQITKHVAQILDLSRMNTKYDENDKLIREVKVITLKSKLVS
DFRKDFQFYKVREINNYHHAHDAYLNAVVTALIKKYPKLESEFVYGDYK
VYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIE
TNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKESILPKR
10 NSDKLIARKKDWDPKYGGFDSPPTVAYSVLVVAKEKGKSKKLKSVKELL
GITIMERSSFEKNPIDFLEAKGYKEVKKDLIILPKYSLFELENGRKRML
ASAGELQKGNELALPSKYVNFLYLA SHYEKLKGSPEDNEQKQLFVEQHKKH
YLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFT
LTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQ SITGLYETRIDLSQ

15 LGGD

120 Cas9 TadACP136ins 1248

MDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGA
LLFDSGETAETRLKRTARRYTRRKNRICYLQEIFSNEAKVDDSSFFHR
20 LEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKAD
LRLIYLALAHMIKFRGHFLIEGDLNPDNSDVKLFIQLVQTYNQLFEENP
INASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTP
NFKSNFDLAEDAQLQLSKDTYDDLDNLLAQIGDQYADLFLAAKNLSDAI
LLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEI
25 FFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLR
KQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPY
YVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQS FIERMTNFDK
NLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVD
LLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKI
30 IKDKDFLDNEENEDILEDIVLTLLFEDREMIEERLKTYAHLFDDKVMKQ

LKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDFANRNFMQLIHDD
SLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIIKGILQTVKVVDELVKV
MGRHKPENIVIEMARENQTTKGQKNSRERMKRIEEGIKELGSQILKEHP
VENTQLQNEKLYLYLQNNGRDMYVDQELDINRLSDYDVDHIVPQSFLKDD
5 SIDNKVLTRSDKNRGKSDNVPSEEVVKMKNYWRQLLNAKLITQRKFDNL
TKAERGGLSELDKAGFIKRQLVETRQITKHVAQILD SRMNTKYDENDKLI
REVKVITLKSCLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTLIKK
YPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEI
TLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEV
10 QTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVE
KGKSKKLKSVKELLGITIMERSFEKNPIDFLEAKGYKEVKKDLIILKLPK
YSLFELENGRKRMLASAGELQKGNELALPSKYVNFLYASHYEKLKGSMN
HRVEITEGILADECACALLCYFFRMPRQVFNAQKKAQSSTDGSSGSETPGT
SESATPESSGSEVEFSHEYWMRHALTAKRARDEREVPVGAVLVLNNRVI
15 GEGWNRAIGLHDPTAHAEIMALRQGGLVMQNYRLIDATLYVTFEPVCVMCA
GAMIHSRIGRVVFGVRNAKTGAAGSLMDVLHYPGPEDNEQKQLFVEQHKH
YLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFT
LTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQ SITGLYETRIDLSQ
LGHD
20 121 Cas9 TadACP136ins 1052
MDKKYSIGLAIGTNSVGWAVITDEYKVPSSKKFKVLGNTDRHSIKKNLIGA
LLFDSEGETAEATRLKRTARRRYTRRKNRICYLQEIFSNE MAKVDDSSFFHR
LEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKAD
25 LRLIYLALAHMIKFRGHFLIEGDLNPDNSDVKLFIQLVQTYNQLFEENP
INASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTP
NFKSNFDLAEDAQLQLSKDTYDDDDLNLLAQIGDQYADLFLAAKNLSDAI
LLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEI
FFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLR
30 KQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPY

YVGPLARGNSRFAWMTRKSEETITPWNFEVVDKGASAQSFIERNMTNFDK
NLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVD
LLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKI
IKDKDFLDNEENEDILEDIVLTLLFEDREMIEERLKYAHLFDDKVMKQ
5 LKRRRYTGWGRLSRKLINGIRDQSGKTILDFLSDGFANRNFMQLIHDD
SLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIIKGILQTVKVVDELVKV
MGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHP
VENTQLQNEKLYLYLQNGRDMYVDQELDINRLSDYDVDHIVPQSFLKDD
SIDNKVLTRSDKNRGKSDNVPSEEVVKMKNYWRQLLNAKLITQRKFDNL
10 TKAERGGLSELDKAGFIKRQLVETRQITKHVAQILDLSRMNTKYDENDKLI
REVKVITLKSCLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTLIKK
YPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEI
TLAMNHRVEITEGILADECACALLCYFFRMPRQVFNAQKKAQSSTDGSSGS
ETPGTSESATPESSGSEVEFSHEYWMRHALTLAKRARDEREVPVGAVLVL
15 NNRVIGEGWNRAIGLHDPTAHAEIMALRQGGLVMQNYRLIDATLYVTFEP
CVMCAGAMIHSRIGRVVFGVRNAKTGAAGSLMDVLHYPGNGEIRKRPLIE
TNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKESILPKR
NSDKLIARKKDWDPKKYGGFDSPPTVAYSVLVVAKVEKGKSKKLKSVKELL
GITIMERSSEKNPIDFLEAKGYKEVKKDLIILPKYSLFELENGRKML
20 ASAGELQKGNELALPSKYVNFLYASHYEKLKGSPEDNEQKQLFVEQHKH
YLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFT
LTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQHSITGLYETRIDLSQ
LGGD
25 122 Cas9 TadACP136ins 1041
MDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGA
LLFDSGETAETRLKRTARRRYTRRKNRICYLQEIFSNEAKVDDSFHR
LEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKAD
LRLIYLALAHMIKFRGHFLIEGDLNPDNSDVKLFIQLVQTYNQLFEENP
30 INASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTP

NFKSNFDLAEDAKLQLSKDTYDDLDNLLAQIGDQYADLFLAAKNLSDAI
LLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEI
FFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLR
KQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPY
5 YVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIERNFDK
NLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVD
LLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKI
IKDKDFLDNEENEDILEDIVLTTLFEDREMIEERLKYAHLFDDKVMKQ
LKRRRYTGWGRLSRKLINGIRDQSGKTILDFLKSDFANRNFMQLIHDD
10 SLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIIKGILQTVKVVDELVKV
MGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHP
VENTQLQNEKLYLYLQNNGRDMYVDQELDINRLSDYDVDHIVPQSFLKDD
SIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNL
TKAERGGLSELDKAGFIKRQLVETRQITKHVAQILDLSRMNTKYDENDKLI
15 REVKVITLKSCLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTLIKK
YPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSMNHRVEITEG
ILADECAALLCYFFRMPRQVFNAQKKAQSSTDGSSGSETPGTSESATPES
SGSEVEFSHEYWMRHALTLAKRARDEREVPVGAVLVNNRIVGEGWNRAI
GLHDPTAHAEIMALRQGGLVMQNYRLIDATLYVTFEPCVMCAGAMIHSRI
20 GRVVFGVRNAKTGAAGSLMDVLHYPGNIMNFFKTEITLANGEIRKRPLIE
TNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKESILPKR
NSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKEVGKSKKLKSVKELL
GITIMERSSFEKNPIDFLEAKGYKEVKKDLIILPKYSLFELENGRKML
ASAGELQKGNELALPSKYVNFLYLA SHYEKLKGSPEDNEQKQLFVEQHKH
25 YLDEIIEQISEFSKRVILADANLDKVL SAYNKHRDKPIREQAENIIHLFT
LTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQ SITGLYETRIDLSQ
LGGD

123 Cas9 TadACP139ins 1299

30 MDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGA

LLFDSGETAETRLKRTARRYTRRKNRICYLQEIFSNEAKVDDSFHRL
LEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKAD
LRLIYLALAHMIKFRGHFLIEGDLNPDNSVDKLFQLVQTYNQLFEENP
INASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTP
5 NFKSNFDLAEDAKLQLSKDTYDDLDNLLAQIGDQYADLFLAAKNLSDAI
LLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEI
FFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLR
KQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPY
YVGPLARGNSRFAWMTRKSEETITPWNFEVVVDKGASAQSFIERNFDK
10 NLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVD
LLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKI
IKDKDFLDNEENEDILEDIVLTTLFEDREMIEERLKTYAHLFDDKVMKQ
LKRRRYTGWGRLSRKLINGIRDQSGKTILDFLKSDGFANRNFMQLIHDD
SLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIIKGILQTVKVVDELVKV
15 MGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHP
VENTQLQNEKLYLYLQNGRDMYVDQELDINRLSDYDVDHIVPQSLKDD
SIDNKVLTRSDKNRGKSDNVPSEEVVKMKNYWRQLLNAKLITQRKFDNL
TKAERGGLSELDKAGFIKRQLVETRQITKHVAQILDLSRMNTKYDENDKLI
REVKVITLKSCLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTLI
20 YPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEI
TLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEV
QTGGFSKESILPKRNSDKLIARKKDWDPKYGGFDSPTVAYSVLVVAKVE
KGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIILKLPK
YSLFELENGRKMLASAGELQKGNELALPSKYVNFLYLAHYEKLKGSPE
25 DNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRMN
HRVEITEGILADECACALLCYFFRMPRQVFNAQKKAQSSTDGSSGSETPGT
SESATPESSGSEVEFSHEYWMRHALTLAKRARDEREVPVGAVLVNNRVI
GEGWNRAIGLHDPTAHAEIMALRQGGLVMQNYRLIDATLYVTFEPVCVMCA
GAMIHSRIGRVVFGVRNAKTGAAGSLMDVLHYPGDKPIREQAENIIHLFT
30 LTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQ

LGGD

124 Cas9 delta 792-872 TadAins

MDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGA
5 LLFDSGETAETRLKRTARRRYTRRKNRICYLQEIFSNEAKVDDSSFFHR
LEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKAD
LRLIYLALAHMIKFRGHFLIEGDLNPDNSDVKLFIQLVQTYNQLFEENP
INASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTP
NFKSNFDLAEDAQLQLSKDTYDDLDNLLAQIGDQYADLFLAAKNLSDAI
10 LLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEI
FFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLR
KQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPY
YVGPLARGNSRFAWMTRKSEETITPWNFEVVVDKGASAQSIERMTNFDK
NLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVD
15 LLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKI
IKDKDFLDNEENEDILEDIVLTTLFEDREMIEERLKYAHLFDDKVMKQ
LKRRRYTGWGRLSRKLINGIRDQSGKTILDFLKSDGFANRNFMQLIHDD
SLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIIKGILQTVKVVDELVKV
MGRHKPENIVIEMARENQTTKGQKNSRERMKRIEEGIKELGSEVEFSHE
20 YWMRHALTLAKRARDEREVPVGAVLVLNRRIGEGWNRAIGLHDPTAHAE
IMALRQGGLVMQNYRLIDATLYVTFEPVCVMCAGAMIHSRIGRVVFGVRNA
KTGAAGSLMDVLHYPGMNHRVEITEGILADECACALLCYFFRMPRQVFNAQ
KKAQSSTDEEVVKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKA
GFIKRQLVETRQITKHVAQILDLSRMNTKYDENDKLIREVKVITLKSKLVS
25 DFRKDFQFYKVREINNYHHAHDAYLNAVGTALIKKYPKLESEFVYGDYK
VYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIE
TNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKESILPKR
NSDKLIARKKDWDPKYGGFDSPVTAVSVLVAKEKGKSKKLKSVKELL
GITIMERSSEFKNPIDFLEAKGYKEVKKDLIILPKYSLFELENGRKML
30 ASAGELQKGNELALPSKYVNFLYLA SHYEKLKGSPEDNEQKQLFVEQHKH

YLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFT
LTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQHSITGLYETRIDLSQ
LGGD

5 125 Cas9 delta 792-906 TadAins
MDKKYSIGLAIGTNSVGWAVITDEYKVPSSKFVLGNTDRHSIKKNLIGA
LLFDSGETAEARLKRTARRRYTRRKNRICYLQEIFSNEAKVDDSSFFHR
LEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKAD
LRLIYLALAHMIKFRGHFLIEGDLNPDNSVDKLFQLVQTYNQLFEENP
10 INASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTP
NFKSNFDLAEDAQLQLSKDTYDDLDNLLAQIGDQYADLFLAAKNLSDAI
LLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLKALVRQQLPEKYKEI
FFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLR
KQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPY
15 YVGPLARGNSRFAMTRKSEETITPWNFEVVVDKGASAQSIERMTNFDK
NLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVD
LLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKI
IKDKDFLDNEENEDILEDIVLTLFEDREMIEERLKYAHLFDDKVMKQ
LKRRRYTGWGRLSRKLINGIRDQSGKTILDFLKSDGFANRNFMQLIHDD
20 SLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIIKGILQTVKVVDELVKV
MGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEGIKELGSEVEFSHE
YWMRHALTLAKRARDEREVPVGAVLVLNRRIGEGWNRAIGLHDPTAHAE
IMALRQGGLVMQNYRLIDATLYVTFEPVCVMCAGAMIHSRIGRVVFGVRNA
KTGAAGSLMDVLHYPGMNHRVEITEGILADECACALLCYFFRMPRQVFNAQ
25 KKAQSSTDGLSELDKAGFIKRQLVETRQITKHVAQILDLSRMNTKYDENDK
LIREVKVITLKSCLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTLI
KKYPKLESEFVYGDYKVDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKT
EITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKT
EVQTGGFSKESILPKRNSDKLIARKKDWPKKYGGFDSPTVAYSVLVVAK
30 VEKGKSKKLKSVKELLGITIMERSSEKNPIDFLEAKGYKEVKKDLIJKL

PKYSLFELENGRKMLASAGELQKGNELALPSKYVNFLYLA SHYEKLKGS
PEDNEQKQLFVEQHKHYLDEIEQISEFSKRVILADANLDKVLSAYNKR
DKPIREQAENIIHLFTLTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLI
HQSITGLYETRIDLSQLGGD

5

126 TadA CP65ins 1003

MDKKYSIGLAIGTNSVGWAVITDEYKVPSSKKFKVLGNTDRHSIKKNLIGA
LLFDSGETAETRLKRTARRRYTRRKNRICYLQEIFSNE MAKVDDSFH
LEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKAD
10 LRLIYLALAHMIKFRGHFLIEGDLNPDNSDVKLFQLVQTYNQLFEENP
INASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTP
NFKSNFDLAEDAQLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAI
LLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEI
FFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLR
15 KQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPY
YVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDK
NLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVD
LLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKI
IKDKDFLDNEENEDILEDIVLTLLFEDREMIEERLKYAHLFDDKVMKQ
20 LKRRRYTGWGRSLRKLINGIRDQSGKTILDFLKSDFANRNFMQLIHDD
SLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIIKGILQTVKVVDELVKV
MGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHP
VENTQLQNEKLYLYLQNGRDMYVDQELDINRLSDYDVDHIVPQSFLKDD
SIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNL
25 TKAERGGLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLI
REVKVITLKSCLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTLIKK
YPKTAHAEIMALRQGGLVMQNYRLIDATLYVTFEPCVMCAGAMIHSRIGR
VVFGVRNAKTGAAGSLMDVLHYPGMNHRVEITEGILADECACALLCYFFRM
PRQVFNAQKKAQSSTDGSSGSETPGTSESATPESSGSEVEFSHEYWMRHA
30 LTLAKRARDEREVPVGAVLVNNRIGEGWNRAIGLHDPLESEFVYGDYK

VYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIE
TNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKESILPKR
NSDKLIARKKDWDPKYGGFDSPTVAYSVLVVAKVEKGKSKKLKSVKELL
GITIMERSSEKNPIDFLEAKGYKEVKKDLIILPKYSLFELENGRKML

5 ASAGELQKGNELALPSKYVNFLYLA SHYEKLKGSPEDNEQKQLFVEQHKH
YLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFT
LTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQ SITGLYETRIDLSQ
LGGD

10 127 TadA CP65ins 1016

MDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGA
LLFDSGETAETRLKRTARRRYTRRKNRICYLQEIFSNE MAKVDDSFH
LEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKAD
LRLIYLALAHMIKFRGHFLIEGDLNPDNSDVKLFIQLVQTYNQLFEENP

15 INASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTP
NFKNFNLDAEDAKLQLSKDTYDDLDNLLAQIGDQYADLFLAAKNLSDAI
LLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEI
FFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLR
KQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPY

20 YVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQS FIERMTNFDK
NLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVD
LLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKI
IKDKDFLDNEENEDILEDIVLTTLFEDREMIEERLKTYAHLFDDKVMKQ
LKRRRYTGWGRLSRKLINGIRDQSGKTILDPLKSDGFANRNFMQLIHDD

25 SLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIIKGILQTVKVVDELVKV
MGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHP
VENTQLQNEKLYLYLQNQGRDMYVDQELDINRLSDYDVDHIVPQSLKDD
SIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNL
TKAERGGLSELDKAGFIKRQLVETRQITKHVAQILD SRMNTKYDENDKLI
30 REVKVITLKSCLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTLIKK

YPKLESEFVYGDYKVTAAEIMALRQGLVMQNYRLIDATLYVTFEPVM
CAGAMIHSRIGRVVFGVRNAKTGAAGSLMDVLHYPGMNHRVEITEGILAD
ECAALLCYFFRMPRQVFNAQKKAQSSTDGSSGSETPGTSESATPESSGSE
VEFSHEYWMRHALTLAKRARDEREVPVGAVLVLNNRVIGEGWNRAIGLHD
5 PYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIE
TNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKESILPKR
NSDKLIARKKDWDPKYGGFDSPTVAYSVLVVAKEKGKSKKLKSVKELL
GITIMERSSEKNPIDFLEAKGYKEVKKDLIILPKYSLFELENGRKML
ASAGELQKGNELALPSKYVNFLYLA SHYEKLKGSPEDNEQKQLFVEQHKH
10 YLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFT
LTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQ SITGLYETRIDLSQ
LGGD

128 TadA CP65ins 1022

15 MDKKYSIGLAIGTNSVGWAVITDEYKVPSSKKFKVLGNTDRHSIKKNLIGA
LLFDSGETAETRLKRTARRRYTRRKNRICYLQEIFSNE MAKVDDSFHRL
LEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKAD
LR LIYLALAHMIKFRGHFLIEGDLNPNSDVKLFIQLVQTYNQLFEENP
INASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTP
20 NFKSNFDLAEDAKLQLSKDTYDDLDNLLAQIGDQYADLFLAAKNLSDAI
LLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEI
FFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLR
KQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPY
YVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQS FIERMTNFDK
25 NLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVD
LLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKI
IKDKDFLDNEENEDILEDIVLTLLFEDREMIEERLKTYAHLFDDKVMKQ
LKRRRYTGWGRSLRKLINGIRDQSGKTILDFLKS DGFANRNFMQLIHDD
SLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIIKGILQTVKVVDELVKV
30 MGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHP

VENTQLQNEKLYLYLQNGRDMYVDQELDINRLSDYDVDHIVPQSFLKDD
SIDNKVLTRSDKNRGKSDNVPSEEVVKMKNYWRQLLNAKLITQRKFDNL
TKAERGGLSELDKAGFIKRQLVETRQITKHVAQILDLSRMNTKYDENDKLI
REVKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTLI
5 YPKLESEFVYGDYKVYDVRKMITAHEIMALRQGGLVMQNYRLIDATLYV
TFEPCVMCAGAMIHSRIGRVVFGVRNAKTGAAGSLMDVLHYPGMNHRVEI
TEGILADECACALLCYFFRMPRQVFNAQKKAQSSTDGSSGSETPGTSESAT
PESSGSEVEFSHEYWMRHALTAKRARDEREVPVGAVLVLNRRVIGEGWN
RAIGLHDPAKSEQEIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIE
10 TNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKESILPKR
NSDKLIARKKDWDPKYGGFDSPVTAVSVLVAKVEKGKSKKLKSVKELL
GITIMERSSFEKNPIDFLEAKGYKEVKKDLIILPKYSLFELENGRKRL
ASAGELQKGNELALPSKYVNFLYLA SHYEKLKGSPEDNEQKQLFVEQHKH
YLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFT
15 LTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQ SITGLYETRIDLSQ
LGGD

129 TadA CP65ins 1029

MDKKYSIGLAIGTNSVGWAVITDEYK VPSKKFKVLGNTDRHSIKKNLIGA
20 LLFDSGETAETRLKRTARRYTRRKNRICYLQEIFSNEAKVDDSFHRL
LEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKAD
LRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFQLVQTYNQLFEENP
INASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTP
NFKSNFDLAEDAQLQLSKDTYDDLDNLLAQIGDQYADLFLAAKNLSDAI
25 LLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEI
FFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLR
KQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPY
YVGPLARGNSRFAWMTRKSEETITPWNFEVVDKGASAQS FIERMTNFDK
NLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVD
30 LLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKI

IKDKDFLDNEENEDILEDIVLTTLFEDREMIEERLKYAHLFDDKVMKQ
 LKRRRYTGWGRLSRKLINGIRDQSGKTILDFLKSDFANRNFMQLIHDD
 SLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIIKGILQTVKVVDELVKV
 MGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEGLGSQILKEHP
 5 VENTQLQNEKLYLYLQNGRDMYVDQELDINRLSDYDVDHIVPQSFLKDD
 SIDNKVLTRSDKNRGKSDNVPSEEVVKMKNYWRQLLNAKLITQRKFDNL
 TKAERGGLSELDKAGFIKRQLVETRQITKHVAQILDLSRMNTKYDENDKLI
 REVKVITLKSCLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTLIKK
 YPKLESEFVYGDYKVYDVRKMIAKSEQEITAHAEIMALRQGGLVMQNYRL
 10 IDATLYVTFEPCVMCAGAMIHSRIGRVVFGVRNAKTGAAGSLMDVLHYPG
 MNHRVEITEGILADECAALLCYFFRMPRQVFNAQKKAQSSTDGSSGSETP
 GTSESATPESSGSEVEFSHEYWMRHALTLAKRARDEREVPVGAVLVLNNR
 VIGEGWNRAIGLHDPGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIE
 TNGETGEIVWDKGRDFATVRKVLSMPQVNIVKTEVQTGGFSKESILPKR
 15 NSDKLIARKKDWDPKYGGFDSPTVAYSVLVAKEKGKSKKLKSVKELL
 GITIMERSFEKNPIDFLEAKGYKEVKKDLIILPKYSLFELENGRKRL
 ASAGELQKGNELALPSKYVNFLYLAHYEKLKGSPEDNEQKQLFVEQHKH
 YLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFT
 LTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQHSITGLYETRIDLSQ
 20 LGGD

130 TadA CP65ins 1041

MDKKYSIGLAIGTNSVGWAVITDEYKVPSSKKFKVLGNTDRHSIKKNLIGA
 LLFDSGETAETRLKRTARRRYTRRKNRICYLQEIFSNEAKVDDSFH
 25 LEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKAD
 LRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFQLVQTYNQLFEENP
 INASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTP
 NFKNFDLAEDAQLQLSKDTYDDLDNLLAQIGDQYADLFLAAKNLSDAI
 LLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEI
 30 FFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLR

KQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPY
 YVGPLARGNSRFAWMTRKSEETITPWNFEVVVDKGASAQSFIERNMTNFDK
 NLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVD
 LLFKTNRKVTVKQLKEDYFKKIECFDSWEISGVEDRFNASLGTYHDLLKI
 5 IKDKDFLDNEENEDILEDIVLTLLFEDREMIEERLKYAHLFDDKVMKQ
 LKRRRYTGWGRLSRKLINGIRDQSGKTILDFLSDGFAANRNFMQLIHDD
 SLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIIKGILQTVKVVDELVKV
 MGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHP
 VENTQLQNEKLYLYLQNGRDMYVDQELDINRLSDYDVDHIVPQSFLKDD
 10 SIDNKVLTRSDKNRGKSDNVPSEEVVKMKNYWRQLLNAKLITQRKFDNL
 TKAERGGLSELDKAGFIKRQLVETRQITKHVAQILDLSRMNTKYDENDKLI
 REVKVITLKSCLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTLI
 YPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSTAHAEIMALR
 QGGLVMQNYRLIDATLYVTFEPVCVMCAGAMIHSRIGRVVFGVRNAKTGAA
 15 GSLMDVLHYPGMNHRVEITEGILADECACALLCYFFRMPRQVFNAQKKAQS
 STDGSSGSETPGTSESATPESSGSEVEFSHEYWMRHALTLAKRARDEREV
 PVGAVLVLNNRVIGEGWNRAIGLHDPNIMNFFKTEITLANGEIRKRPLIE
 TNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKESILPKR
 NSDKLIARKKDWDPKYGGFDSPTVAYSVLVVAKVEKGKSKKLKSVKELL
 20 GITIMERSSEKNPIDFLEAKGYKEVKKDLIILPKYSLFELENGRKML
 ASAGELQKGNELALPSKYVNFLYASHYEKLKGSPEDNEQKQLFVEQHKH
 YLDEIIEQISEFSKRVILADANLDKVL SAYNKHRDKPIREQAENIIHLFT
 LTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQ SITGLYETRIDLSQ
 LGGD

25

131 TadA CP65ins 1054

MDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGA
 LLFDSEGETAEATRLKRTARRYTRRKNRICYLQEIFSNEAKVDDSFH
 LEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKAD
 30 LRLIYLALAHMIKFRGHFLIEGDLNPDNSDVKLFIQLVQTYNQLFEENP

INASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTP
NFKNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAI
LLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEI
FFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLR
5 KQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPY
YVGPLARGNSRFAMTRKSEETITPWNFEVVDKGASAQSFIERNFDK
NLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVD
LLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKI
IKDKDFLDNEENEDILEDIVLTTLFEDREMIEERLKTYAHLFDDKVMKQ
10 LKRRRYTGWGRSLRKLINGIRDQSGKTILDFLKSDFANRNFMQLIHDD
SLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIIKGILQTVKVVDELVKV
MGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHP
VENTQLQNEKLYLYLQNGRDMYVDQELDINRLSDYDVDHIVPQSLKDD
SIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNL
15 TKAERGGLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLI
REVKVITLKSCLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTLIKK
YPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEI
TLANTAHAEIMALRQGGLVMQNYRLIDATLYVTFEPCVMCAGAMIHSRIG
RVVFGVRNAKTGAAGSLMDVLHYPGMNHRVEITEGILADECACALLCYFFR
20 MPRQVFNAQKKAQSSTDGSSGSETPGTSESATPESSGSEVEFSHEYWMRH
ALTLAKRARDEREVPVGAVLVLNNRVIGEGWNRAIGLHDPEIRKRPLIE
TNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKESILPKR
NSDKLIARKKDWPKKYGGFDSPTVAYSVLVAKVEKGKSKKLKSVKELL
GITIMERSSFEKNPIDFLEAKGYKEVKKDLIILPKYSLFELENGRKRML
25 ASAGELQKGNELALPSKYVNFLYLA SHYEKLKGSPEDNEQKQLFVEQHKKH
YLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFT
LTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQ SITGLYETRIDLSQ
LGGD

MDKKYSIGLAIGTNSVGWAVITDEYKVPSSKKFKVLGNTDRHSIKKNLIGA
LLFDSEGETAEATRLKRTARRYTRRKNRICYLQEIFSNEAKVDDSFHRL
LEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKAD
LRLIYLALAHMIKFRGHFLIEGDLNPDNSDVKLFIQLVQTYNQLFEENP
5 INASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTP
NFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAI
LLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEI
FFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLR
KQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPY
10 YVGPLARGNSRFAWMTRKSEETITPWNFEVVVDKGASAQSFIERNMTNFDK
NLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVD
LLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKI
IKDKDFLDNEENEDILEDIVLTTLFEDREMIEERLKTYAHLFDDKVMKQ
LKRRRYTGWGRLSRKLINGIRDQSGKTILDFLKSDGFANRNFMQLIHDD
15 SLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIIKGILQTVKVVDELVKV
MGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKEGSQILKEHP
VENTQLQNEKLYLYLQNGRDMYVDQELDINRLSDYDVDHIVPQSLKDD
SIDNKVLTRSDKNRGKSDNVPSEEVVKMKNYWRQLLNAKLITQRKFDNL
TKAERGGLSELDKAGFIKRQLVETRQITKHVAQILD SRMNTKYDENDKLI
20 REVKVITLKSCLVSDFRKDFQFYKvreINNYHHAHDAYLNAVVGTLIKK
YPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEI
TLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVL SMPQVNIVKKTEV
QTGGFSKESILPKRNSDKLIARKKDWDPKYGGFDSPTVAYSVLVVAKVE
KGKSKKLKSVKELLGITIMERSFEKNPIDFLEAKGYKEVKKDLIILKLPK
25 YSLFELENGRKMLASAGELQKGNELALPSKYVNFLYLA SHYEKLKGTAH
AEIMALRQGGLVMQNYRLIDATLYVTFEPCVMCAGAMIHSRIGR VVFGVR
NAKTGAAGSLMDVLHYPGMNHRVEITEGILA DECAALLCYFFRMPRQVFN
AQKKAQSSTDGSSGSETPGTSESATPESSGSEVEFSHEYWMRHALTLAKR
ARDEREVPVGAVLVLNNRVIGEGWNRAIGLHDPSPEDNEQKQLFVEQHKH
30 YLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFT

LTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQSLTGLYETRIDLSQ

LGGD

Protospacer Adjacent Motif

The term “protospacer adjacent motif (PAM)” or PAM-like motif refers to a 2-6 base pair DNA sequence immediately following the DNA sequence targeted by the Cas9 nuclease in the CRISPR bacterial adaptive immune system. In some embodiments, the PAM can be a 5’ PAM (*i.e.*, located upstream of the 5’ end of the protospacer). In other embodiments, the PAM can be a 3’ PAM (*i.e.*, located downstream of the 5’ end of the protospacer).

The PAM sequence is essential for target binding, but the exact sequence depends on a type of Cas protein.

A base editor provided herein can comprise a CRISPR protein-derived domain that is capable of binding a nucleotide sequence that contains a canonical or non-canonical protospacer adjacent motif (PAM) sequence. A PAM site is a nucleotide sequence in proximity to a target polynucleotide sequence. Some aspects of the disclosure provide for base editors comprising all or a portion of CRISPR proteins that have different PAM specificities. For example, typically Cas9 proteins, such as Cas9 from *S. pyogenes* (spCas9), require a canonical NGG PAM sequence to bind a particular nucleic acid region, where the “N” in “NGG” is adenine (A), thymine (T), guanine (G), or cytosine (C), and the G is guanine. A PAM can be CRISPR protein-specific and can be different between different base editors comprising different CRISPR protein-derived domains. A PAM can be 5’ or 3’ of a target sequence. A PAM can be upstream or downstream of a target sequence. A PAM can be 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more nucleotides in length. Often, a PAM is between 2-6 nucleotides in length. Several PAM variants are described in Table 1.

In some embodiments, the SpCas9 has specificity for PAM nucleic acid sequence 5’-NGC-3’ or 5’-NGG-3’. In various embodiments of the above aspects, the SpCas9 is a Cas9 or Cas9 variant listed in Table 1. In various embodiments of the above aspects, the modified SpCas9 is spCas9-MQKFRAER. In some embodiments, the variant Cas protein can be spCas9, spCas9-VRQR, spCas9-VRER, xCas9 (sp), saCas9, saCas9-KKH, SpCas9-MQKFRAER, spCas9-MQKSER, spCas9-LRKIQK, or spCas9-LRVSQ. In one specific embodiment, a modified SpCas9 including amino acid substitutions D1135M, S1136Q, G1218K, E1219F, A1322R, D1332A, R1335E, and T1337R (SpCas9-MQKFRAER) and having specificity for the altered PAM 5’-NGC-3’ is used.

In some embodiments, the PAM is NGT. In some embodiments, the NGT PAM is a variant. In some embodiments, the NGT PAM variant is created through targeted mutations at one or more residues 1335, 1337, 1135, 1136, 1218, and/or 1219. In some embodiments, the NGT PAM variant is created through targeted mutations at one or more residues 1219, 1335, 1337, 1218. In some embodiments, the NGT PAM variant is created through targeted mutations at one or more residues 1135, 1136, 1218, 1219, and 1335. In some embodiments, the NGT PAM variant is selected from the set of targeted mutations provided in Tables 2 and 3 below.

Table 2: NGT PAM Variant Mutations at residues 1219, 1335, 1337, 1218

Variant	E1219V	R1335Q	T1337	G1218
1	F	V	T	
2	F	V	R	
3	F	V	Q	
4	F	V	L	
5	F	V	T	R
6	F	V	R	R
7	F	V	Q	R
8	F	V	L	R
9	L	L	T	
10	L	L	R	
11	L	L	Q	
12	L	L	L	
13	F	I	T	
14	F	I	R	
15	F	I	Q	
16	F	I	L	
17	F	G	C	
18	H	L	N	
19	F	G	C	A
20	H	L	N	V
21	L	A	W	
22	L	A	F	
23	L	A	Y	
24	I	A	W	
25	I	A	F	
26	I	A	Y	

10

Table 3: NGT PAM Variant Mutations at residues 1135, 1136, 1218, 1219, and 1335

Variant	D1135L	S1136R	G1218S	E1219V	R1335Q
27	G				
28	V				
29	I				
30		A			

31		W			
32		H			
33		K			
34			K		
35			R		
36			Q		
37			T		
38			N		
39				I	
40				A	
41				N	
42				Q	
43				G	
44				L	
45				S	
46				T	
47					L
48					I
49					V
50					N
51					S
52					T
53					F
54					Y
55	N1286Q	I1331F			

In some embodiments, the NGT PAM variant is selected from variant 5, 7, 28, 31, or 36 in Tables 2 and 3. In some embodiments, the variants have improved NGT PAM recognition.

5 In some embodiments, the NGT PAM variants have mutations at residues 1219, 1335, 1337, and/or 1218. In some embodiments, the NGT PAM variant is selected with mutations for improved recognition from the variants provided in Table 4 below.

Table 4: NGT PAM Variant Mutations at residues 1219, 1335, 1337, and 1218

Variant	E1219V	R1335Q	T1337	G1218
1	F	V	T	
2	F	V	R	
3	F	V	Q	
4	F	V	L	
5	F	V	T	R
6	F	V	R	R
7	F	V	Q	R
8	F	V	L	R

In some embodiments, the NGT PAM is selected from the variants provided in Table 5 below.

Table 5. NGT PAM variants

	NGTN variant	D1135	S1136	G1218	E1219	A1322R	R1335	T1337
Variant 1	LRKIQK	L	R	K	I	-	Q	K
Variant 2	LRSVQK	L	R	S	V	-	Q	K
Variant 3	LRSVQL	L	R	S	V	-	Q	L
Variant 4	LRKIRQK	L	R	K	I	R	Q	K
Variant 5	LRSVRQK	L	R	S	V	R	Q	K
Variant 6	LRSVRQL	L	R	S	V	R	Q	L

5

In some embodiments, the Cas9 domain is a Cas9 domain from *Streptococcus pyogenes* (SpCas9). In some embodiments, the SpCas9 domain is a nuclease active SpCas9, a nuclease inactive SpCas9 (SpCas9d), or a SpCas9 nickase (SpCas9n). In some embodiments, the SpCas9 comprises a D9X mutation, or a corresponding mutation in any of the amino acid sequences provided herein may be fused with any of the cytidine deaminases or adenosine deaminases provided herein

In some embodiments, the SpCas9 domain comprises one or more of a D1135X, a R1335X, and a T1336X mutation, or a corresponding mutation in any of the amino acid sequences provided herein, wherein X is any amino acid. In some embodiments, the SpCas9 domain comprises one or more of a D1135E, R1335Q, and T1336R mutation, or a corresponding mutation in any of the amino acid sequences provided herein. In some embodiments, the SpCas9 domain comprises a D1135E, a R1335Q, and a T1336R mutation, or corresponding mutations in any of the amino acid sequences provided herein. In some embodiments, the SpCas9 domain comprises one or more of a D1135X, a R1335X, and a T1336X mutation, or a corresponding mutation in any of the amino acid sequences provided herein, wherein X is any amino acid. In some embodiments, the SpCas9 domain comprises one or more of a D1135V, a R1335Q, and a T1336R mutation, or a corresponding mutation in any of the amino acid sequences provided herein. In some embodiments, the SpCas9 domain comprises a D1135V, a R1335Q, and a T1336R mutation, or corresponding mutations in any of the amino acid sequences provided herein. In some embodiments, the SpCas9 domain comprises one or more of a D1135X, a G1217X, a R1335X, and a T1336X mutation, or a corresponding mutation in any of the amino acid sequences provided herein, wherein X is any amino acid. In some embodiments, the SpCas9 domain comprises one or more of a D1135V, a G1217R, a R1335Q, and a T1336R mutation, or a corresponding

mutation in any of the amino acid sequences provided herein. In some embodiments, the SpCas9 domain comprises a D1135V, a G1217R, a R1335Q, and a T1336R mutation, or corresponding mutations in any of the amino acid sequences provided herein.

In some embodiments, the Cas9 domains of any of the fusion proteins provided herein comprises an amino acid sequence that is at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to a Cas9 polypeptide described herein. In some embodiments, the Cas9 domains of any of the fusion proteins provided herein comprises the amino acid sequence of any Cas9 polypeptide described herein. In some embodiments, the Cas9 domains of any of the fusion proteins provided herein consists of the amino acid sequence of any Cas9 polypeptide described herein.

In some examples, a PAM recognized by a CRISPR protein-derived domain of a base editor disclosed herein can be provided to a cell on a separate oligonucleotide to an insert (e.g., an AAV insert) encoding the base editor. In such embodiments, providing PAM on a separate oligonucleotide can allow cleavage of a target sequence that otherwise would not be able to be cleaved, because no adjacent PAM is present on the same polynucleotide as the target sequence.

In an embodiment, *S. pyogenes* Cas9 (SpCas9) can be used as a CRISPR endonuclease for genome engineering. However, others can be used. In some embodiments, a different endonuclease can be used to target certain genomic targets. In some embodiments, synthetic SpCas9-derived variants with non-NGG PAM sequences can be used. Additionally, other Cas9 orthologues from various species have been identified and these “non-SpCas9s” can bind a variety of PAM sequences that can also be useful for the present disclosure. For example, the relatively large size of SpCas9 (approximately 4 kilobase (kb) coding sequence) can lead to plasmids carrying the SpCas9 cDNA that cannot be efficiently expressed in a cell. Conversely, the coding sequence for *Staphylococcus aureus* Cas9 (SaCas9) is approximately 1 kilobase shorter than SpCas9, possibly allowing it to be efficiently expressed in a cell. Similar to SpCas9, the SaCas9 endonuclease is capable of modifying target genes in mammalian cells *in vitro* and in mice *in vivo*. In some embodiments, a Cas protein can target a different PAM sequence. In some embodiments, a target gene can be adjacent to a Cas9 PAM, 5'-NGG, for example. In other embodiments, other Cas9 orthologs can have different PAM requirements. For example, other PAMs such as those of *S. thermophilus* (5'-NNAGAA for CRISPR1 and 5'-NGGNG for CRISPR3) and *Neisseria meningitidis* (5'-NNNNGATT) can also be found adjacent to a target gene.

In some embodiments, for a *S. pyogenes* system, a target gene sequence can precede (i.e., be 5' to) a 5'-NGG PAM, and a 20-nt guide RNA sequence can base pair with an opposite strand to mediate a Cas9 cleavage adjacent to a PAM. In some embodiments, an adjacent cut can be or can be about 3 base pairs upstream of a PAM. In some embodiments, 5 an adjacent cut can be or can be about 10 base pairs upstream of a PAM. In some embodiments, an adjacent cut can be or can be about 0-20 base pairs upstream of a PAM. For example, an adjacent cut can be next to, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30 base pairs upstream of a PAM. An adjacent cut can also be downstream of a PAM by 1 to 30 base pairs. The sequences of 10 exemplary SpCas9 proteins capable of binding a PAM sequence follow:

The amino acid sequence of an exemplary PAM-binding SpCas9 is as follows:

MDKKYSIGLDIGTNSVGWAVITDEYKVPSSKKFVVLGNTRHSIKKNLIGALLFDGETAEAT
RLKRTARRRYTRRKNRICYLQEISFNEMAKVDDSFTHRLEESFLVEEDKKHERHPIFGNIVD
EVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLF
15 QLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGL
TPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILSDILRVNT
EITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEF
YKFIKPILEKMDGTEELLVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLK
DNREKIEKILTFRIPYYVGPLARGNSRFAMTRKSEETITPWNFEVVVDKGASAQSIERMT
20 NFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRK
VTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLKIIKDKDFLDNEENEDILEDIV
LTTLTFEDREMIEERLKYAHLFDDKVMQLKRRRTGWRRLSRKLINGIRDQSGKTI
LKSDGFANRNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVV
DELVKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQL
25 QNEKLYLYLQNGRDMYVDQELDINRLSDYDVDHIVPQSFNKDSIDNKVLTRSDKNRGKSD
NVPSEEVVKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQITKH
VAQILDLSRMNTKYDENDKLIREVKVITLKSCLVSDFRKDFQFYKVREINNYHHAHDAYLNAV
VGTALIKKYPKLESEFVYGDYKVDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEITLAN
GEIRKRPLIETNGETGEIWWDKGRDFATVRKVL SMPQVNIVKKTEVQTGGFSKESILPKRNS
30 DKLIAKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKKLKSVKELLGITIMERSSFEKNP
IDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKMLASAGELQKGNEALPSKYVNFLYLAS
HYEKLKGSPEDNEQKQLFVEQHKHYLDEIEQISEFSKRVILADANLDKVL SAYNKHRDKPI
REQAENI IHLFTLNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQSI TGLYETRIDLSQ
LGGD.

The amino acid sequence of an exemplary PAM-binding SpCas9n is as follows:

MDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETAEAT
 RLKRTARRRYTRRKNRICYLQEIFSNEAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVD
 EVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFI
 5 QLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGL
 TPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNT
 EITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEF
 YKFIKPILEKMDGTEELLVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLK
 DNREKIEKILTFRIPYYVGPLARGNSRAWMTRKSEETITPWNFEVVVDKGASAQSFIERTMT
 10 NFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRK
 VTVKQLKEDYFKKIECFDSVEISGVEDRFNDSLGTYHDLIKIJKDKDFLDNEENEDILEDIV
 LTTLTFEDREMIEERLKTYAHLFDDKVMKQLKRRRTGWRGLSRKLINGIRDQSGKTILD
 LKSDGFANRNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIIKGILQTVKVV
 DELVKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQL
 15 QNEKLYLYLQNGRDMYVDQELDINRLSDYDVDHIVPQSLKDDSIDNKVLTRSDKNRGKSD
 NVPSEEVVKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQITKH
 VAQILDLSRMNTKYDENDKLIREVKVITLKSCLVSDFRKDFQFYKREINNYHHAHDAYLNAV
 VGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEITLAN
 GEIRKRPLIETNGETGEIWWDKGRDFATVRKVL SMPQVNIVKKTEVQTGGFSKESILPKRNS
 20 DKLIAKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKKLKSVKELLGITIMERSSEKNP
 IDFLEAKGYKEVKKDLIIKLPKYSLELENGRKMLASAGELQKGNEALPSKYVNFLYLAS
 HYEKLKGSPEDNEQKQLFVEQHKHYLDEIIIEQISEFSKRVILADANLDKVL SAYNKHRDKPI
 REQAENIIHLFTLTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQSiTGLYETRIDLSQ
 LGGD.

25 The amino acid sequence of an exemplary PAM-binding SpEQR Cas9 is as follows:

MDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETAEAT
 RLKRTARRRYTRRKNRICYLQEIFSNEAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVD
 EVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFI
 QLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGL
 TPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNT
 EITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEF
 YKFIKPILEKMDGTEELLVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLK
 DNREKIEKILTFRIPYYVGPLARGNSRAWMTRKSEETITPWNFEVVVDKGASAQSFIERTMT
 NFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRK

VTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLIKIIDKDFLDNEENEDILEDIV
 LTLTLFEDREMIEERLKYAHLFDDKVMQLKRRRTGWRSLRKLINGIRDKQSGKTILD
 LKSDGFANRNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAICKGILQTVKVV
 DELVKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQL
 5 QNEKLYLYLQNGRDMYVDQELDINRLSDYDVDHIVPQSLKDDSIDNKVLTRSDKNRGKSD
 NVPSEEVVKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQITKH
 VAQILDLSRMNTKYDENDKLIREVKVITLKSCLVSDFRKDFQFYKVREINNYHHAHDAYLNAV
 VGTALIKKYPKLESEFVYGDYKVDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEITLAN
 GEIRKRPLIETNGETGEIVWDKGRDFATVRKVL SMPQVNIVKKTEVQTGGFSKESILPKRNS
 10 DKLIAKKDWDPKKYGG**E**SPTVAYSVLVVAKVEKGKSKLKSVKELLGITIMERSSFEKNP
 IDFLEAKGYKEVKKDLI**I**KLKP**K**YSLFELENGRKMLASAGELQKGNELALPSKYVNFLYLAS
 HYEKLKGSPEDNEQKQLFVEQHKHYLDE**I**EQISEFSKRVILADANLDKVL SAYNKHRDKPI
 REQAENI**I**HLFTLTNLGAPAAFKYFDTTIDRK**Q****Y**RSTKEVLDATLHQSI**T**GLYETRIDLSQ
 LGGD. In this sequence, residues E1135, Q1335 and R1337, which can be mutated from
 15 **D1135, R1335, and T1337** to yield a SpEQR Cas9, are underlined and in bold.

The amino acid sequence of an exemplary PAM-binding SpVQR Cas9 is as follows:

MDKKYSIGLAIGTNSVGAVITDEYKVPSSKKFKVLGNTDRHSIKKNLIGALLFDSGETAET
 RLKRTARRRYTRRKNRICYLQEISNEMAKVDDSFHRLEESFLVEEDKKHERHPIFGNIVD
 EVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLAHMIKFRGHFLIEGDLNPDNSDVDKLF
 20 QLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLI
 TPNFKSNFDLAEDAKLQLSKDTYDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNT
 EITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEF
 YKFIKPILEKMDGTEELLVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLK
 DNREKIEKILTFRIPYYVGPLARGNSRFAMTRKSEETITPWNFEEVVDKGASAQSIERMT
 25 NFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAI
 VDLLFKTNRK
 VTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLIKIIDKDFLDNEENEDILEDIV
 LTLTLFEDREMIEERLKYAHLFDDKVMQLKRRRTGWRSLRKLINGIRDKQSGKTILD
 LKSDGFANRNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAICKGILQTVKVV
 DELVKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQL
 30 QNEKLYLYLQNGRDMYVDQELDINRLSDYDVDHIVPQSLKDDSIDNKVLTRSDKNRGKSD
 NVPSEEVVKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQITKH
 VAQILDLSRMNTKYDENDKLIREVKVITLKSCLVSDFRKDFQFYKVREINNYHHAHDAYLNAV
 VGTALIKKYPKLESEFVYGDYKVDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEITLAN
 GEIRKRPLIETNGETGEIVWDKGRDFATVRKVL SMPQVNIVKKTEVQTGGFSKESILPKRNS

DKLIARKKDWPKKYGGFSPTVAYSVLVVAKVEGKSKKLKSVKELLGITIMERSSFEKNP
 IDFLEAKGYKEVKKDLI IKLPKYSLFELNGRKMLASAGELQKGNEALALPSKYVNFLYLAS
 HYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPI
 REQAENI IHLFTLTNLGAPAAFKYFDTTIDRKOYRSTKEVLDATLIHQSITGLYETRIDLSQ

5 LGGD. In this sequence, residues V1135, Q1335, and R1336, which can be mutated from D1135, R1335, and T1336 to yield a SpVQR Cas9, are underlined and in bold.

The amino acid sequence of an exemplary PAM-binding SpVRER Cas9 is as follows:

MDKKYSIGLAIGTNSVGAWITDEYKVPSKFKVLGNTDRHSIKKNLIGALLFDSGETAEAT
 RLKRTARRRYTRRKNRICYLQEISNEMAKVDDSFHRLEESFLVEEDKKHERHPIFGNIVD
 10 EVAYHEKYPTIYHLRKKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVKLFI
 QLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGL
 TPNFKSNFDLAEDAKLQLSKDTYDDLDNLLAQIGDQYADLFLAAKNLSDAILSDILRVNT
 EITKAPLSASMIKRYDEHHQDLTLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEF
 YKFIKPILEKMDGTEELLVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLK
 15 DNREKIEKILTFRIPYYVGPLARGNSRFAMTRKSEETITPWNFEVVVDKGASAQSFIERMT
 NFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRK
 VTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLKIIKDKDFLDNEENEDILEDIV
 LTLTLFEDREMIEERLKTYAHLFDDKVMQKLRRYTGWGRLSRKLINGIRDKQSGKTILDF
 LKSDGFANRNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVV
 20 DELVKVMGRHKPENIVIMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQL
 QNEKLYLYLQNGRDMYVDQELDINRLSDYDVDHIVPQSFLKDDSIDNKVLTRSDKNRGKSD
 NVPSEEVVKKMNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQITKH
 VAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYKVREINNYHHADAYLNAV
 VGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAYFFYSNIMNFFKTEITLAN
 25 GEIRKRPLIETNGETGEIWWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKESILPKRNS
 DKLIARKKDWPKKYGGFSPTVAYSVLVVAKVEGKSKKLKSVKELLGITIMERSSFEKNP
 IDFLEAKGYKEVKKDLI IKLPKYSLFELNGRKMLASARELQKGNEALALPSKYVNFLYLAS
 HYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPI
 REQAENI IHLFTLTNLGAPAAFKYFDTTIDRKEYRSTKEVLDATLIHQSITGLYETRIDLSQ

30 LGGD.

In some embodiments, the Cas9 domain is a recombinant Cas9 domain. In some embodiments, the recombinant Cas9 domain is a SpyMacCas9 domain. In some embodiments, the SpyMacCas9 domain is a nuclease active SpyMacCas9, a nuclease inactive SpyMacCas9 (SpyMacCas9d), or a SpyMacCas9 nickase (SpyMacCas9n). In some

embodiments, the SaCas9 domain, the SaCas9d domain, or the SaCas9n domain can bind to a nucleic acid sequence having a non-canonical PAM. In some embodiments, the SpyMacCas9 domain, the SpCas9d domain, or the SpCas9n domain can bind to a nucleic acid sequence having a NAA PAM sequence.

5 **Exemplary SpyMacCas9**

MDKKYSIGLDIGTNSVGAVITDDYKVPSSKKFKVLGNTDRHSIKKNLIGALLFGSGETAET
RLKRTARRRYTRRKNRICYLQEIFSNEAKVDDSFTHRLEESFLVEEDKKHERHPIFGNIVD
EVAYHEKYPTIYHLRKKLADSTDKADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFI
QLVQIYNQLFEENPINASRVDAKAILSARLSKSRRLENLIAQLPGEKRNGLFGNLIALSGL
10 TPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNS
EITKAPLSASMIKRYDEHHQDLTLIKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEF
YKFIKPILEKMDGTEELLVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLK
DNREKIEKILTFRIPYYVGPLARGNSRFAMTRKSEETITPWNFEEVVDKGASAQSIERMT
NFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRK
15 VTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGAYHDLLKIIKDKDFLDNEENEDILEDIV
LTLTLFEDRGMIEERLKYAHLFDDKVMQLKRRRTGWRRLSRKLINGIRDQSGKTILD
LKSDGFANRNFMQLIHDDSLTFKEDIQKAQVSGQGHSLHEQIANLAGSPAIKKGILQTVKIV
DELVKVMGHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQLQ
NEKLYLYLQNGRDMDYVDQELDINRLSDYDVDHIVPQSFIKDDSIDNKVLTRSDKNRGKSDN
20 VPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQITKHV
AQILDLSRMNTKYDENDKLIREVKVITLKSCLVSDFRKDFQFYKVREINNYHAAHDAYLNAV
GTALIKKYPKLESEFVYGDYKVDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEITLANG
EIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEIQTVGQNGGLFDDNPKSP
LEVTPSKLVPLKELNPKKYGGYQKPTTAYPVLLITDTKQLIPISVMNKKQFEQNPVKFLRD
25 RGYQQVGKNDFIKLPKYTLVDIGDGKRLWASSKEIHGNQLVVSKKSQILLYHAHLDSDL
SNDYLQNHNQQFDVLFNEIISFSKKCKLGKEHIQKENVYSNKKNSASIEELAESFIKLLGF
TQLGATSPFNFLGVKLNQKQYKGKKDYILPCTEGTLIRQSITGLYETRVDSLKIGED.

In some cases, a variant Cas9 protein harbors, H840A, P475A, W476A, N477A, D1125A, W1126A, and D1218A mutations such that the polypeptide has a reduced ability to cleave a target DNA or RNA. Such a Cas9 protein has a reduced ability to cleave a target DNA (e.g., a single stranded target DNA) but retains the ability to bind a target DNA (e.g., a single stranded target DNA). As another non-limiting example, in some cases, the variant Cas9 protein harbors D10A, H840A, P475A, W476A, N477A, D1125A, W1126A, and D1218A mutations such that the polypeptide has a reduced ability to cleave a target DNA.

Such a Cas9 protein has a reduced ability to cleave a target DNA (*e.g.*, a single stranded target DNA) but retains the ability to bind a target DNA (*e.g.*, a single stranded target DNA). In some cases, when a variant Cas9 protein harbors W476A and W1126A mutations or when the variant Cas9 protein harbors P475A, W476A, N477A, D1125A, W1126A, and D1218A mutations, the variant Cas9 protein does not bind efficiently to a PAM sequence. Thus, in some such cases, when such a variant Cas9 protein is used in a method of binding, the method does not require a PAM sequence. In other words, in some cases, when such a variant Cas9 protein is used in a method of binding, the method can include a guide RNA, but the method can be performed in the absence of a PAM sequence (and the specificity of binding is therefore provided by the targeting segment of the guide RNA). Other residues can be mutated to achieve the above effects (*i.e.*, inactivate one or the other nuclease portions). As non-limiting examples, residues D10, G12, G17, E762, H840, N854, N863, H982, H983, A984, D986, and/or A987 can be altered (*i.e.*, substituted). Also, mutations other than alanine substitutions are suitable.

In some embodiments, a CRISPR protein-derived domain of a base editor can comprise all or a portion of a Cas9 protein with a canonical PAM sequence (NGG). In other embodiments, a Cas9-derived domain of a base editor can employ a non-canonical PAM sequence. Such sequences have been described in the art and would be apparent to the skilled artisan. For example, Cas9 domains that bind non-canonical PAM sequences have been described in Kleinstiver, B. P., *et al.*, “Engineered CRISPR-Cas9 nucleases with altered PAM specificities” *Nature* 523, 481-485 (2015); and Kleinstiver, B. P., *et al.*, “Broadening the targeting range of *Staphylococcus aureus* CRISPR-Cas9 by modifying PAM recognition” *Nature Biotechnology* 33, 1293-1298 (2015); the entire contents of each are hereby incorporated by reference. *High fidelity Cas9 domains*

Some aspects of the disclosure provide high fidelity Cas9 domains. In some embodiments, high fidelity Cas9 domains are engineered Cas9 domains comprising one or more mutations that decrease electrostatic interactions between the Cas9 domain and a sugar-phosphate backbone of a DNA, as compared to a corresponding wild-type Cas9 domain. Without wishing to be bound by any particular theory, high fidelity Cas9 domains that have decreased electrostatic interactions with a sugar-phosphate backbone of DNA may have less off-target effects. In some embodiments, a Cas9 domain (*e.g.*, a wild type Cas9 domain) comprises one or more mutations that decreases the association between the Cas9 domain and a sugar-phosphate backbone of a DNA. In some embodiments, a Cas9 domain comprises one or more mutations that decreases the association between the Cas9 domain and a sugar-

phosphate backbone of a DNA by at least 1%, at least 2%, at least 3%, at least 4%, at least 5%, at least 10%, at least 15%, at least 20%, at least 25%, at least 30%, at least 35%, at least 40%, at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, or at least 70%.

In some embodiments, any of the Cas9 fusion proteins provided herein comprise one or more of a N497X, a R661X, a Q695X, and/or a Q926X mutation, or a corresponding mutation in any of the amino acid sequences provided herein, wherein X is any amino acid. In some embodiments, any of the Cas9 fusion proteins provided herein comprise one or more of a N497A, a R661A, a Q695A, and/or a Q926A mutation, or a corresponding mutation in any of the amino acid sequences provided herein. In some embodiments, the Cas9 domain comprises a D10A mutation, or a corresponding mutation in any of the amino acid sequences provided herein. Cas9 domains with high fidelity are known in the art and would be apparent to the skilled artisan. For example, Cas9 domains with high fidelity have been described in Kleinstiver, B.P., *et al.* “High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects.” *Nature* 529, 490-495 (2016); and Slaymaker, I.M., *et al.* “Rationally engineered Cas9 nucleases with improved specificity.” *Science* 351, 84-88 (2015); the entire contents of each are incorporated herein by reference.

High Fidelity Cas9 domain mutations relative to Cas9 are shown in bold and underlines

DKKYSIG**L**IGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETA
20 EATRLKRTARRRYTRRKKNR**I**CYLQE**I**FSNEMAKVDDSFHRLEESFLVEEDKKHERH
PIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLAHMIKFRGHFLIEGDL
NPDNSDVKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPGE
KKNGLFGNLIALSGLTPNFKSNFDLAEDAKLQLSKDTYDDLDNLLAQIGDQYADL
FLAAKNLSDAILLSDILRVNTEITKAPLSASMIKR**Y**DEHHQDLTLLKALVRQQLPEKY
25 KEIFFDQSKNGYAGYIDGGASQEEFYK**F**IKPILEKMDGTEELLVKLNREDLLRKQRTF
DNGSIPH**Q**IHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRFAW
MTRKSEETITPWNFEEVVDKGASAQSFIERMT**A**FDKNLPNEKVLPKHSLLYEYFTVY
NELTKVKYVTEGMRKPAFLSGEQQKAIVDLLKTNRKVTVKQLKEDYFKKIECFDS
VEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTFEDREMIEERL
30 KTYAHLFDDKVMKQLRRRTGwg**A**LSRKLINGIRDQSGKTILDFLKSDGFANRN
FM**A**LIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIIKGILQTVKVVDELVK
VMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQL
QNEKLYLYLQNGRDMYVDQELDINRLSDYDVDHIVPQSLKDDSIDNKVLTRSDK
NRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIK

RQLVETRAITKHVAQILDSRMNTKYDENDKLIREVKVITLKSCLVSDFRKDFQFYKV
REINNYHHAHDAYLNAVVGTLIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGK
ATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSM
PQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWPKKYGGFDSPTVAYSVLVV
5 AKVEKGKSKKLKSVKELLGITMERSSFEKNPIDFLEAKGYKEVKKDLIILPKYSLFE
LENGRKRMLASAGELQKGNELALPSKYVNFLYASHYEKLKGSPEDNEQKQLFVEQ
HKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTNLGA
PAAFKYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGD

10 *Nucleic acid programmable DNA binding proteins*

Some aspects of the disclosure provide fusion proteins comprising domains that act as nucleic acid programmable DNA binding proteins, which may be used to guide a protein, such as a base editor, to a specific nucleic acid (e.g., DNA or RNA) sequence. In particular embodiments, a fusion protein comprises a nucleic acid programmable DNA binding protein 15 domain and a deaminase domain. DNA binding proteins include, without limitation, Cas9 (e.g., dCas9 and nCas9), CasX, CasY, Cpf1, Cas12b/C2c1, and Cas12c/C2c3. One example of a nucleic acid programmable DNA-binding protein that has different PAM specificity than Cas9 is Clustered Regularly Interspaced Short Palindromic Repeats from *Prevotella* and *Francisella* 1 (Cpf1). Similar to Cas9, Cpf1 is also a class 2 CRISPR 20 effector. It has been shown that Cpf1 mediates robust DNA interference with features distinct from Cas9. Cpf1 is a single RNA-guided endonuclease lacking tracrRNA, and it utilizes a T-rich protospacer-adjacent motif (TTN, TTTN, or YTN). Moreover, Cpf1 cleaves DNA via a staggered DNA double-stranded break. Out of 16 Cpf1-family proteins, two enzymes from Acidaminococcus and Lachnospiraceae are shown to have efficient genome-editing activity 25 in human cells. Cpf1 proteins are known in the art and have been described previously, for example Yamano et al., “Crystal structure of Cpf1 in complex with guide RNA and target DNA.” *Cell* (165) 2016, p. 949-962; the entire contents of which is hereby incorporated by reference.

Also useful in the present compositions and methods are nuclease-inactive Cpf1 30 (dCpf1) variants that may be used as a guide nucleotide sequence-programmable DNA-binding protein domain. The Cpf1 protein has a RuvC-like endonuclease domain that is similar to the RuvC domain of Cas9 but does not have a HNH endonuclease domain, and the N-terminal of Cpf1 does not have the alfa-helical recognition lobe of Cas9. It was shown in Zetsche et al., *Cell*, 163, 759-771, 2015 (which is incorporated herein by reference) that, the

RuvC-like domain of Cpf1 is responsible for cleaving both DNA strands and inactivation of the RuvC-like domain inactivates Cpf1 nuclease activity. For example, mutations corresponding to D917A, E1006A, or D1255A in *Francisella novicida* Cpf1 inactivate Cpf1 nuclease activity. In some embodiments, the dCpf1 of the present disclosure comprises 5 mutations corresponding to D917A, E1006A, D1255A, D917A/E1006A, D917A/D1255A, E1006A/D1255A, or D917A/E1006A/D1255A. It is to be understood that any mutations, e.g., substitution mutations, deletions, or insertions that inactivate the RuvC domain of Cpf1, may be used in accordance with the present disclosure.

In some embodiments, the nucleic acid programmable DNA binding protein 10 (napDNAbp) of any of the fusion proteins provided herein may be a Cpf1 protein. In some embodiments, the Cpf1 protein is a Cpf1 nickase (nCpf1). In some embodiments, the Cpf1 protein is a nuclease inactive Cpf1 (dCpf1). In some embodiments, the Cpf1, the nCpf1, or the dCpf1 comprises an amino acid sequence that is at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, 15 at least 99%, or at least 99.5% identical to a Cpf1 sequence disclosed herein. In some embodiments, the dCpf1 comprises an amino acid sequence that is at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to a Cpf1 sequence disclosed herein, and comprises mutations corresponding to D917A, E1006A, D1255A, D917A/E1006A, 20 D917A/D1255A, E1006A/D1255A, or D917A/E1006A/D1255A. It should be appreciated that Cpf1 from other bacterial species may also be used in accordance with the present disclosure.

Wild type *Francisella novicida* Cpf1 (D917, E1006, and D1255 are bolded and underlined)

25 MSIYQEFNKYSLSKTLRFEIPQGKTLENIKARGGLILDDEKRADYKKAKQIIDKYHQFFIEILSSVCISEDLQNYSDVYFKLKKSDDNLQKDFFSAKDTIKKQISEYIKDSEKFKNLFNQNLIDAKKGQESDLLWLKQSKDNGIELFKANSDITDIDEALEIIKSFKGWT
TYFKGFHENRKNVYSSNDIPTSIIYRIVDDNLPKFLENKAKYESuLKDKAPEAINYEQIKKDLAEELTFDIDYKTSEVNQRVuFSLDEVFEIANFNNYLNQSGITKFTNIGGKFVNGEN
30 TKRKGINEYINLYSQQuNDKLKKYKMSVLFKQILSDTESKSVIDKLEDDSDVVTTMQSFYEQQIAAFKTVEEKSIKETLSLLFDDLKAQKLDLSKIYFKNDKSLDLSQQVFDDYSVIGTAVLEYITQQIAPKNLDNPSKKKEQELIAKKTEKAKYLSLETIKLAEEFNKHRDIDKQCRFEEILANFAAIPMIFDEIQNKDNLAQISIKYQNQGKKDLLQASAEDDVKAIKDLLQTNNLLHKLKIFHISQSEDKANILDKDEHFYLVFEECYFELANIVPLYNKIRNYI

TQKPYSDEKFKNFENSTLANGWDKNKEPDNTAILFIKDDKYYLGVMNKKNNKIFD
DKAIKENKGEKYKKIVYKLLPGANKMLPKVFFSAKS~~IKF~~YNPSEDILRIRNHSTHTKN
GSPQKGYEK~~FEFNIEDCRK~~FIDFYKQSIS~~K~~HPEWKDFGFRFSDTQRYN~~SIDEFY~~REVE
NQGYKLT~~FENISESYIDS~~VVNQGKLYLFQIYNKDF~~SAYSK~~GRPNLHTLYWKALFDER
5 NLQDVYKLN~~GEAELFYRK~~Q~~SIP~~KKITHPAKEAI~~AN~~KNKDNP~~K~~KESVF~~EY~~DLIKDKR
FTEDKFFFHCPITINF~~KSSG~~ANKFNDEINLLKEKANDVHIL~~S~~IDRGERHLAY~~Y~~TDG
KGNI~~IK~~QDTFNIIGNDRMK~~TY~~HDKLAAIEKDRD~~S~~ARKDWKKINNIKEMKEGYLSQV
VHEIAKL~~VIEYNAIVV~~FEDLNFGFKRGRFK~~VEK~~QVYQKLEKMLIEKLN~~Y~~LVFKDNEF
DKTGGVLRAYQLTAPFETFKKM~~G~~KQTG~~I~~YYVPAGFTSKICPVTGFVNQLYPKYESV
10 SKSQEFFSKFDKICYNLDKG~~Y~~FEFSFDYKNFGD~~K~~AAKGKWTIASFGSRLINFRNS~~D~~KN
HNWDTREVYPTKELE~~KL~~KDYSIEYGHGECIKAACG~~E~~SDKFFAKLTSVLNTILQM
RNSKTGT~~ELDYLISP~~VADVNGNFFDSRQAPKNMPQ~~DA~~DANGAYHIGLKGLM~~L~~LGRI
KNNQEGKKLNLVIKNEEY~~FEF~~VQNRNN

15 *Francisella novicida* Cpf1 D917A (A917, E1006, and D1255 are bolded and underlined)
MSIYQEFVN~~KY~~SLSKTLRFELIPQGKTLEN~~I~~KARGLIL~~D~~DEKRAKDYKKAKQIIDKYH
QFFIEEILSSVC~~I~~EDLLQ~~N~~YSDVYFKL~~K~~KS~~DD~~NLQ~~K~~D~~F~~K~~S~~AKDT~~I~~KKQ~~I~~SEYIKDSE
KFKNL~~F~~NQNL~~I~~DAKKQ~~E~~SDL~~I~~LWL~~K~~QSKDNGIELF~~K~~ANS~~D~~ITDIDEALEIIKS~~F~~KGWT
TYFKGFHENRKNVYSSND~~I~~PTSIYRIVDDNLPK~~F~~LEN~~K~~AKYESL~~K~~DKAPEA~~I~~NYEQIK
20 KDLAEELTFDIDYKTSEVNQRV~~F~~SL~~D~~E~~V~~FEIANFNNYLNQSGITKFNTIIGGKFVNGEN
TKRKG~~I~~NEYINLYSQ~~Q~~IND~~K~~TLKKYKMSVLF~~K~~QILSD~~T~~ES~~K~~FS~~V~~IDKLEDDSDVV~~T~~TM
QSFYEQIAAFKTVEEK~~S~~I~~K~~ETLSLLF~~D~~DLKAQ~~K~~L~~D~~LS~~K~~IYFKND~~K~~SL~~T~~DLSQQVFDDY
SVIGTAVLEYITQQIAPKNLDNPSK~~K~~KEQELIAKKTEKAKYLSLETIKL~~A~~LEEFN~~K~~HRDI
DKQC~~R~~FREEILANFAAIPM~~I~~DEIAQ~~N~~KDNLAQ~~I~~SIKYQNQGKK~~D~~LLQASAEDDVKA~~I~~
25 DLLDQTNNLLHKLK~~I~~FHISQ~~S~~EDKANIL~~D~~KDEHF~~Y~~LV~~F~~EECYFELANIV~~P~~LYNKIRNYI
TQKPYSDEKFKNFENSTLANGWDKNKEPDNTAILFIKDDKYYLGVMNKKNNKIFD
DKAIKENKGEKYKKIVYKLLPGANKMLPKVFFSAKS~~IKF~~YNPSEDILRIRNHSTHTKN
GSPQKGYEK~~FEFNIEDCRK~~FIDFYKQSIS~~K~~HPEWKDFGFRFSDTQRYN~~SIDEFY~~REVE
NQGYKLT~~FENISESYIDS~~VVNQGKLYLFQIYNKDF~~SAYSK~~GRPNLHTLYWKALFDER
30 NLQDVYKLN~~GEAELFYRK~~Q~~SIP~~KKITHPAKEAI~~AN~~KNKDNP~~K~~KESVF~~EY~~DLIKDKR
FTEDKFFFHCPITINF~~KSSG~~ANKFNDEINLLKEKANDVHIL~~S~~IDRGERHLAY~~Y~~TDG
KGNI~~IK~~QDTFNIIGNDRMK~~TY~~HDKLAAIEKDRD~~S~~ARKDWKKINNIKEMKEGYLSQV
VHEIAKL~~VIEYNAIVV~~FEDLNFGFKRGRFK~~VEK~~QVYQKLEKMLIEKLN~~Y~~LVFKDNEF
DKTGGVLRAYQLTAPFETFKKM~~G~~KQTG~~I~~YYVPAGFTSKICPVTGFVNQLYPKYESV

SKSQEFFSKFDKICYNLDKGYFEFSFDYKNFGDKAAGKWTIASFGSLINFRNSDKN
 HNWDTREVYPTKELEKLLDYSIEYGHGECIKAACIGESDKFFAKLTSVLNTILQM
 RNSKTGTELDYLISPVADVNGNFFDSRQAPKNMPQDADANGAYHIGLKGLMLLGRI
 KNNQEGKKLNLVIKNEEYFEFVQNRNN

5

Francisella novicida Cpf1 E1006A (D917, A1006, and D1255 are bolded and underlined)

MSIYQEFVNKYSLSKTLRFELIPQGKTLENIKARGLILDDEKRAKDYKKAKQIIDKYH
 QFFIEEILSSVCISEDLLQNYSDVYFKLKKSDDDNLQKDFKSAKDTIKKQISEYIKDSE
 KFKNLFNQNLIDAKKGQESDLILWLKQSKDNGIELFKANSDTIDIDEALEI^IIKSFKGWT

10 TYFKGFHENRKNVYSSNDIPTSIIYRIVDDNLPKFLenkAKYESLKDCAPEAINYEQIK
 KDLAEEELTFDIDYKTSEVNQRVFSLDEVFEIANFNNYLNQSGITKFNTIIGGKFVNGEN
 TKRKGINEYINLYSQQINDKTLKKYKMSVLFKQILSDTESKSFVIDKLEDDSDVVTTM
 QSFYEQIAAFKTVEEKSIKETLSLLFDDLKAQKLDLSKIYFKNDKSLTLSQQVFDDY
 SVIGTAVLEYITQQIAPKNLDNPSKKEQELIakkTEKAKYLSLETIKLAEEFNKHRDI

15 DKQCRFEEILANFAAIPMIFDEIAQNKDNLAQISIKYQNQGKKDLLQASAEDDVKAIK
 DLLDQTNNLLHKLKIFHISQSEDKANILDKDEHFYLVFEECYFELANIVPLYNKIRNYI
 TQKPYSDEKFKLNFENSTLANGWDKNKEPDNTAILFIKDDKYYLGVMNKKNNKIFD
 DKAIKENKGEKYKKIVYKLLPGANKMLPKVFFSAKS^IKFYNPSEDILRIRNHSTHTKN
 GSPQKGYEKFEFNIEDCRKFIDFYKQSIS^IKHPEWKDFGFRFSDTQRYN^IDEFYREVE

20 NQGYKLTFENISESYIDSVVNQGKLYLFQIYNKDFSAYSKGRPNLHTLYWKALFDER
 NLQDVVYKLNGEAELFYRKQSIPKKITHPAKEAIANKDNPKKESVF^{EY}DLIKDKR
 FTEDKFFFHCPITINFKSSGANKFNDEINLLKEKANDVHILSIDRGERHLAYYTLVDG
 KGNI^IKQDTFNIIGNDRMKTNYHDKLAAIEKDRDSARKDWKKINNIKEMKEGYLSQV
 VHEIAKLVIEYNAIVFADLNFGFKRGRFKVEKQVYQKLEKMLIEKLN^ILYVFKDNEF

25 DKTGGVLRAYQLTAPFETFKKMGKQTGIIYYVPAGFTSKICPVTGFVNQLYPKYESV
 SKSQEFFSKFDKICYNLDKGYFEFSFDYKNFGDKAAGKWTIASFGSLINFRNSDKN
 HNWDTREVYPTKELEKLLDYSIEYGHGECIKAACIGESDKFFAKLTSVLNTILQM
 RNSKTGTELDYLISPVADVNGNFFDSRQAPKNMPQDADANGAYHIGLKGLMLLGRI
 KNNQEGKKLNLVIKNEEYFEFVQNRNN

30

Francisella novicida Cpf1 D1255A (D917, E1006, and A1255 are bolded and underlined)

MSIYQEFVNKYSLSKTLRFELIPQGKTLENIKARGLILDDEKRAKDYKKAKQIIDKYH
 QFFIEEILSSVCISEDLLQNYSDVYFKLKKSDDDNLQKDFKSAKDTIKKQISEYIKDSE
 KFKNLFNQNLIDAKKGQESDLILWLKQSKDNGIELFKANSDTIDIDEALEI^IIKSFKGWT

TYFKGFHENRKNVYSSNDIPTSIIYRIVDDNLPKFLenkAKYESLKDCAPEAINYEQIK
KDLAEELTFDIDYKTSEVNQRVFSLDEVFEIANFNNYLNQSGITKFNTIIGGKFVNGEN
TKRKGNEYINLYSQQINDKTLKKYKMSVLFQILSDTESKSVIDKLEDDSDVVTTM
QSFYEQIAAFKTVEEKSIKETLSLLFDDLKAQKLDLSKIYFKNDKSLTDLSQQVFDDY
5 SVIGTAVLEYITQQIAPKNLDNPSKKEQELIACKTEKAKYLSLETIKLAEEFNKHRDI
DKQCRFEEILANFAAIPMIFDEIAQNKDNLAQISIKYQNQGKKDLLQASAEDDVKAIC
DLDDQTNNLLHKLKIFHISQSEDKANILDKDEHFYLVFEECYFELANIVPLYNKIRNYI
TQKPYSDEKFKLNFENSTLANGWDKNKEPDNTAILFIKDDKYYLGVMNKKNNKIFD
DKAIKENKGEGYKKIVYKLLPGANKMLPKVFFSAKSIFYNPSEDILRIRNHSTHTKN
10 GSPQKGYEKFEFNIEDCRKFIDFYKQSISKHPEWKDFGFRFSDTQRYNNSIDEFYREVE
NQGYKLTTFENISESYIDSVVNQGKLYLFQIYNKDFSAYSKGRPNLHTLYWKALFDER
NLQDVVYKLNGEAELFYRKQSIPKKITHPAKEAIANKDNPKKEVFYEDLIKDKR
FTEDKFFFHCPITINFKSSGANKFNDEINLLKEKANDVHILSIDRGERHLAYTLDVG
KGNIIKQDTFNIIGNDRMKTNYHDKLAAIEKDRDSARKDWKKINNIKEMKEGYLSQV
15 VHEIAKLVIEYNAIVVFEEDLNFGFKRGRFKVEKQVYQKLEKMLIEKLNVLVFKDNEF
DKTGGVLRAYQLTAPFETFKKMGKQTGIIYYVPAGFTSKICPVTGFVNQLYPKYESV
SKSQEFFSKFDKICYNLDKGYFEFSFDYKNFGDKAAGKWTIASFGSRLINFRNSDKN
HNWDTREVYPTKELEKLLDYSIEYGHGECIKAACIGESDKFFAKLTSVLNTILQM
RNSKTGTEDYLISPVADVNGNFFDSRQAPKNMPQDAAANGAYHIGLKGLMLLGRI
20 KNNQEGKKLNLVIKNEEYFEFVQNRNN

Francisella novicida Cpf1 D917A/E1006A (A917, A1006, and D1255 are bolded and underlined)

MSIYQEFVNKYSLSKTLRFELIPQGKTLENIKARGLILDDEKRAKDYKKAKQIIDKYH
QFFIEEILSSVCISEDLLQNYSDVYFKLKKSDDNLQKDFKSAKDTIKKQISEYIKDSE
25 KFKNLFNQNLIDAKKGQESDLILWLKQSKDNGIELFKANSDTIDIDEALEI**IKSFKGWT**
TYFKGFHENRKNVYSSNDIPTSIIYRIVDDNLPKFLenkAKYESLKDCAPEAINYEQIK
KDLAEELTFDIDYKTSEVNQRVFSLDEVFEIANFNNYLNQSGITKFNTIIGGKFVNGEN
TKRKGNEYINLYSQQINDKTLKKYKMSVLFQILSDTESKSVIDKLEDDSDVVTTM
QSFYEQIAAFKTVEEKSIKETLSLLFDDLKAQKLDLSKIYFKNDKSLTDLSQQVFDDY
30 SVIGTAVLEYITQQIAPKNLDNPSKKEQELIACKTEKAKYLSLETIKLAEEFNKHRDI
DKQCRFEEILANFAAIPMIFDEIAQNKDNLAQISIKYQNQGKKDLLQASAEDDVKAIC
DLDDQTNNLLHKLKIFHISQSEDKANILDKDEHFYLVFEECYFELANIVPLYNKIRNYI
TQKPYSDEKFKLNFENSTLANGWDKNKEPDNTAILFIKDDKYYLGVMNKKNNKIFD
DKAIKENKGEGYKKIVYKLLPGANKMLPKVFFSAKSIFYNPSEDILRIRNHSTHTKN

GSPQKGYEKFEFNIEDCRKFIDFYKQSISKHPEWKDFGFRFSDTQRYNNSIDEFYREVE
 NQGYKLTFENISESYIDS VVNQGKLYLFQIYNKDFSAYS KGRPNLHTLYWKALFDER
 NLQDVYKLNGEAELFYRKQSIPKKITHPAKEAIANKDNPKKEVF EYD LIKDKR
 FTEDKFFFHCPITINFKSSGANKFNDEINLLLKEKANDVHILSIARGERHLAYYTLVDG
 5 KGNIIKQDTFNIIGNDRMKTNYHDKLAAIEKDRDSARKDWKKINNIKEMKEGYLSQV
 VHEIAKLVIEYNAIVVFADLNFGFKRGRFKVEKQVYQKLEKMLIEKLNYLVFKDNEF
 DKTGGVLRAYQLTAPFETFKKM**G**KQTGIIYYVPAGFTSKICPVTGFVNQLYPKYESV
 SKSQEFFSKFDKICYNLDKGYFEFSFDYKNFGDKAAKGKWTIASFGSRLINFRNSDKN
 HNWDTREVYPTKELEKLLKDYSIEYGHGECIKAACGESDKFFAKLTSVLNTIQLM
 10 RNSKTGTELDYLISPVADVNGNFFDSRQAPKNMPQDADANGAYHIGLKGLMLLGRI
 KNNQEGKKLNLVIKNEEYFEFVQNRNN

Francisella novicida Cpf1 D917A/D1255A (A917, E1006, and A1255 are bolded and underlined)

15 MSIYQE**V**NKYSLSKTLRFELIPQGKTLENIKARGLILDEKRAKDYKKAKQIIDKYH
 QFFIEILSSVCISEDLLQNYSDVYFKLKKSDDNLQKDFKS**A**KDTIKKQISEYIKDSE
 KFKNLFNQNLIDAKKG**Q**ESDLILWLKQS**K**DNGIELFKANS**D**ITDIDEALEI**I**KSFKGWT
 TYFKGFHENRKNVYSSNDIPTSIYRIVDDNLPKFL**E**NKAKYESLKD**A**PEAINYEQIK
 KDLAEEELTFDIDYKTSEVNQRVFSL**D**EVFEIANFNNYLNQSGITKFNTIIGGKFVNGEN
 20 TKRKG**I**NEYINLYSQ**Q**INDKTLKKYKMSVLFKQILSDTESKSFVIDKLEDDSDVVTTM
 QSFYE**Q**IAAFKTVEEK**S**IKETLSLLFDD**L**KAQ**K**L**D**LS**K**Y**F**KND**K**SL**D**LS**Q**Q**V**FDDY
 S**V**IGTAVLEYITQQIAP**N**LDNPSK**K**KE**Q**EL**I**AK**K**TE**A**K**Y**LS**E**TI**K**L**A**EEFN**K**HRDI
 DK**Q**CR**F**EE**I**LANFAA**I**PM**I**DEIA**Q**NKDNLA**Q**IS**I**KY**Q**N**Q**GG**K**DL**L**Q**A**SA**E**DD**V**KA**I**
 DLLDQTNNLLHKL**K**I**F**HIS**Q**SED**K**AN**I**LD**K**DE**H**FLV**F**EE**C**Y**F**EL**A**IV**P**LY**N**KIRNYI
 25 TQKPYSDEKF**K**LN**F**ENST**L**ANG**W**DK**N**KEPDNT**A**IL**F**IK**D**D**K**Y**Y**LG**V**M**N**KKNN**K**IFD
 DK**K**AI**K**EN**K**GE**G**Y**K**KIVY**K**LLPG**A**NK**M**LP**K**V**F**FA**S**AK**S**IK**F**YN**P**SE**D**IL**R**IR**N**H**S**T**H**T**K**
 GSPQKGYEKFEFNIEDCRKFIDFYKQSISKHPEWKDFGFRFSDTQRYNNSIDEFYREVE
 NQGYKLTFENISESYIDS VVNQGKLYLFQIYNKDFSAYS KGRPNLHTLYWKALFDER
 NLQDVYKLNGEAELFYRKQSIPKKITHPAKEAIANKDNPKKEVF EYD LIKDKR
 30 FTEDKFFFHCPITINFKSSGANKFNDEINLLLKEKANDVHILSIARGERHLAYYTLVDG
 KGNIIKQDTFNIIGNDRMKTNYHDKLAAIEKDRDSARKDWKKINNIKEMKEGYLSQV
 VHEIAKLVIEYNAIVVFADLNFGFKRGRFKVEKQVYQKLEKMLIEKLNYLVFKDNEF
 DKTGGVLRAYQLTAPFETFKKM**G**KQTGIIYYVPAGFTSKICPVTGFVNQLYPKYESV
 SKSQEFFSKFDKICYNLDKGYFEFSFDYKNFGDKAAKGKWTIASFGSRLINFRNSDKN

HNWDTREVYPTKELEKLLKDYSIEYGHGECIKAACGESDKFFAKLTSVLNTILQM
RNSKTGTELDYLISPVADVNGNFFDSRQAPKNMPQDA**A**ANGAYHIGLKGLMLLGRI
KNNQEGKKLNLVIKNEEYFEFVQNRNN

- 5 *Francisella novicida* Cpf1 E1006A/D1255A (D917, A1006, and A1255 are bolded and underlined)
 MSIYQEFVNKYSLSKTLRFELIPQGKTLENIKARGLILDDEKRAKDYKKAKQIIDKYH
 QFFIEEILSSVCISEDLLQNYSDVYFKLKKSDDNLQKDFKSAKDTIKKQISEYIKDSE
 KFKNLFNQNLIDAKKGQESDLILWLKQSKDNGIELFKANSDTIDIDEALE**I**IKSFKGWT
- 10 TYFKGFHENRKNVYSSNDIPTSIIYRIVDDNLPKFLenkAKYESLKDCAPEAINYEQIK
 KDLAEEELTFDIDYKTSEVNQRVFSLDEVFEIANFNNYLNQSGITKFNTIIGGKFVNGEN
 TKRKGINEYINLYSQQINDKTLKKYKMSVLFKQILSDTESKSFVIDKLEDDSDVVTTM
 QSFYEQIAAFKTVEEKSIKETLSLLFDDLKAQKLDLSKIYFKNDKSLTDLSSQQVFDDY
 SVIGTAVLEYITQQIAPKNLDNPSKKEQELIACKTEKAKYLSLETIKLAEEFNKHRDI
- 15 DKQCRFEEILANFAAIPMIFDEIAQNKDNLAQISIKYQNQGKKDLLQASAEDDVKAIK
 DLLDQTNNLLHKLKIFHISQSEDKANILDKDEHFYLVFEECYFELANIVPLYNKIRNYI
 TQKPYSDEKFKLNFENSTLANGWDKNKEPDNTAILFIKDDKYYLGVMNKKNNKIFD
 DKAIKENKGEKYKKIVYKLLPGANKMLPKVFFSAKSIFYNPSEDILRIRNHSTHTKN
 GSPQKGYEKFEFNIEDCRKFIDFYKQSISKHPEWKDFGFRFSDTQRYN SIDEFYREVE
- 20 NQGYKLTFENISESYIDSVNQGKLYLFQIYNKDFSAYSKGRPNLHTLYWKALFDER
 NLQDVVYKLNGEAELFYRKQSIPKKITHPAKEAIANKNDNPKKEVFYDLIKDKR
 FTEDKFFFHCPITINFKSSGANKFNDEINLLKEKANDVHILS**I**DRGERHLAYYTLVDG
 KGNIIKQDTFNIIGNDRMKTNYHDKLAAIEKDRDSARKDWKKINNIKEMKEGYLSQV
 VHEIAKLVIEYNAIVF**A**DLNFGFKRGRFKVEKQVYQKLEKMLIEKLNVLVFKDNEF
- 25 DKTGGVLRAYQLTAPFETFKKMGKQTGIYYVPAGFTSKICPVTGFVNQLYPKYESV
 SKSQEFFSKFDKICYNLDKGYFEFSFDYKNFGDKAAKGKWTIASFGSRLINFRNSDKN
 HNWDTREVYPTKELEKLLKDYSIEYGHGECIKAACGESDKFFAKLTSVLNTILQM
 RNSKTGTELDYLISPVADVNGNFFDSRQAPKNMPQDA**A**ANGAYHIGLKGLMLLGRI
 KNNQEGKKLNLVIKNEEYFEFVQNRNN

30

Francisella novicida Cpf1 D917A/E1006A/D1255A (A917, A1006, and A1255 are bolded and underlined)

MSIYQEFVNKYSLSKTLRFELIPQGKTLENIKARGLILDDEKRAKDYKKAKQIIDKYH
 QFFIEEILSSVCISEDLLQNYSDVYFKLKKSDDNLQKDFKSAKDTIKKQISEYIKDSE

KFKNLFNQNLIDAKKGQESDLILWLKQSKDNGIELFKANSDTIDIDEALEIJKSFKGWT
TYFKGFHENRKNVYSSNDIPTSIIYRIVDDNLPKFLenkAKYESLKDCAPEAINYEQIK
KDLAEEELTFDIDYKTSEVNQRVFSLDEVFEIANFNNYLNQSGITKFNTIIGGKFVNGEN
TKRKGINEYINLYSQQINDKTLKKYKMSVLFKQILSDTESKSFVIDKLEDDSDVVTTM
5 QSFYEQIAAFKTVEEKSIKETLSLLFDDLKAQKLDLSKIYFKNDKSLTLSQQVFDDY
SVIGTAVLEYITQQIAPKNLDNPSKKEQELIakkTEAKYLSLETIKLAEEFNKHRDI
DKQCRFEEILANFAAIPMIFDEIAQNKDNLAQISIKYQNQGKKDLLQASAEDDVKAIK
DLLDQTNNLLHKLKIFHISQSEDKANILDKDEHFYLVFEECYFELANIVPLYNKIRNYI
TQKPYsDEKFKLNFENSTLANGWDKNKEPDNTAILFIKDDKYYLGVMNKKNNKFD
10 DKAIKENKGEKYKKIVYKLLPGANKMLPKVFFSAKSJKFYNPSEDILRIRNHSTHTKN
GSPQKGYEKFEFNIEDCRKFIDFYKQSI SKHPEWKDFGFRFSDTQRYN SIDEFYREVE
NQGYKLTFENISESYIDS VVNQGKLYLFQIYNKDFSAYS KGRPNLHTLYWKALFDER
NLQDVVYKLNGEAELFYRKQSIPKKITHPAKEAIANKDNPKKESVFEYDLIKDKR
FTEDKFFFHCPITINFKSSGANKFNDEINLLKEKANDVHILS IARGERHLAYYTLVDG
15 KGNIIKQDTFNIIGNDRMKTNYHDKLAAIEKDRDSARKDWKKINNIKEMKEGYLSQV
VHEIAKLVIEYNAIVVFA DLNFGFKRGRFKVEKQVYQKLEKMLIEKLNYLVFKDNEF
DKTGGVLRAYQLTAPFETFKKMKGKQTGIIYYVPAGFTSKICPVTGFVNQLYPKYESV
SKSQEFFSKFDKICYNLDKGYFEFSFDYKNFGDKAAGKWTIASFGSRLINFRNSDKN
HNWDTREVYPTKELEKLLKDYSIEYGHGECIKAACIGESDKKFFAKLTSVLNTILQM
20 RNSKTGTEDYLISPVADVNGNFFDSRQAPKNMPQDA AANGAYHIGLKGLM LLGRI
KNNQEGKKLNLVIKNEEYFEFVQNRNN

In some embodiments, one of the Cas9 domains present in the fusion protein may be replaced with a guide nucleotide sequence-programmable DNA-binding protein domain that has no requirements for a PAM sequence.

25 In some embodiments, the nucleic acid programmable DNA binding protein (napDNAbp) is a single effector of a microbial CRISPR-Cas system. Single effectors of microbial CRISPR-Cas systems include, without limitation, Cas9, Cpf1, Cas12b/C2c1, and Cas12c/C2c3. Typically, microbial CRISPR-Cas systems are divided into Class 1 and Class 2 systems. Class 1 systems have multisubunit effector complexes, while Class 2 systems have a single protein effector. For example, Cas9 and Cpf1 are Class 2 effectors. In addition to Cas9 and Cpf1, three distinct Class 2 CRISPR-Cas systems (Cas12b/C2c1, and Cas12c/C2c3) have been described by Shmakov et al., “Discovery and Functional Characterization of Diverse Class 2 CRISPR Cas Systems”, *Mol. Cell*, 2015 Nov. 5; 60(3): 385-397, the entire contents of which is hereby incorporated by reference. Effectors of two of the systems, Cas12b/C2c1,

and Cas12c/C2c3, contain RuvC-like endonuclease domains related to Cpf1. A third system, contains an effector with two predicated HEPN RNase domains. Production of mature CRISPR RNA is tracrRNA-independent, unlike production of CRISPR RNA by Cas12b/C2c1. Cas12b/C2c1 depends on both CRISPR RNA and tracrRNA for DNA cleavage.

5 The crystal structure of *Alicyclobacillus acidoterrestris* Cas12b/C2c1 (AacC2c1) has been reported in complex with a chimeric single-molecule guide RNA (sgRNA). See e.g., Liu et al., “C2c1-sgRNA Complex Structure Reveals RNA-Guided DNA Cleavage Mechanism”, *Mol. Cell*, 2017 Jan. 19; 65(2):310-322, the entire contents of which are hereby incorporated by reference. The crystal structure has also been reported in *Alicyclobacillus acidoterrestris* C2c1 bound to target DNAs as ternary complexes. See e.g., Yang et al., “PAM-dependent Target DNA Recognition and Cleavage by C2C1 CRISPR-Cas endonuclease”, *Cell*, 2016 Dec. 15; 167(7):1814-1828, the entire contents of which are hereby incorporated by reference. Catalytically competent conformations of AacC2c1, both with target and non-target DNA strands, have been captured independently positioned within 10 a single RuvC catalytic pocket, with Cas12b/C2c1-mediated cleavage resulting in a staggered seven-nucleotide break of target DNA. Structural comparisons between Cas12b/C2c1 ternary complexes and previously identified Cas9 and Cpf1 counterparts demonstrate the diversity of 15 mechanisms used by CRISPR-Cas9 systems.

20 In some embodiments, the nucleic acid programmable DNA binding protein (napDNAbp) of any of the fusion proteins provided herein may be a Cas12b/C2c1, or a Cas12c/C2c3 protein. In some embodiments, the napDNAbp is a Cas12b/C2c1 protein. In some embodiments, the napDNAbp is a Cas12c/C2c3 protein. In some embodiments, the napDNAbp comprises an amino acid sequence that is at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, 25 at least 99%, or at least 99.5% identical to a naturally-occurring Cas12b/C2c1 or Cas12c/C2c3 protein. In some embodiments, the napDNAbp is a naturally-occurring Cas12b/C2c1 or Cas12c/C2c3 protein. In some embodiments, the napDNAbp comprises an amino acid sequence that is at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at 30 least 99.5% identical to any one of the napDNAbp sequences provided herein. It should be appreciated that Cas12b/C2c1 or Cas12c/C2c3 from other bacterial species may also be used in accordance with the present disclosure.

Cas12b/C2c1 (uniprot.org/uniprot/T0D7A2#2)

sp|T0D7A2|C2C1_ALIAG CRISPR-associated endo- nuclease C2c1 OS
 = *Alicyclobacillus acido-terrestris* (strain ATCC 49025 / DSM 3922/ CIP 106132 /
 NCIMB 13137/GD3B) GN=c2c1 PE=1 SV=1

MAVKSIVKLRLDDMPEIRAGLWKLHKEVNAGVRYYTEWLSLLRQENLYRRSPNG
 5 DGEQECDKTAAECKAELLERLRARQVENGHRGPAGSDDELLQLARQLYELLVPQAI
 GAKGDAQQIARKFLSPLADKDAVGGLGIAKAGNKPRWVRMREAGEPGWEEEKEKA
 ETRKSADRTADVLRALADFGLKPLMRVYTDSEMSSVEWKPLRGQAVRTWDRDM
 FQQAIERMMSWESWNQRVGQEYAKLVEQKNRFEQKNFVGQEHLVHLVNQLQQDM
 KEASPGLESKEQTAHYVTGRALRGSDKVFEKWGKLAPFDLYDAEIKNVQRRNT
 10 RRFGSHDLFAKLAEPEYQALWREDASFLTRYAVVNSILRKLNAKMFATFTLPDAT
 AHPIWTRFDKLGGNLHQYTFLNEFGERRHAIRFHKLKVENGVAREVDDVTVPISM
 SEQLDNLLPRDPNEPIALYFRDYGAEQHFTGEFGGAKIQCRRDQLAHMHRRRGARD
 VYLNVSVRVQSQSEARGERERRPPYAAVFRLVGDNHRAFVHFDKLSDYLAEPDDGKL
 GSEGLLSGLRVMSVDLGLRTSASISVFRVARKDELKPNSKGRVPFFFPIKGNDNLVAV
 15 HERSQLLKLPGETESKDLRAIREERQRTLRLRTQLAYLRLLVRCGSEDVGRRERSW
 AKLIEQPVDAANHMTPDWREAFENELQKLKSLHGICSDKEWMDAVYESVRRVWRH
 MGKQVRDWRKDVRSGERPKIRGYAKDVVGNSIEQIEYLERQYKFLKWSFFGKVS
 GQVIRAEKGSRFAITLREHIDHAKEDRLKKLADRIIMEALGYVYALDERGKGKWVA
 KYPPCQLLIELSEYQFNNDRPPSENNQLMQWSHRGVFQELINQAQVHDLLVGTM
 20 YAAFSSRFDARTGAPGIRCRVPARCTQEHNPEFPWWLNKFVVEHTLDACPLRAD
 DLIPTGEGEIFVSPFSAEEGDFHQIHADLNAAQNLQQRLWSDFDISQIRLRCDWGEVD
 GELVLIPRLTGKRTADSYSNKVFYTNTGTVYYERERGKRRKVFAQEKLSEEEAELL
 VEADEAREKSVVLMRDPSGIINRGNWTRQKEFWSMV NQRIEGYLVKQIRSRVPLQD
 SACENTGDI

25

Fusion proteins comprising a nuclear localization sequence (NLS)

In some embodiments, the fusion proteins provided herein further comprise one or more (e.g., 2, 3, 4, 5) nuclear targeting sequences, for example a nuclear localization sequence (NLS). In one embodiment, a bipartite NLS is used. In some embodiments, a NLS comprises an amino acid sequence that facilitates the importation of a protein, that comprises an NLS, into the cell nucleus (e.g., by nuclear transport). In some embodiments, any of the fusion proteins provided herein further comprise a nuclear localization sequence (NLS). In some embodiments, the NLS is fused to the N-terminus of the fusion protein. In some embodiments, the NLS is fused to the C-terminus of the fusion protein. In some

embodiments, the NLS is fused to the N-terminus of the Cas9 domain. In some embodiments, the NLS is fused to the C-terminus of an nCas9 domain or a dCas9 domain. In some embodiments, the NLS is fused to the N-terminus of the deaminase. In some embodiments, the NLS is fused to the C-terminus of the deaminase. In some embodiments,

- 5 the NLS is fused to the fusion protein via one or more linkers. In some embodiments, the NLS is fused to the fusion protein without a linker. In some embodiments, the NLS comprises an amino acid sequence of any one of the NLS sequences provided or referenced herein. Additional nuclear localization sequences are known in the art and would be apparent to the skilled artisan. For example, NLS sequences are described in Plank *et al.*,
10 PCT/EP2000/011690, the contents of which are incorporated herein by reference for their disclosure of exemplary nuclear localization sequences. In some embodiments, an NLS comprises the amino acid sequence PKKKRKVEGADKRTADGSEFES PKKKRKV, KRTADGSEFESPKKKRKV, KRPAATKKAGQAKKK, KKTELQTTNAENTKKL, KRGINDRNFWRGENGRKTR, RKSGKIAAVVKPRKPDKKKRKV, or
15 MDSLLMNRRKFLYQFKNVRWAKGRRETYLC.

In some embodiments, the NLS is present in a linker or the NLS is flanked by linkers, for example, the linkers described herein. In some embodiments, the N-terminus or C-terminus NLS is a bipartite NLS. A bipartite NLS comprises two basic amino acid clusters, which are separated by a relatively short spacer sequence (hence bipartite - 2 parts, while monopartite
20 NLSs are not). The NLS of nucleoplasmin, KR[PAATKKAGQAA]KKKK, is the prototype of the ubiquitous bipartite signal: two clusters of basic amino acids, separated by a spacer of about 10 amino acids. The sequence of an exemplary bipartite NLS follows:

PKKKRKVEGADKRTADGSEFES PKKKRKV

25

In some embodiments, the fusion proteins of the invention do not comprise a linker sequence. In some embodiments, linker sequences between one or more of the domains or proteins are present.

It should be appreciated that the fusion proteins of the present disclosure may
30 comprise one or more additional features. For example, in some embodiments, the fusion protein may comprise inhibitors, cytoplasmic localization sequences, export sequences, such as nuclear export sequences, or other localization sequences, as well as sequence tags that are useful for solubilization, purification, or detection of the fusion proteins. Suitable protein tags provided herein include, but are not limited to, biotin carboxylase carrier protein (BCCP)

tags, myc-tags, calmodulin-tags, FLAG-tags, hemagglutinin (HA)-tags, polyhistidine tags, also referred to as histidine tags or His-tags, maltose binding protein (MBP)-tags, nus-tags, glutathione-S-transferase (GST)-tags, green fluorescent protein (GFP)-tags, thioredoxin-tags, S-tags, Softags (e.g., Softag 1, Softag 3), strep-tags, biotin ligase tags, FlAsH tags, V5 tags, 5 and SBP-tags. Additional suitable sequences will be apparent to those of skill in the art. In some embodiments, the fusion protein comprises one or more His tags.

Linkers

In certain embodiments, linkers may be used to link any of the peptides or peptide 10 domains of the invention. The linker may be as simple as a covalent bond, or it may be a polymeric linker many atoms in length. In certain embodiments, the linker is a polypeptide or based on amino acids. In other embodiments, the linker is not peptide-like. In certain 15 embodiments, the linker is a covalent bond (e.g., a carbon-carbon bond, disulfide bond, carbon-heteroatom bond, *etc.*). In certain embodiments, the linker is a carbon-nitrogen bond of an amide linkage. In certain embodiments, the linker is a cyclic or acyclic, substituted or 20 unsubstituted, branched or unbranched aliphatic or heteroaliphatic linker. In certain embodiments, the linker is polymeric (e.g., polyethylene, polyethylene glycol, polyamide, polyester, *etc.*). In certain embodiments, the linker comprises a monomer, dimer, or polymer of aminoalkanoic acid. In certain embodiments, the linker comprises an aminoalkanoic acid 25 (e.g., glycine, ethanoic acid, alanine, beta-alanine, 3-aminopropanoic acid, 4-aminobutanoic acid, 5-pentanoic acid, *etc.*). In certain embodiments, the linker comprises a monomer, dimer, or polymer of aminohexanoic acid (Ahx). In certain embodiments, the linker is based 30 on a carbocyclic moiety (e.g., cyclopentane, cyclohexane). In other embodiments, the linker comprises a polyethylene glycol moiety (PEG). In other embodiments, the linker comprises amino acids. In certain embodiments, the linker comprises a peptide. In certain embodiments, the linker comprises an aryl or heteroaryl moiety. In certain embodiments, the linker is based on a phenyl ring. The linker may include functionalized moieties to facilitate attachment of a nucleophile (e.g., thiol, amino) from the peptide to the linker. Any electrophile may be used as part of the linker. Exemplary electrophiles include, but are not limited to, activated esters, activated amides, Michael acceptors, alkyl halides, aryl halides, acyl halides, and isothiocyanates.

In some embodiments, the linker is an amino acid or a plurality of amino acids (e.g., a peptide or protein). In some embodiments, the linker is a bond (e.g., a covalent bond), an organic molecule, group, polymer, or chemical moiety. In some embodiments, the linker is

about 3 to about 104 (e.g., 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, or 100) amino acids in length.

5 *Cas9 complexes with guide RNAs*

Some aspects of this disclosure provide complexes comprising any of the fusion proteins provided herein, and a guide RNA. Any method for linking the fusion protein domains can be employed (e.g., ranging from very flexible linkers of the form (GGGS)_n, (GGGGS)_n, and (G)_n to more rigid linkers of the form (EAAAK)_n, (SGGS)_n,
10 SGSETPGTSESATPES (see, e.g., Guilinger JP, Thompson DB, Liu DR. Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification. Nat. Biotechnol. 2014; 32(6): 577-82; the entire contents are incorporated herein by reference) and (XP)_n) in order to achieve the optimal length for activity for the nucleobase editor. In some embodiments, n is 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, or 15. In some
15 embodiments, the linker comprises a (GGS)_n motif, wherein n is 1, 3, or 7. In some embodiments, the Cas9 domain of the fusion proteins provided herein are fused via a linker comprising the amino acid sequence SGSETPGTSESATPES:

In some embodiments, the guide nucleic acid (e.g., guide RNA) is from 15-100 nucleotides long and comprises a sequence of at least 10 contiguous nucleotides that is
20 complementary to a target sequence. In some embodiments, the guide RNA is 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, or 50 nucleotides long. In some embodiments, the guide RNA comprises a sequence of 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, or 40 contiguous nucleotides that is complementary to a target
25 sequence. In some embodiments, the target sequence is a DNA sequence. In some embodiments, the target sequence is a sequence in the genome of a bacteria, yeast, fungi, insect, plant, or animal. In some embodiments, the target sequence is a sequence in the genome of a human. In some embodiments, the 3' end of the target sequence is immediately adjacent to a canonical PAM sequence (NGG). In some embodiments, the 3' end of the target
30 sequence is immediately adjacent to a non-canonical PAM sequence (e.g., a sequence listed in Table 1).

Some aspects of this disclosure provide methods of using the fusion proteins, or complexes provided herein. For example, some aspects of this disclosure provide methods

comprising contacting a DNA molecule with any of the fusion proteins provided herein, and with at least one guide RNA, wherein the guide RNA is about 15-100 nucleotides long and comprises a sequence of at least 10 contiguous nucleotides that is complementary to a target sequence. In some embodiments, the 3' end of the target sequence is immediately adjacent to an AGC, GAG, TTT, GTG, or CAA sequence. In some embodiments, the 3' end of the target sequence is immediately adjacent to an NGA, NGCG, NGN, NNGRRT, NNNRRT, NGCG, NGCN, NGTN, NGTN, NGTN, or 5' (TTTV) sequence.

It will be understood that the numbering of the specific positions or residues in the respective sequences depends on the particular protein and numbering scheme used.

Numbering might be different, e.g., in precursors of a mature protein and the mature protein itself, and differences in sequences from species to species may affect numbering. One of skill in the art will be able to identify the respective residue in any homologous protein and in the respective encoding nucleic acid by methods well known in the art, e.g., by sequence alignment and determination of homologous residues.

It will be apparent to those of skill in the art that in order to target any of the fusion proteins disclosed herein, to a target site, e.g., a site comprising a mutation to be edited, it is typically necessary to co-express the fusion protein together with a guide RNA. As explained in more detail elsewhere herein, a guide RNA typically comprises a tracrRNA framework allowing for Cas9 binding, and a guide sequence, which confers sequence specificity to the Cas9:nucleic acid editing enzyme/domain fusion protein. Alternatively, the guide RNA and tracrRNA may be provided separately, as two nucleic acid molecules. In some embodiments, the guide RNA comprises a structure, wherein the guide sequence comprises a sequence that is complementary to the target sequence. The guide sequence is typically 20 nucleotides long. The sequences of suitable guide RNAs for targeting Cas9:nucleic acid editing enzyme/domain fusion proteins to specific genomic target sites will be apparent to those of skill in the art based on the instant disclosure. Such suitable guide RNA sequences typically comprise guide sequences that are complementary to a nucleic sequence within 50 nucleotides upstream or downstream of the target nucleotide to be edited. Some exemplary guide RNA sequences suitable for targeting any of the provided fusion proteins to specific target sequences are provided herein.

Methods of using fusion proteins comprising a cytidine deaminase, adenosine deaminase and a Cas9 domain

Some aspects of this disclosure provide methods of using the fusion proteins, or complexes provided herein. For example, some aspects of this disclosure provide methods comprising contacting a DNA molecule encoding a mutation with any of the fusion proteins provided herein, and with at least one guide RNA, wherein the guide RNA is about 15-100

5 nucleotides long and comprises a sequence of at least 10 contiguous nucleotides that is complementary to a target sequence. In some embodiments, the 3' end of the target sequence is immediately adjacent to a canonical PAM sequence (NGG). In some embodiments, the 3' end of the target sequence is not immediately adjacent to a canonical PAM sequence (NGG). In some embodiments, the 3' end of the target sequence is immediately adjacent to an AGC, GAG, TTT, GTG, or CAA sequence. In some embodiments, the 3' end of the target

10 sequence is immediately adjacent to an NGA, NGCG, NGN, NNGRRT, NNNRRT, NGCG, NGCN, NGTN, NGTN, NGTN, or 5' (TTTV) sequence.

It will be understood that the numbering of the specific positions or residues in the respective sequences depends on the particular protein and numbering scheme used.

15 Numbering might be different, e.g., in precursors of a mature protein and the mature protein itself, and differences in sequences from species to species may affect numbering. One of skill in the art will be able to identify the respective residue in any homologous protein and in the respective encoding nucleic acid by methods well known in the art, e.g., by sequence alignment and determination of homologous residues.

20 It will be apparent to those of skill in the art that in order to target any of the fusion proteins comprising a Cas9 domain and a cytidine deaminase or an adenosine deaminase, as disclosed herein, to a target site, e.g., a site comprising a mutation to be edited, it is typically necessary to co-express the fusion protein together with a guide RNA, e.g., an sgRNA. As explained in more detail elsewhere herein, a guide RNA typically comprises a tracrRNA framework allowing for Cas9 binding, and a guide sequence, which confers sequence 25 specificity to the Cas9:nucleic acid editing enzyme/domain fusion protein. Alternatively, the guide RNA and tracrRNA may be provided separately, as two nucleic acid molecules. In some embodiments, the guide RNA comprises a structure, wherein the guide sequence comprises a sequence that is complementary to the target sequence. The guide sequence is 30 typically 20 nucleotides long. The sequences of suitable guide RNAs for targeting Cas9:nucleic acid editing enzyme/domain fusion proteins to specific genomic target sites will be apparent to those of skill in the art based on the instant disclosure. Such suitable guide RNA sequences typically comprise guide sequences that are complementary to a nucleic sequence within 50 nucleotides upstream or downstream of the target nucleotide to be edited.

Some exemplary guide RNA sequences suitable for targeting any of the provided fusion proteins to specific target sequences are provided herein.

Base Editor Efficiency

5 The fusion proteins of the invention advantageously modify a specific nucleotide base comprising a mutation without generating a significant proportion of indels. An “indel”, as used herein, refers to the insertion or deletion of a nucleotide base within a nucleic acid. Such insertions or deletions can lead to frame shift mutations within a coding region of a gene. In some embodiments, it is desirable to generate base editors that efficiently modify
10 (e.g. mutate) a specific nucleotide within a nucleic acid, without generating a large number of insertions or deletions (i.e., indels) in the nucleic acid. In certain embodiments, any of the base editors provided herein are capable of generating a greater proportion of intended modifications (e.g., mutations) versus indels. In some embodiments, the base editors provided herein are capable of generating a ratio of intended mutation to indels that is greater
15 than 1:1. In some embodiments, the base editors provided herein are capable of generating a ratio of intended mutations to indels that is at least 1.5:1, at least 2:1, at least 2.5:1, at least 3:1, at least 3.5:1, at least 4:1, at least 4.5:1, at least 5:1, at least 5.5:1, at least 6:1, at least 6.5:1, at least 7:1, at least 7.5:1, at least 8:1, at least 10:1, at least 12:1, at least 15:1, at least 20:1, at least 25:1, at least 30:1, at least 40:1, at least 50:1, at least 100:1, at least 200:1, at
20 least 300:1, at least 400:1, at least 500:1, at least 600:1, at least 700:1, at least 800:1, at least 900:1, or at least 1000:1, or more. The number of intended mutations and indels may be determined using any suitable method.

25 In some embodiments, the base editors provided herein are capable of limiting formation of indels in a region of a nucleic acid. In some embodiments, the region is at a nucleotide targeted by a base editor or a region within 2, 3, 4, 5, 6, 7, 8, 9, or 10 nucleotides of a nucleotide targeted by a base editor. In some embodiments, any of the base editors provided herein are capable of limiting the formation of indels at a region of a nucleic acid to less than 1%, less than 1.5%, less than 2%, less than 2.5%, less than 3%, less than 3.5%, less than 4%, less than 4.5%, less than 5%, less than 6%, less than 7%, less than 8%, less than 9%, less than 10%, less than 12%, less than 15%, or less than 20%. The number of indels formed at a nucleic acid region may depend on the amount of time a nucleic acid (e.g., a nucleic acid within the genome of a cell) is exposed to a base editor. In some embodiments, an number or proportion of indels is determined after at least 1 hour, at least 2 hours, at least 6 hours, at least 12 hours, at least 24 hours, at least 36 hours, at least 48 hours, at least 3 days,

at least 4 days, at least 5 days, at least 7 days, at least 10 days, or at least 14 days of exposing a nucleic acid (e.g., a nucleic acid within the genome of a cell) to a base editor.

Some aspects of the disclosure are based on the recognition that any of the base editors provided herein are capable of efficiently generating an intended mutation in a nucleic acid (e.g. a nucleic acid within a genome of a subject) without generating a significant number of unintended mutations. In some embodiments, an intended mutation is a mutation that is generated by a specific base editor bound to a gRNA, specifically designed to alter or correct a mutation. In some embodiments, any of the base editors provided herein are capable of generating a ratio of intended mutations to unintended mutations (e.g., intended mutations:unintended mutations) that is greater than 1:1. In some embodiments, any of the base editors provided herein are capable of generating a ratio of intended mutations to unintended mutations that is at least 1.5:1, at least 2:1, at least 2.5:1, at least 3:1, at least 3.5:1, at least 4:1, at least 4.5:1, at least 5:1, at least 5.5:1, at least 6:1, at least 6.5:1, at least 7:1, at least 7.5:1, at least 8:1, at least 10:1, at least 12:1, at least 15:1, at least 20:1, at least 25:1, at least 30:1, at least 40:1, at least 50:1, at least 100:1, at least 150:1, at least 200:1, at least 250:1, at least 500:1, or at least 1000:1, or more. It should be appreciated that the characteristics of the base editors described in the “*Base Editor Efficiency*” section, herein, may be applied to any of the fusion proteins, or methods of using the fusion proteins provided herein.

20

Methods for Editing Nucleic Acids

Some aspects of the disclosure provide methods for editing a nucleic acid. In some embodiments, the method is a method for editing a nucleobase of a nucleic acid molecule encoding a polypeptide of interest (e.g., the expression product of a disease gene). In some embodiments, the method comprises the steps of: a) contacting a target region of a nucleic acid (e.g., a double-stranded DNA sequence) with a complex comprising a base editor and a guide nucleic acid (e.g., gRNA), b) inducing strand separation of said target region, c) converting a first nucleobase of said target nucleobase pair in a single strand of the target region to a second nucleobase, and d) cutting no more than one strand of said target region using the nCas9, where a third nucleobase complementary to the first nucleobase base is replaced by a fourth nucleobase complementary to the second nucleobase. In some embodiments, the method results in less than 20% indel formation in the nucleic acid. It should be appreciated that in some embodiments, step b is omitted. In some embodiments, the method results in less than 19%, 18%, 16%, 14%, 12%, 10%, 8%, 6%, 4%, 2%, 1%,

0.5%, 0.2%, or less than 0.1% indel formation. In some embodiments, the method further comprises replacing the second nucleobase with a fifth nucleobase that is complementary to the fourth nucleobase, thereby generating an intended edited base pair (*e.g.*, G•C to A•T). In some embodiments, at least 5% of the intended base pairs are edited. In some embodiments, 5 at least 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, or 50% of the intended base pairs are edited.

In some embodiments, the ratio of intended products to unintended products in the target nucleotide is at least 2:1, 5:1, 10:1, 20:1, 30:1, 40:1, 50:1, 60:1, 70:1, 80:1, 90:1, 100:1, 10 or 200:1, or more. In some embodiments, the ratio of intended mutation to indel formation is greater than 1:1, 10:1, 50:1, 100:1, 500:1, or 1000:1, or more. In some embodiments, the cut single strand (nicked strand) is hybridized to the guide nucleic acid. In some embodiments, the cut single strand is opposite to the strand comprising the first nucleobase. In some 15 embodiments, the base editor comprises a dCas9 domain. In some embodiments, the base editor protects or binds the non-edited strand. In some embodiments, the intended edited base pair is upstream of a PAM site. In some embodiments, the intended edited base pair is 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 nucleotides upstream of the PAM site. In some embodiments, the intended edited base pair is downstream of a PAM site. In some 20 embodiments, the intended edited base pair is 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 nucleotides downstream stream of the PAM site. In some 25 embodiments, the method does not require a canonical (*e.g.*, NGG) PAM site. In some embodiments, the nucleobase editor comprises a linker. In some embodiments, the linker is 1-25 amino acids in length. In some embodiments, the linker is 5-20 amino acids in length. In some 30 embodiments, linker is 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 amino acids in length. In one embodiment, the linker is 32 amino acids in length. In another embodiment, a “long linker” is at least about 60 amino acids in length. In other embodiments, the linker is between about 3-100 amino acids in length. In some embodiments, the target region comprises a target window, wherein the target window comprises the target nucleobase pair. In some 35 embodiments, the target window comprises 1-10 nucleotides. In some embodiments, the target window is 1-9, 1-8, 1-7, 1-6, 1-5, 1-4, 1-3, 1-2, or 1 nucleotides in length. In some 40 embodiments, the target window is 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 nucleotides in length. In some 45 embodiments, the intended edited base pair is within the target window. In some 50 embodiments, the target window comprises the intended edited base pair. In some 55 embodiments, the method is performed using any of the base editors provided herein.

In some embodiments, the disclosure provides methods for editing a nucleotide (e.g., a SNP). In some embodiments, the disclosure provides a method for editing a nucleobase pair of a double-stranded DNA sequence. In some embodiments, the method comprises a) contacting a target region of the double-stranded DNA sequence with a complex comprising a base editor and a guide nucleic acid (e.g., gRNA), where the target region comprises a target nucleobase pair, b) inducing strand separation of said target region, c) converting a first nucleobase of said target nucleobase pair in a single strand of the target region to a second nucleobase, d) cutting no more than one strand of said target region, wherein a third nucleobase complementary to the first nucleobase base is replaced by a fourth nucleobase complementary to the second nucleobase, and the second nucleobase is replaced with a fifth nucleobase that is complementary to the fourth nucleobase, thereby generating an intended edited base pair, wherein the efficiency of generating the intended edited base pair is at least 5%. It should be appreciated that in some embodiments, step b is omitted. In some embodiments, at least 5% of the intended base pairs are edited. In some embodiments, at least 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, or 50% of the intended base pairs are edited. In some embodiments, the method causes less than 19%, 18%, 16%, 14%, 12%, 10%, 8%, 6%, 4%, 2%, 1%, 0.5%, 0.2%, or less than 0.1% indel formation. In some embodiments, the ratio of intended product to unintended products at the target nucleotide is at least 2:1, 5:1, 10:1, 20:1, 30:1, 40:1, 50:1, 60:1, 70:1, 80:1, 90:1, 100:1, or 200:1, or more. In some embodiments, the ratio of intended mutation to indel formation is greater than 1:1, 10:1, 50:1, 100:1, 500:1, or 1000:1, or more. In some embodiments, the cut single strand is hybridized to the guide nucleic acid. In some embodiments, the cut single strand is opposite to the strand comprising the first nucleobase. In some embodiments, the intended edited base pair is upstream of a PAM site. In some embodiments, the intended edited base pair is 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 nucleotides upstream of the PAM site. In some embodiments, the intended edited base pair is downstream of a PAM site. In some embodiments, the intended edited base pair is 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 nucleotides downstream stream of the PAM site. In some embodiments, the method does not require a canonical (e.g., NGG) PAM site. In some embodiments, the linker is 1-25 amino acids in length. In some embodiments, the linker is 5-20 amino acids in length. In some embodiments, the linker is 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 amino acids in length. In some embodiments, the target region comprises a target window, wherein the target window comprises the target nucleobase pair. In some embodiments, the target window comprises 1-10 nucleotides. In some embodiments, the target window is 1-9, 1-8, 1-

7, 1-6, 1-5, 1-4, 1-3, 1-2, or 1 nucleotides in length. In some embodiments, the target window is 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 nucleotides in length. In some embodiments, the intended edited base pair occurs within the target window. In some embodiments, the target window comprises the intended edited base pair. In some 5 embodiments, the nucleobase editor is any one of the base editors provided herein.

Multiplex Editing

In some embodiments, the base editor system provided herein is capable of multiplex editing of a plurality of nucleobase pairs in one or more genes. In some embodiments, the plurality of nucleobase pairs is located in the same gene. In some embodiments, the plurality 10 of nucleobase pairs is located in one or more gene, wherein at least one gene is located in a different locus. In some embodiments, the multiplex editing can comprise one or more guide polynucleotides. In some embodiments, the multiplex editing can comprise one or more base editor system. In some embodiments, the multiplex editing can comprise one or more base editor systems with a single guide polynucleotide. In some embodiments, the multiplex 15 editing can comprise one or more base editor system with a plurality of guide polynucleotides. In some embodiments, the multiplex editing can comprise one or more guide polynucleotide with a single base editor system. In some embodiments, the multiplex editing can comprise at least one guide polynucleotide that does not require a PAM sequence to target binding to a target polynucleotide sequence. In some embodiments, the multiplex 20 editing can comprise at least one guide polynucleotide that requires a PAM sequence to target binding to a target polynucleotide sequence. In some embodiments, the multiplex editing can comprise a mix of at least one guide polynucleotide that does not require a PAM sequence to target binding to a target polynucleotide sequence and at least one guide polynucleotide that require a PAM sequence to target binding to a target polynucleotide sequence. It should be 25 appreciated that the characteristics of the multiplex editing using any of the base editors as described herein can be applied to any of combination of the methods of using any of the base editor provided herein. It should also be appreciated that the multiplex editing using any of the base editors as described herein can comprise a sequential editing of a plurality of nucleobase pairs.

30 In some embodiments, the plurality of nucleobase pairs are in one more genes. In some embodiments, the plurality of nucleobase pairs is in the same gene. In some embodiments, at least one gene in the one more genes is located in a different locus.

In some embodiments, the editing is editing of the plurality of nucleobase pairs in at least one protein coding region. In some embodiments, the editing is editing of the plurality of nucleobase pairs in at least one protein non-coding region. In some embodiments, the editing is editing of the plurality of nucleobase pairs in at least one protein coding region and 5 at least one protein non-coding region.

In some embodiments, the editing is in conjunction with one or more guide polynucleotides. In some embodiments, the base editor system can comprise one or more base editor system. In some embodiments, the base editor system can comprise one or more base editor systems in conjunction with a single guide polynucleotide. In some 10 embodiments, the base editor system can comprise one or more base editor system in conjunction with a plurality of guide polynucleotides. In some embodiments, the editing is in conjunction with one or more guide polynucleotide with a single base editor system. In some embodiments, the editing is in conjunction with at least one guide polynucleotide that does not require a PAM sequence to target binding to a target polynucleotide sequence. In some 15 embodiments, the editing is in conjunction with at least one guide polynucleotide that require a PAM sequence to target binding to a target polynucleotide sequence. In some embodiments, the editing is in conjunction with a mix of at least one guide polynucleotide that does not require a PAM sequence to target binding to a target polynucleotide sequence and at least one guide polynucleotide that require a PAM sequence to target binding to a 20 target polynucleotide sequence. It should be appreciated that the characteristics of the multiplex editing using any of the base editors as described herein can be applied to any of combination of the methods of using any of the base editors provided herein. It should also be appreciated that the editing can comprise a sequential editing of a plurality of nucleobase pairs.

25 ***Expression of Fusion Proteins in a Host Cell***

Fusion proteins of the invention may be expressed in virtually any host cell of interest, including but not limited to bacteria, yeast, fungi, insects, plants, and animal cells using routine methods known to the skilled artisan. For example, a DNA encoding a fusion protein of the invention can be cloned by designing suitable primers for the upstream and 30 downstream of CDS based on the cDNA sequence. The cloned DNA may be directly, or after digestion with a restriction enzyme when desired, or after addition of a suitable linker and/or a nuclear localization signal ligated with a DNA encoding one or more additional

components of a base editing system. The base editing system is translated in a host cell to form a complex.

Fusion proteins are generated by operably linking one or more polynucleotides encoding one or more domains having nucleobase modifying activity (e.g., an adenosine deaminase, cytidine deaminase, DNA glycosylase) to a polynucleotide encoding a napDNAbp to prepare a polynucleotide that encodes a fusion protein of the invention. In some embodiments, a polynucleotide encoding a napDNAbp, and a DNA encoding a domain having nucleobase modifying activity may each be fused with a DNA encoding a binding domain or a binding partner thereof, or both DNAs may be fused with a DNA encoding a separation intein, whereby the nucleic acid sequence-recognizing conversion module and the nucleic acid base converting enzyme are translated in a host cell to form a complex. In these cases, a linker and/or a nuclear localization signal can be linked to a suitable position of one of or both DNAs when desired.

A DNA encoding a protein domain described herein can be obtained by chemically synthesizing the DNA, or by connecting synthesized partly overlapping oligoDNA short chains by utilizing the PCR method and the Gibson Assembly method to construct a DNA encoding the full length thereof. The advantage of constructing a full-length DNA by chemical synthesis or a combination of PCR method or Gibson Assembly method is that the codon to be used can be designed in CDS full-length according to the host into which the DNA is introduced. In the expression of a heterologous DNA, the protein expression level is expected to increase by converting the DNA sequence thereof to a codon highly frequently used in the host organism. As the data of codon use frequency in host to be used, for example, the genetic code use frequency database (<http://www.kazusa.or.jp/codon/index.html>) disclosed in the home page of Kazusa DNA Research Institute can be used, or documents showing the codon use frequency in each host may be referred to. By reference to the obtained data and the DNA sequence to be introduced, codons showing low use frequency in the host from among those used for the DNA sequence may be converted to a codon coding the same amino acid and showing high use frequency.

An expression vector containing a DNA encoding a nucleic acid sequence-recognizing module and/or a nucleic acid base converting enzyme can be produced, for example, by linking the DNA to the downstream of a promoter in a suitable expression vector.

As the expression vector, *Escherichia coli*-derived plasmids (e.g., pBR322, pBR325, pUC12, pUC13); *Bacillus subtilis*-derived plasmids (e.g., pUB110, pTP5, pC194); yeast-

derived plasmids (e.g., pSH19, pSH15); insect cell expression plasmids (e.g., pFast-Bac); animal cell expression plasmids (e.g., pA1-11, pXT1, pRc/CMV, pRc/RSV, pcDNA1/Neo); bacteriophages such as *lambda* phage and the like; insect virus vectors such as baculovirus and the like (e.g., BmNPV, AcNPV); animal virus vectors such as retrovirus, vaccinia virus, 5 adenovirus and the like, and the like are used.

As the promoter, any promoter appropriate for a host to be used for gene expression can be used. In a conventional method using DSB, since the survival rate of the host cell sometimes decreases markedly due to the toxicity, it is desirable to increase the number of cells by the start of the induction by using an inductive promoter. However, since sufficient 10 cell proliferation can also be afforded by expressing the nucleic acid-modifying enzyme complex of the present invention, a constitutive promoter can also be used without limitation.

For example, when the host is an animal cell, SR.alpha. promoter, SV40 promoter, LTR promoter, CMV (cytomegalovirus) promoter, RSV (*Rous sarcoma* virus) promoter, MoMuLV (Moloney mouse leukemia virus) LTR, HSV-TK (simple herpes virus thymidine 15 kinase) promoter and the like are used. Of these, CMV promoter, SR.alpha. promoter and the like are preferable. In one embodiment, the promoter is CMV promoter or SR alpha promoter. When the host cell is *Escherichia coli*, any of the following promoters may be used: trp promoter, lac promoter, recA promoter, *lambda*.P._{sub}.L promoter, lpp promoter, T7 promoter and the like. When the host is genus *Bacillus*, any of the following promoters may 20 be used: SPO1 promoter, SPO2 promoter, penP promoter and the like. When the host is a yeast, any of the following promoters may be used: Gal1/10 promoter, PHO5 promoter, PGK promoter, GAP promoter, ADH promoter and the like. When the host is an insect cell, any of the following promoters may be used polyhedrin promoter, P10 promoter and the like. When the host is a plant cell, any of the following promoters may be used: CaMV35S promoter, 25 CaMV19S promoter, NOS promoter and the like.

In some embodiments, the expression vector may contain an enhancer, splicing signal, terminator, polyA addition signal, a selection marker such as drug resistance gene, auxotrophic complementary gene and the like, replication origin and the like on demand.

An RNA encoding a protein domain described herein can be prepared by, for 30 example, transcription to mRNA in a vitro transcription system known per se by using a vector encoding DNA encoding the above-mentioned nucleic acid sequence-recognizing module and/or a nucleic acid base converting enzyme as a template.

A fusion protein of the invention can be expressed by introducing an expression vector encoding a fusion protein into a host cell, and culturing the host cell. Host cells useful in the invention include bacterial cells, yeast, insect cells, mammalian cells and the like.

The genus *Escherichia* includes *Escherichia coli* K12.cndot.DH1 (Proc. Natl. Acad. Sci. USA, 60, 160 (1968)], *Escherichia coli* JM103 (Nucleic Acids Research, 9, 309 (1981)], *Escherichia coli* JA221 (Journal of Molecular Biology, 120, 517 (1978)], *Escherichia coli* HB101 (Journal of Molecular Biology, 41, 459 (1969)], *Escherichia coli* C600 (Genetics, 39, 440 (1954)] and the like.

The genus *Bacillus* includes *Bacillus subtilis* M1114 (Gene, 24, 255 (1983)], *Bacillus subtilis* 207-21 (Journal of Biochemistry, 95, 87 (1984)] and the like.

Yeast useful for expressing fusion proteins of the invention include *Saccharomyces cerevisiae* AH22, AH22R.sup.-, NA87-11A, DKD-5D, 20B-12, *Schizosaccharomyces pombe* NCYC1913, NCYC2036, *Pichia pastoris* KM71 and the like.

Fusion proteins are expressed in insect cells using, for example, viral vectors, such as AcNPV. Insect host cells include any of the following cell lines: cabbage armyworm larva-derived established line (*Spodoptera frugiperda* cell; Sf cell), MG1 cells derived from the mid-intestine of *Trichoplusia ni*, High Five.TM. cells derived from an egg of *Trichoplusia ni*, *Mamestra brassicae*-derived cells, *Estigmena acrea*-derived cells and the like are used. When the virus is BmNPV, cells of *Bombyx mori*-derived established line (*Bombyx mori* N cell; BmN cell) and the like are used as insect cells. As the Sf cell, for example, Sf9 cell (ATCC CRL1711), Sf21 cell (all above, In Vivo, 13, 213-217 (1977)] and the like.

As the insect, for example, larva of *Bombyx mori*, *Drosophila*, cricket and the like are used to express fusion proteins (Nature, 315, 592 (1985)).

Mammalian cell lines may be used to express fusion proteins. Such cell lines include monkey COS-7 cell, monkey Vero cell, Chinese hamster ovary (CHO) cell, dhfr gene-deficient CHO cell, mouse L cell, mouse AtT-20 cell, mouse myeloma cell, rat GH3 cell, human FL cell and the like, pluripotent stem cells such as iPS cell, ES cell and the like of human and other mammals, and primary cultured cells prepared from various tissues are used. Furthermore, zebrafish embryo, *Xenopus* oocyte and the like can also be used.

Plant cells may be maintained in culture using methods well known to the skilled artisan. Plant cell culture involves suspending cultured cells, callus, protoplast, leaf segment, root segment and the like prepared from various plants (e.g., grain such as rice, wheat, corn and the like, product crops such as tomato, cucumber, eggplant, carnations, *Eustoma russellianum*, tobacco, *Arabidopsis thaliana*).

All the above-mentioned host cells may be haploid (monoploid), or polyploid (e.g., diploid, triploid, tetraploid and the like). In the conventional mutation introduction methods, mutation is, in principle, introduced into only one homologous chromosome to produce a hetero gene type. Therefore, desired phenotype is not expressed unless dominant mutation

5 occurs, and homozygousness inconveniently requires labor and time. In contrast, according to the present invention, since mutation can be introduced into any allele on the homologous chromosome in the genome, desired phenotype can be expressed in a single generation even in the case of recessive mutation, which is extremely useful since the problem of the conventional method can be solved.

10 Expression vectors encoding a fusion protein of the invention are introduced into host cells using any transfection method (e.g., lysozyme method, competent method, PEG method, CaCl_2 coprecipitation method, electroporation method, the microinjection method, the particle gun method, lipofection method, Agrobacterium method and the like). The transfection method is selected based on the host cell to be transfected.

15 *Escherichia coli* can be transformed according to the methods described in, for example, Proc. Natl. Acad. Sci. USA, 69, 2110 (1972), Gene, 17, 107 (1982) and the like. The genus *Bacillus* can be introduced into a vector according to the methods described in, for example, Molecular & General Genetics, 168, 111 (1979) and the like. Yeast cells can be introduced into a vector according to the methods described in, for example, Methods in

20 Enzymology, 194, 182-187 (1991), Proc. Natl. Acad. Sci. USA, 75, 1929 (1978) and the like. Insect cells can be introduced into a vector according to the methods described in, for example, Bio/Technology, 6, 47-55 (1988) and the like. Mammalian cells can be introduced into a vector according to the methods described in, for example, Cell Engineering additional volume 8, New Cell Engineering Experiment Protocol, 263-267 (1995) (published by

25 Shujunsha), and Virology, 52, 456 (1973).

Cells comprising expression vectors of the invention are cultured according to known methods, which vary depending on the host. For example, when *Escherichia coli* or genus *Bacillus* are cultured, a liquid medium is preferable as a medium to be used for the culture. The medium preferably contains a carbon source, nitrogen source, inorganic substance and

30 the like necessary for the growth of the transformant. Examples of the carbon source include glucose, dextrin, soluble starch, sucrose and the like; examples of the nitrogen source include inorganic or organic substances such as ammonium salts, nitrate salts, corn steep liquor, peptone, casein, meat extract, soybean cake, potato extract and the like; and examples of the inorganic substance include calcium chloride, sodium dihydrogen phosphate, magnesium

chloride and the like. The medium may contain yeast extract, vitamins, growth promoting factor and the like. The pH of the medium is preferably about 5- about 8.

As a medium for culturing *Escherichia coli*, for example, M9 medium containing glucose, casamino acid (Journal of Experiments in Molecular Genetics, 431-433, Cold Spring Harbor Laboratory, New York 1972] is preferable. Where necessary, for example, agents such as 3. β -indolylacrylic acid may be added to the medium to ensure an efficient function of a promoter. *Escherichia coli* is cultured at generally about 15- about 43°C. Where necessary, aeration and stirring may be performed.

The genus *Bacillus* is cultured at generally about 30- about 40°C. Where necessary, aeration and stirring may be performed.

Examples of the medium for culturing yeast include Burkholder minimum medium (Proc. Natl. Acad. Sci. USA, 77, 4505 (1980)], SD medium containing 0.5% casamino acid (Proc. Natl. Acad. Sci. USA, 81, 5330 (1984)] and the like. The pH of the medium is preferably about 5- about 8. The culture is performed at generally about 20°C.-about 35°C.

Where necessary, aeration and stirring may be performed.

As a medium for culturing an insect cell or insect, for example, Grace's Insect Medium (Nature, 195, 788 (1962)] containing an additive such as inactivated 10% bovine serum and the like as appropriate and the like are used. The pH of the medium is preferably about 6.2 to about 6.4. The culture is performed at generally about 27°C. Where necessary, aeration and stirring may be performed.

As a medium for culturing an animal cell, for example, minimum essential medium (MEM) containing about 5- about 20% of fetal bovine serum (Science, 122, 501 (1952)], Dulbecco's modified Eagle medium (DMEM) (Virology, 8, 396 (1959)], RPMI 1640 medium (The Journal of the American Medical Association, 199, 519 (1967)], 199 medium (Proceeding of the Society for the Biological Medicine, 73, 1 (1950)] and the like are used. The pH of the medium is preferably about 6- about 8. The culture is performed at generally about 30°C to about 40°C. Where necessary, aeration and stirring may be performed.

As a medium for culturing a plant cell, for example, MS medium, LS medium, B5 medium and the like are used. The pH of the medium is preferably about 5- about 8. The culture is performed at generally about 20°C-about 30°C. Where necessary, aeration and stirring may be performed.

When a higher eukaryotic cell, such as animal cell, insect cell, plant cell and the like is used as a host cell, a DNA encoding a base editing system of the present invention is introduced into a host cell under the regulation of an inducible promoter (e.g.,

metallothionein promoter (induced by heavy metal ion), heat shock protein promoter (induced by heat shock), Tet-ON/Tet-OFF system promoter (induced by addition or removal of tetracycline or a derivative thereof), steroid-responsive promoter (induced by steroid hormone or a derivative thereof) etc.), the induction substance is added to the medium (or removed from the medium) at an appropriate stage to induce expression of the nucleic acid-modifying enzyme complex, culture is performed for a given period to carry out a base editing and, introduction of a mutation into a target gene, transient expression of the base editing system can be realized.

5 Prokaryotic cells such as *Escherichia coli* and the like can utilize an inducible promoter. Examples of the inducible promoter include, but are not limited to, lac promoter (induced by IPTG), cspA promoter (induced by cold shock), araBAD promoter (induced by arabinose) and the like.

10 Alternatively, the above-mentioned inductive promoter can also be utilized as a vector removal mechanism when higher eukaryotic cells, such as animal cell, insect cell, plant cell and the like are used as a host cell. That is, a vector is mounted with a replication origin that functions in a host cell, and a nucleic acid encoding a protein necessary for replication (e.g., SV40 on and large T antigen, oriP and EBNA-1 etc. for animal cells), of the expression of the nucleic acid encoding the protein is regulated by the above-mentioned inducible promoter. As a result, while the vector is autonomously replicatable in the presence of an induction 15 substance, when the induction substance is removed, autonomous replication is not available, and the vector naturally falls off along with cell division (autonomous replication is not possible by the addition of tetracycline and doxycycline in Tet-OFF system vector).

DELIVERY SYSTEM

20 Nucleic Acid-Based Delivery of a Nucleobase Editors and gRNAs

Nucleic acids encoding base editing systems (e.g., multi-effector nucleobase editor) according to the present disclosure can be administered to subjects or delivered into cells *in vitro* or *in vivo* by art-known methods or as described herein. In one embodiment, nucleobase editors or multi-effector nucleobase editors can be delivered by, e.g., vectors (e.g., viral or 25 non-viral vectors), non-vector based methods (e.g., using naked DNA, DNA complexes, lipid nanoparticles), or a combination thereof.

Nucleic acids encoding nucleobase editors or multi-effector nucleobase editors can be delivered directly to cells (*e.g.*, hematopoietic cells or their progenitors, hematopoietic stem cells, and/or induced pluripotent stem cells) as naked DNA or RNA, for instance by means of transfection or electroporation, or can be conjugated to molecules (*e.g.*, N-

5 acetylgalactosamine) promoting uptake by the target cells. Nucleic acid vectors, such as the vectors described herein can also be used.

Nucleic acid vectors can comprise one or more sequences encoding a domain of a fusion protein described herein. A vector can also comprise a sequence encoding a signal peptide (*e.g.*, for nuclear localization, nucleolar localization, or mitochondrial localization),

10 associated with (*e.g.*, inserted into or fused to) a sequence coding for a protein. As one example, a nucleic acid vectors can include a Cas9 coding sequence that includes one or more nuclear localization sequences (*e.g.*, a nuclear localization sequence from SV40), and deaminase (*e.g.*, an adenosine deaminase and/or cytidine deaminase).

The nucleic acid vector can also include any suitable number of regulatory/control elements, *e.g.*, promoters, enhancers, introns, polyadenylation signals, Kozak consensus sequences, or internal ribosome entry sites (IRES). These elements are well known in the art. For hematopoietic cells suitable promoters can include IFNb1 or CD45.

Nucleic acid vectors according to this disclosure include recombinant viral vectors. Exemplary viral vectors are set forth herein. Other viral vectors known in the art can also be used. In addition, viral particles can be used to deliver base editing system components in nucleic acid and/or peptide form. For example, "empty" viral particles can be assembled to contain any suitable cargo. Viral vectors and viral particles can also be engineered to incorporate targeting ligands to alter target tissue specificity.

In addition to viral vectors, non-viral vectors can be used to deliver nucleic acids encoding genome editing systems according to the present disclosure. One important category of non-viral nucleic acid vectors are nanoparticles, which can be organic or inorganic. Nanoparticles are well known in the art. Any suitable nanoparticle design can be used to deliver genome editing system components or nucleic acids encoding such components. For instance, organic (*e.g.* lipid and/or polymer) nanoparticles can be suitable for use as delivery vehicles in certain embodiments of this disclosure. Exemplary lipids for use in nanoparticle formulations, and/or gene transfer are shown in **Table 6** (below).

Table 6

Lipids Used for Gene Transfer

Lipid	Abbreviation	Feature
1,2-Dioleoyl-sn-glycero-3-phosphatidylcholine	DOPC	Helper
1,2-Dioleoyl-sn-glycero-3-phosphatidylethanolamine	DOPE	Helper
Cholesterol		Helper
N-[1-(2,3-Dioleyloxy)prophyl]N,N,N-trimethylammonium chloride	DOTMA	Cationic
1,2-Dioleyloxy-3-trimethylammonium-propane	DOTAP	Cationic
Dioctadecylamidoglycylspermine	DOGS	Cationic
N-(3-Aminopropyl)-N,N-dimethyl-2,3-bis(dodecyloxy)-1-propanaminium bromide	GAP-DLRIE	Cationic
Cetyltrimethylammonium bromide	CTAB	Cationic
6-Lauroxyhexyl ornithinate	LHON	Cationic
1-(2,3-Dioleyloxypropyl)-2,4,6-trimethylpyridinium	2Oc	Cationic
2,3-Dioleyloxy-N-[2(sperminecarboxamido-ethyl]-N,N-dimethyl-1-propanaminium trifluoroacetate	DOSPA	Cationic
1,2-Dioleyl-3-trimethylammonium-propane	DOPA	Cationic
N-(2-Hydroxyethyl)-N,N-dimethyl-2,3-bis(tetradecyloxy)-1-propanaminium bromide	MDRIE	Cationic
Dimyristooxypropyl dimethyl hydroxyethyl ammonium bromide	DMRI	Cationic
3 β -[N-(N',N'-Dimethylaminoethane)-carbamoyl]cholesterol	DC-Chol	Cationic
Bis-guanidium-tren-cholesterol	BGTC	Cationic
1,3-Dideoxy-2-(6-carboxy-spermyl)-propylamide	DOSPER	Cationic
Dimethyloctadecylammonium bromide	DDAB	Cationic
Dioctadecylamidoglycylspermidin	DSL	Cationic
rac-[(2,3-Dioctadecyloxypropyl)(2-hydroxyethyl)]-dimethylammonium chloride	CLIP-1	Cationic
rac-[2(2,3-Dihexadecyloxypropyl-oxymethoxyethyl]trimethylammonium bromide	CLIP-6	Cationic
Ethyldimyristoylphosphatidylcholine	EDMPC	Cationic
1,2-Distearyoxy-N,N-dimethyl-3-aminopropane	DSDMA	Cationic
1,2-Dimyristoyl-trimethylammonium propane	DMTAP	Cationic
O,O'-Dimyristyl-N-lysyl aspartate	DMKE	Cationic
1,2-Distearoyl-sn-glycero-3-ethylphosphocholine	DSEPC	Cationic

Lipids Used for Gene Transfer		
Lipid	Abbreviation	Feature
N-Palmitoyl D-erythro-sphingosyl carbamoyl-spermine	CCS	Cationic
N-t-Butyl-N0-tetradecyl-3-tetradecylaminopropionamidine	diC14-amidine	Cationic
Octadecenolyoxy[ethyl-2-heptadecenyl-3 hydroxyethyl] imidazolinium chloride	DOTIM	Cationic
N1 -Cholesteryloxycarbonyl-3,7-diazanonane-1,9-diamine	CDAN	Cationic
2-(3-[Bis(3-amino-propyl)-amino]propylamino)-N- ditetradecylcarbamoylme-ethyl-acetamide	RPR209120	Cationic
1,2-dilinoleyoxy-3-dimethylaminopropane	DLinDMA	Cationic
2,2-dilinoleyl-4-dimethylaminoethyl-[1,3]-dioxolane	DLin-KC2- DMA	Cationic
dilinoleyl-methyl-4-dimethylaminobutyrate	DLin-MC3- DMA	Cationic

Table 7 lists exemplary polymers for use in gene transfer and/or nanoparticle formulations.

Table 7

Polymers Used for Gene Transfer	
Polymer	Abbreviation
Poly(ethylene)glycol	PEG
Polyethylenimine	PEI
Dithiobis (succinimidylpropionate)	DSP
Dimethyl-3,3'-dithiobispropionimidate	DTBP
Poly(ethylene imine)biscarbamate	PEIC
Poly(L-lysine)	PLL
Histidine modified PLL	
Poly(N-vinylpyrrolidone)	PVP
Poly(propylenimine)	PPI
Poly(amidoamine)	PAMAM
Poly(amidoethylenimine)	SS-PAEI
Triethylenetetramine	TETA
Poly(β -aminoester)	

Polymers Used for Gene Transfer	
Polymer	Abbreviation
Poly(4-hydroxy-L-proline ester)	PHP
Poly(allylamine)	
Poly(α -[4-aminobutyl]-L-glycolic acid)	PAGA
Poly(D,L-lactic-co-glycolic acid)	PLGA
Poly(N-ethyl-4-vinylpyridinium bromide)	
Poly(phosphazene)s	PPZ
Poly(phosphoester)s	PPE
Poly(phosphoramidate)s	PPA
Poly(N-2-hydroxypropylmethacrylamide)	pHPMA
Poly (2-(dimethylamino)ethyl methacrylate)	pDMAEMA
Poly(2-aminoethyl propylene phosphate)	PPE-EA
Chitosan	
Galactosylated chitosan	
N-Dodacylated chitosan	
Histone	
Collagen	
Dextran-spermine	D-SPM

Table 8 summarizes delivery methods for a polynucleotide encoding a fusion protein described herein.

Table 8

Delivery	Vector/Mode	Delivery into Non-Dividing Cells	Duration of Expression	Genome Integration	Type of Molecule Delivered
Physical	(e.g., electroporation, particle gun, Calcium Phosphate transfection	YES	Transient	NO	Nucleic Acids and Proteins
Viral	Retrovirus	NO	Stable	YES	RNA

Delivery	Vector/Mode	Delivery into			Type of
		Non-Dividing Cells	Duration of Expression	Genome Integration	Molecule Delivered
	Lentivirus	YES	Stable	YES/NO with modification	RNA
	Adenovirus	YES	Transient	NO	DNA
	Adeno- Associated Virus (AAV)	YES	Stable	NO	DNA
	Vaccinia Virus	YES	Very Transient	NO	DNA
	Herpes Simplex Virus	YES	Stable	NO	DNA
Non-Viral	Cationic Liposomes	YES	Transient	Depends on what is delivered	Nucleic Acids and Proteins
	Polymeric Nanoparticles	YES	Transient	Depends on what is delivered	Nucleic Acids and Proteins
Biological	Attenuated	YES	Transient	NO	Nucleic Acids
Non-Viral	Bacteria				
Delivery	Engineered	YES	Transient	NO	Nucleic Acids
Vehicles	Bacteriophages				
	Mammalian Virus-like Particles	YES	Transient	NO	Nucleic Acids
	Biological liposomes: Erythrocyte Ghosts and Exosomes	YES	Transient	NO	Nucleic Acids

In another aspect, the delivery of genome editing system components or nucleic acids encoding such components, for example, a nucleic acid binding protein such as, for example, Cas9 or variants thereof, and a gRNA targeting a genomic nucleic acid sequence of interest, may be accomplished by delivering a ribonucleoprotein (RNP) to cells. The RNP comprises 5 the nucleic acid binding protein, *e.g.*, Cas9, in complex with the targeting gRNA. RNPs may be delivered to cells using known methods, such as electroporation, nucleofection, or cationic lipid-mediated methods, for example, as reported by Zuris, J.A. *et al.*, 2015, *Nat. Biotechnology*, 33(1):73-80. RNPs are advantageous for use in CRISPR base editing systems, particularly for cells that are difficult to transfect, such as primary cells. In addition, 10 RNPs can also alleviate difficulties that may occur with protein expression in cells, especially when eukaryotic promoters, *e.g.*, CMV or EF1A, which may be used in CRISPR plasmids, are not well-expressed. Advantageously, the use of RNPs does not require the delivery of foreign DNA into cells. Moreover, because an RNP comprising a nucleic acid binding protein and gRNA complex is degraded over time, the use of RNPs has the potential to limit 15 off-target effects. In a manner similar to that for plasmid based techniques, RNPs can be used to deliver binding protein (*e.g.*, Cas9 variants) and to direct homology directed repair (HDR).

A promoter used to drive base editor coding nucleic acid molecule expression can include AAV ITR. This can be advantageous for eliminating the need for an additional 20 promoter element, which can take up space in the vector. The additional space freed up can be used to drive the expression of additional elements, such as a guide nucleic acid or a selectable marker. ITR activity is relatively weak, so it can be used to reduce potential toxicity due to over expression of the chosen nuclease.

Any suitable promoter can be used to drive expression of the base editor and, where 25 appropriate, the guide nucleic acid. For ubiquitous expression, promoters that can be used include CMV, CAG, CBh, PGK, SV40, Ferritin heavy or light chains, etc. For brain or other CNS cell expression, suitable promoters can include: SynapsinI for all neurons, CaMKIIalpha for excitatory neurons, GAD67 or GAD65 or VGAT for GABAergic neurons, etc. For liver cell expression, suitable promoters include the Albumin promoter. For lung cell expression, 30 suitable promoters can include SP-B. For endothelial cells, suitable promoters can include ICAM. For hematopoietic cells suitable promoters can include IFNbeta or CD45. For Osteoblasts suitable promoters can include OG-2.

In some embodiments, a base editor of the present disclosure is of small enough size to allow separate promoters to drive expression of the base editor and a compatible guide

nucleic acid within the same nucleic acid molecule. For instance, a vector or viral vector can comprise a first promoter operably linked to a nucleic acid encoding the base editor and a second promoter operably linked to the guide nucleic acid.

5 The promoter used to drive expression of a guide nucleic acid can include: Pol III promoters such as U6 or H1 Use of Pol II promoter and intronic cassettes to express gRNA Adeno Associated Virus (AAV).

Viral Vectors

A base editor described herein can therefore be delivered with viral vectors. In some embodiments, a base editor disclosed herein can be encoded on a nucleic acid that is 10 contained in a viral vector. In some embodiments, one or more components of the base editor system can be encoded on one or more viral vectors. For example, a base editor and guide nucleic acid can be encoded on a single viral vector. In other embodiments, the base editor and guide nucleic acid are encoded on different viral vectors. In either case, the base editor and guide nucleic acid can each be operably linked to a promoter and terminator. The 15 combination of components encoded on a viral vector can be determined by the cargo size constraints of the chosen viral vector.

The use of RNA or DNA viral based systems for the delivery of a base editor takes 20 advantage of highly evolved processes for targeting a virus to specific cells in culture or in the host and trafficking the viral payload to the nucleus or host cell genome. Viral vectors can be administered directly to cells in culture, patients (*in vivo*), or they can be used to treat cells *in vitro*, and the modified cells can optionally be administered to patients (*ex vivo*).

Conventional viral based systems could include retroviral, lentivirus, adenoviral, adeno-associated and herpes simplex virus vectors for gene transfer. Integration in the host genome is possible with the retrovirus, lentivirus, and adeno-associated virus gene transfer methods, 25 often resulting in long term expression of the inserted transgene. Additionally, high transduction efficiencies have been observed in many different cell types and target tissues.

Viral vectors can include lentivirus (e.g., HIV and FIV-based vectors), Adenovirus (e.g., AD100), Retrovirus (e.g., Maloney murine leukemia virus, MML-V), herpesvirus vectors (e.g., HSV-2), and Adeno-associated viruses (AAVs), or other plasmid or viral vector 30 types, in particular, using formulations and doses from, for example, U.S. Patent No. 8,454,972 (formulations, doses for adenovirus), U.S. Patent No. 8,404,658 (formulations, doses for AAV) and U.S. Patent No. 5,846,946 (formulations, doses for DNA plasmids) and from clinical trials and publications regarding the clinical trials involving lentivirus, AAV and adenovirus. For example, for AAV, the route of administration, formulation and dose

can be as in U.S. Patent No. 8,454,972 and as in clinical trials involving AAV. For Adenovirus, the route of administration, formulation and dose can be as in U.S. Patent No. 8,404,658 and as in clinical trials involving adenovirus. For plasmid delivery, the route of administration, formulation and dose can be as in U.S. Patent No. 5,846,946 and as in clinical 5 studies involving plasmids. Doses can be based on or extrapolated to an average 70 kg individual (e.g. a male adult human), and can be adjusted for patients, subjects, mammals of different weight and species. Frequency of administration is within the ambit of the medical or veterinary practitioner (e.g., physician, veterinarian), depending on usual factors including the age, sex, general health, other conditions of the patient or subject and the particular 10 condition or symptoms being addressed. The viral vectors can be injected into the tissue of interest. For cell-type specific base editing, the expression of the base editor and optional guide nucleic acid can be driven by a cell-type specific promoter.

The tropism of a retrovirus can be altered by incorporating foreign envelope proteins, expanding the potential target population of target cells. Lentiviral vectors are retroviral 15 vectors that are able to transduce or infect non-dividing cells and typically produce high viral titers. Selection of a retroviral gene transfer system would therefore depend on the target tissue. Retroviral vectors are comprised of cis-acting long terminal repeats with packaging capacity for up to 6-10 kb of foreign sequence. The minimum cis-acting LTRs are sufficient for replication and packaging of the vectors, which are then used to integrate the therapeutic 20 gene into the target cell to provide permanent transgene expression. Widely used retroviral vectors include those based upon murine leukemia virus (MuLV), gibbon ape leukemia virus (GaLV), Simian Immuno deficiency virus (SIV), human immuno deficiency virus (HIV), and combinations thereof (See, e.g., Buchscher *et al.*, J. Virol. 66:2731-2739 (1992); Johann *et al.*, J. Virol. 66:1635-1640 (1992); Sommnerfelt *et al.*, Virol. 176:58-59 (1990); Wilson *et al.*, 25 J. Virol. 63:2374-2378 (1989); Miller *et al.*, J. Virol. 65:2220-2224 (1991); PCT/US94/05700).

Retroviral vectors, especially lentiviral vectors, can require polynucleotide sequences smaller than a given length for efficient integration into a target cell. For example, retroviral 30 vectors of length greater than 9 kb can result in low viral titers compared with those of smaller size. In some embodiments, a base editor of the present disclosure is of sufficient size so as to enable efficient packaging and delivery into a target cell via a retroviral vector. In some embodiments, a base editor is of a size so as to allow efficient packing and delivery even when expressed together with a guide nucleic acid and/or other components of a targetable nuclease system.

In applications where transient expression is preferred, adenoviral based systems can be used. Adenoviral based vectors are capable of very high transduction efficiency in many cell types and do not require cell division. With such vectors, high titer and levels of expression have been obtained. This vector can be produced in large quantities in a relatively 5 simple system. Adeno-associated virus (“AAV”) vectors can also be used to transduce cells with target nucleic acids, *e.g.*, in the *in vitro* production of nucleic acids and peptides, and for *in vivo* and *ex vivo* gene therapy procedures (*See, e.g.*, West *et al.*, *Virology* 160:38-47 (1987); U.S. Patent No. 4,797,368; WO 93/24641; Kotin, *Human Gene Therapy* 5:793-801 (1994); Muzyczka, *J. Clin. Invest.* 94:1351 (1994). The construction of recombinant AAV 10 vectors is described in a number of publications, including U.S. Patent No. 5,173,414; Tratschin *et al.*, *Mol. Cell. Biol.* 5:3251-3260 (1985); Tratschin, *et al.*, *Mol. Cell. Biol.* 4:2072-2081 (1984); Hermonat & Muzyczka, *PNAS* 81:6466-6470 (1984); and Samulski *et al.*, *J. Virol.* 63:03822-3828 (1989).

AAV is a small, single-stranded DNA dependent virus belonging to the parvovirus 15 family. The 4.7 kb wild-type (wt) AAV genome is made up of two genes that encode four replication proteins and three capsid proteins, respectively, and is flanked on either side by 145-bp inverted terminal repeats (ITRs). The virion is composed of three capsid proteins, Vp1, Vp2, and Vp3, produced in a 1:1:10 ratio from the same open reading frame but from 20 differential splicing (Vp1) and alternative translational start sites (Vp2 and Vp3, respectively). Vp3 is the most abundant subunit in the virion and participates in receptor recognition at the cell surface defining the tropism of the virus. A phospholipase domain, which functions in viral infectivity, has been identified in the unique N terminus of Vp1.

Similar to wt AAV, recombinant AAV (rAAV) utilizes the *cis*-acting 145-bp ITRs to flank vector transgene cassettes, providing up to 4.5 kb for packaging of foreign DNA. 25 Subsequent to infection, rAAV can express a fusion protein of the invention and persist without integration into the host genome by existing episomally in circular head-to-tail concatemers. Although there are numerous examples of rAAV success using this system, *in vitro* and *in vivo*, the limited packaging capacity has limited the use of AAV-mediated gene delivery when the length of the coding sequence of the gene is equal or greater in size than 30 the wt AAV genome.

Viral vectors can be selected based on the application. For example, for *in vivo* gene delivery, AAV can be advantageous over other viral vectors. In some embodiments, AAV allows low toxicity, which can be due to the purification method not requiring ultra-centrifugation of cell particles that can activate the immune response. In some embodiments,

AAV allows low probability of causing insertional mutagenesis because it doesn't integrate into the host genome. Adenoviruses are commonly used as vaccines because of the strong immunogenic response they induce. Packaging capacity of the viral vectors can limit the size of the base editor that can be packaged into the vector.

5 AAV has a packaging capacity of about 4.5 Kb or 4.75 Kb including two 145 base inverted terminal repeats (ITRs). This means disclosed base editor as well as a promoter and transcription terminator can fit into a single viral vector. Constructs larger than 4.5 or 4.75 Kb can lead to significantly reduced virus production. For example, SpCas9 is quite large, the gene itself is over 4.1 Kb, which makes it difficult for packing into AAV. Therefore, 10 embodiments of the present disclosure include utilizing a disclosed base editor which is shorter in length than conventional base editors. In some examples, the base editors are less than 4 kb. Disclosed base editors can be less than 4.5 kb, 4.4 kb, 4.3 kb, 4.2 kb, 4.1 kb, 4 kb, 3.9 kb, 3.8 kb, 3.7 kb, 3.6 kb, 3.5 kb, 3.4 kb, 3.3 kb, 3.2 kb, 3.1 kb, 3 kb, 2.9 kb, 2.8 kb, 2.7 kb, 2.6 kb, 2.5 kb, 2 kb, or 1.5 kb. In some embodiments, the disclosed base editors are 4.5 kb or less in length.

15 An AAV can be AAV1, AAV2, AAV5 or any combination thereof. One can select the type of AAV with regard to the cells to be targeted; *e.g.*, one can select AAV serotypes 1, 2, 5 or a hybrid capsid AAV1, AAV2, AAV5 or any combination thereof for targeting brain or neuronal cells; and one can select AAV4 for targeting cardiac tissue. AAV8 is useful for 20 delivery to the liver. A tabulation of certain AAV serotypes as to these cells can be found in Grimm, D. *et al*, J. Virol. 82: 5887-5911 (2008)).

25 Lentiviruses are complex retroviruses that have the ability to infect and express their genes in both mitotic and post-mitotic cells. The most commonly known lentivirus is the human immunodeficiency virus (HIV), which uses the envelope glycoproteins of other viruses to target a broad range of cell types.

Lentiviruses can be prepared as follows. After cloning pCasES10 (which contains a lentiviral transfer plasmid backbone), HEK293FT at low passage (p=5) were seeded in a T-75 flask to 50% confluence the day before transfection in DMEM with 10% fetal bovine serum and without antibiotics. After 20 hours, media is changed to OptiMEM (serum-free) media 30 and transfection was done 4 hours later. Cells are transfected with 10 μ g of lentiviral transfer plasmid (pCasES10) and the following packaging plasmids: 5 μ g of pMD2.G (VSV-g pseudotype), and 7.5 μ g of psPAX2 (gag/pol/rev/tat). Transfection can be done in 4 mL OptiMEM with a cationic lipid delivery agent (50 μ l Lipofectamine 2000 and 100 μ l Plus reagent). After 6 hours, the media is changed to antibiotic-free DMEM with 10% fetal

bovine serum. These methods use serum during cell culture, but serum-free methods are preferred.

Lentivirus can be purified as follows. Viral supernatants are harvested after 48 hours. Supernatants are first cleared of debris and filtered through a 0.45 μ m low protein binding (PVDF) filter. They are then spun in an ultracentrifuge for 2 hours at 24,000 rpm. Viral pellets are resuspended in 50 μ l of DMEM overnight at 4° C. They are then aliquoted and immediately frozen at -80° C.

In another embodiment, minimal non-primate lentiviral vectors based on the equine infectious anemia virus (EIAV) are also contemplated. In another embodiment,

10 RetinoStat.RTM., an equine infectious anemia virus-based lentiviral gene therapy vector that expresses angiostatic proteins endostatin and angiostatin that is contemplated to be delivered via a subretinal injection. In another embodiment, use of self-inactivating lentiviral vectors are contemplated.

Any RNA of the systems, for example a guide RNA or a base editor-encoding 15 mRNA, can be delivered in the form of RNA. Base editor-encoding mRNA can be generated using *in vitro* transcription. For example, nuclease mRNA can be synthesized using a PCR cassette containing the following elements: T7 promoter, optional kozak sequence (GCCACC), nuclease sequence, and 3' UTR such as a 3' UTR from beta globin-polyA tail. The cassette can be used for transcription by T7 polymerase. Guide polynucleotides (e.g., 20 gRNA) can also be transcribed using *in vitro* transcription from a cassette containing a T7 promoter, followed by the sequence "GG", and guide polynucleotide sequence.

To enhance expression and reduce possible toxicity, the base editor-coding sequence and/or the guide nucleic acid can be modified to include one or more modified nucleoside e.g. using pseudo-U or 5-Methyl-C.

25 The small packaging capacity of AAV vectors makes the delivery of a number of genes that exceed this size and/or the use of large physiological regulatory elements challenging. These challenges can be addressed, for example, by dividing the protein(s) to be delivered into two or more fragments, wherein the N-terminal fragment is fused to a split intein-N and the C-terminal fragment is fused to a split intein-C. These fragments are then 30 packaged into two or more AAV vectors. In one embodiment, inteins are utilized to join fragments or portions of a multi-effector base editor protein that is grafted onto an AAV capsid protein. As used herein, "intein" refers to a self-splicing protein intron (e.g., peptide) that ligates flanking N-terminal and C-terminal exteins (e.g., fragments to be joined). The use of certain inteins for joining heterologous protein fragments is described, for example, in

Wood *et al.*, J. Biol. Chem. 289(21); 14512-9 (2014). For example, when fused to separate protein fragments, the inteins IntN and IntC recognize each other, splice themselves out and simultaneously ligate the flanking N- and C-terminal exteins of the protein fragments to which they were fused, thereby reconstituting a full-length protein from the two protein
5 fragments. Other suitable inteins will be apparent to a person of skill in the art.

A fragment of a fusion protein of the invention can vary in length. In some embodiments, a protein fragment ranges from 2 amino acids to about 1000 amino acids in length. In some embodiments, a protein fragment ranges from about 5 amino acids to about 500 amino acids in length. In some embodiments, a protein fragment ranges from about 20 10 amino acids to about 200 amino acids in length. In some embodiments, a protein fragment ranges from about 10 amino acids to about 100 amino acids in length. Suitable protein fragments of other lengths will be apparent to a person of skill in the art.

In one embodiment, dual AAV vectors are generated by splitting a large transgene expression cassette in two separate halves (5' and 3' ends, or head and tail), where each half 15 of the cassette is packaged in a single AAV vector (of <5 kb). The re-assembly of the full-length transgene expression cassette is then achieved upon co-infection of the same cell by both dual AAV vectors followed by: (1) homologous recombination (HR) between 5' and 3' genomes (dual AAV overlapping vectors); (2) ITR-mediated tail-to-head concatemerization of 5' and 3' genomes (dual AAV *trans*-splicing vectors); or (3) a combination of these two 20 mechanisms (dual AAV hybrid vectors). The use of dual AAV vectors *in vivo* results in the expression of full-length proteins. The use of the dual AAV vector platform represents an efficient and viable gene transfer strategy for transgenes of >4.7 kb in size.

Inteins

In some embodiments, a portion or fragment of a nuclease (*e.g.*, Cas9) is fused to an 25 intein. The nuclease can be fused to the N-terminus or the C-terminus of the intein. In some embodiments, a portion or fragment of a fusion protein is fused to an intein and fused to an AAV capsid protein. The intein, nuclease and capsid protein can be fused together in any arrangement (*e.g.*, nuclease-intein-capsid, intein-nuclease-capsid, capsid-intein-nuclease, etc.). In some embodiments, the N-terminus of an intein is fused to the C-terminus of a fusion 30 protein and the C-terminus of the intein is fused to the N-terminus of an AAV capsid protein.

Inteins (intervening protein) are auto-processing domains found in a variety of diverse organisms, which carry out a process known as protein splicing. Protein splicing is a multi-step biochemical reaction comprised of both the cleavage and formation of peptide

bonds. While the endogenous substrates of protein splicing are proteins found in intein-containing organisms, inteins can also be used to chemically manipulate virtually any polypeptide backbone.

In protein splicing, the intein excises itself out of a precursor polypeptide by 5 cleaving two peptide bonds, thereby ligating the flanking extein (external protein) sequences via the formation of a new peptide bond. This rearrangement occurs post-translationally (or possibly co-translationally). Intein-mediated protein splicing occurs spontaneously, requiring only the folding of the intein domain.

About 5% of inteins are split inteins, which are transcribed and translated as two 10 separate polypeptides, the N-intein and C-intein, each fused to one extein. Upon translation, the intein fragments spontaneously and non-covalently assemble into the canonical intein structure to carry out protein splicing in trans. The mechanism of protein splicing entails a series of acyl-transfer reactions that result in the cleavage of two peptide bonds at the intein-extein junctions and the formation of a new peptide bond between the N- and C-exteins. This 15 process is initiated by activation of the peptide bond joining the N-extein and the N-terminus of the intein. Virtually all inteins have a cysteine or serine at their N-terminus that attacks the carbonyl carbon of the C-terminal N-extein residue. This N to O/S acyl-shift is facilitated by a conserved threonine and histidine (referred to as the TXXH motif), along with a commonly found aspartate, which results in the formation of a linear (thio)ester intermediate. Next, this 20 intermediate is subject to trans-(thio)esterification by nucleophilic attack of the first C-extein residue (+1), which is a cysteine, serine, or threonine. The resulting branched (thio)ester intermediate is resolved through a unique transformation: cyclization of the highly conserved C-terminal asparagine of the intein. This process is facilitated by the histidine (found in a highly conserved HNF motif) and the penultimate histidine and may also involve the 25 aspartate. This succinimide formation reaction excises the intein from the reactive complex and leaves behind the exteins attached through a non-peptidic linkage. This structure rapidly rearranges into a stable peptide bond in an intein-independent fashion.

In some embodiments, an N-terminal fragment of a base editor (e.g., ABE, CBE) is fused to a split intein-N and a C-terminal fragment is fused to a split intein-C. These 30 fragments are then packaged into two or more AAV vectors. The use of certain inteins for joining heterologous protein fragments is described, for example, in Wood *et al.*, *J. Biol. Chem.* 289(21); 14512-9 (2014). For example, when fused to separate protein fragments, the inteins IntN and IntC recognize each other, splice themselves out and simultaneously ligate the flanking N- and C-terminal exteins of the protein fragments to which they were fused,

thereby reconstituting a full-length protein from the two protein fragments. Other suitable inteins will be apparent to a person of skill in the art.

In some embodiments, an ABE was split into N- and C-terminal fragments at Ala, Ser, Thr, or Cys residues within selected regions of SpCas9. These regions correspond to 5 loop regions identified by Cas9 crystal structure analysis. The N-terminus of each fragment is fused to an intein-N and the C-terminus of each fragment is fused to an intein C at amino acid positions S303, T310, T313, S355, A456, S460, A463, T466, S469, T472, T474, C574, S577, A589, and S590, which are indicated in Bold Capitals in the sequence below.

1 mdkkysigld igtntsvgwaw itdeykvpsk kfklglntdr hsikknliga llfdsgetae
10 61 atrlkrtarr rytrrknric ylqeifsnem akvddsfhr leesflveed kkherhpifg
121 nivdevayhe kyptiyhlrk kldstdkad lrliylalah mikfrghfli egdlnpdnsd
181 vdklfifqlvq tynqlfeenp inasgvdaka ilsarlsksr rlenliaqlp gekknglfgn
241 lialslgltp nfksnfldlae dakkqlskdt ydddldnlla qigdqyadlf laaknlsdai
301 ll**S**dilrvn**T** eiTkapsas mikrydehhq dltilkalvr qqlpekykei ffdq**S**kngya
15 361 gyidggasqe efykfikpil ekmdgteell vklnredllr kqrtfdngsi phqihlgelh
421 ailrrqedfy pflkdnreki ekiltfripy yvgpl**A**rgn**S** rfAwm**T**rk**S**e e**T**iTpwnfee
481 vvdkgasaqs fiermtnfdk nlpnekvlpk hsllseyftv yneltkvkyv tegmrkpaf
541 sgeqkkaivd llfktnrkvt vkqlkedyfk kie**C**fd**S**vei sgvedrfn**AS** lgtyhdllki
601 ikdkdfldne enedilediv ltltlfedre mieerlktya hlfddkvmkq lkrrrytgwg
20 661 rlsrklingi rdkqsgktl dflksdgsfan rnmfqlihdd sltfkediqk aqvsgqgdsl
721 hehianlags paikkgilqt vkvvdelvkv mgrhkpeniv iemarenqtt qkgqknsrer
781 mkrieeigke lgsqilkehp ventqlqnek llyyylqngr dmyvdqeldi nrlsdydvdh
841 ivpqsfkdd sidnkvltrs dknrgksdnv pseevvkkmk nywrqllnak litqrkfdnl
901 tkaergglse ldkagfikrq lvetrqitkh vaqildsrmn tkydendkli revkvitlks
25 961 klvsdfrkdf qfykvreinn yhhahdayln avvgtalikk ypklesefvy gdykvdyvdk
1021 miakseqeig katakyffys nimnffktei tlangairkr plietngetg eivwdkgrdf
1081 atvrkvlsmmp qvnivkktev qtggfskesi lpkrnsdkli arkkdwdpkk yggfdsptva
1141 ysvlvvakve kgkskkllksv kellgitime rssfeknqid fleakgykev kkdliiklpk
1201 yslfelengr krmlasagel qkgnelalps kyvnflylas hyeklkgspe dneqkqlfve
30 1261 qhkhydeii eqisefskrv iladanldkv lsaynkhrdk pireqaenii hlftltnlga
1321 paafkyfdtt idrkrytstk evldatlihq sitglyetri dlsqlggd

Use of Nucleobase Editors to Target Mutations

The suitability of nucleobase editors or multi-effector nucleobase editors that target one or more mutations is evaluated as described herein. In one embodiment, a single cell of interest is transduced with a base editing system together with a small amount of a vector 5 encoding a reporter (e.g., GFP). These cells can be any cell line known in the art, including immortalized human cell lines, such as 293T, K562 or U2OS. Alternatively, primary cells (e.g., human) may be used. Such cells may be relevant to the eventual cell target.

Delivery may be performed using a viral vector. In one embodiment, transfection may be performed using lipid transfection (such as Lipofectamine or Fugene) or by 10 electroporation. Following transfection, expression of GFP can be determined either by fluorescence microscopy or by flow cytometry to confirm consistent and high levels of transfection. These preliminary transfections can comprise different nucleobase editors to determine which combinations of editors give the greatest activity.

The activity of the nucleobase editor is assessed as described herein, *i.e.*, by 15 sequencing the genome of the cells to detect alterations in a target sequence. For Sanger sequencing, purified PCR amplicons are cloned into a plasmid backbone, transformed, miniprepped and sequenced with a single primer. Sequencing may also be performed using next generation sequencing techniques. When using next generation sequencing, amplicons may be 300-500 bp with the intended cut site placed asymmetrically. Following PCR, next 20 generation sequencing adapters and barcodes (for example Illumina multiplex adapters and indexes) may be added to the ends of the amplicon, *e.g.*, for use in high throughput sequencing (for example on an Illumina MiSeq).

The fusion proteins that induce the greatest levels of target specific alterations in initial tests can be selected for further evaluation.

25 In particular embodiments, the nucleobase editors or multi-effector base editors are used to target polynucleotides of interest. In one embodiment, a nucleobase editor or multi-effector base editor of the invention is delivered to cells (*e.g.*, hematopoietic cells or their progenitors, hematopoietic stem cells, and/or induced pluripotent stem cells) in conjunction with a guide RNA that is used to target a mutation of interest within the genome of a cell, 30 thereby altering the mutation. In some embodiments, a base editor is targeted by a guide RNA to introduce one or more edits to the sequence of a gene of interest.

In one embodiment, a nucleobase editor or multi-effector nucleobase editor is used to target a regulatory sequence, including but not limited to splice sites, enhancers, and

transcriptional regulatory elements. The effect of the alteration on the expression of a gene controlled by the regulatory element is then assayed using any method known in the art.

In other embodiments, a nucleobase editor or multi-effector nucleobase editor of the invention is used to target a polynucleotide encoding a Complementarity Determining Region (CDR), thereby creating alterations in the expressed CDR. The effect of these alterations on CDR function is then assayed, for example, by measuring the specific binding of the CDR to its antigen.

In still other embodiments, a multi-effector nucleobase editor of the invention is used to target polynucleotides of interest within the genome of an organism. In one embodiment, a multi-effector nucleobase editor of the invention is delivered to cells in conjunction with a library of guide RNAs that are used to tile a variety of sequences within the genome of a cell, thereby systematically altering sequences throughout the genome.

The system can comprise one or more different vectors. In an aspect, the base editor is codon optimized for expression in the desired cell type, preferentially a eukaryotic cell, preferably a mammalian cell or a human cell.

In general, codon optimization refers to a process of modifying a nucleic acid sequence for enhanced expression in the host cells of interest by replacing at least one codon (e.g. about 1, 2, 3, 4, 5, 10, 15, 20, 25, 50, or more codons) of the native sequence with codons that are more frequently or most frequently used in the genes of that host cell while maintaining the native amino acid sequence. Various species exhibit particular bias for certain codons of a particular amino acid. Codon bias (differences in codon usage between organisms) often correlates with the efficiency of translation of messenger RNA (mRNA), which is in turn believed to be dependent on, among other things, the properties of the codons being translated and the availability of particular transfer RNA (tRNA) molecules. The predominance of selected tRNAs in a cell is generally a reflection of the codons used most frequently in peptide synthesis. Accordingly, genes can be tailored for optimal gene expression in a given organism based on codon optimization. Codon usage tables are readily available, for example, at the "Codon Usage Database" available at www.kazusa.or.jp/codon/ (visited Jul. 9, 2002), and these tables can be adapted in a number of ways. See, Nakamura, Y., *et al.* "Codon usage tabulated from the international DNA sequence databases: status for the year 2000" *Nucl. Acids Res.* 28:292 (2000). Computer algorithms for codon optimizing a particular sequence for expression in a particular host cell are also available, such as Gene Forge (Aptagen; Jacobus, Pa.), are also available. In some embodiments, one or more codons (e.g. 1, 2, 3, 4, 5, 10, 15, 20, 25, 50, or more, or all

codons) in a sequence encoding an engineered nuclease correspond to the most frequently used codon for a particular amino acid.

Packaging cells are typically used to form virus particles that are capable of infecting a host cell. Such cells include 293 cells, which package adenovirus, and psi.2 cells or PA317 cells, which package retrovirus. Viral vectors used in gene therapy are usually generated by producing a cell line that packages a nucleic acid vector into a viral particle. The vectors typically contain the minimal viral sequences required for packaging and subsequent integration into a host, other viral sequences being replaced by an expression cassette for the polynucleotide(s) to be expressed. The missing viral functions are typically supplied in trans by the packaging cell line. For example, AAV vectors used in gene therapy typically only possess ITR sequences from the AAV genome which are required for packaging and integration into the host genome. Viral DNA can be packaged in a cell line, which contains a helper plasmid encoding the other AAV genes, namely rep and cap, but lacking ITR sequences. The cell line can also be infected with adenovirus as a helper. The helper virus can promote replication of the AAV vector and expression of AAV genes from the helper plasmid. The helper plasmid in some cases is not packaged in significant amounts due to a lack of ITR sequences. Contamination with adenovirus can be reduced by, *e.g.*, heat treatment to which adenovirus is more sensitive than AAV.

Applications for Multi-Effector Nucleobase Editors

The multi-effector nucleobase editors can be used to target polynucleotides of interest to create alterations that modify protein expression. In one embodiment, a multi-effector nucleobase editor is used to modify a non-coding or regulatory sequence, including but not limited to splice sites, enhancers, and transcriptional regulatory elements. The effect of the alteration on the expression of a gene controlled by the regulatory element is then assayed using any method known in the art. In a particular embodiment, a multi-effector nucleobase editor is able to substantially alter a regulatory sequence, thereby abolishing its ability to regulate gene expression. Advantageously, this can be done without generating double-stranded breaks in the genomic target sequence, in contrast to other RNA-programmable nucleases.

The multi-effector nucleobase editors can be used to target polynucleotides of interest to create alterations that modify protein activity. In the context of mutagenesis, for example, multi-effector nucleobase editors have a number of advantages over error-prone PCR and other polymerase-based methods. Because multi-effector nucleobase editors of the invention

create alterations at multiple bases in a target region, such mutations are more likely to be expressed at the protein level relative to mutations introduced by error-prone PCR, which are less likely to be expressed at the protein level given that a single nucleotide change in a codon may still encode the same amino acid (e.g., codon degeneracy). Unlike error-prone

- 5 PCR, which induces random alterations throughout a polynucleotide, multi-effector nucleobase editors of the invention can be used to target specific amino acids within a small or defined region of a protein of interest.

In other embodiments, a multi-effector nucleobase editor of the invention is used to target a polynucleotide of interest within the genome of an organism. In one embodiment,

- 10 the organism is a bacteria of the microbiome (e.g., *Bacteriodes*, *Verrucomicrobia*, *Firmicutes*; *Gammaproteobacteria*, *Alphaproteobacteria*, *Bacteriodes*, *Clostridia*, *Erysipelotrichia*, *Bacilli*; *Enterobacteriales*, *Bacteriodales*, *Verrucomicrobiales*, *Clostridiales*, *Erysipelotrichales*, *Lactobacillales*; *Enterobacteriaceae*, *Bacteroidaceae*, *Erysipelotrichaceae*, *Prevotellaceae*, *Coriobacteriaceae*, and *Alcaligenaceae*, *Escherichia*, *Bacteroides*, *Alistipes*, *Akkermansia*, *Clostridium*, *Lactobacillus*). In another embodiment, 15 the organism is an agriculturally important animal (e.g., cow, sheep, goat, horse, chicken, turkey) or plant (e.g., soybeans, wheat, corn, rice, tobacco, apples, grapes, peaches, plums, cherries). In one embodiment, a multi-effector nucleobase editor of the invention is delivered to cells in conjunction with a library of guide RNAs that are used to tile a variety of 20 sequences within the genome of a cell, thereby systematically altering sequences throughout the genome.

Mutations may be made in any of a variety of proteins to facilitate structure function analysis or to alter the endogenous activity of the protein. Mutations may be made, for example, in an enzyme (e.g., kinase, phosphatase, carboxylase, phosphodiesterase) or in an

- 25 enzyme substrate, in a receptor or in its ligand, and in an antibody and its antigen. In one embodiment, a multi-effector nucleobase editor targets a nucleic acid molecule encoding the active site of the enzyme, the ligand binding site of a receptor, or a complementarity determining region (CDR) of an antibody. In the case of an enzyme, inducing mutations in the active site could increase, decrease, or abolish the enzyme's activity. The effect of 30 mutations on the enzyme is characterized in an enzyme activity assay, including any of a number of assays known in the art and/or that would be apparent to the skilled artisan. In the case of a receptor, mutations made at the ligand binding site could increase, decrease or abolish the receptors affinity for its ligand. The effect of such mutations is assayed in a receptor/ligand binding assay, including any of a number of assays known in the art and/or

that would be apparent to the skilled artisan. In the case of a CDR, mutations made within the CDR could increase, decrease or abolish binding to the antigen. Alternatively, mutations made within the CDR could alter the specificity of the antibody for the antigen. The effect of these alterations on CDR function is then assayed, for example, by measuring the specific 5 binding of the CDR to its antigen or in any other type of immunoassay.

Pharmaceutical Compositions

Other aspects of the present disclosure relate to pharmaceutical compositions comprising any of the base editors, fusion proteins, or the fusion protein-guide polynucleotide complexes described herein. In some embodiments, the pharmaceutical composition further 10 comprises a pharmaceutically acceptable carrier. In some embodiments, the pharmaceutical composition comprises additional agents (e.g., for specific delivery, increasing half-life, or other therapeutic compounds).

Suitable pharmaceutically acceptable carriers generally comprise inert substances that aid in administering the pharmaceutical composition to a subject, aid in processing the 15 pharmaceutical compositions into deliverable preparations, or aid in storing the pharmaceutical composition prior to administration. Pharmaceutically acceptable carriers can include agents that can stabilize, optimize or otherwise alter the form, consistency, viscosity, pH, pharmacokinetics, solubility of the formulation.

Some nonlimiting examples of materials which can serve as pharmaceutically-
20 acceptable carriers include: (1) sugars, such as lactose, glucose and sucrose; (2) starches, such as corn starch and potato starch; (3) cellulose, and its derivatives, such as sodium carboxymethyl cellulose, methylcellulose, ethyl cellulose, microcrystalline cellulose and cellulose acetate; (4) powdered tragacanth; (5) malt; (6) gelatin; (7) lubricating agents, such as magnesium stearate, sodium lauryl sulfate and talc; (8) excipients, such as cocoa butter and 25 suppository waxes; (9) oils, such as peanut oil, cottonseed oil, safflower oil, sesame oil, olive oil, corn oil and soybean oil; (10) glycols, such as propylene glycol; (11) polyols, such as glycerin, sorbitol, mannitol and polyethylene glycol (PEG); (12) esters, such as ethyl oleate and ethyl laurate; (13) agar; (14) buffering agents, such as magnesium hydroxide and aluminum hydroxide; (15) alginic acid; (16) pyrogen-free water; (17) isotonic saline; (18) 30 Ringer's solution; (19) ethyl alcohol; (20) pH buffered solutions; (21) polyesters, polycarbonates and/or polyanhydrides; (22) bulking agents, such as polypeptides and amino acids (23) serum alcohols, such as ethanol; and (23) other non-toxic compatible substances employed in pharmaceutical formulations. Buffering agents, wetting agents, emulsifying

agents, diluents, encapsulating agents, skin penetration enhancers, coloring agents, release agents, coating agents, sweetening agents, flavoring agents, perfuming agents, preservative and antioxidants can also be present in the formulation. For example, carriers can include, but are not limited to, saline, buffered saline, dextrose, arginine, sucrose, water, glycerol, 5 ethanol, sorbitol, dextran, sodium carboxymethyl cellulose, and combinations thereof.

Pharmaceutical compositions can comprise one or more pH buffering compounds to maintain the pH of the formulation at a predetermined level that reflects physiological pH, such as in the range of about 5.0 to about 8.0. The pH buffering compound used in the aqueous liquid formulation can be an amino acid or mixture of amino acids, such as histidine 10 or a mixture of amino acids such as histidine and glycine. Alternatively, the pH buffering compound is preferably an agent which maintains the pH of the formulation at a predetermined level, such as in the range of about 5.0 to about 8.0, and which does not chelate calcium ions. Illustrative examples of such pH buffering compounds include, but are not limited to, imidazole and acetate ions. The pH buffering compound may be present in 15 any amount suitable to maintain the pH of the formulation at a predetermined level.

Pharmaceutical compositions can also contain one or more osmotic modulating agents, *i.e.*, a compound that modulates the osmotic properties (*e.g.*, tonicity, osmolality, and/or osmotic pressure) of the formulation to a level that is acceptable to the blood stream and blood cells of recipient individuals. The osmotic modulating agent can be an agent that 20 does not chelate calcium ions. The osmotic modulating agent can be any compound known or available to those skilled in the art that modulates the osmotic properties of the formulation. One skilled in the art may empirically determine the suitability of a given osmotic modulating agent for use in the inventive formulation. Illustrative examples of suitable types of osmotic modulating agents include, but are not limited to: salts, such as 25 sodium chloride and sodium acetate; sugars, such as sucrose, dextrose, and mannitol; amino acids, such as glycine; and mixtures of one or more of these agents and/or types of agents. The osmotic modulating agent(s) may be present in any concentration sufficient to modulate the osmotic properties of the formulation.

In some embodiments, the pharmaceutical composition is formulated for delivery to a 30 subject, *e.g.*, for gene editing. In some embodiments, administration of the pharmaceutical compositions contemplated herein may be carried out using conventional techniques including, but not limited to, infusion, transfusion, or parenterally. In some embodiments, parenteral administration includes infusing or injecting intravascularly, intravenously, intramuscularly, intraarterially, intrathecally, intratumorally, intradermally, intraperitoneally,

transtracheally, subcutaneously, subcuticularly, intraarticularly, subcapsularly, subarachnoidly and intrasternally. In some embodiments, suitable routes of administrating the pharmaceutical composition described herein include, without limitation: topical, subcutaneous, transdermal, intradermal, intralesional, intraarticular, intraperitoneal, 5 intravesical, transmucosal, gingival, intradental, intracochlear, transtympanic, intraorgan, epidural, intrathecal, intramuscular, intravenous, intravascular, intraosseus, periocular, intratumoral, intracerebral, and intracerebroventricular administration.

In some embodiments, the pharmaceutical composition described herein is administered locally to a diseased site (e.g., tumor site). In some embodiments, the pharmaceutical 10 composition described herein is administered to a subject by injection, by means of a catheter, by means of a suppository, or by means of an implant, the implant being of a porous, non-porous, or gelatinous material, including a membrane, such as a sialastic membrane, or a fiber.

In other embodiments, the pharmaceutical composition described herein is delivered in 15 a controlled release system. In one embodiment, a pump can be used (see, e.g., Langer, 1990, Science 249: 1527-1533; Sefton, 1989, CRC Crit. Ref. Biomed. Eng. 14:201; Buchwald *et al.*, 1980, Surgery 88:507; Saudek *et al.*, 1989, N. Engl. J. Med. 321:574). In another embodiment, polymeric materials can be used. (See, e.g., Medical Applications of Controlled Release (Langer and Wise eds., CRC Press, Boca Raton, Fla., 1974); Controlled Drug 20 Bioavailability, Drug Product Design and Performance (Smolen and Ball eds., Wiley, New York, 1984); Ranger and Peppas, 1983, Macromol. Sci. Rev. Macromol. Chem. 23:61. See also Levy *et al.*, 1985, Science 228: 190; During *et al.*, 1989, Ann. Neurol. 25:351; Howard et ah, 1989, J. Neurosurg. 71: 105.) Other controlled release systems are discussed, for example, in Langer, *supra*.

25 In some embodiments, the pharmaceutical composition is formulated in accordance with routine procedures as a composition adapted for intravenous or subcutaneous administration to a subject, e.g., a human. In some embodiments, pharmaceutical composition for administration by injection are solutions in sterile isotonic use as solubilizing agent and a local anesthetic such as lignocaine to ease pain at the site of the injection. 30 Generally, the ingredients are supplied either separately or mixed together in unit dosage form, for example, as a dry lyophilized powder or water free concentrate in a hermetically sealed container such as an ampoule or sachette indicating the quantity of active agent. Where the pharmaceutical is to be administered by infusion, it can be dispensed with an infusion bottle containing sterile pharmaceutical grade water or saline. Where the

pharmaceutical composition is administered by injection, an ampoule of sterile water for injection or saline can be provided so that the ingredients can be mixed prior to administration.

A pharmaceutical composition for systemic administration can be a liquid, *e.g.*, sterile saline, lactated Ringer's or Hank's solution. In addition, the pharmaceutical composition can be in solid forms and re-dissolved or suspended immediately prior to use. Lyophilized forms are also contemplated. The pharmaceutical composition can be contained within a lipid particle or vesicle, such as a liposome or microcrystal, which is also suitable for parenteral administration. The particles can be of any suitable structure, such as unilamellar or plurilamellar, so long as compositions are contained therein. Compounds can be entrapped in "stabilized plasmid-lipid particles" (SPLP) containing the fusogenic lipid dioleoylphosphatidylethanolamine (DOPE), low levels (5-10 mol%) of cationic lipid, and stabilized by a polyethyleneglycol (PEG) coating (Zhang Y. P. et al., Gene Ther. 1999, 6: 1438-47). Positively charged lipids such as N-[1-(2,3-dioleyloxy)propyl]-N,N,N-trimethylammoniummethylsulfate, or "DOTAP," are particularly preferred for such particles and vesicles. The preparation of such lipid particles is well known. See, *e.g.*, U.S. Patent Nos. 4,880,635; 4,906,477; 4,911,928; 4,917,951; 4,920,016; and 4,921,757; each of which is incorporated herein by reference.

The pharmaceutical composition described herein can be administered or packaged as a unit dose, for example. The term "unit dose" when used in reference to a pharmaceutical composition of the present disclosure refers to physically discrete units suitable as unitary dosage for the subject, each unit containing a predetermined quantity of active material calculated to produce the desired therapeutic effect in association with the required diluent; *i.e.*, carrier, or vehicle.

Further, the pharmaceutical composition can be provided as a pharmaceutical kit comprising (a) a container containing a compound of the invention in lyophilized form and (b) a second container containing a pharmaceutically acceptable diluent (*e.g.*, sterile used for reconstitution or dilution of the lyophilized compound of the invention. Optionally associated with such container(s) can be a notice in the form prescribed by a governmental agency regulating the manufacture, use or sale of pharmaceuticals or biological products, which notice reflects approval by the agency of manufacture, use or sale for human administration.

In another aspect, an article of manufacture containing materials useful for the treatment of the diseases described above is included. In some embodiments, the article of manufacture

comprises a container and a label. Suitable containers include, for example, bottles, vials, syringes, and test tubes. The containers can be formed from a variety of materials such as glass or plastic. In some embodiments, the container holds a composition that is effective for treating a disease described herein and can have a sterile access port. For example, the
5 container can be an intravenous solution bag or a vial having a stopper pierceable by a hypodermic injection needle. The active agent in the composition is a compound of the invention. In some embodiments, the label on or associated with the container indicates that the composition is used for treating the disease of choice. The article of manufacture can further comprise a second container comprising a pharmaceutically-acceptable buffer, such as
10 phosphate-buffered saline, Ringer's solution, or dextrose solution. It can further include other materials desirable from a commercial and user standpoint, including other buffers, diluents, filters, needles, syringes, and package inserts with instructions for use.

In some embodiments, any of the fusion proteins, gRNAs, and/or complexes described herein are provided as part of a pharmaceutical composition. In some embodiments, the
15 pharmaceutical composition comprises any of the fusion proteins provided herein. In some embodiments, the pharmaceutical composition comprises any of the complexes provided herein. In some embodiments, the pharmaceutical composition comprises a ribonucleoprotein complex comprising an RNA-guided nuclease (e.g., Cas9) that forms a complex with a gRNA and a cationic lipid. In some embodiments pharmaceutical
20 composition comprises a gRNA, a nucleic acid programmable DNA binding protein, a cationic lipid, and a pharmaceutically acceptable excipient. Pharmaceutical compositions can optionally comprise one or more additional therapeutically active substances.

In some embodiments, compositions provided herein are administered to a subject, for example, to a human subject, in order to effect a targeted genomic modification within the
25 subject. In some embodiments, cells are obtained from the subject and contacted with any of the pharmaceutical compositions provided herein. In some embodiments, cells removed from a subject and contacted *ex vivo* with a pharmaceutical composition are re-introduced into the subject, optionally after the desired genomic modification has been effected or detected in the cells. Methods of delivering pharmaceutical compositions comprising nucleases are known, and are described, for example, in U.S. Patent Nos. 6,453,242; 6,503,717; 6,534,261; 6,599,692; 6,607,882; 6,689,558; 6,824,978; 6,933,113; 6,979,539; 7,013,219; and 7,163,824, the disclosures of which are incorporated by reference herein in their entireties. Although the descriptions of pharmaceutical compositions provided herein are principally directed to pharmaceutical compositions which are suitable for administration to humans, it

will be understood by the skilled artisan that such compositions are generally suitable for administration to animals or organisms of all sorts, for example, for veterinary use.

Modification of pharmaceutical compositions suitable for administration to humans in order to render the compositions suitable for administration to various animals is well

5 understood, and the ordinarily skilled veterinary pharmacologist can design and/or perform such modification with merely ordinary, if any, experimentation. Subjects to which administration of the pharmaceutical compositions is contemplated include, but are not limited to, humans and/or other primates; mammals, domesticated animals, pets, and commercially relevant mammals such as cattle, pigs, horses, sheep, cats, dogs, mice, and/or 10 rats; and/or birds, including commercially relevant birds such as chickens, ducks, geese, and/or turkeys.

Formulations of the pharmaceutical compositions described herein can be prepared by any method known or hereafter developed in the art of pharmacology. In general, such preparatory methods include the step of bringing the active ingredient(s) into association with

15 an excipient and/or one or more other accessory ingredients, and then, if necessary and/or desirable, shaping and/or packaging the product into a desired single- or multi-dose unit. Pharmaceutical formulations can additionally comprise a pharmaceutically acceptable excipient, which, as used herein, includes any and all solvents, dispersion media, diluents, or other liquid vehicles, dispersion or suspension aids, surface active agents, isotonic agents, 20 thickening or emulsifying agents, preservatives, solid binders, lubricants and the like, as suited to the particular dosage form desired. Remington's The Science and Practice of Pharmacy, 21st Edition, A. R. Gennaro (Lippincott, Williams & Wilkins, Baltimore, MD, 2006; incorporated in its entirety herein by reference) discloses various excipients used in formulating pharmaceutical compositions and known techniques for the preparation thereof.

25 See also PCT application PCT/US2010/055131 (Publication number WO2011/053982 A8, filed Nov. 2, 2010), incorporated in its entirety herein by reference, for additional suitable methods, reagents, excipients and solvents for producing pharmaceutical compositions comprising a nuclease.

Except insofar as any conventional excipient medium is incompatible with a substance 30 or its derivatives, such as by producing any undesirable biological effect or otherwise interacting in a deleterious manner with any other component(s) of the pharmaceutical composition, its use is contemplated to be within the scope of this disclosure.

The compositions, as described above, can be administered in effective amounts. The effective amount will depend upon the mode of administration, the particular condition being

treated, and the desired outcome. It may also depend upon the stage of the condition, the age and physical condition of the subject, the nature of concurrent therapy, if any, and like factors well-known to the medical practitioner. For therapeutic applications, it is that amount sufficient to achieve a medically desirable result.

5 In some embodiments, compositions in accordance with the present disclosure can be used for treatment of any of a variety of diseases, disorders, and/or conditions.

Kits, Vectors, Cells

Various aspects of this disclosure provide kits comprising a base editor system. In one embodiment, the kit comprises a nucleic acid construct comprising a nucleotide sequence 10 encoding a nucleobase editor fusion protein. The fusion protein comprises one or more deaminase domains (e.g., cytidine deaminase and/or adenine deaminase) and a nucleic acid programmable DNA binding protein (napDNAbp). In some embodiments, the kit comprises at least one guide RNA capable of targeting a nucleic acid molecule of interest. In some embodiments, the kit comprises a nucleic acid construct comprising a nucleotide sequence 15 encoding at least one guide RNA. In some embodiments, the kit comprises a nucleic acid construct, comprising a nucleotide sequence encoding (a) a Cas9 domain fused to an adenosine deaminase and/or a cytidine deaminase as provided herein; and (b) a heterologous promoter that drives expression of the sequence of (a).

The kit provides, in some embodiments, instructions for using the kit to edit one or 20 more mutations. The instructions will generally include information about the use of the kit for editing nucleic acid molecules. In other embodiments, the instructions include at least one of the following: precautions; warnings; clinical studies; and/or references. The instructions may be printed directly on the container (when present), or as a label applied to the container, or as a separate sheet, pamphlet, card, or folder supplied in or with the 25 container. In a further embodiment, a kit can comprise instructions in the form of a label or separate insert (package insert) for suitable operational parameters. In yet another embodiment, the kit can comprise one or more containers with appropriate positive and negative controls or control samples, to be used as standard(s) for detection, calibration, or normalization. The kit can further comprise a second container comprising a 30 pharmaceutically-acceptable buffer, such as (sterile) phosphate-buffered saline, Ringer's solution, or dextrose solution. It can further include other materials desirable from a commercial and user standpoint, including other buffers, diluents, filters, needles, syringes, and package inserts with instructions for use.

Some aspects of this disclosure provide cells comprising any of the nucleobase editors or multi-effector nucleobase editors or fusion proteins provided herein. In some embodiments, the cells comprise any of the nucleotides or vectors provided herein.

The practice of the present invention employs, unless otherwise indicated,

5 conventional techniques of molecular biology (including recombinant techniques), microbiology, cell biology, biochemistry and immunology, which are well within the purview of the skilled artisan. Such techniques are explained fully in the literature, such as, “Molecular Cloning: A Laboratory Manual”, second edition (Sambrook, 1989); “Oligonucleotide Synthesis” (Gait, 1984); “Animal Cell Culture” (Freshney, 1987);
10 “Methods in Enzymology” “Handbook of Experimental Immunology” (Weir, 1996); “Gene Transfer Vectors for Mammalian Cells” (Miller and Calos, 1987); “Current Protocols in Molecular Biology” (Ausubel, 1987); “PCR: The Polymerase Chain Reaction”, (Mullis, 1994); “Current Protocols in Immunology” (Coligan, 1991). These techniques are applicable to the production of the polynucleotides and polypeptides of the invention, and, as such, may
15 be considered in making and practicing the invention. Particularly useful techniques for particular embodiments will be discussed in the sections that follow.

The following examples are put forth so as to provide those of ordinary skill in the art with a complete disclosure and description of how to make and use the assay, screening, and therapeutic methods of the invention, and are not intended to limit the scope of what the
20 inventors regard as their invention.

EXAMPLES

Example 1: Construction of nucleobase editors having reduced non-target deamination

Nucleobase editors (e.g., fusion proteins of a CRISPR-Cas protein and a deaminase
25 joined by a linker) can be used to introduce specific point mutations into target polynucleotides. However, nucleobase editors carry with them the potential for unintended genome-wide spurious deamination, bystander mutation, and target proximal edits. Without being bound by theory, shortening or removing the linker from base editors would reduce the potential for unintended deamination events and/or promote desired target deamination (FIG. 30 1). This may be due in part to reducing the effective radius of activity for the deaminase domain of the nucleobase editor. Although the structure of Cas9 bound to DNA has been determined by X-ray crystallography, no structural information exist for the portion of DNA where base editing occurs. Modeling of Cas9 predicts that the DNA where base editing occurs could be at 2 positions in proximity to Cas9 (FIG. 2). Based on these predictions,

positioning a deaminase or fragment thereof at one or more of these positions has the potential to promote on-target base editing while reducing undesired deamination events (FIG. 3). Several regions were identified in the adenosine base editor (e.g., Cas9 fused to TadA) that were amenable to insertion of the TadA deaminase or fragment thereof (FIGS. 4-5 7). Accordingly, adenosine deaminase base editors were generated to insert TadA or variants thereof into the Cas9 polypeptide at the identified positions.

Example 2: High-throughput in vitro assays for measuring on-target and off-target deamination

10 An in vitro assay was developed to assess nucleobase editors and for characterizing candidate constructs that measures on-target deamination vs. non-target deamination, including spurious deamination. A FRET-based version of the assay uses a fluorescent reporter for detection, although the assay can be adapted for gel-based readout (FIG. 8). Probes for the in vitro deamination assay include substrates for deamination, and in particular 15 substrates for nucleobase editors (FIG. 8). In addition to containing a nucleotide that can be deaminated, probes may include PAM sequences, target specific sequences, and the like, or even random sequences. Deamination reactions using sets of probes can be performed in parallel (e.g., high throughput format). Deamination of the substrate (C→U or A→I) renders the substrate cleavable by a deamination specific endonuclease (USER/EndonucleaseV, 20 respectively) (FIG. 8). Cleavage of the substrate uncouples the fluorescent reporter from the quencher molecule, thereby generating a fluorescent signal (FIG. 8). A high on-target to off-target fluorescence ratio for indicates that a base editor is effect. Any interacting fluorophore and quencher pair or FRET donor-acceptor pair known in the art can be used. In certain embodiments, the fluorophore is one or more of FAM, TET, HEX, TAMRA, JOE, or ROX. 25 In various embodiments, the quencher is one or more of dabcyl, dabsyl, a Black Hole Quencher dye, including 5' Iowa Black® RQ (5IabRQ). In general, the quenching dye is an excitation matched quenching dye. Fluorophore-quencher pairs and their selection are described for example in Marras, Selection of Fluorophore and Quencher Pairs for Fluorescent Nucleic Acid Hybridization Probes in Methods in Molecular Biology: 30 Fluorescent Energy Transfer Nucleic Acid Probes: Designs and Protocols. Edited by: V.V. Didenko © Humana Press Inc., Totowa, NJ.

As a demonstration of the assay, an adenosine base editor was assayed for the potential to generate off-target deamination by comparing the on-target deamination of the

adenosine base editor to deamination occurring in the presence of SpCas9 (no deamination domain) or no protein (FIG. 9). The adenosine base editor reaction generated fluorescent signal above that of SpCas9 and no protein reactions, indicating that ABE was effective at on-target base editing. In another example, adenosine base editor was compared to an 5 adenosine base editing in *trans* (ABE -TadA) where SpCas9 is present with TadA in *trans* (FIG. 10). ABE generated increased fluorescence compared to ABE -TadA, SpCas9, and no protein reaction and was effective at on-target base editing. Potential substrates for spurious off-target base editing can be tested in this assay, including single-stranded structures and branched structures, which may reflect other structures in the genome (e.g., DNA 10 “breathing,” replication forks, transcriptional active DNA, etc.) (FIG. 11).

Example 3: Assays to evaluate the activities of deaminases *in cis* and *in trans*.

An assay was developed to distinguish between the activities of deaminases *in cis* (deamination domain covalently bound to CRISPR-Cas) and *in trans* (CRISPR-Cas protein 15 with deamination domain provided *in trans*) (FIG. 12). Deamination occurring *in cis* indicates deamination by targeted base editing whereas deamination *in trans* indicates spurious deamination. A high ratio of *in cis* to *in trans* activity indicates that a deaminase has reduced spurious deamination is effective as a base editor.

Rat APOBEC1 was tested in the *in cis-in trans* assay. Briefly, HEK293T cells were 20 transfected with construct expressing the base editor BE4 (rAPOBEC1-nCas9-UGI-UGI), rAPOBEC1 and nCas9, nCas9 and a guide RNA, or rAPOBEC1 and guide RNA. Genomic DNA was isolated from the cells and sequencing was obtained for 4 genomic target sites. At all sites, rAPOBEC1 showed higher *in cis* deaminase activity, compared to *in trans* deaminase activity, as well as the other control reactions lacking at least one of the 25 components for targeted base editing (FIG. 13). Likewise, TadA7.10 also showed higher *in cis* deaminase activity, compared to *in trans* deaminase activity and other deamination events (FIG. 14). To understand the effect of the adenosine base editor *in trans* separate from the guide, an SaCas9-ABE and SaCas9 guide were tested in combination with SpCas9-ABE and an SaCas9 guide, and sterically hindered ABE variants and SaCas9 guides (FIG. 15). In this 30 context, SpCas9-ABE showed lower *in trans* activity for TadA-TadA7.10 in base editor context. The ratio of *in cis/in trans* activity for ABE and sterically hindered ABE variants was estimated using the *in trans* measurements from the SaCas9 guide assay and the activity of ABE and sterically hindered ABE variants. The estimated ratios for ABE and sterically hindered ABE variants was relatively high. Dose response studies for *in cis* and *in trans*

activities were also conducted to determine if high *in cis* to *in trans* activity could be modulated by dose (e.g., where *in cis* activity increases more quickly than *in trans* activity with increasing dose). Under the conditions tested, a dose response of *in cis* to *in trans* activity was not observed (FIGS. 16-18).

5 The *in cis-in trans* assay was used to evaluate a variety of deaminases for reduced spurious deamination listed in Table 9 below:

Table 9. Deaminases Screened using *in cis-in trans* assay

1	rAPOBEC-1	9	hAPOBEC-2	17	hAPOBEC-3F	25	btAID
2	mAPOBEC-1	10	ppAPOBEC-2	18	hAPOBEC-3G	26	mAID
3	maAPOBEC-1	11	btAPOBEC-2	19	hAPOBEC-4	27	pmCDA-1
4	hAPOBEC-1	12	mAPOBEC-3	20	mAPOBEC-4	28	pmCDA-2
5	ppAPOBEC-1	13	hAPOBEC-3A	21	rAPOBEC-4	29	pmCDA-5
6	ocAPOBEC1	14	hAPOBEC-3B	22	mfAPOBEC-4	30	yCD
7	mdAPOBEC-1	15	hAPOBEC-3C	23	hAID	31	rAPOBEC-1-delta 177-186
8	mAPOBEC-2	16	hAPOBEC-3D	24	clAID	32	rAPOBEC-1-delta 202-213

10 Interestingly, several deaminases showed high *in cis/in trans* activity, including ppAPOBEC-2, mAPOBEC-2, mAPOBEC-3, and mfAPOBEC-4.

rAPOBEC-1 *Rattus norvegicus*

MSSETGPVAVDPTLRRRIEPHEFEVFFDPRELRKETCLLYEINWGGRHSIWRHTSQNT

15 NKHVEVNIEKFTTERYFCPNTRCSITWFLSWSPCGECSRAITEFLSRYPHTLFIYIAR
LYHHADPRNRQGLRDLISSGVTIQIMTEQESGYCWRNFVNYSPSNEAHWPRYPHLW
VRLYVLELYCIILGLPPCLNILRRKQPQLTFTTIALQSCHYQRLPPHILWATGLK

mAPOBEC-1 *Mus musculus*

20 MSSETGPVAVDPTLRRRIEPHEFEVFFDPRELRKETCLLYEINWGGRHSVWRHTSQNT
TSN

HVEVNLEKFTTERYFRPNTRCSITWFLSWSPCGECSRAITEFLSRHPYVTLFIYIARL
Y

25 HHTDQRNRQGLRDLISSGVTIQIMTEQEYCYCWRNFVNYPSPSNEAYWPRYPHLWVK
LYVLELYCIILGLPPCLKILRRKQPQLTFTTILQTCYQRLPPHILWATGLK

maAPOBEC-1 *Mesocricetus auratus*

MSSETGPVVVDPTLRRRIEPHEFDAFFDQGELRKETCLLYEIRWGGRHNIWRHTGQN
TSRHVEINFIEKFTSERYFYPSTRCSIVWFLSWSPCGECSKAITEFLSGHPNVTLFYAA
RLY

5 HHTDQRNRQGLRDLISRGVTIRIMTEQEYCYCWRNFVNYPSSNEVYWPYPNLWMR
LYALELYCIHLGLPPCLKIKRRHQYPLTFFRLNLQSCHYQRIPPHILWATGFI

hAPOBEC-1 *Homo sapiens*

10 MTSEKGPSTGDPTLRRRIEPWEFDVFYDPRELRKEACLLYEIKWGMSRKIWRSSGKN
TTNHVEVNFIKKFTSERDFHPSMCSITWFLSWSPCWECSSQAIREFLSRHPGVTLVIYV
ARLF

WHMDQQNRQGLRDLVNSGVTIQIMRASEYYHCWRNFVNYPGDEAHWPQYPPLW
MMLYALELHCIILSLPPCLKISRRWQNHLTFFRLHLQNCHYQTIPPHILLATGLIHPNV
AWR

15

ppAPOBEC-1 *Pongo pygmaeus*

MTSEKGPSTGDPTLRRRIESWEFDVFYDPRELRKEACLLYEIKWGMSRKIWRSSGKN
TTNHVEVNFIKKFTSERRHSSISCSITWFLSWSPCWECSSQAIREFLSQHPGVTLVIYV
ARLF

20 WHMDQRNRQGLRDLVNSGVTIQIMRASEYYHCWRNFVNYPGDEAHWPQYPPLW
MMLYALELHCIILSLPPCLKISRRWQNHLAFFRLHLQNCHYQTIPPHILLATGLIHPNV
TWR

ocAPOBEC1 *Oryctolagus cuniculus*

25 MASEKGPSNKDYTLRRRIEPWEFEVFFDPQELRKETCLLYEIKWGASSKTWRSSGKN
TTNHVEVNLEKLTSEGRLGPSTCCSITWFLSWSPCWECSSMAIREFLSQHPGVTLIIFV
ARLF

QHMDRRNRQGLKDLVTSGVTVRVMSVSEYCYCWENFVNYPGKAAQWPRYPPRW
MLMYALELYCIILGLPPCLKISRRHQKQLTFFSLTPQYCHYKMIPPYILLATGLLQPSV

30 PWR

mdAPOBEC-1 *Monodelphis domestica*

MNSKTGPSVGDATLRRRIKPWEFVAFFNPQELRKETCLLYEIKWGNQNIWRHSNQN
TSQHAEINFMEKFTAERHFNSVRCSSITWFLSWSPCWECSSKAIRKFLDHYPNVTLAIFI

SRLYWHMDQQHRQGLKELVHSGVTIQIMSYSEYHYCWRNFVDYPQGEEDYWPKYP
 YLWIMLYVLELHCIILGLPPCLKISGHSNQLALFSLDLQDCHYQKIPYNVLVATGLV
 QPFVTWR

5 mAPOBEC-2 *Mus musculus*

MAQKEEAAEAAAPASQNGDDLENLEDPEKLKELIDLPPFEIVTGVRLPVNFFKFQFR
 NVEYSSGRNKTFLCYVVEVQSKGGQAQATQGYLEDEHAGAHAEEAFFNTILPAFDP
 ALKYNVTWYVSSSPCAACADRILKTSKKNLRLLILVSRLFMWEEPEVQAALKKL
 KEAGCKLRIMKPQDFEYIWQNFVEQEEGESKAFEPWEDIQENFLYYEEKLADILK

10

hAPOBEC-2 *Homo sapiens*

MAQKEEAAVATEAASQNGEDLENLDDPEKLKELIELPPFEIVTGERLPANFFKFQFRN
 VE
 YSSGRNKTFLCYVVEAQGKGGQVQASRGYLEDEHAAAHAEEAFFNTILPAFDPALR
 15 YNVTWYVSSSPCAACADRIIKTLSKKNLRLLILVGRLFMWEEPEIQAALKKLKEAG
 CKLRIMKPQDFEYVWQNFVEQEEGESKAFQPWEDIQENFLYYEEKLADILK

ppAPOBEC-2 *Pongo pygmaeus*

MAQKEEAAAATEAASQNGEDLENLDDPEKLKELIELPPFEIVTGERLPANFFKFQFRN
 20 VE
 YSSGRNKTFLCYVVEAQGKGGQVQASRGYLEDEHAAAHAEEAFFNTILPAFDPALR
 YNVTWYVSSSPCAACADRIIKTLSKKNLRLLILVGRLFMWEELEIQDALKKLKEAG
 CKLRIMKPQDFEYVWQNFVEQEEGESKAFQPWEDIQENFLYYEEKLADILK

25 btAPOBEC-2 *Bos Taurus*

MAQKEEAAAAAEPASQNGEEVENLEDPEKLKELIELPPFEIVTGERLPAHYFKFQFRN
 VE
 YSSGRNKTFLCYVVEAQSKGGQVQASRGYLEDEHATNHAEEAFFNSIMPTFDPALR
 YMVTWYVSSSPCAACADRIVKTLNKTNLRLLILVGRLFMWEEPEIQAALRKLKEA
 30 GCRLRIMKPQDFEYIWQNFVEQEEGESKAFEPWEDIQENFLYYEEKLADILK

mAPOBEC-3 *Mus musculus*

MQPQRLGPRAGMGPCLGCSHRKCYSPIRNLISQETFKFHKNLGYAKGRKDTFLCY
 EVTRKDCDSPVSLHHGVFKNKNHAEICFLYWTFHDKVLKVLSPREEFKITWYMSW

SPCFECAEQIVRFLATHHNLSDLFSSRLYNVQDPETQQNLCRLVQEQAQVAAMDLY
 EFKKCWKKFVDNGGRRFRPKRLLTNFRYQDSKLQEILRPCYISVPSSSSTLSNICL
 TKGLPETRFWVEGRRMDPLSEEEFYSQFYNQRVKHLCYYHRMKPYLCYQLEQFNG
 QAPLKGCCLSEKGKQHAEILFLDKIRSMELSQVTITCYLTWSPCPNCAWQLAAFKRD
 5 RPDLILHIYTSRLYFHWKRPFKGLCSLWQSGILVDVMDLPQFTDCWTNFVNPKRPF
 WPWKGLEIISRTQRRLRIKESWGLQDLVNDFGNLQLGPPMS

hAPOBEC-3A *Homo sapiens*

MEASPASGPRHLMDPHIFTSNFNNNGIGRHKTLCYEVERLDNGTSVKMDQHRGFLH
 10 NQAKNLLCGFYGRHAELRFLDLVPSLQLDPAQIYRVTFISWSPCFSGCAGEVRAF
 LQENTHVRRLRIFAARIYDYDPLYKEALQMLRDAGAQVSIMTYDEFKHCWDTFVDHQ
 GCPFQPWDGLDEHSQALSGRLRAILQNQGN

hAPOBEC-3B *Homo sapiens*

15 MNPQIRNPMERMYRDTFYDNFENEPILYGRSYTWLCYEVKIKRGRSNLLWDTGVFR
 GQVYFKPQYHAEMCFLSWFCGNQLPAYKCFQITWFVSWTPCPDCVAKLAEFLSEHP
 NVTLTISAARLYYYWERDYRRALCRLSQAGARVTIMDYEEFAYCWFVYNEGQQ
 FMPWYKFDENY AFLHRTLKEILRYLMDPDTFTFNNDPLVLRRRQTYLCYEVERL
 DNGTWVLMQHMGFLCNEAKNLLCGFYGRHAELRFLDLVPSLQLDPAQIYRVTFI
 20 SWSPCFSGCAGEVRAFLQENTHVRRLRIFAARIYDYDPLYKEALQMLRDAGAQVSI
 MTYDEFEYCWDTFVYRQGCPFQPWDGLEEHSQALSGRLRAILQNQGN

hAPOBEC-3C *Homo sapiens*

25 MNPQIRNPMKAMYPGTFYFQFKNLWEANDRNETWLCTVEGIKRRSVVSWKTGVF
 RNQVDSETHCHAERCFLSWFCDDILSPNTKYQVTWYTSWSPCPDCAGEVAEFLARH
 SNVNLTIFTARLYYFQYPCYQEGLRSLSQEGVAVEIMDYEDFKYCWFVYNDNEPF
 KPWKGLKTNFRLKRRRLRESLQ

hAPOBEC-3D *Homo sapiens*

30 MNPQIRNPMERMYRDTFYDNFENEPILYGRSYTWLCYEVKIKRGRSNLLWDTGVFR
 GPVLPKRQSNHRQEYFRFENHAEMCFLSWFCGNRLPANRRFQITWFVSWNPCLPC
 VVKVTKFLAEHPVNTLTISAARLYYRDRDWRWVLLRLHKAGARVKIMDYEDFAY
 CWENFVCNEGQPFMPWYKFDDNYASLHRTLKEILRNPMEAMYPHIFYFHFKNLLKA
 CGRNESWLCFTMEVTKHSAVFRKRGVFRNQVDPETHCHAERCFLSWFCDDILSPN

TNYEVTWYTSWSPCPECAGEVAEFLARHSNVNLTIIFTARLCYFWDTDYQEGLCSLS
QEGASVKIMGYKDFVSCWKNFVYSDDEPFKPWKGLQTNFRLLKRRRLREILQ

hAPOBEC-3F *Homo sapiens*

5 MKPHFRNTVERMYRDTFSYNFYNRPILSRRNTVWLCYEVTKGPSRPLDAKIFRGQ
VYSQPEHHAEMCFLSWFCGNQLPAYKCFQITWFVSWTPCPDCVAKLAEFLAEHPNV
TLTISAARLYYYWERDYRRALCRLSQAGARVKIMDDEFAYCWENFVYSEGQPFMP
WYKFDDNYAFLHRTLKEILRNPMEAMYPHIFYFHFKNLRKAYGRNESWLCFTMEV
VKHHSPVSWKRGVFRNQVDPETHCHAERCFLSWFCDDILSPNTNYEVTWYTSWSPC
10 PECAGEVAEFLARHSNVNLTIIFTARLYYFWDTDYQEGLRSLSQEGASVEIMGYKDFK
YCWENFVYNDDEPFKPWKGLKYNFLFLDSKLQEILE

hAPOBEC-3G *Homo sapiens*

MKPHFRNTVERMYRDTFSYNFYNRPILSRRNTVWLCYEVTKGPSRPLDAKIFRGQ
15 VYSELKYHPEMRFFHWFSKWRKLHRDQEYEVTWYISWSPCTKCTRD MATFLAEDP
KVTLTIFVARLYYFWDPDYQEALRSLCQKRDGPRATMKIMNYDEFQHCWSKFVYS
QRELFEPWNNLPKYYILLHIMLGEILRHSMDPPTFTFNNEPWVRGRHETYLCYEV
ERMHNDTWVLLNQRRGFLCNQAPHKHGFLEGRHAELCFLDVIPFWKLDLDQDYRV
TCFTSWSPCFSCAQEMAKFISKNKHVSLCIFTARIYDDQGRCQEGLRTLAEAGAKISI
20 MTYSEFKHCWDTFVDHQGCPFPWDGLDEHSQDLSGRLRAILQNQEN

hAPOBEC-4 *Homo sapiens*

MEPIYEEYLANHGTIVKPYYWLSFSLDCSNCPYHIRTGEEARVSLTEFCQIFGF PYGTT
F
PQTKHLTFYELKTSSGSLVQKGHASSCTGNYIHPEMLFEMNGYLD SAIYNNDSIRHII
25 L
YSNNSPCNEANHCCISKMYNFLITYPGITLSIYFSQLYHTEMDPASAWNREALRSLA
SL
WPRVVLSPIGGIWHSVLHSFISGVSGSHVFQPLTGRALADRHNAYEINA ITGVKPYF
T
30 DVLLQTKRNPNTKAQEAELESYPLNNAFPGQFFQMPGQLQPNLPPDLRAPVVFVLVP
LRDLPPMHMGQNPNKPRNIVRHLNMPQMSFQETKDLGRLPTGRSVEIVEITEQFASS
KEADEKKKKKGKK

mAPOBEC-4 *Mus musculus*

MDSLLMKQKKFLYHFKNVRWAKGRHETLYCYVVKRRDSATCSCLDFGHLRNKSGC
 HVELLFLRYISDWDLDPGRCYRVTWFTSWSPCYDCARHVAEFLRWNPNLSRIFTAR
 LYFCEDRKAEP EGLRLH RAGVQIGIMTFKDYFYCWNTFVENRERTFKAW EGLHEN
 SVRLTRQLRILLPLYEVDDLRAFRMLGF

5

rAPOBEC-4 *Rattus norvegicus*

MEPLYEEYLTHSGTIVKPYYWLSVSLNCTNCPYHIRTGEEARVPYTEFHQTFGFPWS
 TYP

QTKHLTFYELRSSSGNLIQKGLASNCTGSHTHPESMLFERDGYLDSLIFHDSNIRHII

10 Y

SNNSPCDEANHCCISKMYNFLMNPYEVTLSVFFSQLYHTENQFPTSAWNREALRGLA
 SLWPQVTLISAISGGIWQSILETFVSGISEGLTAVRPFTAGRTLTDRYNAYEINCITEVK
 PYFT

DALHSWQKENQDQKVWAASENQPLHNTTPAQWQPDMSQDCRTPAVFMLVPYRDL

15 PPIHVNPSPKPRTVVRHLNTLQLSASKVKALRKSPSGRPVKKEARKGSTRSQEAN
 ETNKSWKKQTLFIKSNICLLEREQKKIGILSSWSV

mfAPOBEC-4 *Macaca fascicularis*

MEPTYEEYLANHGTIVKPYYWLSFSLDCSNCPYHIRTGEEARVSLTEFCQIFGFPYGT

20 TY

PQTAKHLTFYELKTSSGSLVQKGHASSCTGNYIHPESMLFEMNGYLDASIYNNDISRHIIL

YCNNSPCNEANHCCISKVYNFLITYPGITLSIYFSQLYHTEMDFPASAWNREALRSLA
 SL

25 WPRVVLSPIGGIWHSVLHSFVSGVSGSHVFQPILTGRALTDRYNAYEINAITGVKPFT
 T

DVLLHTKRNPNNTKAQMALESYPLNNAFPGQSFQMTSGIAPPDLRAPVVFVLLPLRDLP
 PMHMGQDPNKPRTNIIRHLNMPQMSFQETKDLERLPTRRSVEITERFASSKQAEET
 KTKKKKGKK

30

hAID *Homo sapiens*

MDSLLMNRRKFLYQFKNVRWAKGRRETYLCYVVKRRDSATSFSCLDFGYLRNKNGC
 HVELLFLRYISDWDLDPGRCYRVTWFTSWSPCYDCARHVADFLRGNPNLSRIFTAR

LYFCEDRKAEP EGLRRLH RAGVQIAIMTFKDYF YCWNTF VENHERTFKAWEGLHEN
SVRLSRQLRILLPLYEVDDL RDAFRTLGL

clAID *Canis lupus familiaris*

5 MDSLLMKQRKFLYHFKNVRWAKGRHETYLCYVVKRRDSATSFSLDFGHLRNKSGC
HVELLFLRYISDWDLDPGRCYRVTWFTSWSPCYDCARHVADFLRGYPNLSRIFAAR
LYFCEDRKAEP EGLRRLH RAGVQIAIMTFKDYF YCWNTF VENREKTFKAWEGLHEN
SVRLSRQLRILLPLYEVDDL RDAFRTLGL

10 btAID *Bos Taurus*

MDSLLKKQRQFLYQFKNVRWAKGRHETYLCYVVKRRDSPTSFSLDFGHLRNKAGC
HVELLFLRYISDWDLDPGRCYRVTWFTSWSPCYDCARHVADFLRGYPNLSRIFTAR
LYFCDKERKAEP EGLRRLH RAGVQIAIMTFKDYF YCWNTF VENHERTFKAWEGLHE
NSVRLSRQLRILLPLYEVDDL RDAFRTLGL

15

mAID *Mus musculus*

MDSLLMNRRKFLYQFKNVRWAKGRRETYLCYVVKRRDSATSFSLDFGYLRNKNGC
HVELLFLRYISDWDLDPGRCYRVTWFTSWSPCYDCARHVADFLRGNPNLSRIFTAR
LYFCEDRKAEP EGLRRLH RAGVQIAIMTFKDYF YCWNTF VENHERTFKAWEGLHEN
20 SVRLSRQLRILLPLYEVDDL RDAFRTLGL

pmCDA-1 *Petromyzon marinus*

MAGYECVRVSEKLDFTDFEFQFENLHYATERHRTYVIFDVKPQSAGGRSRRLWGYII
NNPNVCHAELILMSMIDRHLESNPGVYAMTWYMSWSPCANCSSKLNWLKNLLEE
25 QGHTLTMHFSRIYDRDREGDHRLRGLKHVSNSFRMGVVGRAEVKECLAEYVEAS
RRTLTWLDTTESMAAKMRRKLF CILVRCAGMRESGIPLHLFTLQTPLLSGRVVWWR
V

pmCDA-2 *Petromyzon marinus*

30 MELREVVD CALASCVRHEPLSRVAFLRCFAAPSQKPRGTVILFYVEGAGR GVTGGH
AVNYNKQGTSIHAEVLLSAVRAALLRRRCEDGEEATRGCTLHCYSTYSPCRDCV
EYIQEFGASTGVRVVIHCCRLYELDVNRRSEAEGVRLSRLGRDFRLMGPRDAIA
LLLGGRLANTADGESGASGN AWTETNVVEPLVDMTGF GDEDLHAQVQRNKQIRE

AYANYASAVSMLGELHVDPDKFPFLAEFLAQTSVEPSGTPRETRGRPRGASSRGPEI
GRQRPADFERALGAYGLFLHPRIVSREADREEIKRDLIVVMRKHNYQGP

pmCDA-5 *Petromyzon marinus*

5 MAGDENRVSEKLDFTEFQFENLHYATERHRTYVIFDVKPQSAGGRSRRLWGYII
NNPNVCHAELILMSMIDRHLESNPGVYAMTWYMSWSPCANCSSKLNWLKNLEE
QGHTLMMHFHSRIYDRDREGDHRLRGLKHSNSFRMGVVGRAEVKECLAEYVEAS
RRTLTWLDTTESMAAKMRRKLFICILVRCAGMRESGMPLHLFT

10 yCD *Saccharomyces cerevisiae*

MVTGGMASKWDQKGMDIAYEEAALGYKEGGVPIGGCLINNKDGSVLGRGHNMRF
QKGSATLHGEISTLENCGRLEGKVYKDTLYTTLSPCDMCTGAIIMYGIPRCVVGEN
VNFKSKGEKYLQTRGHEVVVVDERCKKIMQFIDERPQDWFEDIGE

15 rAPOBEC-1 (delta 177-186)

MSSETGPVAVDPTLRRRIEPHEFEVFFDPRELRKETCLLYEINWGGRHSIWRHTSQNT
NKHVEVNIEKFTTERYFCPNTRCSITWFLSWSPCGECSRAITEFLSRYPHTLFIYIAR
LYHHADPRNRQGLRDLISSGVTIQIMTEQESGYCWRNFVNYSPSNEAHWPRYPHLW
VRGLPPCLNILRRKQPQLTFTIALQSCHYQRLPPHILWATGLK

20

rAPOBEC-1 (delta 202-213)

MSSETGPVAVDPTLRRRIEPHEFEVFFDPRELRKETCLLYEINWGGRHSIWRHTSQNT
NKHVEVNIEKFTTERYFCPNTRCSITWFLSWSPCGECSRAITEFLSRYPHTLFIYIAR
LYHHADPRNRQGLRDLISSGVTIQIMTEQESGYCWRNFVNYSPSNEAHWPRYPHLW

25 VRLYVLELYCILGLPPCLNILRRKQPQHYQRLPPHILWATGLK

Example 4: Construction of CBE and ABE internal fusions

CBE and ABE internal fusion constructs were generated by cloning deaminases into a high b-factor position within SpCas9 or SpCas9 nickase with a D10A mutation. In some cases, a structural or functional domain of the Cas9 was partially or deleted and replaced with a TadA domain (IBE020). CBEs were inserted in the same manner and were modified on the C-terminal end with a uracil DNA glycosylase inhibitor (UGI) domain.

Exemplary internal fusions base editors are provided in Table 10 below:

Table 10:

BE ID	Modification	Other ID
IBE001	Cas9 TadA ins 1015	ISLAY01
IBE002	Cas9 TadA ins 1022	ISLAY02
IBE003	Cas9 TadA ins 1029	ISLAY03
IBE004	Cas9 TadA ins 1040	ISLAY04
IBE005	Cas9 TadA ins 1068	ISLAY05
IBE006	Cas9 TadA ins 1247	ISLAY06
IBE007	Cas9 TadA ins 1054	ISLAY07
IBE008	Cas9 TadA ins 1026	ISLAY08
IBE009	Cas9 TadA ins 768	ISLAY09
IBE020	delta HNH TadA 792	ISLAY20
IBE021	N-term fusion single TadA helix truncated 165-end	ISLAY21
IBE029	TadA-Circular Permutant116 ins1067	ISLAY29
IBE031	TadA- Circular Permutant 136 ins1248	ISLAY31
IBE032	TadA- Circular Permutant 136ins 1052	ISLAY32
IBE035	delta 792-872 TadA ins	ISLAY35
IBE036	delta 792-906 TadA ins	ISLAY36
IBE043	TadA-Circular Permutant 65 ins1246	ISLAY43
IBE044	TadA ins C-term truncate2 791	ISLAY44
HR001	GGS-rAPOBEC1-XTEN-ins-site1_Y1016-D10A-UGIx2	pHRB-043
HR002	GGS-rAPOBEC1-XTEN ins-site2_A1023-D10A-UGIx2	pHRB-044
HR003	GGS-rAPOBEC1-XTEN ins-site3_E1029-D10A-UGIx2	pHRB-045
	GGS-rAPOBEC1-XTEN ins-site4_N1040-D10A-UGIx2	pHRB-046
HR004	GGS-rAPOBEC1-XTEN ins-site5-T1069-D10A-UGIx2	pHRB-047
HR005	GGS-rAPOBEC1-XTEN ins-site6-G1247-D10A-UGIx2	pHRB-048

Sequences of the constructs are provided below.

5 Cas9 TadAins 1015
ATGGACAAGAAGTACAGCATCGGCCTGGCCATCGGCACCAACTCTGTGGGCTGG
GCCGTGATCACCGACGAGTACAAGGTGCCAGCAAGAAATTCAAGGTGCTGGGC
AACACCGACCGGCACAGCATCAAGAAGAACCTGATCGGAGGCCCTGCTGTCGAC
AGCGCGAAACAGCCGAGGCCACCCGGCTGAAGAGAACCGCCAGAAGAAGATA
10 CACCAGACGGAAGAACCGGATCTGCTATCTGCAAGAGATCTTCAGCAACGAGAT
GGCCAAGGTGGACGACAGCTTCCACAGACTGGAAGAGTCCTCCTGGTGG
AGAGGATAAGAACGACGAGCGGCACCCATCTCGGCAACATCGTGGACGAGGT
GGCCTACCACGAGAAGTACCCACCACCTGAGAAAGAAACTGGTGG
CAGCACCGACAAGGCCACCTGGCTGATCTATCTGCCCTGGCCCACATGATC
15 AAGTTCCGGGCCACTCCTGATCGAGGGCGACCTGAACCCCGACAACAGCGAC
GTGGACAAGCTGTTCATCCAGCTGGTGCAGACCTACAACCCAGCTGTTGAGGAA
AACCCCATCAACGCCAGCGCGTGGACGCCAAGGCCATCCTGTCTGCCAGACTG
AGCAAGAGCAGACGGCTGGAAAATCTGATCGCCAGCTGCCCGCGAGAAGAA
GAATGGCCTGTCGGAAACCTGATTGCCCTGAGCCTGGGCCTGACCCCCAACTTC
20 AAGAGCAACTCGACCTGGCCGAGGATGCCAAACTGCAGCTGAGCAAGGACACC
TACGACGACGACCTGGACAACCTGCTGCCAGATGGCGACCAGTACGCCGAC

CTGTTCTGGCCGCAAGAACCTGTCGACGCCATCCTGCTGAGCGACATCCTGA
GAGTGAACACCGAGATCACCAAGGCCCCCTGAGCGCCTCTATGATCAAGAGAT
ACGACGAGCACCACCAAGGACCTGACCTGCTGAAAGCTCTCGTGCAGCAGCAG
TGCCTGAGAAGTACAAAGAGATTTCTCGACCAGAGCAAGAACGGCTACGCCG
5 GCTACATTGACGGCGGAGCCAGGAAGAGTTCTACAAGTCATCAAGGCCA
TCCTGGAAAAGATGGACGGCACCGAGGAAGTCTGCTGTGAAGCTGAACAGAGAG
GACCTGCTGCGGAAGCAGCGGACCTCGACAAACGGCAGCATTCCCCACCAGATC
CACCTGGAGAGCTGACGCCATTCTGCGGCAGGAAGATTTCACCCATTCC
TGAAGGACAACCAGGGAAAAGATCGAGAAGATCCTGACCTCCGCATCCCTACT
10 ACGTGGGCCCTCTGGCCAGGGAAACAGCAGATTGCGCTGGATGACCAGAAAGA
GCGAGGAAACCATACCCCCCTGGAACCTCGAGGAAGTGGTGGACAAGGGCGCTT
CCGCCCAGAGCTTCATCGAGCGGATGACCAACTCGATAAGAACCTGCCAACG
AGAAGGTGCTGCCAACGACAGCCTGCTGTACGAGTACTTCACCGTGTATAACG
15 AGCTGACCAAAGTGAAAATACGTGACCGAGGGATGAGAAAGCCGCCTCCTGA
GCGCGAGCAGAAAAGGCCATCGTGACCTGCTGTTCAAGACCAACCGGAAAG
TGACCGTGAAGCAGCTGAAAGAGGAGACTTCAGAAATCGAGTGCTCGACT
CCGTGGAAATCTCCGGCGTGGAAAGATCGGTCAACGCCCTGGCACATACC
ACGATCTGCTGAAAATTATCAAGGACAAGGACTTCCTGGACAATGAGGAAAACG
20 AGGACATTCTGGAAGATATCGTGTGACCCCTGACACTGTTGAGGACAGAGAGA
TGATCGAGGAACGGCTGAAAACCTATGCCACCTGTTGACGACAAAGTGTGATGA
AGCAGCTGAAGCGGCGGAGATACACCGCTGGGCAGGCTGAGCCGGAAAGCTG
ATCAACGGCATCCGGACAAGCAGTCCGGCAAGACAATCCTGGATTCTGAAG
TCCGACGGCTTCGCCAACAGAAACTTCATGCAGCTGATCCACGACGACAGCCTG
ACCTTAAAGAGGACATCCAGAAAGCCCAGGTGTCCGCCAGGGCATAAGCCTG
25 CACGAGCACATTGCCAATCTGGCCGGCAGCCCCGCCATTAAGAAGGGCATCCTG
CAGACAGTGAAGGTGGTGGACGAGCTCGTGAAAGTGATGGGCCGGACAAGCCC
GAGAACATCGTATCGAAATGCCAGAGAGAACGACCAACCCAGAACAGGACA
GAAGAACAGCCCGAGAGAATGAAGCGGATCGAAGAGGGCATCAAAGAGCTGG
GCAGCCAGATCCTGAAAGAACACCCCCGTGGAAAACACCCAGCTGCAGAACGAG
30 AAGCTGTACCTGTACTACCTGCAGAATGGCGGGATATGTACGTGGACCAGGAA
CTGGACATCAACCGGCTGTCCGACTACGATGTGGACCATATCGCCTCAGAGCT
TTCTGAAGGACGACTCCATCGACAACAAGGTGCTGACCAAGCGACAAGAAC
GGGGCAAGAGCGACAACGTGCCCTCCGAAGAGGTGCTGAAGAAGATGAAGAAC
TACTGGCGGAGCTGCTGAACGCCAACGCTGATTACCCAGAGAAAGTTCGACAAT
35 CTGACCAAGGCCAGAGAGAGGGCGGCTGAGCGAACTGGATAAGGCCGGCTTCATC
AAGAGACAGCTGGTGGAAACCCGGCAGATCACAAAGCACGTGGCACAGATCCTG
GAECTCCGGATGAAACACTAAGTACGACGAGAATGACAAGCTGATCCGGAAAGTG
AAAGTGATCACCCCTGAAGTCCAAGCTGGTGTCCGATTCCGGAAAGGATTCCAGT
TTTACAAAGTGCAGGAGATCAACAACTACCAACGCCACGACGCCACCTGA
40 ACGCCGCTGTGGGACCGCCCTGATCAAAAGTACCTAACGCTGGAAAGCGAGT
TCGTGTACGGCGACTACAAGGTGGTTCTAGCGGCAGCGAGACTCCCGGGACCT
CAGAGTCCGCCACACCCGAAAGTTCTGGTCCGAAGTCGAGTTTCCCATGAGTA
CTGGATGAGACACGCATTGACTCTCGCAAAGAGGGCTGAGATGAACGCGAGGT
GCCCGTGGGGCAGTACTCGTGTCAACAATCGCGTAATCGCGAAGGTTGGAA
45 TAGGGCAATCGGACTCACGACCCACTGCACATCGCGAAATCATGGCCCTCG
ACAGGGAGGGCTGTGATGCAGAATTATCGACTATCGATGCGACGCTGTACGTC

ACGTTGAAACCTTGCCTAATGTGCGCGGGAGCTATGATTCACTCCGCATTGGAC
 GAGTTGTATTCCGGTGTTCGCAACGCCAAGACGGGTGCCGCAGGTTCACTGATGG
 ACGTGCCTGCATTACCCAGGCATGAACCACCGGGTAGAAATCACAGAAGGCATAT
 5 TGGCGGACGAATGTGCGGCCTGTTACTTTTCGCATGCCAGGCAGGT
 CTTAACGCCAGAAAAAAGCACAATCCTCTACTGACTACGACGTGCGAAGAT
 GATGCCAAGAGCGAGCAGGAAATCGGCAAGGCTACCGCCAAGTACTTCTTCTA
 CAGCAACATCATGAACCTTTCAAGACCGAGATTACCCGGCCAACGGCGAGAT
 CCGGAAGCGGGCTCTGATCGAGACAAACGGCGAAACCGGGAGATCGTGTGGG
 ATAAGGGCCGGGATTTGCCACCGTGCAGAAAGTCTGAGCATGCCCAAGTGA
 10 ATATCGTAAAAAAGACCGAGGTGCAGACAGGGGGCTTCAGCAAAGAGTCTATCC
 TGCCCAAGAGGAACAGCGATAAGCTGATGCCAGAAAGAAGGACTGGGACCC
 AAGAAGTACGGCGGCTTCGACAGCCCCACCGTGGCCTATTCTGTGCTGGTGG
 CCAAAGTGGAAAAGGGCAAGTCCAAGAAACTGAAGAGTGTGAAAGAGCTGCTG
 GGGATCACCATCATGAAAGAAGCAGCTCGAGAAGAATCCCATCGACTTCTG
 15 GAAGCCAAGGGCTACAAAGAAGTGAAGAAAGGACCTGATCATCAAGCTGCCTAA
 GTACTCCCTGTCGAGCTGGAAAACGGCCGGAAGAGAATGCTGGCCTCTGCCGG
 CGAACTGCAGAAGGGAAACGAACACTGGCCCTGCCCTCAAATATGTGAACCTCCT
 GTACCTGGCCAGCCACTATGAGAAGCTGAAGGGCTCCCCGAGGATAATGAGCA
 GAAACAGCTTTGTGGAACAGCACAAGCACTACCTGGACGAGATCATGAGCA
 20 GATCAGCGAGTTCTCCAAGAGAGTGTACCTGGCCGACGCTAATCTGGACAAAGT
 GCTGTCCGCCTACAACAAGCACCAGGATAAGCCATCAGAGAGCAGGCCGAGAA
 TATCATCCACCTGTTACCTGACCAATCTGGAGCCCTGCCCTCAAGTAC
 TTTGACACCACCATCGACCGGAAGAGGTACACCAGACCAAAGAGGTGCTGGAC
 GCCACCCGTATCCACCAAGAGCATCACCGGCTGTACGAGACACGGATCGACCTG
 25 TCTCAGCTGGAGGTGAC

Cas9 TadAins 1015

MDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGE
 TAEATRLKRTARRRYTRRKNRICYLQEISNEMAKVDDSSFHRLEESFLVEEDKKHE
 30 RHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKAIDLRLIYLALAHMIKFRGHFLIEG
 DLNPNDSDVDKLFQLVQTYNQLFEENPINASGVDAKAILSARLSRRLENLIAQLP
 GEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQLSKDTYDDLDNLLAQIGDQYA
 DLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKYDEHHQDLTLLKALVRQQLPE
 KYKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQ
 35 RTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNRKIEKILTFRIPYYVGPLARGNSRF
 AWMTRKSEETITPWNFEEVVDKGASAQSFIERMNTFDKNLPNEVLPKHSLLYEYFT
 VYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECF
 DSVEISGVEDRFNASLGYHDLLKIIKDKDFLDNEENEDILEDIVLTTLFEDREMIEE
 RLKTYAHLFDDKVMKQLKRRRTGWRGLSRKLINGIRDQSGKTILDFLKSDFGFAN
 40 RNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIIKKGILQTVKVVDL
 VKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENT
 QLQNEKLYLYLQNGRDMYVDQELDINRLSDYDVEDHIVPQSFLKDDSIDNKVLTRS
 DKNRGKSDNVPSEEVVKKMNYWRQLLNAKLITQRKFDSLTKAERGGLSELDKAG
 FIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSCLVSDFRKDFQFY
 45 KVREINNYHHAHDAYLNAVVGTLALKYKPKLESEFVYGDYKVGSSGSETPGTSESAT

PESSGSEVEFSHEYWMRHALTLAKRARDEREVPVGAJVNLNNRVIGEGWNRAIGLH
 DPTAHAEIMALRGGLVMQNYRLIDATLYVTFEPVCVMCAGAMIHSRIGRVVFGVRN
 AKTGAAGSLMDVLHYPGMNHRVEITEGILADECAALLCYFFRMPRQVFNAQKKAQ
 SSTDYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETG
 5 EIVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDW
 DPKKYGGFDSPTVAYSVLVAKVEKGSKKLKSVKELLGITMERSSFEKNPIDFLEA
 KGYKEVKKDLIILPKYSLFELENGRKRLMASAGELQKGNELALPSKYVNFLYFLASH
 YEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKR
 10 DKPIREQAENIIHLFTLNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLHQHSITGLYET
 RIDLSQLGGD

Cas9 TadAins 1022

ATGGACAAGAAGTACAGCATCGGCCTGGCCATCGCACCAACTCTGTGGCTGG
 GCCGTGATCACCGACGAGTACAAGGTGCCAGCAAGAAATTCAAGGTGCTGGGC
 AACACCGACCGGCACAGCATCAAGAAGAACCTGATCGGAGGCCCTGCTGTCGAC
 15 AGCGGCAGAACAGCCGAGGCCACCCGGCTGAAGAGAACCGCCAGAAGAAGATA
 CACCAGACGGAAGAACCGGATCTGCTATCTGCAAGAGATCTTCAGCAACGAGAT
 GGCAAGGTGGACGACAGCTTCCACAGACTGGAAGAGTCCTCCTGGTGG
 AGAGGATAAGAACGACGAGCCGACCCATCTCGGCAACATCGTGGACGAGGT
 GGCCTACCACGAGAACGAGTACCCACCATCTACCACCTGAGAAAGAAACTGGTGG
 20 CAGCACCGACAAGGCCGACCTCGGGCTGATCTATCTGCCCTGGCCCACATGATC
 AAGTTCCGGGCCACTCCTGATCGAGGGCGACCTGAACCCGACAACAGCGAC
 GTGGACAAGCTGTTATCCAGCTGGTGCAGACCTACAACCCAGCTGTTGAGGAA
 AACCCCATCAACGCCAGCGGCGTGGACGCCAAGGCCATCCTGTCGCCAGACTG
 AGCAAGAGCAGACGGCTGGAAAATCTGATGCCCTGCTGCCGGCGAGAAGAA
 25 GAATGGCCTGTCGAAACCTGATTGCCCTGAGCCTGGGCTGACCCCCAACCTTC
 AAGAGCAACTTCGACCTGGCCGAGGATGCCAAACTGCAGCTGAGCAAGGACACC
 TACGACGACGACCTGGACAACCTGCTGGCCAGATCGCGACCAGTACGCCGAC
 CTGTTCTGGCCGCCAAGAACCTGTCCGACGCCATCCTGCTGAGCGACATCCTGA
 GAGTGAACACCGAGATCACCAAGGCCCCCTGAGCGCTCTATGATCAAGAGAT
 30 ACGACGAGCACCACCAGGACCTGACCCCTGCTGAAAGCTCTCGTGGCAGCAGC
 TGCCTGAGAACGAGATTTCTCGACCAAGAGCAAGAACGGCTACGCCG
 GCTACATTGACGGCGGAGCCAGCCAGGAAGAGATTCTACAAGTTCATCAAGCCA
 TCCTGGAAAAGATGGACGGCACCGAGGAAGTCTGCTGAGCTGAACAGAGAG
 GACCTGCTGCGGAAGCAGCGGACCTTCGACAACGGCAGCATCCCCACCAAGATC
 35 CACCTGGAGAGCTGACGCCATTCTCGGGCGCAGGAAGATTTCACCCATTCC
 TGAAGGACAACCAGGGAAAAGATCGAGAAAGATCCTGACCTTCCGCATCCCCTACT
 ACGTGGGCCCTCTGGCCAGGGAAACAGCAGATTGCGCTGGATGACCAGAAAGA
 GCGAGGAAACCATCACCCCTGGAACCTCGAGGAAGTGGTGGACAAGGGCGCTT
 CCGCCAGAGCTTCATCGAGCGGATGACCAACTCGATAAGAACCTGCCAACG
 40 AGAAGGTGCTGCCAAGCACAGCCTGCTGTACGAGTACTTCACCGTGTATAACG
 AGCTGACCAAAGTGAATACTGACCGAGGGAATGAGAAAGCCGCCCTCCTGA
 GCAGCGAGCAGAAAAAGGCCATCGTGGACCTGCTGTTCAAGACCAACCGGAAAG
 TGACCGTGAAGCAGCTGAAAGAGGACTACTTCAAGAAAATCGAGTGCTTCGACT
 CCGTGGAAATCTCCGGCGTGGAAAGATCGGTCAACGCCCTGGCACATACC
 45 ACGATCTGCTGAAAATTATCAAGGACAAGGACTTCCTGGACAATGAGGAAAACG

AGGACATTCTGGAAGATATCGCTGACCTGACACTGTTGAGGACAGAGAGA
TGATCGAGGAACGGCTGAAAACCTATGCCACCTGTCGACGACAAAGTGTGA
AGCAGCTGAAGCGCGGAGATACACCGGCTGGGCAGGCTGAGCCGGAAGCTG
ATCAACGGCATCCGGACAAGCAGTCCGGCAAGACAATCCTGGATTCTGAAG
5 TCCGACGGCTCGCAACAGAAACTTCATGCACTGAGCTGATCCACGACGACAGCCTG
ACCTTAAAGAGGACATCCAGAAAGCCCAGGTGTCCGGCAGGGCGATAGCCTG
CACGAGCACATTGCCAATCTGGCCGGCAGCCCCGCCATTAAAGAAGGGCATCCTG
CAGACAGTGAAGGTGGTGGACGAGCTCGTGAAGATGATGGCCGGCACAAGCCC
GAGAACATCGTATCGAAATGCCAGAGAGAACGACCAACCCAGAACGGACA
10 GAAGAACAGCCCGAGAGAACATGAAGCGGATCGAAGAGGGCATCAAAGAGCTGG
GCAGCCAGATCCTGAAAGAACACCCCGTGGAAAACACCCAGCTGCAGAACGAG
AAGCTGTACCTGTACTACCTGCAGAATGGCGGGATATGTACGTGGACCAGGAA
CTGGACATCAACCGCTGTCCGACTACGATGTGGACCATATCGTCCTCAGAGCT
TTCTGAAGGACGACTCCATCGACAACAAGGTGCTGACCAGAACGACAAGAAC
15 GGGGCAAGAGCGACAACGTGCCCTCCGAAGAGGTGCTGAAGAACATGAAGAAC
TACTGGCGGCAGCTGCTGAACGCCAAGCTGATTACCCAGAGAACAGTTCGACAAT
CTGACCAAGGCCGAGAGAGGGCGCTGAGCGAACTGGATAAGGCCGGCTCATC
AAGAGACAGCTGGTGGAAACCCGGCAGATCACAAAGCACGTGGCACAGATCCTG
GAECTCCGGATGAACACTAAGTACGACGAGAACAGCTGATCCGGGAAGTG
20 AAAGTGTACCCCTGAAGTCCAAGCTGGTGTCCGATTCCGGAAAGGATTCCAGT
TTTACAAAGTGGCGAGATCAACAACCTACCAACGCCACGACGCCACCTGA
ACGCCGTGTTGGAACCGCCCTGATCAAAAGTACCCCTAACGCTGGAAAGCGAGT
TCGTGTACGGCGACTACAAGGTGTACGACGTGCGGAAGATGATCGTTCTAGCG
GCAGCGAGACTCCGGGACCTCAGAGTCCGCCACACCCGAAAGTTCTGGTCCG
25 AAGTCGAGTTCCATGAGTACTGGATGAGACACGCATTGACTCTCGCAAAGA
GGGCTCGAGATGAACCGCGAGGTGCCCCGTGGGGCAGTACTCGTGTCAACAATC
GCGTAATCGCGAAGGTTGGAATAGGGCAATCGGACTCCACGACCCACTGCAC
ATGCGGAATCATGCCCTCGACAGGGAGGGCTGTGATGCAGAATTATCGAC
TTATCGATGCGACGCTGTACGTACGTTGAACCTTGCCTAATGTGCGCGGGAGC
30 TATGATTCACTCCGCATTGGACGAGTTGATTGGTGTTCGCAACGCCAAGACG
GGTGCCGCAGGTTCACTGATGGACGCTGCTGCATTACCCAGGCATGAACCACCGG
GTAGAAATCACAGAACGGCATATTGGCGGACGAATGTGCGCGCTGTTGTGTAC
TTTTTCGCATGCCAGGCAGGTCTTAACGCCAGAAAAAGCACAAATCCTCTA
CTGACGCCAACAGCGAGCAGGAAATCGCAAGGCTACGCCAACGACTTCTTCT
35 ACAGCAACATCATGAACCTTTCAAGACCGAGATTACCCGGCAACGGCGAGA
TCCGGAAGCGGCCTGATCGAGACAAACGGCGAAACCGGGAGATCGTGTGGG
ATAAGGGCGGGATTTCGCCACCGTGCAGAACAGGCTTCAGCAAAGAGTCTATCC
ATATCGTAAAAAGACCGAGGTGCAGACAGGGCGCTCAGCAAAGAGTCTATCC
TGCCCAAGAGGAACAGCGATAAGCTGATGCCAGAACAGGACTGGGACCCCT
40 AAGAAGTACGGCGGCTCGACAGCCCCACCGTGGCCTATTCTGTGCTGGTGGTGG
CCAAAGTGGAAAAGGGCAAGTCCAAGAAACTGAAGAGTGTGAAAGAGCTGCTG
GGGATCACCATGAGAACAGCAGCTCGAGAACAGGACCTGATCATCAAGCTGCCTAA
GAAGCCAAGGGCTACAAAGAACGAGTAAAAAGGACCTGATCATCAAGCTGCCTAA
GTACTCCCTGTCGAGCTGGAAAACGGCCGGAAAGAGAACATGCTGGCCTTGCCGG
45 CGAACTGCAGAACGGAAACGAACGGCCCTGCCCTCCAAATATGTGAAACTCCT
GTACCTGGCCAGCCACTATGAGAACGACTGAGAACGGCTCCCCGAGGATAATGAGCA

GAAACAGCTTTGTGGAACAGCACAAGCACTACCTGGACGAGATCATCGAGCA
 GATCAGCGAGTTCTCCAAGAGAGTGTACCTGGCCGACGCTAATCTGGACAAAGT
 GCTGTCGCCCTACAACAAGCACCAGGGATAAGCCCACAGAGAGCAGGCCAGAA
 TATCATCCACCTGTTACCCCTGACCAATCTGGAGCCCTGCCCTCAAGTAC
 5 TTTGACACCACCATCGACCGGAAGAGAGTACACCAGCACCAAAAGAGGTGCTGGAC
 GCCACCCCTGATCCACCAGAGCATCACCGGCCTGTACGAGACACGGATCGACCTG
 TCTCAGCTGGAGGTGAC

Cas9 TadAins 1022

MDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGE
 10 TAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSSFHRLEESFLVEEDKKHE
 RHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEG
 DLNPNDSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSRRLENLIAQLP
 GEKKNGLFGNLLIALSGLTPNFKNFDLAEDAKLQLSKDTYDDDLNLLAQIGDQYA
 DLFLAAKNLSDAILSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPE
 15 KYKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQ
 RTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNRKIEKILTFRIPYYVGPLARGNSRF
 AWMTRKSEETITPWNFEVVVDKGASAQSFIERMNTFDKKNLPNEKVLPKHSLLYEYFT
 VYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECF
 DSVEISGVEDRFNASLGYHDLLKIIKDKDFLDNEENEDILEDIVLTLLFEDREMIEE
 20 RLKTYAHLFDDKVMKQLKRRRYTGWGRSLRKLINGIRDQSGKTIIDFLKSDGFAN
 RNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIIKGILQTVKVVDEL
 VKVMGRHKPENIVIEMARENQTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENT
 QLQNEKLYLYLQNGRDMYVDQELDINRLSDYDVDHIVPQSLKDDSIDNKVLTRS
 DKNRGKSDNVPSEEVVKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAG
 25 FIKRQLVETRQITKHVAQILDLSRMNTKYDENDKLIREVKVITLKSLSVSDFRKDFQFY
 KVREINNYHHAHDAYLNAVGTALIKKYPKLESEFVYGDYKVDVRKMIGSSGSET
 PGTSESATPESSGSEVEFSHEYWMRHALTAKRARDEREVPVGAVLVNNRVIGEG
 WNRAIGLHDPTAHAEIMALRQGGLVMQNYRLIDATLYVTFEPVCVMCAGAMIHSRIG
 RVVFGVRNAKTGAAGSLMDVLHYPGMNHRVEITEGILADECAALLCYFFRMPRQVF
 30 NAQKKAQSSTDAKSEQEIGKATAKYFFYSNIMNNFKTEITLANGEIRKRPLIETNGET
 GEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKD
 WDPKKYGGFDSPTVAYSVLVAKVEKGSKKLKSVKELLGITIMERSFEKNPIDFL
 EAKGYKEVKKDLIILKLPKYSLELENGRKRLMASAGELQKGNELALPSKYVNFLYLA
 SHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKH
 35 RDKPIREQAENIIHLFTLTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQSITGLY
 ETRIDLSQLGGD

IBE003_Cas9: Cas9 TadAins 1029

ATGGACAAGAAGTACAGCATCGGCCTGGCCATCGGCACCAACTCTGTGGCTGG
 40 GCCGTGATCACCAGCAGTACAAGGTGCCAGCAAGAAATTCAAGGTGCTGGGC
 AACACCGACCGGCACAGCATCAAGAAGAACCTGATCGGAGCCCTGCTGTTGAC
 AGCGCGAAACAGCCAGGCCACCCGGCTGAAGAGAACGCCAGAAGAAGATA
 CACCAGACGGAAGAACCGGATCTGCTATCTGCAAGAGATCTTCAGCAACGAGAT
 GGCCAAGGTGGACGACAGCTTCTCACAGACTGGAAGAGTCCTCCTGGTGG

AGAGGATAAGAAGCACGAGCGGCACCCATCTCGCAACATCGTGGACGAGGT
GGCCTACCACGAGAAGTACCCACCATCTACCACCTGAGAAAGAAACTGGTGGA
CAGCACCGACAAGGCCACCTGCGGCTGATCTATCTGGCCCTGGCCCACATGATC
AAGTTCCGGGGCCACTCCTGATCGAGGGCGACCTGAACCCGACAACAGCGAC
5 GTGGACAAGCTGTTATCCAGCTGGTGCAGACCTACAACCAACAGCTGTTGAGGAA
AACCCCATCAACGCCAGCGCGTGGACGCCAAGGCCATCCTGCTGCCAGACTG
AGCAAGAGCAGACGGCTGGAAAATCTGATGCCAGCTGCCCGGAGAAGAA
GAATGCCCTGTCGGAAACCTGATTGCCCTGAGCCTGGGCCTGACCCCCAACTTC
AAGAGCAACTCGACCTGGCCGAGGATGCCAAACTGCAGCTGAGCAAGGGACACC
10 TACGACGACGACCTGGACAACCTGCTGGCCCAGATCGCGACCAGTACGCCGAC
CTGTTCTGGCCGCCAAGAACCTGTCGACGCCATCCTGCTGAGCGACATCCTGA
GAGTGAACACCGAGATCACCAAGGCCCGCTGAGCGCCTCTATGATCAAGAGAT
ACGACGAGCACCACCAGGACCTGACCCCTGCTGAAAGCTCTGCGGCAGCAGC
TGCCTGAGAAGTACAAAGAGATTTCTGACCCAGAGCAAGAACGGCTACGCCG
15 GCTACATTGACGGCGGAGCCAGGAAGAGTTCTACAAGTTATCAAGGCCA
TCCTGGAAAAGATGGACGGCACCGAGGAAGTGCTCGTAAGCTGAACAGAGAG
GACCTGCTGCCAAGCAGCGGACCTCGACAACGGCAGCATCCCCCACCAGATC
CACCTGGGAGAGCTGACGCCATTCTGCGCGGCAGGAAGATTTCACCCATTCC
TGAAGGACAACCAGGAAAAGATCGAGAAGATCCTGACCTCCGCATCCCCACT
20 ACGTGGGCCCTCTGGCCAGGGAAACAGCAGATTGCCCTGGATGACCAGAAAGA
GCGAGGAAACCATCCCCCTGGAACCTCGAGGAAGTGGTGGACAAGGGCGCTT
CCGCCAGAGCTTCATCGAGCGGATGACCAACTCGATAAGAACCTGCCAACG
AGAAGGTGCTGCCAACGACACGCTGCTGTACGAGTACTTCACCGTGTATAACG
AGCTGACCAAAGTGAACATCGACCGAGGGATGAGAAAGGCCCTCCTGA
25 GCAGCGAGCAGAAAAGGCCATCGTGGACCTGCTGTTCAAGACCAACCGGAAAG
TGACCGTGAAGCAGCTGAAAGAGGACTACTTCAAGAAAATCGAGTGCTCGACT
CCGTGGAAATCTCCGGCGTGGAAAGATCGGTCAACGCCCTCCCTGGCACATACC
ACGATCTGCTGAAAATTATCAAGGACAAGGACTTCCTGGACAATGAGGAAAACG
AGGACATTCTGGAAGATATCGTGTGACCCCTGACACTGTTGAGGACAGAGAGA
30 TGATCGAGGAACGGCTGAAAACCTATGCCACCTGTTGACGACAAAGTGTGATGA
AGCAGCTGAAGCGGCGGAGATACACCGGCTGGGCAGGCTGAGCCGGAAAGCTG
ATCAACGGCATCCGGACAAGCAGTCCGGCAAGACAATCCTGGATTCTCTGAAG
TCCGACGGCTTCGCCAACAGAAACTCATGCAGCTGATCCACGACAGCCTG
ACCTTAAAGAGGACATCCAGAAAGCCCAGGTGTCCGCCAGGGCGATAGCCTG
35 CACGAGCACATTGCCAATCTGGCCGGCAGCCCCGCCATTAAGAAGGGCATCCTG
CAGACAGTGAAGGTGGTGGACGAGCTCGTGAAGATGATGGGCCGGACAAGCCC
GAGAACATCGTGTGAAATGCCAGAGAGAACGACCAACCCAGAACGGGACA
GAAGAACAGCCCGAGAGAAATGAAGCGGATCGAAGAGGGCATCAAAGAGCTGG
GCAGCCAGATCCTGAAAGAACACCCCGTGGAAAACACCCAGCTGCAGAACGAG
40 AAGCTGTACCTGTACTACCTGCAGAATGGCGGGATATGTACGTGGACCAAGGAA
CTGGACATCAACCGGCTGTCCGACTACGATGTGGACCATATCGTGCCTCAGAGCT
TTCTGAAGGACGACTCCATCGACAACAAGGTGCTGACCAAGCGACAAGAAC
GGGGCAAGAGCGACAACGTGCCCTCGAAGAGGTCGTGAAGAAGATGAAGAAC
TACTGGCGGCAGCTGCTGAACGCCAAGCTGATTACCCAGAGAAAGTCGACAAT
45 CTGACCAAGGCCAGAGAGAGGCCCTGAGCGAACTGGATAAGGCCGGCTTCATC
AAGAGACAGCTGGTGGAAACCCGGCAGATCACAAAGCACGTGGCACAGATCCTG

GACTCCGGATGAACACTAAGTACGACGAGAATGACAAGCTGATCCGGGAAGTG
 AAAGTGATCACCTGAAGTCCAAGCTGGTGTCCGATTCCGAAGGATTCCAGT
 TTTACAAAGTGCAGAGATCAACAACCTACCAACGCCACGACGCCACCTGA
 ACGCCGTCGTGGAACCGCCCTGATCAAAAAGTACCTAAGCTGGAAAGCGAGT
 5 TCGTGTACGGCGACTACAAGGTGTACGACGTGGAAAGATGATGCCAAGAGCG
 AGCAGGAAATCGGTTCTAGCGGCAGCGAGACTCCCGGGACCTCAGAGTCCGCCA
 CACCCGAAAGTTCTGGTCCGAAGTCGAGTTCCATGAGTACTGGATGAGACA
 CGCATTGACTCTCGCAAAGAGGGCTCGAGATGAACGCGAGGTGCCGTGGGGC
 AGTACTCGTGTCAACAATCGCGTAATCGCGAAGGTTGGAATAGGGCAATCGG
 10 ACTCCACGACCCCCACTGCACATCGGAAATCATGGCCCTCGACAGGGAGGGCT
 TGTGATGCAGAATTATCGACTTATCGATGCGACGCTGTACGTACGTTGAACCT
 TCGTAATGTGCGCGGGAGCTATGATTCACTCCGCATTGGACGAGTTGTATTCG
 GTGTTCGCAACGCCAAGACGGGTGCCAGGTTCACTGATGGACGTGCTGCATT
 ACCCAGGCATGAACCACCGGGTAGAAATCACAGAAGGCATATTGGCGGACGAAT
 15 GTGCGCGCTGTTACTTTGCATGCCAGGCAGGTCTTAACGCCA
 GAAAAAAAGCACAATCCTCTACTGACGGCAAGGCTACCGCCAAGTACTTCTTCTAC
 AGCAACATCATGAACTTTCAAGACCGAGATTACCCGCCAACGGCGAGATC
 CGGAAGCGGCCCTGATCGAGACAAACGGCGAACCCGGGAGATCGTGTGGAT
 AAGGGCCGGGATTTGCCACCGTGCAGAAAGTGTGAGCATGCCCAAGTGAAT
 20 ATCGTAAAAAGACCGAGGTGCAGACAGGCGCTTCAGCAAAGAGTCTATCCTG
 CCCAAGAGGAACAGCGATAAGCTGATGCCAGAAAGAAGGACTGGGACCCCTAA
 GAAGTACGGCGGCTTCGACAGCCCCACCGTGGCCTATTCTGTGCTGGTGGTGGC
 AAAGTGGAAAAGGGCAAGTCCAAGAAACTGAAGAGTGTGAAAGAGCTGCTGG
 GATCACCACATGGAAGAACAGCAGCTCGAGAAGAACCCATCGACTTCTGGA
 25 AGCCAAGGGCTACAAAGAAGTAAAAAGGACCTGATCATCAAGCTGCCAAGTA
 CTCCCTGTTGAGCTGGAAAACGGCCGGAAGAGAAATGCTGGCCTCTGCCGGCGA
 ACTGCAGAAGGGAAACGAACTGGCCCTGCCCTCCAAATATGTGAACCTCCTGTA
 CCTGGCCAGCCACTATGAGAACGACTGAAGGGCTCCCCGAGGATAATGAGCAGAA
 ACAGCTGTTGGAACAGCACAAGCACTACCTGGACGAGATCATCGAGCAGAT
 30 CAGCGAGTTCTCCAAGAGAGTGATCCTGGCCACGCTAATCTGGACAAAGTGT
 GTCCGCCTACAACAAGCACCAGGATAAGCCCACAGAGAGCAGGCCAGAAATAT
 CATCCACCTGTTACCCCTGACCAATCTGGAGGCCCTGCCGCTTCAAGTACTTT
 GACACCACCATCGACCGGAAGAGGTACACCAGCACCAAGAGGTGCTGGACGCC
 ACCCTGATCCACCAAGAGCATCACCGCCCTGACGAGACACGGATCGACCTGTCTC
 35 AGCTGGGAGGTGAC

Cas9 TadAins 1029

MDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGE
 TAEATRLKRTARRRYTRRKNRICYLQEISNEMAKVDDSSFHRLEESFLVEEDKKHE
 RHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEG
 40 DLNPNDNSVDKLFQLVQTYNQLFEENPINASGVDAKAILSARLSRRLENLIAQLP
 GEKKNGLFGNLIALSGLTPNFKNFDLAEDAKLQLSKDTYDDLDNLLAQIGDQYA
 DLFLAAKNLSDAILSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPE
 KYKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQ
 RTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRF
 45 AWMTRKSEETITPWNFEVVVDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFT
 VYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLKTNRKVTVKQLKEDYFKKIECF

DSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTTLFEDREMIEE
 RLKTYAHLFDDKVMQLKRRRTGWRGLSRKLINGIRDQSGKTIIDFLKSDGFAN
 RNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIIKKGILQTVKVVDDEL
 5 VKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENT
 QLQNEKLYLYLQNQGRDMYVDQELDINRLSDYDVEDHIVPQSFLKDDSIDNKVLTRS
 DKNRGKSDNVPSEEVVKMKNYWRQLNAKLITQRKFIDNLTKAERGGLSELDKAG
 FIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSCLVSDFRKDFQFY
 KVREINNYHHAHDAYLNNAVVTALIKKYPKLESEFVYGDYKVDVRKMIAKSEQEI
 GSSGSETPGTSESATPESSGSEVEFSHEYWMRHALTLAKRARDEREVPVGAFLVNN
 10 RVIGEGWNRAIGLHDPTAHAEIMALRQGGLVMQNYRLIDATLYVTFEPVCVMCAGA
 MIHSRIGRVVFGVRNAKTGAAGSLMDVLHYPGMNHRVEITEGILADECACALLCYFF
 RMPRQVFNAQKKAQSSTDGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGET
 GEIVWDKGRDFATVRKVLSMPQVNIVKTEVQTGGFSKESILPKRNSDKLIARKKD
 15 WDPKKYGGFDSPTVAYSVLVVAKVEKGKSKKLKSVKELLGITIMERSSEKNPIDFL
 EAKGYKEVKKDLIILPKYSLFELENGRKRLASAGELQKGELALPSKYVNFLYLA
 SHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVL SAYNKH
 RDKPIREQAENIIHLFTLTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQSITGLY
 ETRIDLSQLGGD

IBE004_Cas9: Cas9 TadAins 1040

20 ATGGACAAGAAGTACAGCATCGGCCTGGCCATCGGACCAACTCTGTGGGCTGG
 GCCGTGATCACCAGACGAGTACAAGGTGCCAGCAAGAAATTCAAGGTGCTGGG
 AACACCGACCGGCACAGCATCAAGAAGAACCTGATCGGAGCCCTGCTGTCGAC
 AGCGCGAAACAGCCGAGGCCACCCGGCTGAAGAGAACCGCCAGAACAGAGATA
 CACCAGACGGAAGAACCGGATCTGCTATCTGCAAGAGATCTTCAGCAACGAGAT
 25 GGCAAGGTGGACGACAGCTCTTCCACAGACTGGAAGAGTCCTCCTGGTGG
 AGAGGATAAGAACGACGAGCGGCACCCATCTCGGCAACATCGTGGACGAGGT
 GGCCTACCACGAGAACGAGTACCCACCATCTACCACCTGAGAAAGAAACTGGTGG
 CAGCACCGACAAGGCCACCTGCGGCTGATCTATCTGCCCTGGCCACATGATC
 AAGTCCGGGCCACTCCTGATCGAGGGCGACCTGAACCCGACAACAGCGAC
 30 GTGGACAAGCTGTTATCCAGCTGGTGACACCTACAACCAAGCTGTTGAGGAA
 AACCCCATCAACGCCAGCGCGTGGACGCCAAGGCCATCCTGCTGCCAGACTG
 AGCAAGAGCAGACGGCTGGAAAATCTGATGCCAGCTGCCGGCGAGAACAGAA
 GAATGGCCTGTCGAAACCTGATTGCCCTGAGCCTGGGCTGACCCCCAACCTC
 AAGAGCAACTCGACCTGGCGAGGATGCCAAACTGCAGCTGAGCAAGGACACC
 35 TACGACGACGACCTGGACAACCTGCTGGCCAGATGGCAGCCAGTACGCCAC
 CTGTTCTGGCCCAAGAACCTGTCGACGCCATCCTGCTGAGCGACATCCTGA
 GAGTGAACACCGAGATCACCAAGGCCCCCTGAGCGCCTCTATGATCAAGAGAT
 ACGACGAGCACCACCAGGACCTGACCTGCTGAAAGCTCTCGTGGCAGCAGC
 TGCCTGAGAAGTACAAGAGATTTCTCGACCAAGAGCAAGAACGGCTACGCC
 40 GCTACATTGACGGCGGAGGCCAGGAAGAGTTCTACAAGTTCATCAAGGCCA
 TCCTGGAAAAGATGGACGGCACCGAGGAACCTGCTGTGAAGCTGAACAGAGAG
 GACCTGCTGCGGAAGCAGCGGACCTCGACAACGGCAGCATCCCCACCAAGATC
 CACCTGGAGAGCTGCACGCCATTCTCGGGCGCAGGAAGATTTCACCCATTCC
 TGAAGGACAACCGGGAAAAGATCGAGAAGATCCTGACCTCCGCATCCCCTACT
 45 ACGTGGGCCCTCTGCCAGGGAAACAGCAGATTGCGCTGGATGACCAGAAAGA
 GCGAGGAAACCACATACCCCTGGAACCTCGAGGAAGTGGTGACAGGGCGCTT

CCGCCAGAGCTTCATCGAGCGGATGACCAACTCGATAAGAACCTGCCAACG
AGAAGGTGCTGCCAACGACACAGCCTGCTGTACGAGTACTTCACCGTGTATAACG
AGCTGACCAAAAGTGAATACTGTGACCGAGGGAATGAGAAAGCCGCCCTCCTGA
GCGCGAGCAGAAAAAGGCCATCGTGGACCTGCTGTTCAAGACCAACCGGAAAG
5 TGACCGTGAAGCAGCTGAAAGAGGACTACTTCAAGAAAATCGAGTGCTTCGACT
CCGTGGAAATCTCCGGCGTGGAAAGATCGGTCAACGCCCTCCCTGGGACATACC
ACGATCTGCTGAAAATTATCAAGGACAAGGACTTCCTGGACAATGAGGAAAACG
AGGACATTCTGGAAGATATCGTGTGACACTGTTGAGGACAGAGAGA
TGATCGAGGAACGGCTGAAAACCTATGCCACCTGTTGACGACAAAGTGTGA
10 AGCAGCTGAAGCGGCGGAGATACACCGGCTGGGGCAGGCTGAGCCCGAACGCTG
ATCAACGGCATCCGGACAAGCAGTCCGGCAAGACAATCCTGGATTCCCTGAAG
TCCGACGGCTTCGCCAACAGAAACTTCATGCACTGATCCACGACGACAGCCTG
ACCTTAAAGAGGACATCCAGAAAGCCCAGGTGTCCGCCAGGGCGATAGCCTG
CACGAGCACATTGCCAATCTGCCGGCAGCCCCGCCATTAAGAAGGGCATCCTG
15 CAGACAGTGAAGGTGGTGGACGAGCTCGTAAAGTGTGGCCGGACAAGCCC
GAGAACATCGTGTGAAATGGCCAGAGAGAACGACCAACCCAGAACGGGACA
GAAGAACAGCCCGAGAGAATGAAGCGGATCGAAGAGGGCATCAAAGAGCTGG
GCAGCCAGATCCTGAAAGAACACCCCGTGGAAAACACCCAGCTGCAGAACGAG
AAGCTGTACCTGTACTACCTGCAGAATGGCGGGATATGTACGTGGACCAAGGAA
20 CTGGACATCAACCGGCTGTCCGACTACGATGTGGACCATATCGCCTCAGAGCT
TTCTGAAGGACGACTCCATCGACAACAAGGTGCTGACCAAGCGACAAGAAC
GGGGCAAGAGCGACAACGTGCCCTCCGAAGAGGTGCTGAAGAACGATGAAGAAC
TACTGGCGGAGCTGCTGAACGCCAACGCTGATTACCCAGAGAAAGTCGACAAT
CTGACCAAGGCCGAGAGAGGGCCCTGAGCGAACTGGATAAGGCCGGCTTCATC
25 AAGAGACAGCTGGTGGAAACCCGGCAGATCACAAAGCACGTGGCACAGATCCTG
GACTCCGGATGAAACACTAAGTACGACGAGAACGACAGCTGATCCGGGAAGTG
AAAGTGATCACCTGAAGTCCAAGCTGGTGTCCGATTCCGGAAAGGATTCCAGT
TTTACAAAGTGCAGGAGATCAACAACCTACCAACGCCACGACGCCTACCTGA
ACGCCGTGTTGGAACCGCCCTGATCAAAAGTACCCCTAACGCTGGAAAGCGAGT
30 TCGTGTACGGCGACTACAAGGTGTACGACGTGGAAAGATGATGCCAACAGCG
AGCAGGAAATCGGCAAGGCTACGCCAACGACTTCTTACAGCGGTTCTAGCG
GCAGCGAGACTCCCGGGACCTCAGAGTCCGCCAACCCGAAAGTTCTGGTCCG
AAGTCGAGTTTCCATGAGTACTGGATGAGACACGCATTGACTCTCGCAAAGA
GGGCTCGAGATGAACCGCAGGTGCCGTGGGGCAGTACTCGTGTCAACAATC
35 GCGTAATCGGCGAAGGTGGAATAGGGCAATCGGACTCCACGACCCCCACTGCAC
ATGCGGAAATCATGCCCTCGACAGGGAGGGCTGTGATGCAGAATTATCGAC
TTATCGATGCGACGCTGTACGTCACGTTGAACCTTGCCTGAATGTGCGCGGGAGC
TATGATTCACTCCGCATTGGACGAGTTGTTACGCTGCAACGCCAACGACG
GGTGCCGCAGGTTCACTGATGGACGCTGCTGCATTACCCAGGCATGAACCACCGG
40 GTAGAAATCACAGAACGGCATATTGGCGGACGAATGTGCGGCGTGTGTTAC
TTTTTCGCATGCCAGGCAGGTCTTAAACGCCAGAAAAAGCACAAATCCTCTA
CTGACAACATCATGAACCTTCAAGACCGAGATTACCCGCCAACGGCGAGAT
CCGGAAAGCGGCCCTGTGATCGAGACAAACGGCGAACCCGGGGAGATCGTGTGGG
ATAAGGGCGGGATTTCGCCACCGTGGAAAGTGTGAGCATGCCAACAGTGA
45 ATATCGTAAAAAGACCGAGGTGCAGACAGGCCCTCAGCAAAGAGTCTATCC
TGCCCAAGAGGAACAGCGATAAGCTGATGCCAGAAAGAAGGACTGGGACCC

AAGAAGTACGGCGGCTTCGACAGCCCCACCGTGGCTATTCTGTGCTGGTGGTGG
 CCAAAGTGGAAAAGGGCAAGTCCAAGAAACTGAAGAGTGTAAAGAGACTGCTG
 GGGATCACCACATGGAAAGAAGCAGCTCGAGAAGAATCCCATCGACTTCTG
 GAAGCCAAGGGCTACAAAGAAGTGAAGAAAGGACCTGATCATCAAGCTGCCTAA
 5 GTACTCCCTGTCAGCTGGAAAACGGCCGGAAGAGAATGCTGGCCTCTGCCGG
 CGAACTGCAGAAGGGAAACGAACACTGGCCCTGCCCTCAAATATGTGAACCTCCT
 GTACCTGCCAGCCACTATGAGAAGCTGAAGGGCTCCCCGAGGATAATGAGCA
 GAAACAGCTGTTGTGGAACAGCACAAGCACTACCTGGACGAGATCATCGAGCA
 GATCAGCGAGTTCTCCAAGAGAGTGTACCTGGCCGACGCTAATCTGGACAAAGT
 10 GCTGTCCGCCTACAACAAGCACCAGGATAAGCCCATCAGAGAGCAGGCCGAGAA
 TATCATCCACCTGTTACCCCTGACCAATCTGGAGCCCTGCCCTCAAGTAC
 TTTGACACCACCATCGACCGGAAGAGGTACACCAGCACCAAAGAGGTGCTGGAC
 GCCACCCTGATCCACCAGAGCATCACCAGCCTGTACGAGACACGGATCGACCTG
 TCTCAGCTGGAGGTGAC

15 Cas9 TadAins 1040
 MDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGE
 TAEATRLKRTARRRYTRRKNRICYLQEISNEMAKVDDSSFHRLEESFLVEEDKKHE
 RHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKAIDLRLIYLALAHMIKFRGHFLIEG
 DLNPDNSDVKLFQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLP
 20 GEKKNGLFGNLIALSLGLTPNFKNFDLAEDAKLQLSKDTYDDDLNLLAQIGDQYA
 DLFLAAKNLSDAILSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPE
 KYKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQ
 RTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRF
 AWMTRKSEETITPWNFEEVVDKGASAQSFIERNMTNFDKKNLPNEKVLPKHSLLYEYFT
 25 VYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECF
 DSVEISGVEDRFNASLGYHDLLKIIKDKDFLDNEENEDILEDIVLTTLFEDREMIEE
 RLKTYAHLFDDKVMKQLKRRYTGWGRSLRKLINGIRDQSGKTILDFLKSDGFAN
 RNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIIKGILQTVKVVDEL
 VKVMGRHKPENIVIEMARENQTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENT
 30 QLQNEKLYLYLQNGRDMYVDQELDINRLSDYDVEDHIVPQSFLKDDSIDNKVLTRS
 DKNRGKSDNVPSEEVVKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAG
 FIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSCLVSDFRKDFQFY
 KVREINNYHHAHDAYLNAVGTALIKKYPKLESEFVYGDYKVDVRKMIAKSEQEI
 GKATAKYFFYSGSSGSETPGTSESATPESSGSEVEFSHEYWMRHALTLAKRARDERE
 35 VPVGAVLVNNRVIGEGWNRAIGLHDPTAHAEIMALRQGGLVMQNYRLIDATLYVT
 FEPCVMCAGAMIHSRIGRVVFGVRNAKTGAAGSLMDVLHYPGMNHRVEITEGILAD
 ECAALLCYFFRMPRQVFNAQKKAQSSTDNIMNFFKTEITLANGEIRKRPLIETNGETG
 EIVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKD
 40 DPKKYGGFDSPTVAYSLLVAKVEKGSKKLKSVKELLGITIMERSFEKNPIDFLEA
 KGYKEVKKDLIILPKYSLFELENGRKMLASAGELQKGNELALPSKYVNFLYFLASH
 YEKLKGSPEDNEQKQLFVEQHKHYLDEIIIEQISEFSKRVILADANLDKVLSAYNKR
 DKPIREQAENIIHLFTLNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQSITGLYET
 RIDLSQLGGD

IBE005_Cas9: Cas9 TadAins 1068

45 ATGGACAAGAAGTACAGCATCGGCCTGGCCATCGGCACCAACTCTGTGGCTGG

5 GCCGTGATCACCGACGAGTACAAGGTGCCAGCAAGAAATTCAAGGTGCTGGC
AACACCGACCGGCACAGCATCAAGAAGAACCTGATCGGAGCCCTGCTGTTGAC
AGCGGCGAAACAGCCGAGGCCACCCGGCTGAAGAGAACCGCCAGAACAGATA
CACCAAGACGGAAGAACCGGATCTGCTATCTGCAAGAGAGATCTTCAGCAACGAGAT
10 GGCCAAGGTGGACGACAGCTTCTCACAGACTGGAAGAGTCCTCCTGGTGG
AGAGGATAAGAACGACGAGCGGCACCCATCTCGGCAACATCGTGGACGAGGT
GGCCTACCACGAGAAGTACCCACCATCTACCACCTGAGAAAGAAACTGGTGG
CAGCACCGACAAGGCCGACCTGCGGCTGATCTATCTGCCCTGGCCACATGATC
AAGTCCGGGCCACTCCTGATCGAGGGCAGCTGAACCCCCGACAACAGCGAC
15 GTGGACAAGCTGTTATCCAGCTGGTGCAGACCTACAACCAACAGCTGTTGAGGAA
AACCCATCAACGCCAGCGCGTGGACGCCAAGGCCATCCTGCTGCCAGACTG
AGCAAGAGCAGACGGCTGAAAATCTGATCGCCAGCTGCCCGAGAACAGAA
GAATGGCCTGTTCGGAAACCTGATTGCCCTGAGCCTGGCCTGACCCCCAACCTC
AAGAGCAACTCGACCTGGCCGAGGATGCCAAACTGCAGCTGAGCAAGGACACC
20 TACGACGACGACCTGGACAACCTGCTGCCAGATGGCGACCAAGTACGCCGAC
CTGTTCTGGCCGCCAAGAACCTGTCGACGCCATCCTGCTGAGCGACATCCTGA
GAGTGAACACCGAGATCACCAAGGCCCCCTGAGCCTCTATGATCAAGAGAT
ACGACGAGCACCACCAAGGACCTGACCCCTGCTGAAAGCTCTCGTGGCAGCAGC
TGCCCTGAGAAGTACAAAGAGATTTCTCGACCAAGAGCAAGAACGGCTACGCCG
25 GCTACATTGACGGCGGAGCCAGCCAGGAAGAGATTCTACAAGTTCATCAAGGCCA
TCCTGGAAAAGATGGACGGCACCGAGGAACTGCTCGAAGCTGAACAGAGAG
GACCTGCTCGGAAGCAGCGGACCTCGACAACGGCAGCATCCCCCACCAGATC
CACCTGGAGAGAGCTGACGCCATTCTCGGGCGCAGGAAGATTTCACCCATTCC
TGAAGGACAACCGGGAAAAGATCGAGAAGATCCTGACCTTCCGATCCCCACT
30 ACGTGGGCCCTCTGGCAGGGAAACAGCAGATTGCTGGATGACCAAGAAAGA
GCGAGGAAACCATCACCCCCCTGGAACCTCGAGGAAGTGGTGGACAAGGGCGCTT
CCGCCAGAGCTTCATCGAGCGGATGACCAACTCGATAAGAACCTGCCAACG
AGAAGGTGCTGCCAACGACACGCTGCTGTACGAGTACTTCACCGTGTATAACG
AGCTGACCAAAGTGAAAATACGTGACCGAGGGAAATGAGAAAGCCGCTTCTGA
35 GCGCGAGCAGAAAAGGCCATCGTGGACCTGCTGTTCAAGACCAACCGGAAAG
TGACCGTGAAGCAGCTGAAAGAGGACTACTTCAAGAAAATCGAGTGCTCGACT
CCGTGGAAATCTCCGGCGTGGAAAGATCGGTTCAACGCCCTGGCACATACC
ACGATCTGCTGAAAATTATCAAGGACAAGGACTTCCTGGACAATGAGGAAAACG
AGGACATTCTGGAAGATATCGTGTGACCCCTGACACTGTTGAGGACAGAGAGA
40 TGATCGAGGAACGGCTGAAAACCTATGCCACCTGTTGACGACAAAGTGTGA
AGCAGCTGAAGCGCGGAGATACACCGGCTGGGGCAGGCTGAGCCGGAAAGCTG
ATCAACGGCATCCGGACAAGCAGTCCGGCAAGACAATCCTGGATTCTCTGAAG
TCCGACGGCTCGCCAACAGAAACTTCATGCACTGAGTCCACGACGACAGCCTG
ACCTTAAAGAGGACATCCAGAAAGCCAGGTGTCCGCCAGGGCGATAGCCTG
45 CACGAGCACATTGCCAATCTGGCCGGCAGCCCCGCCATTAAGAAGGGCATCCTG
CAGACAGTGAAGGTGGGACGAGCTCGTAAAGTGTGGCCGGACAAGCCC
GAGAACATCGTGAAGAACAGCCGAGAGAACGAGAACGACCAACCCAGAACGGACA
GAAGAACAGCCGCGAGAGAACGAGAACGAGGGCATCAAAGAGCTGG
GCAGCCAGATCCTGAAAGAACACCCCCGTGGAAAACACCCAGCTGCAGAACGAG
AAGCTGTACCTGTACTACCTGAGAATGGCGGGATATGTACGTGGACCAGGAA
CTGGACATCAACCGCTGTCCGACTACGATGTGGACCATATCGTGCCTCAGAGCT

TTCTGAAGGACGACTCCATCGACAACAAGGTGCTGACCAGAAGCGACAAGAAC
 GGGGCAAGAGCGACAACGTGCCCTCGAAGAGGTCGTGAAGAAGATGAAGAAC
 TACTGGCGGCAGCTGCTGAACGCCAAGCTGATTACCCAGAGAAAGTCGACAAT
 CTGACCAAGGCCGAGAGAGAGGCCCTGAGCGAACTGGATAAGGCCGGCTCATC
 5 AAGAGACAGCTGGTGGAAACCGCCAGATCACAAAGCACGTGGCACAGATCCTG
 GACTCCCAGATGAACACTAAGTACGACGAGAAATGACAAGCTGATCCGGAAAGTG
 AAAGTGATCACCCCTGAAGTCCAAGCTGGTGTCCGATTCCGAAGGATTCCAGT
 TTTACAAAGTGCAGAGATCAACAACCTACCAACGCCACGACGCCCTACCTGA
 ACGCCGTGCGAGGAAACGCCCTGATCAAAAGTACCTAACGCTGGAAAGCGAGT
 10 TCGTGTACGGCGACTACAAGGTGTACGACGTGCGGAAGATGATCGCCAAGAGCG
 AGCAGGAAATCGGCAAGGCTACGCCAAGTACTTCTTACAGCAACATCATGA
 ACTTTTCAAGACCGAGATTACCCCTGGCAACGGCGAGATCCGAAGCGCCCTCT
 GATCGAGACAAACGGCGAAGGTTCTAGCGGCAGCGAGACTCCCGGGACCTCAGA
 GTCCGCCACACCCGAAAGTTCTGGTCCGAAGTCGAGTTCCATGAGTACTGG
 15 ATGAGACACGCATTGACTCTCGCAAAGAGGGCTCGAGATGAACCGAGGTGCC
 GTGGGGGCAGTACTCGTGTCAACAATCGCGTAATCGCGAAGGTTGGAATAGG
 GCAATCGGACTCCACGACCCACTGCACATCGGGAAATCATGCCCTCGACAG
 GGAGGGCTTGTGATGAGAATTATCGACTTATCGATGCGACGCTGTACGTACGT
 TTGAACCTTGCCTAATGTGCGCGGGAGCTATGATTCACTCCGCATTGGACGAGT
 20 TGTATTGGTGTTCGCAACGCCAAGACGGGTGCCGCAGGTTCACTGATGGACGTG
 CTGCATTACCCAGGCATGAACCACCGGGTAGAAATCACAGAAGGCATATTGGCG
 GACGAATGTGCGCGCTGTTGTACTTTTCGCATGCCAGGCAGGTCTTA
 ACGCCCAAGAAAAAGCACAATCCTCTACTGACACCAGGGAGATCGTGTGGGATA
 AGGGCCGGGATTTCGCCACCGTGCAGAAAGTGCAGGCATGCCCAAGTGAATA
 25 TCGTAAAAAGACCGAGGTGCAGACAGGCCTCAGCAAAGAGTCTATCCTGC
 CCAAGAGGAACAGCGATAAGCTGATGCCAGAAAGAAGGACTGGGACCTAAG
 AAGTACGGCGGCTCGACAGCCCCACCGTGGCCTATTCTGTGCTGGTGGCCA
 AAGTGGAAAAGGGCAAGTCCAAGAAACTGAAGAGTGTGAAAGAGCTGCTGGGG
 ATCACCATCATGGAAAGAAGCAGCTCGAGAAGAATCCATCGACTTCTGGAA
 30 GCCAAGGGCTACAAAGAAGTAAAAAGGACCTGATCATCAAGCTGCCCTAAGTAC
 TCCCTGTCAGCTGGAAAACGGCCGGAAAGAGAATGCTGGCCTCTGCCGGCGAA
 CTGCAGAAGGGAAACGAACCTGGCCCTGCCCTCAAATATGTGAACTTCTGTACC
 TGGCCAGCCACTATGAGAAGCTGAAGGGCTCCCCGAGGATAATGAGCAGAAC
 AGCTGTTGTGGAACAGCACAAGCACTACCTGGACGAGATCATCGAGCAGATCA
 35 GCGAGTTCTCCAAGAGAGTGTCTGGCCGACGCTAATCTGGACAAAGTGTGT
 CCGCCTACAACAAGCACCAGGATAAGCCCATCAGAGAGCAGGCCGAGAATATCA
 TCCACCTGTTACCCCTGACCAATCTGGAGCCCTGCCCTCAAGTACTTGA
 CACCACCATCGACCGGAAGAGGATACACCAGCACCAAAGAGGTGCTGGACGCCAC
 CCTGATCCACCAGAGCATCACCGCCTGTACGAGACACGGATCGACCTGTCTCA
 40 GCTGGGAGGTGAC

Cas9 TadAins 1068

MDKKYSIGLAIGTNSVGWAVITDEYKVPSSKFVLGNTDRHSIKKNLIGALLFDSGE
 TAEATRLKRTARRRYTRRKNRICYLQEISNEMAKVDDSFHRLEESFLVEEDKKHE
 RHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKAIDLRIYLALAHMIKFRGHFLIEG
 45 DLNPDNSDVKLFQLVQTYNQLFEENPINASGVDAKAILSARLSRRLLENLIAQLP
 GEKKNGLFGNLIALSGLTPNFKSNFDLAEDAKLQLSKDTYDDLDNLLAQIGDQYA

DLFLAAKNLSDAILSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPE
 KYKEIFFDQSNGYAGYIDGGASQEEFYKFIKPILEKMDGEELLVKLNREDLLRKQ
 RTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRF
 AWMTRKSEETITPWNFEEVVDKGASAQSFIERMNTNFDKNLPNEKVLPKHSLLYEYFT
 5 VYNELTKVYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECF
 DSVEISGVEDRFNASLGYHDLLKIIKDKDFLDNEENEDILEDIVLTTLFEDREMIIE
 RLKTYAHLFDDKVMKQLKRRRYTGWGRSLRKLINGIRDQSGKTILDFLKSDGFAN
 RNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIIKGILQTVKVVDEL
 VKVMGRHKPENIVIEMARENQTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENT
 10 QLQNEKLYLYLQNGRDMYVDQELDINRLSDYDVDHIVPQSFLKDDSIDNKVLTRS
 DKNRGKSDNVPSEEVVKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAG
 FIKRQLVETRQITKHVAQILD SRMNTKYDENDKLIREVKVITLKS LVSDFRKDFQFY
 KVREINNYHHAHDAYLNAVVTALIKKYPKLESEFVYGDYKVDVRKMIAKSEQEI
 15 GKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGEGSSGSETPGTSESATPESSGS
 EVEFSHEYWMRHALTLAKRARDEREVPVGA VL VLNRRVIGEGWNRAIGLHDPTAH
 AEIMALRQGGLVMQNYRLIDATLYVTFEPVCVMCAGAMIHSRIGR VVFGVRNAKTGA
 AGSLMDVLHYPGMNRHVEITEGILADEC A ALLCYFFRMPRQVFNAQKKAQSSTDG
 EIVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKD
 20 DPKKYGGFDSPTVAYSVLVAKVEKGSKKLKSVKELLGITIMERSSFEKNPIDFLEA
 KGYKEVKKDLIILPKYSLFELENGRKRLMASAGELQKGNEALPSKYVNFLYFLASH
 YEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHR
 DKPIREQAENIHLFTLTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQ
 25 SITGLYET RIDLSQLGGD
 IBE006_Cas9: Cas9 TadAins 1247
 30 ATGGACAAGAAGTACAGCATCGGCCTGGCCATCGGCACCAACTCTGTGGGCTGG
 GCCGTGATCACCAGACGAGTACAAGGTGCCAGCAAGAAATTCAAGGTGCTGGG
 AACACCGACCGGCACAGCATCAAGAAGAACCTGATCGGAGGCCCTGCTGTCGAC
 AGCGCGAAACAGCCAGGCCACCCGGCTGAAGAGAACCGCCAGAAGAAGATA
 CACCAGACGGAAGAACCGGATCTGCTATCTGCAAGAGATCTTCAGCAACGAGAT
 GGCAAGGTGGACGACAGCTTCTCACAGACTGGAAGAGTCCTCCTGGTGG
 AGAGGATAAGAAGCAGCAGCGGCACCCATCTCGGCAACATCGTGGACGAGGT
 35 GGCCTACCACGAGAAGTACCCACCATCTACCACCTGAGAAAGAAACTGGTGG
 CAGCACCGACAAGGCCACCTCGGGCTGATCTATCTGCCCTGGCCCACATGATC
 AAGTTCCGGGGCCACTCCTGATCGAGGGCGACCTGAACCCGACAACAGCGAC
 GTGGACAAGCTGTTATCCAGCTGGTGCAGACCTACAACCACTGTTGAGGAA
 AACCCCATCAACGCCAGCGCGTGGACGCCAAGGCCATCCTGTCTGCCAGACTG
 AGCAAGAGCAGACGGCTGGAAAATCTGATCGCCCAGCTGCCGGCGAGAAGAA
 GAATGCCCTGGAAACCTGATTGCCCTGAGCCTGGGCTGACCCCCACTTC
 AAGAGCAACTCGACCTGGCGAGGATGCCAAACTGCAGCTGAGCAAGGACACC
 40 TACGACGACGACCTGGACAACCTGCTGCCAGATCGCGACCAGTACGCCGAC
 CTGTTCTGGCCGCCAAGAACCTGTCGACGCCATCCTGCTGAGCGACATCCTGA
 GAGTGAACACCGAGATCACCAAGGCCCTGAGCGCTCTATGATCAAGAGAT
 ACGACGAGCACCACCAAGGACCTGACCCCTGCTGAAAGCTCTCGTGGCAGCAGC
 TGCCTGAGAAGTACAAAGAGATTTCTCGACCAGAGCAAGAACGGCTACGCC
 45 GCTACATTGACGGCGGAGCCAGCCAGGAAGAGTTCTACAAGTTCATCAAGGCC
 TCCTGGAAAAGATGGACGGCACCGAGGAACTGCTCGTGAAGCTGAACAGAGAG

GACCTGCTCGGAAGCAGCGGACCTCGACAACGGCAGCATCCCCACCAGATC
CACCTGGAGAGCTGCACGCCATTCTCGGGCGCAGGAAGATTTCACCCATTCC
TGAAGGACAACCAGGGAAAAGATCGAGAAGATCCTGACCTCCGCATCCCCTACT
5 ACGTGGGCCCTCTGCCAGGGAAACAGCAGATTGCCCTGGATGACCAGAAAGA
GCGAGGAAACCATCACCCCTGGAACCTCGAGGAAGTGGTGGACAAGGGCGCTT
CCGCCCAGAGCTTCATCGAGCGGATGACCAACTCGATAAGAACCTGCCAACG
AGAACAGGTGCTGCCAACGACAGCCTGCTGTACGAGTACTTCACCGTGATAACG
AGCTGACCAAAGTGAACATCGACCGAGGGATGAGAAAGGCCGCCTCCTGA
10 GCGGCCAGCAGAAAAAGGCCATCGTGACCTGCTGTTCAAGACCAACCGGAAAG
TGACCGTGAAGCAGCTGAAAGAGGACTACTTCAAGAAAATCGAGTGCTCGACT
CCGTGGAAATCTCCGGCGTGGAAAGATCGGTCAACGCCCTGGCACATACC
ACGATCTGCTGAAAATTATCAAGGACAAGGACTTCCTGGACAATGAGGAAAACG
AGGACATTCTGGAAGATATCGTGCTGACCCCTGACACTGTTGAGGACAGAGAGA
TGATCGAGGAACGGCTGAAAACCTATGCCACCTGTTGACGACAAAGTGTGATGA
15 AGCAGCTGAAGCGGCCGAGATAACCCGGCTGGGCAGGCTGAGCCGGAAAGCTG
ATCAACGGCATCCGGACAAGCAGTCCGGCAAGACAATCCTGGATTCTGAAG
TCCGACGGCTTCGCCAACAGAAACTCATGCAGCTGATCCACGACGACAGCCTG
ACCTTAAAGAGGACATCCAGAAAGCCCAGGTGTCCGCCAGGGCGATAGCCTG
CACGAGCACATTGCCAATCTGCCGGCAGCCCCGCCATTAAGAACGGCATCCTG
20 CAGACAGTGAAGGTGGTGGACGAGCTCGTGAAGATGATGGGCCGGACAAGCCC
GAGAACATCGTATCGAAATGCCAGAGAGAACGACCAACCCAGAACGGGACA
GAAGAACAGCCGCGAGAGAATGAAGCGGATCGAAGAGGGCATCAAAGAGCTGG
GCAGCCAGATCCTGAAAGAACACCCCCGTGGAAAACACCCAGCTGAGAACGAG
AAGCTGTACCTGTACTACCTGCAGAATGGCGGGATATGTACGTGGACCAGGAA
25 CTGGACATCAACCGGCTGTCCGACTACGATGTGGACCATATCGTGCCTCAGAGCT
TTCTGAAGGACGACTCCATCGACAACAAGGTGCTGACCAAGCGACAAGAAC
GGGCAGAGCGACAACGTGCCCTCCGAAGAGGTGCGTAAGAACAGTGAAGAAC
TAATGGCGGCAGCTGCTGAACGCCAAGCTGATTACCCAGAGAACAGTGCACAAT
CTGACCAAGGCCGAGAGAGGGCGCTGAGCGAACTGGATAAGGCCGGCTTCATC
30 AAGAGACAGCTGGTGGAAACCCGGCAGATCACAAGCACGTGGCACAGATCCTG
GAATCCCAGGATGAACACTAAGTACGACGAGAACGACAGCTGATCCGGGAAGTG
AAAGTGTATCACCCTGAAGTCCAAGCTGGTGTCCGATTCCGAAGGGATTCCAGT
TTTACAAAGTGCAGAGATCAACAAACTACCACGCCACGACGCCACCTGA
ACGCCGTGTTGGAACCGCCCTGATCAAAAGTACCTTAAGCTGGAAAGCGAGT
35 TCGTGTACGGCGACTACAAGGTGTACGACGTGCGGAAGATGATGCCAACAGAGCG
AGCAGGAAATCGGCAAGGCTACCGCCAAGTACTTCTTACAGCAACATCATGA
ACTTTTCAAGACCGAGATTACCCCTGGCAACGGCGAGATCGTGTGGATAAGGGCCGGATT
GATCGAGACAAACGGCGAAACCGGGGAGATCGTGTGGATAAGGGCCGGATT
TTGCCACCGTGGAAAGTGCTGAGCATGCCCAAGTGAATATCGTAAAAAGA
40 CCGAGGTGCAGACAGGGCGCTCAGCAAAGAGTCTATCCTGCCAAGAGGAACA
GCGATAAGCTGATGCCAGAAAGAAGGACTGGGACCTAACAGAAGTACGGCGGCT
TCGACAGCCCCACCGTGGCTATTCTGTGCTGGTGGTGGCCAAGTGGAAAAGG
GCAAGTCCAAGAAACTGAAGAGTGTGAAAGAGCTGCTGGGGATCACCACATGG
AAAGAACGAGCTCGAGAAGAACATCCATCGACTTCTGGAAGCCAAGGGCTACA
45 AAGAAGTAAAAAGGACCTGATCATCAAGCTGCCCTAAGTACTCCCTGTCGAGC
TGGAAAACGGCCGGAAAGAGAACATGCTGCCCTGCCGGAACTGCAGAACGGGA

AACGAACCTGGCCCTGCCCTCCAAATATGTGAACCTCCTGTACCTGGCCAGCCACT
 ATGAGAAGCTGAAGGGCGGTTAGCGGCAGCGAGACTCCCGGGACCTCAGAGT
 CCGCCACACCCGAAAGTTCTGGTCCGAAGTCGAGTTTCCCATGAGTACTGGAT
 GAGACACGCATTGACTCTCGCAAAGAGGGCTCGAGATGAACCGAGGTGCCGT
 5 GGGGGCAGTACTCGTGCACAAACATCGCTAATCGCGAAGGTTGGAATAGGGC
 AATCGGACTCCACGACCCCCTGCACATCGGAAATCATGGCCCTTCGACAGGG
 AGGGCTTGTGATGCAGAATTATCGACTTATCGATGCGACGCTGTACGTACGTT
 GAACCTGCGTAATGTGCGGGAGCTATGATTCACTCCCGATTGGACGAGTTG
 TATTGGTGTTCGCAACGCCAAGACGGGTGCCGCAGGTTCACTGATGGACGTGCT
 10 GCATTACCCAGGCATGAACCACCGGGTAGAAATCACAGAAGGCATATTGGCGGA
 CGAATGTGCGCGCTGTTGTTACTTTTCGCATGCCAGGCAGGTCTTAAC
 GCCCAGAAAAAAAGCACAATCCTCTACTGACTCCCCGAGGATAATGAGCAGAAA
 CAGCTGTTGTGGAACACAGCACAAGCAGTACCTGGACGAGATCATGAGCAGATC
 15 AGCGAGTTCTCCAAGAGAGTGATCCTGGCCACGCTAATCTGGACAAAGTGTG
 TCCGCCTACAACAAGCACCGGGATAAGCCATCAGAGAGCAGGCCGAGAATATC
 ATCCACCTGTTACCTGACCAATCTGGAGCCCTGCCCTCAAGTACTTTG
 ACACCACCATCGACCGGAAGAGGTACACCAGCACAAAGAGGTGCTGGACGCCA
 CCCTGATCCACCAGAGCATCACCAGGCTGTACGAGACACGGATCGACCTGTCTCA
 GCTGGGAGGTGAC

20 Cas9 TadAins 1247
 MDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGE
 TAEATRLKRTARRRYTRRKNRICYLQEISNEMAKVDDSFHRLEESFLVEEDKKHE
 RHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEG
 DLNPNDSDVDKLFQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLP
 25 GEKKNGLFGNLIALSGLTPNFKNFDLAEDAKLQLSKDTYDDLDNLLAQIGDQYA
 DLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKYDEHHQDLTLLKALVRQQLPE
 KYKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQ
 RTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNRKIEKILTFRIPYYVGPLARGNSRF
 AWMTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFT
 30 VYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLKTNRKVTVKQLKEDYFKKIECF
 DSVEISGVEDRFNASLGYHDLLKIIKDKDFLDNEENEDILEDIVLTTLFEDREMIEE
 RLKTYAHLFDDKVMKQLKRRYTGWGRLSRKLINGIRDQSGKTILDFLKSDGFAN
 RNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIIKKGILQTVKVVDEL
 VKVMGRHKPENIVIEMARENQTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENT
 35 QLQNEKLYLYLQNGRDMYVDQELDINRLSDYDVEDHIVPQSFLKDDSIDNKVLTRS
 DKNRGKSDNPSEEVVKMKNYWRQLLNAKLITQRKFDSLTKAERGGLSELDKAG
 FIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSCLVSDFRKDFQFY
 KVREINNYHHAHDAYLNAVVTALIKKYPKLESEFVYGDYKVDVRKMIAKSEQEI
 GKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVL
 40 SMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDPKYGGFDSPVTAYSVL
 VVAKVEKGSKKLKSVKELLGITIMERSFEKNPIDFLEAKGYKEVKKDLIILPKYS
 LFELENGRKMLASAGELQKGNELALPSKYVNFLYASHYEKLKGSSGSETPGTSE
 SATPESSGSEVEFSHEYWMRHALTAKRARDEREVPVGAVLVNNRVIDEGWNRAI
 GLHDPTAHAEIMALRQGGLVMQNYRLIDATLYVTFEPCVMCAGAMIHSRIGRVVFG
 45 VRNAKTGAAGSLMDVLHYPGMNHRVEITEGILADECACALLCYFFRMPRQVFNAQK
 KAQSSTDSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHR

DKPIREQAENIIHLFTLTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQSI

GLYET RIDLSQLGGD

IBE007_Cas9: Cas9 TadAins 1054

ATGGACAAGAAGTACAGCATCGGCCTGGCCATCGGCACCAACTCTGTGGGCTGG
 5 GCCGTGATCACCGACGAGTACAAGGTGCCAGCAAGAAATTCAAGGTGCTGGGC
 AACACCGACCGGCACAGCATCAAGAAGAACCTGATCGGAGGCCCTGCTGTCGAC
 AGCGCGAAACAGCCGAGGCCACCCGGCTGAAGAGAACGCCAGAAGAAGATA
 CACCAGACGGAAGAACCGGATCTGCTATCTGCAAGAGATCTTCAGCAACGAGAT
 10 GGCCAAGGTGGACGACAGCTCTTCCACAGACTGGAAGAGACTCCTCCTGGTGGA
 AGAGGATAAGAAGCAGCAGCGGGACCCATCTCGGCAACATCGTGGACGAGGT
 GGCCTACCACGAGAAGTACCCACCATCTACCACCTGAGAAAGAAACTGGTGGA
 CAGCACCAGACAAGGCCGACCTGCGGCTGATCTATCTGCCCTGGCCACATGATC
 15 AAGTCCGGGGCCACTCCTGATCGAGGGCGACCTGAACCCCGACAACACAGCAG
 GTGGACAAGCTGTTATCCAGCTGGTGCAGACCTACAACCAGCTGTTGAGGAA
 AACCCATCAACGCCAGCGCGTGGACGCCAAGGCCATCCTGCTGCCAGACTG
 AGCAAGAGCAGACGGCTGGAAAATCTGATGCCCGAGCTGCCCGCGAGAAGAA
 GAATGGCCTGTTCGAAACCTGATTGCCCTGAGCCTGGGCTGACCCCCAACTTC
 20 AAGAGCAACTCGACCTGGCCAGGATGCCAAACTGCAAGCTGAGCAAGGACACC
 TACGACGACGACCTGGACAACCTGCTGCCAGATGGCGACCAGTACGCCGAC
 CTGTTCTGGCCGCCAAGAACCTGTCCGACGCCATCCTGCTGAGCGACATCCTGA
 GAGTGAACACCGAGATCACCAAGGCCCCCTGAGCGCCTCTATGATCAAGAGAT
 25 ACGACGAGCACCACCAGGACCTGACCCCTGCTGAAAGCTCTCGTGGCAGCAGC
 TGCCTGAGAAGTACAAAGAGATTTCTGACCAGAGCAAGAACGGCTACGCCG
 GCTACATTGACGGCGGAGCCAGGAAGAGTTCTACAAGTTCATCAAGGCCA
 TCCTGGAAAAGATGGACGGCACCGAGGAACTGCTCGTAAGCTGAACAGAGAG
 30 GACCTGCTCGGAAGCAGCGGACCTTCGACAACGGCAGCATCCCCACAGATC
 CACCTGGGAGAGCTGCACGCCATTCTCGGGCGCAGGAAGATTTCACCCATTCC
 TGAAGGACAACCAGGGAAAAGATCGAGAAGATCCTGACCTTCCGCATCCCCTACT
 ACGTGGGCCCTCTGCCAGGGAAACAGCAGATTGCGCTGGATGACCAGAAAGA
 35 GCGAGGAAACCATCACCCCTGGAACCTCGAGGAAGTGGTGGACAAGGGCGCTT
 CCGCCCAGAGCTTCATCGAGCGGATGACCAACTTCGATAAGAACCTGCCAACG
 AGAAGGTGCTGCCAAGCACAGCCTGCTGTACGAGTACTTCACCGTGTATAACG
 AGCTGACCAAAGTGAAAATACGTGACCGAGGGAAATGAGAAAGCCGCCTCCTGA
 GCAGCGAGCAGAAAAGGCCATCGTGGACCTGCTGTTCAAGACCAACCGGAAAG
 40 TGACCGTGAAGCAGCTGAAAGAGGACTACTTCAGAAAATCGAGTGCTCGACT
 CCGTGGAAAATCTCCGGCGTGGAAAGATCGGTTCAACGCCCTGGCACATACC
 ACGATCTGCTGAAAATTATCAAGGACAAGGACTTCCTGGACAATGAGGAAAACG
 AGGACATTCTGGAAGATATCGTGTGACCCCTGACACTGTTGAGGACAGAGAGA
 TGATCGAGGAACGGCTGAAAACCTATGCCACCTGTTGACGACAAAGTGTATGA
 45 AGCAGCTGAAGCGGCGGAGATAACCCGGCTGGGCAAGGCTGAGCCGGAAAGCTG
 ATCAACGGCATCCGGACAAGCAGTCCGGCAAGACAATCCTGGATTCTGAAG
 TCCGACGGCTTCGCCAACAGAAACTTCATGCAAGCTGATCCACGACGACAGCCTG
 ACCTTAAAGAGGACATCCAGAAAGCCCAGGTGTCCGCCAGGGCGATAGCCTG
 CACGAGCACATTGCCAATCTGCCGGCAGCCCCGCCATTAAGAAGGGCATCCTG
 CAGACAGTGAAGGTGGTGGACGAGCTCGTGAAGTGTATGGGCCGGACAAGCCC

GAGAACATCGTATCGAAATGCCAGAGAGAACAGACCACCCAGAAGGGACA
 GAAGAACAGCCCGAGAGAACATGAAGCGGATCGAACAGAGGGCATCAAAGAGCTGG
 GCAGCCAGATCCTGAAAGAACACCCCCGTGGAAAACACCCAGCTGCAGAACGAG
 AAGCTGTACCTGTACTACCTGCAGAATGGCGGGATATGTACGTGGACCAGGAA
 5 CTGGACATCAACCGGCTGTCCGACTACGATGTGGACCATATCGTCAGAGCT
 TTCTGAAGGACGACTCCATCGACAACAAGGTGCTGACCAGAACGACAAGAAC
 GGGCAAGAGCGACAACGTGCCCTCCGAAGAGGTGCTGAAGAACGATGAAGAAC
 TACTGGCGGAGCTGCTGAACGCCAACGCTGATTACCCAGAGAACAGTCCGACAAT
 CTGACCAAGGCCGAGAGAGGCCCTGAGCGAACTGGATAAGGCCGGCTTCATC
 10 AAGAGACAGCTGGTGGAAACCCGGCAGATCACAAAGCACGTGGCACAGATCCTG
 GACTCCGGATGAACACTAACGACGAGAACGACAAGCTGATCCGGGAAGTG
 AAAGTGATCACCCCTGAAGTCCAAGCTGGTGTCCGATTCCGGAAAGGATTCCAGT
 TTTACAAAGTGCAGGAGATCAACAACTACCACGCCACGACGCCCTACCTGA
 ACGCCGCTGTGGGACCGCCCTGATCAAAAGTACCTAACGCTGGAAAGCGAGT
 15 TCGTGTACGGCGACTACAAGGTGTACGACGTGCCAGAGATGATGCCAACAGCG
 AGCAGGAAATCGGCAAGGCTACCGCCAAGTACTTCTTACAGCAACATCATGA
 ACTTTTCAAGACCGAGATTACCCCTGGCAACGGTTCTAGGGCAGCGAGACTCC
 CGGGACCTCAGAGTCCGCCACACCGAAAGTTCTGGTCCGAAGTCGAGTTTCC
 CATGAGTACTGGATGAGACACGCATTGACTCTCGCAAAGAGGGCTCGAGATGAA
 20 CGCGAGGTGCCGTGGGGCAGTACTCGTGTCAACAATCGCTAACGCGTAATCGCGAA
 GGTTGGAATAGGGCAATCGGACTCCACGACCCACTGCACATCGGAAATCATG
 GCCCTCGACAGGGAGGGCTGTGATGCAGAATTATCGACTTATCGATGCGACGC
 TGTACGTCACGTTGAACCTTGCCTAACGCTGAGTGTGCGGGAGCTATGATTCACTCCG
 CATTGGACGAGTTGATTGGTGTTCGCAACGCCAACGACGGGTGCCGCAGGTTCA
 25 CTGATGGACGTGCTGATTACCCAGGCATGAACCACCGGGTAGAAATCACAGAA
 GGCATATTGGCGGACGAATGTGCGGCGCTGTTGTGTTACTTTTCGATGCCCA
 GGCAGGTCTTAACGCCAGAAAAAGCACAATCCTACTGACGGCAGATCC
 GGAAGCGGCCTCTGATCGAGACAAACGGCGAACACGGGGAGATCGTGTGGGAT
 AAGGGCCGGGATTTGCCACCGTGCAGAACAGTGTGAGCATGCCCAAGTGAAT
 30 ATCGTAAAAAGACCGAGGTGCAGACAGGCCCTCAGCAAAGAGTCTATCCTG
 CCCAAGAGGAACAGCGATAAGCTGATGCCAGAACAGAGACTGGGACCCCTAA
 GAAGTACGGCGGCTTCGACAGCCCCACCGTGGCCTATTCTGTGCTGGTGGCG
 AAAGTGGAAAAGGGCAAGTCCAAGAAACTGAAGAGTGTGAAAGAGCTGCTGGG
 GATCACCACATGGAAAGAACGAGCTTCGAGAACGAAATCCATCGACTTCTGGA
 35 AGCCAAGGGCTACAAAGAACGAAAGTAAAAAGGACCTGATCATCAAGCTGCCCTAAGTA
 CTCCCTGTCGAGCTGGAAAACGGCCGGAAGAGAACATGCTGCCCTGCCGGCGA
 ACTGCAGAACGGGAAACGAACTGGCCCTGCCCTCAAATATGTGAACCTCCTGTA
 CCTGGCCAGCCACTATGAGAACGACAAGCAACTACCTGGACGAGATCATCGAGCAGAA
 ACAGCTGTTGTGGAACAGCACAAGCAACTACCTGGACGAGATCATCGAGCAGAT
 40 CAGCGAGTTCTCCAAGAGAGTGATCCTGGCCGACGCTAACATGGACAAAGTGCT
 GTCCGCCTACAACAAGCACCGGGATAAGCCCACGAGAGCAGGCCGAGAACAT
 CATCCACCTGTTACCCCTGACCAATCTGGAGCCCTGCCCTCAAGTACTTT
 GACACCACCATCGACCGGAAGAGGTACACCAGCACCAAAGAGGGTCTGGACGCC
 ACCCTGATCCACCAAGAGCATCACCGCCGTACGAGACACGGATCGACCTGTCTC
 45 AGCTGGGAGGTGAC

Cas9 TadAins 1054

MDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGE
 TAEATRLKRTARRRYTRRKNRICYLQEISNEMAKVDDSSFHRLEESFLVEEDKKHE
 RHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEG
 DLNPNDNSDVKLFQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLP
 5 GEKKNGLFGNLIALSLGLTPNFKNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYA
 DLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPE
 KYKEIFFDQSCKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQ
 RTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNRKIEKILTFRIPYYVGPLARGNSRF
 AWMTRKSEETITPWNFEEVVDKGASAQSFIERNMTNFDKKNLPNEKVLPKHSLLYEYFT
 10 VYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECF
 DSVEISGVEDRFNASLGYHDLLKIIKDKDFLDNEENEDILEDIVLTTLFEDREMIEE
 RLKTYAHLFDDKVMKQLKRRRYTGWGRSLRKLINGIRDQSGKTILDFLKSDGFAN
 RNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIIKGILQTVKVVDEL
 15 VKVMGRHKPENIVIEMARENQTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENT
 QLQNEKLYLYLQNQGRDMYVDQELDINRLSDYDVEDHIVPQSFLKDDSIDNKVLTRS
 DKNRGKSDNVPSEEVVKMKNYWRQLLNNAKLITQRKFNDNLTKAERGGLSELDKAG
 FIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSLSVSDFRKDFQFY
 KVREINNYHHAHDAYLNAVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEI
 20 GKATAKYFFYSNIMNFFKTEITLANGSSGSETPGTSESATPESSGSEVEFSHEYWMRH
 ALTLAKRARDEREVPVGAVLVLNRRVIGEGWNRAIGLHDPTAHAEIMALRQGGLV
 MQNYRLIDATLYVTFEPVCVMCAGAMIHSRIGRVFGVRNAKTGAAGSLMDVLHYP
 GMNHRVEITEGILADECAALLCYFFRMPRQVFNAQKKAQSSDGEGIRKRPLIETNGET
 GEIVWDKGRDFATVRKVLSMPQVNIVKTEVQTGGFSKESILPKRNSDKLIARKKD
 25 WDPKKYGGFDSPPTVAYSVLVVAKVEKGSKKLKSVKELLGITIMERSFEKNPIDFL
 EAKGYKEVKKDLIILPKYSLFELENGRKRMLASAGELQKGNELALPSKYVNFLYLA
 SHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVL SAYNKH
 RDKPIREQAENIHLFTLTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQ SITGLY
 ETRIDSQLGGD

IBE008_Cas9: Cas9 TadAins 1026

30 ATGGACAAGAAGTACAGCATCGGCCTGGCCATCGGCACCAACTCTGTGGGCTGG
 GCCGTGATCACCACGAGTACAAGGTGCCAGCAAGAAATTCAAGGTGCTGGG
 AACACCGACCGGCACAGCATCAAGAAGAACCTGATCGGAGGCCCTGCTGTCAC
 AGCGCGAAACAGCCGAGGCCACCCGGCTGAAGAGAACCGCCAGAAGAAGATA
 CACCAGACGGAAGAACCGGATCTGCTATCTGCAAGAGATCTTCAGCAACGAGAT
 35 GGCAGGGTGGACGACAGCTTCTCACAGACTGGAAGAGTCCTCCTGGTGG
 AGAGGATAAGAACGACGAGCGGCACCCATCTCGGCAACATCGTGACGAGGT
 GGCCTACCACGAGAAGTACCCACCATCTACCACCTGAGAAAGAAACTGGTGG
 CAGCACCGACAAGGCCACCTGCGGCTGATCTATCTGCCCTGGCCACATGATC
 AAGTCCGGGCCACTCCTGATCGAGGGCGACCTGAACCCGACAACAGCGAC
 40 GTGGACAAGCTGTTATCCAGCTGGTGCAGACCTACAACCAAGCTGTTGAGGAA
 AACCCCATCAACGCCAGCGCGTGGACGCCAGGCCATCCTGCTGCCAGACTG
 AGCAAGAGCAGACGGCTGGAAAATCTGATGCCAGCTGCCGGCGAGAAGAA
 GAATGGCCTGTCGGAAACCTGATTGCCCTGAGCCTGGGCTGACCCCCAATTC
 AAGAGCAACTCGACCTGGCCGAGGATGCCAAACTGCAGCTGAGCAAGGACACC
 45 TACGACGACGACCTGGACAACCTGCTGGCCAGATGGCGACCAAGTACGCCAC
 CTGTTCTGGCCGCCAAGAACCTGTCCAGGCCATCCTGCTGAGCGACATCCTGA

GAGTGAACACCGAGATCACCAAGGCCCCCTGAGGCCCTATGATCAAGAGAT
ACGACGAGCACCACCAGGACCTGACCTGCTGAAAGCTCTCGTGCAGCAGC
TGCCTGAGAAGTACAAAGAGATTTCTCGACCAGAGCAAGAACGGCTACGCC
GCTACATTGACGGCGGAGCCAGGAAGAGTTCTACAAGTTCATCAAGGCC
5 TCCTGGAAAAGATGGACGGCACCGAGGAACTGCTCGTGAAGCTGAACAGAGAG
GACCTGCTGCGGAAGCAGCGGACCTCGACAACGGCAGCATCCCCACCAGATC
CACCTGGGAGAGCTGCACGCCATTCTGCGGCAGGAAGATTTACCCATTCC
TGAAGGACAACCAGGAAAAGATCGAGAAGATCCTGACCTCCGCATCCCTACT
ACGTGGGCCCTGGCCAGGGAAACAGCAGATTGCGCTGGATGACCAGAAAGA
10 GCGAGGAAACCATCACCCCTGGAACCTCGAGGAAGTGGTGGACAAGGGCGCTT
CCGCCAGAGCTTCATCGAGCGGATGACCAACTTCGATAAGAACCTGCCAACG
AGAAGGTGCTGCCAACGACAGCCTGCTGTACGAGTACTTCACCGTGTATAACG
AGCTGACCAAAGTGAAATACGTGACCGAGGGAAATGAGAAAGCCGCCCTCCTGA
GCAGCGAGCAGAAAAAGGCCATCGTGGACCTGCTGTTCAAGACCAACCGGAAAG
15 TGACCGTGAAGCAGCTGAAAGAGGACTACTTCAAGAAAATCGAGTGCTTCGACT
CCGTGGAAATCTCCGGCGTGGAAAGATCGGTCAACGCCCTCCCTGGGACATACC
ACGATCTGCTGAAAATTATCAAGGACAAGGACTTCCTGGACAATGAGGAAAACG
AGGACATTCTGGAAGATATCGTGTGACCCCTGACACTGTTGAGGACAGAGAGA
TGATCGAGGAACGGCTGAAAACCTATGCCACCTGTTGACGACAAAGTGTGATGA
20 AGCAGCTGAAGCGCGGAGATACACCGGCTGGGAGCTGAGCCGGAAAGCTG
ATCAACGGCATCCGGACAAGCAGTCCGGCAAGACAATCCTGGATTTCCTGAAG
TCCGACGGCTTCGCCAACAGAAACTCATGCACTGATCCACGACGACAGCCTG
ACCTTAAAGAGGACATCCAGAAAGCCCAGGTGTCCGCCAGGGCGATAGCCTG
CACGAGCACATTGCCAATCTGGCCGGCAGCCCCGCCATTAGAAGGGCATCCTG
25 CAGACAGTGAAGGTGGTGGACGAGCTCGTGAAGATGATGGCCGGACAAGCCC
GAGAACATCGTATCGAAATGCCAGAGAGAACGACCAAGGACAGAAGGGACA
GAAGAACAGCCCGAGAGAATGAAGCGGATCGAAGAGGGCATCAAAGAGCTGG
GCAGCCAGATCCTGAAAGAACACCCCGTGGAAAACACCCAGCTGCAGAACGAG
AAGCTGTACCTGTACTACCTGCAGAATGGCGGGATATGTACGTGGACCAGGAA
30 CTGGACATCAACGGCTGTCCGACTACGATGTGGACCATATCGCCTCAGAGCT
TTCTGAAGGACGACTCCATCGACAACAAGGTGCTGACAGAAGCGACAAGAAC
GGGGCAAGAGCGACAACGTGCCCTCCGAAGAGGTGTCGAAAGAACGATGAAGAAC
TAUTGGCGGAGCTGTAACGCCAAGCTGATTACCCAGAGAAAGTTGACAAT
CTGACCAAGGCCAGAGAGAGGGCGCTGAGCGAACTGGATAAGGCCGGCTCATC
35 AAGAGACAGCTGGTGGAAACCCGGCAGATCACAAAGCACGTGGCACAGATCCTG
GACTCCCGGATGAACACTAAGTACGACGAGAATGACAAGCTGATCCGGAAAGTG
AAAGTGATCACCCCTGAAAGTCCAAGCTGGTGTCCGATTCCGAAGGGATTCCAGT
TTTACAAAGTGCAGGAGATCAACAACCTACCCACGCCACGACGCCCTACCTGA
ACGCCGTGTTGGAAACGCCCTGATCAAAAAGTACCTAAGCTGGAAAGCGAGT
40 TCGTGTACGGCGACTACAAGGTGTACGACGTGGAGATGATGCCAACAGAGCG
AGGGTTCTAGCGGCAGCGAGACTCCGGGACCTCAGAGTCCGCCACACCCGAAA
GTTCTGGTCCGAAGTCGAGTTTCCCATGAGTACTGGATGAGACACGCATTGAC
TCTCGCAAAGAGGGCTCGAGATGAACCGAGGTGCCGTGGGGCAGTACTCGT
GCTCAACAATCGCGTAATCGCGAAGGTTGGAATAGGGCAATCGACTCACGA
45 CCCCACTGCACATCGCGAAATCATGGCCCTCGACAGGGAGGGCTTGTGATGCA
GAATTATCGACTTATCGATGCGACGCTGTACGTCACGTTGAACCTTGCCTGTAATG

TGCGCGGGAGCTATGATTCACTCCCGATTGGACGAGTTGTATCGGTGTCGCA
 ACGCCAAGACGGGTGCCGCAGGTTACTGATGGACGTGCTGCATTACCCAGGCA
 TGAACCACCGGGTAGAAATCACAGAAGGCATATTGGCGGACGAATGTGCGGCCGC
 TGTTGTGTTACTTTTCGCATGCCAGGCAGGTCTTAACGCCAGAAAAAGC
 5 ACAATCCTCTACTGACCAAGGAATCGGCAAGGCTACGCCAAGTACTTCTTAC
 AGCAACATCATGAACCTTTCAAGACCGAGATTACCCCTGGCCAACGGCGAGATC
 CGGAAGCGGCCTCTGATCGAGACAAACGGCGAAACCGGGGAGATCGTGTGGGAT
 AAGGGCCGGGATTTGCCACCGTGCAGAAAGTGTGAGCATGCCCAAGTGAAT
 ATCGTAAAAAGACCGAGGTGCAGACAGGCGCTTCAGCAAAGAGTCTATCCTG
 10 CCCAAGAGGAACAGCGATAAGCTGATGCCAGAAAGAAGGACTGGGACCCCTAA
 GAAGTACGGCGGCTCGACAGCCCCACCGTGGCCTATTCTGTGCTGGTGGTGGCC
 AAAGTGGAAAAGGGCAAGTCCAAGAAACTGAAGAGTGTGAAAGAGCTGCTGGG
 GATCACCACATGGAAAGAAGCAGCTCGAGAAGAATCCCATCGACTTCTGGA
 15 AGCCAAGGGCTACAAAGAAGTAAAAAGGACCTGATCATCAAGCTGCCAAGTA
 CTCCCTGTTGAGCTGGAAAACGGCCGAAGAGAATGCTGGCCTCTGCCGGCGA
 ACTGCAGAAGGGAAACGAACTGGCCCTGCCCTCCAAATATGTGAACCTCCTGTA
 CCTGGCCAGCCACTATGAGAACGACTGAGCTGAAGGGCTCCCCGAGGATAATGAGCAGAA
 ACAGCTGTTGTGGAACAGCACAAGCACTACCTGGACGAGATCATCGAGCAGAT
 CAGCGAGTTCTCCAAGAGAGTGATCCTGGCCACGCTAATCTGGACAAAGTGCT
 20 GTCCGCCTACAACAAGCACCAGGATAAGCCCATCAGAGAGCAGGCCGAGAATAT
 CATCCACCTGTTACCCCTGACCAATCTGGAGCCCCCTGCCCTCAAGTACTTT
 GACACCACCATCGACCGGAAGAGGTACACCAGCACCAAAGAGAGTGCTGGACGCC
 ACCCTGATCCACCAGAGCATCACCGCCTGTACGAGACACGGATCGACCTGTCTC
 AGCTGGGAGGTGAC

25 Cas9 TadAins 1026
 MDKKYSIGLAIGTNSVGWAVITDEYKVPSSKFKVLGNTDRHSIKKNLIGALLFDSGE
 TAEATRLKRTARRRYTRRKNRICYLQEISNEMAKVDDSSFHRLEESFLVEEDKKHE
 RHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKAIDLRLIYLALAHMIKFRGHFLIEG
 DLNPNDNSVDKLFQLVQTYNQLFEENPINASGVDAKAILSARLSRRLENLIAQLP
 30 GEKKNGLFGNLIALSLGLTPNFKNFDLAEDAKLQLSKDTYDDLDNLLAQIGDQYA
 DLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPE
 KYKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQ
 RTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRF
 AWMTRKSEETITPWNFEEVVDKGASAQSFIERMNTFDKNLPEKVLPHSLLYEYFT
 35 VYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLKTNRKVTVKQLKEDYFKKIECF
 DSVEISGVEDRFNASLGYHDLLKIIKDKDFLDNEENEDILEDIVLTLTFEDREMIEE
 RLKTYAHLFDDKVMKQLKRRRYTGWGRSLRKLINGIRDKQSGKTILDFLKSDGFAN
 RNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIIKGILQTVKVVDEL
 VKVMGRHKPENIVIEMARENQTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENT
 40 QLQNEKLYLYLQNGRDMYVDQELDINRLSDYDVDHIVPQSFLKDDSIDNKVLTRS
 DKNRGKSDNPVSEEVVKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAG
 FIKRQLVETRQITKHVAQILDSRMTKYDENDKLIREVKVITLKSCLVSDFRKDFQFY
 KVREINNYHHAHDAYLNAVGTALIKKYPKLESEFVYGDYKVDVRKMIAKSEGSS
 GSETPGTSESATPESSGSEVEFSHEYWMRHALTLAKRARDEREVPVGAVLVLNNRVI
 45 GEGWNRAIGLHDPTAHAEIMALRQGGLVMQNYRLIDATLYVTFEPVCVMCAGAMIH
 SRIGRVVFGVRNAKTGAAGSLMDVLHYPGMNHRVEITEGILADECACALLCYFFRMP

RQVFNAQKKAQSSTDQEIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGET
 GEIVWDKGRDFATVRKVLSMPQVNIVKTEVQTGGFSKESILPKRNSDKLIARKKD
 WDPKKYGGFDSPTVAYSVLVAKVEKGKSKKLKSVKELLGITIMERSSFEKNPIDFL
 EAKGYKEVKKDIIKLPKYSLFELENGRKMLASAGELQKGNELALPSKYVNFLYLA
 5 SHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKH
 RDKPIREQAENIIHLFTLTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQSITGLY
 ETRIDLSQLGGD

IBE009_Cas9: Cas9 TadAins 768

ATGGACAAGAACGTACAGCATCGGCCTGGCCATCGGCACCAACTCTGTGGGCTGG
 10 GCCGTGATCACCGACGAGTACAAGGTGCCAGCAAGAAATTCAAGGTGCTGGG
 AACACCGACCGGCACAGCATCAAGAAGAACCTGATCGGAGGCCCTGCTGTCGAC
 AGCGCGAAACAGCCGAGGCCACCCGGCTGAAGAGAACGCCAGAAGAAGATA
 CACCAGACGGAAGAACCGGATCTGCTATCTGCAAGAGAGATCTTCAGCAACGAGAT
 GGCCAAGGTGGACGACAGCTCTTCCACAGACTGGAAGAGTCCTCCTGGTGG
 15 AGAGGATAAGAACGACGGCACCCATCTCGGCAACATCGTGGACGAGGT
 GGCCTACCACGAGAAGTACCCACCATCTACCACCTGAGAAAGAAACTGGTGG
 CAGCACCAGACAAGGCCGACCTGCGGCTGATCTATCTGCCCTGGCCACATGATC
 AAGTCCGGGCCACTCCTGATCGAGGGCGACCTGAACCCGACAACAGCGAC
 GTGGACAAGCTGTTATCCAGCTGGTGCAGACCTACAACCAGCTGTCGAGGAA
 20 AACCCATCAACGCCAGCGCGTGGACGCCAAGGCCATCCTGCTGCCAGACTG
 AGCAAGAGCAGACGGCTGGAAAATCTGATCGCCAGCTGCCCGAGAACGAA
 GAATGGCCTGTTCGAAACCTGATTGCCCTGAGCCTGGCCTGACCCCCAACTTC
 AAGAGCAACTTCGACCTGGCGAGGATGCCAAACTGCAAGCTGAGCAAGGACACC
 TACGACGACGACCTGGACAACCTGCTGGCCCAGATCGCGACCACTACGCCGAC
 25 CTGTTCTGGCCGCAAGAACCTGTCGACGCCATCCTGCTGAGCGACATCCTGA
 GAGTGAACACCGAGATCACCAAGGCCCCCTGAGCGCCTCTATGATCAAGAGAT
 ACGACGAGCACCACCAAGGACCTGACCCCTGCTGAAAGCTCTGTCGGCAGCAGC
 TGCCTGAGAAGTACAAAGAGATTTCTGACCAAGAGCAAGAACGGCTACGCCG
 GCTACATTGACGGCGGAGCCAGGAAGAGTTCTACAAGTTCATCAAGGCCA
 30 TCCTGGAAAAGATGGACGGCACCGAGGAACCTGCTCGTAAGCTGAACAGAGAG
 GACCTGCTGCGGAAGCAGCGGACCTTCGACAACGGCAGCATCCCCCACCAGATC
 CACCTGGGAGAGCTGACGCCATTCTGCGGCCAGGAAGATTTTACCCATTCC
 TGAAGGACAACCAGGGAAAAGATCGAGAAGATCCTGACCTTCCGATCCCCACT
 ACGTGGGCCCTCTGCCAGGGAAACAGCAGATTGCCCTGGATGACCAGAAAGA
 35 GCGAGGAAACCATACCCCTGGAACCTCGAGGAAGTGGTGGACAAGGGCGCTT
 CCGCCAGAGCTTCATCGAGCGGATGACCAACTTCGATAAGAACCTGCCAACG
 AGAAGGTGCTGCCAAGCACAGCCTGCTGTACGAGTACTTCACCGTGTATAACG
 AGCTGACCAAAAGTGAACATCGACCGAGGGAAATGAGAAAGGCCGCTTCTGA
 GCAGCGAGCAGAAAAGGCCATCGTGACCTGCTGTTCAAGACCAACCGGAAAG
 40 TGACCGTGAAGCAGCTGAAAGAGGACTACTTCAGAAAATCGAGTGCTTCGACT
 CCGTGAAATCTCCGGCGTGGAAAGATCGGTCAACGCCCTGGACATACC
 ACGATCTGCTGAAAATTCAAGGACAAGGACTTCCTGGACAATGAGGAAAACG
 AGGACATTCTGGAAGATATCGTGTGACCCCTGACACTGTTGAGGACAGAGAGA
 TGATCGAGGAACGGCTGAAAACCTATGCCACCTGTTGACGACAAAGTGTGA
 45 AGCAGCTGAAGCGGCGGAGATACACCGGCTGGGCAGGCTGAGCCGGAAGCTG
 ATCAACGGCATCCGGACAAGCAGTCCGGCAAGACAATCCTGGATTCTCTGAAG

TCCGACGGCTCGCAACAGAAACTCATGCAGCTGATCCACGACGACAGCCTG
ACCTTAAAGAGGACATCCAGAAAGCCCAGGTGTCCGCCAGGGCGATAGCCTG
CACGAGCACATTGCCAATCTGGCCGGCAGCCCCGCCATTAAGAAGGGCATCCTG
CAGACAGTGAAGGTGGTGGACGAGCTCGTAAAGTGTAGGGCCGGACAAGCCC
5 GAGAACATCGTATCGAAATGCCAGAGAGAACCAAGGGTTCTAGCGGAGCGA
GAATCCCAGGGACCTCAGAGTCCGCCACACCCGAAAGTCTGGTCCGAAGTCGA
GTTTCCCATTGAGTACTGGATGAGACACGCATTGACTCTCGCAAAGAGGGCTCGA
GATGAACGCGAGGTGCCGTGGGGCAGTACTCGTGTCAACAAATCGCGTAATC
GGCGAAGGTTGGAATAGGCATCGGACTCCACGACCCACTGCACATCGGAA
10 ATCATGGCCCTCGACAGGGAGGGCTTGTGATGCAGAATTATCGACTTATCGATG
CGACGCTGTACGTACGTTGAACTTGCATAATGTGCGCGGGAGCTATGATTCA
CTCCCGCATTGGACGAGTTGATTGGTGTTCGCAACGCCAAGACGGGTGCCGCA
GGTCACTGATGGACGTGCTGCATTACCCAGGCATGAACCACCGGGTAGAAATC
ACAGAAGGCATATTGGCGGACGAATGTGCGGCCTGTTGTACTTTTCGCA
15 TGCCCAGGACCACCCAGAAGGGACAGAACAGCGAGAGAACATGAAGCGG
ATCGAACAGGGCATCAAAGAGCTGGCAGCCAGATCCTGAAAGAACACCCCCGTG
GAAAACACCCAGCTGCAGAACGAGCTGTACCTGTACTACCTGCAGAATGGG
CGGGATATGTACGTGGACCAAGGAACCTGGACATCAACCGGCTGTCGACTACGAT
GTGGACCATATCGTGCCTCAGAGCTTCTGAAGGACGACTCCATCGACAACAAAG
20 GTGCTGACCAGAACGACAAGAACCGGGCAAGAGCGACAAACGTGCCCTCCGA
AGAGGTCGTGAAGAACGATGAAGAACACTACTGGCGGAGCTGCTGAACGCCAAGCT
GATTACCCAGAGAAAGTCGACAATCTGACCAAGGCCAGAGAGAGGCCCTGAG
CGAACTGGATAAGGCCGGCTTCATCAAGAGACAGCTGGTGGAAACCCGGCAGAT
CACAAAGCACGTGGCACAGATCCTGGACTCCGGATGAACACTAAGTACGACGA
25 GAATGACAAGCTGATCCGGAAAGTGAAGTGTACCCCTGAAGTCCAAGCTGGT
GTCCGATTCCCGAAGGATTCCAGTTTACAAAGTGCAGGAGATCAACAACACTAC
CACCAACGCCACGACGCCCTACCTGAACGCCGTGTTGGAAACGCCCTGATCAA
AAAGTACCCCTAACGCTGGAAAGCGAGTTCTGTACGGCGACTACAAGGTGTACGAC
GTGCGGAAGATGATGCCAACAGAGCGAGCAGGAAATCGCAAGGCTACCGCAA
30 GTACTTCTTCTACAGAACATCATGAACCTTTCAAGACCGAGATTACCTGGCC
AACGGCGAGATCCCGAACGCGGCCTCTGATCGAGACAAACGGCAAACCGGGGA
GATCGTGTGGGATAAGGGCCGGGATTGCCCACCGTGCAGGAAAGTGTGAGCAT
GCCCAAGTGAATATCGTAAAAAGACCGAGGTGCAGACAGGCCGCTTCAGCAA
AGAGTCTATCCTGCCAACAGAGGAACAGCGATAAGCTGATGCCAGAAAGAAGGA
35 CTGGGACCCCTAACGAAAGTACGGCGGCTCGACAGCCCCACCGTGGCCTATTCTGTG
CTGGTGGTGGCCAAAGTGGAAAAGGGCAAGTCCAAGAAACTGAAGAGTGTGAA
AGAGCTGCTGGGGATCACCATCATGGAAAGAACGAGCTCGAGAACGAAATCCCAC
CGACTTTCTGGAAGCCAAGGGCTACAAAGAACGAGTGAAGAACGACTGATCATCAA
GCTGCCTAACGACTCCCTGTTGAGCTGGAAAACGCCGGAAAGAGAACGAGTGTG
40 CTCTGCCGGCGAACCTGCAGAACGGAAACGAACGGCCCTGCCCTCCAAATATGT
GAACCTCCTGTACCTGGCCAGCCACTATGAGAACGCTGAAGGGCTCCCCGAGGA
TAATGAGCAGAACAGCTGTTGTGGAACAGCACAGCACAGACTACCTGGACGAGAT
CATCGAGCAGATCAGCGAGTTCTCCAAGAGAGTGTACCTGGCCGACGCTAATCT
GGACAAAGTGTGCTCCGCCTACAACAAAGCACCGGGATAAGCCCATCAGAGAGCA
45 GGCGAGAACATCATCACCTGTTACCGTACCAATCTGGAGGCCCTGCCGCC
TTCAAGTACTTGACACCACCATCGACCGGAAGAGGTACACCAGCACCAAAGAG

GTGCTGGACGCCACCCCTGATCCACCAAGAGCATACCGGCCTGTACGAGACACGG
ATCGACCTGTCTCAGCTGGGAGGTGAC

Cas9 TadAins 768

MDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGE
5 TAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSSFHRLEESFLVEEDKKHE
RHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEG
DLNPNDNSVDKLFQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLP
GEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQLSKDTYDDDLNLLAQIGDQYA
DLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKR YDEHHQDLTLLKALVRQQLPE
10 KYKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQ
RTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRF
AWMTRKSEETITPWNFEEVVDKGASAQSFIERNMTNFDKKNLPNEKVLPKHSLLYEYFT
VYNELTKVYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECF
DSVEISGVEDRFNASLGYHDLLKIIKDKDFLDNEENEDILEDIVLTTLFEDREMIEE
15 RLKTYAHLFDDKVMKQLKRRRYTGWGRRLSRKLINGIRDQSGKTIIDFLKSDGFAN
RNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIIKGILQTVKVVDEL
VKVMGRHKPENIVIEMARENQGSSGSETPGTSESATPESSGSEVEFSHEYWMRHALT
LAKRARDEREVPVGAVLVNNRVIDEGWNRAIGLHDPTAHAEIMALRQGGLVMQN
YRLIDATLYVTFEPVCVMCAGAMIHSRIGRVVFGVRNAKTGAAGSLMDVLHYPGMN
20 HRVEITEGILADECALLCYFFRMPRTTQKGQKNSRERMKRIEGIKELGSQLIKEHP
VENTQLQNEKLYLYLQNGRDMYVDQELDINRLSDYDVDHVQPSFLKDDSIDNKV
LTRSDKNRGKSDNVPSEEVVKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSEL
DKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRK
DFQFYKVREINNYHHAHDAYLNAVVTALIKKYPKLESEFVYGDYKVYDVRKMIA
25 KSEQEIGKATAKYFFSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFAT
VRKVLSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDPKYGGFDSPTV
AYSVLVVAKVEKGSKKLKSVKELLGITMERSFEKNPIDFLEAKGYKEVKKDLIIK
LPKYSLELENGRKRMLASAGELQKGNELALPSKYVNFLYASHYEKLKGSPEDNE
QKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHL
30 FTLTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGD

IBE020_delt: delta HNH TadA 792

ATGGACAAGAAGTACAGCATCGGCCTGGCATCGGCACCAACTCTGTGGCTGG
GCCGTGATCACCACGAGTACAAGGTGCCAGCAAGAAATTCAAGGTGCTGGC
AACACCGACCGGCACAGCATCAAGAAGAACCTGATCGGAGGCCCTGCTTGCAC
35 AGCGCGAAACAGCCAGGCCACCCGGCTGAAGAGAACGCCAGAACAGATA
CACCAAGACGGAAGAACCGGATCTGCTATCTGCAAGAGATCTTCAGCAACGAGAT
GGCCAAGGTGGACGACAGCTTCTCACAGACTGGAAGAGTCCTCCTGGTGG
AGAGGATAAGAACGACGAGCGGCCACCCATCTCGAACATCGGACGAGGT
40 GGCCTACCACGAGAAGTACCCACCATCTACCACCTGAGAAAGAAACTGGTGG
CAGCACCGACAAGGCCACCTGCGGCTGATCTATCTGCCCTGGCCCACATGATC
AAGTTCCGGGGCCACTCCTGATCGAGGGCGACCTGAACCCCGACAACAGCGAC
GTGGACAAGCTGTTCATCCAGCTGGTGCAGACCTACAACCCAGCTGTTGAGGAA
45 AACCCCATCAACGCCAGCGGCCGTGGACGCCAGGCCATCCTGCTGCCAGACTG
AGCAAGAGCAGACGGCTGGAAAATCTGATGCCAGCTGCCAGCTGGCGAGAAGAA
GAATGGCCTGTCGAAACCTGATTGCCCTGAGCCTGGCCTGACCCCCAACTTC

AAGAGCAACTCGACCTGGCCGAGGATGCCAAACTGCAGCTGAGCAAGGACACC
TACGACGACGACCTGGACAACCTGCTGGCCAGATGGCACCAGTACGCCGAC
CTGTTCTGGCCGCCAAGAACCTGTCCGACGCCATCCTGCTGAGCGACATCCTGA
GAGTGAACACCGAGATCACCAAGGCCCCCTGAGCGCCTCTATGATCAAGAGAT
5 ACGACGGAGCACCACCAAGGACCTGACCTGCTGAAAGCTCTCGTGCAGCAGC
TGCCTGAGAAGTACAAAGAGATTTCTCGACCAGAGCAAGAACGGCTACGCCG
GCTACATTGACGGCGGAGCCAGCCAGGAAGAGTTCTACAAGTTCATCAAGGCCA
TCCTGGAAAAGATGGACGGCACCGAGGAACCTGCTCGAAGCTGAACAGAGAG
GACCTGCTGCCAACGGAGCAGGGACCTCGACAACGGCAGCATCCCCACCAAGATC
10 CACCTGGGAGAGCTGCACGCCATTCTGGCGGCAGGAAGATTTACCCATTCC
TGAAGGACAACCAGGAAAAGATCGAGAAGATCTGACCTCCGCATCCCTACT
ACGTGGGCCCTCTGGCCAGGGAAACAGCAGATTGCGCTGGATGACCAGAAAGA
GCGAGGAAACCATCACCCCTGGAACCTCGAGGAAGTGGTGGACAAGGGCGCTT
CCGCCAGAGCTTCATCGAGCGGATGACCAACTCGATAAGAACCTGCCAACG
15 AGAAGGTGCTGCCAACGACAGCCTGCTGTACGAGTACTTCACCGTGTATAACG
AGCTGACCAAAGTGAATACGTGACCGAGGGAAATGAGAAAGCCGCCCTCCTGA
GCGGCGAGCAGAAAAAGGCCATCGTGGACCTGCTGTTCAAGACCAACCGGAAAG
TGACCGTGAAGCAGCTGAAAGAGGACTACTTCAAGAAAATCGAGTGCTCGACT
CCGTGGAAATCTCCGGCGTGGAAAGATCGGTTCAACGCCCTCCCTGGGACATACC
20 ACGATCTGCTAAAATTATCAAGGACAAGGACTTCCTGGACAATGAGGAAAACG
AGGACATTCTGGAAGATATCGTGTGACCCCTGACACTGTTGAGGACAGAGAGA
TGATCGAGGAACGGCTGAAAACCTATGCCACCTGTTGACGACAAAGTGTGA
AGCAGCTGAAGCGGCGGAGATACACCGGCTGGGAGCAGGCTGAGCCGGAAGCTG
ATCAACGGCATCCGGACAAGCAGTCCGGCAAGACAATCCTGGATTCTGAAG
25 TCCGACGGCTCGCCAACAGAAACTCATGCACTGAGCTGATCCACGACAGCCTG
ACCTTAAAGAGGACATCCAGAAAGCCCAGGTGTCCGCCAGGGCGATAGCCTG
CACGAGCACATTGCCAATCTGGCCGGCAGCCCCGCCATTAGAAGGGCATCCTG
CAGACAGTGAAGGTGGTGGACGAGCTCGTGAAGATGATGGCCGGCACAAGCCC
GAGAACATCGTGAATGCCAGGGAAATAGGGCAATCGGACTCCACGACCCAC
30 GAAGAACAGCCGAGAGAATGAAGCGGATCGAAGAGGGCATCAAAGAGCTGG
GCTCCGAAGTCGAGTTCCCATGAGTACTGGATGAGACACGCATTGACTCTCGC
AAAGAGGGCTCGAGATGAACCGAGGTGCCGTGGGGCAGTACTCGTGTCAA
CAATCGCGTAATCGGCAAGGTTGGAATAGGGCAATCGGACTCCACGACCCAC
TGCACATCGGAAATCATGGCCCTTCGACAGGGAGGGCTGTGATGCAGAATTA
35 TCGACTTATCGATGCGACGCTGTACGTACGTTGAACCTGCGTAATGTGCGCG
GGAGCTATGATTCACTCCGCATTGGACGAGTTGATTCGGTGTTCGCAACGCCA
AGACGGGTGCCGCAGGTTCACTGATGGACGTGCTGCATTACCCAGGCATGAACC
ACCGGGTAGAAATCACAGAACGGCATATTGGCGGACGAATGTGCGGCCTGTTGT
GTTACTTTTCGCATGCCAGGCAGGTCTTAACGCCAGAAAAAGCACAATC
40 CTCTACTGACGGCGGCCCTGAGCGAACTGGATAAGGCCGGCTTCATCAAGAGACA
GCTGGTGGAAACCCGGCAGATCACAAAGCACGTGGCACAGATCCTGGACTCCCG
GATGAACACTAAGTACGAGAATGACAAGCTGATCCGGAAAGTGAAGTGT
CACCCCTGAAGTCCAAGCTGGTGTCCGATTCCGGAAAGGATTCCAGTTACAAA
GTGCGCGAGATCAACAACCACTACCAACGCCCACGACGCCCTACCTGAACGCCGTC
45 GTGGGAACCGCCCTGATCAAAAAGTACCCCTAAGCTGGAAAGCGAGTTCGTGTAC
GGCGACTACAAGGTGTACGACGTGCGGAAGATGATGCCAAGAGCGAGCAGGA

AATCGGCAAGGCTACCGCCAAGTACTTCTTACAGAACATCATGAACCTTT
 AAGACCGAGATTACCCTGGCCAACGGCGAGATCCGAAGCGGCCCTGATCGAG
 ACAAACGGCAAACCGGGGAGATCGTGTGGGATAAGGGCCGGATTTGCCACC
 5 GTGCGGAAAGTGCTGAGCATGCCCAAGTGAATATCGTAAAAAGACCGAGGTG
 CAGACAGGCGGCTTCAGCAAAGAGTCTATCCTGCCAAGAGGAACAGCGATAAG
 CTGATGCCAGAAAGAAGGACTGGGACCCCTAAGAAGTACGGCGGCTTCGACAGC
 CCCACCGTGGCCTATTCTGTGCTGGTGGCCAAGTGGAAAAGGGCAAGTCC
 AAGAAACTGAAGAGTGTGAAAGAGCTGCTGGGATCACCATCATGGAAAGAAG
 CAGCTCGAGAAGAATCCCATCGACTTCTGGAAGCCAAGGGTACAAAGAAGT
 10 GAAAAAGGACCTGATCATCAAAGCTGCCTAAGTACTCCCTGTTGAGCTGGAAAA
 CGGCCGGAAGAGAATGCTGGCCTTGCCGGCGAAGTGCAGAAGGGAAACGAAC
 GGCCCTGCCCTCCAAATATGTGAACCTCCTGTACCTGGCCAGCCACTATGAGAAG
 CTGAAGGGCTCCCCGAGGATAATGAGCAGAACAGCTGTTGTGGAACAGCAC
 15 AAGCACTACCTGGACGAGATCATCGAGCAGATCAGCGAGTTCTCCAAGAGAGTG
 ATCCTGGCCGACGCTAATCTGGACAAAGTGCTGTCCGCCTACAAACAAGCACCGG
 GATAAGCCCATCAGAGAGCAGGCCAGAATATCATCCACCTGTTACCCCTGACC
 AATCTGGAGCCCCCTGCCGCCTCAAGTACTTGACACCACCATCGACCGGAAGA
 GGTACACCAGCACCAAAGAGGTGCTGGACGCCACCTGATCCACCAAGAGCATCA
 CCGGCCTGTACGAGACACGGATCGACCTGTCTAGCTGGAGGTGAC

20 delta HNH TadA 792
 MDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGE
 TAEATRLKRTARRRYTRRKNRICYLQEISNEMAKVDDSSFHRLEESFLVEEDKKHE
 RHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEG
 DLNPNDNSDVKLFQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLP
 25 GEKKNGLFGNLIALSLGLTPNFKNFDLAEDAKLQLSKDTYDDDDLNLLAQIGDQYA
 DFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPE
 KYKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQ
 RTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRF
 AWMTRKSEETITPWNFEVVVDKGASAQSFIERMNTFDKKNLPNEKVLPKHSSLYEYFT
 30 VYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLKTNRKVTVKQLKEDYFKKIECF
 DSVEISGVEDRFNASLGYHDLLKIIKDKDFLDNEENEDILEDIVLTTLFEDREMIEE
 RLKTYAHLFDDKVMKQLKRRRYTGWGRSLRKLINGIRDQSGKTIIDFLKSDGFAN
 RNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIIKKGILQTVKVVDEL
 VKVMGRHKPENIVIEMARENQTQKGQKNSRERMKRIEEGIKELGSEVEFSHEYWM
 35 RHALTAKRARDEREVPVGAVLVNNRVIGEGWNRAIGLHDPTAHAEIMALRQGGL
 VMQNYRLIDATLYVTFEPCVMCAGAMIHSRIGRVVFGVRNAKTGAAGSLMDVLHY
 PGMNHRVEITEGILADECACALLCYFFRMPRQVFNAQKKAQSSTDGGLSELDKAGFIK
 RQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSCLVSDFRKDFQFYKV
 40 REINNYHHAHDAYLNAVVGTLIKKYPKLESEFVYGDYKVDVRKMIAKSEQEIGK
 ATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSM
 PQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDPKYGGFDSPTVAYSVLVV
 AKVEKGKSKKLKSVKELLGITIMERSFEKNPIDFLEAKGYKEVKKDLIILPKYSLFE
 LENGRKRMLASAGELQKGNELALPSKYVNFLYASHYEKLKGSPEDNEQKQLFVEQ
 45 HKHYLDEIIEQISEFSKRVILADANLDKVL SAYNKHRDKPIREQAENIIHLFTLNLGA
 PAAFKYFDTTIDRKRYTSTKEVLDATLIHQHSITGLYETRIDLSQLGGD

IBE021_N-te: N-term fusion single TadA helix truncated 165-end

ATGTCCGAAGTCGAGTTTCCCAGTGGATGAGACACGCATTGACTCTCG
 CAAAGAGGGCTCGAGATGAACCGAGGGTCCCCGTGGGGCAGTACTCGTGCTCA
 ACAATCGCGTAATCGCGAAGGTTGGAATAGGGCAATCGGACTCCACGACCCCA
 5 CTGCACATGCGGAAATCATGGCCCTCGACAGGGAGGGCTGTGATGCAGAATT
 ATCGACTTATCGATGCGACGCTGTACGTCACGTTGAACCTGCGTAATGTGCGC
 GGGAGCTATGATTCACTCCCGATTGGACGAGTTGATTGGTGTTCGCAACGCC
 AAGACGGGTGCCGCAGGTTCACTGATGGACGTGCTGCATTACCCAGGCATGAAC
 CACCGGGTAGAAATCACAGAAGGCATATTGGCGGACGAATGTGCGCGCTGTTG
 10 TGTTACTTTTCGCATGCCAGGTCTGGTGGTCTTCTGGTGGTCTAGCGGCAG
 CGAGACTCCCAGGGACCTCAGAGTCCGCCACACCCGAAAGTTCTGGTGGTCTTCT
 GGTGGTCTGACAAGAAGTACAGCATGGCCTGGCCATGGCACCAACTCTGTG
 GGCTGGCCGTGATCACCGACGGAGTACAAGGTGCCAGCAAGAAATTCAAGGTG
 CTGGGCAACACCGACCGCACAGCATCAAGAAGAACCTGATCGGAGGCCCTGCTG
 15 TTGACAGCGGCAGAACAGCCGAGGCCACCCGGCTGAAGAGAACGCCAGAAG
 AAGATACACCAGACGGAAGAACGGATCTGCTATCTGAAGAGATCTTCAGCAA
 CGAGATGGCCAAGGTGGACGACAGCTTCTCACAGACTGGAAGAGTCCTCCT
 GGTGGAAGAGGATAAGAAGCAGGAGCGGCCACCCATCTCGGCAACATCGTGGA
 CGAGGTGGCCTACACGAGAAGTACCCACCATCTACCAACCTGAGAAAGAAACT
 20 GGTGGACAGCACCGACAAGGCCGACCTGCGGCTGATCTATCTGGCCCTGGCCCA
 CATGATCAAGTTCCGGGGCCACTCCTGATCGAGGGCGACCTGAACCCGACAA
 CAGCGACGTGGACAAGCTGTTCATCCAGCTGGTGCAGACCTACAACCAGCTGTT
 GAGGAAAACCCATCAACGCCAGCGCGTGGACGCCAAGGCCATCCTGCTG
 AGACTGAGCAAGAGCAGACGGCTGGAAAATCTGATCGCCCAGCTGCCCGGAG
 25 AAGAAGAATGGCCTGTCGGAAACCTGATTGCCCTGAGCCTGGCCTGACCCCC
 AACTCAAGAGCAACTCGACCTGGCCAGGATGCCAAACTGCAAGCTGAGCAAG
 GACACCTACGACGACGACCTGGACAACCTGCTGGCCAGATCGCGACCAAGTAC
 GCCGACCTGTTCTGGCCGCCAGAACCTGTCCGACGCCATCCTGCTGAGCGACA
 TCCTGAGAGTGAACACCGAGATCACCAAGGCCCCCTGAGCGCCTCTATGATCA
 30 AGAGATACGACGAGCACCAAGGACCTGACCCCTGCTGAAAGCTCTCGTGGC
 AGCAGCTGCCTGAGAAGTACAAAGAGATTTCTCGACCAAGAGCAAGAACGGCT
 ACGCCGGCTACATTGACGGCGAGCCAGCCAGGAAGAGTTCTACAAGTTCATCA
 AGCCCCATCCTGGAAAAGATGGACGGCACCGAGGAAGTCTGCTGAGCTGAACA
 GAGAGGACCTGCTGCGGAAGCAGGGACCTCGACAACGGCAGCATCCCCCACC
 35 AGATCCACCTGGGAGAGCTGCACGCCATTCTGCGGCCAGGAAGATTTCACC
 CATTCTGAAGGACAACCGGGAAAAGATCGAGAAGATCCTGACCTTCCGCATCC
 CCTACTACGTGGGCCCTCTGGCCAGGGAAACAGCAGATTGCGCTGGATGACCA
 GAAAGAGCGAGGAACCATCACCCCCCTGGAACTCGAGGAAGTGGTGGACAAAG
 GGCCTCCGCCAGAGCTCATCGAGGGATGACCAACTTCGATAAGAACCTG
 40 CCCAACGAGAAGGTGCTGCCAAGCACGCCCTGCTGTACGAGTACTTCACCCTG
 TATAACGAGCTGACCAAAGTGAAATACGTGACCGAGGGAATGAGAAAGGCCGCC
 TTGCGCTGAGCGGCAGAAAAAGGCCATCGTGGACCTGCTGTTCAAGACCAAC
 CGGAAAGTGAACCGTGAAGCAGCTGAAAGAGGACTACTCAAGAAAATCGAGTGC
 TTGACTCCGTGGAAATCTCCGGCGTGGAGAGATCGGTCAACGCCCTGGACCA
 45 CATAACACGATCTGCTGAAATTATCAAGGACAAGGACTTCCTGGACAATGAGG
 AAAACGAGGACATTCTGGAAGATACTGTGCTGACCTGACACTGTTGAGGACA

GAGAGATGATCGAGGAACGGCTGAAAACCTATGCCACCTGTCGACGACAAAG
 TGATGAAGCAGCTGAAGCGGCGGAGATACACCGGCTGGGCAGGCTGAGCCGG
 AAGCTGATCAACGGCATCCGGACAAGCAGTCGGCAAGACAATCCTGGATTTC
 CTGAAGTCCGACGGCTCGCCAACAGAAACTTCATGCAGCTGATCCACGACGAC
 5 AGCCTGACCTTAAAGAGGACATCCAGAAAGCCCAGGTGTCCGGCCAGGGCGAT
 AGCCTGCACGAGCACATTCCAATCTGGCCGGCAGCCCCGCCATTAAGAAGGGC
 ATCCTGCAGACAGTGAAGGTGGACGAGCTCGTGAAGTGTGATGGGCCGGCAC
 AAGCCCAGAAACATCGTATCGAAATGCCAGAGAGAACCGACCCAGAA
 GGGACAGAAGAACAGCCGCGAGAGAATGAAGCGGATCGAAGAGGGCATCAAAG
 10 AGCTGGCAGCCAGATCCTGAAAGAACACCCCCGTGGAAAACACCCAGCTGCAGA
 ACGAGAAAGCTGTACCTGTACTACCTGCAGAATGGCGGGATATGTACGTGGACC
 AGGAACCTGGACATCAACCGGCTGTCCGACTACGATGTGGACCATATCGTGCCTC
 AGAGCTTCTGAAGGACGACTCCATCGACAACAAGGTGCTGACCAGAAGCGACA
 AGAACCGGGCAAGAGCGACAACGTGCCCTCCGAAGAGGTGTAAGAAGATG
 15 AAGAACTACTGGCGGAGCTGCTGAACGCCAAGCTGATTACCCAGAGAAAGTT
 GACAATCTGACCAAGGCCAGAGAGAGGGCGCTGAGCGAAGTGGATAAGGCCGG
 CTTCATCAAGAGACAGCTGGTGGAAACCCGGCAGATCACAAAGCACGTGGCACA
 GATCCTGGACTCCGGATGAACACTAACGACGAGAACGACTGATCCG
 GGAAGTGAAGTGTACCCCTGAAGTCCAAGCTGGTGTCCGATTCCGAAAGGA
 20 TTTCCAGTTTACAAAGTGCAGGAGATCAACAACCTACCACCGCCACGACGCC
 TACCTGAACGCCGTGGAACCGCCCTGATCAAAAGTACCTAACGCTGGAA
 AGCGAGTTCTGTACGGCGACTACAAGGTGTACGACGTGCGGAAGATGATGCC
 AAGAGCGAGCAGGAATCGGAAGGCTACCGCCAAGTACTTCTTACAGCAAC
 ATCATGAACCTTTCAAGACCGAGATTACCTGGCAACGGCGAGATCCGAAAG
 25 CGGCCTCTGATCGAGACAAACGGCGAAACCGGGGAGATCGTGTGGATAAGGGC
 CGGGATTTCGCCACCGTGCAGGAAAGTGTGAGCATGCCCAAGTGAATATCGT
 AAAAGACCGAGGTGCAGACAGGCCCTCAGCAAAGAGTCTATCCTGCCAAG
 AGGAACAGCGATAAGCTGATGCCAGAAAGAAGGACTGGGACCTAACAGAGTA
 CGGGCTTCGACAGCCCCACCGTGGCCTATTCTGTGCTGGTGGCCAAGTGG
 30 GAAAAGGGCAAGTCCAAGAAACTGAAGAGTGTGAAAGAGCTGCTGGGATCAC
 CATCATGGAAAGAACGAGCTCGAGAACGAGAACATCCATCGACTTCTGGAAAGCAA
 GGGCTACAAAGAAGTAAAAAGGACCTGATCATCAAGCTGCCAACGACTCCCT
 GTTCGAGCTGGAAAACGCCGAAGAGAACGACTGGCCTCTGCCGGCAACTGCA
 GAAGGGAAACGAACTGCCCTGCCCTCAAATATGTGAACCTCTGTACCTGGCC
 35 AGCCACTATGAGAACGCTGAAGGGCTCCCCGAGGATAATGAGCAGAACAGCTG
 TTTGTGGAACAGCACAAGCACTACCTGGACGAGATCATCGAGCAGATCAGCGAG
 TTCTCCAAGAGAGTGTACCTGGCCGACGCTAATCTGGACAAAGTGTGCTGCC
 ACAACAAGCACCAGGATAAGCCCATCAGAGAGCAGGCCGAGAACATCATCCACC
 TGTTTACCTGACCAATCTGGAGCCCTGCCCTCAAGTACTTGACACCAC
 40 CATCGACCGGAAGAGGTACACCAGCACCAAAGAGGTGCTGGACGCCACCTGAT
 CCACCAAGAGCATCACCGCCTGTACGAGACACGGATCGACCTGTCTCAGCTGGG
 AGGTGAC

IBE021_N-te: N-term fusion single TadA helix truncated 165-end

MSEVEFSHEYWMRHALTLAKRARDEREVPVGA
 45 VLNNRVIDEGWNRAIGLHDPT
 AHAEIMALRQGGLVMQNYRLIDATLYVTFEPVCVMCAGAMIHSRIGRVFGVRNAKT

GAAGSLMDVLHYPGMNHRVEITEGILADECACALLCYFFRMPRSSGGSSGSETPG
 TSESATPESSGGSSGGSDKKYSIGLAIGTNSVGWAVITDEYKVPSKFKVLGNTDRHS
 IKKNLIGALLFDSGETAETRLKRTARRYTRRKNRICYLQEIFSNEAKVDDSSFHR
 LEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLAL
 5 AHMIKFRGHFLIEGDLNPDNSDVKLFIQLVQTYNQLFEENPINASGVDAKAILSARL
 SKSRRLENLIAQLPGEKKNGLFGNLIALSGLTPNFKNFDLAEDAKLQLSKDTYDDD
 LDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKYDEHHQDL
 TLLKALVRQQLPEKYKEIFFDQSNSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELL
 VKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIP
 10 YYVGPLARGNSRFAMTRKSEETITPWNFEVVVDKGASAQSFIERMTNFDKNLPNE
 KVLPHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTV
 KQLKEDYFKKIECFDSVEISGVEDRFNASLGYHDLLKIIKDKDFLDNEENEDILEDIV
 LTTLTFEDREMIEERLKYAHLFDDKVMQLKRRRTGWGRLSRKLINGIRDQSG
 15 KTILDFLKSDGFANRNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIK
 KGILQTVKVVDELVKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKEL
 GSQILKEHPVENTQLQNEKLYYLQNGRDMYVDQELDINRLSDYDVDHIVPQSFL
 KDDSIDNKVLTRSDKNRGKSDNVPSEEVVKMKNYWRQLLNAKLITQRKFDNLTK
 AERGGLSELDKAGFIKQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKS
 20 KLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVTALIKKYPKLESEFVYGDYKVV
 DVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWD
 KGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDPKKY
 GGFDSPTVAYSLLVAKVEKGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKE
 VKKDLIILPKYSLFELENGRKRMLASAGELQKGNELALPSKYVNFLYLA SHYEKLK
 25 GSPEEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIRE
 QAENIIHLFTLTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQSGITGLYETRIDLSQ
 LGGD

IBE029_ISLA: TadA-CP116ins 1067

ATGGACAAGAAGTACAGCATCGGCCTGGCCATCGGCACCAACTCTGTGGGCTGG
 30 GCCGTGATCACCACGAGTACAAGGTGCCAGCAAGAAATTCAAGGTGCTGGC
 AACACCGACCGGCACAGCATCAAGAAGAACCTGATCGGAGGCCCTGCTGTCAC
 AGCGGCAAACAGCCGAGGCCACCCGGCTGAAGAGAACGCCAGAAGAAGATA
 CACCAGACGGAAGAACCGGATCTGCTATCTGCAAGAGATCTTCAGCAACGAGAT
 GGCAAGGTGGACGACAGCTTCTCACAGACTGGAAGAGTCCTCCTGGTGG
 35 AGAGGATAAGAACGACGAGCGGACCCATCTCGAACATCGTGACGAGGT
 GGCCTACCACGAGAAGTACCCACCATCTACCACCTGAGAAAGAAACTGGTGG
 CAGCACCGACAAGGCCACCTGCGGCTGATCTATCTGCCCTGGCCCACATGATC
 AAGTTCCGGGCCACTCCTGATCGAGGGCGACCTGAACCCGACAACAGCGAC
 GTGGACAAGCTGTTATCCAGCTGGTGCAGACCTACAACCAAGCTGTTGAGGAA
 40 AACCCCATCAACGCCAGCGGCGTGGACGCCAAGGCCATCCTGTCTGCCAGACTG
 AGCAAGAGCAGACGGCTGGAAAATCTGATGCCAGCTGCCCGAGAAGAA
 GAATGGCCTGTTGGAAACCTGATTGCCCTGAGCCTGGGCTGACCCCCAACTTC
 AAGAGCAACTCGACCTGGCCGAGGATGCCAAACTGCAGCTGAGCAAGGACACC
 TACGACGACGACCTGGACAACCTGCTGGCCCAGATGGCGACCAGTACGCCGAC
 45 CTGTTCTGGCCGCAAGAACCTGTCCGACGCCATCCTGCTGAGCGACATCCTGA

GAGTGAACACCGAGATCACCAAGGCCCCCTGAGCGCCTTATGATCAAGAGAT
ACGACGAGCACCACCAGGACCTGACCTGCTGAAAGCTCTCGTGCAGCAGC
TGCCTGAGAAGTACAAAGAGATTTCTCGACCAGAGCAAGAACGGCTACGCC
GCTACATTGACGGCGGAGCCAGCCAGGAAGAGTTCTACAAGTTCATCAAGGCC
5 TCCTGGAAAAGATGGACGGCACCGAGGAACTGCTCGTGAAGCTGAACAGAGAG
GACCTGCTGCGGAAGCAGCGGACCTCGACAACGGCAGCATCCCCCACCAGATC
CACCTGGGAGAGCTGCACGCCATTCTGCGGCAGGAAGATTTACCCATTCC
TGAAGGACAACCAGGGAAAAGATCGAGAAGATCCTGACCTCCGCATCCCTACT
ACGTGGGCCCTGGCCAGGGAAACAGCAGATTGCGCTGGATGACCAGAAAGA
10 GCGAGGAAACCATCACCCCTGGAACCTCGAGGAAGTGGTGGACAAGGGCGCTT
CCGCCCAGAGCTTCATCGAGCGGATGACCAACTTCGATAAGAACCTGCCAACG
AGAAGGTGCTGCCAACGACAGCCTGCTGTACGAGTACTTCACCGTGTATAACG
AGCTGACCAAAGTGAAATACGTGACCGAGGGAAATGAGAAAGCCGCCCTCCTGA
GCAGCGAGCAGAAAAAGGCCATCGTGGACCTGCTGTTCAAGACCAACCGGAAAG
15 TGACCGTGAAGCAGCTGAAAGAGGACTACTTCAAGAAAATCGAGTGCTTCGACT
CCGTGGAAATCTCCGGCGTGGAAAGATCGGTCAACGCCCTCCCTGGGACATACC
ACGATCTGCTGAAAATTATCAAGGACAAGGACTTCCTGGACAATGAGGAAAACG
AGGACATTCTGGAAGATATCGTGTGACCCCTGACACTGTTGAGGACAGAGAGA
TGATCGAGGAACGGCTGAAAACCTATGCCACCTGTTGACGACAAAGTGTGATGA
20 AGCAGCTGAAGCGGCGGAGATACACCGGCTGGGAGCTGAGCCGGAAAGCTG
ATCAACGGCATCCGGACAAGCAGTCCGGCAAGACAATCCTGGATTTCCTGAAG
TCCGACGGCTTCGCCAACAGAAACTCATGCACTGATCCACGACGACAGCCTG
ACCTTAAAGAGGACATCCAGAAAGCCCAGGTGTCCGCCAGGGCGATAGCCTG
CACGAGCACATTGCCAATCTGGCCGGCAGCCCCGCCATTAGAAGGGCATCCTG
25 CAGACAGTGAAGGTGGTGGACGAGCTCGTGAAGATGATGGGCCGGCACAAGCCC
GAGAACATCGTGTGAAATGCCAGAGAGAACCAAGACCACCCAGAACGGGACA
GAAGAACAGCCCGAGAGAATGAAGCGGATCGAAGAGGGCATCAAAGAGCTGG
GCAGCCAGATCCTGAAAGAACACCCCGTGGAAAACACCCAGCTGCAGAACGAG
AAGCTGTACCTGTACTACCTGCAAGATGGCGGGATATGTACGTGGACCAGGAA
30 CTGGACATCAACGGCTGTCCGACTACGATGTGGACCATATCGCCTCAGAGCT
TTCTGAAGGACGACTCCATCGACAACAAGGTGCTGACAGAAGCGACAAGAAC
GGGGCAAGAGCGACAACGTGCCCTCCGAAGAGGTGCGTGAAGAACGATGAAGAAC
TAATGGCGGCAGCTGTAACGCCAAGCTGATTACCCAGAGAAAGTTGACAAT
CTGACCAAGGCCAGAGAGAGGGCGCTGAGCGAACTGGATAAGGCCGGCTCATC
35 AAGAGACAGCTGGTGGAAACCCGGCAGATCACAAAGCACGTGGCACAGATCCTG
GACTCCCGGATGAACACTAAGTACGACGAGAATGACAAGCTGATCCGGAAAGTG
AAAGTGATCACCCCTGAAAGTCCAAGCTGGTGTCCGATTCCGAAGGGATTCCAGT
TTTACAAAGTGCAGGAGATCAACAACCTACCCACGCCACGACGCCCTACCTGA
ACGCCGTGCGTGGAACCGCCCTGATCAAAAAGTACCTTAAGCTGGAAAGCGAGT
40 TCGTGTACGGCGACTACAAGGTGTACGACGTGCGGAAGATGATCGCCAAGAGCG
AGCAGGAAATCGGCAAGGCTACCGCCAAGTACTTCTTACAGCAACATCATGA
ACTTTTCAAGACCGAGATTACCCCTGGCAACGGCGAGATCCGGAAGCGGGCTCT
GATCGAGACAAACATGAACCACCGGGTAGAAATCACAGAACGGCATATTGGCGG
ACGAATGTGCGGCCTGTTACTTTTGCATGCCAGGCAGGTCTTAA
45 CGCCCAAGAAAAAGCACAATCCTACTGACGGTTCTAGCGGCAGCGAGACTCC
CGGGACCTCAGAGTCCGCCACACCCGAAAGTTCTGGTCCGAAGTCGAGTTTCC

CATGAGTACTGGATGAGACACGCATTGACTCTCGAAAGAGGGCTCGAGATGAA
 CGCGAGGTGCCGTGGGGCAGTACTCGTCTAACATCGCGTAATCGGC
 GGTTGGAATAGGGCAATCGGACTCCACGACCCCCTGCACATCGGAAATCATG
 GCCCTCGACAGGGAGGGCTTGTGATGCAGAATTATCGACTTATCGATGCGACGC
 5 TGTACGTCACGTTGAACCTTGCCTAATGTGCGCAGGGAGCTATGATTCACTCCG
 CATTGGACGAGTTGTATTCGGTGTTGCCAACGCCAAGACGGGTGCCGCAGGTTCA
 CTGATGGACGTGCTGCATTACCCAGGCGCGAAACCGGGAGATCGTGTGGGAT
 AAGGGCCGGGATTTGCCACCGTGCAGAAAGTGTGAGCATGCCCAAGTGAAT
 ATCGTAAAAAAGACCGAGGTGCAGACAGGCGCTTCAGCAAAGAGTCTATCCTG
 10 CCCAAGAGGAACAGCGATAAGCTGATGCCAGAAAGAAGGACTGGGACCCCTAA
 GAAGTACGGCGGCTTCGACAGCCCCACCGTGGCCTATTCTGTGCTGGTGGTGGCC
 AAAGTGGAAAAGGGCAAGTCCAAGAAACTGAAGAGTGTGAAAGAGCTGCTGGG
 GATCACCACATGGAAAGAAGCAGCTCGAGAAGAATCCCATCGACTTCTGGA
 15 AGCCAAGGGCTACAAAGAAGTAAAAAGGACCTGATCATCAAGCTGCCAAGTA
 CTCCCTGTTGAGCTGGAAAACGGCCGAAGAGAATGCTGGCCTCTGCCGGCGA
 ACTGCAGAAGGGAAACGAACCTGGCCCTGCCCTCCAAATATGTGAACCTCCTGTA
 CCTGGCCAGCCACTATGAGAAGCTGAAGGGCTCCCCGAGGATAATGAGCAGAA
 ACAGCTGTTGTGGAACAGCACAAGCACTACCTGGACGAGATCATCGAGCAGAT
 CAGCGAGTTCTCCAAGAGAGTGATCCTGGCCACGCTAATCTGGACAAAGTGCT
 20 GTCCGCCTACAACAAGCACCAGGATAAGCCCATCAGAGAGCAGGCCAGAATAT
 CATCCACCTGTTACCCCTGACCAATCTGGAGCCCCCTGCCCTCAAGTACTTT
 GACACCACCATCGACCGGAAGAGGTACACCAGCACCAAAGAGAGTGCTGGACGCC
 ACCCTGATCCACCAGAGCATCACCGCCTGTACGAGACACGGATCGACCTGTCTC
 AGCTGGGAGGTGAC

25

IBE029_ISLA : TadA-CP116ins 1067

MDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGE
 TAEATRLKRTARRRYTRRKNRICYLQEISNEMAKVDDSSFHRLEESFLVEEDKKHE
 RHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEG
 30 DLNPNDNSVDKLFQLVQTYNQLFEENPINASGVDAKAILSARLSRRLENLIAQLP
 GEKKNGLFGNLIALSLGLTPNFKNFDLAEDAKLQLSKDTYDDLDNLLAQIGDQYA
 DLFLAAKNLSDAILSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPE
 KYKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQ
 RTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRF
 35 AWMTRKSEETITPWNFEVVVDKGASAQSFIERMNTNFDKNLPNEKVLPKHSLLYEYFT
 VYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNKVTVKQLKEDYFKKIECF
 DSVEISGVEDRFNASLGYHDLLKIIKDKDFLDNEENEDILEDIVLTLLFEDREMIEE
 RLKTYAHLFDDKVMKQLKRRYTGWRQLSRKLINGIRDQSGKTILDFLKSDGFAN
 40 RNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIIKGILQTVKVVDEL
 VKVMGRHKPENIVIEMARENQTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENT
 QLQNEKLYLYLQNGRDMYVDQELDINRLSDYDVEDHIVPQSLKDDSIDNKVLTRS
 DKNRGKSDNPSEEVVKMKNYWRQLLNAKLITQRKFDSLTKAERGGLSELDKAG
 FIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSLSVDFRKDFQFY
 KVREINNYHHAHDAYLNAVVGTLIKKYPKLESEFVYGDYKVDVRKMIAKSEQEI
 45 GKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNMNHRVEITEGILADECACALLCY

FFRMPRQVFNAQKKAQSSTDGSSGSETPGTSESATPESSGSEVEFSHEYWMRHALTL
 AKRARDEREVPVGAVLVNNRVIGEGWNRAIGLHDPTAHAEIMALRQGGLVMQNY
 RLIDATLYVTFEPVCVMCAGAMIHSRIGRVVFGVRNAKTGAAGSLMDVLHYPGGETG
 EIVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDW
 5 DPKKYGGFDSPTVAYSVLVVAKEKGSKKLKSVKELLGITIMERSSFEKNPIDFLEA
 KGYKEVKKDLIILPKYSLFELENGRKRLMASAGELQKGNELALPSKYVNFLYFLASH
 YEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKR
 DKPIREQAENIIHLFTLTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQSITGLYET
 RIDLSQLGGD

10

IBE031_ISLA: TadACP136ins 1248

ATGGACAAGAAGTACAGCATCGGCCTGGCCATCGGCACCAACTCTGTGGGCTGG
 GCCGTGATCACCGACGAGTACAAGGTGCCAGCAAGAAATTCAAGGTGCTGGGC
 AACACCGACCGGCACAGCATCAAGAAGAACCTGATCGGAGGCCCTGCTGTCGAC
 15 AGCGGCGAAACAGCCAGGCCACCCGGCTGAAGAGAACCGCCAGAAGAAGATA
 CACCAGACGGAAGAACCGGATCTGCTATCTGCAAGAGATCTTCAGCAACGAGAT
 GGCCAAAGGTGGACGACAGCTTCTCACAGACTGGAAGAGACTCCTCTGGTGG
 AGAGGATAAGAAGCACGAGCGGCACCCATCTCGGCAACATCGGGACGAGGT
 GGCCTACCACGAGAAGTACCCACCATCTACCACCTGAGAAAGAAACTGGTGG
 20 CAGCACCGACAAGGCCGACCTGCGGCTGATCTATCTGGCCCTGGCCCACATGATC
 AAGTTCCGGGGCCACTCCTGATCGAGGGCGACCTGAACCCCGACAACAGCGAC
 GTGGACAAGCTGTTATCCAGCTGGTGCAGACCTACAACCGAGCTGTTGAGGAA
 AACCCCATCAACGCCAGCGGCGTGGACGCCAAGGCCATCCTGTCTGCCAGACTG
 AGCAAGAGCAGACGGCTGGAAAATCTGATCGCCCAGCTGCCCGCGAGAAGAA
 25 GAATGGCCTGTTCGAAACCTGATTGCCCTGAGCCTGGGCCTGACCCCCACTTC
 AAGAGCAACTCGACCTGGCCAGGATGCCAAACTGCAAGCTGAGCAAGGACACC
 TACGACGACGACCTGGACAACCTGCTGCCAGATCGCGACCAGTACGCCGAC
 CTGTTCTGGCCGCCAAGAACCTGTCCGACGCCATCCTGTCTGAGCGACATCCTGA
 GAGTGAACACCGAGATCACCAAGGCCCTGAGCGCTCTATGATCAAGAGAT
 30 ACGACGAGCACCACCAAGGACCTGACCCCTGCTGAAAGCTCTCGTGGCAGCAGC
 TGCCTGAGAAGTACAAAGAGATTTCTCGACCAAGAGCAAGAACGGCTACGCCG
 GCTACATTGACGGCGGAGCCAGCCAGGAAGAGTTCTACAAGTTCATCAAGGCCA
 TCCTGGAAAAGATGGACGGCACCGAGGAAGTCTGCTGTGAAGCTGAACAGAGAG
 GACCTGCTGCGGAAGCAGCGGACCTTCGACAACCGCAGCATCCCCCACCAGATC
 35 CACCTGGAGAGCTGCACGCCATTCTGGCGGCCAGGAAGATTTCACCCATTCC
 TGAAGGACAACCAGGGAAAAGATCGAGAAGATCCTGACCTCCGCATCCCCACT
 ACGTGGGCCCTCTGGCCAGGGAAACAGCAGATTGCGCTGGATGACCAGAAAGA
 GCGAGGAAACCATCCCCCTGGAACCTCGAGGAAGTGGTGGACAAGGGCGCTT
 CCGCCAGAGCTTCATCGAGCGGATGACCAACTTCGATAAGAACCTGCCAACG
 40 AGAAGGTGCTGCCAAGCACAGCCTGCTGTACGAGTACTTCACCGTGTATAACG
 AGCTGACCAAAGTGAATACTGACCGAGGGAAATGAGAAAGGCCCTCCTGA
 GCAGCGAGCAGAAAAAGGCCATCGTGGACCTGCTGTTCAAGACCAACCGGAAAG
 TGACCGTGAAGCAGCTGAAAGAGGACTACTTCAAGAAAATCGAGTGCTTCGACT
 CCGTGGAAATCTCCGGCGTGGAAAGATCGTTAACGCCCTGGCACATACC
 45 ACGATCTGCTGAAAATTATCAAGGACAAGGACTTCCTGGACAATGAGGAAAACG

AGGACATTCTGGAAGATATCGTCTGACCCCTGACACTGTTGAGGACAGAGAGA
 TGATCGAGGAACGGCTGAAAACCTATGCCACCTGTCGACGACAAAGTGTGA
 AGCAGCTGAAGCGCGGAGATACACCGGCTGGGGCAGGCTGAGCCGGAAGCTG
 ATCAACGGCATCCGGACAAGCAGTCCGGCAAGACAATCCTGGATTCTGAAG
 5 TCCGACGGCTCGCAACAGAAACTTCATGCTGAGCTGATCCACGACGACAGCCTG
 ACCTTAAAGAGGACATCCAGAAAGCCCAGGTGTCCGGCCAGGGCGATAGCCTG
 CACGAGCACATTGCCAATCTGGCCGGCAGCCCCGCCATTAAAGAAGGGCATCCTG
 CAGACAGTGAAGGTGGTGGACGAGCTCGTGAAGATGTGATGGGCCGGACAAGCCC
 GAGAACATCGTGTGAAATGCCAGAGAGAACGACCAAGGAGAAC
 10 GAAGAACAGCCCGAGAGAACATGAGCGGATCGAAGAGGGCATCAAAGAGCTGG
 GCAGCCAGATCCTGAAAGAACACCCCGTGGAAAACACCCAGCTGCAGAACGAG
 AAGCTGTACCTGTACTACCTGCAGAATGGCGGGATATGTACGTGGACCAGGAA
 CTGGACATCAACCGGCTGTCCGACTACGATGTGGACCATATCGTGCCTCAGAGCT
 TTCTGAAGGACGACTCCATCGACAACAAGGTGCTGACCAGAACGACAAGAAC
 15 GGGGCAAGAGCGACAACGTGCCCTCCGAAGAGGTGCTGAAGAACATGAAGAAC
 TACTGGCGGCAGCTGCTGAACGCCAAGCTGATTACCCAGAGAACAGTGCACAAT
 CTGACCAAGGCCGAGAGAGAGGCCGACTACGTAAGCTGACGACAGCTGGATAAGGCCGGCTCATC
 AAGAGACAGCTGGTGGAAACCCGGCAGATCACAAAGCACGTGGCACAGATCCTG
 GACTCCCGGATGAACACTAAGTACGACGAGAACAGCTGATCCGGGAAGTG
 20 AAAGTGTACCCCTGAAGTCCAAGCTGGTGTCCGATTCCGGAAAGGATTCCAGT
 TTTACAAAGTGGCGAGATCAACAACCTACCAACGCCACGACGCCACCTGA
 ACGCCGCTGTGGGACCGCCCTGATCAAAAGTACCCCTAACGCTGGAAAGCGAGT
 TCGTGTACGGCGACTACAAGGTGTACGACGTGCGGAAGATGATGCCAACAGAGCG
 AGCAGGAAATCGGCAAGGCTACCGCCAAGTACTTCTTACAGAACATCATGA
 25 ACTTTTCAAGACCGAGATTACCCCTGGCAACGGCGAGATCCGGAAGCGGCCCT
 GATCGAGACAAACGGCGAAACCGGGGAGATCGTGTGGATAAGGCCGGGATT
 TTGCCACCGTGGAAAGTGCTGAGCATGCCCAAGTGAATATCGTAAAAAGA
 CCGAGGTGCAGACAGGCCGCTCAGCAAAGAGTCTATCTGCCAACAGAGGAACA
 GCGATAAGCTGATGCCAGAAAGAACAGGACTGGGACCTAACGAAAGTACGGCGGCT
 30 TCGACAGCCCCACCGTGGCTATTCTGTGCTGGTGGTGGCAAAGTGGAAAAGG
 GCAAGTCCAAGAAACTGAAGAGTGTGAAAGAGACTGCTGGGATCACCATCATGG
 AAAGAACGAGCTTCGAGAAGAACATCCATCGACTTCTGGAACGCAAGGGCTACA
 AAGAAGTAAAAAGGACCTGATCATCAAGCTGCCTAACGTAAGTACTCCCTGTGAGC
 TGGAAAACGGCCGGAAAGAGAACATGCTGCCCTCTGCCGGAACTGCAGAACAGGGA
 35 AACGAACTGGCCCTGCCCTCCAAATATGTGAACCTCCTGTACCTGGCCAGCCACT
 ATGAGAACGCTGAAGGGCTCCATGAACCACCGGGTAGAAATCACAGAACGGCATAT
 TGGCGACGAATGTGGCGCTGTGTGTTACTTTTCGATGCCAGGCAGGT
 CTTAACGCCAGAAAAAGCACAATCCTCTACTGACGGTTCTAGCGGCAGCGA
 GACTCCCGGGACCTCAGAGTCCGCCACACCGAAAGTCTGGTCCGAAGTCGA
 40 GTTTCCCATGAGTACTGGATGAGAACACGCATTGACTCTCGCAAAGAGGGCTCGA
 GATGAACGCGAGGTGCCGTGGGGCAGTACTCGTCTGCAACAATCGCGTAATC
 GGCGAACGGTTGGAATAGGGCAATCGGACTCCACGACCCACTGCACATCGGAA
 ATCATGGCCCTTCGACAGGGAGGGCTGTGATGCAGAATTATCGACTATCGATG
 CGACGCTGTACGTCACGTTGAACCTTGCATAATGTGCGCGGGAGCTATGATTCA
 45 CTCCCGCATTGGACGAGTTGATTGGTGTGCAACGCCAACGACGGGTGCCGCA
 GGTTCACTGATGGACGCTGCATTACCCAGGCCCCGAGGATAATGAGCAGAAA

5 CAGCTTTGTGGAACAGCACAAGCACTACCTGGACGAGATCATCGAGCAGATC
 AGCGAGTTCTCCAAGAGAGTGATCCTGGCCGACGCTAATCTGGACAAAGTGTG
 TCCGCCTACAACAAGCACCGGGATAAGCCCCTCAGAGAGCAGGCCGAGAATATC
 ATCCACCTGTTACCTGACCAATCTGGAGCCCTGCCGCTTCAAGTACTTG
 10 ACACCACCATCGACCGGAAGAGGTACACCAGCACAAAGAGGTGCTGGACGCCA
 CCCTGATCCACCAGAGCATCACCGGCCTGTACGAGACACGGATCGACCTGTCTCA
 GCTGGGAGGTGAC

IBE031_ISLA : TadACP136ins 1248

10 MDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGE
 TAEATRLKRTARRRYTRRKNRICYLQEISNEMAKVDDSSFHRLEESFLVEEDKKHE
 RHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEG
 DLNPNDSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSRRLENLIAQLP
 GEKKNGLFGNLIALSGLTPNFKNFDLAEDAKLQLSKDTYDDLDNLLAQIGDQYA
 15 DLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKR YDEHHQDLTLLKALVRQQLPE
 KYKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQ
 RTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRF
 AWMTRKSEETITPWNFEEVVDKGASAQSFIERMNTFDKNLPNEKVLPKHSLLYEYFT
 VYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECF
 20 DSVEISGVEDRFNASLGYHDLLKIIKDKDFLDNEENEDILEDIVLTLLTFEDREMIEE
 RLKTYAHLFDDKVMKQLKRRRYTGWGRRLSRKLINGIRDQSGKTILDLKSDGFAN
 RNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIIKGILQTVKVVDEL
 VKVMGRHKPENIVIEMARENQTQKGQKNSRERMKRIEEGIKELGSQLKEHPVENT
 25 QLQNEKLYLYLQNGRDMYVDQELDINRLSDYDVEDHIVPQSLKDDSIDNKVLTRS
 DKNRGKSDNVPSEEVVKKMNYWRQLLNAKLITQRKFNDNLTKAERGGLSELDKAG
 FIKRQLVETRQITKVAQILDLSRMNTKYDENDKLIREVKVITLKSLSVSDFRKDFQFY
 KVREINNYHHAHDAYLNAVVTALIKKYPKLESEFVYGDYKVDVRKMIAKSEQEI
 GKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVL
 SMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDPKYGGFDSPTVAYSVL
 30 VVAKVEKGSKKLKSVKELLGITIMERSFEKNPIDFLEAKGYKEVKKDLIILPKYS
 LFELENGRKRMLASAGELQKGNELALPSKYVNFLYLA SHYEKLKGSMNHRVEITEGI
 LADECAALLCYFFRMPRQVFNAQKKAQSSDGSSGSETPGTSESATPESSGSEVEFSH
 EYWMRHALTAKRARDEREVPVGAVLVNNRVIGEGWNRAIGLHDPTAHAEIMAL
 RQGGLVMQNYRLIDATLYVTFEPVCVMCAGAMIHSRIGRVVFGVRNAKTGAAGSLM
 35 DVLHYPGPEDNEQKQLFVEQHKHYLDEIEQISEFSKRVILADANLDKVLSAYNKHR
 DKPIREQAENIHLFTLTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQSITGLYET
 RIDLSQLGGD

40 IBE032_ISLA: TadACP136ins 1052

ATGGACAAGAAGTACAGCATCGGCCTGGCCATCGGCACCAACTCTGTGGGCTGG
 GCCGTGATCACCAGACGAGTACAAGGTGCCAGCAAGAAATTCAAGGTGCTGGGC
 AACACCGACCGGCACAGCATCAAGAACCTGATCGGAGCCCTGCTGTCGAC

AGCGGCAGAACAGCCAGGCCACCCGGCTGAAGAGAACGCCAGAAGAAGATA
CACCAAGACGGAAAGAACCGGATCTGCTATCTGCAAGAGATCTTCAGCAACGAGAT
GGCCAAGGTGGACGACAGCTTCTCACAGACTGGAAGAGTCCTCCTGGTGGAA
AGAGGATAAGAACGACGAGCGGCACCCATCTCGCAACATCGTGGACGAGGT
5 GGCCTACCACGAGAACGACTACCCACCATCTACCACCTGAGAAAGAAACTGGTGGAA
CAGCACCGACAAGGCCACCTGCGGCTGATCTATCTGGCCCTGGCCCACATGATC
AAGTTCCGGGCCACTCCTGATCGAGGGCGACCTGAACCCGACAACACAGCGAC
GTGGACAAGCTGTTATCCAGCTGGTGCAGACCTACAACCCAGCTGTTGAGGAA
AACCCATCAACGCCAGCGCGTGGACGCCAAGGCCATCCTGCTGCCAGACTG
10 AGCAAGAGCAGACGGCTGGAAAATCTGATGCCAGCTGCCCGCGAGAAGAA
GAATGCCCTGTCGAAACCTGATTGCCCTGAGCCTGGGCTGACCCCCAACCTTC
AAGAGCAACTTCGACCTGGCCAGGATGCCAAACTGCAGCTGAGCAAGGACACC
TACGACGACGACCTGGACAACCTGCTGCCAGATCGCGACCAGTACGCCGAC
CTGTTCTGCCGCCAGAACCTGTCCGACGCCATCCTGCTGAGCGACATCCTGA
15 GAGTGAACACCGAGATCACCAAGGCCCTGAGCGCCTCTATGATCAAGAGAT
ACGACGAGCACCACCAAGGACCTGACCCCTGCTGAAAGCTCTCGTGCAGCAGC
TGCCTGAGAAGTACAAAGAGATTTCTCGACCAAGAGCAAGAACGGCTACGCCG
GCTACATTGACGGCGGAGCCAGCCAGGAAGAGAGTTCTACAAGTTATCAAGGCCA
TCCTGGAAAAGATGGACGGCACCGAGGAAGTCTGAGCTGAAGCTGAACAGAGAG
20 GACCTGCTGCCAGAACGGGACCTCGACAAACGGCAGCATCCCCACCAGATC
CACCTGGAGAGCTGACGCCATTCTGCCGGCAGGAAGATTTACCCATTCC
TGAAGGACAACCAGGGAAAAGATCGAGAAGATCCTGACCTCCGCATCCCTACT
ACGTGGCCCTCTGCCAGGGAAACAGCAGATTGCCCTGGATGACCAGAAAGA
GCGAGGAAACCATCACCCCTGGAACCTCGAGGAAGTGGTGGACAAGGGCGCTT
25 CCGCCCAGAGCTTCATCGAGCGGATGACCAACTCGATAAGAACCTGCCAACG
AGAAGGTGCTGCCAACGACAGCCTGCTGTACGAGTACTTCACCGTGTATAACG
AGCTGACCAAAGTGAAAATACGTGACCGAGGAATGAGAAAGCCGCCCTCCTGA
GCCGCGAGCAGAAAAAGGCCATCGTGGACCTGCTGTTCAAGACCAACCGGAAAG
TGACCGTGAAGCAGCTGAAAGAGGACTACTTCAAGAAAATCGAGTGCTTCGACT
30 CCGTGGAAATCTCCGGCGTGGAAAGATCGGTTCAACGCCCTCCCTGGCACATACC
ACGATCTGCTGAAAATTATCAAGGACAAGGACTTCCTGGACAATGAGGAAAACG
AGGACATTCTGGAAGATATCGTGTGACCCCTGACACTGTTGAGGACAGAGAGA
TGATCGAGGAACGGCTGAAAACCTATGCCACCTGTTGACGACAAAGTGTGATGA
AGCAGCTGAAGCGGCGGAGATACACCGGCTGGGCAAGGCTGAGCCGGAAGCTG
35 ATCAACGGCATCCGGACAAGCAGTCCGGCAAGACAATCCTGGATTCTGAAG
TCCGACGGCTTCGCCAACAGAAACTTCATGCAGCTGATCCACGACAGCCTG
ACCTTAAAGAGGACATCCAGAAAGCCAGGTGTCCGCCAGGGCGATAGCCTG
CACGAGCACATTGCCAATCTGCCGGCAGCCCCGCCATTAAGAAGGGCATCCTG
CAGACAGTGAAGGTGGTGGACGAGCTCGTGAAGTGTGATGGGCCGGACAAGCCC
40 GAGAACATCGTGTGAAATGCCAGAGAGAACCGACCAACCGAGAACGGACA
GAAGAACAGCCCGAGAGAATGAAGCGGATCGAAGAGGGCATCAAAGAGCTGG
GCAGCCAGATCCTGAAAGAACACCCCGTGGAAAACACCCAGCTGCAGAACGAG
AAGCTGTACCTGTACTACCTGAGAATGGCGGGATATGTACGTGGACCAAGGAA
CTGGACATCAACCGGCTGTCCGACTACGATGTGGACCATATCGTGCCTCAGAGCT
45 TTCTGAAGGACGACTCCATCGACAACAAGGTGCTGACCGAGCGACAAGAAC
GGGGCAAGAGCGACAACGTGCCCTCCGAAGAGGTCGTGAAGAAGATGAAGAAC

TACTGGCGGAGCTGCTGAACGCCAAGCTGATTACCCAGAGAAAGTCGACAAT
 CTGACCAAGGCCGAGAGAGGCGGCCTGAGCGAACTGGATAAGGCCGGCTTCATC
 AAGAGACAGCTGGTGGAAACCCGGCAGATCACAAAGCACGTGGCACAGATCCTG
 GACTCCCGGATGAACACTAACGACTAACGAGAATGACAAGCTGATCCGGAAAGTG
 5 AAAGTGATCACCCCTGAAGTCCAAGCTGGTGTCCGATTCCGAAGGATTCCAGT
 TTTACAAAGTGCACGAGATCAACAACCTACCCACGCCACGACGCCCTACCTGA
 ACGCCGTCGTGGAACCGCCCTGATCAAAAAGTACCTTAAGCTGGAAAGCGAGT
 TCGTGTACGGCGACTACAAGGTGTACGACGTGGGAAGATGATCGCCAAGAGCG
 AGCAGGAAATCGGCAAGGCTACCGCCAAGTACTTCTTACAGCAACATCATGA
 10 ACTTTTCAAGACCGAGATTACCCCTGGCCATGAACCACCGGGTAGAAATCACAG
 AAGGCATATTGGCGGACGAATGTGCGCGCTGTTGTACTTTTCGCATGCC
 CAGGCAGGTCTTAACGCCAGAAAAAAAGCACAATCCTACTGACGGTTCTAG
 CGGCAGCGAGACTCCCGGGACCTCAGAGTCCGCCACACCCGAAAGTTCTGGTTC
 CGAAGTCGAGTTCCATGAGTACTGGATGAGACACGCATTGACTCTCGCAAAG
 15 AGGGCTCGAGATGAACCGAGGTGCCGTGGGGCAGTACTCGTGTCAACAAT
 CGCGTAATCGCGAAGGTGGAATAGGGCAATCGGACTCCACGACCCACTGCA
 CATGCCGAAATCATGGCCCTTCGACAGGGAGGGCTTGTGATGCAGAATTATCGA
 CTTATCGATGCGACGCTGTACGTCACGTTGAACCTTGCCTAATGTGCGCGGGAG
 20 CTATGATTCACTCCGCATTGGACGAGTTGTATTGGTGTTCGCAACGCCAAGAC
 GGGTGCCGCAGGTTCACTGATGGACGTGCTGCATTACCCAGGCAACGGCAGAT
 CGGAAGCGGCCTCTGATCGAGACAAACGGCGAAACCGGGAGATCGTGTGGG
 ATAAGGGCCGGATTTCGCCACCGTGGAAAGTGCTGAGCATGCCCAAGTGA
 ATATCGTAAAAAAGACCGAGGTGCAGACAGGGCTTCAGCAAAGAGTCTATCC
 TGCCCAAGAGGAACACGCGATAAGCTGATGCCAGAAAGAAGGACTGGGACCC
 25 AAGAAGTACGGCGGCTTCGACAGCCCCACCGTGGCCTATTCTGTGCTGGTGG
 CCAAAGTGGAAAAGGGCAAGTCCAAGAAACTGAAGAGTGTGAAAGAGCTGCTG
 GGGATCACCATCATGGAAAGAAGCAGCTTCGAGAAGAATCCCATCGACTTCTG
 GAAGCCAAGGGCTACAAAGAAGTAAAAAGGACCTGATCATCAAGCTGCCTAA
 GTACTCCCTGTTGAGCTGGAAAACGGCCGGAAAGAGAATGCTGGCCTCTGCCGG
 30 CGAACTGCAGAAGGGAAACGAACTGGCCCTGCCCTCCAAATATGTGAACCTCCT
 GTACCTGGCCAGCCACTATGAGAAGCTGAAGGGCTCCCCGAGGATAATGAGCA
 GAAACAGCTTTGTGGAACAGCACAAGCACTACCTGGACGAGATCATCGAGCA
 GATCAGCGAGTTCTCCAAGAGAGTGTACCTGGCCGACGCTAATCTGGACAAAGT
 GCTGTCGCCTACAACAAAGCACCAGGATAAGCCCATCAGAGAGCAGGCCGAGAA
 35 TATCATCCACCTGTTACCTGACCAATCTGGAGCCCTGCCCTCAAGTAC
 TTTGACACCACCATCGACCGGAAGAGGTACACCAGCACCAAGAGGTGCTGGAC
 GCCACCCCTGATCCACCAAGAGCATCACCGCCTGTACGAGACACGGATCGACCTG
 TCTCAGCTGGAGGTGAC

40 IBE032_ISLA : TadACP136ins 1052
 MDKKYSIGLAIGTNSGVWAVITDEYKVPSSKKFKVLGNTDRHSIKKNLIGALLFDSGE
 TAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFHRLEESFLVEEDKKHE
 RHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKAIDLRLIYLALAHMIKFRGHFLIEG
 DLNPDSVDKLFQLVQTYNQLFEENPINASGVDAKAILSARLSRRLENLIAQLP
 45 GEKKNGLFGNLIALSGLTPNFKSNFDLAEDAKLQLSKDTYDDLDNLLAQIGDQYA

5 DLFLAAKNLSDAILSDILRVNTEITKAPLSASMIKYDEHHQDLTLLKALVRQQLPE
 KYKEIFFDQSNGYAGYIDGGASQEEFYKFIKPILEKMDGEELLVKLNREDLLRKQ
 RTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRF
 AWMTRKSEETITPWNFEEVVDKGASAQSFIERMNTNFDKNLPNEKVLPKHSLLYEYFT
 10 VYNELTKVYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECF
 DSVEISGVEDRFNASLGYHDLLKIIKDKDFLDNEENEDILEDIVLTTLFEDREMIIE
 RLKTYAHLFDDKVMKQLKRRRYTGWGRSLRKLINGIRDQSGKTILDFLKSDGFAN
 RNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIIKGILQTVKVVDEL
 VKVMGRHKPENIVIEMARENQTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENT
 15 QLQNEKLYLYLQNGRDMYVDQELDINRLSDYDVDHIVPQSFLKDDSIDNKVLTRS
 DKNRGKSDNVPSEEVVKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAG
 FIKRQLVETRQITKHVAQILD SRMNTKYDENDKLIREVKVITLKS LVSDFRKDFQFY
 KVREINNYHHAHDAYLNAVVTALIKKYPKLESEFVYGDYKVDVRKMIAKSEQEI
 GKATAKYFFYSNIMNFFKTEITLAMNHRVEITEGILADEC AALLCYFFRMPRQVFNA
 20 QKKAQSSTDGSSGSETPGTSESATPESSGSEVEFSHEYWMRHALT LAKRARDEREVP
 VGVAVLNNR VIGEGWNRAIGLHDPTAHAEIMALRQGGLVMQNYRLIDATLYVTFE
 PCVMCAGAMIHSRIGR VVFGVRNAKTGAAGSLMDVLHYPGNGEIRKRPLIETNGET
 GEIVWDKGRDFATVRKVL SMPQVNIVKKT EVQTGGFSKESILPKRNSDKLIARKKD
 WDPKKYGGFDSPTVAYSVL VVAKVEKGSKKLKSVKELLGITIMERSSFEKNPIDFL
 25 EAKGYKEVKKDLIILPKYSLFELENGRKRLMASAGELQKGNELALPSKYVNFLYLA
 SHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKH
 RDKPIREQAENIIHLFTLTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQ SITGLY
 ETRIDLSQLGGD

25 IBE035_ISLA: delta 792-872 TadAins
 ATGGACAAGAAGTACAGCATCGGCCCTGGCCATCGGCACCAACTCTGTGGGCTGG
 GCCGTGATCACCGACGAGTACAAGGTGCCAGCAAGAAATTCAAGGTGCTGGG
 AACACCGACCGGCACAGCATCAAGAAGAACCTGATCGGAGGCCCTGCTGTCAC
 AGCGCGAACACAGCCGAGGCCACCCGGCTGAAGAGAACCGCCAGAAGAAGATA
 30 CACCAGACGGAAGAACCGGATCTGCTATCTGCAAGAGATCTTCAGCAACGAGAT
 GGCAAGGTGGACGACAGCTTCTTCCACAGACTGGAAAGAGTCCTCCTGGTGG
 AGAGGATAAGAACGACGAGCGGGCACCCATCTCGGCAACATCGTGGACGAGGT
 GGCCTACCACGAGAAGTACCCACCCTTACCCACCTGAGAAAGAAACTGGTGG
 CAGCACCGACAAGGCCGACCTGGCTGATCTATCTGCCCTGGCCACATGATC
 35 AAGTTCCGGGCCACTCCTGATCGAGGGCGACCTGAACCCCGACAACAGCGAC
 GTGGACAAGCTGTTATCCAGCTGGTGCAGACCTACAACCGAGCTGTCAGGAA
 AACCCCATCAACGCCAGCGGCGTGGACGCCAAGGCCATCCTGTCTGCCAGACTG
 AGCAAGAGCAGACGGCTGGAAAATCTGATCGCCCGAGCTGCCCGCGAGAAGAA
 GAATGGCCTGTTCGGAAACCTGATTGCCCTGAGCCTGGGCTGACCCCCAACTTC
 40 AAGAGCAACTCGACCTGGCCGAGGATGCCAAACTGCAGCTGAGCAAGGACACC
 TACGACGACGACCTGGACAACCTGCTGGCCCGAGATCGGCAGCAGTACGCCGAC
 CTGTTCTGGCCGCCAAGAACCTGTCGGACGCCATCCTGCTGAGCGACATCCTGA
 GAGTGAACACCGAGATCACCAAGGCCCCCTGAGCGCCTATGATCAAGAGAT
 ACGACGAGCACCACCAAGGACCTGACCCTGCTGAAAGCTCTCGTGCAGCAGC
 45 TGCCTGAGAAGTACAAAGAGATTTCTCGACCAGAGCAAGAACGGCTACGCCG

GCTACATTGACGGCGGAGCCAGCCAGGAAGAGTTCTACAAGTTCATCAAGGCCA
 TCCTGGAAAAGATGGACGGCACCGAGGAACCTGCTCGTAAGCTGAACAGAGAG
 GACCTGCTGCGGAAGCAGCGGACCTTCGACAACGGCAGCATCCCCCACCAGATC
 CACCTGGGAGAGCTGCACGCCATTCTGCGGCAGGAAGATTTCACCCATTCC
 5 TGAAGGACAACCAGGGAAAAGATCGAGAAGATCCTGACCTCCGCATCCCTACT
 ACGTGGGCCCTCTGGCCAGGGAAACAGCAGATTGCGCTGGATGACCAGAAAGA
 GCGAGGAAACCATCACCCCTGGAACCTCGAGGAAGTGGTGGACAAGGGCGCTT
 CCGCCCAGAGCTTCATCGAGCGGATGACCAACTCGATAAGAACCTGCCAACG
 AGAAGGTGCTGCCAACGACACGCCGTGCTGAGTACTTCACCGTGTATAACG
 10 AGCTGACCAAAGTGAATACGTGACCGAGGGATGAGAAAGCCCCTCCTGAG
 GCGGCGAGCAGAAAAAGGCCATCGTGGACCTGCTGTTCAAGACCAACCGGAAAG
 TGACCGTGAAGCAGCTGAAAGAGGACTACTTCAGAAAATCGAGTGCTTCGACT
 CCGTGGAAATCTCCGGCGTGGAAAGATCGGTTCAACGCCTCCCTGGGCACATACC
 ACGATCTGCTGAAAATTATCAAGGACAAGGACTTCCTGGACAATGAGGAAAACG
 15 AGGACATTCTGGAAGATATCGTGTGACCCGTGACACTGTTGAGGACAGAGAGA
 TGATCGAGGAACGGCTGAAAACCTATGCCACCTGTTGACGACAAAGTGATGA
 AGCAGCTGAAGCGGCGGAGATACACCGGCTGGGCAGGCTGAGCCGGAAGCTG
 ATCAACGGCATCCGGACAAGCAGTCCGGCAAGACAATCCTGGATTTCCTGAAAG
 TCCGACGGCTTCGCCAACAGAAACTCATGCACTGAGCTGATCCACGACGACGCCTG
 20 ACCTTAAAGAGGACATCCAGAAAGCCCAGGTGTCCGGCCAGGGCGATAGCCTG
 CACGAGCACATTGCCAATCTGGCCGGCAGCCCCGCCATTAGAAGGGCATCCTG
 CAGACAGTGAAGGTGGTGGACGAGCTCGTGAAGATGATGGCCGGACAAGCCC
 GAGAACATCGTGAATGGCCAGAGAACGACACCAGAACAGAACAGGGACA
 GAAGAACAGCCGCGAGAGAATGAAGCGGATCGAAGAGGGCATCAAAGAGCTGG
 25 GCTCCGAAGTCGAGTTCCCATGAGTACTGGATGAGACACGCATTGACTCTCGC
 AAAGAGGGCTCGAGATGAACCGAGGTGCCCCGTGGGGCAGTACTCGTGTCAA
 CAATCGCGTAATCGCGAAGGTTGGAATAGGGCAATCGGACTCCACGACCCCCAC
 TGCACATCGGAAATCATGGCCCTTCGACAGGGAGGGCTTGTGATGCAGAATT
 TCGACTTATCGATGCGACGCTGTACGTCACGTTGAACCTTGCCTGAAATT
 TCGGCTATGATTCACTCCGCATTGGACGAGTTGATTGGTGTGTCGAACGCCA
 30 AGACGGGTGCCGCAGGTTCACTGATGGACGTGCTGCATTACCCAGGCATGAACC
 ACCGGGTAGAAATCACAGAACGGCATATTGGCGGACGAATGTGCGGCGCTGTTGT
 GTTACTTTTCGCATGCCAGGCAGGTCTTAACGCCAGAAAAAGCACAATC
 CTCTACTGACGAAGAGGTGCTGAAGAAGATGAAGAAACTACTGGCGGCAGCTGCT
 35 GAACGCCAAGCTGATTACCCAGAGAAAGTTGACAACTGACCAAGGCCAGAG
 AGGCCGCCTGAGCGAACTGGATAAGGCCGGCTTCATCAAGAGACAGCTGGTGG
 AACCCGGCAGATCACAAAGCACGTGGCACAGATCCTGGACTCCGGATGAACAC
 TAAGTACGACGAGAATGACAAGCTGATCCGGGAAGTGAAGATGATCACCCCTGAA
 GTCCAAGCTGGTGTCCGATTCCGAAGGATTCCAGTTACAAAGTGCACGAG
 40 ATCAACAAACTACCACCGCCACGACGCCACGACGCCATTGAAACGCCGTGTTGG
 GCCCTGATCAAAAGTACCCATTGAAAGCGAGTTGCTGTACGGCGACTAC
 AAGGTGTACGACGTGCGGAAGATGATGCCAACAGCGAGCAGGAAATCGGCAA
 GGCTACCGCCAAGTACTTCTTACAGCAACATCATGAACATTTCAGACGAG
 ATTACCCCTGGCCAACGGCGAGATCCGGAAGCGGCCCTGATCGAGACAAACGGC
 45 GAAACCGGGAGATCGTGTGGATAAGGGCCGGATTTCACCCGTGCGGAAAG
 GTGCTGAGCATGCCAACGTGAATATCGTAAAAAGACCGAGGTGCAACAGGGC

GGCTTCAGCAAAGAGTCTATCCTGCCAAGAGGAACAGCGATAAGCTGATGCC
 AGAAAGAAGGACTGGGACCCTAAGAAGTACGGCGGCTCGACAGCCCCACCGTG
 GCCTATTCTGTGCTGGTGGCAAGTGGAAAAGGGCAAGTCCAAGAAACTG
 AAGAGTGTGAAAGAGCTGCTGGGATCACCATCATGGAAAGAAGCAGCTCGAG
 5 AAGAATCCCATCGACTTCTGGAAGCCAAGGGCTACAAAGAAGTGAAAAGGAC
 CTGATCATCAAGCTGCTAAGTACTCCCTGTTGAGCTGGAAAACGGCCGGAAG
 AGAATGCTGGCCTCTGCCGGCGAAGTGCAGAAGGGAAACGAAGTGGCCCTGCC
 TCCAAATATGTGAACCTCCTGTACCTGCCAGCCACTATGAGAAGCTGAAGGGCT
 10 CCCCCGAGGATAATGAGCAGAAACAGCTGTTGGAACAGCACAAGCAACTACC
 TGGACGAGATCATCGAGCAGATCAGCGAGTTCTCCAAGAGAGTGATCCTGGCCG
 ACGCTAATCTGGACAAAGTGCTGTCCGCCTACAAACAAGCACCAGGATAAGCCA
 TCAGAGAGCAGGCCAGAATATCATCCACCTGTTACCCGTACCAATCTGGAG
 CCCCTGCCGCCTCAAGTACTTGACACCACCATCGACCGGAAGAGGTACACCAG
 15 CACCAAAGAGGTGCTGGACGCCACCTGATCCACCAAGAGCATCACCGGCCTGTA
 CGAGACACGGATCGACCTGTCTCAGCTGGAGGTGAC

IBE035_ISLA : delta 792-872 TadAins
 MDKKYSIGLAIGTNSVGWAVTDEYKVPSSKKFKVLGNTDRHSIKKNLIGALLFDSGE
 TAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSSFHRLEESFLVEEDKKHE
 20 RHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEG
 DLNPNDNSDVKLFQLVQTYNQLFEENPINASGVDAKAILSARLSRRLENLIAQLP
 GEKKNGLFGNLIALSGLTPNFKNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYA
 DLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPE
 KYKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQ
 25 RTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRF
 AWMTRKSEETITPWNFEEVVDKGASAQSFIERNMTNFDKKNLPNEKVLPHSLLYEYFT
 VYNELTKVKVTEGMRKPAFLSGEQKKAIVDLLKTNRKVTVKQLKEDYFKKIECF
 DSVEISGVEDRFNASLGYHDLLKIIKDKDFLDNEENEDILEDIVLTTLFEDREMIEE
 RLKTYAHLFDDKVMKQLKRRRYTGWGRSLRKLINGIRDQSGKTIIDFLKSDGFAN
 30 RNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIIKGILQTVKVVDEL
 VKVMGRHKPENIVIEMARENQTQKGQKNSRERMKRIEEGIKELGSEVEFSHEYWM
 RHALTAKRARDEREVPVGAVLVLNNRVIGEGWNRAIGLHDPTAHAEIMALRQGGL
 VMQNYRLIDATLYVTFEPVCVMCAGAMIHSRIGRVVFGVRNAKTGAAGSLMDVLHY
 PGMNHRVEITEGILADECACALLCYFFRMPRQVFNAQKKAQSSTDEEVVKMKNYW
 35 RQLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQITKHVAQILD SRMN
 TKYDENDKLIREVKVITLKS KLVD PFRKDFQFYKVREINNYHHAHDAYLNAVVGTA
 LIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEITLAN
 GEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKESILP
 KRNSDKLIARKKDWDPKKYGGFDSPVAYSVLVVAKEKGKSKKLKS VKEKLLGITI
 40 MERSSFEKNPIDFLEAKGYKEVKKDLIILPKYSLFELENGRKMLASAGELQKGNE
 LALPSKYVNFLYLA SHYEKLKGSPEDNEQKQLFVEQHKHYLDEII EQISEFSKRVILA
 DANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFKYFDTTIDRKRYTSTKE
 VLDATLHQ SITGLYETRIDLSQLGGD

IBE036_ISLA: delta 792-906 TadAins

ATGGACAAGAAGTACAGCATCGGCCTGGCATCGGCACCAACTCTGTGGCTGG
GCCGTGATCACCGACGAGTACAAGGTGCCAGCAAGAAATTCAAGGTGCTGGC
AACACCGACCGGCACAGCATCAAGAAGAACCTGATCGGAGCCCTGCTGTCAC
5 AGCGCGAAACAGCCGAGGCCACCCGGCTGAAGAGAACCGCCAGAAGAAGATA
CACCAAGACGGAAGAACCGGATCTGCTATCTGCAAGAGAGATCTTCAGCAACGAGAT
GGCCAAGGTGGACGACAGCTCTTCCACAGACTGGAAGAGTCCTCCTGGTGA
AGAGGATAAGAACGACGAGCGGCACCCATCTCGGCAACATCGTGGACGAGGT
GGCCTACCACGAGAAGTACCCACCATCTACCACCTGAGAAAGAAACTGGTGA
10 CAGCACCGACAAGGCCGACCTGCGGCTGATCTATCTGCCCTGGCCACATGATC
AAGTCCGGGCCACTCCTGATCGAGGGCGACCTGAACCCGACAACAGCGAC
GTGGACAAGCTGTTCATCCAGCTGGTGCAGACCTACAACCAACAGCTGTTGAGGAA
AACCCCATCAACGCCAGCGCGTGGACGCCAAGGCCATCCTGCTGCCAGACTG
15 AGCAAGAGCAGACGGCTGGAAAATCTGATGCCCTAGCTGCCAGCTGCCGGCGAGAAGAA
GAATGGCCTGTCGAAACCTGATTGCCCTGAGCCTGGCCTGACCCCCAACCTTC
AAGAGCAACTTCGACCTGGCCAGGGATGCCAAACTGCAAGCTGAGCAAGGACACC
TACGACGACGACCTGGACAACCTGCTGGCCAGATCGCGACCAGTACGCCGAC
CTGTTCTGGCCGCCAAGAACCTGTCCGACGCCATCCTGCTGAGCGACATCCTGA
GAGTGAACACCGAGATACCAAGGCCCCCTGAGCGCCTCTATGATCAAGAGAT
20 ACGACGAGCACCACCAGGACCTGACCTGCTGAAAGCTCTCGTGGCAGCAGC
TGCCTGAGAAGTACAAAGAGATTTCTCGACCAAGAGAGCTGAGCAAGAACGGCTACGCC
GCTACATTGACGGCGGAGCCAGCCAGGAAGAGATTCTACAAGTTCATCAAGGCCA
TCCTGGAAAAGATGGACGGCACCGAGGAAGTCTGCTGAGCTGAACAGAGAG
GACCTGCTGCCGAAGCAGCGGACCTCGACAACGGCAGCATCCCCACCAGATC
25 CACCTGGAGAGCTGACGCCATTCTGCGCGCGCAGGAAGATTTCACCCATTCC
TGAAGGACAACCAGGGAAAAGATCGAGAAGATCCTGACCTCCGCATCCCTACT
ACGTGGGCCCTCTGGCCAGGGAAACAGCAGATTGCGCTGGATGACCAGAAAGA
GCGAGGAAACCATCACCCCTGGAACCTCGAGGAAGTGGTGGACAAGGGCGCTT
CCGCCAGAGCTTCATCGAGCGGATGACCAACTCGATAAGAACCTGCCAACG
30 AGAAGGTGCTGCCAACGCACAGCCTGCTGTACGAGTACTTCACCGTGTATAACG
AGCTGACCAAAGTGAAAATACGTGACCGAGGGATGAGAAAGCCGCCTCCTGA
GCCGCGAGCAGAAAAAGGCCATCGTGGACCTGCTGTTCAAGACCAACCGGAAAG
TGACCGTGAAGCAGCTGAAAGAGGACTACTTCAAGAAAATCGAGTGCTCGACT
CCGTGGAAATCTCCGGCTGGAAAGATCGGTCAACGCCCTGGCACATACC
35 ACGATCTGCTAAAATTCAAGGACAAGGACTTCCTGGACAATGAGGAAACG
AGGACATTCTGGAAGATATCGTGTGACCCCTGACACTGTTGAGGACAGAGAGA
TGATCGAGGAACGGCTGAAAACCTATGCCACCTGTTGACGACAAAGTGTGA
AGCAGCTGAAGCGCGGAGATACACCGGCTGGGCAGGCTGAGCCGGAAGCTG
ATCAACGGCATCCGGACAAGCAGTCCGGCAAGACAACTCGGATTTCCTGAAG
40 TCCGACGGCTCGCAACAGAAACTCATGCAAGCTGATCCACGACGACAGCCTG
ACCTTAAAGAGGACATCCAGAAAGCCCAGGTGTCCGGCCAGGGCGATAGCCTG
CACGAGCACATTGCCAATCTGGCCGGCAGCCCGCATTAGAAGGGCATCCTG
CAGACAGTGAAGGTGGTGGACGAGCTCGTGAAGATGATGGGCCAGACAAGGCC
GAGAACATCGTGTGAAATGCCAGAGAGAACGACCAACCCAGAACAGGACA
45 GAAGAACAGCCCGAGAGAATGAAGCGGATCGAAGAGGGCATCAAAGAGCTGG
GCTCCGAAGTCGAGTTCCCATGAGTACTGGATGAGACACGCATTGACTCTCGC

AAAGAGGGCTCGAGATGAACCGAGGTGCCGTGGGGCAGTACTCGTGCTCAA
 CAATCGCGTAATCGCGAAGGTTGGAATAGGGCAATCGGACTCCACGACCCAC
 TGCACATGCGGAAATCATGGCCCTTCGACAGGGAGGGCTGTGATGCAGAATTA
 TCGACTTATCGATGCGACGCTGTACGTACGTTGAACCTGCGTAATGTGCGCG
 5 GGAGCTATGATTCACTCCCGCATTGGACGAGTTGATTGGTATTGGTGTGCAACGCCA
 AGACGGGTGCCGCAGGTTACTGATGGACGTGCTGCATTACCCAGGCATGAACC
 ACCGGGTAGAAATCACAGAAGGCATATTGGCGGACGAATGTGCGCGCTGTTGT
 GTTACTTTTCGCATGCCAGGCAGGCTTAACGCCAGAAAAAGCACAATC
 CTCTACTGACGGCCTGAGCGAACTGGATAAGGCCGGCTTCATCAAGAGACAGCT
 10 GGTGGAAACCCGGCAGATCACAAAGCACGTGGCACAGATCCTGGACTCCGGAT
 GAACACTAAGTACGACGAGAATGACAAGCTGATCCGGAAAGTGAAGTGATCAC
 CCTGAAGTCCAAGCTGGTGTCCGATTCCGGAAAGGATTCCAGTTTACAAAGTG
 CGCGAGATCAACAACCTACCACGCCACGACGCCTACCTGAACGCCGTG
 GGAACCGCCCTGATCAAAAAGTACCCCTAACGCTGGAAAGCGAGTCGTGACGGC
 15 GACTACAAGGTGTACGACGTGCCAGAGATGATGCCAACAGCGAGCAGGAAAT
 CGGCAAGGCTACCGCCAAGTACTTCTTACAGCAACATCATGAACCTTTCAAG
 ACCGAGATTACCCCTGGCCAACGGCGAGATCCGGAAGCGGGCTGATCGAGACA
 AACGGCGAAACCGGGGAGATCGTGTGGATAAGGGCCGGATTGCCCCGTG
 CGGAAAGTGTGAGCATGCCCAAGTGAATATCGTAAAAAGACCGAGGTGAG
 20 ACAGGGCGCTTCAGCAAAGAGTCTATCCTGCCAACAGAGAACAGCGATAAGCTG
 ATCGCCAGAAAGAAGGACTGGGACCTAACAGAAAGTACGGCGGCTCGACAGCCCC
 ACCGTGGCCTATTCTGTGCTGGTGGCCAAAGTGGAAAAGGGCAAGTCCAAG
 AAACTGAAGAGTGTGAAAGAGACTGCTGGGATCACCATCATGGAAAGAAGCAG
 CTTCGAGAAGAATCCCATCGACTTCTGGAAAGCCAAGGGCTACAAAGAAGTGA
 25 AAAGGACCTGATCATCAAAGCTGCTAACAGTACTCCCTGTTGAGCTGGAAAACGG
 CCGGAAGAGAAATGCTGGCCTCTGCCCGCGAACTGCAGAACGGAAACGAACGG
 CCTGCCCTCAAATATGTGAACCTCCTGTACCTGCCAGCCACTATGAGAACAGCTG
 AAGGGCTCCCCGAGGATAATGAGCAGAACAGACTGTTGTGGAACACAGCACAAG
 CACTACCTGGACGAGATCATCGAGCAGATCAGCGAGTCTCCAAGAGAGTGTAC
 30 CTGGCCGACGCTAACCTGGACAAAGTGTGCTGCCCTACAACAAAGCACCGGGAT
 AAGCCCATCAGAGAGCAGGCCAGAACATCATCCACCTGTTACCCCTGACCAAT
 CTGGGAGCCCCCTGCCGCTTCAAGTACTTGACACCACCATCGACCGGAAGAGGT
 ACACCAGCACCAAAGAGGTGCTGGACGCCACCTGATCCACCAAGAGCATCACCG
 GCCTGTACGAGACACGGATCGACCTGTCTCAGCTGGGAGGTGAC

35

IBE036_ISLA : delta 792-906 TadAins

MDKKYSIGLAIGTNSVGWAVITDEYKVPSSKKFKVLGNTDRHSIKKNLIGALLFDSGE
 TAEATRLKRTARRRYTRRKNRICYLQEISNEMAKVDDSSFHRLEESFLVEEDKKHE
 RHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKAIDLRLIYLALAHMIKFRGHFLIEG
 40 DLNPNDNSDVKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSRRLLENLIAQLP
 GEKKNGLFGNLIALSLGLTPNFKNFDLAEDAKLQLSKDTYDDDLNLLAQIGDQYA
 DLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPE
 KYKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQ
 RTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNRREKIEKILTFRIPYYVGPLARGNSRF
 45 AWMTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFT

VYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECF
 DSVEISGVEDRFNASLGYHDLLKIIKDKDFLDNEENEDILEDIVLTTLFEDREMIIE
 RLKTYAHLFDDKVMKQLKRRRYTGWGRSLRKLINGIRDQSGKTIIDFLKSDGFAN
 5 RNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIIKGILQTVKVDEL
 VKVMGRHKPENIVIEMARENQTQKGQKNSRERMKRIEEGIKELGSEVEFSHEYWM
 RHALTAKRARDEREVPVGAFLVNNRVIGEGWNRAIGLHDPTAHAEIMALRQGGL
 VMQNYRLIDATLYVTFEPVCVMCAGAMIHSRIGRVVFGVRNAKTGAAGSLMDVLHY
 PGMNHRVEITEGILADECALLCYFFRMPRQVFNAQKKAQSSTDGLSELDKAGFIKR
 10 QLVETRQITKHVAQILD SRMNTKYDENDKLIREVKVITLKSCLVSDFRKDFQFYKVR
 EINNYHHAHDAYLNAVVGTLALKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGKA
 TAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMP
 QVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDPKYGGFDSPVTAVSVLVVA
 15 KVEKGKSKKLKSVKELLGITMERSFEKNPIDFLEAKGYKEVKKDLIILPKYSLFEL
 ENGRKRLMASAGELQKGNELALPSKYVNFLYLA SHYEKLKGSPEDNEQKQLFVEQH
 KHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAP
 AAFKYFDTTIDRKRYTSTKEVLDATLIHQ SITGLYETRIDLSQLGGD

IBE043_ISLA: TadA CP65ins 1246

ATGGACAAGAACAGTACAGCATCGGCCTGGCCATCGGCACCAACTCTGTGGGCTGG
 20 GCCGTGATCACCGACGAGTACAAGGTGCCAGCAAGAAATTCAAGGTGCTGGG
 AACACCGACCGGCACAGCATCAAGAAGAACCTGATCGGAGGCCCTGCTGTCAC
 AGCGCGAAACAGCCGAGGCCACCCGGCTGAAGAGAACCGCCAGAAGAAGATA
 CACCAGACGGAAGAACCGGATCTGCTATCTGCAAGAGAGATCTTCAGCAACGAGAT
 25 GGCAAGGTGGACGACAGCTTCTCACAGACTGGAAGAGACTCCTCCTGGTGG
 AGAGGATAAGAACGACGAGCGGCACCCATCTCGGCAACATCGTGGACGAGGT
 GGCCTACCACGAGAACGACTTCCACCATCTACCA CCTGAGAAAGAAACTGGTGG
 CAGCACCGACAAGGCCACCTGCGGCTGATCTATCTGCCCTGGCCACATGATC
 AAGTTCCGGGGCCACTTCCTGATCGAGGGCGACCTGAACCCGACAACAGCGAC
 30 GTGGACAAGCTGTTCATCCAGCTGGTGAGACCTACAACCAGCTGTTGAGGAA
 AACCCCATCAACGCCAGCGCGTGGACGCCAACGCCATCCTGCTGCCAGACTG
 AGCAAGAGCAGACGGCTGGAAAATCTGATCGCC CAGCTGCCCGCGAGAACGAA
 GAATGGCCTGTCGGAAACCTGATTGCCCTGAGCCTGGGCTGACCCCCAACTTC
 AAGAGCAACTTCGACCTGGCCGAGGATGCCAAACTGCAAGCTGAGCAAGGACACC
 35 TACGACGACGACCTGGACAACCTGCTGCCAGATGGCAGCCAGTACGCCGAC
 CTGTTCTGCCGCCAACCTGTCCAGGCCATCCTGCTGAGCGACATCCTGA
 GAGTGAACACCGAGATCACCAGGCCCTGAGCGCCTCTATGATCAAGAGAT
 ACGACGAGCACCACCAAGGACCTGACCCCTGCTGAAAGCTCTGCGGCAGCAGC
 TGCCTGAGAAGTACAAAGAGATTTCTCGACCAAGAGCAAGAACGGCTACGCC
 40 GCTACATTGACGGCGGAGCCAGCCAGGAAGAGTTCTACAAGTTCATCAAGGCC
 TCCTGGAAAAGATGGACGGCACCGAGGAAC TGCTCGTAAGCTGAACAGAGAG
 GACCTGCTCGGAAGCAGCGGACCTCGACAACGGCAGC ATCCCCCACCAGATC
 CACCTGGGAGAGCTGCAGCCATTCTCGGGCGCAGGAAGATTTACCCATTCC
 TGAAGGACAACCAGGGAAAAGATCGAGAAGATCCTGACCTCCGCATCCCCTACT
 45 ACGTGGGCCCTCTGCCAGGGAAACAGCAGATTGCGCTGGATGACCAGAAAGA
 GCGAGGAAACCATCACCCCTGGAACTTCGAGGAAGTGGTGGACAAGGGCGCTT

CCGCCAGAGCTCATCGAGCGGATGACCAACTCGATAAGAACCTGCCAACG
AGAAGGTGCTGCCAACGACACAGCCTGCTGTACGAGTACTTCACCGTGTATAACG
AGCTGACCAAAAGTGAATACTGTGACCGAGGGAATGAGAAAGCCGCCCTCCTGA
GCGCGAGCAGAAAAAGGCCATCGTGGACCTGCTGTTCAAGACCAACCGGAAAG
5 TGACCGTGAAGCAGCTGAAAGAGGACTACTTCAAGAAAATCGAGTGCTTCGACT
CCGTGGAAATCTCCGGCGTGGAAAGATCGGTCAACGCCCTCCCTGGGCACATACC
ACGATCTGCTGAAAATTATCAAGGACAAGGACTTCCTGGACAATGAGGAAAACG
AGGACATTCTGGAAGATATCGTGTGACACTGTTGAGGACAGAGAGA
TGATCGAGGAACGGCTGAAAACCTATGCCACCTGTTGACGACAAAGTGTGA
10 AGCAGCTGAAGCGGCGGAGATACACCGGCTGGGGCAGGCTGAGCCCGAACGCTG
ATCAACGGCATCCGGACAAGCAGTCCGGCAAGACAATCCTGGATTCCCTGAAG
TCCGACGGCTTCGCCAACAGAAACTTCATGCACTGATCCACGACGACAGCCTG
ACCTTAAAGAGGACATCCAGAAAGCCCAGGTGTCCGCCAGGGCGATAGCCTG
CACGAGCACATTGCCAATCTGCCGGCAGCCCCGCCATTAAGAAGGGCATCCTG
15 CAGACAGTGAAGGTGGTGGACGAGCTCGTAAAGTGTGGCCGGACAAGCCC
GAGAACATCGTGTGAAATGGCCAGAGAGAACGACCAACCCAGAACGGGACA
GAAGAACAGCCCGAGAGAATGAAGCGGATCGAAGAGGGCATCAAAGAGCTGG
GCAGCCAGATCCTGAAAGAACACCCCGTGGAAAACACCCAGCTGCAGAACGAG
AAGCTGTACCTGTACTACCTGCAGAATGGCGGGATATGTACGTGGACCAGGAA
20 CTGGACATCAACCGGCTGTCCGACTACGATGTGGACCATATCGCCTCAGAGCT
TTCTGAAGGACGACTCCATCGACAACAAGGTGCTGACCAAGCGACAAGAAC
GGGGCAAGAGCGACAACGTGCCCTCCGAAGAGGTGCTGAAGAACGATGAAGAAC
TACTGGCGGAGCTGCTGAACGCCAACGCTGATTACCCAGAGAAAGTCGACAAT
CTGACCAAGGCCGAGAGAGGGGGCTGAGCGAACTGGATAAGGCCGGCTCATC
25 AAGAGACAGCTGGTGGAAACCCGGCAGATCACAAAGCACGTGGCACAGATCCTG
GACTCCGGATGAAACACTAAGTACGACGAGAACGACAGCTGATCCGGAAAGTG
AAAGTGTACCCCTGAAGTCCAAGCTGGTGTCCGATTCCGGAAAGGATTCCAGT
TTTACAAAGTGCAGGAGATCAACAACCTACCAACGCCACGACGCCTACCTGA
ACGCCGTGTTGGAACCGCCCTGATCAAAAGTACCCCTAACGCTGGAAAGCGAGT
30 TCGTGTACGGCGACTACAAGGTGTACGACGTGGAAAGATGATGCCAACAGCG
AGCAGGAAATCGGCAAGGCTACGCCAACAGTACTTCTTACAGCAACATCATGA
ACTTTTCAAGACCGAGATTACCCCTGGCAACGGCGAGATCCGGAAGCGGCCCT
GATCGAGACAAACGGCGAAACCGGGAGATCGTGTGGATAAGGGCCGGGATT
TTGCCACCGTGGAAAGTGTGAGCATGCCAACGTGAATATCGTAAAAAGA
35 CCGAGGTGCAGACAGGCCGCTTCAGCAAAGAGTCTATCCTGCCAACAGAGGAACA
GCGATAAGCTGATGCCAGAAAGAACGGACTGGGACCCCTAACGAAAGTACGGCGGCT
TCGACAGCCCCACCGTGGCTATTCTGTGCTGGTGGCTAACAGTGGAAAGG
GCAAGTCCAAGAAACTGAAGAGTGTGAAAGAGACTGCTGGGATCACCATCATGG
AAAGAACGAGCTCGAGAAGAACCCATCGACTTCTGGAAGCCAAGGGCTACA
40 AAGAAGTAAAAAGGACCTGATCATCAAGCTGCCAACGTACTCCCTGTTGAGC
TGGAAAACGGCCGGAAAGAGAACGACTGGCCTCTGCCGGCAACTGCAGAACGGGA
AACGAACCTGGCCCTGCCCTCCAAATATGTGAACCTCCTGTACCTGGCCAGCCACT
ATGAGAACGCTGAAGGGCACTGCACATCGGAAATCATGGCCCTCGACAGGGAG
GGCTTGTGATGCAGAATTATCGACTTATCGATGCGACGCTGTACGTACGTTGA
45 ACCTTGCATAATGTGCGCGGGAGCTATGATTCACTCCGCATTGGACGAGTTGA
TTCGGTGTGCAACGCCAACGACGGGTGCCGCAGGTTCACTGATGGACGTGCTGC

ATTACCCAGGCATGAACCACCGGGTAGAAATCACAGAAGGCATATTGGCGGACG
 AATGTGCGGCCTGTTGTTACTTTTCGATGCCAGGCAGGTCTTAACGCC
 CAGAAAAAAGCACAAATCCTCTACTGACGGTTCTAGCGGCAGCGAGACTCCCAGG
 ACCTCAGAGTCCGCCACACCCGAAAGTTCTGGTCCGAAGTCGAGTTTCCCAG
 5 AGTACTGGATGAGACACGCATTGACTCTCGCAAAGAGGGCTCGAGATGAACGCG
 AGGTGCCCGTGGGGCAGTACTCGTGCCTAACAAATCGCGTAATCGCGAAGGTT
 GGAATAGGGCAATCGGACTCCACGACCCCTCCCCGAGGATAATGAGCAGAAC
 AGCTGTTGTGGAACAGCACAAGCACTACCTGGACGAGATCATCGAGCAGATCA
 GCGAGTTCTCCAAGAGAGTGATCCTGGCCGACGCTAATCTGGACAAAGTGCTGT
 10 CCGCCTACAACAAGCACCGGGATAAGCCCATCAGAGAGCAGGCCGAGAATATCA
 TCCACCTGTTACCTGACCAATCTGGAGCCCTGCCGCTTCAAGTACTTG
 CACCACCATCGACCGGAAGAGGTACACCAGCACAAAGAGGTGCTGGACGCCAC
 CCTGATCCACCAGAGCATCACCAGGCTGTACGAGACACGGATCGACCTGTCTCA
 GCTGGGAGGTGAC

15

IBE043_ISLA : TadA CP65ins 1246

MDKKYSIGLAIGTNSVGWAVITDEYKVPKKFKVLGNTDRHSIKKNLIGALLFDSGE
 TAEATRLKRTARRRYTRRKNRICYLQEISNEMAKVDDSSFHRLEESFLVEEDKKHE
 RHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKAIDLRLIYLALAHMIKFRGHFLIEG
 20 DLNPNDNSDVDFLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLP
 GEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQLSKDTYDDLDNLLAQIGDQYA
 DLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKR YDEHHQDLTLLKALVRQQLP
 KYKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQ
 RTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNRKIEKILTFRIPYYVGPLARGNSRF
 25 AWMTRKSEETITPWNFEEVVDKGASAQSFIERNMTNFDKKNLPNEKVLPHSLLYEYFT
 VYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECF
 DSVEISGVEDRFNASLGYHDLLKIIKDKDFLDNEENEDILEDIVLTTLFEDREMIEE
 RLKTYAHLFDDKVMKQLKRRYTGWGRSLRKLINGIRDQSGKTILDPLKSDGFAN
 RNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIIKGILQTVKVVDEL
 30 VKVMGRHKPENIVIEMARENQTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENT
 QLQNEKLYLYLQNGRDMYVDQELDINRLSDYDWDHIVPQFLKDDSIDNKVLTRS
 DKNRGKSDNVPSEEVVKMKNYWRQLLNAKLITQRKFDFNLTKAERGGLSELDKAG
 FIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSLSVSDFRKDFQFY
 KVREINNYHHAHDAYLNAVGTALIKKYPKLESEFVYGDYKVDVRKMIAKSEQEI
 35 GKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVL
 SMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDPKYGGFDSPVAYSVL
 VVAKVEKGSKKLKSVKELLGITIMERSFEKNPIDFLEAKGYKEVKDIIKLPKYS
 LFELENGRKMLASAGELQKGNELALPSKYVNFLYLA SHYEKLGTAHEIMALRQ
 GGLVMQNYRLIDATLYVTFEPCVMCAGAMIHSRIGRVVFGVRNAKTGAAGSLMDV
 40 LHYPGMNHRVEITEGILADECACALLCYFFRMPRQVFNAQKKAQSSTDGSSGSETPGT
 SESATPESSGSEVEFSHEYWMRHALTLAKRARDEREVPVGAVLVNNR VIGEGWNR
 AIGLHDPSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVL SAYNKHR
 DKPIREQAENIIHLFTLTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQ SITGLYET
 RIDLSQLGGD

45

IBE044_ISLA: TadAins C-term truncate2 791

ATGGACAAGAAGTACAGCATCGGCCTGGCCATCGGCACCAACTCTGTGGGCTGG
GCCGTGATCACCGACGAGTACAAGGTGCCAGCAAGAAATTCAAGGTGCTGGC
AACACCGACCGGCACAGCATCAAGAAGAACCTGATCGGAGCCCTGCTGTCAC
5 AGCGGCAGAACAGCCGAGGCCACCCGGCTGAAGAGAACCGCCAGAACAGATA
CACCAAGACGGAAGAACCGGATCTGCTATCTGCAAGAGAGATCTTCAGCAACGAGAT
GGCCAAGGTGGACGACAGCTCTCCACAGACTGGAAGAGTCCTCCTGGTGA
AGAGGATAAGAACGACGAGCGGCACCCATCTCGGCAACATCGTGGACGAGGT
GGCCTACCACGAGAACGAGTACCCACCATCTACCACCTGAGAAAGAAACTGGTGA
10 CAGCACCGACAAGGCCGACCTGCGGCTGATCTATCTGCCCTGGCCACATGATC
AAGTCCGGGCCACTCCTGATCGAGGGCGACCTGAACCCGACAACAGCGAC
GTGGACAAGCTGTTCATCCAGCTGGTGCAGACCTACAACCAACAGCTGTTGAGGAA
AACCCCATCAACGCCAGCGCGTGGACGCCAAGGCCATCCTGCTGCCAGACTG
15 AGCAAGAGCAGACGGCTGGAAAATCTGATGCCCTAGCTGCCAGCTGCCGGCGAGAACAGAA
GAATGGCCTGTCGAAACCTGATTGCCCTGAGCCTGGCCTGACCCCCAACCTTC
AAGAGCAACTTCGACCTGGCCAGGGATGCCAAACTGCAAGCTGAGCAAGGACACC
TACGACGACGACCTGGACAACCTGCTGCCAGATCGCGACCAGTACGCCGAC
CTGTTCTGGCCGCCAGAACCTGTCCGACGCCATCCTGCTGAGCGACATCCTGA
GAGTGAACACCGAGATACCAAGGCCCCCTGAGCGCCTCTATGATCAAGAGAT
20 ACGACGAGCACCACCAGGACCTGACCCCTGCTGAAAGCTCTCGTGGCAGCAGC
TGCCTGAGAAGTACAAAGAGATTTCTCGACCAAGAGAGGAGCTGAGCTGAGGCC
GCTACATTGACGGCGGAGCCAGCCAGGAAGAGATTCTACAAGTTCATCAAGGCCA
TCCTGGAAAAGATGGACGGCACCGAGGAAGTCTGCTGAGCTGAACAGAGAG
GACCTGCTGCCGAAGCAGCGGACCTCGACAACGGCAGCATCCCCACCAGATC
25 CACCTGGAGAGCTGACGCCATTCTGCGGCCAGGAAGATTTCACCCATTCC
TGAAGGACAACCAGGGAAAAGATCGAGAAGATCCTGACCTCCGCATCCCTACT
ACGTGGGCCCTCTGGCCAGGGAAACAGCAGATTGCGCTGGATGACCAGAAAGA
GCGAGGAAACCATCACCCCTGGAACCTCGAGGAAGTGGTGGACAAGGGCGCTT
CCGCCAGAGCTTCATCGAGCGGATGACCAACTCGATAAGAACCTGCCAACG
30 AGAAGGTGCTGCCAACGACAGCCTGCTGTACGAGTACTTCACCGTGTATAACG
AGCTGACCAAAGTGAAAATACGTGACCGAGGGATGAGAAAGCCGCCTCCTGA
GCGGCCAGCAGAAAAAGGCCATCGTGGACCTGCTGTTCAAGACCAACCGGAAAG
TGACCGTGAAGCAGCTGAAAGAGGACTACTTCAAGAAAATCGAGTGCTCGACT
CCGTGGAAATCTCCGGCTGGAAAGATCGGTCAACGCCCTCCCTGGGACATACC
35 ACGATCTGCTAAAATTCAAGGACAAGGACTTCCTGGACAATGAGGAAACG
AGGACATTCTGGAAGATATCGTGTGACCCCTGACACTGTTGAGGACAGAGAGA
TGATCGAGGAACGGCTGAAAACCTATGCCACCTGTTGACGACAAAGTGTGA
AGCAGCTGAAGCGCGGAGATACACCGGCTGGGCAGGCTGAGCCGGAAGCTG
ATCAACGGCATCCGGACAAGCAGTCCGGCAAGACAACTCGTGGATTCTGAAG
40 TCCGACGGCTCGCAACAGAAACTCATGCAAGCTGATCCACGACGACAGCCTG
ACCTTAAAGAGGACATCCAGAAAGCCCAGGTGTCCGGCCAGGGCGATAGCCTG
CACGAGCACATTGCCAATCTGGCCGGCAGCCCTGATTAAGAAGGGCATCCTG
CAGACAGTGAAGGTGGTGGACGAGCTCGTGAAGATGATGGGCCAGAACAGC
GAGAACATCGTGTGAAATGCCAGAGAGAACCAACCCAGAACAGGACA
45 GAAGAACAGCCCGAGAGAACATGAAGCGGATCGAAGAGGGCATCAAAGAGCTGG
GTTCTAGCGGCAGCGAGACTCCCGGGACCTCAGAGTCCGCCACACCCGAAAGTT

CTGGTCCGAAGTCGAGTTCCATGAGTACTGGATGAGACACGATTGACTCT
 CGCAAAGAGGGCTGAGATGAACCGAGGTGCCGTGGGGCAGTACTCGTGCT
 CAACAATCGCGTAATCGCGAAGGTTGAATAGGGCAATCGGACTCCACGACCC
 CACTGCACATCGGAAATCATGCCCTCGACAGGGAGGGCTTGTATGCAGAA
 5 TTATCGACTTATCGATGCGACGCTGTACGTACGTTGAACCTCGTAATGTGC
 GCGGGAGCTATGATTCACTCCCGCATTGGACGAGTTGTATTCGGTGTTCGAACG
 CCAAGACGGGTGCCGCAGGTTCACTGATGGACGTGCTGCATTACCCAGGCATGA
 ACCACCGGGTAGAAATCACAGAAGGCATATTGGCGGACGAATGTGCGGCGCTGT
 TGTGTTACTTTTCGATGCCAGGCAGGGCAGCCAGATCCTGAAAGAACACCC
 10 CGTGGAAAACACCCAGCTGCAGAACGAGAAGCTGTACCTGTACTACCTGCAGAA
 TGGGCGGGATATGTACGTGGACCAGGAACCTGGACATCAACCGGCTGTCCGACTA
 CGATGTGGACCATATCGTCCTCAGAGCTTCTGAAGGACGACTCCATCGACAAAC
 AAGGTGCTGACCAGAAGCGACAAGAACCGGGCAAGAGCGACAACGTGCCCTC
 CGAAGAGGTGCTGAAGAAGATGAAGAACTACTGGCGGCAGCTGCTGAACGCCA
 15 AGCTGATTACCCAGAGAAAAGTCGACAATCTGACCAAGGCCAGAGAGAGGCC
 TGAGCGAACTGGATAAGGCCGGCTTCATCAAGAGACAGCTGGTGGAAACCCGGC
 AGATCACAAAGCACGTGGCACAGATCCTGGACTCCGGATGAACACTAAGTACG
 ACGAGAATGACAAGCTGATCCGGAAAGTGAAGTGTACCCCTGAAGTCCAAGC
 20 TGGTGTCCGATTCCGAAAGGATTCCAGTTTACAAAGTGCAGGAGATCAACAA
 CTACCACCACGCCACCGACGCCTACCTGAACGCCGTGGAAACGCCCTGATC
 AAAAAGTACCTTAAGCTGAAAGCGAGTCGTACGGCGACTACAAGGTGTAC
 GACGTGCGGAAGATGATGCCAACAGAGCGAGCAGGAAATCGGCAAGGCTACCGC
 CAAGTACTTCTCTACAGCAACATCATGAACCTTCAAGACCGAGATTACCCCTG
 GCCAACGGCGAGATCCGAAAGCGGCCCTGATCGAGACAAACGGCGAAACCGG
 25 GGAGATCGTGTGGATAAGGCCGGATTTGCCACCGTGCAGGAAAGTGTGAG
 CATGCCCAAGTGAATATCGTAAAAAGACCGAGGTGCAGACAGGCCGCTTCAG
 CAAAGAGTCTATCCTGCCAACAGAGAACAGCGATAAGCTGATGCCAGAAAGAA
 GGACTGGGACCTAAGAAGTACGGCGCTCGACAGCCCCACCGTGGCCTATT
 TGTGCTGGTGGCCAAAGTGGAAAAGGGCAAGTCAAGAAACTGAAGAGTGT
 30 GAAAGAGCTGCTGGGATCACCACATGGAAAGAACAGCTTCGAGAACAG
 CATCGACTTCTGGAAGCCAAGGGCTACAAAGAACAGTAAAAAGGACCTGATCAT
 CAAGCTGCCAACAGTACTCCCTGTCAGCTGGAAAACGGCCGGAAAGAGAACATGCT
 GGCCTCTGCCGGCGAACACTGCAAGGGAAACGAACCTGCCCTGCCCTCAAATA
 TGTGAACCTCCTGTACCTGGCCAGCCACTATGAGAACAGCTGAAGGGCTCCCCGAG
 35 GATAATGAGCAGAACACAGCTGTTGTGGAACAGCACAAAGCACTACCTGGACGAG
 ATCATCGAGCAGATCAGCGAGTTCTCCAAGAGAGGTGATCCTGCCGACGCTAAT
 CTGGACAAAGTGTGTCGCCACAACAAGCACCGGGATAAGCCCATCAGAGAG
 CAGGCCGAGAATATCATCCACCTGTTACCCCTGACCAATCTGGAGGCCCTGCCG
 CCTTCAAGTACTTGACACCACATCGACCGGAAGAGGTACACCAGCACCAAAG
 40 AGGTGCTGGACGCCACCTGATCCACCAAGAGCATCACCGGCCTGTACGAGACAC
 GGATCGACCTGTCTCAGCTGGAGGTGAC

IBE044_ISLA : TadAins C-term truncate2 791

MDKKYSIGLAIGTNSVGWAVITDEYKVPSSKKFKVLGNTDRHSIKKNLIGALLFDSGE

45 TAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSSFHRLEESFLVEEDKKHE

RHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEG
 DLNPNDNSDVKLFQLVQTYNQLFEENPINASGVDAKAILSARLSRRLENLIAQLP
 GEKKNGLFGNLIALLSGLTPNFKNFDLAEDAKLQLSKDTYDDDLNLLAQIGDQYA
 DLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPE
 5 KYKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQ
 RTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRF
 AWMTRKSEETITPWNFEEVVDKGASAQSFIERMNTNFDKNLPNEKVLPHSLLYEYFT
 VYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECF
 DSVEISGVEDRFNASLGYHDLLKIIKDKDFLDNEENEDILEDIVLTTLFEDREMIIE
 10 RLKTYAHLFDDKVMKQLKRRRTGWRGLSRKLINGIRDQSGKTILDPLKSDGFAN
 RNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIIKGILQTVKVVDEL
 VKVMGRHKPENIVIEMARENQTQKGQKNSRERMKRIEEGIKELGSSGSETPGTSES
 ATPESSGSEVEFSHEYWMRHALTLAKRARDEREVPVGAVLVNNRVIGEGWNRAIG
 15 LHDPTAHAEIMALRQGGLVMQNYRLIDATLYVTFEPCVCMCAGAMIHSRIGRVVFGV
 RNAKTGAAGSLMDVLHYPGMNHRVEITEGILADECAALLCYFFRMPRQGSQILKEH
 PVENTQLQNEKLYLYLQNGRDMYVDQELDINRLSDYDVDHIVPQSFLKDDSIDNK
 VLTRSDKNRGKSDNVPSEEVVKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSE
 LDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSCLVSDFRK
 20 DFQFYKVREINNYHHAHDAYLNAVGTALIKKYPKLESEFVYGDYKVYDVRKMIA
 KSEQEIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFAT
 VRKVL SMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDPKYGGFDSP
 25 AYSVLLVAKVEKGSKKLKSVKELLGITMERSFKNPIDFLEAKGYKEVKKD
 LPKYSLFELENGRKMLASAGELQKGNELALPSKYVNFLYASHYEKLKGSPEDNE
 QKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHL
 FTLTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGD

pHRB-043_GGS-rAP: rAPOBEC1-XTEN-ins-site1_Y1016-D10A-UGIx2

ATGGACAAGAAGTACAGCATCGGCCTGGCCATCGGCACCAACTCTGTGGGCTGG
 GCCGTGATCACCACGGACAGTACAAGGTGCCAGCAAGAAATTCAAGGTGCTGGG
 30 AACACCGACCGGCACAGCATCAAGAAGAACCTGATCGGAGGCCCTGCTGTCGAC
 AGCGCGAAACAGCCGAGGCCACCCGGCTGAAGAGAACGCCAGAAGAAGATA
 CACCAGACGGAAGAACCGGATCTGCTATCTGCAAGAGATCTTCAGAACGAGAT
 GGCCAAGGTGGACGACAGCTTCTCACAGACTGGAAGAGTCCTCCTGGTGG
 AGAGGATAAGAACGACGAGCGGCCACCCATCTCGGCAACATCGTGACGAGGT
 35 GGCCTACCACGAGAAGTACCCACCATCTACCACCTGAGAAAGAAACTGGTGG
 CAGCACCGACAAGGCCGACCTGCGGCTGATCTATCTGCCCTGGCCACATGATC
 AAGTTCCGGGCCACTCCTGATCGAGGGCGACCTGAACCCCGACAACAGCGAC
 GTGGACAAGCTGTCATCCAGCTGGTGACACCTACAACCAGCTGTCGAGGAA
 AACCCCATCAACGCCAGCGCGTGGACGCCAAGGCCATCCTGTCTGCCAGACTG
 40 AGCAAGAGCAGACGGCTGGAAAATCTGATCGCCAGCTGCCCGAGAAGAA
 GAATGGCCTGTCGGAAACCTGATTGCCCTGAGCCTGGCCTGACCCCCAACTTC
 AAGAGCAACTCGACCTGGCCGAGGATGCCAAACTGCAGCTGAGCAAGGACACC
 TACGACGACGACCTGGACAACCTGCTGGCCCAGATCGCGACCAGTACGCCGAC
 CTGTTCTGGCCGCCAAGAACCTGTCGACGCCATCCTGCTGAGCGACATCCTGA
 45 GAGTGAACACCGAGATCACCAAGGCCCCCTGAGCGCCTATGATCAAGAGAT

ACGACGAGCACCAACCAGGACCTGACCTGCTGAAAGCTCTCGTCGGCAGCAGC
TGCCTGAGAAGTACAAAGAGATTTCTCGACCAGAGCAAGAACGGCTACGCCG
GCTACATTGACGGCGGAGCCAGCCAGGAAGAGTTCTACAAGTTCATCAAGGCCA
TCCTGGAAAAGATGGACGGCACCGAGGAAGTCTGCTGAAGCTGAACAGAGAG
5 GACCTGCTCGGAAAGCAGCGGACCTCGACAACGGCAGCATCCCCACCAGATC
CACCTGGGAGAGCTGCACGCCATTCTCGGGCGGCAGGAAGATTTACCCATTCC
TGAAGGACAACCAGGGAAAAGATCGAGAAGATCCTGACCTCCGATCCCTACT
ACGTGGGCCCTCTGGCCAGGGAAACAGCAGATTGCTGGATGACCAGAAAGA
GCGAGGAAACCATCACCCCCCTGGAACCTCGAGGAAGTGGTGGACAAGGGCGCT
10 CCGCCCAGAGCTTCATCGAGCGGATGACCAACTTCGATAAGAACCTGCCAACG
AGAAGGTGCTGCCAACGACAGCCTGCTGTACGAGTACTTCACCGTGTATAACG
AGCTGACCAAAGTGAAAATACGTGACCGAGGGAAATGAGAAAGCCCCCTCCTGA
GCGGCGAGCAGAAAAAGGCCATCGTGGACCTGCTGTTCAAGACCAACCGGAAAG
TGACCGTGAAGCAGCTGAAAGAGGACTACTTCAAGAAAATCGAGTGCTTCGACT
15 CCGTGGAAATCTCGGCGTGGAAAGATCGGTTCAACGCCCTGGCACATACC
ACGATCTGCTGAAAATTATCAAGGACAAGGACTTCCTGGACAATGAGGAAAACG
AGGACATTCTGGAAGATATCGTGTGACCTGACACTGTTGAGGACAGAGAGA
TGATCGAGGAACGGCTGAAAACCTATGCCACCTGTTCGACGACAAAGTGTGATGA
AGCAGCTGAAGCGGCGGAGATACACCGGCTGGGCAGGCTGAGCCGGAAGCTG
20 ATCAACGGCATCCGGACAAGCAGTCCGGCAAGACAATCCTGGATTCTGAAG
TCCGACGGCTTCGCCAACAGAAACTTCATGCAAGCTGATCCACGACGACAGCCTG
ACCTTAAAGAGGACATCCAGAAAGCCCAGGTGTCCGGCCAGGGCGATAGCCTG
CACGAGCACATTGCCAATCTGGCCGGCAGCCCCGCCATTAAAGAAGGGCATCCTG
CAGACAGTGAAGGTGGTGGACGAGCTCGTAAAGTGTGATGGGCCGGACAAGCCC
25 GAGAACATCGTATCGAAATGCCAGAGAGAACCAAGACCCAGAACGGGACA
GAAGAACAGCCCGAGAGAGAACATGAAGCGGATCGAACAGAGGGCATCAAAGAGCTGG
GCAGCCAGATCCTGAAAGAACACCCCGTGGAAAACACCCAGCTGCAGAACGAG
AAGCTGTACCTGTACTACCTGCAGAATGGCGGGATATGTACGTGGACCAGGAA
CTGGACATCAACCGGCTGTCCGACTACGATGTGGACCATATCGCCTCAGAGCT
30 TTCTGAAGGACGACTCCATCGACAACAAGGTGCTGACCAAGCGACAAGAAC
GGGGCAAGAGCGACAACGTGCCCTCGAACAGAGGTGCTGAAGAACGATGAAGAAC
TAATGGCGGAGCTGCTGAACGCCAACGCTGATTACCCAGAGAAAGTCGACAAT
CTGACCAAGGCCAGAGAGAGGCGCTGAGCGAACTGGATAAGGCCGGCTTCATC
AAGAGACAGCTGGTGGAAACCCGGCAGATCACAAAGCACGTGGCACAGATCCTG
35 GACTCCGGATGAACACTAAGTACGACGAGAACATGACAAGCTGATCCGGGAAGTG
AAAGTGTATCACCCTGAAGTCCAAGCTGGTGTCCGATTCCGGAAAGGATTCCAGT
TTTACAAAGTGCAGGAGATCAACAACTACCAACGCCACGACGCCCTACCTGA
ACGCCGCTGTGGAACCGCCCTGATCAAAAGTACCCCTAACGCTGGAAAGCGAGT
TCGTGTACGGCGACTACAAGGTGTACGGAGGCTCTGGAGGAAGCAGCTCTGAGA
40 CAGGACCTGTGGCGTGGATCCCACACTCGCGGAGAACGAGATGAGCCCCACGAGT
TCGAGGTGTTCTCGACCCAGAGAGACTCGCGGAAAGAGAACATGCCTGCTGTACG
AGATCAACTGGGGCGGCAGACACTCTATCTGGCGGCACACAAGCCAGAACACCA
ACAAGCACGTGGAAGTGAACCTTATCGAGAACGTTACGACCGAGCGGTACTTCT
GCCCAACACCAGATGCAGCATCACCTGGTTCTGAGCTGGTCCCCTGCGGCGA
45 GTGCAGCAGAGCCATCACCGAGTTCTGTCCAGATATCCCCACGTGACCCCTGTC
ATCTATCGCCCCGGCTGTACCAACCACGCCGATCCTAGAAATAGACAGGGCCTGC

5 GCGACCTGATCAGCAGCGGAGTGACAATCCAGATCATGACCGAGCAAGAGAGCG
GCTACTGCTGGCGAACCTCGTGAACTACAGCCCCAGCAACGAAGGCCACTGGC
CTAGATATCCTCACCTGTGGGTCCGACTGTACGTGCTGGAACACTGTACTGCATCAT
CCTGGGCCTGCCTCCATGCCTGAACATCCTGAGAAGAAAGCAGCCTCAGCTGAC
10 5 CTTCTTCACAATGCCCTGCAGAGCTGCCACTACAGAGACTGCCTCACACATC
CTGTGGGCCACCGGACTTAAGGGCTCTCTGGATCTGAAACACCTGGCACAGTG
AGAGGCCACCCCTGAGAGCTCTGGCACGTGCGGAAGATGATGCCAAGAGCG
AGCAGGAAATCGGCAAGGCTACCGCCAAGTACTTCTACAGCAACATCATGA
ACTTTCAAGACCGAGATTACCCGGCAACGGCGAGATCCGAAGCGGCCCT
15 10 GATCGAGACAAACGGCGAAACCGGGGAGATCGTGTGGATAAGGGCCGGGATT
TTGCCACCGTGCAGAACAGTGTGAGCATGCCCAAGTGAATATCGTAAAAAGA
CCGAGGTGCAGACAGGGCGCTTCAGCAAAGAGTCTATCCTGCCAAGAGGAACA
GCGATAAGCTGATGCCAGAAAGAAGGACTGGGACCCCTAAGAAGTACGGCGGCT
TCGACAGCCCCACCGTGGCCTATTCTGTGCTGGTGGCCAAAGTGGAAAAGG
15 15 GCAAGTCCAAGAAACTGAAGAGTGTGAAAGAGCTGCTGGGATCACCATCATGG
AAAGAACAGCTTCGAGAAGAACATCCATCGACTTCTGGAAGCCAAGGGCTACA
AAGAAGTAAAAAGGACCTGATCATCAAGCTGCCAAGTACTCCCTGTCGAGC
TGGAAAACGGCCGGAAAGAGAAATGCTGCCCTGCCGGAACTGCAGAACAGGA
AACGAACTGCCCTGCCCTCCAAATATGTGAACCTCCTGTACCTGGCCAGCCACT
20 20 ATGAGAACAGTGAAGGGCTCCCCCGAGGATAATGAGCAGAACAGCTGTTGTGG
AACAGCACAAAGCACTACCTGGACGAGATCATCGAGCAGATCGAGTTCTCCA
AGAGAGTGTACCTGGCCGACGCTAACATCTGGACAAAGTGTGTCGCCCTACAACA
AGCACCGGGATAAGCCATCAGAGAGCAGGCCGAGAAATATCATCCACCTGTTA
CCCTGACCAATCTGGAGCCCCCTGCCGCTCAAGTACTTGACACACCACATCGA
25 25 CCGGAAGAGGTACACCAGCACCAAAGAGGTGCTGGACGCCACCTGATCCACCA
GAGCATCACCGGCCTGTACGAGACACGGATCGACCTGTCTCAGCTGGAGGTGA
CTCTGGTGAAGCGGAGGATCTGGCGCAGCACCAATCTGAGCGACATCATCGA
GAAAGAGACAGGCAAGCAGCTGGTACCCAAGAGTCCATCCTGATGCTGCCCTGA
AGAGGTGGAAGAACAGTGTACGGCAACAAGCCGAGTCCGACATCCTGGTGCACAC
30 30 CGCCTACGATGAGAGCACCGACGAGAACGTGATGCTGCTGACCTCTGACGCC
TGAGTACAAGCCTTGGCTCTCGTACGATCCAGGACAGCAACGGCGAGAACAGAT
CAAGATGCTGAGCGGCGGCTCTGGTGGCTCTGGCGGATCTACAAACCTGTCGAT
ATTATTGAGAAAGAACCGGGAAACAGCTCGTGAATTCAAGAGTCTATTCTCATG
CTCCCGGAAGAACAGTCGAGGAAGTCATTGAAACAAAGCCTGAGAGCGATATTCTG
35 35 GTCCATACAGCCTACGACGAGTCTACCGATGAGAACGTGATGCTGCCCTCACAGCG
ACGCTCCCGAGTATAAGCCATGGCACTTGTACGACTCCAATGGGAAA
ACAAAATCAAATGCTCCAAAGAAAAACGCAAGGTGGAGGGAGCTGATAAG
CGCACCGCCGATGGTCCGAGTTGAAAGCCCCAAGAAGAAGAGGAAAGTCTAA
CCGGTCATCATCACCATCACCATTGAGTTAAACCCGCTGATCAGCCTGACTGT
40 40 GCCTCTAGTTGCCAGCCATCTGTTGCTTGCCTTCCCCGTGCCCTCCTGACCC
TGGAAAGGTGCCACTCCACTGTCCTTCTTAATAAAATGAGGAATTGCATCGCA
TTGTCTGAGTAGGTGTCATTCTATTCTGGGGGTGGGGAGGGCAGGACAGCAA
GGGGGAGGATTGGGAAGACAATAGCAGGCATGCTGGGGATGCGGTGGCTCTAT
GGCTTCTGAGGCAGGAAAGAACCAAGCAGCTGGGGCTCGATACCGTCGACCTCTAGCTA
45 45 GAGCTTGGCGTAATCATGGTCATAGCTGTTCCCTGTGTGAAATTGTTATCCGCTCA
CAATTCCACACAAACATACGAGCCGGAAGCATAAAGTGTAAAGCCTAGGGTGCCT

AATGAGTGAGCTAACTCACATTAATTGCGTGCCTCACTGCCGCTTCCAGTC
GGGAAACCTGTCGTGCCAGCTGCATTAATGAATCGGCCAACGCGCGGGGAGAGG
CGGTTGCGTATTGGCGCTCTCCGCTCGCTCACTGACTCGCTGCCTCGG
TCGTTCGGCTGCCGAGCGGTATCAGCTCACTCAAAGGCGTAATACGGTTATC
5 CACAGAACATCAGGGATAACGCAGGAAAGAACATGTGAGCAAAAGGCCAGCAA
AGGCCAGGAACCGTAAAAGGCCGTTGCTGGCGTTTCCATAGGCTCCGCC
CCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAAACCCGAC
AGGACTATAAAGATACCAGGCGTTCCCCCTGGAAGCTCCCTCGCTCGCTCCT
GTTCCGACCCCTGCCGCTTACCGGATACCTGTCCGCCTTCTCCCTCGGGAAAGCGT
10 GGCGCTTCTCATAGCTCACGCTGTAGGTATCTCAGTTGGTGTAGGTGTTGCT
CCAAGCTGGGCTGTGACGAACCCCCGTTAGCCGACCGCTGCCCTATC
CGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACACGACTTATGCCACTGGCA
GCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTATGTAGGCGGTGCTACAGAG
TTCTGAAGTGGTGGCCTAACTACGGCTACACTAGAAGAACAGTATTGGTATCT
15 GCGCTCTGCTGAAGCCAGTTACCTCGAAAAAGAGTTGGTAGCTCTGATCCGG
CAAACAAACCACCGCTGGTAGCGGTGGTTTTGTTGCAAGCAGCAGATTACG
CGCAGAAAAAAAGGATCTCAAGAAGATCCTTGATCTTCTACGGGGCTGACG
CTCAGTGGAACGAAAACACGTTAACGGGATTGGTATGAGATTATCAAAAAA
GGATCTCACCTAGATCCTTAAATTAAATGAAGTTAAATCAATCTAAAG
20 TATATATGAGTAAACTGGTCTGACAGTTACCAATGCTTAATCAGTGAGGCACCT
ATCTCAGCGATCTGTCTATTGTTGTCATCCATAGTTGCCACTCCCCGTCGTGTA
GATAACTACGATACGGGAGGGCTTACCATCTGGCCCCAGTGTGCAATGATACC
GCGAGACCCACGCTCACCGGCTCCAGATTATCAGCAATAAACCAAGCCAGCCGG
AAGGGCCGAGCGCAGAAGTGGCCTGCAACTTATCCGCCTCCATCCAGTCTATT
25 AATTGTTGCCGGAAAGCTAGAGTAAGTAGTTGCCAGTTAATAGTTGCGCAACG
TTGTTGCCATTGCTACAGGCATCGTGGTGTACGCTCGTCTGGTATGGCTCA
TTCAGCTCCGGTCCCAACGATCAAGGCAGTTACATGATCCCCATGTTGCA
AAAAAGCGGTTAGCTCCTCGGTCCGATCGTTGCAAGAAGTAAGTGGCCGC
AGTGTATCACTCATGGTTATGGCAGCACTGCATAATTCTTACTGTATGCCAT
30 CCGTAAGATGCTTTCTGTGACTGGTAGTACTCAACCAAGTCATTCTGAGAATA
GTGTATGCGCGACCGAGTTGCTCTTGGCCGGGTCAATACGGGATAATACCGCG
CCACATAGCAGAACTTAAAAGTGCTCATCATTGGAAAACGTTCTCGGGGCGA
AAACTCTCAAGGATCTTACCGCTGTTGAGATCCAGTTGATGTAACCCACTCGT
CACCCAACTGATCTCAGCATCTTACTTACCGTCCAGCGTTCTGGGTGAGCAA
35 AACAGGAAGGCAAATGCCGAAAAAGGAATAAGGGCGACACGGAAATGTT
GAATACTCATACTCTCCTTTCAATATTATTGAAGCATTATCAGGGTTATTGT
CTCATGAGCGGATACATATTGAATGTATTAGAAAATAACAAATAGGGGTT
CGCGCACATTCCCCGAAAAGTGCACCTGACGTCGACGGATCGGGAGATCGAT
CTCCCGATCCCCTAGGGTCGACTCTCAGTACAATCTGCTCTGATGCCGATAGTT
40 AAGCCAGTATCTGCTCCCTGCTTGTGTTGGAGGGCGCTGAGTAGTGCAGCAG
AAAATTAAAGCTACAACAAGGCAAGGCTTGACCGACAATTGCAAGAACATCG
CTTAGGGTTAGCGTTGCGCTGCTCGCGATGTACGGGCCAGATACGCGTT
GACATTGATTATTGACTAGTTATTAAATAGTAATCAATTACGGGGTCATTAGTTCA
TAGCCCATATATGGAGTTCCCGCGTTACATAACTACGGTAAATGGCCCGCTGGC
45 TGACCGCCCAACGACCCCCGCCATTGACGTCAATAATGACGTATGTTCCCATAG
TAACGCCAATAGGACTTCCATTGACGTCAATGGGTGGAGTATTACGGTAAAC

TGCCCACTTGGCAGTACATCAAGTGTATCATATGCCAAGTACGCCCTATTGAC
 GTCAATGACGGTAAATGGCCCGCCTGGCATTATGCCAGTACATGACCTATGGG
 ACTTTCTACTTGGCAGTACATCTACGTATTAGTCATCGCTATTACCATGGTATG
 CGGTTTGGCAGTACATCAATGGCGTGGATAGCGGTTGACTCACGGGGATTTC
 5 CAAGTCTCCACCCATTGACGTCAATGGGAGTTGTTGGCACCAAAATCAACG
 GGACTTTCCAAAATGTCGTAACAACACTCCGCCCCATTGACGCAAATGGCGGTAG
 GCGTGTACGGTGGGAGGTCTATATAAGCAGAGCTGGTTAGTGAACCGTCAGAT
 CCGCTAGAGATCCCGGCCGCTAATACGACTCACTATAGGGAGAGCCGCCACC

10 pHRB-043_GGS-rAP : rAPOBEC1-XTEN-ins-site1_Y1016-D10A-UGIx2

MDKKYSIGLAIGTNSVGWAVITDEYKVPSSKKFKVLGNTDRHSIKKNLIGALLFDSGE
 TAEATRLKRTARRRYTRRKNRICYLQEISNEMAKVDDSFHRLEESFLVEEDKKHE
 RHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEG
 DLNPNDSDVDKLFQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLP
 15 GEKKNGLFGNLIALSGLTPNFKNFDLAEDAKLQLSKDTYDDLDNLLAQIGDQYA
 DLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPE
 KYKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQ
 RTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNRKIEKILTFRIPYYVGPLARGNSRF
 AWMTRKSEETITPWNFEVVVDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFT
 20 VYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLKTNRKVTVKQLKEDYFKKIECF
 DSVEISGVEDRFNASLGYHDLLKIIKDKDFLDNEENEDILEDIVLTTLFEDREMIEE
 RLKTYAHLFDDKVMKQLKRRYTGWGRLSRKLINGIRDQSGKTILDFLKSDGFAN
 RNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIIKGILQTVKVVDEL
 VKVMGRHKPENIVIEMARENQTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENT
 25 QLQNEKLYLYLQNGRDMYVDQELDINRLSDYDVEDHIVPQSFLKDDSIDNKVLTRS
 DKNRGKSDNVPSEEVVKMKNYWRQLLNAKLITQRKFNDLTKAERGGLSELDKAG
 FIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSCLVSDFRKDFQFY
 KVREINNYHHAHDAYLNAVVTALIKKYPKLESEFVYGDYKVYGGSGGSSSETGPV
 AVDPTLRRRIEPHEFEVFFDPRELRKETCLYEINWGGHSIWRHTSQNTKHVEVNF
 30 IEKFTTERYFCPNTRCSITWFLSWSPCGECSRAITEFLSYPHVTLFIYIARLYHHADPR
 NRQGLRDLISSLGVTIQIMTEQESGYCWRNFVNYSPSNEAHWPRYPHLWVRLYVLEL
 YCIILGLPPCLNLRRKQPQLTFTIALQSCHYQRLPPHLWATGLKGSSGSETPGTSES
 ATPESSGDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGE
 TGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKD
 35 WDPKKYGGFDSPTVAYSLLVVAKVEKGSKKLKSVKELLGITIMERSSFEKNPIDFL
 EAKGYKEVKKDLIILPKYSLFELENGRKRMLASAGELQKGNELALPSKYVNFLYLA
 SHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVL SAYNKH
 RDKPIREQAENIIHLFTLTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQ SITGLY
 ETRIDSQLGGDSGGSGGGSTNLSDIIKEKGKQLVIQESILMLPEEVEEVIGNKPES
 40 DILVHTAYDESTDENVMLLSDAPEYKPWALVIQDSNGENIKMLSGGSGGGST
 NLSDIIEKETGKQLVIQESILMLPEEVEEVIGNKPESDILVHTAYDESTDENVMLLSD
 APEYKPWALVIQDSNGENIKMLPKKKRKVEGADKRTADGSEFESPKKKRKV*

pHRB-044_GGS-rAP: rAPOBEC1-XTEN ins-site2_A1023-D10A-UGIx2

ATGGACAAGAAGTACAGCATCGGCCTGGCCATCGGCACCAACTCTGTGGGCTGG
GCCGTGATCACCGACGAGTACAAGGTGCCAGCAAGAAATTCAAGGTGCTGGC
AACACCGACCGGCACAGCATCAAGAAGAACCTGATCGGAGCCCTGCTGTCAC
5 AGCGGCAGAACAGCCGAGGCCACCCGGCTGAAGAGAACCGCCAGAACAGATA
CACCAAGACGGAAGAACCGGATCTGCTATCTGCAAGAGAGATCTTCAGCAACGAGAT
GGCCAAGGTGGACGACAGCTCTTCCACAGACTGGAAGAGTCCTCCTGGTGG
AGAGGATAAGAACGACGAGCGGCACCCATCTCGGCAACATCGTGGACGAGGT
GGCCTACCACGAGAACGAGTACCCACCATCTACCACCTGAGAAAGAAACTGGTGG
10 CAGCACCGACAAGGCCGACCTGCGGCTGATCTATCTGCCCTGGCCACATGATC
AAGTTCCGGGGCCACTCCTGATCGAGGGCGACCTGAACCCCGACAACAGCGAC
GTGGACAAGCTGTTCATCCAGCTGGTGCAGACCTACAACCCAGCTGTTGAGGAA
AACCCCATCAACGCCAGCGGCGTGGACGCCAAGGCCATCCTGCTGCCAGACTG
AGCAAGAGCAGACGGCTGGAAAATCTGATGCCCTAGCTGCCCGCGAGAACAGAA
15 GAATGGCCTGTCGAAACCTGATTGCCCTGAGCCTGGGCTGACCCCCAACCTTC
AAGAGCAACTTCGACCTGGCCGAGGATGCCAAACTGCAAGCTGAGCAAGGACACC
TACGACGACGACCTGGACAACCTGCTGGCCAGATCGCGACCAGTACGCCGAC
CTGTTCTGGCCGCCAGAACCTGTCCGACGCCATCCTGCTGAGCGACATCCTGA
GAGTGAACACCGAGATACCAAGGCCCCCTGAGCGCCTCTATGATCAAGAGAT
20 ACGACGAGCACCACCAGGACCTGACCTGCTGAAAGCTCTCGTGGCAGCAGC
TGCCTGAGAAGTACAAAGAGATTTCTCGACCAAGGAGGAGGAGGAGGAGGAGG
GCTACATTGACGGCGGAGGCCAGCCAGGAAGAGATTCTACAAGTTCATCAAGGCC
TCCTGGAAAAGATGGACGGCACCGAGGAAGTCTGCTGAGCTGAACAGAGAG
GACCTGCTGCGGAAGCAGCGGACCTCGACAACGGCAGCATCCCCACCAGATC
25 CACCTGGAGAGCTGACGCCATTCTGCGCGCGCAGGAAGATTTCACCCATTCC
TGAAGGACAACCAGGGAAAAGATCGAGAAGATCCTGACCTCCGCATCCCTACT
ACGTGGGCCCTCTGGCCAGGGAAACAGCAGATTGCGCTGGATGACCAGAAAGA
GCGAGGAAACCATCACCCCTGGAACCTCGAGGAAGTGGTGGACAAGGGCGCTT
CCGCCAGAGCTTCATCGAGCGGATGACCAACTCGATAAGAACCTGCCAACG
30 AGAAGGTGCTGCCAAGCACAGCCTGCTGTACGAGTACTTCACCGTGTATAACG
AGCTGACCAAAGTGAAAATACGTGACCGAGGAAATGAGAAAGCCGCCTCCTGA
GCGGCGAGCAGAAAAAGGCCATCGTGGACCTGCTGTTCAAGACCAACCGGAAAG
TGACCGTGAAGCAGCTGAAAGAGGACTACTTCAAGAAAATCGAGTGCTCGACT
CCGTGGAAATCTCCGGCGTGGAAAGATCGGTTCAACGCCCTGGCACATACC
35 ACGATCTGCTAAAATTCAAGGACAAGGACTTCCTGGACAATGAGGAAACG
AGGACATTCTGGAAGATATCGTGTGACCCCTGACACTGTTGAGGACAGAGAGA
TGATCGAGGAACGGCTGAAAACCTATGCCACCTGTTGACGACAAAGTGTGA
AGCAGCTGAAGCGGCGGAGATACACCGGCTGGGAGGCTGAGCCGGAAGCTG
ATCAACGGCATCCGGACAAGCAGTCCGGCAAGACAACTCGGATTTCCTGAAG
40 TCCGACGGCTCGCAACAGAAACTCATGCAAGCTGATCCACGACGACAGCCTG
ACCTTAAAGAGGACATCCAGAAAGCCCAGGTGTCCGGCCAGGGCGATAGCCTG
CACGAGCACATTGCCAATCTGGCCGGCAGCCCCGCCATTAAGAAGGGCATCCTG
CAGACAGTGAAGGTGGTGGACGAGCTCGTGAAGATGATGGGCCAGAACAG
GAGAACATCGTGTGAAATGCCAGAGAGAACCAACCCAGAACAGGACA
45 GAAGAACAGCCCGAGAGAATGAAGCGGATCGAAGAGGGCATCAAAGAGCTGG
GCAGCCAGATCCTGAAAGAACACCCCGTGGAAAACACCCAGCTGAGAACAGAG

AAGCTGTACCTGTACTACCTGCAGAATGGCGGGATATGTACGTGGACCAGGAA
CTGGACATCAACCGGCTGTCCGACTACGATGTGGACCATATCGTCGCTCAGAGCT
TTCTGAAGGACGACTCCATCGACAACAAGGTGCTGACCAGAAGCGACAAGAAC
GGGGCAAGAGCGACAACGTGCCCTCCGAAGAGGTCGTGAAGAAGATGAAGAAC
5 TACTGGCGGCAGCTGCTGAACGCCAACGCTGATTACCCAGAGAAAGTTCGACAAT
CTGACCAAGGCCGAGAGAGGCCCTGAGCGAACTGGATAAGGCCGGCTTCATC
AAGAGACAGCTGGTGGAAACCCGGCAGATCACAAGCACGTGGCACAGATCCTG
GAECTCCGGATGAACACTAAGTACGACGAGAATGACAAGCTGATCCGGAAAGTG
AAAGTGATCACCCCTGAAGTCCAAGCTGGTGTCCGATTCCGGAAAGGATTCCAGT
10 TTTACAAAAGTGCACGAGATCAACAACTACCACGCCACGACGCCAACCTGA
ACGCCGCTGTGGGAAACGCCCTGATCAAAAGTACCTAACGCTGGAAAGCGAGT
TCGTGTACGGCGACTACAAGGTGTACGACGTGGAAAGATGATGCCGGAGGCT
CTGGAGGAAGCAGCTCTGAGACAGGACCTGTGGCGTGGATCCCACACTGCGGA
GAAGAATTGAGCCCCACGAGTCGAGGTGTTCTCGACCCAGAGAGCTGCGGA
15 AAGAGACATGCCGTGTACGAGATCAACTGGGGCGGAGACACTCTATCTGGC
GGCACACAAGCCAGAACACCAACAAGCACGTGGAAAGTGAACCTTATCGAGAAAGT
TTACGACCGAGCGGTACTTCTGCCAACACCAAGATGCAGCATCACCTGGTTCT
GAGCTGGTCCCCCTGCGCGAGTGCAGCAGAGCCATACCGAGTTCTGTCCAGA
TATCCCCACGTGACCCCTGTTCATCTATCGCCCGCTGTACCAACACGCCGATC
20 CTAGAAATAGACAGGGCCTGCGCGACCTGATCAGCAGCGGAGTGACAATCCAGA
TCATGACCGAGCAAGAGAGCGGCTACTGCTGGCGGAACCTCGTAACACTACAGCC
CCAGCAACGAAGCCCACGGCTAGATATCCTCACCTGTGGGTCCACTGTACGT
GCTGGAACGTACTGCATCATCCTGGCGCTCCATGCCTGAACATCCTGAGA
AGAAAGCAGCCTCAGCTGACCTTCTTCACAATGCCCTGCAGAGCTGCCACTACC
25 AGAGACTGCCAACACATCCTGTGGGCCACCGGACTTAAGGGCTTCTGGATC
TGAAACACCTGGCACAAGTGAGAGCGCCACCCCTGAGAGCTCTGGCAAGAGCGA
GCAGGAAATCGGCAAGGCTACCGCAAGTACTTCTACAGCAACATCATGAA
CTTTTCAGACCGAGATTACCGTGGCCAACGGCGAGATCGTGTGGATAAGGGCGGGATTT
30 GCCACCGTGGAAAGTGTGAGCATGCCAACGTGAATATCGTAAAAAGACC
GAGGTGCAGACAGGCGCTTCAGCAAAGAGTCTATCCTGCCAACAGAGGAACAGC
GATAAGCTGATGCCAGAAAGAAGGACTGGGACCTAAGAAGTACGGCGGCTTC
GACAGCCCCACCGTGGCTATTCTGTGCTGGTGGCAAAAGTGGAAAAGGGC
AAGTCCAAGAAACTGAAGAGTGTGAAAGAGCTGCTGGGGATCACCATCATGGAA
35 AGAAGCAGCTCGAGAAGAATCCCATCGACTTCTGGAAGCCAAGGGCTACAAA
GAAGTAAAAAGGACCTGATCATCAAGCTGCCAACGTACTCCCTGTTGAGCTG
GAAAACGGCCGGAAGAGAATGCTGGCCTCTGCCGGCGAACCTGAGAAGGGAAA
CGAACTGGCCCTGCCCTCCAAATATGTGAACCTCTGTACCTGCCAGCCACTAT
GAGAAGCTGAAGGGCTCCCCCGAGGATAATGAGCAGAAACAGCTGTTGTGGAA
40 CAGCACAAGCACTACCTGGACGAGATCATCGAGCAGATCAGCGAGTTCTCCAAG
AGAGTGATCCTGGCCACGCTAATCTGGACAAAGTGCTGTCCGCTACAACAAG
CACCGGGATAAGCCATCAGAGAGCAGGCCAGAATATCATCCACCTGTTACC
CTGACCAATCTGGAGGCCCTGCCCTCAAGTACTTGACACCACCATCGACC
GGAAGAGGTACACCAGCACCAAAGAGGTGCTGGACGCCACCCGTACCCACCAGA
45 GCATCACCGGCCTGTACGAGACACGGATCGACCTGTCTCAGCTGGAGGTGACT
CTGGTGGAAAGCGGAGGATCTGGCGGCAGCACCAATCTGAGCGACATCATCGAGA

AAGAGACAGGCAAGCAGCTGGCATCCAAGAGTCATCCTGATGCTGCCTGAAG
AGGTGGAAGAAGTGATCGGCAACAAGCCGAGTCCGACATCCTGGTCACACCG
CCTACGATGAGAGCACCACGAGAACGTGATGCTGTCGACCTCTGACGCCCTG
AGTACAAGCCTGGGCTCTCGTATCCAGGACAGCAACGGCGAGAACAGATCA
5 AGATGCTGAGCGCGGGCTCTGGTGGCTCTGGGGATCTACAAACCTGTCCGATAT
TATTGAGAAAGAACCGGGAAACAGCTCGTATTCAAGAGTCTATTCTCATGCTC
CCGGAAGAAGTCGAGGAAGTCATTGGAAACAAGCCTGAGAGCGATATTCTGGTC
CATACAGCCTACGACGAGTCTACCGATGAGAATGTCATGCTCCTCACCAGCGAC
GCTCCGAGTATAAGCCATGGGACTTGTATTCAAGGACTCCAATGGGAAAAC
10 AAAATCAAAATGCTCCAAAGAAAAACGCAAGGTGGAGGGAGCTGATAAGCG
CACCGCCGATGGTCCGAGTCGAAAGCCCCAAGAAGAAGAGGAAAGTCTAACCG
GGTCATCATCACCATCACCATTGAGTTAAACCCGCTGATCAGCCTCGACTGTGC
CTTCTAGTTGCCAGCCATCTGTGTTGCCCTCCCCGTGCCTCCTGACCCTG
GAAGGTGCCACTCCACTGTCCTTCTAATAAAATGAGGAATTGCATCGCATT
15 GTCTGAGTAGGTGTCATTCTATTCTGGGGGTGGGTGGGCAGGACAGCAAGG
GGGAGGATTGGGAAGACAATAGCAGGCATGCTGGGATGCGGTGGCTATGG
CTTCTGAGGCAGGAAAGAACCGAGCTGGGCTCGATACCGTCGACCTCTAGCTAGA
GCTTGGCGTAATCATGGTCATAAGCTGTTCTGTGTGAAATTGTTATCCGCTCACA
ATTCCACACAAACATACGAGCCGAAGCATAAAAGTGTAAAGCCTAGGGTGCCTAA
20 TGAGTGAGCTAACTCACATTAATTGCGTGCCTCACTGCCCCTTCAGTCGG
GAAACCTGTCGTGCCAGCTGCATTAATGAATCGGCCAACGCGGGGAGAGGCG
GTTTGCCTATTGGCGCTCTCCGCTTCGCTCACTGACTCGCTGCGCTCGTC
GTTCGGCTGCGCGAGCGGTATCAGCTCACTCAAAGGGCGTAATACGGTTATCC
ACAGAATCAGGGATAACGCAGGAAAGAACATGTGAGCAAAAGGCCAGCAAAA
25 GGCCAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTCCATAGGCTCCGCC
CCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAAACCCGACA
GGACTATAAAGATAACCAGCGTTCCCCCTGGAAGCTCCCTCGCGCTCTCCTG
TTCCGACCTGCCGCTTACCGGATACCTGTCCGCTTCTCCCTCGGGAAAGCGTG
GCGCTTCTCATAGCTCACGCTGTAGGTATCTCAGTTGGTGTAGGTGTTCGCTC
30 CAAGCTGGCTGTGACGAACCCCCCGTCAAGCCCACCGCTGCCCTATCC
GGTAACTATCGTCTTGAGTCCAACCCGTAAGACACGACTATCGCCACTGGCAG
CAGCCACTGGTAACAGGATTAGCAGAGCGAGGTATGTAGGCAGGTGCTACAGAGT
TCTTGAAGTGGTGGCCTAACTACGGCTACACTAGAAGAACAGTATTGGTATCTG
CGCTCTGCTGAAGCCAGTTACCTCGGAAAAAGAGTTGGTAGCTTGTACCGGC
35 AAACAAACCACCGCTGGTAGCGGTGGTTTTGTTGCAAGCAGCAGATTACGC
GCAGAAAAAAAGGATCTCAAGAAGATCCTTGATCTTCTACGGGTCTGACGC
TCAGTGGAACGAAAACCTACGTTAAGGGATTGGTATGAGATTATCAAAAG
GATCTCACCTAGATCCTTAAATTAAAATGAAGTTAAATCAATCTAAAGT
ATATATGAGTAAACTGGTCTGACAGTTACCAATGCTTAATCAGTGAGGCACCTA
40 TCTCAGCGATCTGTCTATTCGTTCATCCATAGTTGCCTGACTCCCCGTGTTAG
ATAACTACGATACGGAGGGCTTACCATCTGGCCCCAGTGCTGCAATGATACCG
CGAGACCCACGCTCACGGCTCCAGATTATCAGCAATAAACCAAGCCAGCCGGA
AGGGCCGAGCGCAGAAGTGGTCTGCAACTTATCCGCTCCATCCAGTCTATT
ATTGTTGCCGGGAAGCTAGAGTAAGTAGTTGCCAGTTAATAGTTGCGCAACGT
45 TGTTGCCATTGCTACAGGCATCGTGGTGTACGCTCGTCTGGTATGGCTTCA
TCAGCTCCGGTCCAAACGATCAAGGCAGTTACATGATCCCCATGTTGTGCAA

AAAAGCGGTTAGCTCCTCGGTCCGATCGTGTAGAAGTAAGTTGGCCGCA
 GTGTTATCACTCATGGTTATGGCAGCACTGCATAATTCTTACTGTCATGCCATC
 CGTAAGATGCTTTCTGTGACTGGTGAGTACTCAACCAAGTCATTCTGAGAATAG
 TGTATGCGCGACCGAGTTGCTCTGCCCGCGTCAATACGGGATAATACCGCGC
 5 CACATAGCAGAACCTTAAAAGTGCATCATGGAAAACGTTCTCGGGCGAA
 AACTCTCAAGGATCTTACCGCTGTTGAGATCCAGTTCGATGTAACCCACTCGTGC
 ACCCAACTGATCTCAGCATTTACTTCACCAGCGTTCTGGGTGAGCAAAA
 ACAGGAAGGCAAAATGCCGAAAAAAGGAATAAGGGCGACACGGAAATGTTG
 AATACTCATACTCTCCTTTCAATATTATTGAAGCATTATCAGGGTTATTGTC
 10 TCATGAGCGGATACATATTGAATGTATTAGAAAAATAAACAAATAGGGTTCC
 GCGCACATTCCCCGAAAAGTGCACCTGACGTCGACGGATCGGGAGATCGATC
 TCCCAGTCCCCTAGGGTCGACTCTCAGTACAATCTGCTCTGATGCCGCATAGTTA
 AGCCAGTATCTGCTCCCTGCTTGTGTTGGAGGTCGCTGAGTAGTGCAGGAGCA
 15 AAATTAAAGCTACAACAAGGCAAGGCTGACCGACAATTGCATGAAGAATCTGC
 TTAGGGTTAGGCCTTTCGCTCGCGATGTACGGGCCAGATATACCGCGTTG
 ACATTGATTATTGACTAGTTATAATAGTAATCAATTACGGGTCATTAGTTCAT
 AGCCCATATATGGAGTCCCGCGTTACATAACTACGGTAAATGGCCCGCCTGGCT
 GACCGCCCAACGACCCCCGCCATTGACGTCAATAATGACGTATGTTCCCATAGT
 AACGCCAATAGGGACTTCCATTGACGTCAATGGGTGGAGTATTACGGTAAACT
 20 GCCCACTTGGCAGTACATCAAGTGTATCATATGCCAAGTACGCCCCCTATTGACG
 TCAATGACGGTAAATGGCCCGCCTGGCATTATGCCAGTACATGACCTTATGGGA
 CTTTCCTACTTGGCAGTACATCTACGTATTAGTCATCGCTATTACCATGGTATG
 GGTTTGGCAGTACATCAATGGCGTGGATAGCGGTTGACTCACGGGGATTCC
 AAGTCTCCACCCATTGACGTCAATGGAGTTGTTGGCACCAAAATCAACGG
 25 GACTTCCAAAATGTCGTAACAACACTCCGCCCCATTGACGCAAATGGCGGTAGG
 CGTGTACGGTGGGAGGTCTATATAAGCAGAGCTGGTTAGTGAACCGTCAGATC
 CGCTAGAGATCCGCGGGCGCTAATACGACTCACTAGGGAGAGCCGCCACC

pHRB-044_GGS-rAP : rAPOBEC1-XTEN ins-site2_A1023-D10A-UGIx2
 30 MDKKYSIGLAIGTNSVGWAVITDEYKVPSSKKFKVLGNTDRHSIKKNLIGALLFDSGE
 TAEATRLKRTARRRYTRRKNRICYLQEISNEMAKVDDSSFFHRLEESFLVEEDKKHE
 RHPFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKA_DLRLIYLALAHMIKFRGHFLIEG
 DLNPNDNSVDKLFQLVQTYNQLFEENPINASGVDAKAILSARLSRRLENLIAQLP
 GEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQLSKDTYDDLDNLLAQIGDQYA
 35 DLFIAKNLSDAILSDILRVNTEITKAPLSASMIKYDEHHQDLTLLKALVRQQLPE
 KYKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQ
 RTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNRKIEKILTFRIPYYVGPLARGNSRF
 AWMTRKSEETITPWNFEVVVDKGASAQSFIERMNTFDKNLPNEVKLPKHSSLYEYFT
 VYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECF
 40 DSVEISGVEDRFNASLGYHDLLKIIKDKDFLDNEENEDILEDIVLTTLFEDREMIIE
 RLKTYAHLFDDKVMKQLRRRTGWRGLSRKLINGIRDQSGKTILDFLKSDGFAN
 RNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIIKKGILQTVKVVDEL
 VKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENT
 45 QLQNEKLYLYLQNGRDMYVDQELDINRLSDYDWDHIVPQSFLKDDSIDNKVLTRS
 DKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKF DNLTKAERGGLSELDKAG

FIKRQLVETRQITKHVAQILD SRMNTKYDENDKLIREVKVITLKS KL VSDFRKDFQFY
 KVREINNYHHAHDAYLNAAVVGTL ALKKYPKLESEFVYGDYK VYDVRKMIAGGS GG
 SSSETGPVAVDPTLRRRIEPHEFEVFFDPRELRKETCLLYEINWGGRHSIWRHTSQNT
 5 NKHVEVNFI EKFTTERYFCPNTRCSITWFLSWSPCGECSRAITEFLSRYPHVTLFIYIAR
 LYHHADPRNRQGLRDLI SSGVTIQIMTEQESGYCWRNFVN YSPSNEAHWPRYPHLW
 VRLYVLELYCII GLPPCLN ILRRKQPQLTFFTIALQSCHYQRLPPHILWATGLKGSSG
 SETPGTSESATPES SGKSEQEIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNG
 ETGEIWWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKK
 DWDPKKYGGFDSP TVA YSVL VVAKVEKGKS KKLKSVKELL GITIMERSSFEKNP IDE
 10 LEAKGYKEVKKDLI I KLPKYS LFELENGRK RMLASAGELQKG NELALPSKYVN FLYL
 ASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNK
 HRDKPIREQAENIHLFTLTNLGAPAAFKYFDTTIDRKRTSTKEVLDATLHQ SITGL
 YETRIDLSQLGGDSGGSGGSGG STNLSDIIEKETGQLVIQESILMLPEEVEEVIGNKP
 ESDILVHTAYDESTDEN VMLLTS DAPEYKPWALVIQDSNGENKIKMLSGGSGGSGGS
 15 TNLSDIIEKETGQLVIQESILMLPEEVEEVIGNKPESDILVHTAYDESTDEN VMLLTS
 DAPEYKPWALVIQDSNGENKIKMLPKKKRK VEGADKRTADGSEFESP KKKRKV*

pHRB-045_GGS-rAP: rAPOBEC1-XTEN ins-site3_E1029-D10A-UGIx2
 ATGGACAAGAAGTACAGCATCGGCCTGGCCATCGGCACCAACTCTGTGGGCTGG
 20 GCCGTGATCACCGACGAGTACAAGGTGCCAGCAAGAAATTCAAGGTGCTGGG
 AACACCGACCGGCACAGCATCAAGAAGAACCTGATCGGAGGCCCTGCTGTTGAC
 AGCGCGAAACAGCCGAGGCCACCCGGCTGAAGAGAACCGCCAGAAGAAGATA
 CAC CAGACGGAAGAACCGGATCTGCTATCTGCAAGAGATCTTCAGCAACGAGAT
 GGCAAGGTGGACGACAGCTTCCACAGACTGGAAGAGTCCTCCTGGTGG
 25 AGAGGATAAGAAGCACGAGCGGCACCCATCTCGGCAACATCGTGGACGAGGT
 GGCCTACCACGAGAAGTACCCACC ATCTACCACCTGAGAAAGAAACTGGTGG
 CAGCACCGACAAGGCCGACCTGCGGCTGATCTATCTGCCCTGGCCACATGATC
 AAGTTCCGGGGCCACTTCCTGATCGAGGGCGACCTGAACCCCGACAACAGCGAC
 GTGGACAAGCTGTTCATCCAGCTGGTGAGACCTACAACCAGCTGTTGAGGAA
 30 AACCCCATCAACGCCAGCGCGTGGACGCCAAGGCCATCCTGTCTGCCAGACTG
 AGCAAGAGCAGACGGCTGGAAAATCTGATCGCC CAGCTGCCCGCGAGAAGAA
 GAATGGCCTGTCGGAAACCTGATTGCCCTGAGCCTGGGCTGACCCCAACTTC
 AAGAGCAACTCGACCTGGCCGAGGATGCCAAACTGCAAGCTGAGCAAGGACACC
 TACGACGACGACCTGGACAACCTGCTGCCAGATGGC GACCAGTACGCCGAC
 35 CTGTTCTGGCCGCCAAGAACCTGTCCAGGCCATCCTGCTGAGCGACATCCTGA
 GAGTGAACACCGAGATCACC AAGGCCCTGAGCGCCTCTATGATCAAGAGAT
 ACGACGAGCACCACCAAGGACCTGACCCCTGCTGAAAGCTCTGCGGCAGCAGC
 TGCCTGAGAAGTACAAAGAGATTTCTCGACCAAGAGCAAGAACGGCTACGCC
 GCTACATTGACGGCGGAGCCAGCCAGGAAGAGTTCTACAAGTTCATCAAGCCCA
 40 TCCTGGAAAAGATGGACGGCACCGAGGA ACTGCTCGTGAAGCTGAACAGAGAG
 GACCTGCTCGGAAGCAGCGGACCTCGACAACGGCAGC ATCCCCCACCAGATC
 CACCTGGGAGAGCTGCAGCCATTCTGCGGCCAGGAAGATTTACCCATTCC
 TGAAGGACAACCAGGGAAAAGATCGAGAAGATCCTGACCTCCGCATCCCCTACT
 ACGTGGGCCCTCTGGCCAGGGAAACAGCAGATTGCGCTGGATGACCAGAAAGA
 45 GCGAGGAAACCATCACCCCTGGAACCTCGAGGAAGTGGTGGACAAGGGCGCTT

CCGCCAGAGCTTCATCGAGCGGATGACCAACTCGATAAGAACCTGCCAACG
AGAAGGTGCTGCCAACGACACAGCCTGCTGTACGAGTACTTCACCGTGTATAACG
AGCTGACCAAAAGTGAATACTGTGACCGAGGGAATGAGAAAGCCGCCCTCCTGA
GCGCGAGCAGAAAAAGGCCATCGTGGACCTGCTGTTCAAGACCAACCGGAAAG
5 TGACCGTGAAGCAGCTGAAAGAGGACTACTTCAGAAGAAATCGAGTGCTTCGACT
CCGTGGAAATCTCCGGCGTGGAAAGATCGGTCAACGCCCTCCCTGGGCACATACC
ACGATCTGCTGAAAATTATCAAGGACAAGGACTTCCTGGACAATGAGGAAACG
AGGACATTCTGGAAGATATCGTGTGACCTGACACTGTTGAGGACAGAGAGA
TGATCGAGGAACGGCTGAAAACCTATGCCACCTGTTGACGACAAAGTGTGA
10 AGCAGCTGAAGCGGCGGAGATACACCGCTGGGCAGGCTGAGCCCGAACGCTG
ATCAACGGCATCCGGACAAGCAGTCCGGCAAGACAATCCTGGATTCCCTGAAG
TCCGACGGCTTCGCCAACAGAAACTTCATGCACTGATCCACGACGACAGCCTG
ACCTTAAAGAGGACATCCAGAAAGCCCAGGTGTCCGCCAGGGCGATAGCCTG
CACGAGCACATTGCCAATCTGGCCGGCAGCCCCGCCATTAAGAAGGGCATCCTG
15 CAGACAGTGAAGGTGGTGGACGAGCTCGTAAAGTGTGGCCGGACAAGCCC
GAGAACATCGTGTGAAATGGCCAGAGAGAACGACCAACCCAGAACGGGACA
GAAGAACAGCCCGAGAGAACATGAAAGCGGATCGAAGAGGGCATCAAAGAGCTGG
GCAGCCAGATCCTGAAAGAACACCCCGTGGAAAACACCCAGCTGCAGAACGAG
AAGCTGTACCTGTACTACCTGCAGAATGGCGGGATATGTACGTGGACCAAGGAA
20 CTGGACATCAACCGGCTGTCCGACTACGATGTGGACCATATCGCCTCAGAGCT
TTCTGAAGGACGACTCCATCGACAACAAGGTGCTGACCAAGCGACAAGAAC
GGGCAGAGCGACAACGTGCCCTCCGAAGAGGTGCTGAAGAACGATGAAGAAC
TACTGGCGGAGCTGCTGAACGCCAACGCTGATTACCCAGAGAACAGTCGACAAT
CTGACCAAGGCCGAGAGAGGGCCCTGAGCGAACTGGATAAGGCCGGCTTCATC
25 AAGAGACAGCTGGTGGAAACCCGGCAGATCACAAAGCACGTGGCACAGATCCTG
GACTCCGGATGAAACACTAAGTACGACGAGAACGACAGCTGATCCGGAAAGTG
AAAGTGTACCCCTGAAGTCCAAGCTGGTGTCCGATTCCGGAAAGGATTCCAGT
TTTACAAAGTGCAGGAGATCAACAACCTACCAACCGCCACGACGCCCTACCTGA
ACGCCGTGTTGGAACCGCCCTGATCAAAAGTACCCCTAACGCTGGAAAGCGAGT
30 TCGTGTACGGCGACTACAAGGTGTACGACGTGGAAAGATGATGCCAACAGCG
AGCAGGAAATCGGAGGCTCTGGAGGAAGCAGCTCTGAGAACAGGACCTGTGGCC
TGGATCCCACACTGCAGGAGAACGAAATTGAGCCCCACGAGTTGAGGTGTTCTCG
ACCCAGAGAGCTGCCGAAAGAGAACATGCCTGCTGTACGAGATCAACTGGCG
GCAGACACTCTATCTGGCCGACACAAGCCAGAACACCAACAAGCACGTGGAAAG
35 TGAACTTATCGAGAACGTTACGACCGAGCGGTACTTCTGCCAACACCCAGATG
CAGCATCACCTGGTTCTGAGCTGGTCCCCTGCCGAGTGCAGCAGAGGCCATC
ACCGAGTTCTGTCAGATATCCCCACGTGACCTGTTCATCTATATGCCGGCT
GTACCAACGCCGATCCTAGAAATAGACAGGGCTGCCGACCTGATCAGCAG
CGGAGTGACAATCCAGATCATGACCGAGAACAGAGAGCGGCTACTGCTGGCGAA
40 CTTCGTGAACTACAGCCCCAGCAACGAAGCCCACGGCTAGATATCCTCACCTG
TGGGTCCGACTGTACGTGCTGGAACCTGACTGACATCATCCTGGCCTGCCCTCAT
GCCTGAACATCCTGAGAACGAGAACGAGCTCAGCTGACCTTCTCACAATGCCCT
GCAGAGCTGCCACTACCAAGAGACTGCCACACATCCTGTGGCCACCGGACTT
AAGGGCTTCTGGATCTGAAACACCTGGCACAAGTGAAGAGCGCCACCCCTGAG
45 AGCTCTGGCGCAAGGCTACCGCAAGTACTTCTTCTACAGCAACATCATGAAC
TTTCAAGACCGAGATTACCGCAACGGCGAGATCGGAAGCGGCCTCTGA

TCGAGACAAACGGCGAAACCAGGGAGATCGTGTGGATAAGGGCCGGGATTTG
CCACCGTGCAGAAAGTGTGAGCATGCCCAAGTGAATATCGTAAAAAGACCG
AGGTGCAGACAGGCGGCTTCAGCAAAGAGTCTATCCTGCCAAGAGGAACAGCG
ATAAGCTGATGCCAGAAAGAAGGACTGGGACCTAAGAAGTACGGCGGCTTCG
5 ACAGCCCCACCCTGGCTTCTGTGCTGGTGGCCAAAGTGGAAAAGGGCA
AGTCCAAGAAACTGAAGAGTGTGAAAGAGCTGCTGGGATCACCATCATGGAAA
GAAGCAGCTTCGAGAAGAATCCCCTCGACTTCTGGAAGCCAAGGGCTACAAAG
AAGTAAAAAGGACCTGATCATCAAGCTGCCCTAAGTACTCCCTGTCAGCTGG
AAAACGGCCGGAAGAGAATGCTGGCCTCTGCCCGCAACTGCAGAAGGGAAAC
10 GAACTGGCCCTGCCCTCCAAATATGTGAACCTCCTGTACCTGGCCAGCCACTATG
AGAAGCTGAAGGGCTCCCCCGAGGATAATGAGCAGAAACAGCTGTTGTGGAAC
AGCACAAGCACTACCTGGACGAGATCATCGAGCAGATCAGCAGTTCTCCAAGA
GAGTGATCCTGGCCGACGCTAATCTGGACAAAGTGCTGTCGCGCTACAAACAAGC
ACCAGGATAAGCCCCTCAGAGAGCAGGCCGAGAATATCATCCACCTGTTACCC
15 TGACCAATCTGGAGCCCTGCCGCCTCAAGTACTTGTACACCAACCATCGACCG
GAAGAGGTACACCAGCACCAAAGAGGGTCTGGACGCCACCCCTGATCCACCAAGAG
CATCACCGGCCTGTACGAGACACGGATCGACCTGTCTCAGCTGGGAGGTGACTCT
GGTGGAAAGCGGAGGATCTGGCGCAGCACCAATCTGAGCGACATCATCGAGAAA
GAGACAGGCAAGCAGCTGGTCATCCAAGAGTCCATCCTGATGCTGCCTGAAGAG
20 GTGGAAGAAGTGATCGGCAACAAGCCCAGTCCGACATCCTGGTGCACACCGCC
TACGATGAGAGCACCGACGAGAACGTGATGCTGCTGACCTCTGACGCCCTGAG
TACAAGCCTGGGCTCTCGTGTACCCAGGACAGAACGGCGAGAACAGATCAAG
ATGCTGAGCGGGCTCTGGTGGCTCTGGCGGATCTACAAACCTGTCCGATATTAA
TTGAGAAAAGAAACCGGGAAACAGCTGATTCAAGAGTCTATTCTCATGCTCCC
25 GGAAGAAGTCGAGGAAGTCATTGAAACAAGCCTGAGAGCGATATTCTGGTCCA
TACAGCCTACGACGAGTCTACCGATGAGAATGTCATGCTCCTCACCGCGACGCT
CCCGAGTATAAGCCATGGCACTTGTATTCAAGGACTCCAATGGGAAAACAAA
ATCAAAATGCTCCAAAGAAAAACGCAAGGGTGGAGGGAGCTGATAAGCGCAC
CGCCGATGGTCCGAGTTGAAAGCCCCAAGAAGAAGAGGAAAGTCTAACCGGT
30 CATCATCACCATCACCATGAGTTAACCCGCTGATCAGCCTCGACTGTGCCTT
CTAGTTGCCAGCCATCTGTTGCTTGCCTCCCTCCCCGTGCCTCCTGACCCCTGGAA
GGTGCCTACCCACTGTCCTTCTTAATAAAATGAGGAAATTGCATCGCATTGTC
TGAGTAGGTGTCTATTCTATTCTGGGGGTGGGTGGGCAGGACAGCAAGGGGG
AGGATTGGGAAGACAATAGCAGGCATGCTGGGATGCGGTGGCTATGGCTT
35 CTGAGGCGGAAAGAACCAAGCTGGGCTCGATACCGTCGACCTCTAGCTAGAGCT
TGGCGTAATCATGGTCAAGCTGTTCTGTGTGAAATTGTTATCCGCTCACAAATT
CCACACAACATACGAGCCGGAAGCATAAAAGTGTAAAGCCTAGGGTGCCTAATGA
GTGAGCTAACTCACATTAAATTGCGTTGCGCTACTGCCGCTTCCAGTCGGGAA
ACCTGTCGTGCCAGCTGCATTAATGAATCGGCCAACGCCGGGAGAGCGGGTT
40 TCGTATTGGGCGCTCTCCGCTTCCCTCGCTACTGACTCGCTGCGCTCGGTGTT
CGGCTCGGCGAGCGGTATCAGCTCAACTCAAAGCGGTAAATACGGTTATCCACA
GAATCAGGGATAACGCAGGAAAGAACATGTGAGCAAAGGCCAGCAAAAGGC
CAGGAACCGTAAAAGGCCGCGTTGCTGGCGTTTCCATAGGCTCCGCCCCCCT
GACGAGCATCACAAAATCGACGCTCAAGTCAGAGGTGGCGAAACCCGACAGG
45 ACTATAAAAGATACCAGCGTTCCCCCTGGAAGCTCCCTGTCGCGCTCTCCTGTT
CCGACCCCTGCCGCTTACCGGATACCTGTCGCCCTTCTCCCTGGGAAGCGTGG

CGCTTCTCATAGCTACGCTAGGTATCTCAGTCGGTAGGTCGTCGCTCC
AAGCTGGCTGTGACGAACCCCCCGTCAGCCGACCGCTGCGCCTATCCG
GTAACATCGTCTGAGTCCAACCCGGAAGACACGACTTATGCCACTGGCAGC
AGCCACTGGTAACAGGATTAGCAGAGCGAGGTATGTAGGCGGTGCTACAGAGTT
5 CTTGAAGTGGTGGCCTAACTACGGCTACACTAGAAGAACAGTATTGGTATCTGC
GCTCTGCTGAAGCCAGTTACCTCGGAAAAAGAGTTGGTAGCTCTGATCCGGCA
AACAAACCACCGCTGGTAGCGGTGGTTTTGCAAGCAGCAGATTACGCG
CAGAAAAAAAGGATCTCAAGAAGATCCTTGATCTTCTACGGGTCTGACGCT
CAGTGGAACGAAAACACGTTAAGGGATTTGGTATGAGATTATCAAAAGG
10 ATCTTCACCTAGATCCTTAAATTAAAAATGAAGTTAAATCAATCTAAAGTA
TATATGAGTAAACTTGGTCTGACAGTTACCAATGCTTAATCAGTGAGGCACCTAT
CTCAGCGATCTGTCTATTCTGTTACCCATAGTTGCCTGACTCCCCGTCGTAGA
TAACTACGATAACGGGAGGGCTTACCATCTGGCCCCAGTGCTGCAATGATACC
GAGACCCACGCTCACCGGCTCCAGATTATCAGCAATAAACCAAGCCAGCCGGAA
15 GGGCCGAGCGCAGAACAGTGGTCTGCAACTTATCCGCTCCATCCAGTCTATTAA
TTGTTGCCGGGAAGCTAGAGTAAGTAGTCGCCAGTTAATAGTTGCGCAACGTT
GTTGCCATTGCTACAGGCATCGTGGTGCACGCTCGTCTGGTATGGCTTCATT
CAGCTCCGGTTCCAAACGATCAAGGCAGTTACATGATCCCCATGTTGTGCAA
AAAGCGGTTAGCTCCTCGGTCCCGATCGTTGTCAGAAGTAAGTTGGCCGCAG
20 TGTTATCACTCATGGTTATGGCAGCACTGCATAATTCTTACTGTCATGCCATCC
GTAAGATGCTTTCTGACTGGTAGTACTCAACCAAGTCATTCTGAGAATAGT
GTATGCGGCGACCGAGTTGCTCTGCCCGCGTCAATACGGGATAATACCGCGCC
ACATAGCAGAACTTAAAAGTGCATCATTGGAAAACGTTCTCGGGCGAAA
ACTCTCAAGGATCTTACCGCTGTTGAGATCCAGTCGATGTAACCCACTCGTGCA
25 CCCAACTGATCTCAGCATCTTACTTCACCAGCGTTCTGGGTGAGCAAAAA
CAGGAAGGCAAAATGCCGAAAAAAAGGGAATAAGGGCGACACGGAAATGTTGA
ATACTCATACTCTCCTTTCAATATTGAAGCATTATCAGGGTTATTGTCT
CATGAGCGGATACATATTGAATGTATTAGAAAAATAACAAATAGGGGTCC
GCGCACATTCCCCGAAAAGTGCCACCTGACGTCGACGGATCGGAGATCGATC
30 TCCCAGATCCCCTAGGGCGACTCTCAGTACAATCTGCTCTGATGCCGATAGTTA
AGCCAGTATCTGCTCCCTGCTTGTGTTGGAGGTGCTGAGTACTGCGCGAGCA
AAATTAAAGCTACAACAAGGCAAGGCTGACCGACAATTGCAATGAGAATCTGC
TTAGGGTTAGGCCTTGCCTGCTCGATGTCAGGGCCAGATACCGCTTG
ACATTGATTATTGACTAGTTATAAGTAATCAATTACGGGTCTATTAGTCAT
35 AGCCCATATATGGAGTCCCGCGTTACATAACTACGGTAAATGGCCCGCTGGCT
GACCGCCCAACGACCCCCGCCATTGACGTCAATAATGACGTATGTTCCCATAGT
AACGCCAATAGGGACTTCCATTGACGTCAATGGGTGGAGTATTACGGTAAACT
GCCCACTTGGCAGTACATCAAGTGTATCATATGCCAAGTACGCCCCCTATTGACG
TCAATGACGGTAAATGGCCCGCTGGCATTATGCCAGTACATGACCTTATGGGA
40 CTTTCCTACTTGGCAGTACATCTACGTATTAGTCATCGTATTACCATGGTATG
GGTTTGGCAGTACATCAATGGCGTGGATAGCGGTTGACTCACGGGGATTCC
AAGTCTCCACCCATTGACGTCAATGGGAGTTGTTGGCACCAAAATCAACGG
GACTTCCAAAATGTCGTAACAACTCCGCCCCATTGACGCAAATGGCGGTAGG
CGTGTACGGTGGGAGGTCTATATAAGCAGAGCTGGTTAGTGAACCGTCAGATC
45 CGCTAGAGATCCCGGGCGCTAATACGACTCACTATAGGGAGAGGCCGACC

pHRB-045_GGS-rAP : rAPOBEC1-XTEN ins-site3_E1029-D10A-UGIx2

MDKKYSIGLAIGTNSGVAVITDEYKVPSSKFKVLGNTDRHSIKKNLIGALLFDSGE
TAEATRLKRTARRRYTRRKNRICYLQEISNEMAKVDDSSFFHRLEESFLVEEDKKHE
RHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEG
5 DLNPNDNSDVKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSRSRLENLIAQLP
GEKKNGLFGNLIALSLGLTPNFKNFDLAEDAKLQLSKDTYDDDLNLLAQIGDQYA
DLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPE
KYKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQ
RTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRF
10 AWMTRKSEETITPWNFEVVVDKGASAQSFIERMNTNFDKNLPNEKVLPHSLLYEYFT
VYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECF
DSVEISGVEDRFNASLGYHDLLKIIKDKDFLDNEENEDILEDIVLTTLFEDREMIEE
RLKTYAHLFDDKVMKQLKRRRYTGWGRSLRKLINGIRDQSGKTILDFLKSDFGAN
RNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIIKGILQTVKVVDEL
15 VKVMGRHKPENIVIEMARENQTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENT
QLQNEKLYLYLQNGRDMYVDQELDINRLSDYDVDHIVPQSFQKDDSIDNKVLTRS
DKNRGKSDNVPSEEVVKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAG
FIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSCLVSDFRKDFQFY
KVREINNYHHAHDAYLNAVGTALIKKYPKLESEFVYGDYKVDVRKMIAKSEQEI
20 GGSGGSSSETGPVAVDPTLRRRIEPHEFEVFFDPRELRKETCLLYEINWGGRHSIWRH
TSQNTNKHVEVNFIKEKFTTERYFCPNTRCSITWFLSWSPCGECSRAITEFLSRYPHVTL
FIYIARLYHHADPRNRQGLRDLIISGVTIQIMTEQESGYCWRNFVNYSPSNEAHWPR
YPHLWVRLYVLELYCILGLPPCLNIRRKQPQLTFTTIALQSCHYQRLPPHILWATGL
KGSSGSETPGTSESATPESSGGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGE
25 TGEIVWDKGRDFATVRKVLMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKD
WDPKKYGGFDSPTVAYSVLVVAKVEKGKSKLKVKELLGITIMERSSEKNPIDFL
EAKGYKEVKKDLIILPKYSLFELENGRKMLASAGELQKGNELALPSKYVNFLYLA
SHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVL SAYNKH
RDKPIREQAENIIHLFTLTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQSITGLY
30 ETRIDLSQLGGDSGGSGGGSTNLSDIIKEKGKQLVIQESILMLPEEVEEVIGNKPE
DILVHTAYDESTDENVMLLTSDAPEYKPWALVIQDSNGENKIKMLSGGSGGGST
NLSDIIKEKGKQLVIQESILMLPEEVEEVIGNKPESDILVHTAYDESTDENVMLLSD
APEYKPWALVIQDSNGENKIKMLPKKKRKVEGADKRTADGSEFESPKKKRKV*

35 pHRB-046_GGS-rAP: rAPOBEC1-XTEN ins-site4_N1040-D10A-UGIx2

ATGGACAAGAAGTACAGCATCGGCCTGGCCATCGGCACCAACTCTGTGGGCTGG
GCCGTGATCACCGACGAGTACAAGGTGCCAGCAAGAAATTCAAGGTGCTGGC
AACACCGACCGGCACAGCATCAAGAAGAACCTGATCGGAGCCCTGCTTGCAC
AGCGCGAACAGCCAGGCCACCCGGCTGAAGAGAACCGGCCAGAAGAAGATA
40 CACCAGACGGAAGAACCGGATCTGCTATCTGCAAGAGATCTTCAGCAACGAGAT
GGCCAAGGTGGACGACAGCTTCTCACAGACTGGAAGAGTCCTCCTGGTGG
AGAGGATAAGAACGACGAGCGGCACCCATCTCGGCAACATCGTGGACGAGGT
GGCCTACCACGAGAAGTACCCACCATCTACCACCTGAGAAAGAAACTGGTGG
CAGCACCGACAAGGCCACCTGCGGCTGATCTATCTGCCCTGCCACATGATC
45 AAGTTCCGGGCCACTTCCTGATCGAGGGCGACCTGAACCCCGACAACAGCGAC

GTGGACAAGCTGTTATCCAGCTGGTGCAGACCTACAACCAGCTGTCGAGGAA
AACCCCATCAACGCCAGCGCGTGGACGCCAAGGCCATCCTGTCTGCCAGACTG
AGCAAGAGCAGACGGCTGGAAAATCTGATCGCCCAGCTGCCGGCGAGAAGAA
GAATGGCCTGTTCGGAAACCTGATTGCCCTGAGCCTGGCCTGACCCCCAACTTC
5 AAGAGCAACTCGACCTGGCCAGGATGCCAAACTGCAGCTGAGCAAGGACACC
TACGACGACGACCTGGACAACCTGCTGGCCCAGATCGCGACCAGTACGCCGAC
CTGTTCTGGCCGCCAAGAACCTGTCCGACGCCATCCTGCTGAGCGACATCCTGA
GAGTGAACACCGAGATCACCAAGGCCCCCTGAGCGCCTCTATGATCAAGAGAT
ACGACGAGCACCACCAAGGACCTGACCCCTGCTGAAAGCTCTCGTGCAGCAGCAGC
10 TGCCTGAGAAGTACAAAGAGATTTCTCGACCAAGAGCAAGAACGGCTACGCCG
GCTACATTGACGGCGGAGGCCAGGAAGAGATTCTACAAGTTCATCAAGGCCA
TCCTGGAAAAGATGGACGGCACCGAGGAAGTCTCGTGAAGCTGAACAGAGAG
GACCTGCTCGGAAGCAGCGGACCTTCGACAACGGCAGCAGCATCCCCACCAGATC
CACCTGGAGAGAGCTGCACGCCATTCTCGGGCGCAGGAAGATTTCACCCATTCC
15 TGAAGGACAACCAGGAAAAGATCGAGAAGATCCTGACCTCCGCATCCCCACT
ACGTGGGCCCTCTGGCCAGGGAAACAGCAGATTGCCCTGGATGACCAGAAAGA
GCGAGGAAACCATCACCCCCCTGGAACCTCGAGGAAGTGGTGGACAAGGGCGCTT
CCGCCAGAGCTTCATCGAGCGGATGACCAACTCGATAAGAACCTGCCAACG
AGAAGGTGCTGCCAACGACACGCCGCTGTACGAGTACTTCACCGTGTATAACG
20 AGCTGACCAAAGTGAAAATACGTGACCGAGGAATGAGAAAGCCGCCTCCTGA
GCGGCAGCAGAAAAGGCCATCGTGACCTGCTGTTCAAGACCAACCGGAAAG
TGACCGTGAAGCAGCTGAAAGAGGACTACTTCAAGAAAATCGAGTGCTCGACT
CCGTGGAAATCTCCGGCGTGGAAAGATCGGTCAACGCCCTCCCTGGGACATACC
ACGATCTGCTGAAAATTATCAAGGACAAGGACTCCTGGACAATGAGGAAAACG
25 AGGACATTCTGGAAGATATCGTGTGACCCCTGACACTGTTGAGGACAGAGAGA
TGATCGAGGAACGGCTGAAAACCTATGCCCACCTGTTGACGACAAAGTGTGATGA
AGCAGCTGAAGCGGCGGAGATAACCCGGCTGGGAGGCTGAGCCGGAAAGCTG
ATCAACGGCATCCGGACAAGCAGTCCGGCAAGACAATCCTGGATTCTGAAG
TCCGACGGCTCGCCAACAGAAACTTCATGCACTGATCCACGACGACAGCCTG
30 ACCTTAAAGAGGACATCCAGAAAGCCCAGGTGTCCGCCAGGGCGATAGCCTG
CACGAGCACATTGCCAATCTGGCCGGCAGCCCCGCCATTAAGAACGGCATCCTG
CAGACAGTGAAGGTGGTGGACGAGCTCGTGAAGAGTGTGATGGGCCGGACAAGCCC
GAGAACATCGTATCGAAATGCCAGAGAGAACGACCAACCCAGAACGGACA
GAAGAACAGCCCGAGAGAATGAAGCGGATCGAACAGAGGGCATCAAAGAGCTGG
35 GCAGCCAGATCCTGAAAGAACACCCCGTGGAAAACACCCAGCTGCAGAACGAG
AAGCTGTACCTGTACTACCTGCAGAATGGCGGGATATGTACGTGGACCAGGAA
CTGGACATCAACCGGCTGTCGACTACGATGTGGACCATATCGCCTCAGAGCT
TTCTGAAGGACGACTCCATCGACAACAAGGTGCTGACCGAGCGACAAGAAC
GGGGCAAGAGCGACAACGTGCCCTCCGAAGAGGTGCTGAAGAACAGATGAAGAAC
40 TACTGGCGGAGCTGCTGAACGCCAAGCTGATTACCCAGAGAAAGTTCGACAAT
CTGACCAAGGCCAGAGAGAGGCCCTGAGCGAACTGGATAAGGCCGGCTTCATC
AAGAGACAGCTGGTGGAAACCCGGCAGATCACAAAGCACGTGGCACAGATCCTG
GAECTCCGGATGAACACTAAGTACGACGAGAACGACAGCTGATCCGGAAAGT
AAAGTGTACCCCTGAAGTCCAAGCTGGTGTCCGATTCCGGAAAGGATTCCAGT
45 TTACAAAAGTGCAGGAGATCAACAACTACCACCAACGCCACGACGCCACCTGA
ACGCCGTGGAAACGCCCTGATCAAAAGTACCTAACGCTGGAAAGCGAGT

TCGTGTACGGCGACTACAAGGTGTACGACGTGCGGAAGATGATGCCAAGAGCG
AGCAGGAAATCGGCAAGGCTACCGCCAAGTACTTCTTACAGCAACGGAGGCT
CTGGAGGAAGCAGCTCTGAGACAGGACCTGTGGCCGTGGATCCCACACTGCGGA
GAAGAATTGAGCCCCACGAGTCGAGGTGTTCTCGACCCCAGAGAGCTGCGGA
5 AAGAGACATGCCTGCTGTACGAGATCAACTGGGGCGGCAGACACTCTATCTGGC
GGCACACAAGCCAGAACACCAACAAGCACGTGGAAGTGAACCTTATCGAGAAGT
TTACGACCGAGCGGTACTTCTGCCCAACACCAGATGCAGCATCACCTGGTTCT
GAGCTGGTCCCCTGCGGCGAGTGCAGCAGAGCCATCACCGAGTTCTGTCCAGA
TATCCCCACGTGACCCGTTCATCTATATCGCCCGCTGTACCAACACGCCGATC
10 CTAGAAATAGACAGGGCCTGCGCGACCTGATCAGCAGCGGAGTGACAATCCAGA
TCATGACCGAGCAAGAGAGCGGCTACTGCTGGCGGAACCTCGTAACACTACAGCC
CCAGCAACGAAGCCCAGTGGCCTAGATATCCTCACCTGTGGGTCCGACTGTACGT
GCTGGAACGTACTGCATCATCCTGGCCTGCCTCCATGCCTGAACATCCTGAGA
AGAAAGCAGCCTCAGCTGACCTCTTCACAATGCCCTGCAGAGCTGCCACTACC
15 AGAGACTGCCTCCACACATCCTGTGGGCCACCGGACTTAAGGGCTTCTGGATC
TGAAACACCTGGCACAAGTGAGAGAGCGCCACCCCTGAGAGAGCTCTGGCATCATGAA
CTTTTCAAGACCGAGATTACCCCTGGCCAACGGCGAGATCCGGAAGCGGCCCTCTG
ATCGAGACAAACGGCGAAACCGGGAGATCGTGTGGATAAGGGCGGGATTT
GCCACCGTGGAAAGTGTGAGCATGCCCAAGTGAATATCGTAAAAAGACC
20 GAGGTGCAGACAGGCGGCTTCAGCAAAGAGTCTATCCTGCCAAGAGGAACAGC
GATAAGCTGATGCCAGAAAGAAGGACTGGGACCTAAGAAGTACGGCGGCTTC
GACAGCCCCACCGTGGCCTATTCTGTGCTGGTGGTGGCAAAGTGGAAAAGGGC
AAGTCCAAGAAACTGAAGAGTGTGAAAGAGCTGCTGGGGATCACCATCATGGAA
AGAAGCAGCTCGAGAAGAATCCCATCGACTTCTGGAAGCCAAGGGCTACAAA
25 GAAGTAAAAAGGACCTGATCATCAAGCTGCCCTAAGTACTCCCTGTTGAGCTG
GAAAACGGCCCGAAGAGAATGCTGGCCTCTGCCGGCGAACTGCAGAAGGGAAA
CGAACTGGCCCTGCCCTCCAAATATGTGAACCTCCTGTACCTGCCAGCCACTAT
GAGAAGCTGAAGGGCTCCCCGAGGATAATGAGCAGAAACAGCTGTTGTGGAA
CAGCACAAGCACTACCTGGACGGAGATCATCGAGCAGATCAGCGAGTTCTCCAAG
30 AGAGTGTACCTGGCCACGCTAATCTGGACAAAGTGCTGTCCGCCCTACAACAAG
CACCGGGATAAGCCATCAGAGAGCAGGCCGAGAATATCATCCACCTGTTACC
CTGACCAATCTGGGAGCCCTGCCGCTTCAAGTACTTGACACCACCATCGACC
GGAAGAGGTACACCAGCACAAAGAGGTGCTGGACGCCACCCGTATCCACCAAG
GCATCACCGGCCTGTACGAGACACGGATCGACCTGTCTCAGCTGGAGGTGACT
35 CTGGTGGAAAGCGGAGGATCTGGCGGCAGCACCAATCTGAGCGACATCATCGAGA
AAGAGACAGGCAAGCAGCTGGCATCCAAGAGTCCATCCTGATGCTGCTGAAG
AGGTGGAAGAAGTGTGGCAACAAGCCCGAGTCCGACATCCTGGTGACACCCG
CCTACGATGAGAGCAGCACGAGAACGTGATGCTGCTGACCTCTGACGCCCTG
AGTACAAGCCTGGCTCTCGTGTACCCAGGACAGCAACGGCGAGAACAGATCA
40 AGATGCTGAGCGGCGGCTCTGGTGGCTCTGGGGATCTACAAACCTGTCCGATAT
TATTGAGAAAGAACCGGGAAACAGCTCGTGTACAGAGTCTATTCTCATGCTC
CCGGAAGAAGTCGAGGAAGTCATTGGAAACAAGCCTGAGAGCGATATTCTGGTC
CATACAGCCTACGACGAGTCTACCGATGAGAATGTCATGCTCCTCACCAGCGAC
GCTCCGAGTATAAGCCATGGCACTTGTCTCAGGACTCCAATGGGGAAAAC
45 AAAATCAAATGCTCCAAAGAAAAACGCAAGGTGGAGGGAGCTGATAAGCG
CACCGCCGATGGTCCGAGTTGAAAGCCCCAAGAAGAAGAGGAAAGTCTAAC

GGTCATCATCACCATCACCATGAGTTAACCCGCTGATCAGCCTGACTGTGC
CTTCTAGTTGCCAGCCATCTGTTGCCCCTCCCCGTGCCTCCTGACCCCTG
GAAGGTGCCACTCCCCTGTCCTTCCTAATAAAATGAGGAATTGCATCGCATT
5 GTCTGAGTAGGTGTCATTCTATTCTGGGGGTGGGGTGGGCAGGACAGCAAGG
GGGAGGATTGGGAAGACAATAGCAGGCATGCTGGGATGCGGTGGCTATGG
CTTCTGAGGCAGGAAAGAACCGAGCTGGGCTGATACCGTCGACCTCTAGCTAGA
GCTTGGCGTAATCATGGTCATAGCTGTTCCGTGAAATTGTTATCCGCTCACA
ATTCCACACAAACATACGAGCCGAAGCATAAAAGTGTAAAGCCTAGGGTGCCTAA
TGAGTGAGCTAATCACATTAATTGCGTTGCGCTCACTGCCGCTTCCAGTCGG
10 GAAACCTGTCGTGCCAGCTGCATTAATGAATCGGCCAACGCGGGAGAGGCG
GTTTGCCTATTGGGCGCTCTCCGCTCGCTCACTGACTCGCTGCGCTCGGTC
GTTCGGCTGCGCGAGCGGTATCAGCTCACTCAAAGGCGTAATACGGTTATCC
ACAGAATCAGGGGATAACGCAGGAAAGAACATGTGAGCAAAAGGCCAGCAAAA
GGCCAGGAACCGTAAAAGGCCGCTGCTGGCTTTCCATAGGCTCCGCC
15 CCTGACGAGCATCACAAAATCGACGCTCAAGTCAGAGGTGGCGAAACCCGACA
GGACTATAAAGATAACCAGGCCTTCCCCCTGGAAGCTCCCTCGCTCGCTCCTG
TTCCGACCTGCCGCTTACCGGATACCTGTCCGCCCTCTCCCTCGGGAAAGCGTG
GCGCTTCTCATAGCTCACGCTGTAGGTATCTCAGTCGGTGTAGTCGCTC
CAAGCTGGCTGTGACGAACCCCCCTTCAGCCGACCGCTGCGCTTATCC
20 GGTAACTATCGTCTTGAGTCCAACCCGTAAGACACGACTTATGCCACTGGCAG
CAGCCACTGGTAACAGGATTAGCAGAGCGAGGTATGTAGCGGTGCTACAGAGT
TCTTGAAGTGGTGGCCTAACTACGGCTACACTAGAAGAACAGTATTGGTATCTG
CGCTCTGCTGAAGCCAGTTACCTCGGAAAAGAGTTGGTAGCTCTGATCCGGC
AAACAAACCACCGCTGGTAGCGGTGGTTTTGTTGCAAGCAGCAGATTACGC
25 GCAGAAAAAAAGGATCTCAAGAAGATCCTTGATCTTCTACGGGGTCTGACGC
TCAGTGGAACGAAAACTCACGTTAAGGGATTGGTCATGAGATTATCAAAAG
GATCTCACCTAGATCCTTAAATTAAAATGAAGTTAAATCAATCTAAAGT
ATATATGAGTAAACTGGTCTGACAGTTACCAATGCTTAATCAGTGAGGCACCTA
TCTCAGCGATCTGCTATTCGTTCATCCATAGTGCCTGACTCCCCGTGTTGAG
30 ATAACATCGATACGGGAGGGCTTACCATCTGGCCCCAGTGCTGCAATGATACCG
CGAGACCCACGCTCACCGGCTCCAGATTATCAGCAATAAACCAAGCCAGCCGGA
AGGGCCGAGCGCAGAAGTGGCCTGCAACTTATCCGCCCTCCATCCAGTCTATT
ATTGTTGCCGGAAAGCTAGAGTAAGTAGTCGCCAGTTAATAGTTGCGCAACGT
TGTTGCCATTGCTACAGGCATCGTGGTGTACGCTCGTCTGGTATGGCTCAT
35 TCAGCTCCGGTCCCAACGATCAAGGCGAGTTACATGATCCCCATGTTGCAA
AAAAGCGGTTAGCTCCTCGGTCCGATCGTTGTCAGAAGTAAGTGGCCGCA
GTGTTATCACTCATGGTTATGGCAGCAGTCATAATTCTCTACTGTCATGCCATC
CGTAAGATGCTTCTGTGACTGGTGAGTACTCAACCAAGTCATTCTGAGAATAG
TGTATGCGCGACCGAGTTGCTCTGCCGGTCAATACGGATAATACCGCG
40 CACATAGCAGAACTTAAAAGTGTCTCATATTGAAAACGTTCTCGGGCGAA
AACTCTCAAGGATCTACCGCTGTTGAGATCCAGTCGATGTAACCCACTCGTGC
ACCCAACGATCTCAGCATCTTACTTCACTTCACCAGCGTTCTGGGTGAGCAAAA
ACAGGAAGGCAAATGCCGAAAAAAGGAATAAGGGCGACACGGAAATGTTG
AATACTCATACTCTCCTTTCAATATTGAAGCATTATCAGGGTTATTGTC
45 TCATGAGCGGATACATATTGAATGTATTAGAAAATAACAAATAGGGTTCC
GCGCACATTCCCCGAAAAGTGCCACCTGACGTCGACGGATGGAGATCGATC

TCCCGATCCCCTAGGGCGACTCTCAGTACAATCTGCTCTGATGCCGCATAGTTA
 AGCCAGTATCTGCTCCCTGCTTGTGTTGGAGGTCGCTGAGTAGTGCAGCAGCA
 AAATTTAAGCTACAACAAGGCAAGGCTGACCGACAATTGCATGAAGAATCTGC
 TTAGGGTTAGGCCTTGCCTCGCGATGTACGGGCCAGATATACCGCTTG
 5 ACATTGATTATTGACTAGTTATAATAGTAATCAATTACGGGTCATTAGTCAT
 AGCCCATAATATGGAGTCCCGCTTACATAACTACGGTAAATGGCCCGCCTGGCT
 GACCGCCCAACGACCCCCGCCATTGACGTCAATAATGACGTATGTTCCCAGT
 AACGCCAATAGGGACTTCCATTGACGTCAATGGGTGGAGTATTACGGTAAACT
 GCCCAGTGGCAGTACATCAAGTGTATCATATGCCAAGTACGCCCTATTGACG
 10 TCAATGACGGTAAATGGCCCGCCTGGCATTATGCCAGTACATGACCTTATGGGA
 CTTTCCTACTTGGCAGTACATCTACGTATTAGTCATCGTATTACCATGGTGTGCG
 GGTTTGGCAGTACATCAATGGCGTGGATAGCGGTTGACTCACGGGATTCC
 AAGTCTCCACCCATTGACGTCAATGGGAGTTGTTGGCACCAAATCAACGG
 15 GACTTCCAAAATGTCGTAACAACTCCGCCATTGACGCAAATGGCGGTAGG
 CGTGTACGGTGGGAGGTCTATATAAGCAGAGCTGGTTAGTGAACCGTCAGATC
 CGCTAGAGATCCCGGGCCGCTAATACGACTCACTATAGGGAGAGGCCGACC

pHRB-046_GGS-rAP : rAPOBEC1-XTEN ins-site4_N1040-D10A-UGIx2

MDKKYSIGLAIGTNSVGWAVITDEYKVPSSKKFKVLGNTDRHSIKKNLIGALLFDSGE
 20 TAEATRLKRTARRRYTRRKNRICYLQEISNEMAKVDDSSFHRLEESFLVEEDKKHE
 RHPFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEG
 DLNPNDSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSRRLENLIAQLP
 GEKKNGLFGNLIALSLGLTPNFKNFDLAEDAKLQLSKDTYDDLDNLLAQIGDQYA
 DLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPE
 25 KYKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQ
 RTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRF
 AWMTRKSEETITPWNFEVVVDKGASAQSFIERMTNFDKNLPEKVLPKHSLLYEYFT
 VYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECF
 DSVEISGVEDRFNASLGYHDLLKIIKDKDFLDNEENEDILEDIVLTTLFEDREMIIE
 30 RLKTYAHLFDDKVMKQLKRRRTGWRGLRSRKLINGIRDQSGKTILDFLKSDFAN
 RNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIIKKGILQTVKVVDEL
 VKVMGRHKPENIVIEMARENQTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENT
 QLQNEKLYLYLQNGRDMYVDQELDINRLSDYDHDVIPSFLKDDSIDNKVLTRS
 DKNRGKSDNVPSEEVVKKMNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAG
 35 FIKRQLVETRQITKHVAQILD SRMNTKYDENDKLIREVKVITLKS KL VSDFRKDFQFY
 KVREINNYHHAHDAYLNAVVTALIKKYPKLESEFVYGDYKVDVRKMIAKSEQEI
 GKATAKYFFYSNGGSGSSSETGPVAVDPTLRRRIEPHEFEVFFDPRELRKETCLLYEI
 NWGGRHSIWRHTSQNTNKHVEVNIEKFTTERYFCPNTRCSITWFLSWSPCGECSRAI
 TEFLSRYPHVTLIFIYIARLYHHADPRNRQGLRDLISSLGVTIQIMTEQESGYCWRNFVN
 40 YSPSNEAHWPRYPHLWVRLYVLELYCILGLPPCLNIRRKQPQLTFFTIALQSCHYQ
 RLPPPHILWATGLKGSSGSETPGTSESATPESSGIMNFFKTEITLANGEIRKRPLIETNGE
 TGEIVWDKGRDFATVRKVL SMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKD
 WDPKKYGGFDSPTVAYSVLVVAKVEKGKSKKLKSVKELLGITIMERSSFENPKPIDFL
 EAKGYKEVKKDLIILPKYSLFELENGRKMLASAGELQKGNELALPSKYVNFLYLA
 45 SHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKH

5 RDKPIREQAENIIHLFTLTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQSITGLY
 ETRIDSQLGGDSGGSGGSGNSTLSDIIEKETGKQLVIQESILMLPEEVEEVIGNKPES
 DILVHTAYDESTDENVMLLTSDAPEYKPWALVIQDSNGENKIKMLSGGSGGSGGST
 NSLDIIEKETGKQLVIQESILMLPEEVEEVIGNKPESDILVHTAYDESTDENVMLLTS
 5 APEYKPWALVIQDSNGENKIKMLPKKKRKVEGADKRTADGSEFESPKKRKV*

pHRB-047_GGS-rAP: rAPOBEC1-XTEN ins-site5-T1069-D10A-UGIx2

10 ATGGACAAGAACAGTACAGCATCGGCCTGGCCATCGGCACCAACTCTGTGGGCTGG
 GCCGTGATCACCGACAGTACAAGGTGCCAGCAAGAAATTCAAGGTGCTGGGC
 AACACCGACCGGCACAGCATCAAGAACGAAACCTGATCGGAGGCCCTGCTGTTGAC
 AGCGGCAAACAGCCGAGGCCACCCGGCTGAAGAGAACCGCCAGAAGAAGATA
 CACCAGACGGAAGAACCGGATCTGCTATCTGCAAGAGATCTTCAGCAACGAGAT
 15 GGCAAGGTGGACGACAGCTTCTCACAGACTGGAAGAGTCCTCCTGGTGG
 AGAGGATAAGAACGACGAGCGGGCACCCATCTCGGCAACATCGTGGACGAGGT
 GGCCTACCACGAGAACAGTACCCCACCATCTACCAACCTGAGAAAGAAACTGGTGG
 CAGCACCGACAAGGCCGACCTGCGGCTGATCTATCTGGCCCTGGCCCACATGATC
 AAGTCCGGGGCCACTCCTGATCGAGGGCGACCTGAACCCGACAACACAGCGAC
 GTGGACAAGCTGTTATCCAGCTGGTGCAGACCTACAACCAGCTGTTGAGGAA
 AACCCCATCAACGCCAGCGGCGTGGACGCCAAGGCCATCCTGTCTGCCAGACTG
 20 AGCAAGAGCAGACGGCTGGAAAATCTGATCGCCCACTGCTGCCCGAGAACGAA
 GAATGGCCTGTTCGAAACCTGATTGCCCTGAGCCTGGGCTGACCCCCAACCTTC
 AAGAGCAACTTCGACCTGGCCGAGGATGCCAAACTGCAAGCTGAGCAAGGACACC
 TACGACGACGACCTGGACAACCTGCTGGCCCAGATCGCGACCAGTACGCCGAC
 CTGTTCTGGCCGCCAAGAACCTGTCCGACGCCATCCTGCTGAGCGACATCCTGA
 25 GAGTGAACACCGAGATCACCAAGGCCCCCTGAGCGCCTCTATGATCAAGAGAT
 ACGACGAGCACCACCAAGGACCTGACCCCTGCTGAAAGCTCTCGTGGCAGCAGC
 TGCCTGAGAAGTACAAAGAGATTTCTCGACCAGAGCAAGAACGGCTACGCCG
 GCTACATTGACGGCGGAGCCAGGAAGAGTTCTACAAGTTCATCAAGGCCA
 TCCTGGAAAAGATGGACGGCACCGAGGAACCTGCTGTGAAGCTGAACAGAGAG
 30 GACCTGCTGCGGAAGCAGCGGACCTTCGACAACGGCAGCATCCCCACCAGATC
 CACCTGGGAGAGCTGCAGCCATTCTGCGGCCAGGAAGATTTCACCCATTCC
 TGAAGGACAACCAGGGAAAAGATCGAGAAGATCCTGACCTTCGCTGGATGACCAGAAAGA
 GCGAGGAAACCATCACCCCCCTGGAACCTCGAGGAAGTGGTGGACAAGGGCGCTT
 35 CCGCCCAGAGCTTCATCGAGCGGATGACCAACTCGATAAGAACCTGCCAACG
 AGAAGGTGCTGCCAAGCACAGCCTGCTGTACGAGTACTTCACCGTGTATAACG
 AGCTGACCAAAGTGAACATCGACCGAGGGAAATGAGAAAGCCCCGCTTCCTGA
 GCGCGAGCAGAAAAAGGCCATCGTGGACCTGCTGTTCAAGACCAACCGGAAAG
 TGACCGTGAAGCAGCTGAAAGAGGACTACTTCAAGAAAATCGAGTGCTTCGACT
 40 CCGTGGAAAATCTCCGGCGTGGAAAGATCGGTCAACGCCCTGGCACATACC
 ACGATCTGCTGAAAATTATCAAGGACAAGGACTTCCTGGACAATGAGGAAAACG
 AGGACATTCTGGAAGATATCGTGTGACCCCTGACACTGTTGAGGACAGAGAGA
 TGATCGAGGAACGGCTGAAAACCTATGCCACCTGTTGACGACAAAGTGTGATGA
 AGCAGCTGAAGCGGCGGAGATACACCGGCTGGGGCAGGCTGAGCCGGAAGCTG
 45 ATCAACGGCATCCGGACAAGCAGTCCGGCAAGACAATCCTGGATTTCCTGAAG

TCCGACGGCTCGCAACAGAAACTCATGCAGCTGATCCACGACGACAGCCTG
ACCTTAAAGAGGACATCCAGAAAGCCCAGGTGTCCGCCAGGGCGATAGCCTG
CACGAGCACATTGCCAATCTGGCCGGCAGCCCCGCCATTAAGAAGGGCATCCTG
CAGACAGTGAAGGTGGTGGACGAGCTCGTAAAGTGTGATGGGCCGGACAAGCCC
5 GAGAACATCGTATCGAAATGCCAGAGAGAACGACCAAGCAGAAGGGACA
GAAGAACAGCCCGAGAGAACGAGCTGAAAGCGGATCGAAGAGGGCATCAAAGAGCTGG
GCAGCCAGATCCTGAAAGAACACCCCCGTGGAAAACACCCAGCTGCAGAACGAG
AAGCTGTACCTGTACTACCTGCAGAATGGCGGGATATGTACGTGGACCAAGGAA
CTGGACATCAACCGGCTGTCCGACTACGATGTGGACCATATCGTGCCTCAGAGCT
10 TTCTGAAGGACGACTCCATCGACAACAAGGTGCTGACCAGAAGCGACAAGAAC
GGGGCAAGAGCGACAACGTGCCCTCGAAGAGGGCTGTGAAGAACGATGAAGAAC
TACTGGCGGAGCTGCTGAACGCCAACGCTGATTACCCAGAGAAAGTCGACAAT
CTGACCAAGGCCAGAGAGAGGCCCTGAGCGAACTGGATAAGGCCGGCTCATC
AAGAGACAGCTGGTGGAAACCCGGCAGATCACAAAGCACGTGGCACAGATCCTG
15 GACTCCGGATGAACACTAAGTACGACGAGAACGACAAGCTGATCCGGGAAGTG
AAAGTGATCACCCCTGAAGTCCAAGCTGGTGTCCGATTCCGAAGGGATTCCAGT
TTTACAAAGTGCAGGAGATCAACAACCTACCAACGCCACGACGCCTACCTGA
ACGCCGTGGGAACCGCCCTGATCAAAAAGTACCTAAGCTGGAAAGCGAGT
TCGTGTACGGCGACTACAAGGTGTACGACGTGGAGATGATGCCAACAGAGCG
20 AGCAGGAAATCGGCAAGGCTACCGCCAAGTACTTCTTACAGCAACATCATGA
ACTTTCAAGACCGAGATTACCTGGCAACGGCGAGATCCGAAGCGGCCCT
GATCGAGACAAACGGCGAAACCGGAGGCTCTGGAGGAAGCAGCTTGAGACAG
GACCTGTGGCGTGGATCCCACACTGCGGAGAAGAACATTGAGCCCCACGAGTTCG
AGGTGTTCTCGACCCAGAGAGCTGGAAAGAGACATGCCCTGCTGTACGAGA
25 TCAACTGGGGCGGCAGACACTCTATCTGGCGGCACACAAGCCAGAACACCAACA
AGCACGTGGAAGTGAACCTTATCGAGAACGTTACGACCGAGCGGTACTCTGCC
CAACACCAAGATGCAGCATCACCTGGTTCTGAGCTGGTCCCCTGCCAGTGC
AGCAGAGCCATACCGAGTTCTGTCCAGATATCCCCACGTGACCCCTGTTCATCT
ATATGCCCGGCTGTACCAACCCACGCCATCCTAGAAATAGACAGGGCTGCGCG
30 ACCTGATCAGCAGCGGAGTACAATCCAGATCATGACCGAGCAAGAGAGCGGCT
ACTGCTGGCGGAACCTCGTGAACACTACGCCAACGAAAGCCCACGGCCTA
GATATCCTCACCTGTGGGTCCGACTGTACGTGCTGGAACTGTACTGCATCATCCT
GGGCCTGCCCTCATGCCATGAGAACATCCTGAGAAGAACAGCCTCAGCTGACCTTC
TTCACAATGCCCTGCAGAGCTGCCACTACCAGAGACTGCCCTCACACATCCTGT
35 GGGCCACCGGACTTAAGGGCTTTCTGGATCTGAAACACCTGGCACAAGTGAGA
GCGCCACCCCTGAGAGCTCTGGCGGGAGATCGTGTGGATAAGGGCGGGATT
TTGCCACCGTGGAAAGTGTGAGCATGCCCAAGTGAATATCGTAAAAAGA
CCGAGGTGCAGACAGGCCGCTCAGCAAAGAGTCTATCCTGCCAAGAGGAACA
GCGATAAGCTGATGCCAGAAAGAAGGACTGGGACCCATAAGAAGTACGGCGGCT
40 TCGACAGCCCCACCGTGGCTATTCTGTGCTGGTGGCCAAAGTGGAAAAGG
GCAAGTCCAAGAAACTGAAGAGTGTGAAAGAGACTGCTGGGATCACCATCATGG
AAAGAAGCAGCTCGAGAAGAACATCCCATCGACTTCTGGAAGCCAAGGGCTACA
AAGAAGTAAAAAGGACCTGATCATCAAGCTGCCCTGCCGGCAACTGCAGAACGGGA
TGGAAAACGGCCGGAAGAGAACATGCTGCCCTGCCGGCAACTGCAGAACGGGA
45 AACGAACCTGCCCTGCCCTCCAAATATGTGAACCTCCTGTACCTGCCAGCCACT
ATGAGAACGCTGAAGGGCTCCCCGAGGATAATGAGCAGAACAGCTGTTGTGG

AACAGCACAAGCACTACCTGGACGAGATCATCGAGCAGATCAGCGAGTTCTCCA
AGAGAGTGTACCTGGCCGACGCTAATCTGGACAAAGTGTGTCGCCCTACAACA
AGCACCGGGATAAGCCCCTCAGAGAGCAGGCCGAGAAATATCATCCACCTGTTA
5 CCCTGACCAATCTGGAGGCCCTGCCCTCAAGTACTTGACACCACCATCGA
CCGGAAGAGGTACACCAGCACCAAAGAGGTGCTGGACGCCACCTGATCCACCA
GAGCATTACCGGCCTGTACGAGACACGGATCGACCTGTCTCAGCTGGGAGGTGA
CTCTGGTGGAAAGCGGAGGATCTGGCGGCAGCACCAATCTGAGCGACATCATCGA
GAAAGAGACAGGCAAGCAGCTGGTATCCAAGAGTCCATCCTGATGCTGCCTGA
AGAGGTGGAAGAAGTGTACGGCAACAAGCCCCAGTCCGACATCCTGGTGCACAC
10 CGCCTACGATGAGAGCACCGACGAGAACGTGATGCTGCTGACCTCTGACGCC
TGAGTACAAGCCTGGCTCTCGTATCCAGGACAGCAACGGCGAGAACAAAGAT
CAAGATGCTGAGCGGCGCTCTGGTGGCTCTGGCGGATCTACAAACCTGTCCGAT
ATTATTGAGAAAGAACCGGGAAACAGCTCGTATTCAAGAGTCTATTCTCATG
15 CTCCCGGAAGAAGTCGAGGAAGTCATTGAAACAAGCCTGAGAGCGATATTCTG
GTCCATACAGCCTACGACGAGTCTACCGATGAGAATGTCATGCTCCTCACCGCG
ACGCTCCCGAGTATAAGCCATGGGCACTTGTCTTCAGGACTCCAATGGGAAA
ACAAAATCAAATGCTCCAAAGAAAAACGCAAGGTGGAGGGAGCTGATAAG
CGCACCGCCGATGGTCCGAGTTGAAAGCCCCAAGAAGAAGAGGAAAGTCTAA
20 CCGGTATCATCACCATCACCATTGAGTTAAACCCGCTGATCAGCCTCGACTGT
GCCTCTAGTTGCCAGCCATCTGTTGTTGCCCTCCCCGTGCCCTCCTGACCC
TGGAAAGGTGCCACTCCACTGTCCTTCTAATAAAATGAGGAATTGCATCGCA
TTGTCTGAGTAGGTGTCTTCTATTCTGGGGGTGGGGTGGGCAGGACAGCAA
GGGGGAGGATTGGGAAGACAATAGCAGGCATGCTGGGGATGCGGTGGCTCTAT
GGCTCTGAGGCGGAAAGAACCAAGCTGGGCTCGATACCGTCGACCTCTAGCTA
25 GAGCTTGGCGTAATCATGGTCATAGCTGTTCTGTGTGAAATTGTTATCCGCTCA
CAATTCCACACAAACATACGAGCCGGAAGCATAAAGTGTAAAGCCTAGGGTGCCT
AATGAGTGAGCTAACTCACATTAAATTGCGTTGCGCTACTGCCGCTTCCAGTC
GGGAAACCTGCGTGCAGCTGCATTAATGAATCGGCCAACGCGCGGGGAGAGG
CGGTTGCGTATTGGCGCTCTCCGCTCGCTACTGACTCGCTGCGCTCGG
30 TCGTTGGCTCGGGAGCGGTATCAGCTCACTCAAAGGCGTAATACGGTTATC
CACAGAAATCAGGGATAACGCAGGAAAGAACATGTGAGCAAAAGGCCAGCAA
AGGCCAGGAACCGTAAAAGGCCGCTGCTGGCGTTTCCATAGGCTCCGCC
CCCTGACGAGCATCACAAAATCGACGCTCAAGTCAGAGGTGGCAAAACCGAC
AGGACTATAAAGATACCAGGCGTTCCCCCTGGAAGCTCCCTCGTGCCTCTCCT
35 GTTCCGACCTGCCCTTACCGGATACCTGTCCGCCCTTCTCCCTCGGGAAAGCGT
GGCGCTTCTCATAGCTCACGCTGTAGGTATCTCAGTTGGTGTAGGTGTTGCGCT
CCAAGCTGGCTGTGACGAACCCCCCGTTAGCCGACCGCTGCCCTTATC
CGGTAACATCGTCTGAGTCCAACCCGGTAAGACACGACTTATGCCACTGGCA
GCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTATGTAGGCGGTGCTACAGAG
40 TTCTGAAGTGGTGGCTTAACACTACGGCTACACTAGAAGAACAGTATTGGTATCT
GCGCTCTGCTGAAGCCAGTTACCTCGGAAAAAAGAGTTGGTAGCTCTGATCCGG
CAAACAAACCAACCGCTGGTAGCGGTGGTTTTGTTGCAAGCAGCAGATTACG
CGCAGAAAAAAAGGATCTCAAGAAGATCCTTGATCTTCTACGGGGTGTGACG
CTCAGTGGAACGAAAACACGTTAAGGGATTGGTATGAGATTATCAAAAAA
45 GGATCTCACCTAGATCCTTAAATTAAAAATGAAGTTAAATCAATCTAAAG
TATATGAGTAAACTGGTCTGACAGTTACCAATGCTTAATCAGTGAGGCACCT

ATCTCAGCGATCTGTCTATTGTTCATCCATAGTTGCCTGACTCCCCGTCGTGTA
 GATAACTACGATACTGGGAGGGCTTACCATCTGGCCCCAGTGTGCAATGATACC
 GCGAGACCCACGCTCACCGGCTCCAGATTATCAGCAATAAACCCAGCCAGCCGG
 AAGGGCCGAGCGCAGAAGTGGCCTGCAACTTATCCGCCTCCATCCAGTCTATT
 5 AATTGTTGCCGGGAAGCTAGAGTAAGTAGTTGCCAGTTAATAGTTGCGCAACG
 TTGTTGCCATTGCTACAGGCATCGTGGTGTACCGCTCGTCTGGTATGGCTTCA
 TTCAGCTCCGGTCTCCAAACGATCAAGGCGAGTTACATGATCCCCATGTTGTGCA
 AAAAAGCGGTTAGCTCCTCGGTCTCGATCGTTGTAGAAGTAAGTTGGCCGC
 AGTGTATCACTCATGGTTATGGCAGCACTGCATAATTCTTACTGTCATGCCAT
 10 CCGTAAGATGCTTTCTGTGACTGGTGAGTACTCAACCAAGTCATTCTGAGAATA
 GTGTATGCGGCACCGAGTTGCTCTTGGCCGGCGTCAATACGGGATAATACCGCG
 CCACATAGCAGAACTTAAAAGTGCTCATCATTGGAAAACGTTCTCGGGCGA
 AAACTCTCAAGGATCTTACCGCTGTTGAGATCCAGTTGATGTAACCCACTCGT
 CACCCAACTGATCTCAGCATCTTACTTCACCAGCGTTCTGGGTGAGCAA
 15 AACAGGAAGGAAAATGCCGAAAAAAGGAATAAGGGCGACACGGAAATGTT
 GAATACTCATACTCTCCTTTCAATATTATTGAAGCATTATCAGGGTTATTGT
 CTCATGAGCGGATACATATTGAATGTATTAGAAAATAACAAATAGGGTT
 CGCGCACATTCCCCGAAAAGTGCACCTGACGTCGACGGATGGAGATCGAT
 CTCCCGATCCCTAGGGTCGACTCTCAGTACAATCTGCTCTGATGCCGATAGTT
 20 AAGCCAGTATCTGCTCCCTGTTGTTGGAGGTGCTGAGTAGTGCGCGAGC
 AAAATTAAAGCTACAACAAGGCAAGGCTTGACCGACAATTGATGAAGAATCTG
 CTTAGGGTTAGGCCTTGCCTCGCGATGTACGGGCCAGATATACGCGTT
 GACATTGATTATTGACTAGTTATTAAATAGTAATCAATTACGGGGTCATTAGTTCA
 TAGCCCATATGGAGTTCCCGCGTTACATAACTACGGTAAATGGCCCGCTGGC
 25 TGACCGCCCAACGACCCCCGCCATTGACGTCAATAATGACGTATGTTCCATAG
 TAACGCCAATAGGGACTTCCATTGACGTCAATGGGTGGAGTATTACGGTAAAC
 TGCCCACTGGCAGTACATCAAGTGTATCATATGCCAAGTACGCCCCATTGAC
 GTCAATGACGGTAAATGGCCCGCTGGCATTATGCCAGTACATGACCTATGGG
 ACTTCTACTTGGCAGTACATCTACGTATTAGTCATCGCTATTACCATGGTATG
 30 CGGTTTGGCAGTACATCAATGGCGTGGATAGCGGTTGACTCACGGGGATTTC
 CAAGTCTCCACCCATTGACGTCAATGGGAGTTGTTGGCACCAAAATCAACCG
 GGACTTCCAAAATGTCGTAACAACCTCGCCCCATTGACGCAAATGGCGGTAG
 GCGTGTACGGTGGAGGTCTATATAAGCAGAGCTGGTTAGTGAACCGTCAGAT
 CCGCTAGAGATCCCGCCGCTAATACGACTCACTATAGGGAGAGCCGCCACC
 35

pHRB-047_GGS-rAP : rAPOBEC1-XTEN ins-site5-T1069-D10A-UGIx2
 MDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGE
 TAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFHRLEESFLVEEDKKHE
 RHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEG
 40 DLNPNDSDVDKLFQLVQTYNQLFEENPINASGVDAKAILSARLSRRLENLIAQLP
 GEKKNGLFGNLIALSGLTPNFKNFDLAEDAKLQLSKDTYDDLDNLLAQIGDQYA
 DLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPE
 KYKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQ
 RTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNRKIEKILTFRIPYYVGPLARGNSRF
 45 AWMTRKSEETITPWNFEVVDKGASAQSFIERNMTNFDKNLPNEKVLPHSLLYEYFT

5 VYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECF
 DSVEISGVEDRFNASLGYHDLLKIIKDKDFLDNEENEDILEDIVLTTLFEDREMIEE
 RLKTYAHLFDDKVMKQLKRRRYTGWGRRLSRKLINGIRDQSGKTLDFLKSDFGAN
 RNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIIKGILQTVKVDEL
 10 VKVMGRHKPENIVIEMARENQTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENT
 QLQNEKLYLYLQNGRDMYVDQELDINRLSDYDHDIVPQSFQKDDSIDNKVLTRS
 DKNRGKSDNVPSEEVVKMKNYWRQLLNAKLITQRKFQDNLTKAERGGLSELDKAG
 FIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKS梧VSDFRKDFQFY
 KVREINNYHHAHDAYLNAVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEI
 15 GKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGGSGGSSETGPVAVDPTL
 RRRIEPHEFEVFFDPRELRKETCLLYEINWGGRHSIWRHTSQNTNKHVEVNIEKFTT
 ERYFCPNTRCSITWFLSWSPCGECSRAITEFLSRYPHTLFIYIARLYHHADPRNRQGL
 RDLISSLGVTIQIMTEQESGYCWRNFVNYSPSNEAHWPRYRPHLWVRLYVLELYCIILGL
 PPCLNILRRKQPQLTFFTIALQSCHYQRLPPHILWATGLKGSSGSETPGTSESATPESSG
 20 GEIVWDKGGRDFATVRKVLSMPQVNIVKKTETQGGFSKESILPKRNSDKLIARKKD
 WDPKKYGGFDSPTVAYSVLVAKVEKGSKKLKSVKELLGITIMERSSFEKNPIDFL
 EAKGYKEVKKDLIILPKYSLFELENGRKRLMASAGELQKGNELALPSKYVNFLYLA
 SHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKH
 RDKPIREQAENIIHLFTLTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLHQHSITGLY
 25 ETRIDLSQLGGDSGGSGGSGNSTNLSDIIEKETGKQLVIQESILMLPEEVEEVIGNKPE
 DILVHTAYDESTDENVMLLTSDAPEYKPWALVIQDSNGENKIKMLSGGSGGSGST
 NLSDIIEKETGKQLVIQESILMLPEEVEEVIGNKPESDILVHTAYDESTDENVMLLTS
 APEYKPWALVIQDSNGENKIKMLPKKKRKVEGADKRTADGSEFESPKKKRKV*

25

pHRB-048_GGS-rAP: rAPOBEC1-XTEN ins-site6-G1247-D10A-UGIx2

ATGGACAAGAAGTACAGCATCGGCCTGGCCATCGGCACCAACTCTGTGGGCTGG
 30 GCCGTGATCACCGACGAGTACAAGGTGCCAGCAAGAAATTCAAGGTGCTGGC
 AACACCGACCGGCACAGCATCAAGAAGAACCTGATCGGAGGCCCTGCTGTCAC
 AGCGCGAAACAGCCAGGCCACCCGGCTGAAGAGAACCGCCAGAAGAAGATA
 CACCAAGACCGAAGAACCGGATCTGCTATCTGCAAGAGATCTTCAGCAACGAGAT
 GGCAAGGTGGACGACAGCTTCTCCACAGACTGGAAGAGTCCTCCTGGTGG
 AGAGGATAAGAACGACGAGCGGCACCCATCTCGAACATCGTGGACGAGGT
 GGCCTACCACGAGAAGTACCCACCATCTACCACCTGAGAAAGAAACTGGTGG
 35 CAGCACCGACAAGGCCACCTGCGGCTGATCTATCTGGCCCTGGCCCACATGATC
 AAGTTCCGGGGCCACTTCCTGATCGAGGGCGACCTGAACCCCGACAACAGCGAC
 GTGGACAAGCTGTTATCCAGCTGGTGCAGACCTACAACCGAGCTGTTGAGGAA
 AACCCCATCAACGCCAGCGGCGTGGACGCCAGGCCATCCTGTCTGCCAGACTG
 AGCAAGAGCAGACGGCTGGAAAATCTGATGCCAGCTGCCAGCTGCCAGAGAA
 40 GAATGGCCTGTCGGAAACCTGATTGCCCTGAGCCTGGGCTGACCCCCAACTTC
 AAGAGCAACTTCGACCTGGCCAGGGATGCCAAACTGCAGCTGAGCAAGGACACC
 TACGACGACGACCTGGACAACCTGCTGCCAGATCGCGACCAGTACGCCGAC
 CTGTTCTGGCCGCCAAGAACCTGTCCGACGCCATCCTGCTGAGCGACATCCTGA
 GAGTGAACACCGAGATACCAAGGCCCCCTGAGCGCCTATGATCAAGAGAT

ACGACGAGCACCAACCAGGACCTGACCTGCTGAAAGCTCTCGTCGGCAGCAGC
TGCCTGAGAAGTACAAAGAGATTTCTCGACCAGAGCAAGAACGGCTACGCCG
GCTACATTGACGGCGGAGCCAGCCAGGAAGAGTTCTACAAGTTCATCAAGGCCA
TCCTGGAAAAGATGGACGGCACCGAGGAAGTCTGCTGAAGCTGAACAGAGAG
5 GACCTGCTCGGAAAGCAGCGGACCTCGACAACGGCAGCATCCCCACCAGATC
CACCTGGGAGAGCTGCACGCCATTCTCGGGCGGCAGGAAGATTTACCCATTCC
TGAAGGACAACCAGGGAAAAGATCGAGAAGATCCTGACCTCCGATCCCTACT
ACGTGGGCCCTCTGGCCAGGGAAACAGCAGATTGCTGGATGACCAGAAAGA
GCGAGGAAACCATCACCCCCCTGGAACCTCGAGGAAGTGGTGGACAAGGGCGCT
10 CCGCCCAGAGCTTCATCGAGCGGATGACCAACTTCGATAAGAACCTGCCAACG
AGAAGGTGCTGCCAACGACAGCCTGCTGTACGAGTACTTCACCGTGTATAACG
AGCTGACCAAAGTGAAAATACGTGACCGAGGGAAATGAGAAAGCCGCCCTCCTGA
GCGGCGAGCAGAAAAAGGCCATCGTGGACCTGCTGTTCAAGACCAACCGGAAAG
15 TGACCGTGAAGCAGCTGAAAGAGGACTACTTCAAGAAAATCGAGTGCTTCGACT
CCGTGGAAATCTCCGGCGTGGAAAGATCGGTTCAACGCCCTGGCACATACC
ACGATCTGCTGAAAATTATCAAGGACAAGGACTTCCTGGACAATGAGGAAAACG
AGGACATTCTGGAAGATATCGTGTGACCTGACACTGTTGAGGACAGAGAGA
TGATCGAGGAACGGCTGAAAACCTATGCCACCTGTTCGACGACAAAGTGTGA
AGCAGCTGAAGCGGCGGAGATACACCGGCTGGGCAGGCTGAGCCGGAAGCTG
20 ATCAACGGCATCCGGACAAGCAGTCCGGCAAGACAATCCTGGATTCTGAAG
TCCGACGGCTTCGCAACAGAAACTTCATGCAAGCTGATCCACGACGACAGCCTG
ACCTTAAAGAGGACATCCAGAAAGCCCAGGTGTCCGGCCAGGGCGATAGCCTG
CACGAGCACATTGCCAATCTGGCCGGCAGCCCCGCCATTAAAGAAGGGCATCCTG
CAGACAGTGAAGGTGGTGGACGAGCTCGTAAAGTGTGGACAGGAA
25 GAGAACATCGTATCGAAATGCCAGAGAGAACCAAGACACCAGAACAGGACA
GAAGAACAGCCCGAGAGAGAACATGAAGCGGATCGAAGAGGGCATCAAAGAGCTGG
GCAGCCAGATCCTGAAAGAACACCCCGTGGAAAACACCCAGCTGCAGAACGAG
AAGCTGTACCTGTACTACCTGCAGAATGGCGGGATATGTACGTGGACCAAGGAA
CTGGACATCAACCGGCTGTCCGACTACGATGTGGACCATATCGCCTCAGAGCT
30 TTCTGAAGGACGACTCCATCGACAACAAGGTGCTGACCAAGCGACAAGAAC
GGGCAGAGCGACAACGTGCCCTCGAACAGAGGTGCTGAAGAACAGATGAAGAAC
TAATGGCGGAGCTGCTGAACGCCAACGCTGATTACCCAGAGAAAGTCGACAAT
CTGACCAAGGCCAGAGAGAGGCGCTGAGCGAACTGGATAAGGCCGGCTCATC
AAGAGACAGCTGGTGGAAACCCGGCAGATCACAAAGCACGTGGCACAGATCCTG
35 GACTCCGGATGAACACTAAGTACGACGAGAACATGACAAGCTGATCCGGAAAGTG
AAAGTGTACCCCTGAAGTCCAAGCTGGTGTCCGATTCCGGAAAGGATTCCAGT
TTTACAAAGTGCAGCTGAGATCAACAACTACCAACGCCACGACGCCCTACCTGA
ACGCCGCTGTGGAACCGCCCTGATCAAAAGTACCTAACGCTGGAAAGCGAGT
TCGTGTACGGCGACTACAAGGTGTACGACGTGGAAAGATGATCGCCAAGAGCG
40 AGCAGGAAATCGGCAAGGCTACGCCAACAGTACTTCTTACAGCAACATCATGA
ACTTTTCAAGACCGAGATTACCCCTGGCAACGGCGAGATCCGGAAAGCGGCCCT
GATCGAGACAAACGGCGAACCGGGAGATCGTGTGGATAAGGGCCGGGATT
TTGCCACCGTGGAAAGTGTGAGCATGCCCAAGTGAATATCGTAAAAAGA
CCGAGGTGCAGACAGGCCGCTCAGCAAAGAGTCTATCCTGCCAAGAGGAACA
45 GCGATAAGCTGATGCCAGAAAGAAGGACTGGGACCTAAGAAGTACGGCGGCT
TCGACAGCCCCACCGTGGCTATTCTGTGCTGGTGGCAAAGTGGAAAAGG

GCAAGTCCAAGAAACTGAAGAGTGTGAAAGAGCTGCTGGGATCACCATCATGG
AAAGAAGCAGCTCGAGAAGAATCCCCTCGACTTCTGGAAGCCAAGGGCTACA
AAGAAGTAAAAAAGGACCTGATCATCAAGCTGCCTAAGTACTCCCTGTCGAGC
TGGAAAACGGCCGGAAGAGAATGCTGCCCTCTGCCGGAACTGCAGAAGGGA
5 AACGAACCTGCCCTGCCCTCCAAATATGTGAACCTCCTGTACCTGCCAGCCACT
ATGAGAAGCTGAAGGGCGGAGGCTCTGGAGGAAGCAGCTCTGAGACAGGACCT
GTGCCGTGGATCCCACACTGCGGAGAAGAATTGAGCCCCACGAGTCGAGGTG
TTCTCGACCCAGAGAGCTGCGGAAAGAGACATGCCTGCTGTACGAGATCAAC
10 TGGGGCGGCAGACACTCTATCTGGCGGCACACAAGCCAGAACACCAACAAGCAC
GTGGAAGTGAACCTTATCGAGAAGTTACGACCGAGCGGTACTCTGCCCAACA
CCAGATGCAGCATCACCTGGTTCTGAGCTGGCCCTTGCGCGAGTCAGCAG
AGCCATCACCGAGTTCTGTCCAGATATCCCCACGTGACCCCTGTTCATCTATAC
GCCCGGCTGTACCACCACGCCATCCTAGAAATAGACAGGGCCTGCGCGACCTG
15 ATCAGCAGCGGAGTGACAATCCAGATCATGACCGAGCAAGAGAGCGGCTACTGC
TGGCGGAACCTCGTGAACTACAGCCCCAGCAACGAAGCCCCTGGCCTAGATAT
CCTCACCTGTGGTCCGACTGTACGTGCTGGAACACTGTACTGCATCATCCTGGGCC
TGCCTCCATGCCGAACATCCTGAGAAGAAAGCAGCCTCAGCTGACCTCTTCAC
AATGCCCTGCAGAGCTGCCACTACCAAGAGACTGCCCTCACACATCCTGTGGGCC
20 ACCGGACTTAAGGGCTCTCTGGATCTGAAACACCTGGCACAAGTGAGAGAGCGCC
ACCCCTGAGAGCTCTGGCTCCCCGAGGATAATGAGCAGAAACAGCTGTTGTG
GAACAGCACAAGCACTACCTGGACGAGATCATGAGCAGATCAGCGAGTTCTCC
AAGAGAGTGATCCTGGCCACGCTAACCTGGACAAAGTGCTGTCGCCCTACAAAC
AAGCACCAGGGATAAGCCCACAGAGAGCAGGCCGAGAATATCATCCACCTGTT
25 ACCCTGACCAATCTGGAGCCCCCTGCCCTCAAGTACTTGACACACCACATCG
ACCGGAAGAGGTACACCAGCACCAAAAGAGGTGCTGGACGCCACCCGATCCACC
AGAGCATCACCGGCCTGTACGAGACACGGATCGACCTGTCTCAGCTGGGAGGTG
ACTCTGGTGGAAAGCGGAGGATCTGGCGGCAGCACCAATCTGAGCGACATCATCG
AGAAAGAGACAGGCAAGCAGCTGGTACCCAGAGACTCCATCCTGATGCTGCC
30 AAGAGGTGGAAGAAGTGATCGGCAACAAAGCCCAGTCCGACATCCTGGTGCACA
CCGCCTACGATGAGAGCACCAGCAGAGAACGTGATGCTGCTGACCTCTGACGCC
CTGAGTACAAGCCTGGCTCTCGTACCGATCCAGGACAGCAACGGCGAGAACAGA
TCAAGATGCTGAGCGGGCTCTGGTGGCTCTGGCGGATCTACAAACCTGTCCGA
TATTATTGAGAAAGAAACGGGAAACAGCTCGTATTCAAGAGTCTATTCTCATG
35 CTCCCGGAAGAAGTCGAGGAAGTCATTGGAAACAGCCTGAGAGCGATATTCTG
GTCCATACAGCCTACGACGAGTCTACCGATGAGAATGTCATGCTCCTCACAGCG
ACGCTCCCGAGTATAAGCCATGGCACTTGTACCGACTCCATGAGGACTCCAATGGGGAAA
ACAAAATCAAATGCTCCAAAGAAAAACGCAAGGTGGAGGGAGCTGATAAG
40 CGCACCGCCGATGGTCCGAGTTGAAAGCCCCAAGAAGAAGAGGAAAGTCTAA
CCGGTCATCATCACCATCACCATTGAGTTAAACCCGCTGATCAGCCTGACTGT
GCCTCTAGTTGCCAGCCATCTGTTGCTTGCCTCCCTGGCTGCCCTCTGACCC
TGGAAAGGTGCCACTCCACTGTCCTTCTTAATAAAATGAGGAAATTGCATCGCA
TTGTCTGAGTAGGTGTCATTCTATTCTGGGGGGTGGGGTGGGGCAGGACAGCAA
GGGGGAGGATTGGGAAGACAATAGCAGGCATGCTGGGGATGCGGTGGGCTCTAT
GGCTTCTGAGGCAGGAAGAACCAAGCAGCTGGGGCTCGATACCGTCGACCTCTAGCTA
45 GAGCTTGGCGTAATCATGGTCATAGCTGTTCTGTGAAATTGTTATCCGCTCA
CAATTCCACACAAACATACGAGCCGGAAGCATAAAGTGTAAAGCCTAGGGTGCCT

AATGAGTGAGCTAACTCACATTAATTGCGTTGCGCTCACTGCCGCTTCCAGTC
GGGAAACCTGTCGTGCCAGCTGCATTAATGAATCGGCCAACGCGCGGGGAGAGG
CGGTTGCGTATTGGGCGCTCTCCGCTCGCTCACTGACTCGCTGCGCTCGG
TCGTTCGGCTGCGCGAGCGGTATCAGCTCACTCAAAGGCGGTAAACCGTTATC
5 CACAGAACATCAGGGGATAACGCAGGAAAGAACATGTGAGCAAAAGGCCAGCAA
AGGCCAGGAACCGTAAAAGGCCGTTGCTGGCGTTTCCATAGGCTCCGCC
CCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAAACCCGAC
AGGACTATAAAGATACCAGGCGTTCCCCCTGGAAGCTCCCTCGTGCCTCCT
GTTCCGACCCCTGCCGCTTACCGGATACCTGTCCGCCTTCTCCCTCGGGAAAGCGT
10 GGCGCTTCTCATAGCTCACGCTGTAGGTATCTCAGTTGGTGTAGGTGTTGCT
CCAAGCTGGGCTGTGACGAACCCCCCGTCAGCCGACCCTGCGCTTATC
CGGTAACTATCGTCTTGAGTCCAACCCCGTAAGACACGACTTATGCCACTGGCA
GCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTATGTAGGCGGTGCTACAGAG
TTCTGAAGTGGTGGCCTAACTACGGCTACACTAGAAGAACAGTATTGGTATCT
15 GCGCTCTGCTGAAGCCAGTTACCTCGAAAAAGAGTTGGTAGCTCTGATCCGG
CAAACAAACCACCGCTGGTAGCGGTGGTTTTGTTGCAAGCAGCAGATTACG
CGCAGAAAAAAAGGATCTCAAGAACGATCCTTGATCTTCTACGGGGCTGACG
CTCAGTGGAACGAAAACACGTTAACGGGATTGGTATGAGATTATCAAAAAA
GGATCTCACCTAGATCCTTAAATTAAATGAAGTTAAATCAATCTAAAG
20 TATATATGAGTAAACTGGTCTGACAGTTACCAATGCTTAATCAGTGAGGCACCT
ATCTCAGCGATCTGTCTATTGTTGTCATCCATAGTTGCCCTGACTCCCCGTCGTGTA
GATAACTACGATACGGGAGGGCTTACCATCTGGCCCCAGTGTGCAATGATACC
GCGAGACCCACGCTCACCGGCTCCAGATTATCAGCAATAAACCAAGCCAGCCGG
AAGGGCCGAGCGCAGAAGTGGCCTGCAACTTATCCGCCTCCATCCAGTCTATT
25 AATTGTTGCCGGGAAGCTAGAGTAAGTAGTTGCTCCAGTTAATAGTTGCGCAACG
TTGTTGCCATTGCTACAGGCATCGTGGTGTACGCTCGTCTGGTATGGCTTC
TTCAGCTCCGGTCCCAACGATCAAGGCAGTTACATGATCCCCATGTTGCA
AAAAAGCGGTTAGCTCCTCGGTCCGATCGTTGCAAGAGTAAGTGGCCGC
AGTGTATCACTCATGGTTATGGCAGCACTGCATAATTCTTACTGTATGCCAT
30 CCGTAAGATGCTTTCTGTGACTGGTAGTACTCAACCAAGTCATTCTGAGAATA
GTGTATGCGCGACCGAGTTGCTCTTGGCCGGGTCAATACGGGATAATACCGCG
CCACATAGCAGAACTTAAAAGTGCTCATCATTGGAAAACGTTCTCGGGGCGA
AAACTCTCAAGGATCTTACCGCTGTTGAGATCCAGTTGATGTAACCCACTCGT
CACCCAACTGATCTCAGCATCTTACTTACCGTCCACAGCGTTCTGGGTGAGCAA
35 AACAGGAAGGCAAATGCCGAAAAAAGGAATAAGGGCGACACGGAAATGTT
GAATACTCATACTCTCCTTTCAATATTATTGAAGCATTATCAGGGTTATTGT
CTCATGAGCGGATACATATTGAATGTATTAGAAAATAACAAATAGGGGTT
CGCGCACATTCCCCGAAAAGTGCACCTGACGTCGACGGATCGGGAGATCGAT
CTCCCGATCCCTAGGGTCGACTCTCAGTACAATCTGCTCTGATGCCGATAGTT
40 AAGCCAGTATCTGCTCCCTGCTTGTGTTGGAGGGCGCTGAGTAGTGCAGGAGC
AAAATTAAAGCTACAACAAGGCAAGGCTTGACCGACAATTGCAAGAACATCG
CTTAGGGTTAGCGTTTGCCTGCGATGTACGGGCCAGATACGCGTT
GACATTGATTATTGACTAGTTATTAAATAGTAATCAATTACGGGGTCATTAGTTCA
TAGCCCATATATGGAGTTCCCGCGTTACATAACTACGGTAAATGGCCCGCTGGC
45 TGACCGCCCAACGACCCCCGCCATTGACGTCAATAATGACGTATGTTCCCATAG
TAACGCCAATAGGACTTCCATTGACGTCAATGGGTGGAGTATTACGGTAAAC

TGCCCACTTGGCAGTACATCAAGTGTATCATATGCCAAGTACGCCCTATTGAC
 GTCAATGACGGTAAATGGCCCGCCTGGCATTATGCCAGTACATGACCTATGGG
 ACTTTCTACTTGGCAGTACATCTACGTATTAGTCATCGCTATTACCATGGTATG
 CGGTTTGGCAGTACATCAATGGCGTGGATAGCGGTTGACTCACGGGGATTTC
 5 CAAGTCTCCACCCATTGACGTCAATGGGAGTTGTTGGCACCAAAATCAACG
 GGACTTTCCAAAATGTCGTAACAACACTCCGCCCCATTGACGCAAATGGCGGTAG
 GCGTGTACGGTGGGAGGTCTATATAAGCAGAGCTGGTTAGTGAACCGTCAGAT
 CCGCTAGAGATCCCGGCCGCTAATACGACTCACTATAGGGAGAGCCGCCACC

10 pHRB-048_GGS-rAP : rAPOBEC1-XTEN ins-site6-G1247-D10A-UGIx2

MDKKYSIGLAIGTNSVGWAVITDEYKVPSSKKFKVLGNTDRHSIKKNLIGALLFDSGE
 TAEATRLKRTARRRYTRRKNRICYLQEISNEMAKVDDSFHRLEESFLVEEDKKHE
 RHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEG
 DLNPNDSDVDKLFQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLP
 15 GEKKNGLFGNLIALSGLTPNFKSNFDLAEDAKLQLSKDTYDDLDNLLAQIGDQYA
 DLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKYDEHHQDLTLLKALVRQQLPE
 KYKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQ
 RTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNRKIEKILTFRIPYYVGPLARGNSRF
 AWMTRKSEETITPWNFEVVVDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFT
 20 VYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLKTNRKVTVKQLKEDYFKKIECF
 DSVEISGVEDRFNASLGYHDLLKIIKDKDFLDNEENEDILEDIVLTTLFEDREMIEE
 RLKTYAHLFDDKVMKQLKRRYTGWGRLSRKLINGIRDQSGKTILDFLKSDGFAN
 RNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIIKGILQTVKVVDEL
 VKVMGRHKPENIVIEMARENQTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENT
 25 QLQNEKLYLYLQNGRDMYVDQELDINRLSDYDVEDHIVPQSFLKDDSIDNKVLTRS
 DKNRGKSDNPVSEEVVKMKNYWRQLLNAKLITQRKFNDLTKAERGGLSELDKAG
 FIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSCLVSDFRKDFQFY
 KVREINNYHHAHDAYLNAVVTALIKKYPKLESEFVYGDYKVDVRKMIAKSEQEI
 GKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVL
 30 SMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDPKYGGFDSPVTAYSVL
 VVAKVEKGSKKLKSVKELLGITIMERSFEKNPIDFLEAKGYKEVKKDLIILPKYS
 LFELENGRKMLASAGELQKGNEALPSKYVNFLYASHYEKLKGGSGGSSSETG
 PVAVDPTLRRRIEPHEFEVFFDPRELRKETCLLYEINWGGRHSIWRHTSQNTNKHVEV
 NFIEKFTTERYFCPNTRCSITWFLSWSPCGECSRAITEFLSYPHVTLFIYIARLYHHAD
 35 PRNRQGLRDLISSLGVTIQIMTEQESGYCWRNFVNYSPSNEAHWPRYPHLWVRLYVLE
 LYCIILGLPPCLNILRRKQPQLTFTTIALQSCHYQRLPPHILWATGLKGSSGSETPGTSE
 SATPESSGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKH
 RDKPIREQAENIIHLFTLTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQSITGLY
 ETRIDSQLGGDSGGSGGGSTNLSDIIKEKGKQLVIQESILMLPEEVEEVIGNKPE
 40 DILVHTAYDESTDENVMLLSDAPEYKPWALVIQDSNGENIKMLSGGSGGSGGST
 NLSDIIEKETGKQLVIQESILMLPEEVEEVIGNKPESDILVHTAYDESTDENVMLLSD
 APEYKPWALVIQDSNGENIKMLPKKKRKVEGADKRTADGSEFESPKKKRKV*

Example 5: ABE Internal Fusion Base Editors

To assess the base editing in cells, HEK293T cells were co-transfected with 100 ng of a sgRNA-encoding plasmid and a base editor encoding plasmid using Lipofectamine 2000 (Life Technologies). After 4 days, genomic DNA was isolated, and the targeted genomic

5 region was amplified by PCR. Sequencing adaptors were added to generate a library of PCR products. The prepared PCR library containing the base-edited region was sequenced on an Illumina MiSeq.

IBE003, IBE008, IBE007, IBE002, IBE001, IBE005, IBE006, IBE004, IBE021, IBE031, IBE020, IBE036, IBE035, IBE028, and IBE009 was used to determine the percent 10 editing in two different target sequences, HEK2 (GAACACAAAGCATAGACTGC) and T39 (GGACAGCTTCTAGACAG) (FIG. 20C-Q).

Example 6: Internal Fusion Base Editor Efficiency.

HEK293T were co-transfected with 100 ng of a sgRNA-encoding plasmid and a base editor encoding plasmid using Lipofectamine 2000 (Life Technologies) After 4 days, genomic DNA 15 was isolated, and the targeted genomic region was amplified by PCR. Sequencing adaptors were added to generate a library of PCR products. The prepared PCR library containing the base-edited region was sequenced on an Illumina MiSeq. Target sites used for this experiment are shown in Table 11 below.

Table 11:

Name	Sequence
Target 1	GGCCTCCGTATCACTCTCTGACTGGGGT
Target 2	GTAAGTGAACCCCTGCAATCAATGGGAT
Target 3	GCCACAGACTTTCCATTGCAAGGAGT
Target 4	GCGAAAGGCTCGCGCGAAGGAAGGAAT
Target 5	GCCTGGCAGATGAGAACCAAGGAGGAAT
Target 6	GTATTACTATTATTATCTGAGATGGGGT
Target 7	GCCACAGTGGGAGGGGACATGGGGAT
Target 8	GCCCTGATCTGCACTGAACAGAGGGT
Target 9	GCCTCAAGTCTGGTTATTAGGGGGAT
Target 10	GGTCGACCCCTGGTATCCATGGGGAT
Target 11	GAAAGAGACAGAGAACGGGCAGGGGGT
Target 12	GAGTGGGAACCTTCTGATGCCATGGAAT
Target 13	GTGGGACTGATCCCTTAATGTGTGGGGT
Target 14	GCCCAGCTCCAGCCTCTGATGAGGGGT
Target 15	GAAGGCTTACTGTATTACAGAACGGGT
Target 16	GGAGCCAGAGACCAGTGGGCAGGGGGT
Target 17	GCTTCCCTAGCTGTAAAAGAAAGGGAT

Target 18	GAGAAGAAACCAGGGAACAGGTAGGAGT
Target 19	GGCCTCCGTATCACTCTGACTGGGAT
Target 20	GATGTGTCTACTGTTACTTACAAGGAAT
Target 21	GACCAGGTCAAGAACATGTTGGAAT
Target 22	GCACCCAGGGTTCTGCAGAGCAGGGAT
Target 23	GCCCAGCAATTCACTGTGAAGAGGGAT
Target 24	GACCAAAACGAGGGACATTAGGGGAT
Target 25	GCTCCTCTCACCCATTGACTCAGGGAT
Target 26	GACTCAGCGCCCTGCCGGGCCTGGGAT
Target 27	GGTCGTAGCCAGTCCGAACCCGGAGT
Target 28	GCATTCCACTCCGTCCGCCTCCGGAGT
Target 29	GGGTACCTGAGTGGGGTCATTGGGGT

Sequencing reads were aligned to the original target sequence and the percent editing was measured. Referring to FIG. 22A, efficiency of internal fusions compared to ABE7.10 at 29 genomic targets was examined. Editing efficiency was normalized to ABE7.10 editing at the best position (position 14, with 20 being furthest from the PAM and 1 being closest to the PAM in this graph). The maximum editing efficiency of the internal base editors across all sites and is normalized to the maximum editing efficiency of ABE7.10 (FIG. 22B). Effective base editing window based on max editing efficiency normalized to ABE7.10 indicates altered max editing windows in internal fusion A base editors compared to ABE7.10 (FIG. 22C, D).

Example 7: Evaluation of Spurious Deamination of Internal Fusion Base Editors

Base editors with guide were transfected together with SaCas9 and guide targeting different loci. SaCas9 generates ssDNA which is subject to deamination by spurious base editing (spurious = not guide-targeted). The SaCas9 target loci was sequenced to measure spurious deamination. Trans-editing was normalized to ABE7.10 trans-editing at each site. Spurious deamination across 29 different IBE target was measured by trans-editing assay normalized to ABE7.10 trans-editing sites at each site for comparison. Total trans-editing was summed per site before normalizing to ABE7.10 trans-editing at that site. The tested internal base editors (IBE002, IBE004, IBE005, IBE006, IBE008, IBE009, IBE020) showed a reduced average spurious deamination compared to ABE7.10.

Example 8: Evaluation of Base editing of internal fusion A Base Editors

Base editing using ABE internal fusions was evaluated using HEK293T cells as described in Example 6 using high-throughput sequencing. In this assay, guides were designed to target 6 different sites HEK4, GGCACTGCGGCTGGAGGTGG (FIG. 24A);

FANCF, GTAGGGCCTCGCGCACCTCA (FIG. 24B); HEK-3,
GGCCCAGACTGAGCACGTGA (FIG. 24C); HEK2-YY,
GGAACCTTGAATAAGAATGGA (FIG. 24D); EMX1,
GAGTCCGAGCAGAAGAAGAA (FIG. 24E), and HEK2,
5 GAACACAAAGCATAGACTGC (FIG. 24F).

10,000 – 20,000 HEK293T cells were seeded per well. 75 ng of sgRNA and 175 ng of base editor or Cas9 plasmid was transfected with 1 μ l of Lipofectamine 2000. Four days after transfection, genomic DNA was isolated, and the target site was PCR amplified and sequenced on an Illumina MiSeq. Percent editing was calculated by the percent of 40,000
10 Illumina sequencing reads that have an A mutations to a G at a noted position. Internal fusion adenosine base editors exhibit different max editing window and reduced off-target editing compared to ABE7.10. (FIG.s 24A-F).

Example 9: Evaluation of Base editing of internal fusion C Base Editors.

Base editing using CBE internal fusions was evaluated using HEK293T cells as
15 described in Example 6 using high-throughput sequencing. In this assay the following CBE base editors were used, BE4, HR001, HR002, HR003, HR004, HR005. In this assay, guides were designed to target 6 different sites HEK4, GGCACTGCGGCTGGAGGTGG (FIG. 25A); FANCF, GTAGGGCCTCGCGCACCTCA (FIG. 25B); HEK-3,
GGCCCAGACTGAGCACGTGA (FIG. 25C); HEK2-YY,
20 GGAACCTTGAATAAGAATGGA (FIG. 25D); EMX1,
GAGTCCGAGCAGAAGAAGAA (FIG. 25E), and HEK2,
GAACACAAAGCATAGACTGC (FIG. 25F). Percent editing was calculated by the percent of 40,000 Illumina sequencing reads that have an C mutations to a T at a noted position.
Internal fusion cytidine base editors exhibit different max editing window and reduced off-
25 target editing compared to ABE7.10. (FIG.s 24A-F).

The following numbered additional embodiments encompassing the methods and compositions of the base editor systems and uses are envisioned herein:

1. A fusion protein comprising a deaminase flanked by a N- terminal fragment and a C-
30 terminal fragment of a Cas9 polypeptide, wherein the deaminase of the fusion protein deaminates a target nucleobase in a target polynucleotide sequence, wherein the N terminal fragment or the C terminal fragment binds the target polynucleotide

sequence, and wherein the C-terminus of the N terminal fragment or the N-terminus of the C terminal fragment comprises a part of a flexible loop of the Cas9 polypeptide.

2. The fusion protein of embodiment 1, wherein the target nucleobase is deaminated with lower off-target deamination as compared to an end terminus fusion protein comprising the deaminase fused to a N terminus or a C terminus of SEQ ID NO: 1.
- 5 3. The fusion protein of embodiment 1 or 2, wherein the target nucleobase is 1-20 nucleobases away from a Protospacer Adjacent Motif (PAM) sequence in the target polynucleotide sequence.
- 10 4. The fusion protein of embodiment 3, wherein the target nucleobase is 2-12 nucleobases upstream of the PAM sequence.
5. The fusion protein of any one of embodiments 1-4, wherein the C-terminus of the N terminal fragment or the N-terminus of the C terminal fragment comprises an amino acid in proximity to the target nucleobase when the fusion protein deaminates the target nucleobase.
- 15 6. The fusion protein of any one of embodiments 1-4, wherein the C-terminus of the N terminal fragment or the N-terminus of the C terminal fragment comprises a part of an alpha-helix structure of the Cas9 polypeptide.
7. The fusion protein of any one of embodiments 1-4, wherein the N-terminal fragment or the C-terminal fragment comprises a DNA binding domain.
- 20 8. The fusion protein of any one of embodiments 1-4, wherein the N-terminal fragment or the C-terminal fragment comprises a RuvC domain.
9. The fusion protein of any one of embodiments 1-4, wherein neither of the N-terminal fragment and the C-terminal fragment comprises a HNH domain.
10. The fusion protein of any one of embodiments 1-4, wherein the flexible loop of the Cas9 polypeptide comprises an amino acid at a position between 530-537, 569-579, 686-691, 768-793, 943-947, 1002-1040, 1052-1077, 1232-1248, or 1298-1300 as numbered in SEQ ID NO: 1 or corresponding positions thereof.
- 25 11. The fusion protein of embodiment 10, wherein the N-terminal fragment starts at the N-terminus of the Cas9 polypeptide and is a contiguous sequence that terminates at a position between 1-529, 538-568, 580-685, 692-942, 948-1001, 1026-1051, 1078-1231, or 1248-1297 as numbered in SEQ ID NO: 1 or corresponding positions thereof.
- 30 12. The fusion protein of embodiment 10, wherein the C-terminal fragment starts at a position between 1301-1368, 1248-1297, 1078-1231, 1026-1051, 948-1001, 692-942,

580-685, or 538-568 as numbered in SEQ ID NO: 1 and is a contiguous sequence that terminates at the C-terminus of the Cas9 polypeptide.

13. The fusion protein of embodiment 10, wherein the C-terminal amino acid of the N-terminal fragment is amino acid 1016, 1023, 1029, 1040, 1069, or 1247 as numbered in SEQ ID NO: 1 or a corresponding amino acid thereof.
14. The fusion protein of embodiment 10, wherein the N-terminal amino acid of the C-terminal fragment is amino acid 1017, 1024, 1030, 1041, 1070, 1248 as numbered in SEQ ID NO: 1 or a corresponding amino acid thereof.
15. The fusion protein of any one of embodiments 11-14, wherein the deaminase is a cytidine deaminase.
16. The fusion protein of embodiment 10, wherein the N-terminal fragment starts at the N-terminus of the Cas9 polypeptide and is a contiguous sequence that terminates at a position between 530-537, 569-579, 686-691, 768-793, 943-947, 1002-1040, 1052-1077, 1232-1248, or 1298-1300 as numbered in SEQ ID NO: 1 or corresponding positions thereof.
17. The fusion protein of embodiment 10, wherein the C-terminal fragment starts at a position between 530-537, 569-579, 686-691, 768-793, 943-947, 1002-1040, 1052-1077, 1232-1248, or 1298-1300 as numbered in SEQ ID NO: 1 and is a contiguous sequence that terminates at the C-terminus of the Cas9 polypeptide.
18. The fusion protein of embodiment 10, wherein the C-terminal amino acid of the N-terminal fragment is amino acid 1022, 1029, 1040, 1068, 1069, 1247, 1054, 1026, 768, 791, 792, 1248, 1052, or 1246 as numbered in SEQ ID NO: 1 or a corresponding amino acid thereof.
19. The fusion protein of embodiment 10, wherein the N-terminal amino acid of the C-terminal fragment is amino acid 1023, 1030, 1041, 1069, 1070, 1248, 1055, 1026, 769, 792, 793, 873, 907, 1249, 1053, or 1247 as numbered in SEQ ID NO: 1 or a corresponding amino acid thereof.
20. The fusion protein of any one of embodiments 16-19, wherein the deaminase is an adenosine deaminase.
21. The fusion protein of any one of embodiments 1-20, further comprising an additional catalytic domain.
22. The fusion protein of embodiment 21, wherein the additional catalytic domain is a cytidine deaminase or an adenosine deaminase.

23. The fusion protein of any one of embodiments 1-22 further comprising a linker between the N-terminal fragment and the deaminase.
24. The fusion protein of any one of embodiments 1-22 further comprising a linker between the C-terminal fragment and the deaminase.
- 5 25. The fusion protein of any one of embodiments 1-22 further comprising a nuclear localization signal.
26. The fusion protein of embodiment 25, wherein the nuclear localization signal is a bipartite nuclear localization signal.
27. The fusion protein of any one of embodiments 1-26, wherein the Cas9 polypeptide is a *Streptococcus pyogenes* Cas9 (SpCas9), *Staphylococcus aureus* Cas9 (SaCas9), *Streptococcus thermophilus* 1 Cas9 (St1Cas9), or variants thereof.
- 10 28. The fusion protein of any one of embodiments 1-27, wherein the Cas9 polypeptide is a modified Cas9 and has specificity for an altered PAM.
29. The fusion protein of any one of embodiments 1-28, wherein the Cas9 polypeptide is a nickase.
- 15 30. The fusion protein of any one of embodiments 1-28, wherein the Cas9 polypeptide is nuclease inactive.
31. The fusion protein of any one of embodiments 1-30 in complex with a guide nucleic acid sequence to effect deamination of the target nucleobase.
- 20 32. A protein library for optimized base editing comprising a plurality of fusion proteins, wherein each one of the plurality of fusion proteins comprises a deaminase flanked by a N-terminal fragment and a C-terminal fragment of a Cas9 polypeptide, wherein the N-terminal fragment of each one of the fusion proteins differs from the N-terminal fragments of the rest of the plurality of fusion proteins or wherein the C-terminal fragment of each one of the fusion proteins differs from the C-terminal fragments of the rest of the plurality of fusion proteins, wherein the deaminase of each one of the fusion proteins deaminates a target nucleobase in proximity to a Protospacer Adjacent Motif (PAM) sequence in a target polynucleotide sequence, and wherein the N terminal fragment or the C terminal fragment binds the target polynucleotide sequence.
- 25 33. The protein library of embodiment 32, wherein for each nucleobase from 1 to 20 nucleobases away of the PAM sequence, at least one of the plurality of fusion proteins deaminates the nucleobase.

34. The protein library of embodiment 32, wherein the C-terminus of the N terminal fragment or the N-terminus of the C terminal fragment of the Cas9 polypeptide of each one of the plurality of fusion proteins comprises a part of a flexible loop of the Cas9 polypeptide.
- 5 35. The protein library of any one of embodiments 32-34, wherein at least one of the plurality of fusion proteins deaminates the target nucleobase with lower off-target deamination as compared to an end terminus fusion protein comprising the deaminase fused to a N terminus or a C terminus of SEQ ID NO: 1.
- 10 36. The protein library of anyone of embodiments 32-35, wherein at least one of the plurality of the fusion proteins deaminates a target nucleobase 2-12 nucleobases upstream of the PAM sequence.
- 15 37. The protein library of any one of embodiments 32-36, wherein the C-terminus of the N terminal fragment or the N-terminus of the C terminal fragment of a fusion protein of the plurality comprises an amino acid in proximity to the target nucleobase when the fusion protein deaminates the target nucleobase.
- 20 38. The protein library of any one of embodiments 34-36, wherein the flexible loop of the Cas9 polypeptide comprises an amino acid at a position between 530-537, 569-579, 686-691, 768-793, 943-947, 1002-1040, 1052-1077, 1232-1248, or 1298-1300 as numbered in SEQ ID NO: 1 or corresponding positions thereof
- 25 39. The protein library of embodiment 38, wherein the plurality of fusion proteins comprise a fusion protein that comprises a N-terminal fragment starting at the N-terminus of the Cas9 polypeptide and is a contiguous sequence that terminates at a position between 530-537, 569-579, 686-691, 768-793, 943-947, 1002-1040, 1052-1077, 1232-1248, or 1298-1300 as numbered in SEQ ID NO: 1 or corresponding positions thereof
40. The protein library of embodiment 38, wherein the plurality of fusion proteins comprise a fusion protein that comprises a C-terminal fragment starting at a position between 530-537, 569-579, 686-691, 768-793, 943-947, 1002-1040, 1052-1077, 1232-1248, or 1298-1300 as numbered in SEQ ID NO: 1 or corresponding positions thereof and is a contiguous sequence that terminates at the C-terminus of the Cas9 polypeptide.
- 30 41. The protein library of any one of embodiments 38-40, wherein the C-terminal amino acid of the N-terminal fragment is amino acid 1022, 1029, 1040, 1068, 1069, 1247,

- 1054, 1026, 768, 791, 792, 1248, 1052, or 1246 as numbered in SEQ ID NO: 1 or a corresponding amino acid thereof.
42. The protein library of any one of embodiments 38-40, wherein the N-terminal amino acid of the C-terminal fragment is amino acid 1023, 1030, 1041, 1069, 1070, 1248, 5 1055, 1026, 769, 792, 793, 873, 907, 1249, 1053, or 1247 as numbered in SEQ ID NO: 1 or a corresponding amino acid thereof.
43. The protein library of any one of embodiments 32-42, wherein the deaminase is an adenosine deaminase.
44. The protein library of any one of embodiments 32-42, wherein the deaminase is a 10 cytidine deaminase.
45. The protein library of any one of embodiments 32-44, wherein the Cas9 polypeptide is a *Streptococcus pyogenes* Cas9 (SpCas9), *Staphylococcus aureus* Cas9 (SaCas9), *Streptococcus thermophilus* 1 Cas9 (St1Cas9), or variants thereof.
46. The protein library of any one of embodiments 32-45, wherein the Cas9 polypeptide 15 is a modified Cas9 and has specificity for an altered protospacer-adjacent motif (PAM).
47. The protein library of any one of embodiments 32-46, wherein the Cas9 polypeptide is a nickase.
48. The protein library of any one of embodiments 32-46, wherein the Cas9 polypeptide 20 is nuclease inactive.
49. A cell comprising the fusion protein of any one of embodiments 1-31.
50. The cell of embodiment 49, wherein the cell is a mammalian cell or a human cell.
51. A method for editing a target nucleobase in a target polynucleotide sequence, the 25 method comprising: contacting the target polynucleotide with a fusion protein comprising a deaminase flanked by a N-terminal fragment and a C-terminal fragments of a Cas9 polypeptide, wherein the deaminase of the fusion protein deaminates the target nucleobase in the target polynucleotide sequence, wherein the N terminal fragment or the C terminal fragment binds the target polynucleotide sequence, and wherein the C-terminus of the N terminal fragment or the N-terminus of the C terminal fragment comprises a part of a flexible loop of the Cas9 polypeptide.
- 30 52. The method of embodiment 51, further comprising contacting the target polynucleotide sequence with a guide nucleic acid sequence to effect deamination of the target nucleobase.

53. The method of embodiment 52, wherein the guide nucleic acid sequence comprises a spacer sequence complementary to a protospacer sequence of the target polynucleotide sequence, thereby forming a R-loop.
54. The method of embodiment 53, wherein the target nucleobase is deaminated with lower off-target deamination as compared to an end terminus method comprising the deaminase fused to a N terminus or a C terminus of SEQ ID NO: 1.
55. The method of embodiment 54, wherein the deaminase of the fusion protein deaminates no more than two nucleobases within the range of the R-loop.
56. The method of any one of embodiments 51-55, wherein the target nucleobase is 1-20 nucleobases away from a PAM sequence in the target polynucleotide sequence.
- 10 57. The method of embodiment 55, wherein the target nucleobase is 2-12 nucleobases upstream of the PAM sequence.
58. The method of any one of embodiments 51-57, wherein the C-terminus of the N terminal fragment or the N-terminus of the C terminal fragment comprises an amino acid in proximity to the target nucleobase when the deaminase of the fusion protein deaminates the target nucleobase.
- 15 59. The method of any one of embodiments 51-57, wherein the N-terminal fragment or the C-terminal fragment comprises a RuvC domain.
60. The method of any one of embodiments 51-57, wherein neither of the N-terminal fragment and the C-terminal fragment comprises a HNH domain.
- 20 61. The method of any one of embodiments 51-57, wherein the flexible loop of the Cas9 polypeptide comprises an amino acid at a position between 530-537, 569-579, 686-691, 768-793, 943-947, 1002-1040, 1052-1077, 1232-1248, or 1298-1300 as numbered in SEQ ID NO: 1 or corresponding positions thereof.
- 25 62. The method of embodiment 61, wherein the N-terminal fragment starts at the N-terminus of the Cas9 polypeptide and is a contiguous sequence that terminates at a position between 530-537, 569-579, 686-691, 768-793, 943-947, 1002-1040, 1052-1077, 1232-1248, or 1298-1300 as numbered in SEQ ID NO: 1 or corresponding positions thereof.
- 30 63. The method of embodiment 61, wherein the C-terminal fragment starts at a position between 530-537, 569-579, 686-691, 768-793, 943-947, 1002-1040, 1052-1077, 1232-1248, or 1298-1300 as numbered in SEQ ID NO: 1 as numbered in SEQ ID NO: 1 or corresponding positions thereof and is a contiguous sequence that terminates at the C-terminus of the Cas9 polypeptide.

64. The method of embodiment 61, wherein the C-terminal amino acid of the N-terminal fragment is amino acid 1016, 1023, 1029, 1040, 1069, or 1247 as numbered in SEQ ID NO: 1 or a corresponding amino acid thereof.
65. The method of embodiment 61, wherein the N-terminal amino acid of the C-terminal fragment is amino acid 1017, 1024, 1030, 1041, 1070, 1248 as numbered in SEQ ID NO: 1 or a corresponding amino acid thereof.
66. The method of any one of embodiments 62-65, wherein the deaminase is a cytidine deaminase.
67. The method of embodiment 61, wherein the N-terminal fragment starts at the N-terminus of the Cas9 polypeptide and is a contiguous sequence that terminates at a position between 1-529, 538-568, 580-685, 692-942, 948-1001, 1026-1051, 1078-1231, or 1248-1297 as numbered in SEQ ID NO: 1 or corresponding positions thereof.
68. The method of embodiment 61, wherein the C-terminal fragment starts at a position between 1-529, 538-568, 580-685, 692-942, 948-1001, 1026-1051, 1078-1231, or 1248-1297 as numbered in SEQ ID NO: 1 or corresponding positions thereof and is a contiguous sequence that terminates at the C-terminus of the Cas9 polypeptide.
69. The method of embodiment 61, wherein the C-terminal amino acid of the N-terminal fragment is amino acid 1022, 1029, 1040, 1068, 1069, 1247, 1054, 1026, 768, 791, 792, 1248, 1052, or 1246 as numbered in SEQ ID NO: 1 or a corresponding amino acid thereof.
70. The method of embodiment 61, wherein the N-terminal amino acid of the C-terminal fragment is amino acid 1023, 1030, 1041, 1069, 1070, 1248, 1055, 1026, 769, 792, 793, 873, 907, 1249, 1053, or 1247 as numbered in SEQ ID NO: 1 or a corresponding amino acid thereof.
71. The method of any one of embodiments 67-70, wherein the deaminase is an adenosine deaminase.
72. The method of any one of embodiments 51-71, wherein the Cas9 polypeptide is a modified Cas9 and has specificity for an altered protospacer-adjacent motif (PAM).
73. The method of any one of embodiments 51-72, wherein the Cas9 polypeptide is a nickase.
74. The method of any one of embodiments 51-72, wherein the Cas9 polypeptide is nuclease inactive.

75. The method of any one of embodiments 51-74, wherein the contacting is performed in a cell.
76. The method of embodiment 75, wherein the cell is a mammalian cell or a human cell.
77. The method of embodiment 76, wherein the cell is a pluripotent cell.
- 5 78. The method of embodiment any one of embodiments 75-77, wherein the cell is *in vivo* or *ex vivo*.
79. The method of any one of embodiments 51-74, wherein the contacting is performed in a population of cells.
80. The method of embodiment 79, wherein the population of cells are mammalian cells or human cells.
- 10 81. A method for treating a genetic condition in a subject, the method comprising: administering to the subject a fusion protein comprising a deaminase flanked by a N-terminal fragment and a C-terminal fragment of a Cas9 polypeptide or a polynucleotide encoding the fusion protein, and a guide nucleic acid sequence or a polynucleotide encoding the guide nucleic acid sequence, wherein the guide nucleic acid sequence directs the fusion protein to deaminate a target nucleobase in a target polynucleotide sequence of the subject, wherein the N terminal fragment or the C terminal fragment binds the target polynucleotide sequence, thereby treating the genetic condition.
- 15 20 82. The method of embodiment 81, wherein the C-terminus of the N terminal fragment or the N-terminus of the C terminal fragment comprises a part of a flexible loop of the Cas9 polypeptide.
83. The method of embodiment 81 or 82, further comprising administering to the subject a guide nucleic acid sequence to effect deamination of the target nucleobase.
- 25 84. The method of any one of embodiments 81-83, wherein the target nucleobase comprises a mutation associated with the genetic condition.
85. The method of embodiment 84, wherein the deamination of the target nucleobase replaces the target nucleobase with a wild type nucleobase.
86. The method of embodiment 84, wherein the deamination of the target nucleobase replaces the target nucleobase with a non-wild type nucleobase, and wherein the deamination of the target nucleobase ameliorates symptoms of the genetic condition.
- 30 87. The method of any one of embodiments 81-83, wherein the target polynucleotide sequence comprises a mutation associated with the genetic condition at a nucleobase other than the target nucleobase.

88. The method of embodiment 87, wherein the deamination of the target nucleobase ameliorates symptoms of the genetic condition.
89. The method of any one of embodiments 81-88, wherein the target nucleobase is 1-20 nucleobases away from a PAM sequence in the target polynucleotide sequence.
- 5 90. The method of embodiment 89, wherein the target nucleobase is 2-12 nucleobases upstream of the PAM sequence.
91. The method of any one of embodiments 81-90, wherein the C-terminus of the N terminal fragment or the N-terminus of the C terminal fragment comprises an amino acid in proximity to the target nucleobase when the deaminase of the fusion protein 10 deaminates the target nucleobase.
92. The method of any one of embodiments 81-90, wherein the N-terminal fragment or the C-terminal fragment comprises a RuvC domain.
93. The method of any one of embodiments 81-90, wherein neither of the N-terminal fragment and the C-terminal fragment comprises a HNH domain.
- 15 94. The method of any one of embodiments 81-90, wherein the flexible loop of the Cas9 polypeptide comprises an amino acid at a position between 530-537, 569-579, 686-691, 768-793, 943-947, 1002-1040, 1052-1077, 1232-1248, or 1298-1300 as numbered in SEQ ID NO: 1 or corresponding positions thereof.
95. The method of embodiment 94, wherein the N-terminal fragment starts at the N- 20 terminus of the Cas9 polypeptide and is a contiguous sequence that terminates at a position between V530-P537, F569-E579, D686-R691, Y943-D947, L1052-E1077, P1002-S1025, Y1232-G1247, or R1298-K1300 as numbered in SEQ ID NO: 1.
96. The method of embodiment 94, wherein the C-terminal fragment starts at a position 25 between 530-537, 569-579, 686-691, 768-793, 943-947, 1002-1040, 1052-1077, 1232-1248, or 1298-1300 as numbered in SEQ ID NO: 1 and is a contiguous sequence that terminates at the C-terminus of the Cas9 polypeptide.
97. The method of embodiment 94, wherein the C-terminal amino acid of the N-terminal fragment is amino acid 1016, 1023, 1029, 1040, 1069, 1022, 1029, 1040, 1068, 1069, 1247, 1054, 1026, 768, 791, 792, 1246, 1247, 1248, or 1052 as numbered in SEQ ID 30 NO: 1 or a corresponding amino acid thereof.
98. The method of embodiment 94, wherein the N-terminal amino acid of the C-terminal fragment is amino acid 1017, 1023, 1024, 1030, 1041, 1069, 1070, 1247, 1248, 1249, 1055, 1026, 769, 792, 793, 873, 907, or 1053 as numbered in SEQ ID NO: 1 or a corresponding amino acid thereof.

99. The method of any one of embodiments 81-98, wherein the deaminase is a cytidine deaminase.
100. The method of any one of embodiments 81-98, wherein the deaminase is an adenosine deaminase.
- 5 101. The method of any one of embodiments 81-100, wherein the Cas9 polypeptide is a modified Cas9 and has specificity for an altered PAM.
102. The method of any one of embodiments 81-101, wherein the Cas9 polypeptide is a nickase.
103. The method of any one of embodiments 81-101, wherein the Cas9 polypeptide is nuclease inactive.
104. The method of any one of embodiments 81-103, wherein the subject is a mammal.
105. The method of any one of embodiment 81-104, wherein the subject is a human.

Other Embodiments

15 From the foregoing description, it will be apparent that variations and modifications may be made to the invention described herein to adopt it to various usages and conditions. Such embodiments are also within the scope of the following claims.

20 The recitation of a listing of elements in any definition of a variable herein includes definitions of that variable as any single element or combination (or subcombination) of listed elements. The recitation of an embodiment herein includes that embodiment as any single embodiment or in combination with any other embodiments or portions thereof.

All patents and publications mentioned in this specification are herein incorporated by reference to the same extent as if each independent patent and publication was specifically and individually indicated to be incorporated by reference.

CLAIMS

What is claimed is:

1. A fusion protein comprising a deaminase inserted within a flexible loop of a Cas9 polypeptide, wherein the fusion protein comprises the structure:

5 NH₂-[N-terminal fragment of a Cas9]-[deaminase]-[C-terminal fragment of a Cas9]-COOH,
wherein each instance of “]-[“ is an optional linker.
2. A fusion protein comprising a deaminase flanked by a N-terminal fragment and a C-terminal fragment of a Cas9 polypeptide, wherein the C-terminus of the N terminal fragment or the N-terminus of the C terminal fragment comprises a part of a flexible loop of the Cas9 polypeptide.

10
3. The fusion protein of claim 1 or 2 wherein the deaminase of the fusion protein deaminates a target nucleobase in a target polynucleotide sequence.
4. The fusion protein of claim 3, wherein the flexible loop comprises an amino acid in proximity to the target nucleobase when the fusion protein deaminates the target nucleobase.

15
5. The fusion protein of claim 4, wherein the flexible loop comprises a part of an alpha-helix structure of the Cas9 polypeptide.
6. The fusion protein of claim 4 or 5, wherein the target nucleobase is deaminated with lower off-target deamination as compared to an end terminus fusion protein comprising the deaminase fused to a N terminus or a C terminus of SEQ ID NO: 1.

20
7. The fusion protein of claim 4 or 5, wherein the target nucleobase is 1-20 nucleobases away from a Protospacer Adjacent Motif (PAM) sequence in the target polynucleotide sequence.
- 25 8. The fusion protein of claim 7, wherein the target nucleobase is 2-12 nucleobases upstream of the PAM sequence.
9. The fusion protein of any one of claims 1-8, wherein the flexible loop comprises a region selected from the group consisting of amino acid residues at positions 530-537, 569-579, 686-691, 768-793, 943-947, 1002-1040, 1052-1077, 1232-1248, and 1298-30 1300 as numbered in SEQ ID NO: 1, or a corresponding region thereof.
10. The fusion protein of any one of claims 1-8 wherein the deaminase is inserted between amino acid positions 768-769, 791-792, 792-793, 1015-1016, 1022-1023, 1026-1027, 1029-1030, 1040-1041, 1052-1053, 1054-1055, 1067-1068, 1068-1069,

1247-1248, or 1248-1249 as numbered in SEQ ID NO: 1 or corresponding amino acid positions thereof.

11. The fusion protein of claim 10 wherein the deaminase is inserted between amino acid positions 768-769, 792-793, 1022-1023, 1026-1027, 1040-1041, 1068-1069, or 1247-1248 as numbered in SEQ ID NO: 1 or corresponding amino acid positions thereof.

5 12. The fusion protein of any one of claims 1-8, wherein the deaminase is inserted between amino acid positions 1016-1017, 1023-1024, 1029-1030, 1040-1041, 1069-1070 or 1247-1248 as numbered in SEQ ID NO: 1 or corresponding amino acid positions thereof.

10 13. The fusion protein of any one of claims 1-8, wherein the N-terminal fragment comprises amino acid residues 1-529, 538-568, 580-685, 692-942, 948-1001, 1026-1051, 1078-1231, and/or 1248-1297 of the Cas9 polypeptide as numbered in SEQ ID NO: 1, or corresponding residues thereof.

15 14. The fusion protein of any one of claims 1-8, wherein the C-terminal fragment comprises amino acid residues 1301-1368, 1248-1297, 1078-1231, 1026-1051, 948-1001, 692-942, 580-685, and/or 538-568 of the Cas9 polypeptide as numbered SEQ ID NO: 1, or corresponding residues thereof.

15. The fusion protein of any one of claims 3-8 wherein the N terminal fragment or the C terminal fragment of the Cas9 polypeptide binds the target polynucleotide sequence.

20 16. The fusion protein of any one of claims 1-15, wherein the N- terminal fragment or the C-terminal fragment of the Cas9 polypeptide comprises a DNA binding domain.

17. The fusion protein of any one of claims 1-16, wherein the N-terminal fragment or the C-terminal fragment comprises a RuvC domain.

18. The fusion protein of any one of claims 1-17, wherein the N-terminal fragment or the C terminal fragment comprises a HNH domain.

25 19. The fusion protein of any one of claims 1-8, wherein neither of the N-terminal fragment and the C-terminal fragment comprises a HNH domain.

20. The fusion protein of any one of claims 1-8, wherein neither of the N-terminal fragment and the C-terminal fragment comprises a RuvC domain.

30 21. The fusion protein of any one of claims 1-8, wherein the Cas9 polypeptide comprises a partial or complete deletion in one or more structural domains.

22. The fusion protein of claim 21, wherein the deaminase is inserted at the partial or complete deletion position of the Cas9 polypeptide.

23. The fusion protein of claim 21 or 22, wherein the deletion is within a RuvC domain.

24. The fusion protein of claim 21 or 22, wherein the deletion is within an HNH domain.
25. The fusion protein of 21 or 22, wherein the deletion bridges a RuvC domain and a C-terminal domain, a L-I domain and a HNH domain, or a RuvC domain and a L-I domain.
- 5 26. The fusion protein of claim 21 or 22, wherein the Cas9 polypeptide comprises a deletion of amino acids 1017-1069 as numbered in SEQ ID NO: 1 or corresponding amino acids thereof.
27. The fusion protein of claim 21 or 22, wherein the Cas9 polypeptide comprises a deletion of amino acids 792-872 as numbered in SEQ ID NO: 1 or corresponding amino acids thereof.
- 10 28. The fusion protein of claim 21 or 22, wherein the Cas9 polypeptide comprises a deletion of amino acids 792-906 as numbered in SEQ ID NO: 1 or corresponding amino acids thereof.
29. A fusion protein comprising a deaminase inserted within a Cas9 polypeptide, wherein the fusion protein comprises the structure:
15 NH₂-[N-terminal fragment of a Cas9]-[deaminase]-[C-terminal fragment of a Cas9]-COOH, wherein each instance of “]-[“ is an optional linker, wherein the Cas9 polypeptide comprises a complete deletion of a HNH domain, and wherein the deaminase is inserted at the deletion position.
- 20 30. The fusion protein of claim 29, wherein the C terminal amino acid of the N terminal fragment is amino acid 791 as numbered in SEQ ID NO: 1.
31. The fusion protein of claim 30, wherein the N terminal amino acid of the C terminal fragment is amino acid 907 as numbered in SEQ ID NO: 1.
32. The fusion protein of claim 30, wherein the N terminal amino acid of the C terminal fragment is amino acid 873 as numbered in SEQ ID NO: 1.
- 25 33. A fusion protein comprising a deaminase inserted within a Cas9 polypeptide, wherein the fusion protein comprises the structure:
NH₂-[N-terminal fragment of a Cas9]-[deaminase]-[C-terminal fragment of a Cas9]-COOH, wherein each instance of “]-[“ is an optional linker, and wherein the Cas9 30 comprises a complete deletion of a RuvC domain and wherein the deaminase is inserted at the deletion position.
34. The fusion protein of any one of claims 1-33, wherein the deaminase is a cytidine deaminase or an adenosine deaminase.

35. The fusion protein of claim 34, wherein the cytidine deaminase is an APOBEC cytidine deaminase, an activation induced cytidine deaminase (AID), or a CDA.
36. The fusion protein of claim 35, wherein the APOBEC deaminase is APOBEC1, APOBEC2, APOBEC3A, APOBEC3B, APOBEC3C, APOBEC3D, APOBEC3E, APOBEC3F, APOBEC3G, APOBEC3H, or APOBEC4.
- 5 37. The fusion protein of claim 36, wherein the APOBEC deaminase is rAPOBEC1.
38. The fusion protein of any one of claims 34-37 further comprising a UGI domain.
39. The fusion protein of claim 34, wherein the adenosine deaminase is a TadA deaminase.
- 10 40. The fusion protein of claim 39, wherein the TadA deaminase is a modified TadA.
41. The fusion protein of claim 40, wherein the TadA deaminase is a TadA 7.10.
42. The fusion protein 41, wherein the adenosine deaminase is a TadA dimer.
43. The fusion protein 42, wherein the TadA dimer comprises a TadA 7.10 and a wild type TadA.
- 15 44. The fusion protein of any one of claims 3-43, wherein the optional linker comprises (SGGS)n, (GGGS)n, (GGGGS) n, (G)n, (EAAAK)n, (GGS)n, SGSETPGTSESATPES, or (XP)n motif, or a combination thereof, wherein n is independently an integer between 1 and 30.
45. The fusion protein of any one of claims 1-43, wherein the N terminal fragment of the Cas9 polypeptide is fused to the deaminase without a linker.
- 20 46. The fusion protein of any one of claims 1-43 wherein the C terminal fragment of the Cas9 is fused to the deaminase without a linker.
47. The fusion protein of any one of claims 1-46, further comprising an additional catalytic domain.
- 25 48. The fusion protein of claim 47, wherein the additional catalytic domain is a second deaminase.
49. The fusion protein of claim 48, wherein the second deaminase is fused to the N terminus or the C terminus of the fusion protein.
50. The fusion protein of claim 48 or 49, wherein the deaminase is a cytidine deaminase or an adenosine deaminase.
- 30 51. The fusion protein of any one of claims 1-50 further comprising a nuclear localization signal.
52. The fusion protein of claim 51, wherein the nuclear localization signal is a bipartite nuclear localization signal.

53. The fusion protein of any one of claims 1-52, wherein the Cas9 polypeptide is a *Streptococcus pyogenes* Cas9 (SpCas9), *Staphylococcus aureus* Cas9 (SaCas9), *Streptococcus thermophilus* 1 Cas9 (St1Cas9), or variants thereof.
54. The fusion protein of any one of claims 1-53, wherein the Cas9 polypeptide is a modified Cas9 and has specificity for an altered PAM.
55. The fusion protein of any one of claims 1-54, wherein the Cas9 polypeptide is a nickase.
56. The fusion protein of any one of claims 1-54, wherein the Cas9 polypeptide is nuclease inactive.
- 10 57. The fusion protein of any one of claims 3-56 in complex with a guide nucleic acid sequence to effect deamination of the target nucleobase.
58. The fusion protein of claim 57 further complexed with the target polynucleotide.
59. A polynucleotide encoding the fusion protein of any one of claims 1-58.
60. An expression vector comprising the polynucleotide of claim 59.
- 15 61. The expression vector of claim 60, wherein the expression vector is a mammalian expression vector.
62. The expression vector of claim 61, wherein the vector is a viral vector selected from the group consisting of adeno-associated virus (AAV), retroviral vector, adenoviral vector, lentiviral vector, Sendai virus vector, and herpesvirus vector.
- 20 63. The expression vector of any one of claims 60-62, wherein the vector comprises a promoter.
64. A cell comprising the fusion protein of any one of claims 1-58, the polynucleotide of claim 59, or the vector of any one of claims 60-63.
65. The cell of claim 64, wherein the cell is a bacterial cell, plant cell, insect cell, a human cell, or mammalian cell.
- 25 66. A kit comprising the fusion protein of any one of claims 1-58, the polynucleotide of claim 59, or the vector of any one of claims 60-63.
67. A method for base editing comprising contacting a polynucleotide sequence with the fusion protein of any one of claims 1-58, wherein the deaminase of the fusion protein deaminates a nucleobase in the polynucleotide, thereby editing the polynucleotide sequence.
- 30 68. The method of claim 67, further comprising contacting the target polynucleotide sequence with a guide nucleic acid sequence to effect deamination of the target nucleobase.

69. A method for editing a target nucleobase in a target polynucleotide sequence, the method comprising: contacting the target polynucleotide sequence with a fusion protein comprising a deaminase flanked by a N-terminal fragment and a C-terminal fragments of a Cas9 polypeptide, wherein the deaminase of the fusion protein deaminates the target nucleobase in the target polynucleotide sequence, and wherein the C-terminus of the N terminal fragment or the N-terminus of the C terminal fragment comprises a part of a flexible loop of the Cas9 polypeptide.
- 5 70. A method for editing a target nucleobase in a target polynucleotide sequence, the method comprising: contacting the target polynucleotide sequence with a fusion protein comprising a deaminase inserted within a flexible loop of a Cas9 polypeptide, wherein the fusion protein comprises the structure NH₂-[N-terminal fragment of a Cas9]-[deaminase]-[C-terminal fragment of a Cas9]-COOH, wherein each instance of “[]-[“ is an optional linker, wherein the deaminase of the fusion protein deaminates the target nucleobase in the target polynucleotide sequence.
- 10 71. The method of claim 69 or 70, further comprising contacting the target polynucleotide sequence with a guide nucleic acid sequence to effect deamination of the target nucleobase.
- 15 72. The method of claim 71, wherein the guide nucleic acid sequence comprises a spacer sequence complementary to a protospacer sequence of the target polynucleotide sequence, thereby forming a R-loop.
- 20 73. The method of any one of claims 69-72, wherein the target nucleobase is deaminated with lower off-target deamination as compared to an end terminus method comprising the deaminase fused to a N terminus or a C terminus of SEQ ID NO: 1.
74. The method of claim 72, wherein the deaminase of the fusion protein deaminates no 25 more than two nucleobases within the range of the R-loop.
75. The method of any one of claims 69-74, wherein the target nucleobase is 1-20 nucleobases away from a PAM sequence in the target polynucleotide sequence.
76. The method of claim 75, wherein the target nucleobase is 2-12 nucleobases upstream 30 of the PAM sequence.
77. The method of any one of claims 69-76, wherein the flexible loop comprises an amino acid in proximity to the target nucleobase when the deaminase of the fusion protein deaminates the target nucleobase.
78. The method of any one of claims 69-77, wherein the flexible loop comprises a region selected from the group consisting of amino acid residues at positions 530-537, 569-

- 579, 686-691, 768-793, 943-947, 1002-1040, 1052-1077, 1232-1248, and 1298-1300 as numbered in SEQ ID NO: 1, or a corresponding region thereof.
79. The method of any one of claims 69-77, wherein the deaminase is inserted between amino acid positions 768-769, 791-792, 792-793, 1015-1016, 1022-1023, 1026-1027, 1029-1030, 1040-1041, 1052-1053, 1054-1055, 1067-1068, 1068-1069, 1247-1248, or 1248-1249 as numbered in SEQ ID NO: 1 or corresponding amino acid positions thereof.
80. The method of claim 79 wherein the deaminase is inserted between amino acid positions 768-769, 792-793, 1022-1023, 1026-1027, 1040-1041, 1068-1069, or 1247-1248 as numbered in SEQ ID NO: 1 or corresponding amino acid positions thereof.
81. The method of any one of claims 69-77, wherein the deaminase is inserted between amino acid positions 1016-1017, 1023-1024, 1029-1030, 1040-1041, 1069-1070 or 1247-1248 as numbered in SEQ ID NO: 1 or corresponding amino acid positions thereof.
- 15 82. The method of any one of claims 69-77, wherein the N-terminal fragment comprises amino acid residues 1-529, 538-568, 580-685, 692-942, 948-1001, 1026-1051, 1078-1231, and/or 1248-1297 of the Cas9 polypeptide as numbered in SEQ ID NO: 1, or corresponding residues thereof.
83. The method of any one of claims 69-77, wherein the C-terminal fragment comprises amino acid residues 1301-1368, 1248-1297, 1078-1231, 1026-1051, 948-1001, 692-942, 580-685, and/or 538-568 of the Cas9 polypeptide as numbered SEQ ID NO: 1, or corresponding residues thereof.
- 20 84. The method of any one of claims 69-77, wherein the N terminal fragment or the C terminal fragment of the Cas9 polypeptide binds the target polynucleotide sequence.
- 25 85. The method of any one of claims 69-84, wherein the N-terminal fragment or the C-terminal fragment comprises a RuvC domain.
86. The method of any one of claims 69-85, wherein the N-terminal fragment or the C-terminal fragment comprises a HNH domain.
87. The method of any one of claims 69-77, wherein neither of the N-terminal fragment and the C-terminal fragment comprises a HNH domain.
- 30 88. The method of any one of claims 69-77, wherein neither of the N-terminal fragment and the C-terminal fragment comprises a RuvC domain.
89. The method of any one of claims 69-77, wherein the Cas9 polypeptide comprises a partial or complete deletion in one or more structural domains.

90. The method of claim 89, wherein the deaminase is inserted at the partial or complete deletion position of the Cas9 polypeptide.
91. The method of claim 89 or 90, wherein the deletion is within a RuvC domain.
92. The method of claim 89 or 90, wherein the deletion is within an HNH domain.
- 5 93. The method of 89 or 90, wherein the deletion bridges a RuvC domain and a C-terminal domain, a L-I domain and a HNH domain, or a RuvC domain and a L-I domain.
94. The method of claim 90, wherein the Cas9 polypeptide comprises a deletion of amino acids 1017-1069 as numbered in SEQ ID NO: 1 or corresponding amino acids thereof.
- 10 95. The method of claim 90, wherein the Cas9 polypeptide comprises a deletion of amino acids 792-872 as numbered in SEQ ID NO: 1 or corresponding amino acids thereof.
96. The method of claim 90, wherein the Cas9 polypeptide comprises a deletion of amino acids 792-906 as numbered in SEQ ID NO: 1 or corresponding amino acids thereof.
97. The method of any one of claims 69-96, wherein the deaminase is a cytidine deaminase.
- 15 98. The method of any one of claims 69-96, wherein the deaminase is an adenosine deaminase.
99. The method of any one of claims 69-98, wherein the Cas9 polypeptide is a modified Cas9 and has specificity for an altered protospacer-adjacent motif (PAM).
- 20 100. The method of any one of claims 69-99, wherein the Cas9 polypeptide is a nickase.
101. The method of any one of claims 69-99, wherein the Cas9 polypeptide is nuclease inactive.
102. The method of any one of claims 67-101, wherein the contacting is performed in a cell.
- 25 103. The method of claim 102, wherein the cell is a mammalian cell or a human cell.
104. The method of claim 103, wherein the cell is a pluripotent cell.
105. The method of claim any one of claims 102-104, wherein the cell is *in vivo* or *ex vivo*.
106. The method of any one of claims 67-101, wherein the contacting is performed in a population of cells.
- 30 107. The method of claim 1-6, wherein the population of cells are mammalian cells or human cells.
108. A method for treating a genetic condition in a subject, the method comprising: administering to the subject a fusion protein comprising a deaminase flanked by a N-terminal fragment and a C-terminal fragment of a Cas9 polypeptide or a

polynucleotide encoding the fusion protein, and a guide nucleic acid sequence or a polynucleotide encoding the guide nucleic acid sequence, wherein the guide nucleic acid sequence directs the fusion protein to deaminate a target nucleobase in a target polynucleotide sequence of the subject, thereby treating the genetic condition.

- 5 109. A method for treating a genetic condition in a subject, the method comprising: administering to the subject a fusion protein comprising a deaminase inserted within a flexible loop of a Cas9 polypeptide, wherein the fusion protein comprises the structure NH₂-[N-terminal fragment of a Cas9]-[deaminase]-[C-terminal fragment of a Cas9]-COOH, wherein each instance of “]-[“ is an optional linker, wherein the 10 deaminase of the fusion protein deaminates the target nucleobase in the target polynucleotide sequence of the subject, thereby treating the genetic condition.
110. The method of claim 108 or 109, wherein the C-terminus of the N terminal fragment or the N-terminus of the C terminal fragment comprises a part of a flexible loop of the Cas9 polypeptide.
- 15 111. The method of any one of claims 108-110, further comprising administering to the subject a guide nucleic acid sequence to effect deamination of the target nucleobase.
112. The method of any one of claims 108-111, wherein the target nucleobase comprises a mutation associated with the genetic condition.
113. The method of claim 112, wherein the deamination of the target nucleobase replaces 20 the target nucleobase with a wild type nucleobase.
114. The method of claim 112, wherein the deamination of the target nucleobase replaces the target nucleobase with a non-wild type nucleobase, and wherein the deamination of the target nucleobase ameliorates symptoms of the genetic condition.
115. The method of any one of claims 108-111, wherein the target polynucleotide 25 sequence comprises a mutation associated with the genetic condition at a nucleobase other than the target nucleobase.
116. The method of claim 115, wherein the deamination of the target nucleobase ameliorates symptoms of the genetic condition.
117. The method of any one of claims 108-116, wherein the target nucleobase is 1-20 30 nucleobases away from a PAM sequence in the target polynucleotide sequence.
118. The method of claim 117, wherein the target nucleobase is 2-12 nucleobases upstream of the PAM sequence.

119. The method of any one of claims 108-118, wherein the flexible loop comprises an amino acid in proximity to the target nucleobase when the deaminase of the fusion protein deaminates the target nucleobase.
120. The method of any one of claims 108-119, wherein the flexible loop comprises a 5 region selected from the group consisting of amino acid residues at positions 530-537, 569-579, 686-691, 768-793, 943-947, 1002-1040, 1052-1077, 1232-1248, and 1298-1300 as numbered in SEQ ID NO: 1, or a corresponding region thereof.
121. The method of any one of claims 108-119, wherein the deaminase is inserted between 10 amino acid positions 768-769, 791-792, 792-793, 1015-1016, 1022-1023, 1026-1027, 1029-1030, 1040-1041, 1052-1053, 1054-1055, 1067-1068, 1068-1069, 1247-1248, or 1248-1249 as numbered in SEQ ID NO: 1 or corresponding amino acid positions thereof.
122. The method of claim 121 wherein the deaminase is inserted between amino acid 15 positions 768-769, 792-793, 1022-1023, 1026-1027, 1040-1041, 1068-1069, or 1247-1248 as numbered in SEQ ID NO: 1 or corresponding amino acid positions thereof.
123. The method of any one of claims 108-119, wherein the deaminase is inserted between 20 amino acid positions 1016-1017, 1023-1024, 1029-1030, 1040-1041, 1069-1070 or 1247-1248 as numbered in SEQ ID NO: 1 or corresponding amino acid positions thereof.
124. The method of any one of claims 108-119, wherein the N-terminal fragment 25 comprises amino acid residues 1-529, 538-568, 580-685, 692-942, 948-1001, 1026-1051, 1078-1231, and/or 1248-1297 of the Cas9 polypeptide as numbered in SEQ ID NO: 1, or corresponding residues thereof.
125. The method of any one of claims 108-119, wherein the C-terminal fragment 30 comprises amino acid residues 1301-1368, 1248-1297, 1078-1231, 1026-1051, 948-1001, 692-942, 580-685, and/or 538-568 of the Cas9 polypeptide as numbered SEQ ID NO: 1, or corresponding residues thereof.
126. The method of any one of claims 108-119, wherein the N terminal fragment or the C terminal fragment of the Cas9 polypeptide binds the target polynucleotide sequence.
127. The method of any one of claims 108-119, wherein the N-terminal fragment or the C-terminal fragment comprises a RuvC domain.
128. The method of any one of claims 108-119, wherein the N-terminal fragment or the C-terminal fragment comprises a HNH domain.

129. The method of any one of claims 108-119, wherein neither of the N-terminal fragment and the C-terminal fragment comprises a HNH domain.
130. The method of any one of claims 108-119, wherein neither of the N-terminal fragment and the C-terminal fragment comprises a RuvC domain.
- 5 131. The method of any one of claims 108-119, wherein the Cas9 polypeptide comprises a partial or complete deletion in one or more structural domains.
132. The method of claim 131, wherein the deaminase is inserted at the partial or complete deletion position of the Cas9 polypeptide.
133. The method of claim 131 or 132, wherein the deletion is within a RuvC domain.
- 10 134. The method of claim 131 or 132, wherein the deletion is within an HNH domain.
135. The method of 131 or 132, wherein the deletion bridges a RuvC domain and a C-terminal domain, a L-I domain and a HNH domain, or a RuvC domain and a L-I domain.
- 15 136. The method of claim 131 or 132, wherein the Cas9 polypeptide comprises a deletion of amino acids 1017-1069 as numbered in SEQ ID NO: 1 or corresponding amino acids thereof.
137. The method of claim 131 or 132, wherein the Cas9 polypeptide comprises a deletion of amino acids 792-872 as numbered in SEQ ID NO: 1 or corresponding amino acids thereof.
- 20 138. The method of claim 131 or 132, wherein the Cas9 polypeptide comprises a deletion of amino acids 792-906 as numbered in SEQ ID NO: 1 or corresponding amino acids thereof.
139. The method of any one of claims 108-138, wherein the deaminase is a cytidine deaminase.
- 25 140. The method of any one of claims 108-138, wherein the deaminase is an adenosine deaminase.
141. The method of any one of claims 108-140, wherein the Cas9 polypeptide is a modified Cas9 and has specificity for an altered PAM.
142. The method of any one of claims 108-141, wherein the Cas9 polypeptide is a nickase.
- 30 143. The method of any one of claims 108-142, wherein the Cas9 polypeptide is nuclease inactive.
144. The method of any one of claims 108-143, wherein the subject is a mammal.
145. The method of any one of claim 108-144, wherein the subject is a human.

146. A protein library for optimized base editing comprising a plurality of fusion proteins, wherein each one of the plurality of fusion proteins comprises a deaminase flanked by a N-terminal fragment and a C-terminal fragment of a Cas9 polypeptide, wherein the N-terminal fragment of each one of the fusion proteins differs from the N-terminal fragments of the rest of the plurality of fusion proteins or wherein the C-terminal fragment of each one of the fusion proteins differs from the C-terminal fragments of the rest of the plurality of fusion proteins, wherein the deaminase of each one of the fusion proteins deaminates a target nucleobase in proximity to a Protospacer Adjacent Motif (PAM) sequence in a target polynucleotide sequence, and wherein the N-terminal fragment or the C terminal fragment binds the target polynucleotide sequence.
147. The protein library of claim 146, wherein for each nucleobase from 1 to 20 nucleobases away of the PAM sequence, at least one of the plurality of fusion proteins deaminates the nucleobase.
148. The protein library of claim 147, wherein the C-terminus of the N terminal fragment or the N-terminus of the C terminal fragment of the Cas9 polypeptide of each one of the plurality of fusion proteins comprises a part of a flexible loop of the Cas9 polypeptide.
149. The protein library of any one of claims 146-148, wherein at least one of the plurality of fusion proteins deaminates the target nucleobase with lower off-target deamination as compared to an end terminus fusion protein comprising the deaminase fused to a N terminus or a C terminus of SEQ ID NO: 1.
150. The protein library of anyone of claims 146-149, wherein at least one of the plurality of the fusion proteins deaminates a target nucleobase 2-12 nucleobases upstream of the PAM sequence.
151. The protein library of any one of claims 146-150, wherein the C-terminus of the N terminal fragment or the N-terminus of the C terminal fragment of a fusion protein of the plurality comprises an amino acid in proximity to the target nucleobase when the fusion protein deaminates the target nucleobase.
152. The protein library of any one of claims 146-150, wherein the deaminase of at least one of the fusion proteins is between amino acid positions 768-769, 791-792, 792-793, 1015-1016, 1022-1023, 1026-1027, 1029-1030, 1040-1041, 1052-1053, 1054-1055, 1067-1068, 1068-1069, 1247-1248, or 1248-1249 as numbered in SEQ ID NO: 1 or corresponding amino acid positions thereof.

153. The protein library of claim 152, wherein the deaminase of at least one of the fusion proteins is between amino acid positions 768-769, 792-793, 1022-1023, 1026-1027, 1040-1041, 1068-1069, or 1247-1248 as numbered in SEQ ID NO: 1 or corresponding amino acid positions thereof.
- 5 154. The method of any one of claims 146-150, wherein the deaminase of at least one of the fusion proteins is between amino acid positions 1016-1017, 1023-1024, 1029-1030, 1040-1041, 1069-1070 or 1247-1248 as numbered in SEQ ID NO: 1 or corresponding amino acid positions thereof.
- 10 155. The protein library of any one of claims 146-154, wherein the deaminase is an adenosine deaminase.
156. The protein library of any one of claims 146-154, wherein the deaminase is a cytidine deaminase.
157. The protein library of any one of claims 146-156, wherein the Cas9 polypeptide is a *Streptococcus pyogenes* Cas9 (SpCas9), *Staphylococcus aureus* Cas9 (SaCas9), *Streptococcus thermophilus* 1 Cas9 (St1Cas9), or variants thereof.
158. The protein library of any one of claims 146-157, wherein the Cas9 polypeptide is a modified Cas9 and has specificity for an altered protospacer-adjacent motif (PAM).
159. The protein library of any one of claims 146-157, wherein the Cas9 polypeptide is a nickase.
- 20 160. The protein library of any one of claims 146-157, wherein the Cas9 polypeptide is nuclease inactive.

Structural basis for bystander mutagenesis

Any ssDNA within deamination zone is a potential spurious off-target.

1/52

- Possible Strategies
- Lock deaminase into preferred orientation.
- Inactivate deaminase until it is near desired mutation spot.
- Activate enzyme only when in proximity of ssDNA.

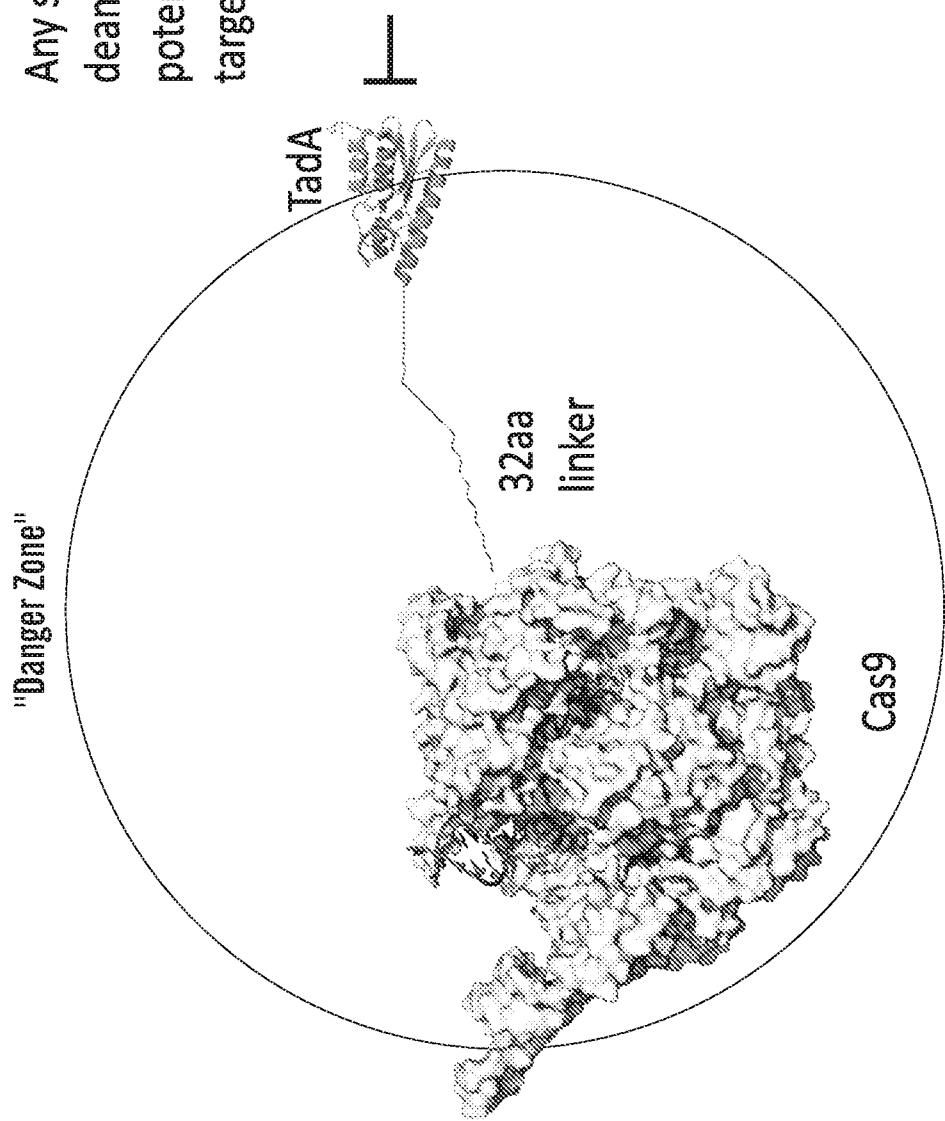


FIG. 1

2/52

Prediction of BE target DNA

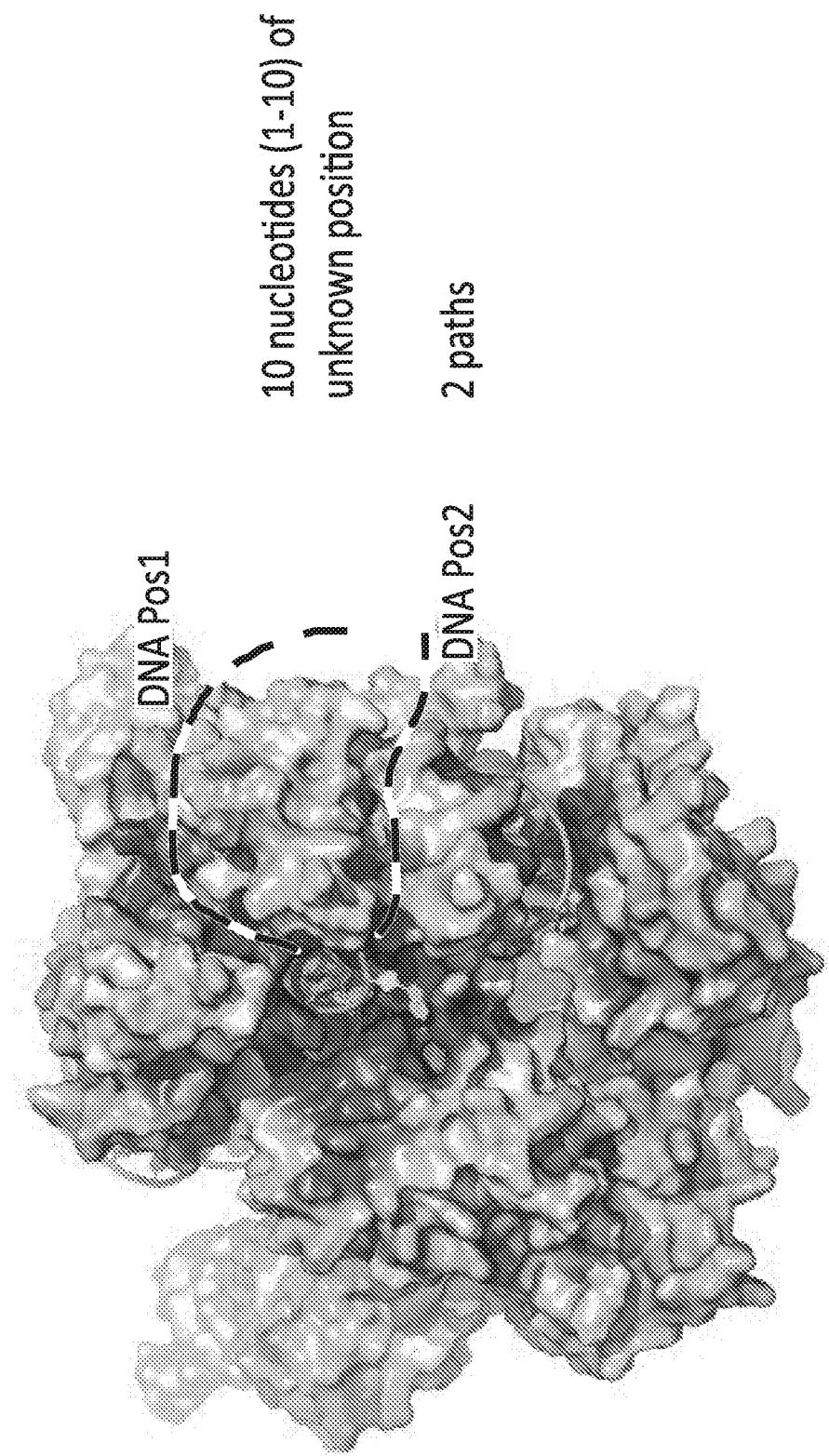
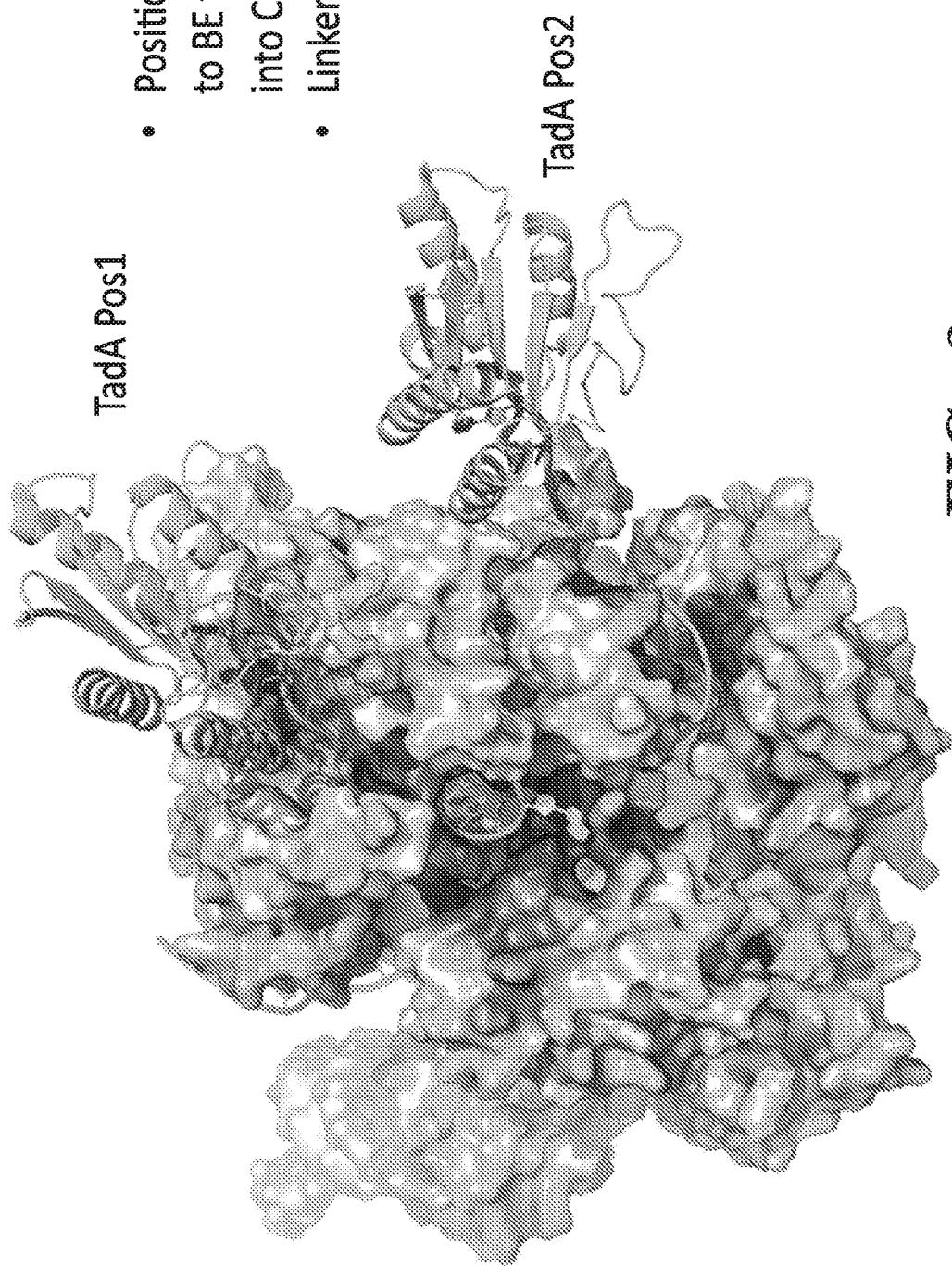



FIG. 2

Engineer preferred orientation

3/52

FIG. 3

4/52

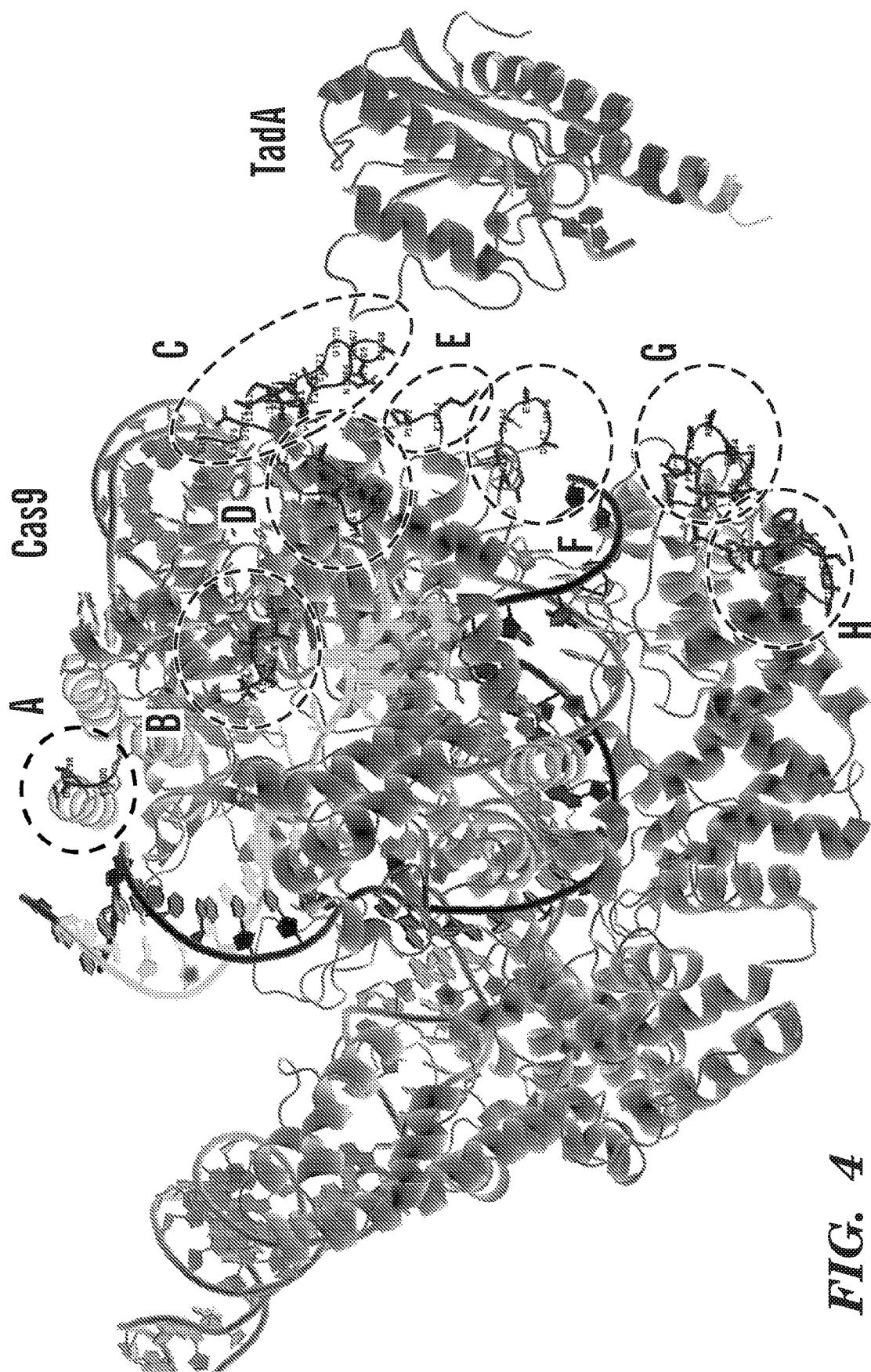
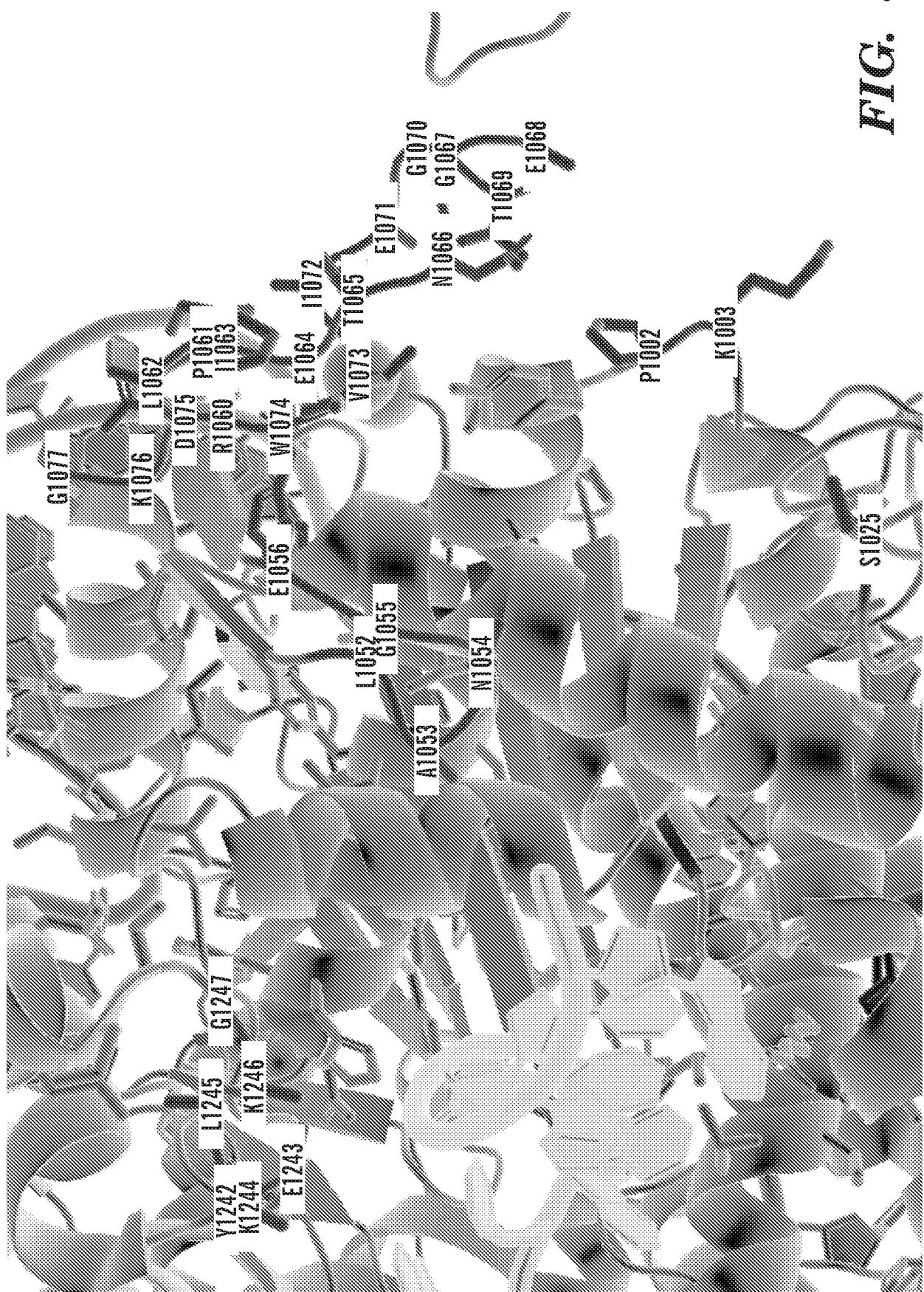
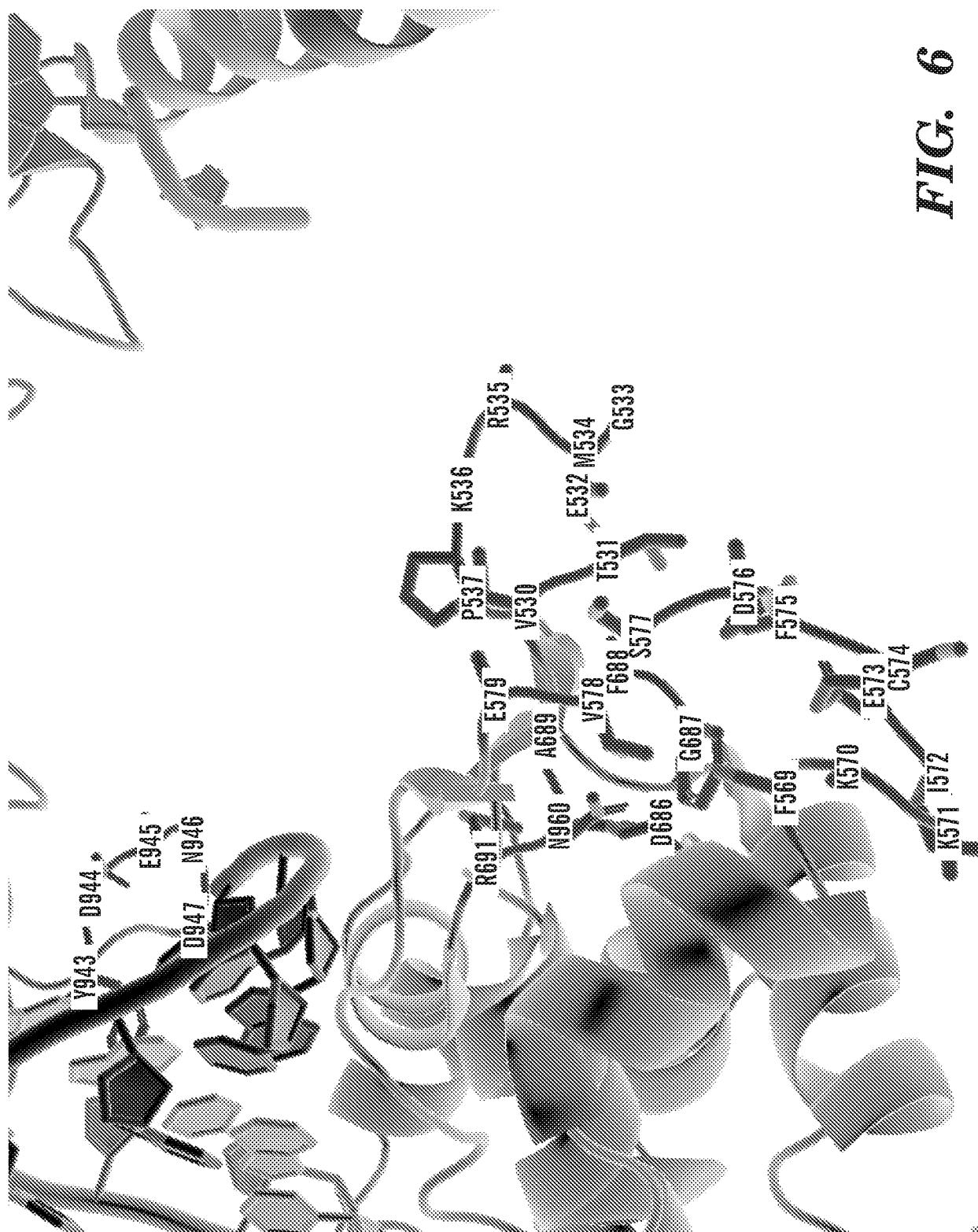
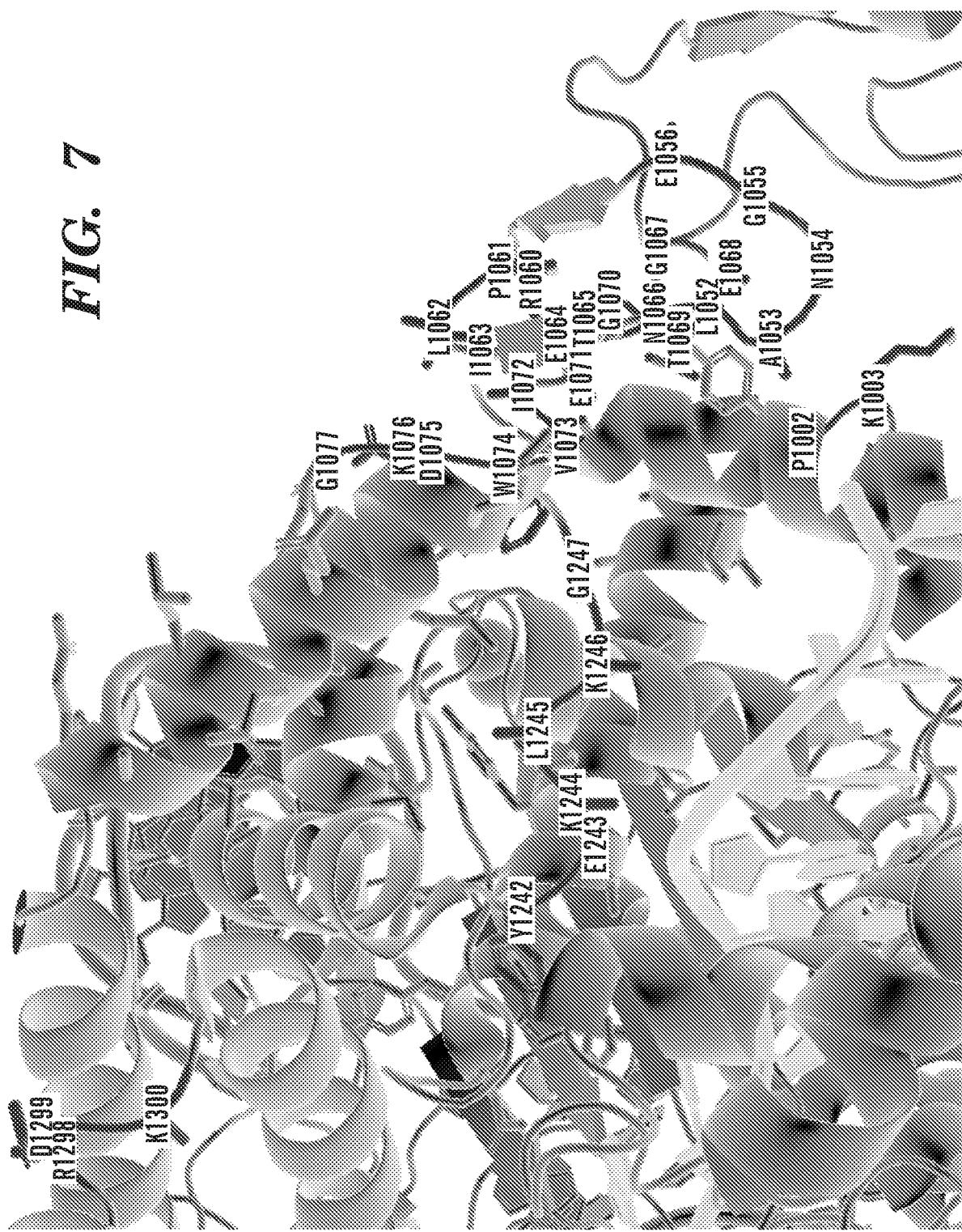


FIG. 4

5/52

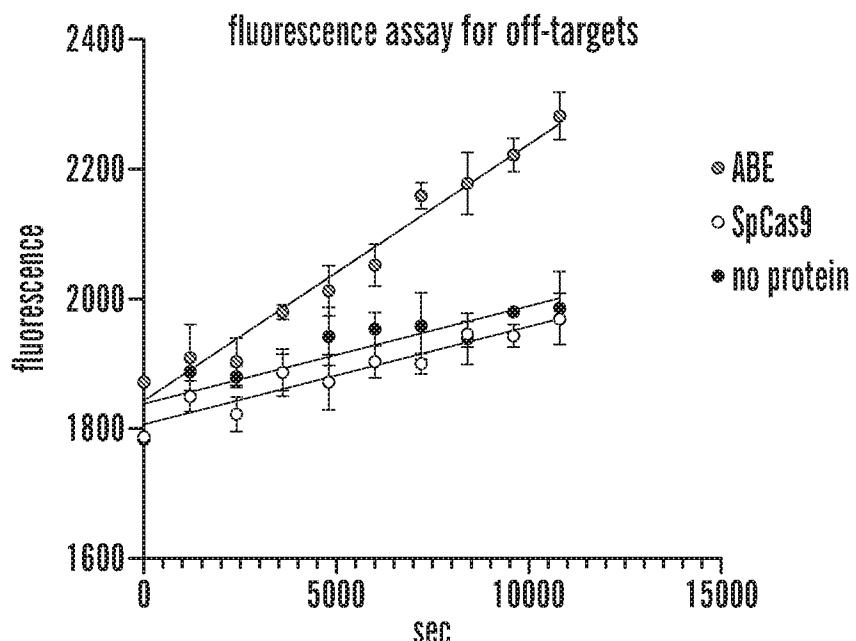




FIG. 5

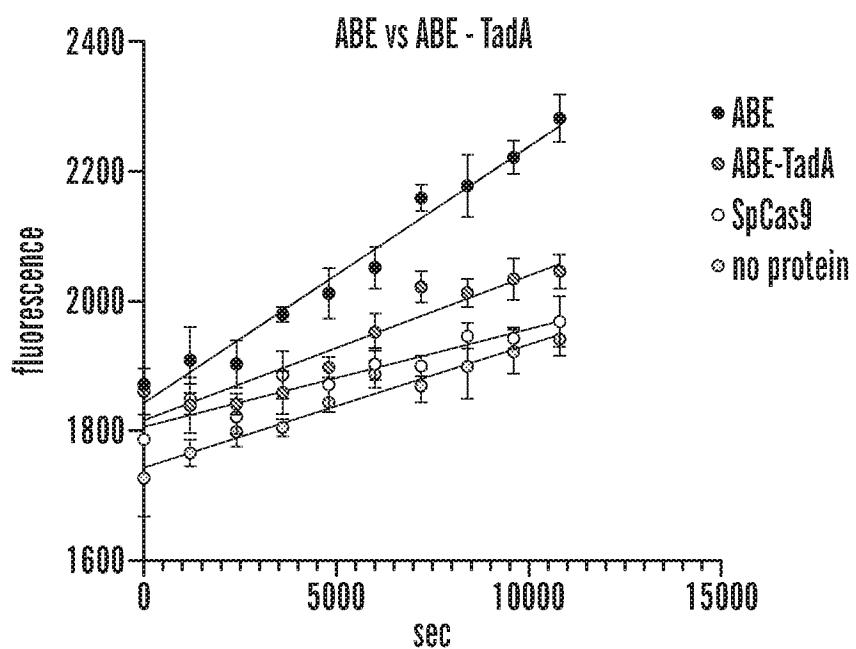
6/52

7/52

FIG. 7

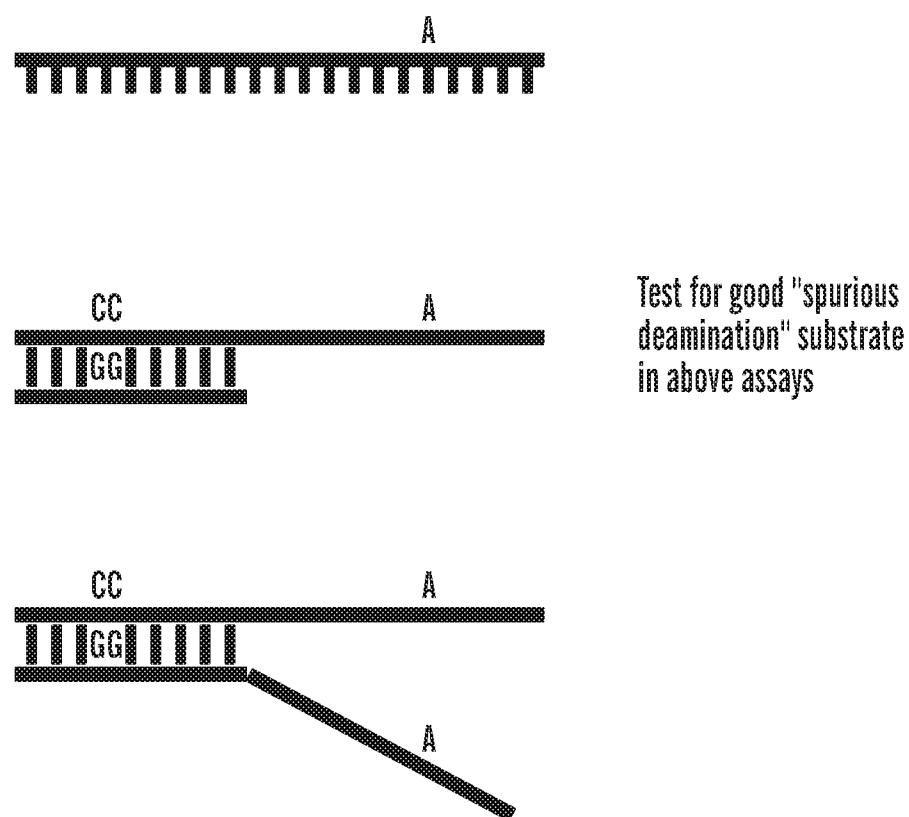

A, B, C, D, E

high-throughput *in vitro* deamination assays


FIG. 8

9/52

Fluorescence assay for off-targets.


FIG. 9

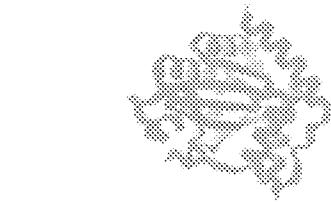
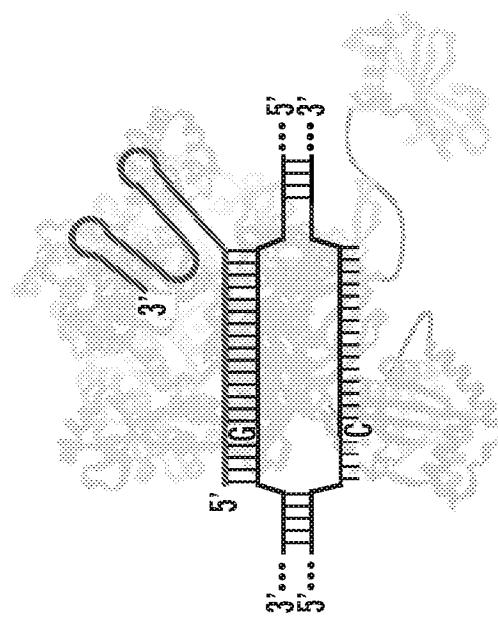
Comparison of ABE v. ABE system with TadA in Trans.

FIG. 10

10/52

Potential substrates for spurious off-target base editing can be tested.

FIG. 11



11/52

Assay to evaluate the activities of deaminases in the *in cis* - *in trans* assay

Experimental design: evaluate base editing with various deaminases in *cis* (covalent, base editor context) vs. *in trans* (spurious deamination mimic)

C to T base editing
in cis

C to T base editing
in trans

deaminase-nCas9-UGI-UGI

deaminase

nCas9-UGI-UGI

For ABEs, no UGIs were attached.

FIG. 12

The activities of rAPOBEC1 in the *in cis*-*in trans* assay

A "worst-case-scenario" evaluation of the spurious deamination

in trans V.S. *in cis* activity of rAPOBEC1

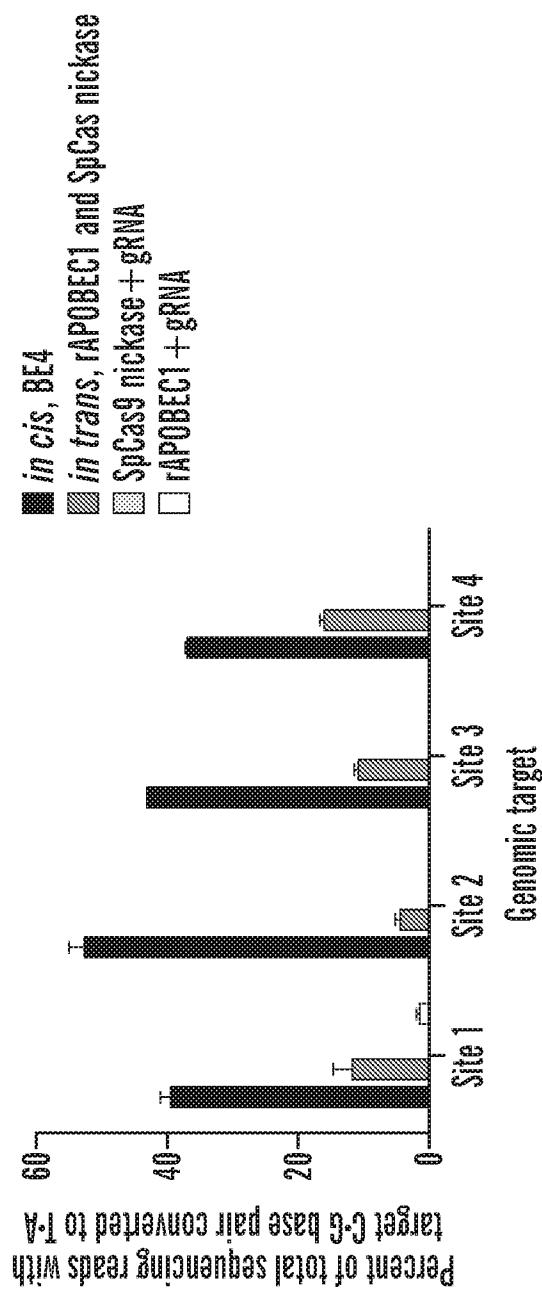


FIG. 13

13/52

The activities of TadA-TadA7.10 in the *in cis*-*in trans* assay

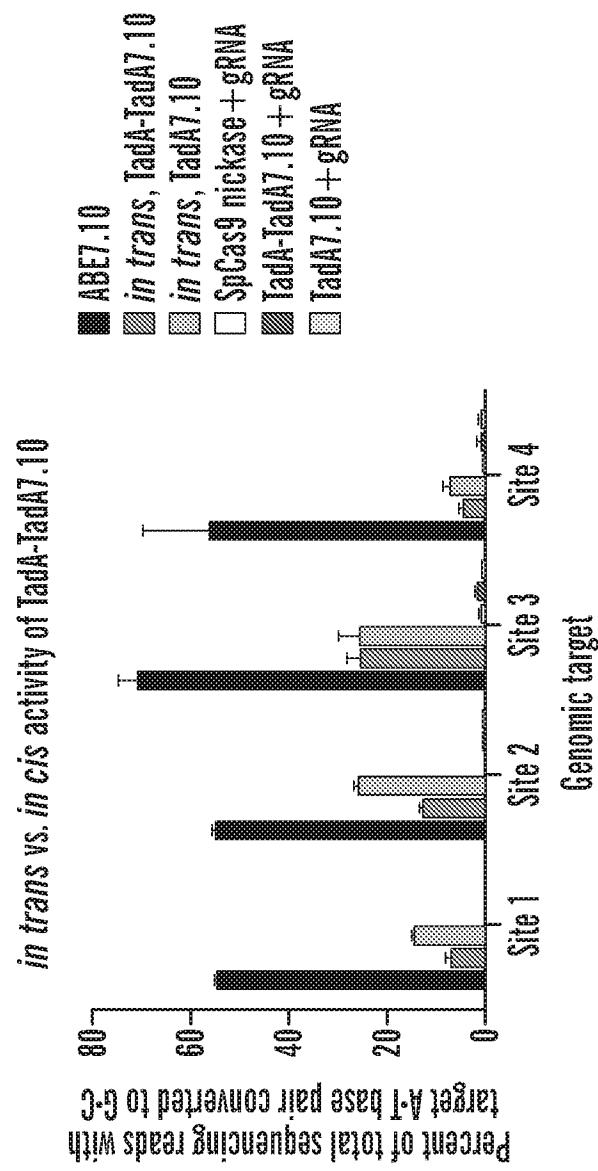


FIG. 14

14/52

Lower *in trans* activity observed for TadA-TadA7.10 in base editor context

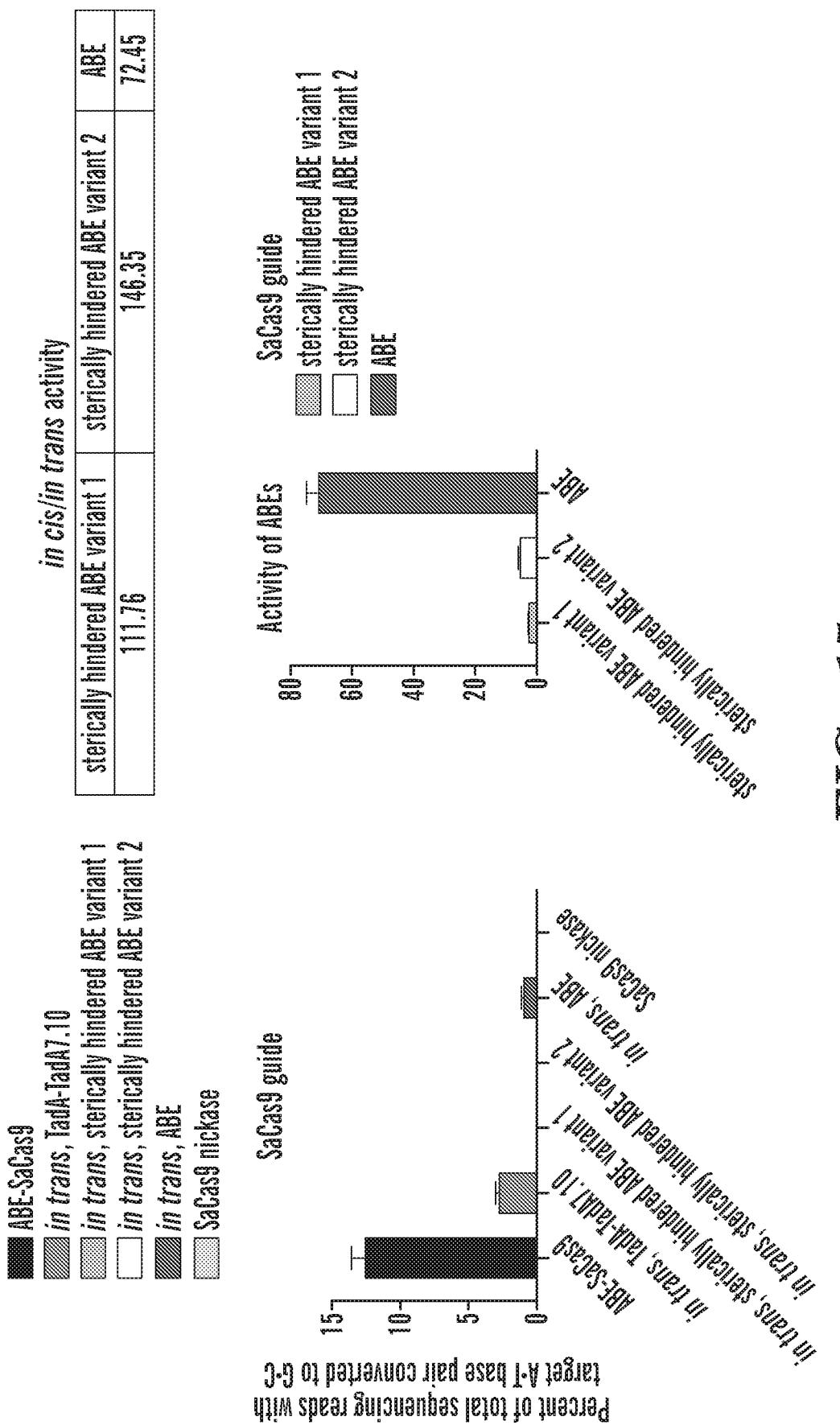


FIG. 15

15/52

Dose response for the *in*-*cis* and *in*-*trans* activities

Titration of pmaxGFP plasmid with empty vector resulted in decreased expression level of GFP

Titration of pmaxGFP plasmid used in transfection

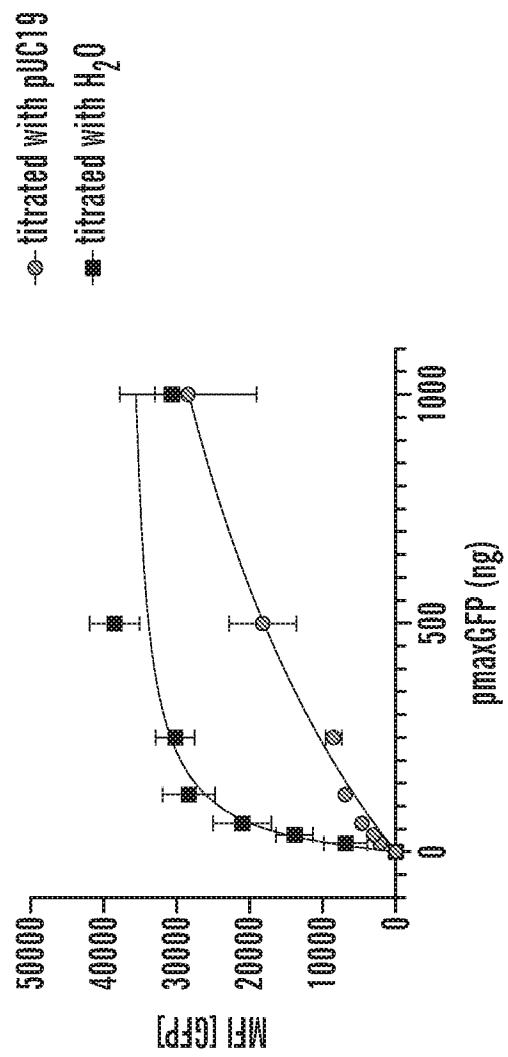
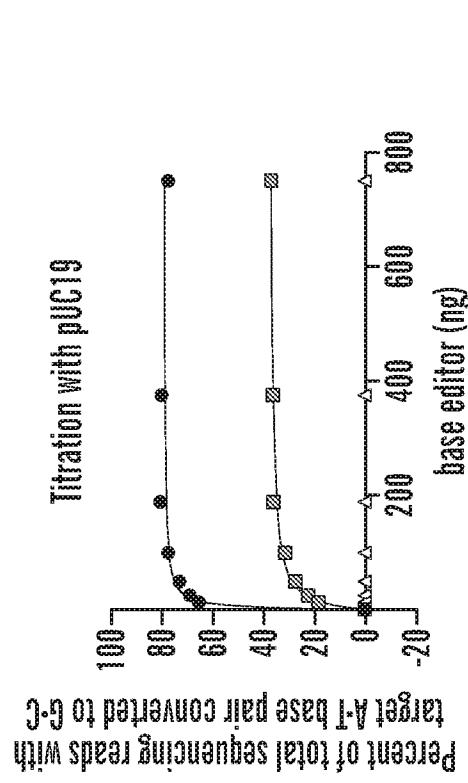
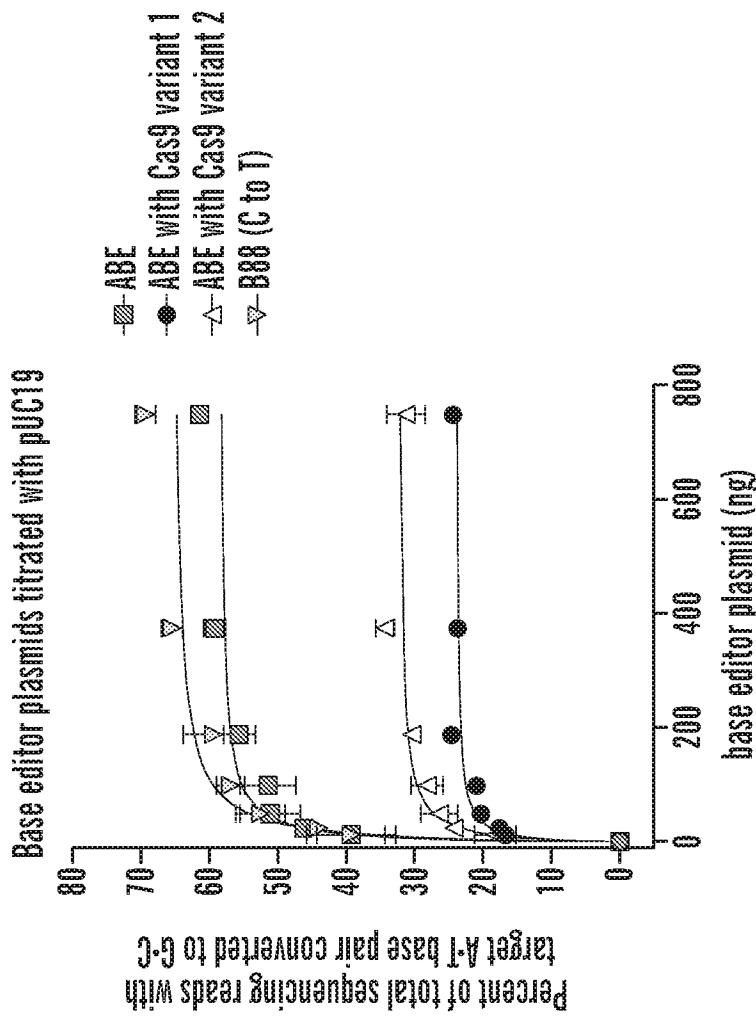
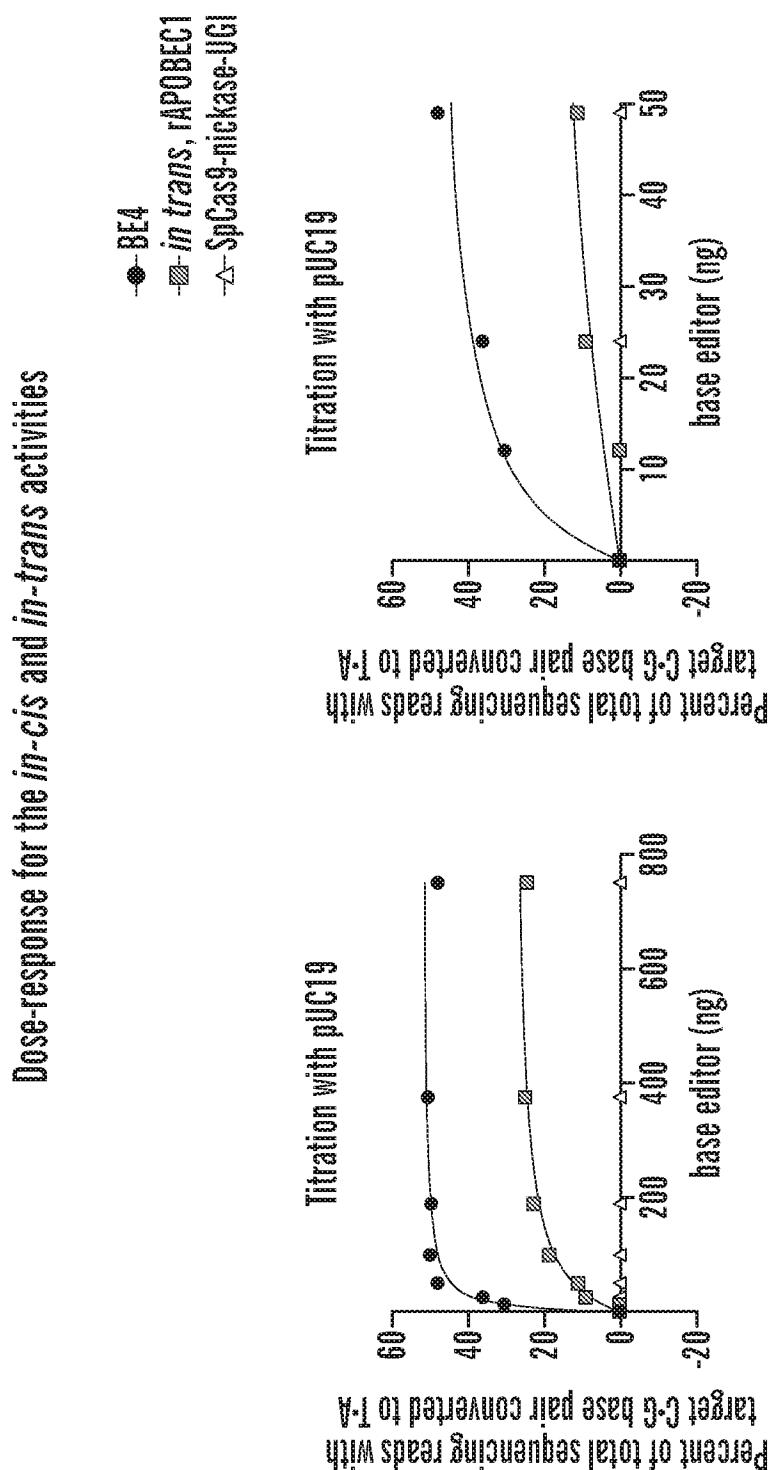




FIG. 16


16/52

Dose-response for the *in-cis* and *in-trans* activities

Titration of base editors with different editing efficiencies

FIG. 17

17/52

A careful exam of the curve at low concentration is being performed.

FIG. 18

Screening of deaminases for reduced spurious deamination

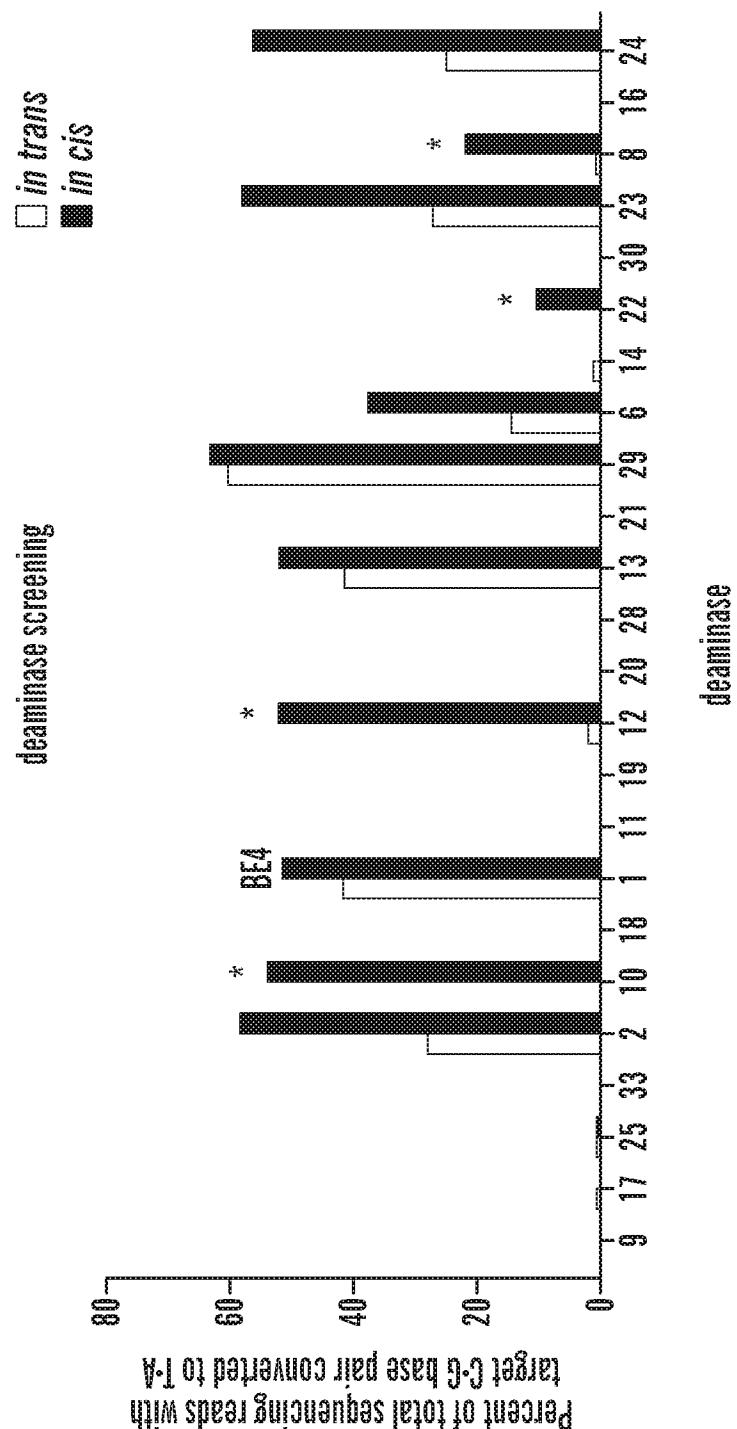


FIG. 19

19/52

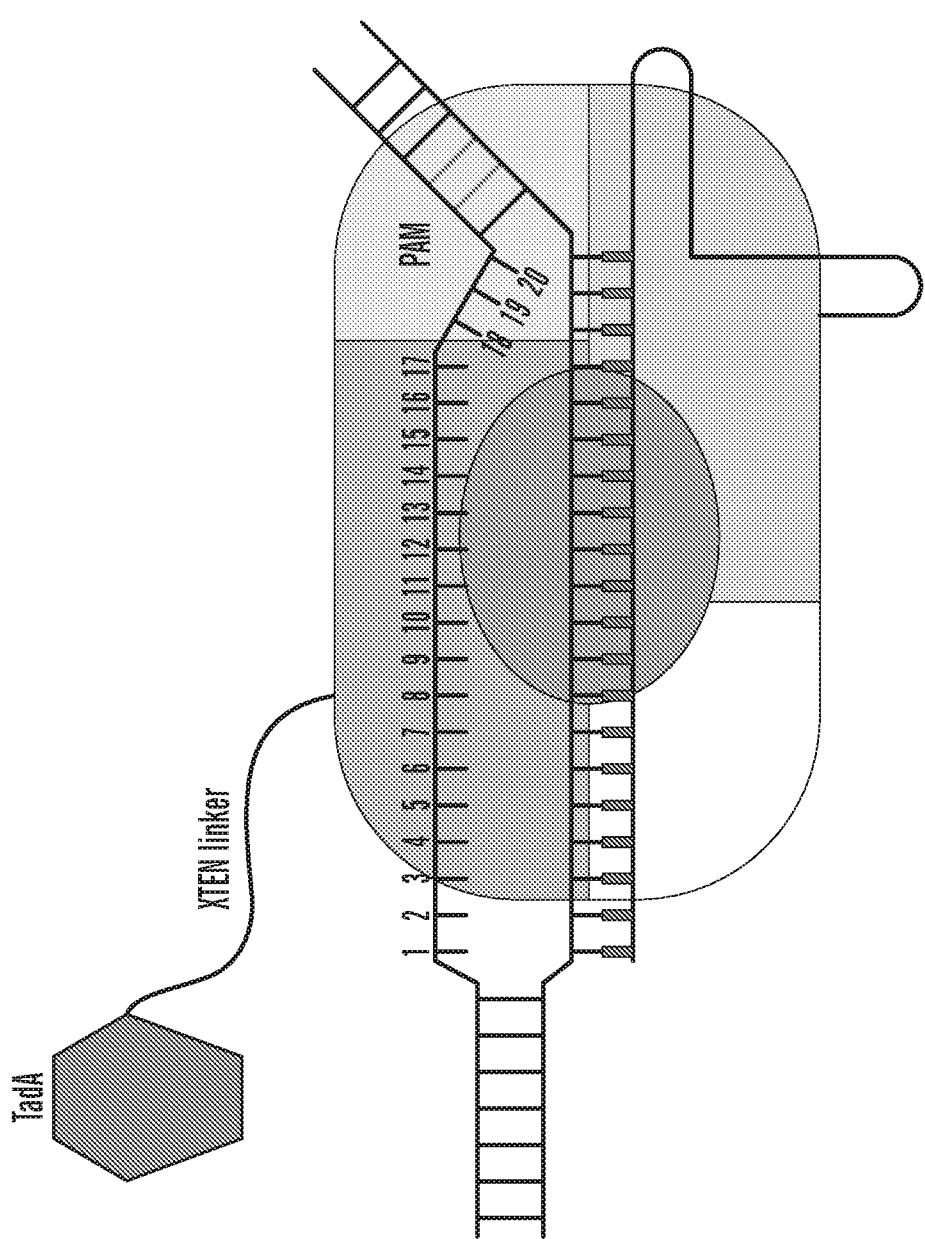
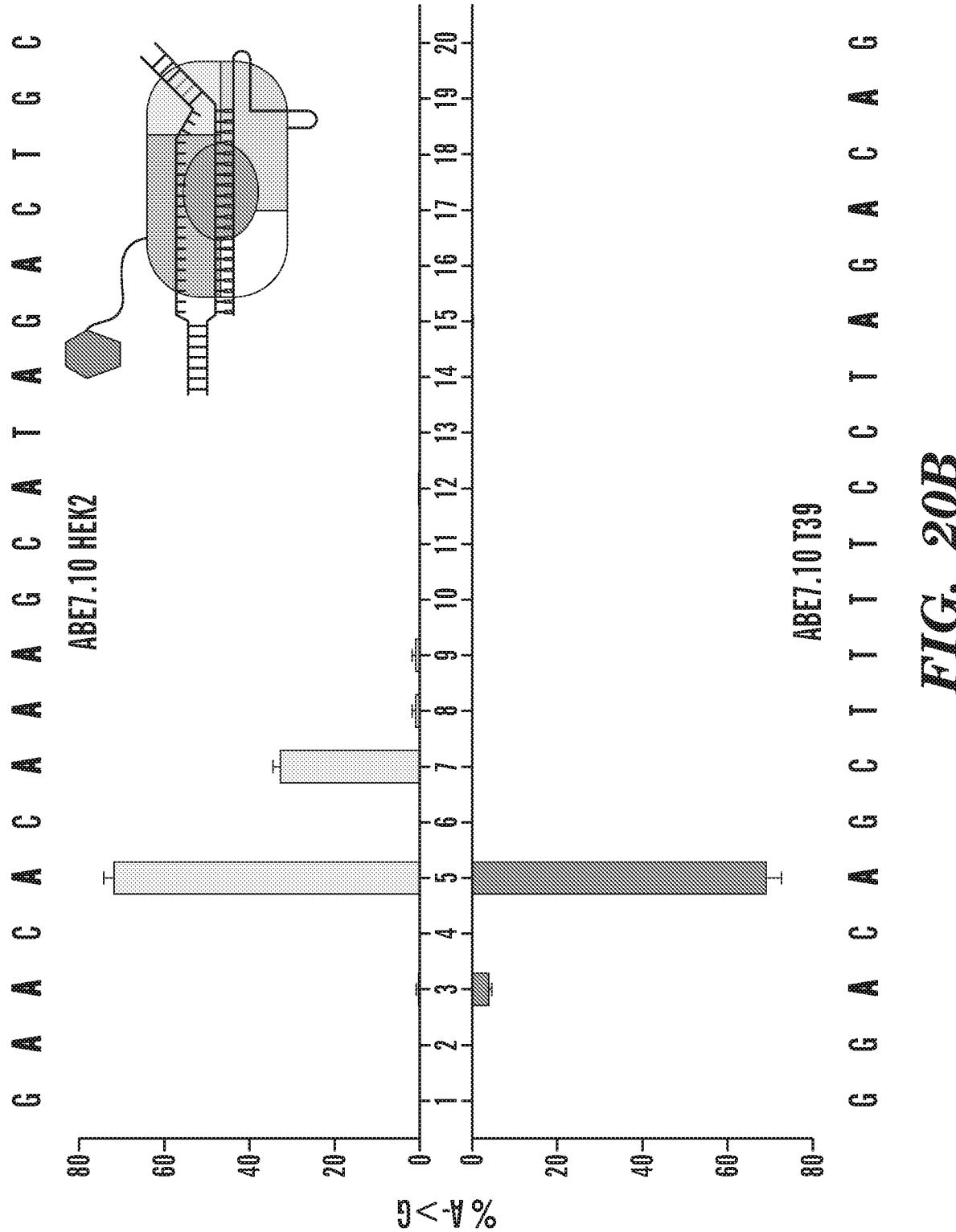
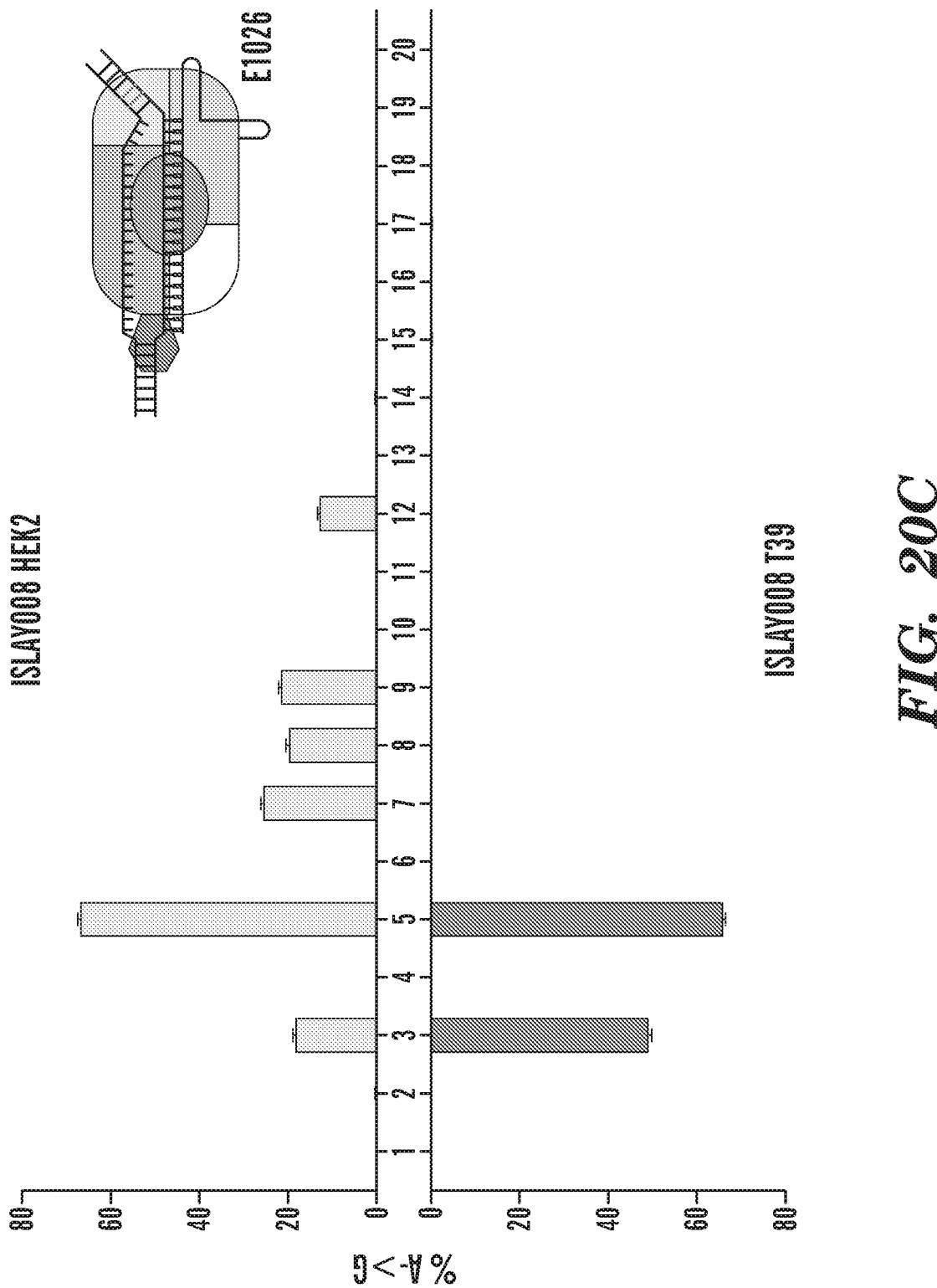
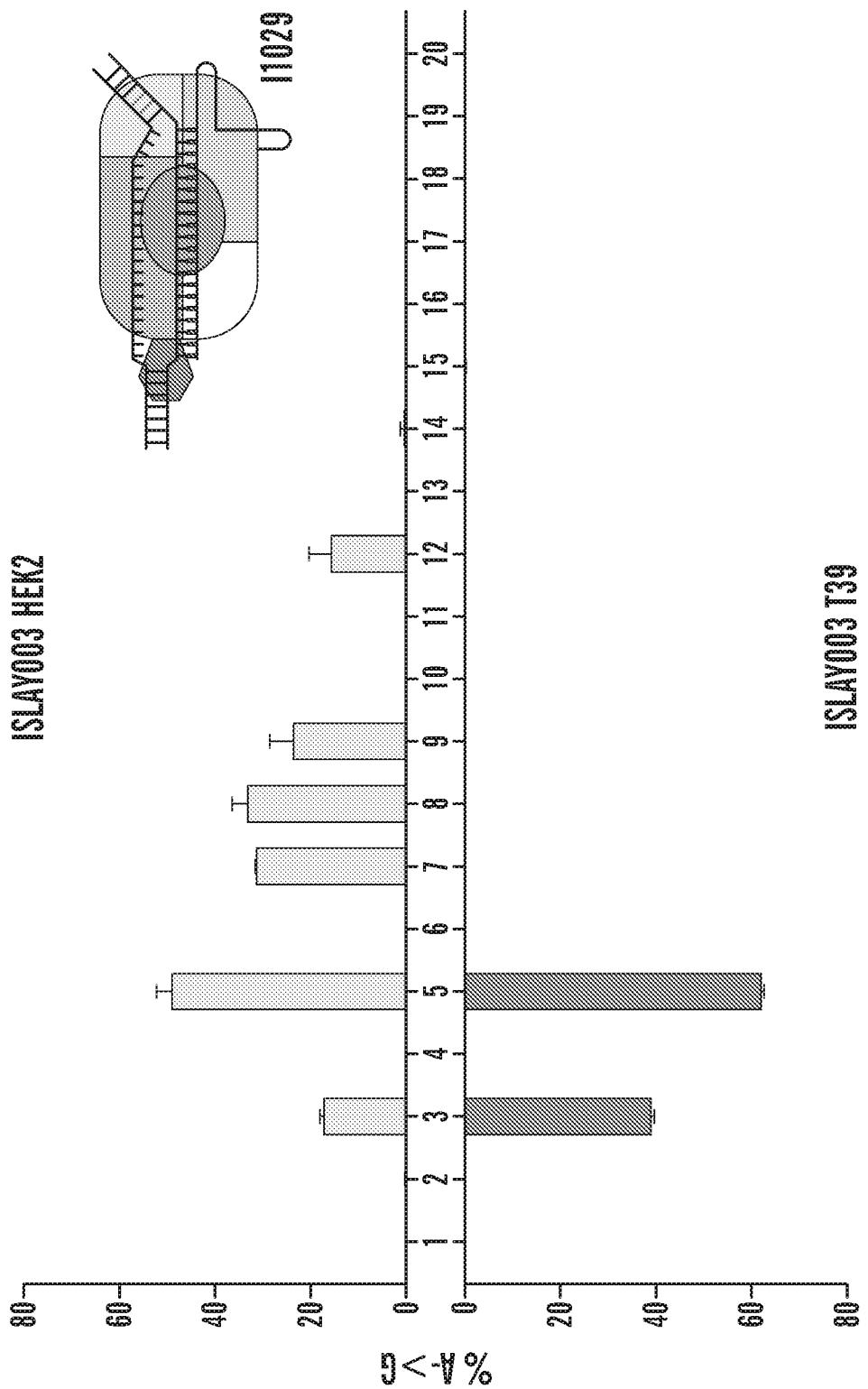
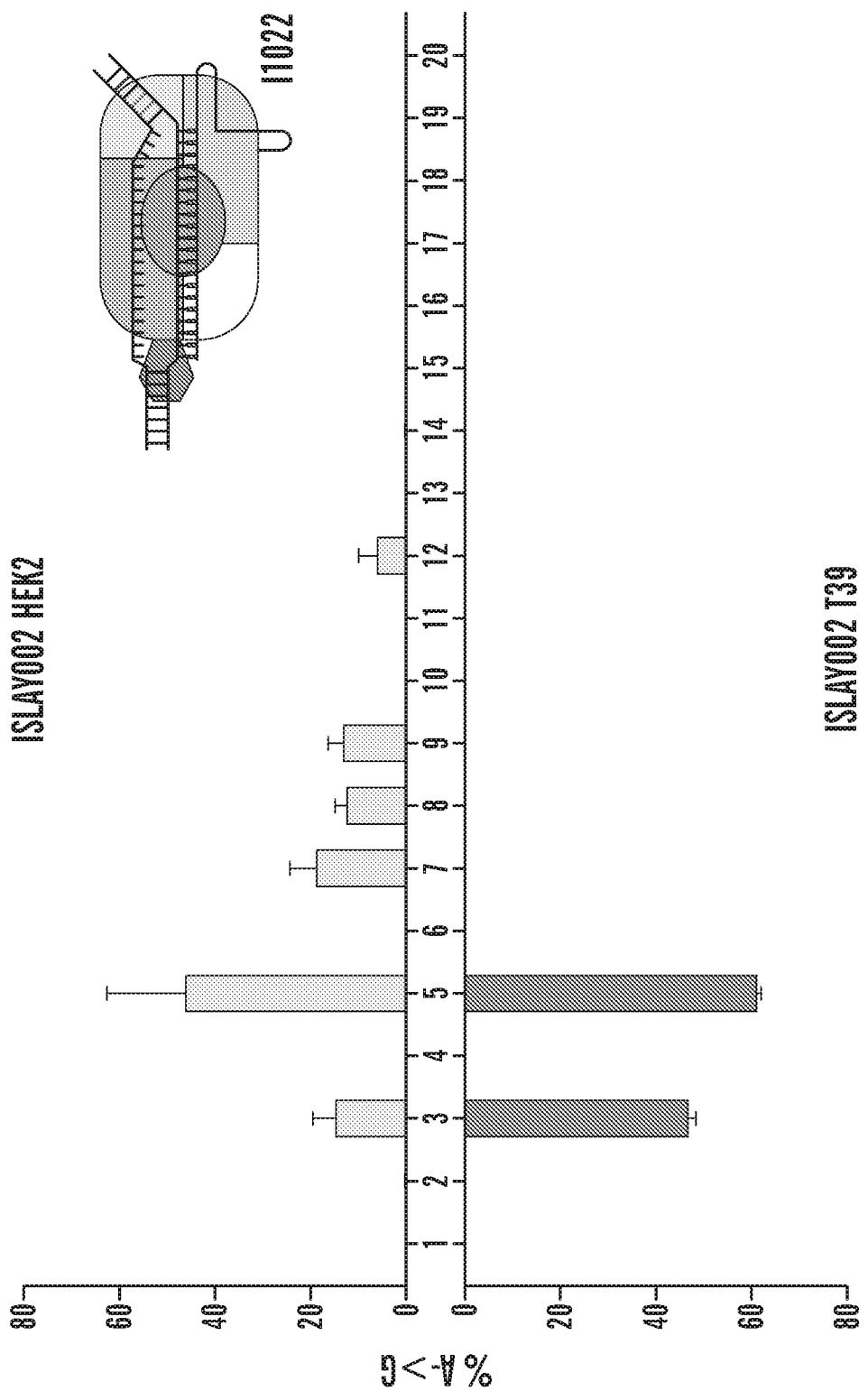




FIG. 20A


20/52


21/52

22/52

23/52

24/52

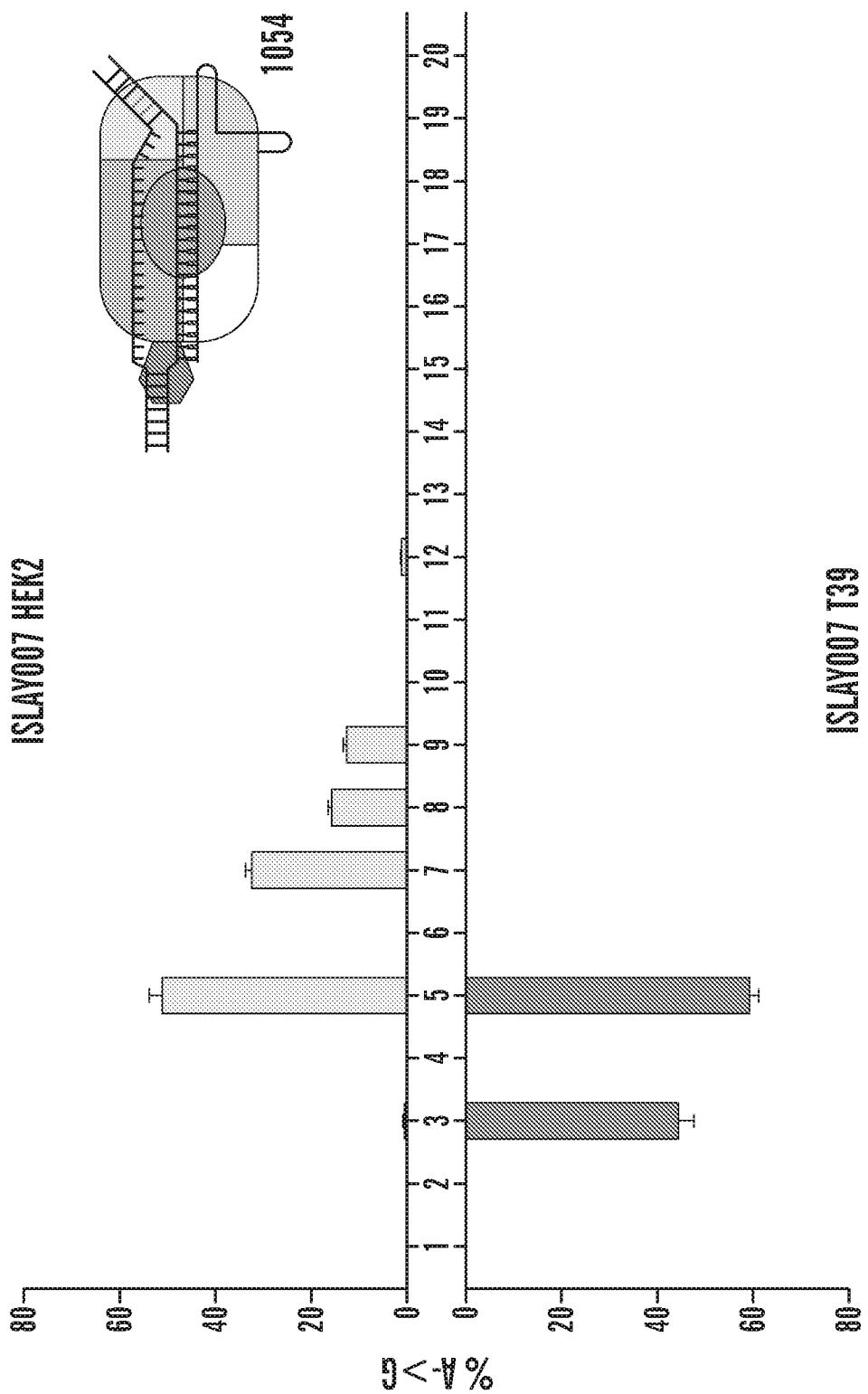
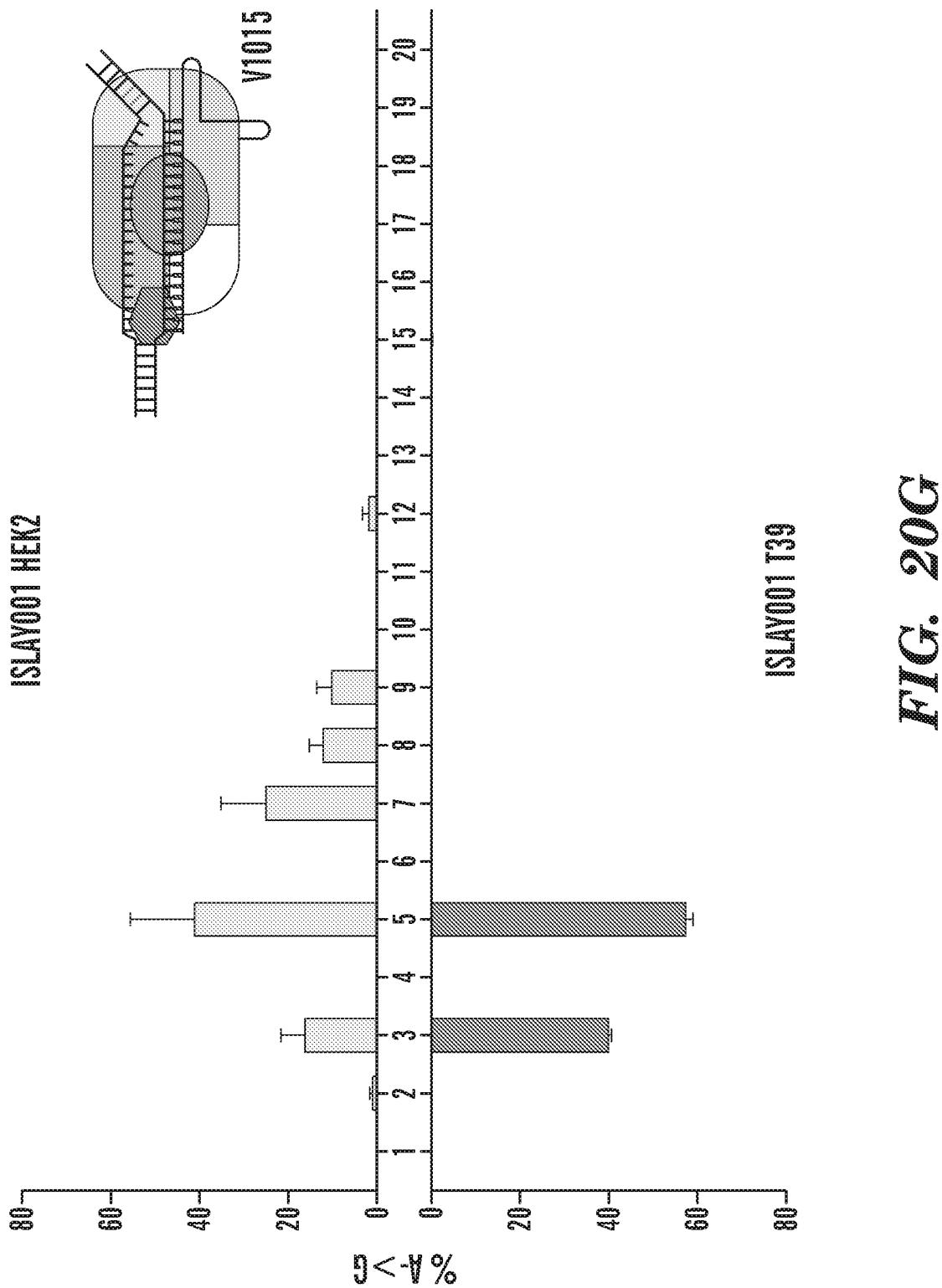
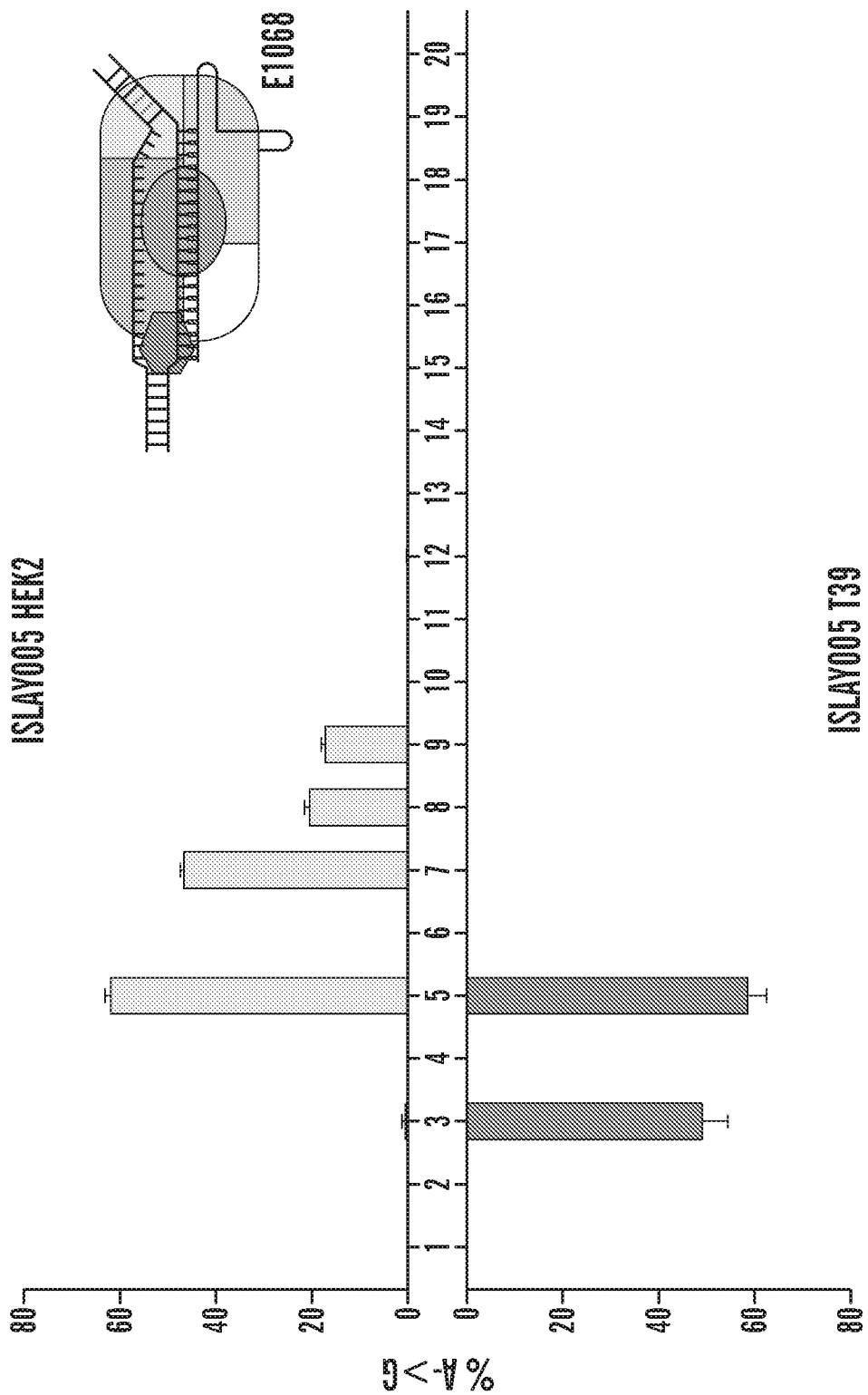
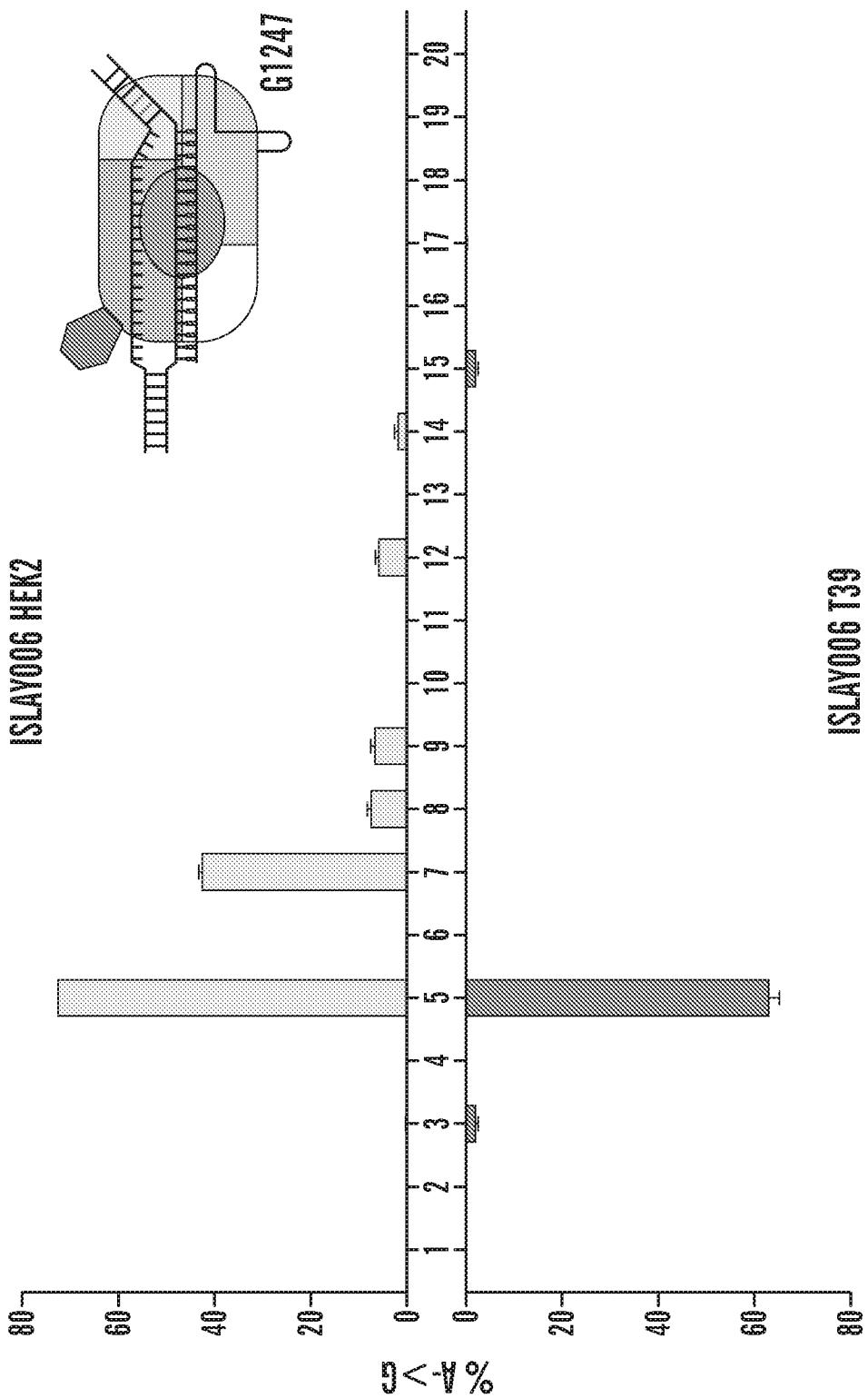
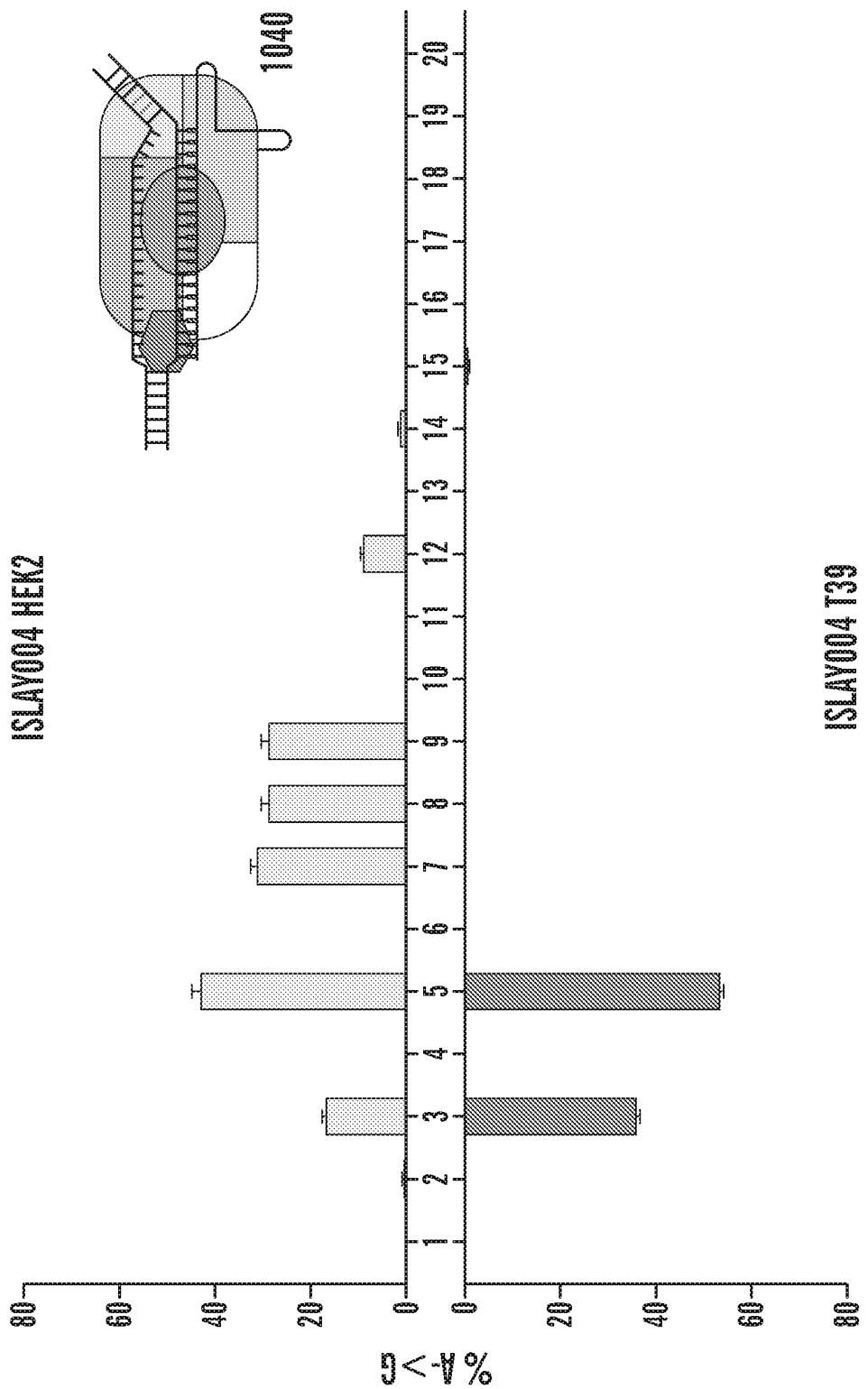
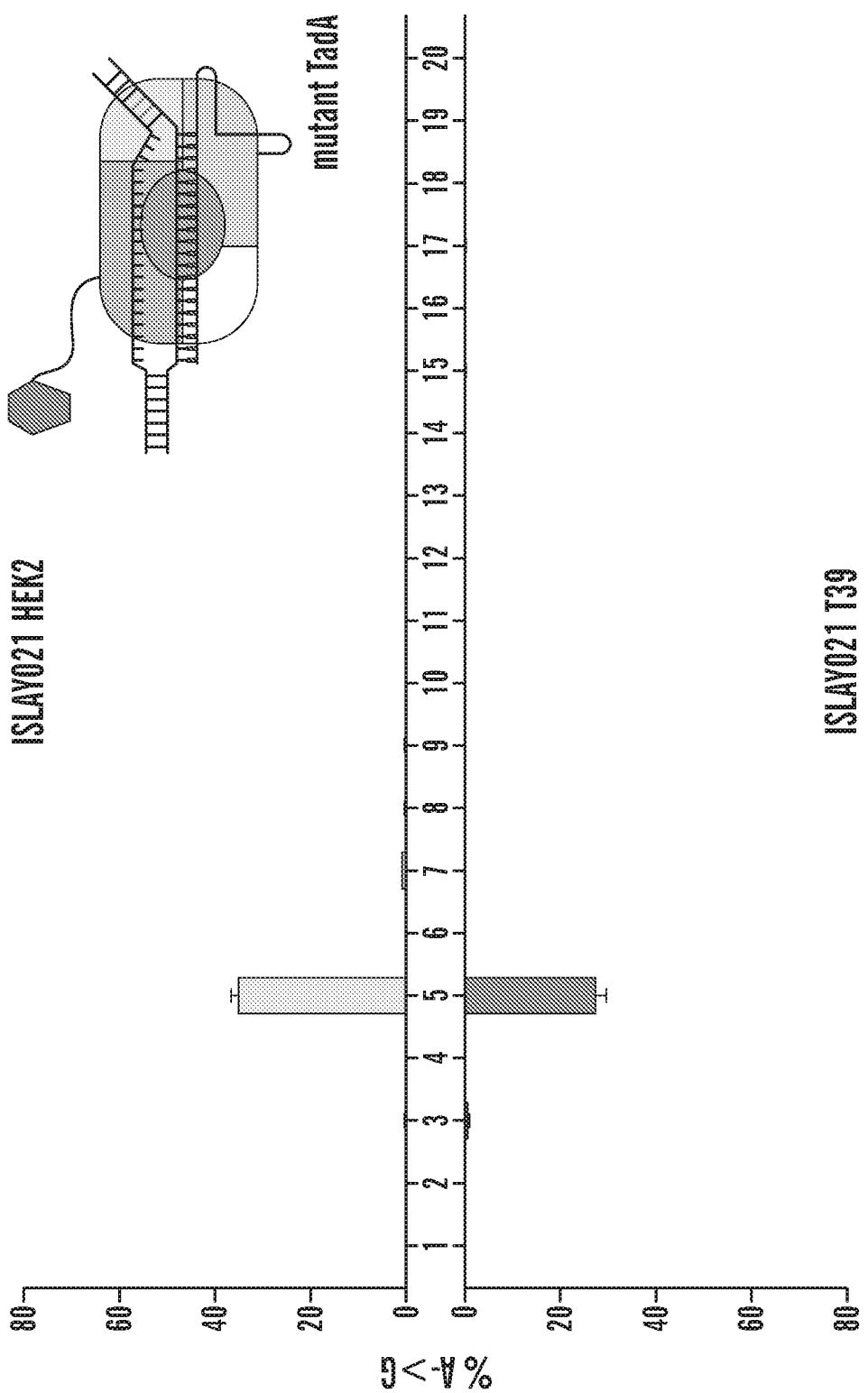
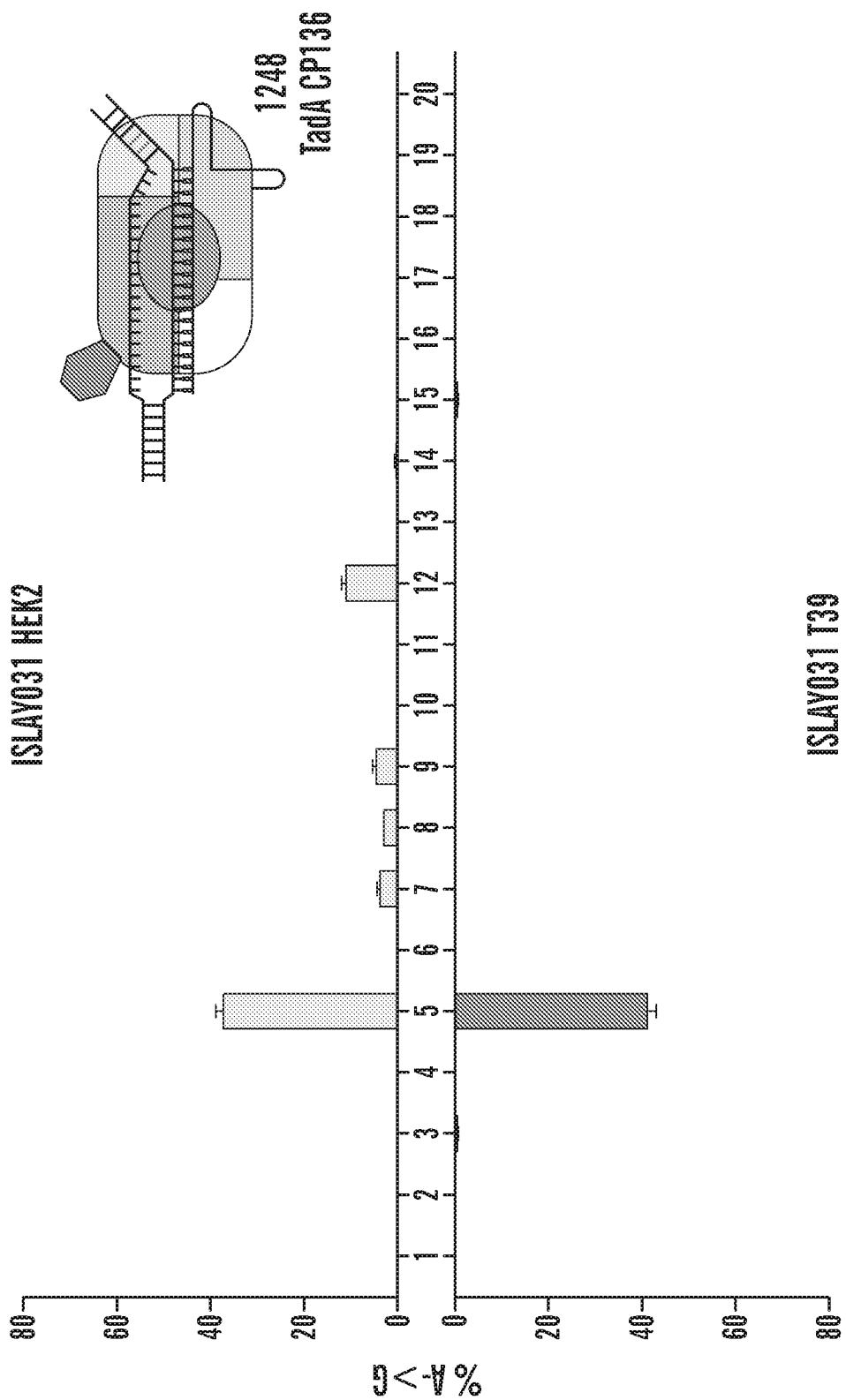




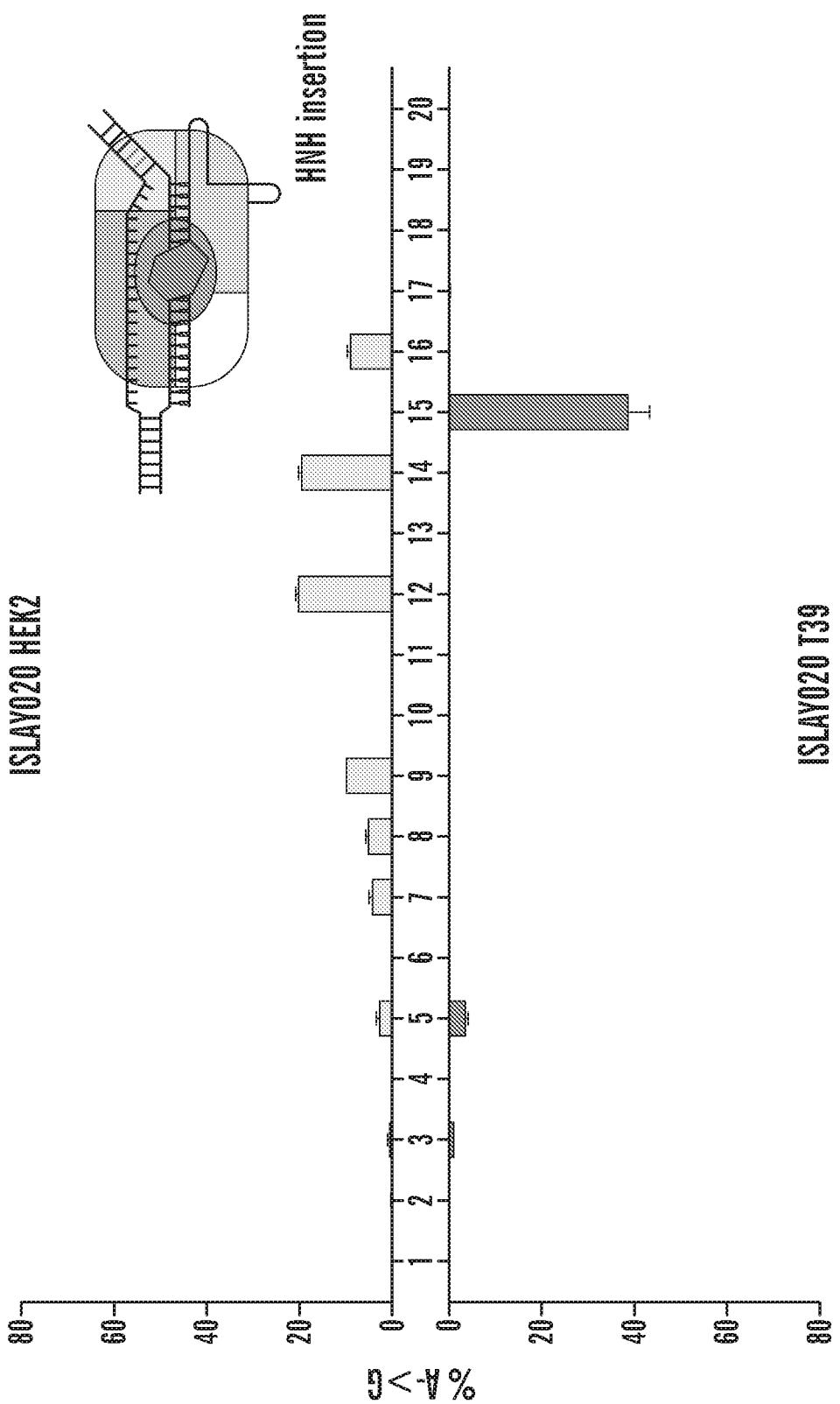
FIG. 20F

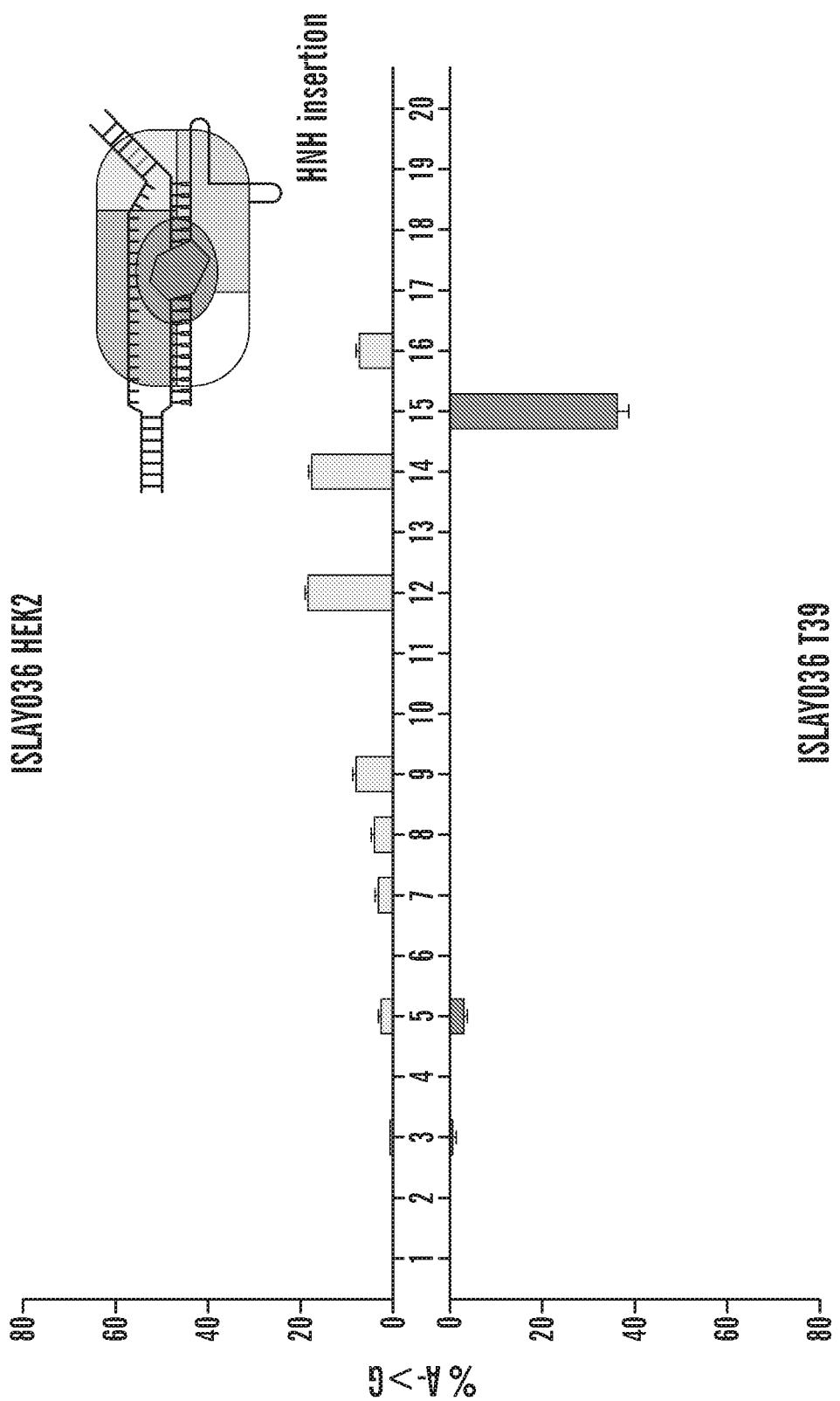

25/52

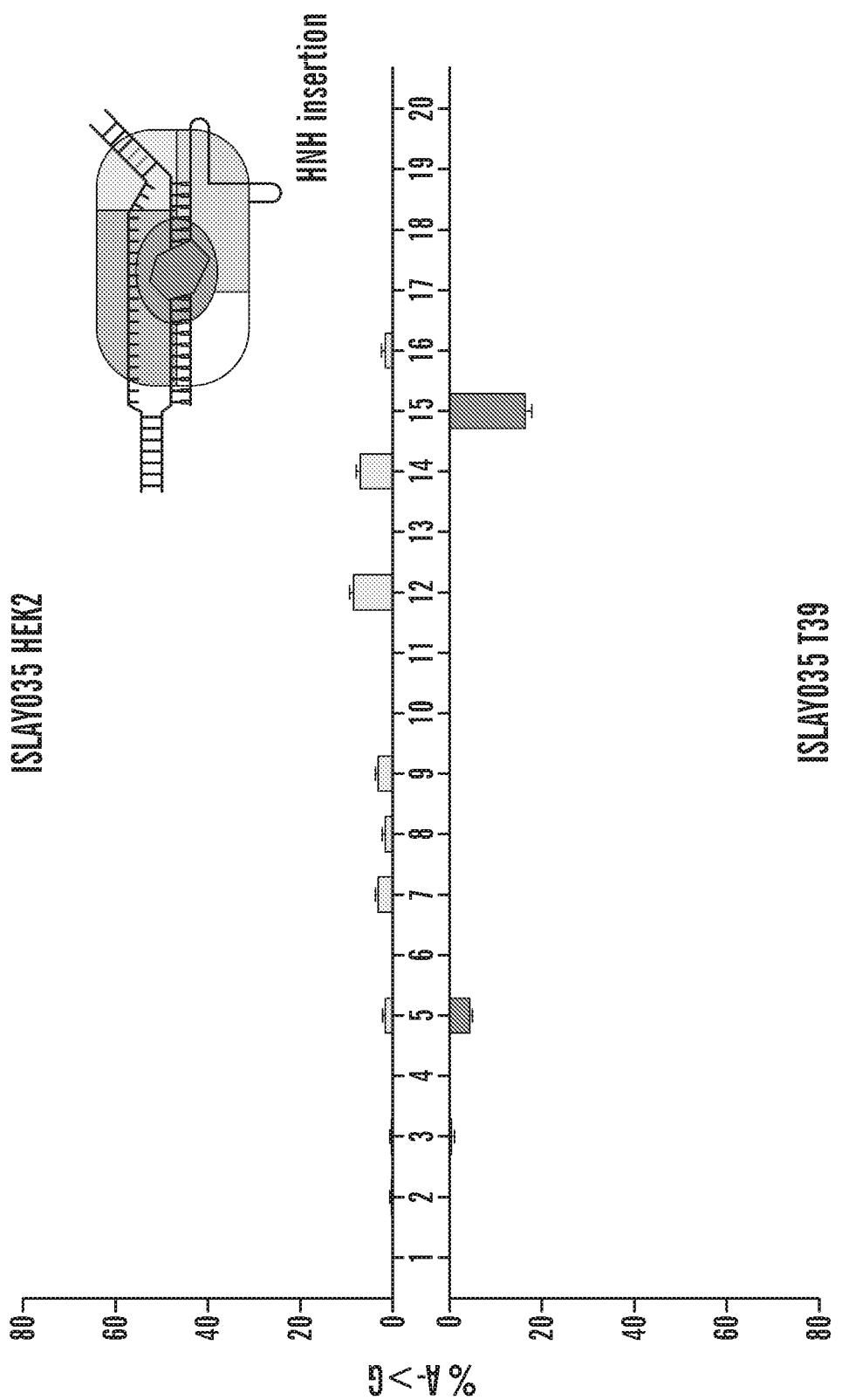

26/52

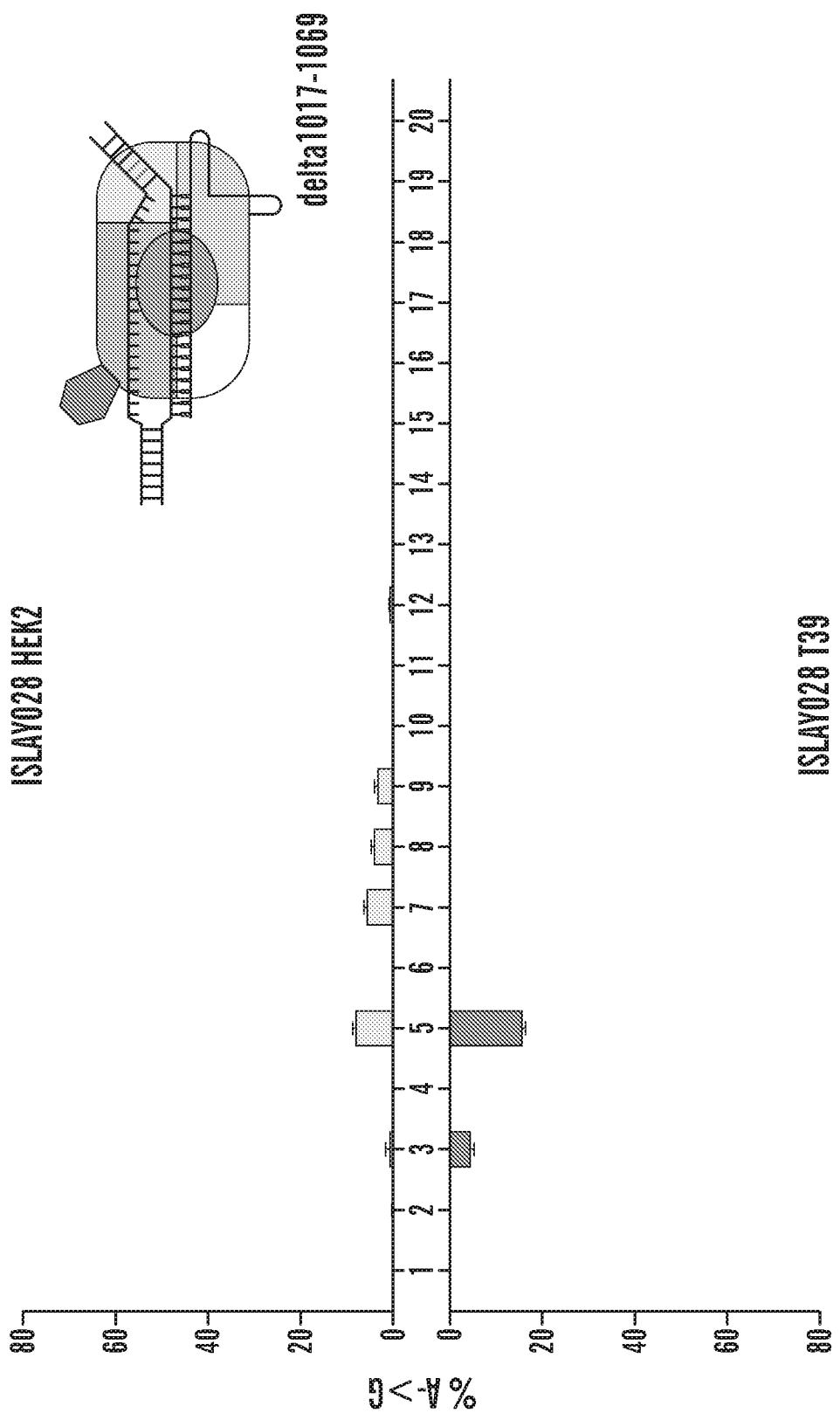

27/52

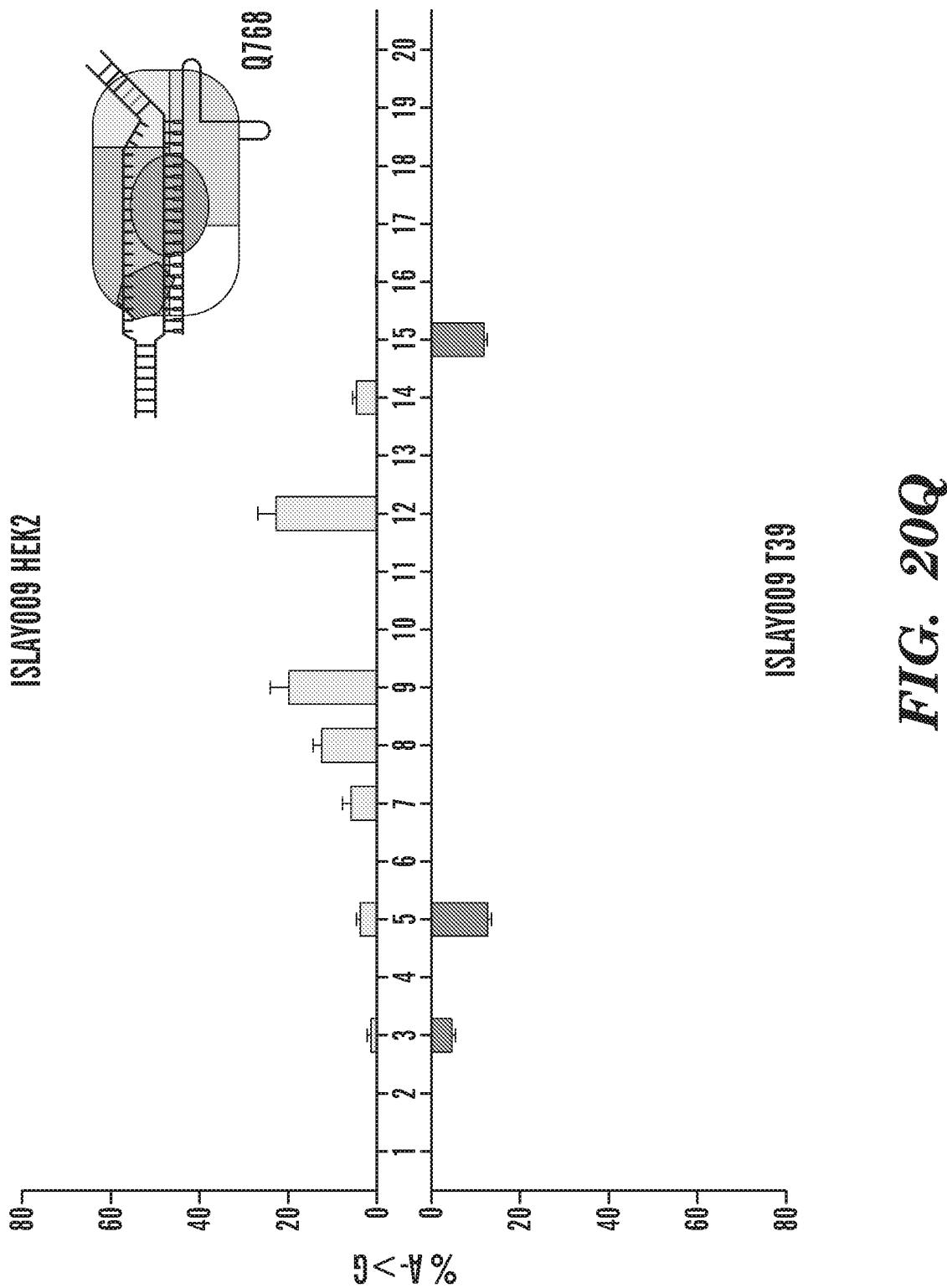

28/52

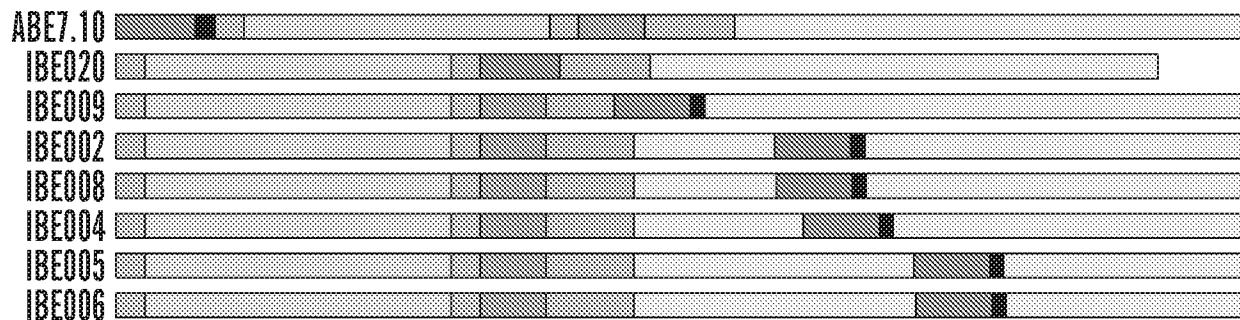
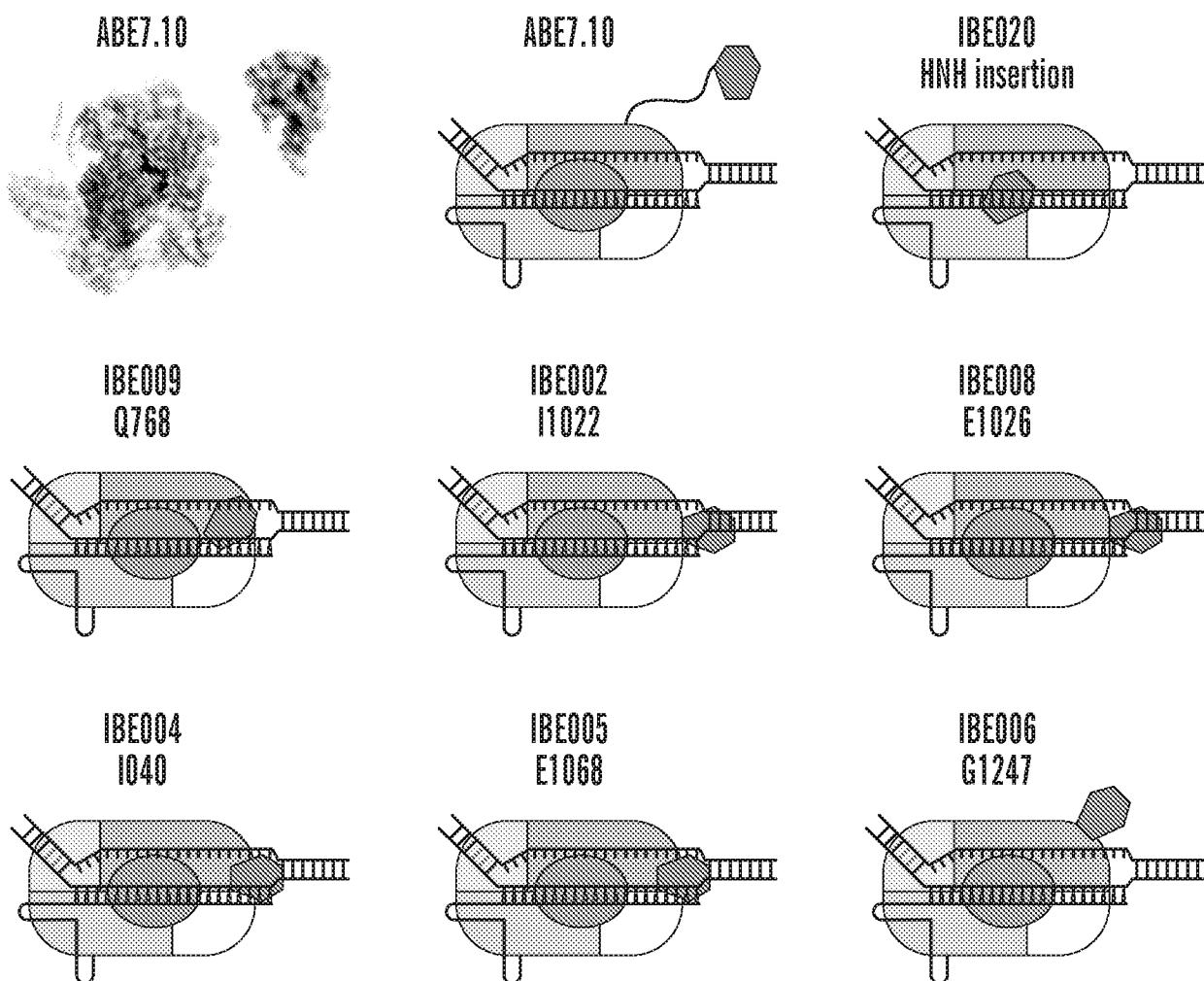

29/52


30/52


31/52


32/52


33/52



34/52

35/52

36/52

FIG. 21A**FIG. 21B**

37/52

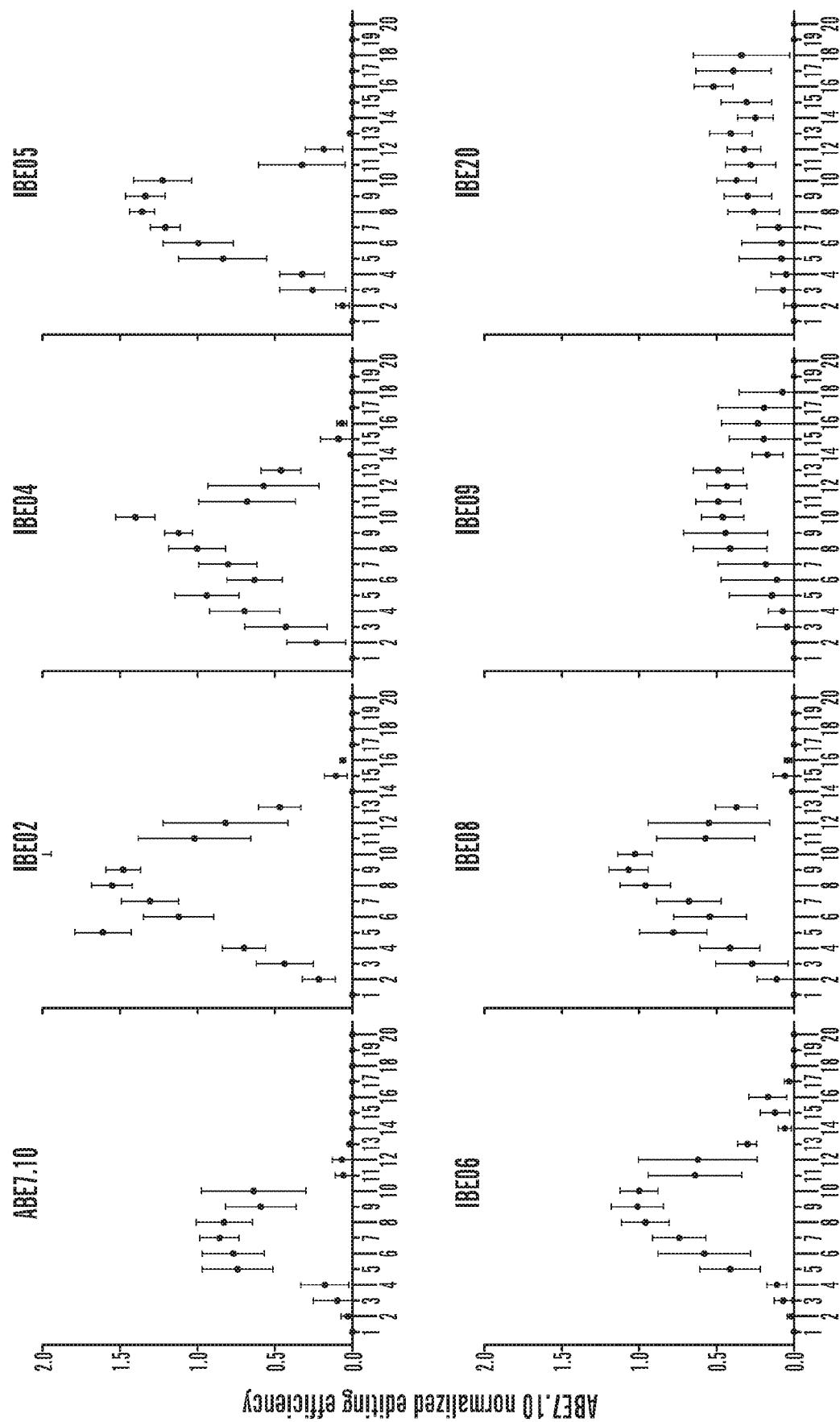
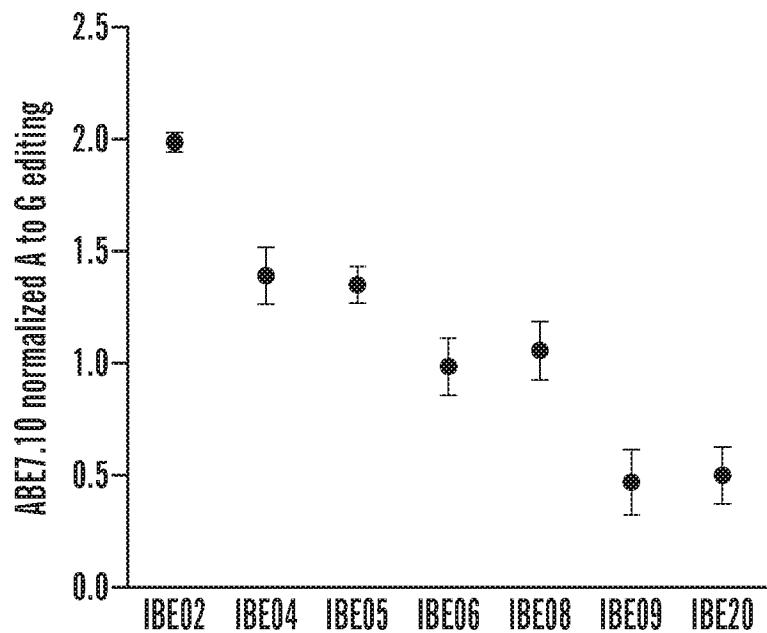
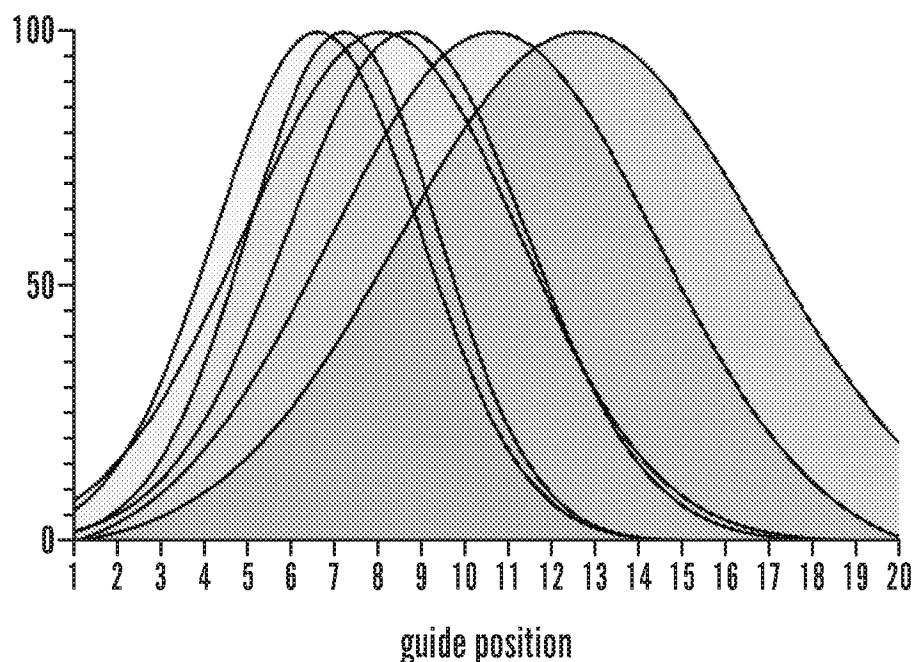




FIG. 22A

38/52

FIG. 22B

FIG. 22C

39/52

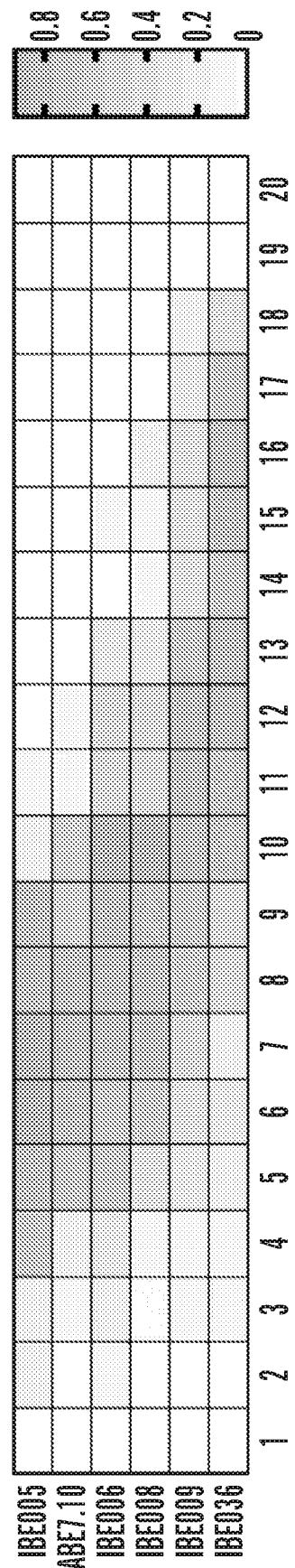


FIG. 22D

40/52

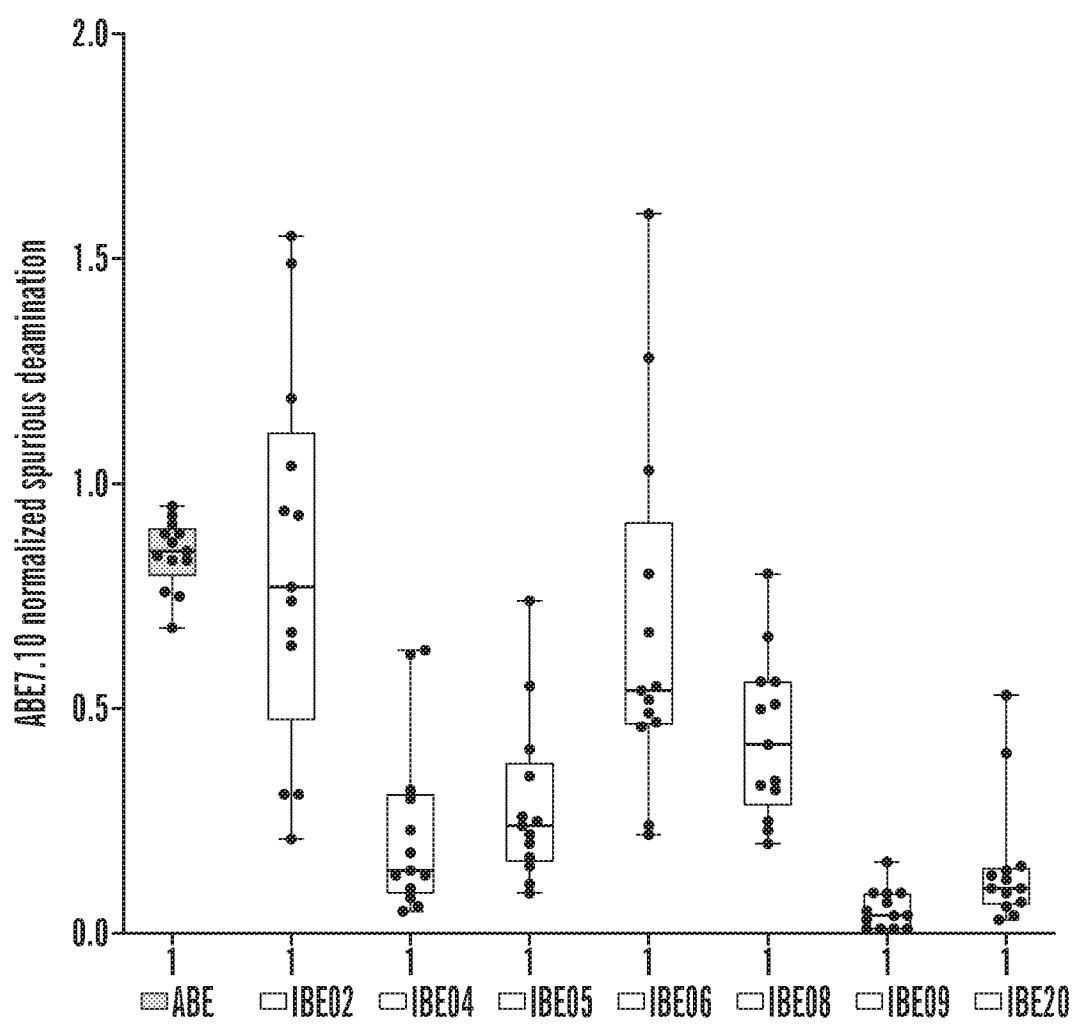


FIG. 23

41/52

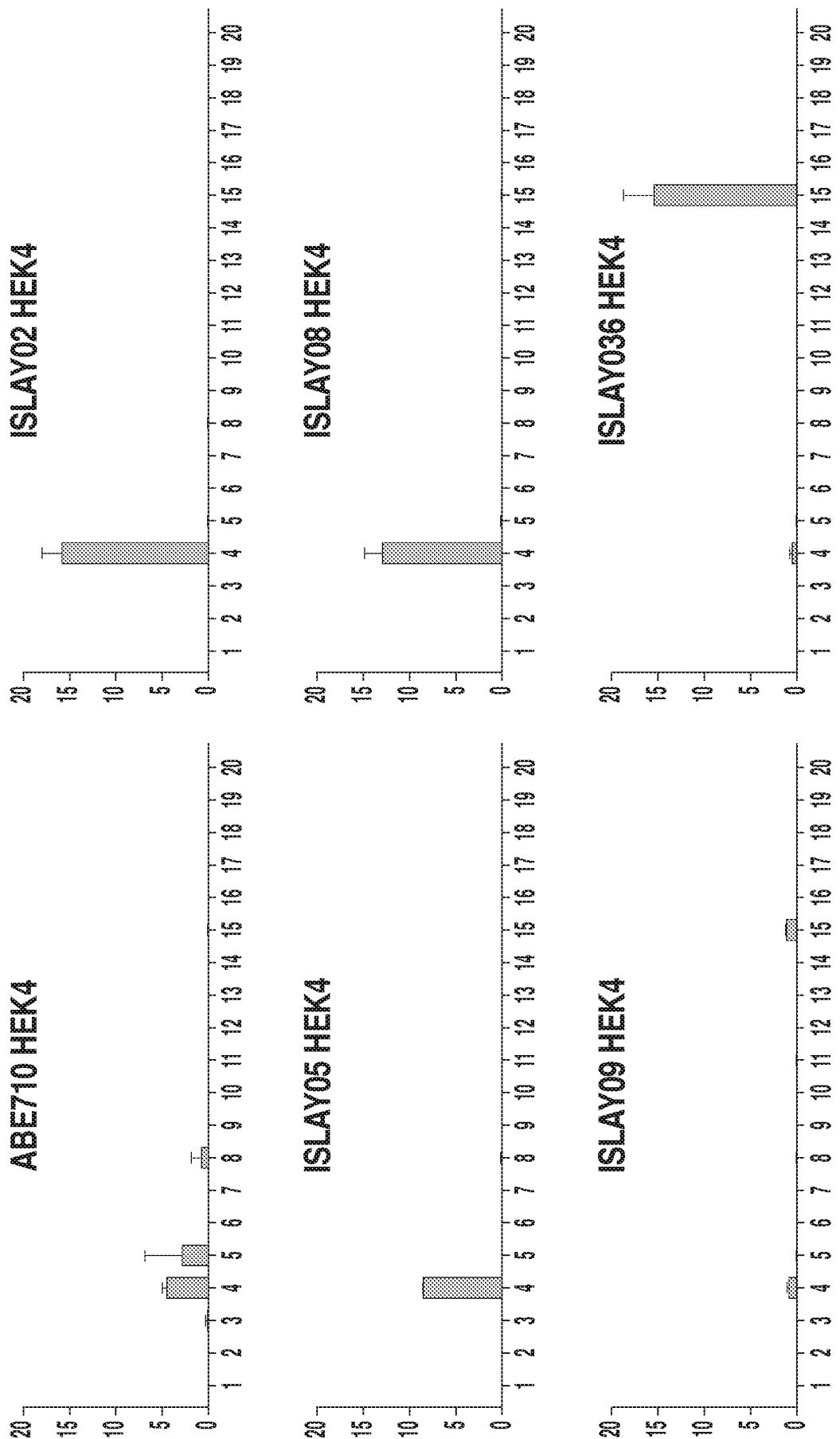


FIG. 24A

42/52

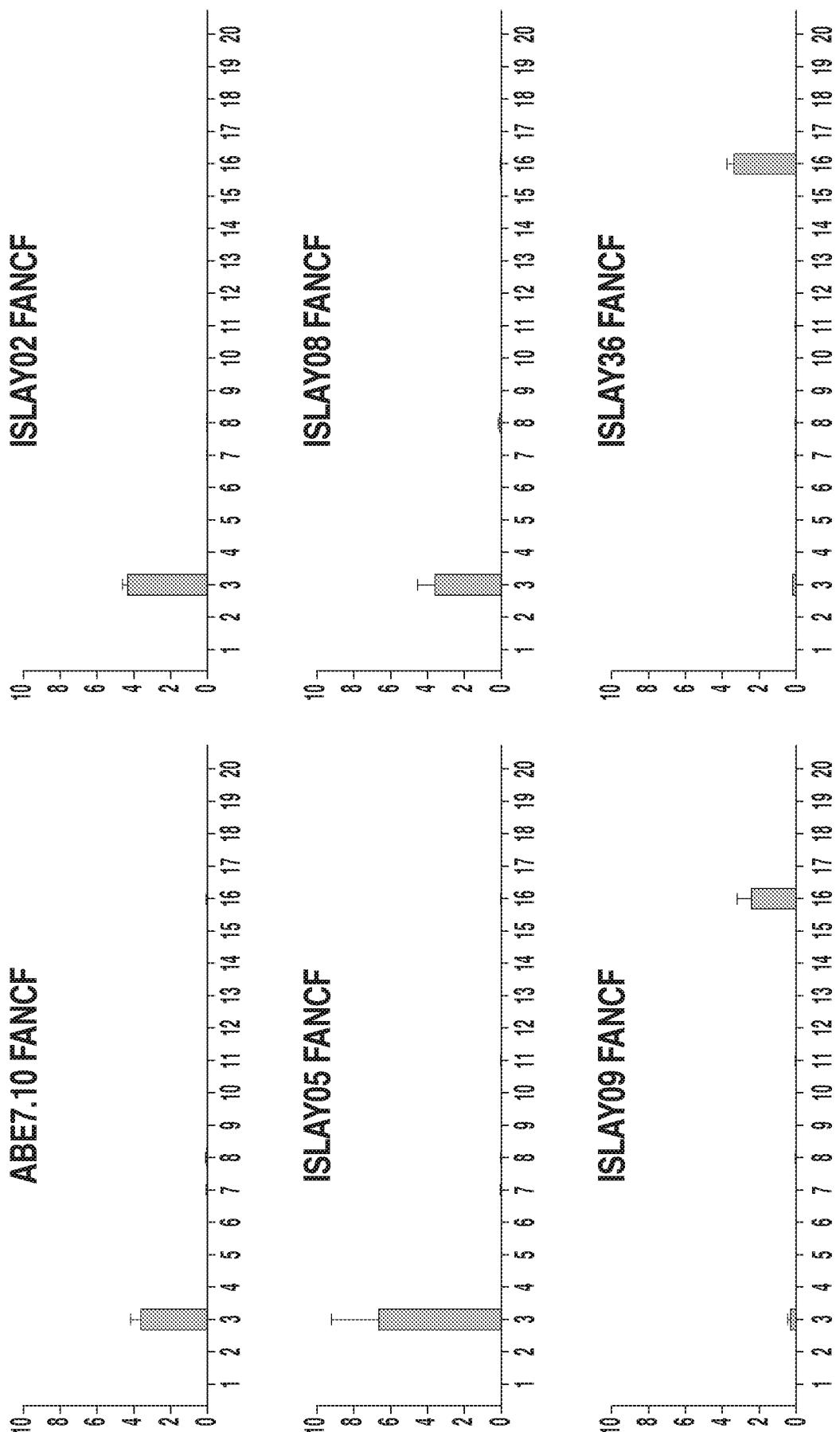


FIG. 24B

43/52

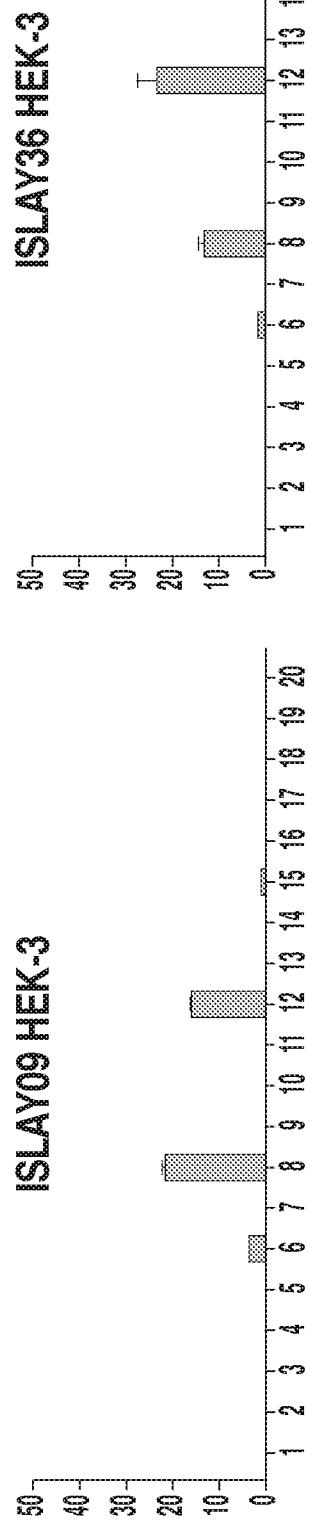
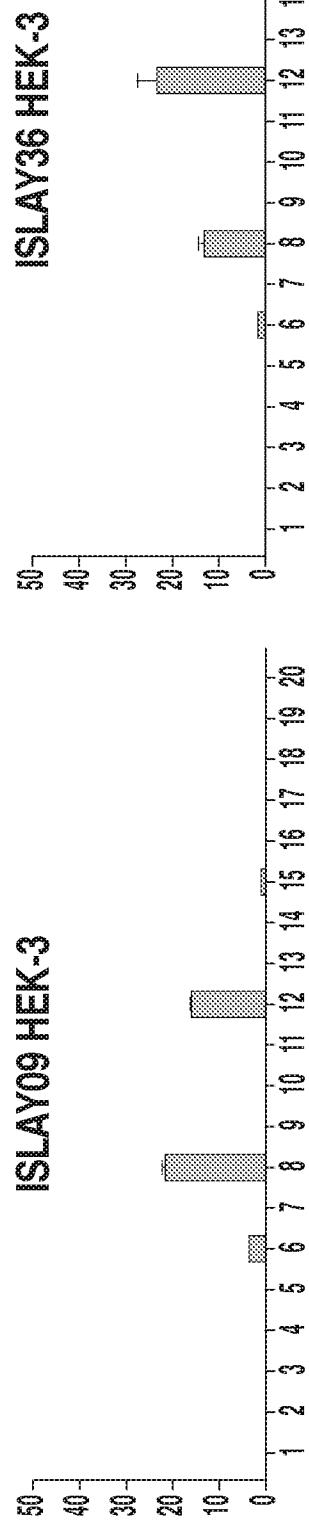
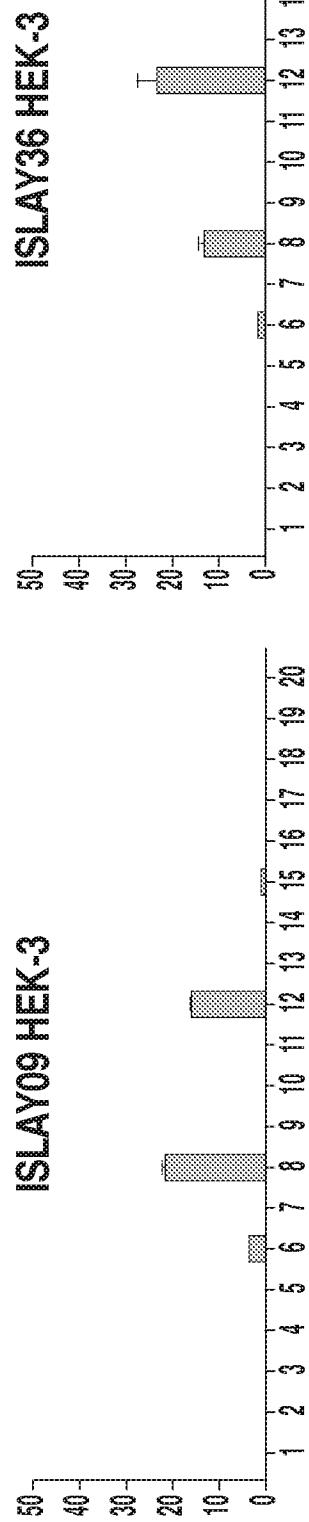
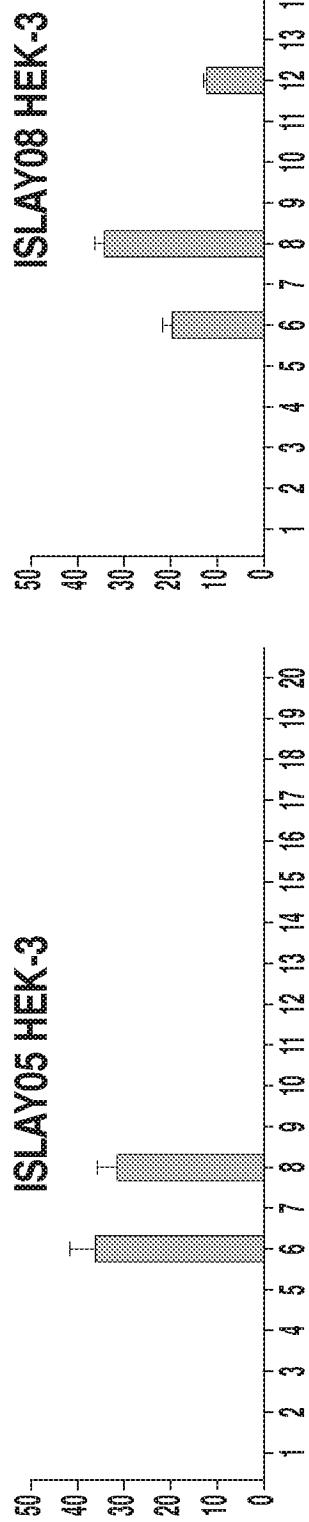
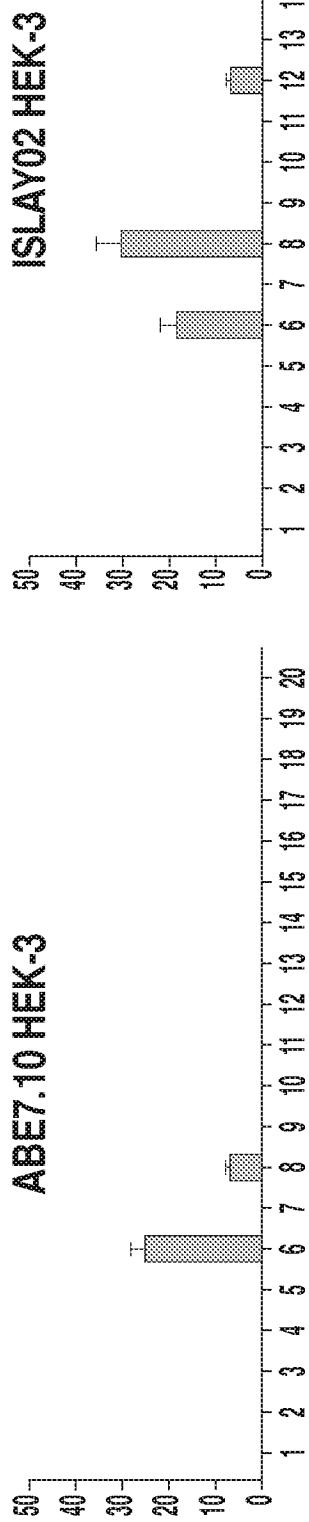






FIG. 24C

44/52

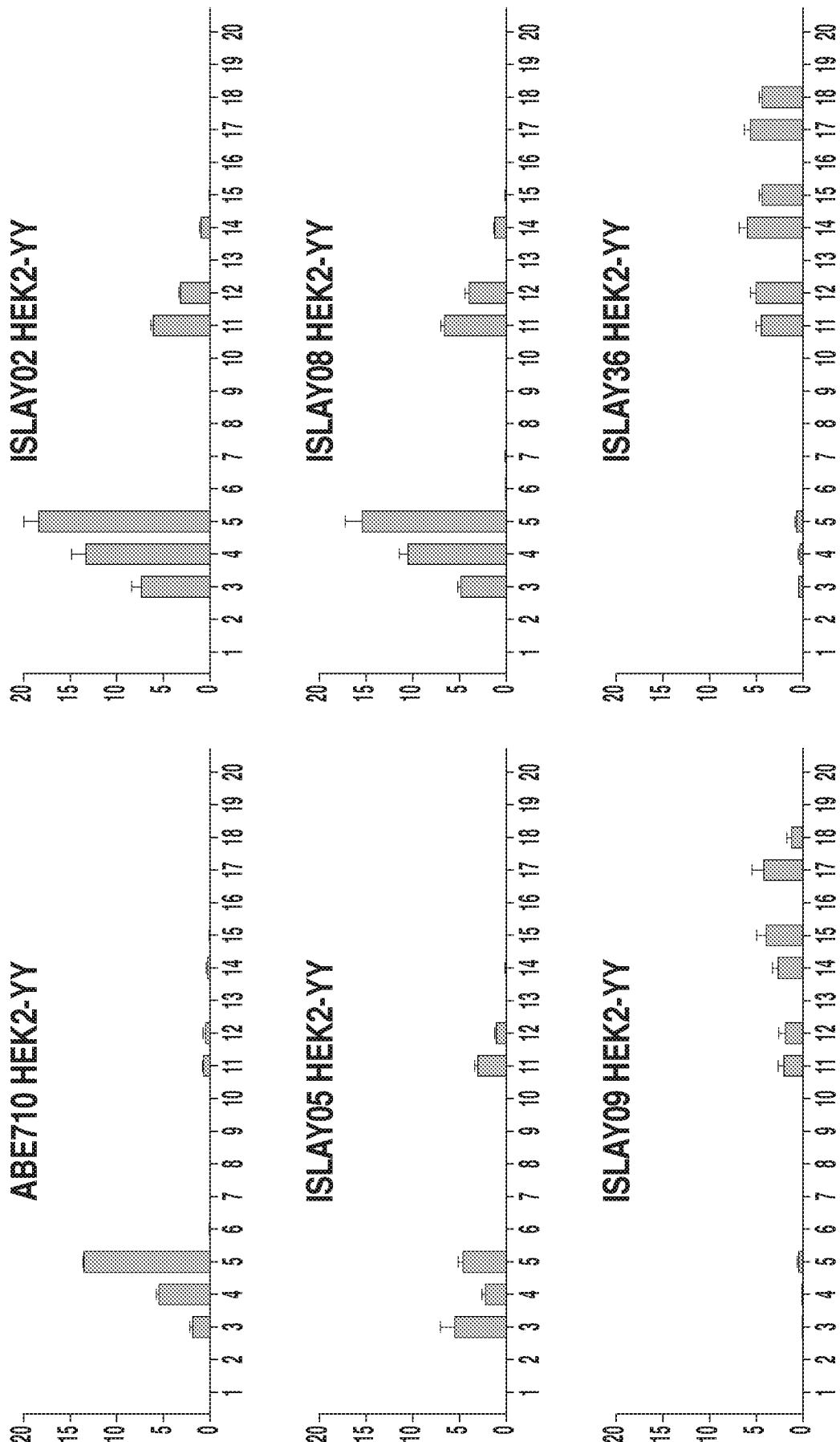


FIG. 24D

45/52

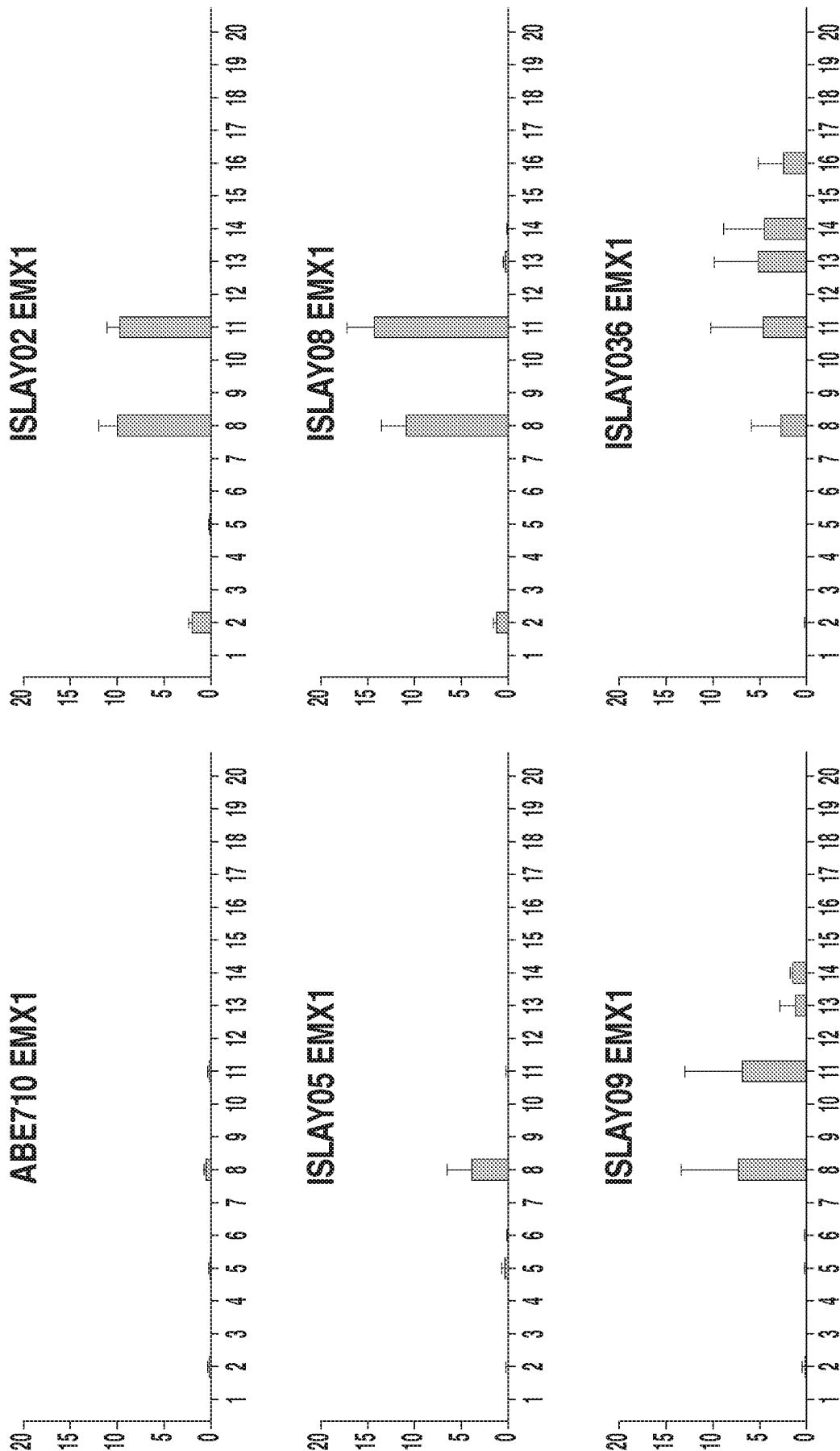
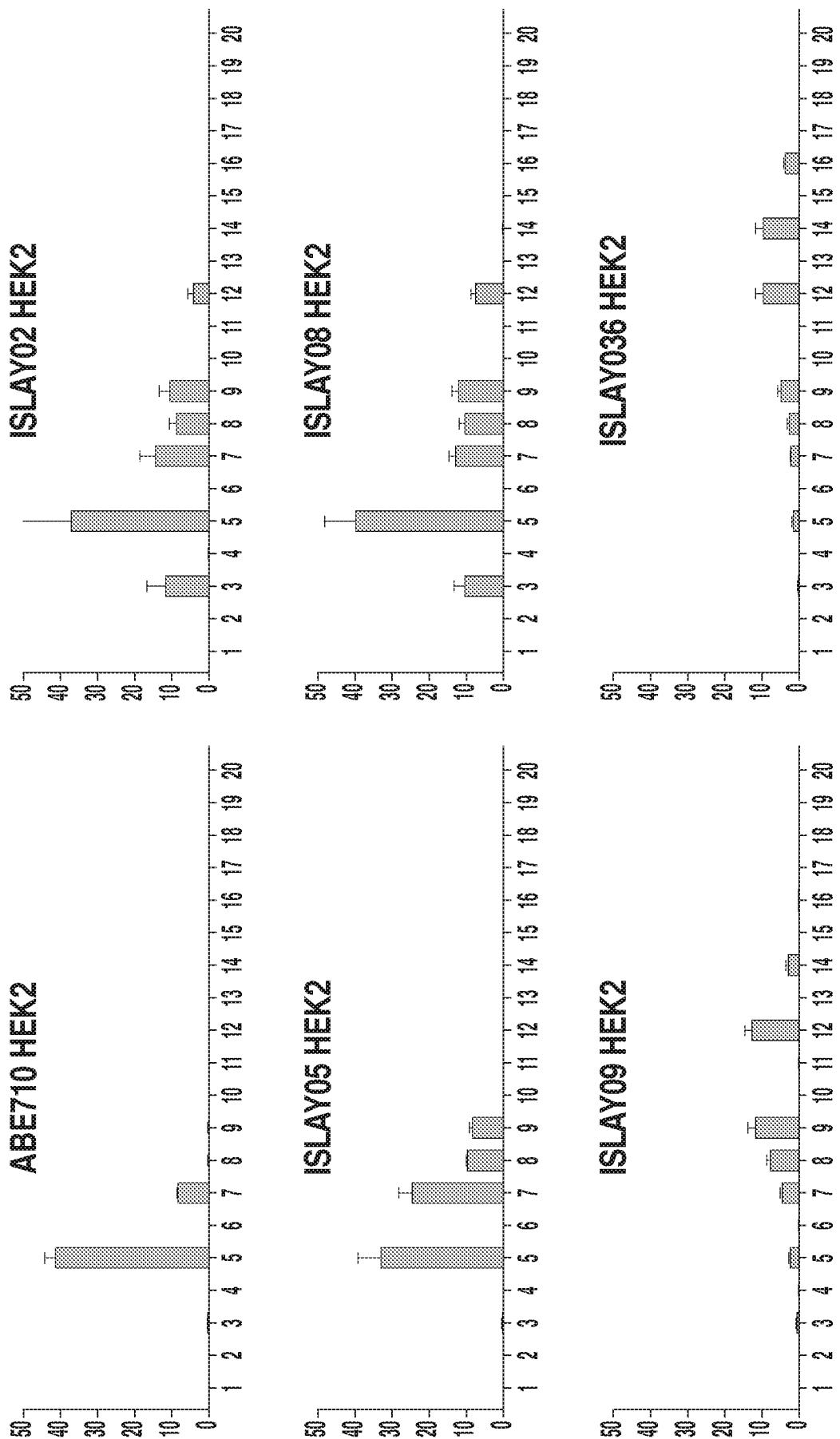
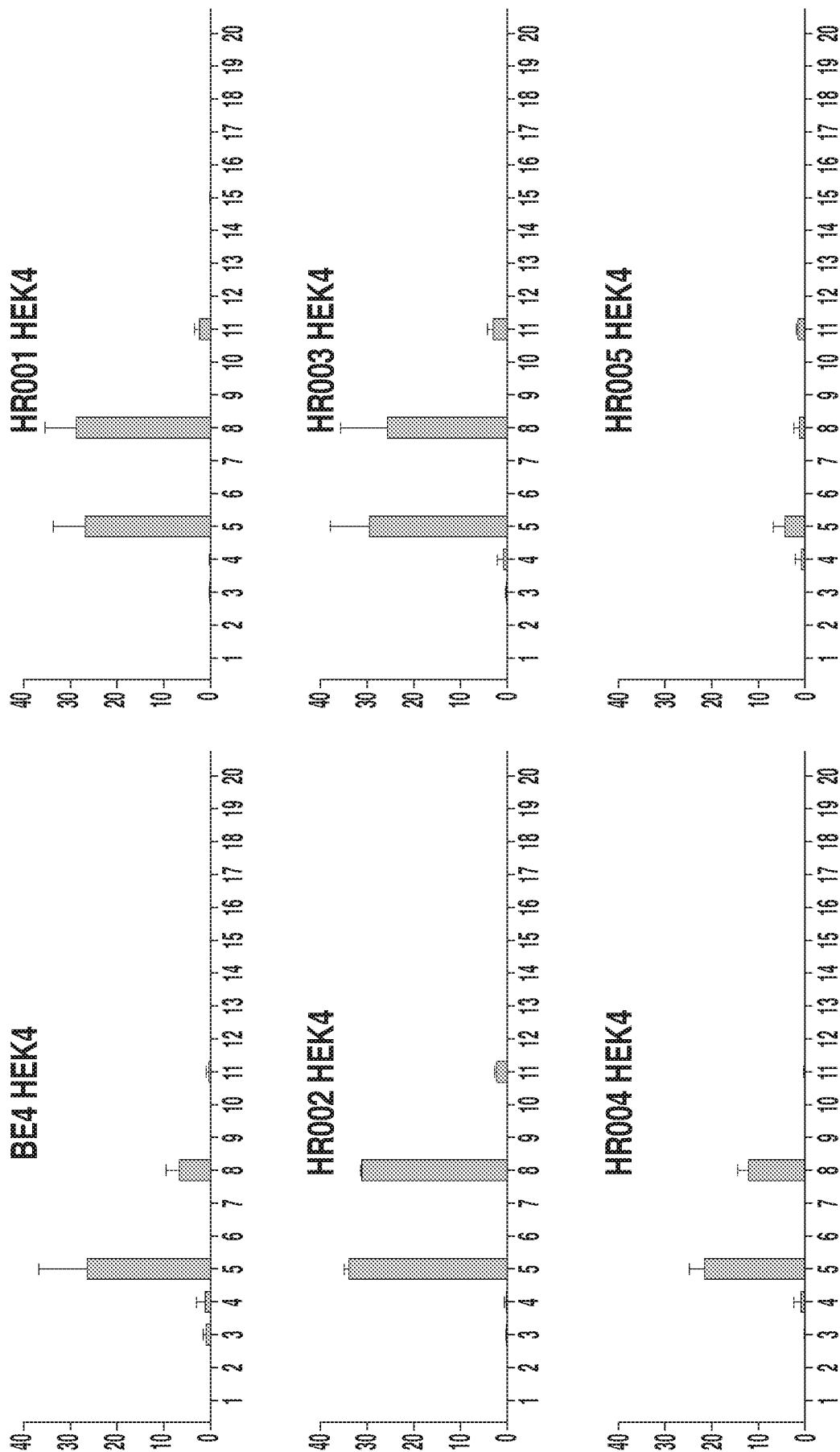
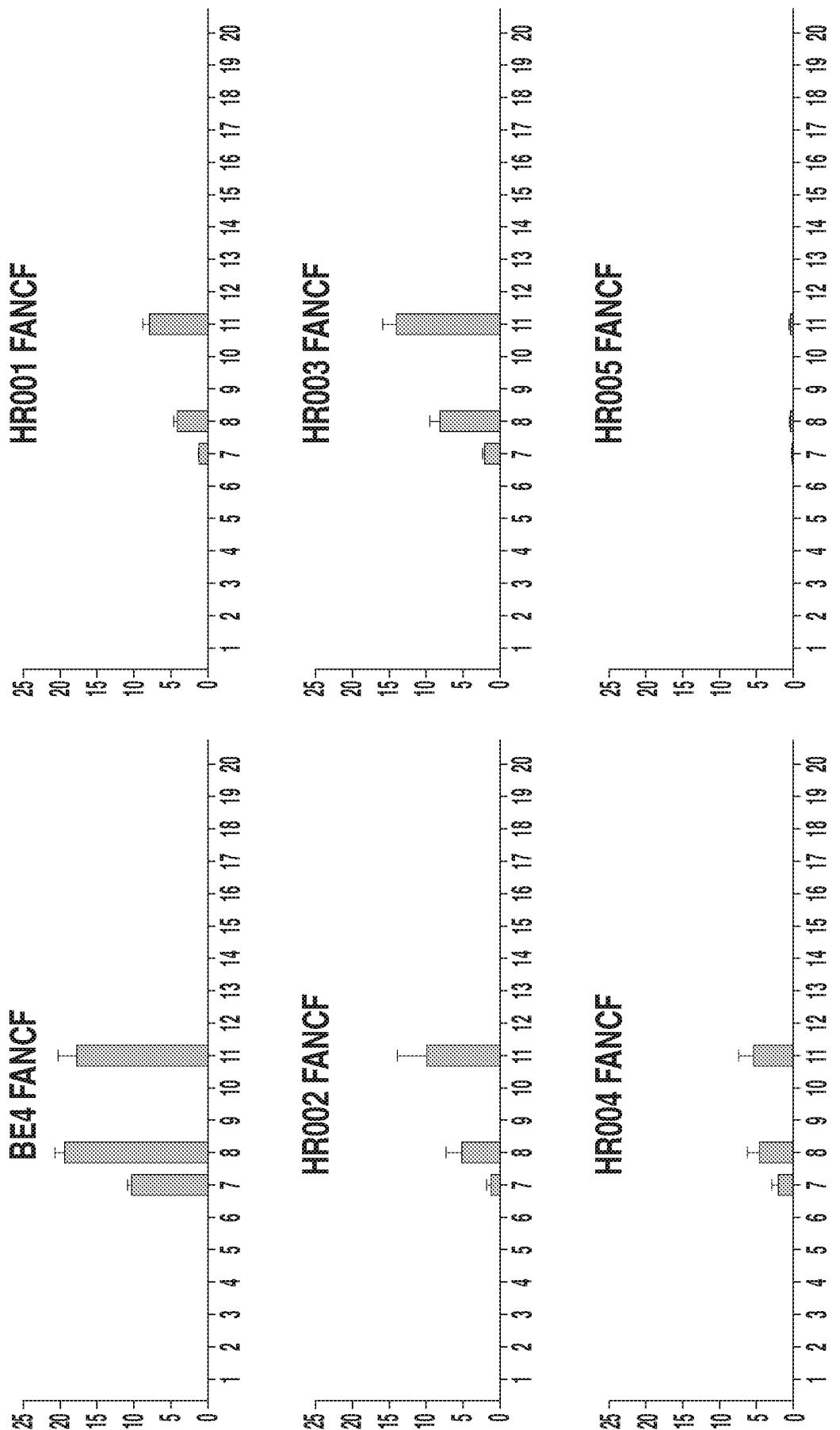
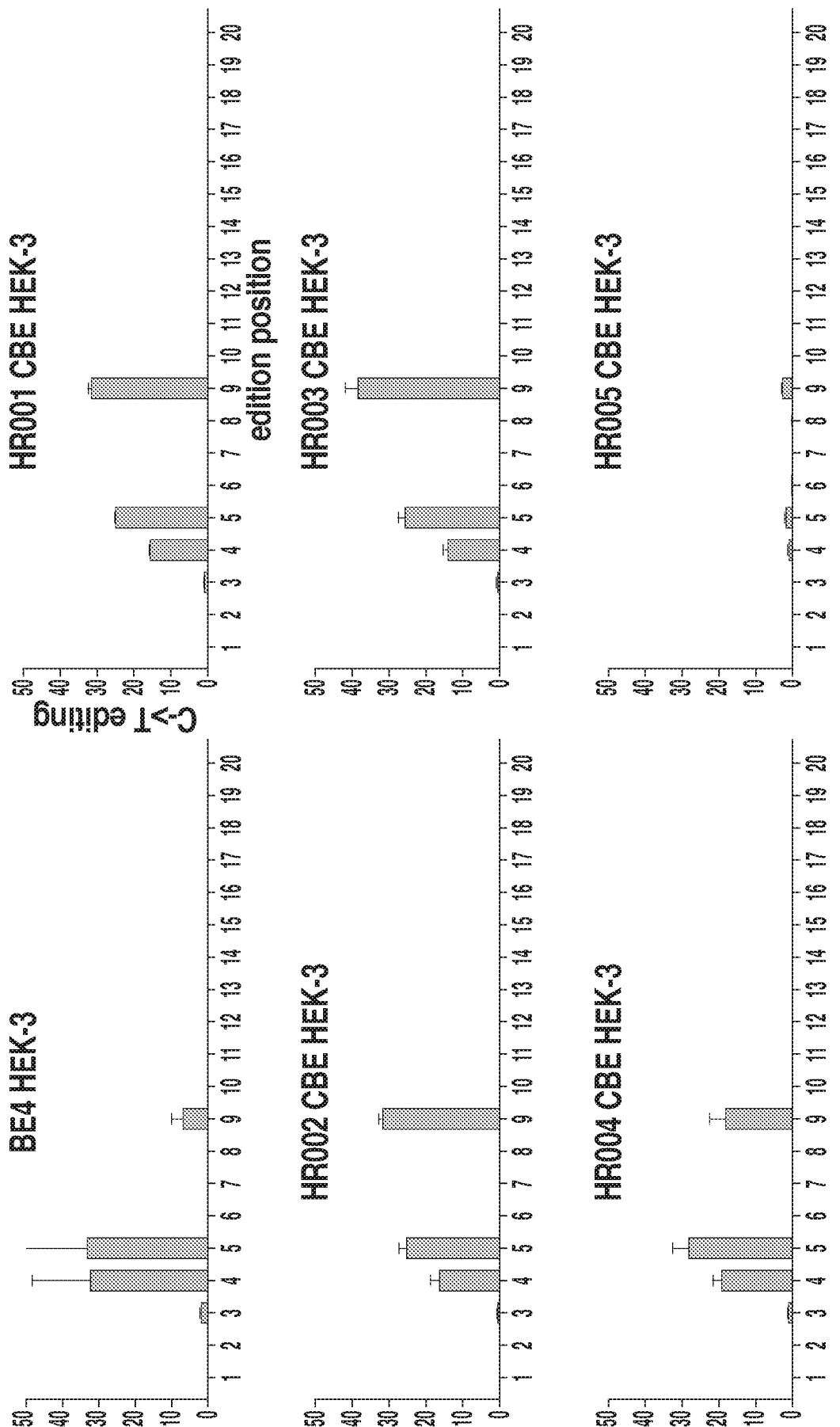
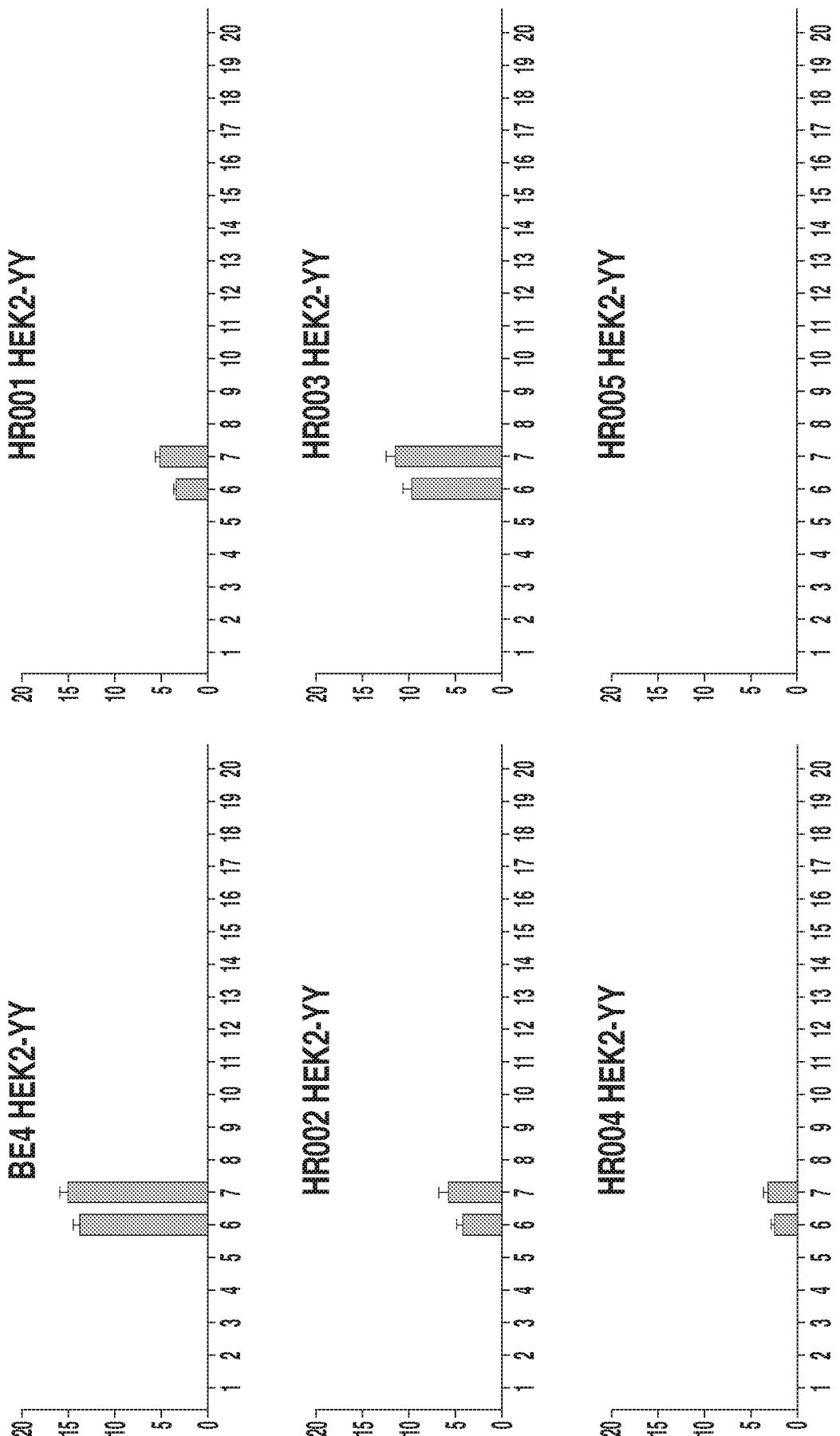
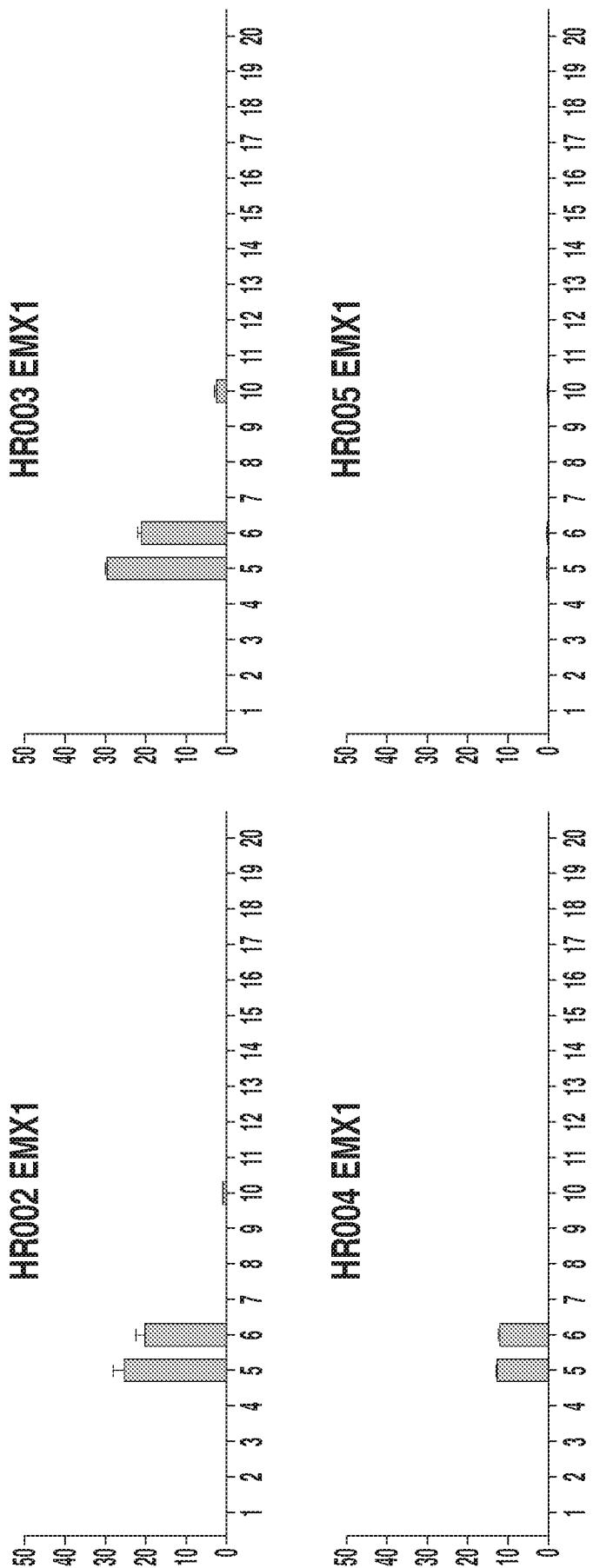
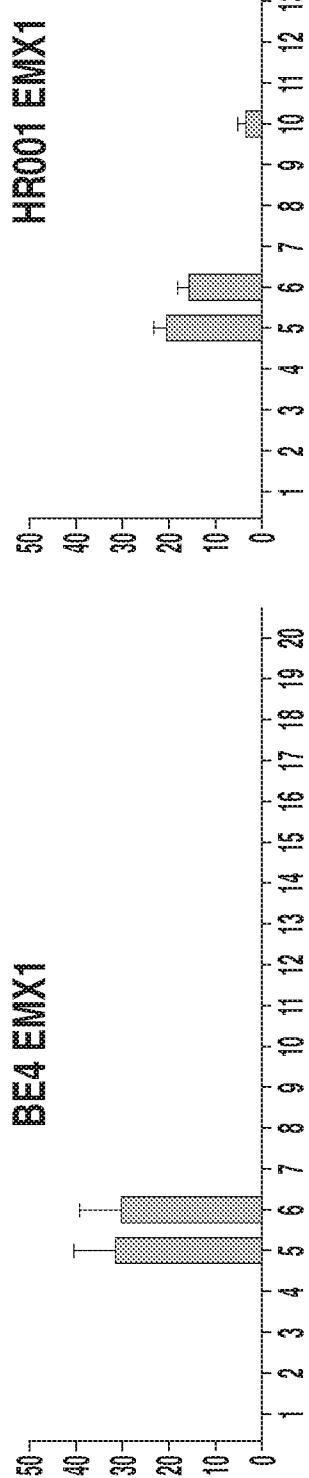




FIG. 24E

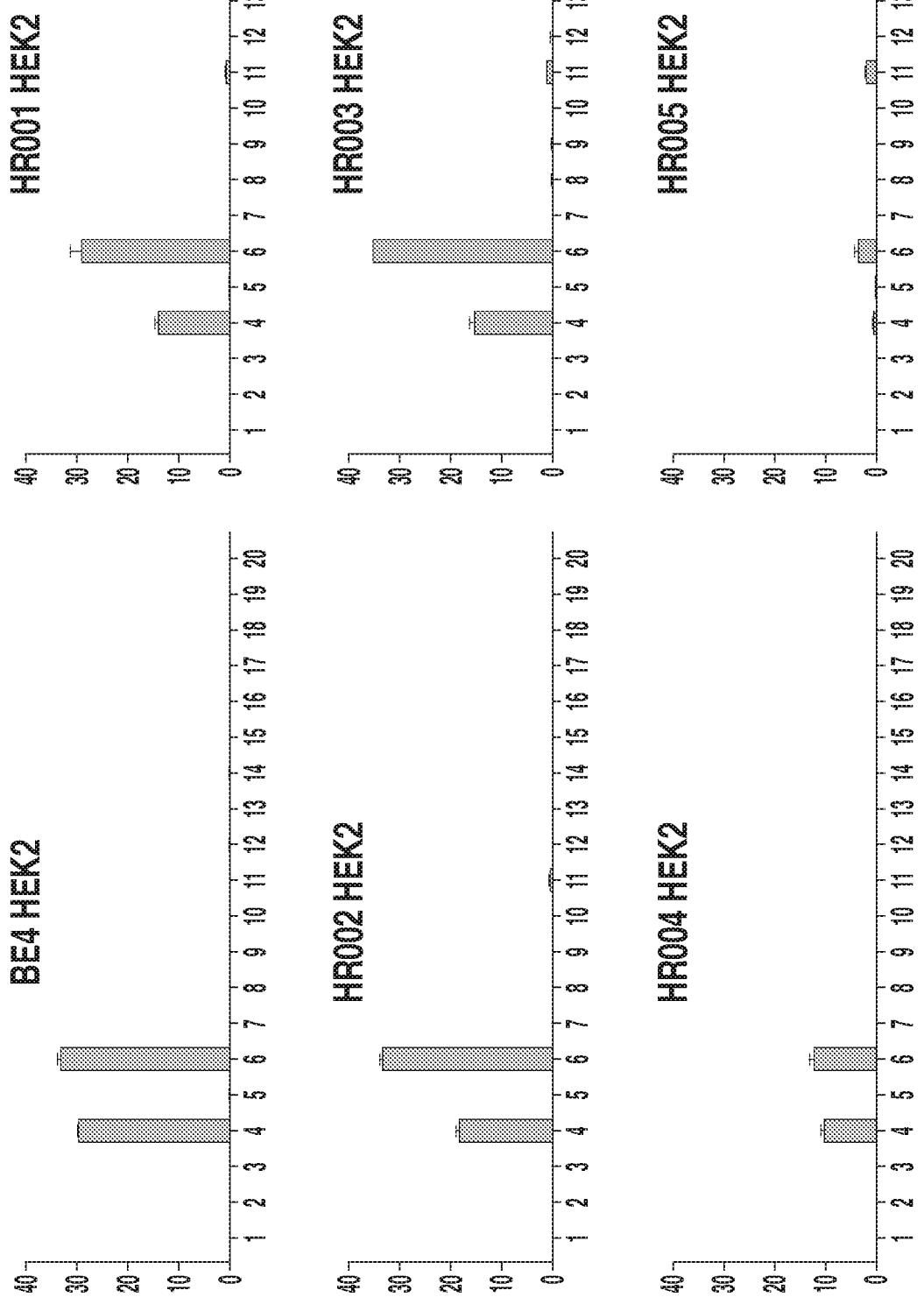

46/52


47/52


48/52



49/52

50/52


FIG. 25D

51/52

GAGTCCGAGCAGAAGAAGAA FIG. 25E

52/52

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US20/16285

A. CLASSIFICATION OF SUBJECT MATTER

IPC - C12N 15/62, 15/11, 15/10 (2020.01)

CPC - C12N 15/62, 15/111, 9/22, 15/102, 9/78, 15/11; A61K 38/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

See Search History document

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

See Search History document

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

See Search History document

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	WO 2018/176009 A1 (PRESIDENT AND FELLOWS OF HARVARD COLLEGE) 27 September 2018; figure 4; paragraphs [0006], [0054], [00167], [00210], [00242], [00244], [00301], [00364], [00372], [00396], [00487]	1-2, 3/1-2, 4/3/1-2, 5/4/3/1-2, 29-33, 69-70, 71/69-70, 72/71/69-70, 108-109, 110/108-109, 146-148, 149/146-148
A	US 2018/0179503 A1 (PRESIDENT AND FELLOWS OF HARVARD COLLEGE) 28 June 2018; paragraphs [0124], [0233]	1-2, 3/1-2, 4/3/1-2, 5/4/3/1-2, 29-33, 69-70, 71/69-70, 72/71/69-70, 108-109, 110/108-109, 146-148, 149/146-148
A	US 2016/0304846 A1 (PRESIDENT AND FELLOWS OF HARVARD COLLEGE) 20 October 2016; paragraph [0047]	1-2, 3/1-2, 4/3/1-2, 5/4/3/1-2, 29-33, 69-70, 71/69-70, 72/71/69-70, 108-109, 110/108-109, 146-148, 149/146-148
A	US 2018/0298421 A1 (IDENTIFYGENOMICS, LLC) 18 October 2018; paragraph [0026]	146-148, 149/146-148

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents:

“A” document defining the general state of the art which is not considered to be of particular relevance
 “D” document cited by the applicant in the international application
 “E” earlier application or patent but published on or after the international filing date
 “L” document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 “O” document referring to an oral disclosure, use, exhibition or other means
 “P” document published prior to the international filing date but later than the priority date claimed

“T” later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

“X” document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

“Y” document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

“&” document member of the same patent family

Date of the actual completion of the international search 23 April 2020 (23.04.2020)	Date of mailing of the international search report 04 MAY 2020
Name and mailing address of the ISA/US Mail Stop PCT, Attn: ISA/US, Commissioner for Patents P.O. Box 1450, Alexandria, Virginia 22313-1450 Facsimile No. 571-273-8300	Authorized officer Shane Thomas Telephone No. PCT Helpdesk: 571-272-4300

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US20/16285

Box No. II Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:

2. Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:

3. Claims Nos.: 6-28, 34-68, 73-107, 111-145, 150-160 because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box No. III Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying additional fees, this Authority did not invite payment of additional fees.
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:

4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

- The additional search fees were accompanied by the applicant's protest and, where applicable, the payment of a protest fee.
- The additional search fees were accompanied by the applicant's protest but the applicable protest fee was not paid within the time limit specified in the invitation.
- No protest accompanied the payment of additional search fees.