20107017263 A1 | I 000 O 010 0RO A0

<

W

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

ot VAP,
(9) World Inclecual Property Organizadon /552 NN N AR AR 0
nternational Bureau S,/ 0 |
(43) International Publication Date \;/ 3 (10) International Publication Number
11 February 2010 (11.02.2010) WO 2010/017263 Al

(51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every
GO6F 13/28 (2006.01) kind of national protection available). AE, AG, AL, AM,
(21) International Application Number: ég’ éﬁ’ ég’ CAI\ZI, CBS > CBRB’ CBI(J}, g;l’ DB]IE{ ? DB%V ’];313[{ ?]];é’
PCT/US2009/052794 DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT.,
(22) International Filing Date: HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
5 August 2009 (05.08.2009) KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
. ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
(25) Filing Language: English NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD,
(26) Publication Language: English SE, 8G, SK, SL, SM, ST, 8V, §Y, TJ, TM, TN, TR, TT,

TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
(30) Priority Data:

61/086.631 6 August 2008 (06.08.2008) ys (84) Designated States (unless otherwise indicated, for every

kind of regional protection available): ARIPO (BW, GH,

(71) Applicant (for all designated States except US): SAND- GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
BRIDGE TECHNOLOGIES, INC. [US/US]; 120 ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ,
White Plains Road, 4th Floor, Tarrytown, NY 10591 TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE,
(US). ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,

MC, MK, MT, NL, NO, PL, PT, RO, SE, SL SK, SM,

(75) Inventors/Applicants (for US only): MOUDGILL, E/[RL) ﬁﬁﬂ{gg\?%ﬁ%g)ﬁ CL CM, GA, GN, GQ, GW,
Mayan [IN/US]; 143 Juniper Hill Road, White Plains, ? T ’
NY 10607 (US). WANG, Shenghong [US/US]; 2386 Published:
Claire Ct., Yorktown Hts, NY 10598 (US).

(74) Agent: KARCESKI, Jeffrey, D.; Barnes & Thomburg
LLP, 750 17th Street, N.-W., Suite 900, Washington, DC
20006 (US).

(72) Inventors; and

— with international search report (Art. 21(3))

(54) Title: HALTABLE AND RESTARTABLE DMA ENGINE

(57) Abstract: A method is described for operation of a DMA engine. Copying is initiated for transfer of a first number of bytes
from first source memory locations to first destination memory locations. Then, a halt instruction is issued before the first number
of bytes are copied. After copying is stopped, a second number of bytes is established, encompassing those bytes remaining to be
copied. After the transfer is halted, a quantity of the second number of bytes is identitied. Quantity information is then generated
and stored. Second source memory locations are identified to indicate where the second number of bytes are stored. Second source
memory location information is then generated and stored. Second destination memory locations are then identified to indicate
where the second number of bytes are to be transferred. Second destination memory location information is then generated and
stored.

WO 2010/017263 PCT/US2009/052794

Haltable and Restartable DMA Engine

Cross-Reference to Related Applications

[0001] This PCT Patent Application relies for priority on United States
Provisional Patent Application Serial No. 61/086,631, filed on August 6, 2008, the

contents of which are incorporated herein by reference.

Field of the Invention

[0002] This invention relates to Direct Memory Access (“DMA”) engines. More
particularly, the invention concerns an architected DMA that is part of the process state

of a processor.

Description of the Related Art

[0003] Traditionally, DMAs have been treated as peripheral devices. As
peripheral devices, DMAs have not been considered or treated as a part of the architected
state for a processor, such as a personal computer, personal data assistant (“PDA”), cell
phone, or other device that is processor-based and typically would include one or more
DMAs.

[0004] Since DMAs traditionally have been excluded from the architected state of
a processor, in a multi-programmed environment, the DMA engine is not considered a
part of the process state. Accordingly, the DMA must be accessed via a monitor,
possibly within the operating system.

[0005] Accessing a DMA separately from other components included in the
architected state increases the latency to access the DMA. As should be appreciated by
those skilled in the art, an increase in latency for a device like a DMA makes the DMA
impractical for use in a process, especially when the process incorporates small moves or
operations. Simply, for small operations, the latency time associated with traditional
DMA architecture may so greatly increase the overall processing time for an operation,
that reliance on the DMA is impractical.

[0006] As should be appreciated by those skilled in the art, there is always a need

in the computer processing art to increase processing efficiency.

Page 1 of 25

WO 2010/017263 PCT/US2009/052794

Summary of the Invention

[0007] The invention offers at least one approach to increasing processing
efficiency.
[0008] Specifically, the invention offers an architected DMA that is part of the

process state. The DMA may be stopped and restarted, permitting a copy operation to be
halted and resumed without a significant detrimental processing effect on the DMA.
[0009] The invention provides a method of operating a direct memory access
engine. In the method, copying is initiated for a first number of bytes. The first number
of bytes are to be copied from first source memory locations to first destination memory
locations. After initiating the copying, a halt instruction is issued before the first number
of bytes are copied. In response to the halt instruction, the copying is stopped. As a
result, a second number of bytes is established. The second number of bytes are those
bytes remaining to be copied from the first number of bytes. After the transfer is halted,
a quantity of the second number of bytes is identified. Quantity information, which
provides the quantity of the second number of bytes, is then generated and stored.
Second source memory locations also are identified. The second source memory
locations identify where the second number of bytes are stored. Second source memory
location information is then generated and stored. Second destination memory locations
are then identified. The second destination memory locations identify where the second
number of bytes are to be transferred. Second destination memory location information
is then generated and stored.

[0010] In one contemplated variation of this method, the quantity information, the
second source memory location information, and the second destination memory location
information are retrieved from at least one register in the direct memory access engine.
One register or several registers may be used. Where there are several registers, one may
be a source register, another may be a destination register. A third register may be a
quantity register.

[0011] The method may also include resuming the halted transfer by initiating

copying of the second number of bytes from the second source memory locations to

Page 2 of 25

WO 2010/017263 PCT/US2009/052794

second destination memory locations using the quantity information, the second source
memory location information, and the second destination memory location information.
[0012] With respect to this method, there are a number of variations contemplated
for re-initiating the copy operation after issuance of the halt instruction.

[0013] In one contemplated embodiment, the method provides for determining a
next address to read from the second source memory location information and
determining a next address to write from the second destination memory location
information. Then, the method flushes all pending reads and writes. The method
proceeds by determining, from the next address to read and the next address to write, a
decrement value. The decrement value identifies a number of bytes by which the next
address to read is in advance of the next address to write. The method then decrements
the next address to read by the decrement value to generate a decremented read address.
Copying the second number of bytes from the second memory locations to the second
memory then destinations then proceeds based at least upon the decremented read
address, the next address to write, and the quantity information.

[0014] In a second contemplated variation, the method includes determining a
next address to read from the second source memory location information and
determining a next address to write from the second destination memory location
information. The method tracks the number of bytes by which the next address to read is
in advance of the next address to write and establishes a run-ahead value. The run-ahead
value is stored so that the next address to read may be adjusted by the run-ahead value.
This permits generation of an adjusted next address to read. Copying then proceeds
based at least upon the adjusted next address to read, the next address to write, and the
quantity information.

[0015] In a third contemplated variation, the method contemplates determining a
next address to read from the second source memory location information and
determining a next address to write from the second destination memory location
information. Copying of the second number of bytes from the second memory locations
to the second memory destinations proceeds using the next address to read, the next

address to write, and the quantity information.

Page 3 of 25

WO 2010/017263 PCT/US2009/052794

[0016] In a fourth contemplated variation of the method, an identification of the
first source memory locations, an identification of the first destination memory locations,
and a count of the first number of bytes are retained. After retrieving the quantity
information, a next address to read is established, at least based upon the identification of
the first source memory locations, the count of the first number of bytes, and the quantity
information. Then, a next address to write is established at least based upon the
identification of the first destination memory locations, the count of the first number of
bytes, and the quantity information. Copying of the second number of bytes from the
second memory locations to the second memory destinations relies at least upon the next
address to read, the next address to write, the count of the first number of bytes, and the
quantity information.

[0017] In a fifth contemplated variation, an indication of the next address to write
is retained. After issuance of the halt instruction, reading of the first number of bytes
from the first source memory locations is stopped. In addition, writing continues for any
of the bytes that remain from the bytes read before stopping the reading. Then, a next
address to read from the second source memory location information and a next address
to write from the second destination memory location information are determined.
Copying of the second number of bytes from the second memory locations to the second
memory destinations relies at least upon the next address to read, the next address to
write, and the quantity information.

[0018] Other aspects of the invention will be made apparent from the discussion

that follows and from the drawings appended hereto.

Brief Description of the Drawings

[0019] The invention is described in connection with drawings that illustrate one
or more aspects, in which:

[0020] Fig. 1 is a first portion of a flow diagram illustrating one embodiment of
the method contemplated by the invention;

[0021} Fig. 2 is a second portion of a flow diagram illustrating the method begun

in Fig. 1, this figure being a continuation of the portion of the method illustrated in Fig. 1,

Page 4 of 25

WO 2010/017263 PCT/US2009/052794

[0022] Fig. 3 is a flow a third portion of a flow diagram illustrating the method
begun in Fig. 1, this figure being a continuation of the portion of the method illustrated in
Fig. 2;

[0023] Fig. 4 is a flow diagram illustrating additional operations that may be
included in the method illustrated in Figs. 1-3;

[0024] Fig. 5 is a flow diagram illustrating a first contemplated variation of the
method illustrated in Figs. 1-3;

[0025] Fig. 6 is a flow diagram illustrating a second contemplated variation of the
method illustrated in Figs. 1-3;

[0026] Fig. 7 is a flow diagram illustrating a third contemplated variation of the
method illustrated in Figs. 1-3;

[0027] Fig. 8 is a flow diagram illustrating a fourth contemplated variation of the
method illustrated in Figs. 1-3; and

[0028] Fig. 9 is a flow diagram illustrating a fifth contemplated variation of the
method illustrated in Figs. 1-3.

Description of Embodiment(s) of the Invention

[0029] The invention is described in connection with specific embodiments and
examples detailed below. The invention, however, is not intended to be limited solely to
the embodiments and examples discussed. To the contrary, the embodiments and
examples are intended to define the broad scope of the invention. As should be
appreciated by those skilled in the art, there are numerous equivalents and variations of
the embodiments and examples that may be employed without departing from the scope
of the invention. Those embodiments and variations are intended to be encompassed by
the invention.

[0030] As a preliminary matter, and as should be appreciated by those skilled in
the art, DMA engines are used to copy values from one location in memory to another.
At their simplest, DMA engines copy values from some contiguous block of memory to
some other block. One example of this basic copy function of a DMA engine is provided

by Code Segment #1, below.

Page 5 of 25

WO 2010/017263 PCT/US2009/052794

Code Segment #1

for (i=0;i<CNT;i++) {
DST[1] = SRC[i];
}

[0031] To use a simple DMA from a processor, typically the processor writes the
source address, destination address, and the transfer size to selected registers. The
processor then initiates the transfer by writing to a control register. When all the values
have been copied, the DMA signals the completion of the transfer by writing to a control
and/or a status register and/or triggering an interrupt in the processor.

[0032] More sophisticated DMAs are capable of operations such as “scatter”
operations. “Scatter” refers to an operation whereby a single procedure call sequentially
reads data from a single data stream to multiple buffers. A scatter operation may be

written in code as set forth in Code Segment #2, below.

Code Segment #2

for (i=0;i<CNT;i++) {
DST [OFF[i]] = SRCI[i];
}

“SRC” refers to the address of the source. “DST” refers to the address of the destination.
“OFF” refers to the address of the offset array.

[0033] In one contemplated embodiment, a scatter operation takes data from a
plurality of source memory locations and “scatters” the data to a number of destination
memory locations. As indicated above, a scatter operation also may operate from a single
data stream, which streams data from a plurality of source memory locations. If so, the
scatter operation may include a number of data manipulations. Specifically, such a
scatter operation may: (1) read a sequential data stream of data to be copied, (2) read a
sequential address stream or an index stream, and (3) if using an index stream, create an
address stream by adding each index to a single base address. Each element in the data
may then be copied to a corresponding address in the stream. It is noted that these

operations are not required for all scatter operations but are provided merely as guidance

Page 6 of 25

WO 2010/017263 PCT/US2009/052794

for those skilled in the art and to assist with an understanding of one aspect of the
invention.

[0034] More sophisticated DMAs also are capable of specific operations, referred
to as “gather” operations. “Gather” operations are those operations where a single
procedure call sequentially writes data from a multiple buffers to a single data stream. A

gather operation may be written in code as set forth in Code Segment #3, below.

Code Segment #3

for (i=0;i<CNT;i++) {
DST[i] = SRC [OFF[il];
}

As with Code Segment #2, “SRC” refers to the address of the source. Similarly, “DST”
refers to the address of the destination. Additionally, “OFF” refers to the address of the
offset array.

[0035] With respect to “gather” operations, the information may be gathered from
a plurality of source memory locations. The data may then be provided to a plurality of
destination memory locations, perhaps via a scatter algorithm. Alternatively, the data
may be gathered and funneled to a single data stream for further processing. As should
be appreciated by those skilled in the art, a gather operation does the opposite of a scatter
operation, at least in some ways. For example, a gather operation may: (1) read either an
address stream or a an index stream and generate an address stream by adding it to a base,
or (2) read the data from the locations in the address stream, creating a sequential data
stream. The sequential data stream may then be copied sequentially to the destination(s).
This discussion is provided to clarify at least this one aspect of the invention. It is not
intended to be limiting of the invention.

[0036] In addition, more sophisticated DMAs are capable of “multi-level”
operations. Multi-level operations are those where data from multiple sources are read
from and/or written to multiple destinations. A multi-level operation may be written in

code as set forth in Code Segment #4, below.

Page 7 of 25

WO 2010/017263 PCT/US2009/052794

Code Segment #4

for (1i=0;i<CNTO;i++) {
for (3=0; J<CNTL1; Jj++)
DST{i]l[3] = SRCI[i]I[]];:
}
}

As with Code Segments ## 2 and 3, “SRC” refers to the address of the source. “DST”
refers to the address of the destination. “OFF” refers to the address of the offset array.

[0037] Scatter, gather, and multi-level operations may be combined to generate
still further functions, as should be appreciated by those skilled in the art. Accordingly,

further details concerning these functions are not provided here.

Context Switch

[0038] Once again with reference to the typical DMA engine, after the engine
initiates a transfer, the engine runs to completion. The DMA engine then signals the
processor that the transfer has been completed. Following this, the DMA engine executes
a second transfer. The process is repeated as needed. As should be appreciated by those
skilled in the art, this is but one way to describe the operation of a DMA engine.

[0039] There are other ways to setup DMAs and series of DMAs. For example,
some DMAs support the use of “shadow registers”. A shadow register permits a DMA to
be programmed with the next transfer while the current DMA transfer is “in-flight” or in
process. The shadow register, therefore, facilitates the next transfer because the DMA
may start the next transfer as soon as the current transfer is completed. Other DMAs
support “chaining”. This approach differs from the shadow register approach. Instead of
programming the DMA directly, a control block is written with the details of the transfer.
The next transfer is written to a control block, and a location in the first control block is
set to point to this next transfer. In this manner, a chain of transfers may be established.
As soon as the DMA completes the transfer determined by a control block, it proceeds to
execute the transfer determined by the next block in the chain.

[0040] As should be apparent to those skilled in the art, these alternative set-ups

also suffer from the same problems noted with respect to DMAs generally. In particular,

Page 8 of 25

WO 2010/017263 PCT/US2009/052794

DMAs are not well suited to execute all types of operations because of several
deficiencies, including the aforementioned latency issues. For example, the existing
architecture for DMAs provides no mechanism to suspend an ongoing transfer, to
program and execute a new transfer, and then to resume the suspended transfer. In
addition, if multiple sources try to program a DMA engine, these sources must coordinate
efforts to the DMA engine to prevent simultaneous access or to prevent multiple
instructions from overwriting one another.

[0041] To facilitate understanding of the deficiencies in the prior art with respect
to DMAs, the following example is provided. Specifically, the example encompasses an
instance where the DMA 1is to be used to execute data transfers on a general purpose
processor. To simplify the example, it is assumed that all memory accesses are in a real-
mode. Real-mode operation is assumed to avoid the complications that arise when
programming for virtual memory, as should be understood by those skilled in the art.
Specifically, by ignoring virtual memory in this example, the complications introduced
by virtual memory translation are also avoided. For this example, several problems arise,
as detailed below.

[0042] The first problem may arise in the context of a transfer process that is
interrupted and the context is switched to another transfer operation. Specifically, if the
transfer process is interrupted during the interval when the DMA is being programmed
but before the DMA writes to the control register, the DMA registers must be saved as
part of the process state. As a result, before the transfer operation may be resumed, the
DMA registers must be recreated (or “written back” to the appropriate addresses).

[0043] The second problem that may arise concerns processes that program long-
running DMAs. As may be immediately apparent, when a process programs a long-
runningvDMA and the process is then context-switched, the new process must await
completion of the first transfer process before being executed. As a result, the execution
of the first transfer operation stalls the execution of the second transfer operation.

[0044] A third problem that may arise with respect to DMA processing arises in
the context of a multi-threaded or multi-processor environment. Specifically, in a multi-
threaded or multi-processor machine, multiple processes simultaneously may try to

reprogram the DMA. Since only one process may proceed at any given time, the

Page 9 of 25

WO 2010/017263 PCT/US2009/052794

multiple processes require execution of a mutual exclusion algorithm. As should be
appreciated by those skilled in the art, mutual exclusion algorithms increase the latency
period associated with programming the DMA.

[0045] The fourth problem that may arise concerns the generation of an interrupt
signal by the DMA, which may be issued at the conclusion of a transfer operation.
Specifically, when a DMA signals completion of a transfer operation by means of an
interrupt, there is no guarantee that the process that programmed the DMA is the
currently-running process. Consequently, when issued, the completion interrupt must be
captured by a shared interrupt handler, which decides if the currently-running process is
the process to which the interrupt must be delivered.

[0046] If the processor uses virtual memory, additional problems arise, because
the DMA engine must translate between virtual and real addresses. It is contemplated
that the operating system may be employed to translate the desired transfer into real
addresses, and pin the source and target pages. However, reliance on the operating
system for this translation dramatically increases the latency to initiate a DMA. Lighter-
weight schemes (i.e., less latency-burdened schemes) typically rely on virtual addresses
in the DMA. These schemes run the DMA transfer addresses through the processor's
translation mechanism for operation. A problem with this approach is that, after a
context switch, the processors translation mechanism may not be valid for the previous
process. As a result, there must be a method for stopping the DMA to avoid conflicts in
processing.

[0047] Each of these problems present challenges in the execution of transfer

operations by a DMA. The invention offers solutions for these problems.

Restartable Stop

[0048] The present invention offers a restartable stop of a block-transfer DMA.
A restartable stop of a block-transfer DMA is one where it is possible to stop the DMA in
mid-transfer. Once the transfer has been stopped, it is then possible to determine: (1)
how many bytes are left to be transferred, (2) the address of the next byte to be read, and
(3) the address of the next byte to be written. This approach may be implanted simply by

Page 10 of 25

WO 2010/017263 PCT/US2009/052794

reading the control registers of the DMA. Other possible implementations are also

contemplated.

Simple

[0049] The first variation presented by the invention is referred to as the “simple”
implementation. In the simple implementation, copies of the initial values of the source,
destination, and byte count are retained, along with a count of the number of the written
bytes. Since this information is retained, a restart state of the DMA transfer operation
may be determined by adding and/or subtracting the initial values to or from the
transferred byte count. As should be appreciated by those skilled in the art, this simple
approach is inefficient. One reason for this inefficiency is that the implementation of the

DMA requires the system to keep track of the next byte to read and/or to write.

Drain

[0050] The second variation presented by the invention is referred to as the
“drain” implementation. In this implementation, the DMA keeps a running count of the
next address to read and/or to write. The DMA also keeps track of the number of bytes
remaining to be read. When stopped mid-transfer, the DMA stops reading and waits for
the bytes that have already been read to be written to memory. Once the bytes have been
written to memory, the DMA is placed into a restartable state, from which the DMA may
complete the transfer operation. As should be apparent, this implementation suffers from
at least one disadvantage. Specifically, all pending reads must be written before the
DMA is in a restartable state. This arrangement is likely to result in latencies during

execution of the transfer operation.

Early Stop
[0051] The third variation presented by the invention is referred to as the “early

stop” implementation. In this implementation, the DMA keeps a running count of the
next address to read and/or to write. The DMA also retains the number of bytes left to
write. When the DMA is stopped mid-transfer, the DMA stops writing and flushes all

pending reads and/or writes. Generally, in this embodiment, the read address runs ahead

Page 11 of 25

WO 2010/017263 PCT/US2009/052794

of the write address (i.e., more bytes have been read than written). Consequently, the
read address must be decremented by the amount of bytes that the read address is ahead
of the write address. This approach does not suffer from the kinds of disadvantages
discussed in connection with the first two approaches and, therefore, is proffered as one

attractive approach for implementation of the present invention.

Run-Ahead

[0052] The fourth variation is referred to as the “run-ahead” implementation.
This implementation is similar to the early stop implementation, except that a separate
register (i.e., an extra register) is used to keep track of how far the read address is ahead
of the write address (i.e., the difference between the number of bytes read and written).
This value is referred to as the “run-ahead” value. Since the run-ahead value is generally
small, the extra register may be implemented fairly easily and cheaply. In other words,
although the extra register is required for the run-ahead approach, the additional register
does not add significantly to the overall “cost” associated with operation of the DMA. In
this implementation, to recover the restart state, the processor subtracts the run-ahead

value from the read address to obtain the correct restart read address.

Offset State

[0053] As discussed above, DMAs may implement both scatter and gather
operations. When a DMA is engaged in a scatter and/or a gather, the reading of the
offsets tends to run ahead of the reads and/or writes of the data. To recover the restart
state of the offset, then, it is necessary to use some variation of the early stop or run-

ahead techniques described above.

Architected Registers

[0054] Traditionally, DMAs have been treated as peripherals, and consequently,
the DMA registers have been accessed either through load and/or store operations or
through special input and/or output instructions.

[0055] Since one goal of the invention is to make the DMA a part of the

processor context, the DMA registers part are made a part of the architected register state

Page 12 of 25

WO 2010/017263 PCT/US2009/052794

of the processor. In the invention, the DMA registers are special-purpose registers
accessible through the same instructions as other special purpose registers.

[0056] With respect to the various embodiments of the invention discussed above,
reference is now made to the figures appended hereto. With respect to the figures, it is
possible that any of the operations identified may encompass one or more steps.
Moreover, different operations may be combined into a single step in some instances.
These possibilities are intended to be encompassed by the invention.

[0057] Fig. 1 is a flow diagram outlining the fundamental method of the
invention. For reference, the method is provided with the reference identifier 10. The
method 10 is contemplated to be executed on a processor, such as a DMA engine. The
method begins at 12. After the start 12, the method 10 proceeds to 14, where copying is
initiated for a first number of bytes from first source memory locations to first destination
memory locations. After initiating the copying at 14, a halt instruction is issued at 16
before the first number of bytes are copied from the first source memory locations to the
first destination memory locations. At 18, in response to issuance of the halt instruction
at 16, the copying is halted, thereby establishing a second number of bytes, which
comprise those bytes remaining to be copied from the first number of bytes. Then, at 20,
a quantity of the second number of bytes is identified. Fig. 1 includes a transition block
22, which indicates that the method continues in Fig. 2.

[0058] Fig. 2 provides the continuation of the method illustrated in Fig. 1.
Specifically, once the quantity is identified, quantity information is generated concerning
the quantity of the second number of bytes at 24. This quantity information is then stored
at 26. From 26, the method proceeds to 28 where the second source memory locations
are identified. The second source memory locations encompass the locations where the
second number of bytes are stored. From 28, the method 10 proceeds to 30 where second
source memory location information is generated. As should be apparent, the second
source memory location information encompasses the second source memory locations in
which the second number of bytes are stored. Then, at 32, the second memory source
location information is stored. Fig. 2 includes a transition block 34, which indicates that

the method 10 continues to Fig. 3.

Page 13 of 25

WO 2010/017263 PCT/US2009/052794

[0059] Fig. 3 illustrates the remainder of the method 10. In Fig. 3, the method 10
continues from 32 where second destination memory locations are identified at 36. The
second destination memory locations encompass the destinations into which the second
number of bytes are to be transferred. From 36, the method 10 continues to 38. At 38,
second destination memory location information is generated. The second destination
memory location information encompasses the second destination memory locations into
which the second number of bytes are to be stored. The method 10 then proceeds to 40
where the second destination memory location information is stored. The method 10
ends at 42.

[0060] As may be appreciated from Figs. 1-3, method 10 encompasses operations
that form a basic halt operation of a DMA engine. In order to resume the transfer of the
bytes from the source locations to the destination locations, further processing is required.
Figs. 4-9 detail different embodiments and aspect of the invention that are directed to the
restart operation.

[0061] As a preliminary matter, the various embodiments of the restart operation
encompass a continuation of the halted copying process. In this regard, the copying
process continues as before. In the resumed copying operation, the second bytes are
copied from the source locations to the destination locations. How the copying is
resumed underlies aspects of the embodiments that are described in connection with Figs.
4-9.

[0062] Fig. 4 provides for retrieval of specific information for operation of the
DMA engine when the DMA engine resumes the copying operation after issuing the halt
instruction at 16. Specifically, Fig. 4 illustrates a flow chart for a method 44 that starts at
46. The method 44 is contemplated to be a continuation of the method 10, as should be
apparent to those skilled in the art. In the method 44, the quantity information is
retrieved at 48. Then, at 50, the second source memory location information is retrieved.
Following this, the second destination memory location information is retrieved at 52.
As should be appreciated by those skilled in the art, once the DMA engine retrieves these
three pieces of information, the DMA engine may proceed to resume the halted copying

operation detailed in Figs. 1-3.

Page 14 of 25

WO 2010/017263 PCT/US2009/052794

[0063] For the method 44, it is contemplated that the quantity information, the
second source memory location information, and the second destination memory location
information are read from at least one register in the direct memory access engine. Since
the three types of information are being retrieved from a register, the DMA engine is not
required to access a memory location. As a result, the DMA engine may proceed more
rapidly to resume the halted copying operation than it would if memory locations were to
be accessed. As should be apparent to those skilled in the art, efficient processors are
designed to avoid memory accesses, where prudent. Access to memory typically
accounts for the longest delays when executing instructions.

[0064] As noted above, the quantity information, the second source memory
location information, and the second destination memory location information may be
read from at least one register. In one contemplated embodiment, the three types of
information may be read from a single register. However, other variations are also
contemplated. For example, several registers may be employed. This includes two or
more registers. The two or more registers may include at least one source register in
which the first source memory locations are retained and at least one destination register
in which the first destination memory locations are retained. In addition, the two or
more registers may encompass a quantity register in which the quantity information is
retained.

[0065] Returning to Fig. 4, once the quantity information, the second source
memory location information, and the second destination memory location information
are retrieved from the register or registers, the method proceeds to 54 where the halted
transfer is resumed by initiating copying of the second number of bytes from the second
source memory locations to second destination memory locations using the quantity
information, the second source memory location information, and the second destination
memory location information. The method 44 then ends at 56.

[0066] As noted in the discussion above, there are several different embodiments
by which copying of the bytes from the source locations to the destination locations may
be made once the copying operation is resumed. The first embodiment refers the “early
stop” method 58. A flow chart for the early stop method 58 is provided in Fig. 5. It is

noted that the name “early stop method” is provided merely to distinguish the first

Page 15 of 25

WO 2010/017263 PCT/US2009/052794

embodiment from other embodiments contemplated to fall within the scope of the
invention. The name is not intended to be limiting of the method 58. Moreover, while
reference is made to other embodiments also by a specific name, the names are not
intended to be limiting of the invention. The names are being used merely to facilitate
understanding of the invention.

[0067] With reference to Fig. 5, the early stop method 58 is intended to continue
after the retrieval of the quantity information, the second source memory location
information, and the second destination memory location information. These three
operations are discussed at 48, 50, and 52 in connection with the discussion of Fig. 4.
[0068] The method 58 begins at 60. From 60, the method 58 proceeds to 62,
where a next address to read from the second source memory location information is
determined. The method 58 then proceeds to 64 where a next address to write from the
second destination memory location information is determined. All pending reads and
writes are then flushed at 66. This means that all of the pending reads and writes are
deleted. From 66, the method 58 proceeds to 68, where a decrement value is determined
from the next address to read and the next address to write. The decrement value
identifies a number of bytes by which the next address to read is in advance of the next
address to write. At 70, the next address to read is decremented by the decrement value,
thereby generating a decremented read address. Once this decrement read address is
determined, the copying operation may resume. Specifically, the second number of bytes
may be copied from the second memory locations to the second memory destinations
based at least upon the decremented read address, the next address to write, and the
quantity information. The method 58 ends at 72.

[0069] Fig 6 illustrates a method 74, which is referred to as the “run-ahead”
method”. The run-ahead method 74 also is intended to initiate after the operation 52 that
is detailed in Fig. 4. The run-ahead method 74 begins at 76. The method 74 then
proceeds to 78 where a next address to read from the second source memory location
information is determined. Then, at 80, a next address to write from the second
destination memory location information is determined.

[0070] In the method 74, tracking is provided for a run-ahead value. The run

ahead value is the number of bytes by which the next address to read is in advance of the

Page 16 of 25

WO 2010/017263 PCT/US2009/052794

next address to write. By tracking this information, a run-ahead value may be established
at 82. The run-ahead value is stored at 84. So that the DMA engine may resume the
copying operation, the run-ahead value is retrieved at 86. Obviously this operation
occurs at a subsequent time, when it is appropriate to resume the copying operation.
Finally, at 88, the next address to read is adjusted by the run-ahead value, thereby
generating an adjusted next address to read. Once the next address to read has been
determined the method 74 may proceed to resume the halted copying operation. Copying
of the second number of bytes from the second memory locations to the second memory
destinations then proceeds based at least upon the adjusted next address to read, the next
address to write, and the quantity information. The method 74 ends at 90.

[0071] Fig. 7 provides a flow diagram for a third embodiment of the method of
the invention. This method is referred to as the “restartable stop” method 92. As
indicated in Fig. 7, the method 92 begins at 94. The method 92 then proceeds to 96
where a next address to read from the second source memory location information is
determined. Then, at 98, a next address to write from the second destination memory
location information is determined. With these two bits of information, copying of the
second number of bytes from the second memory locations to the second memory
destinations may be resumed using the next address to read, the next address to write, and
the quantity information. The method 92 ends at 100.

[0072] Fig. 8 provides a flow diagram for a method referred to herein as the
“simple” method 102. The simple method 102 is the fourth embodiment of a method for
resuming the halted copying instruction. The method 102 also is intended to begin after
the operation 40, detailed in Fig. 3.

[0073] With reference to Fig. 8, the simple method 102 begins at 104. From 104,
the method 102 proceeds to 106 where an identification of the first source memory
locations is retained. Then, at 108, an identification of the first destination memory
locations is retained. Following this, at 110, a count of the first number of bytes is
retained. At a subsequent moment in time, prior to resuming the halted copying
operation, the method 102 retrieves the quantity information at 112. At 114, the method
102 establishes a next address to read at least based upon the identification of the first

source memory locations, the count of the first number of bytes, and the quantity

Page 17 of 25

WO 2010/017263 PCT/US2009/052794

information. At 116, the method 102 establishes a next address to write at least based
upon the identification of the first destination memory locations, the count of the first
number of bytes, and the quantity information. From this, the method 102 may resume
the halted copying. The resumed copying in this method relies at least upon the next
address to read, the next address to write, the count of the first number of bytes, and the
quantity information. The method 102 ends at 118.

[0074] Fig. 9 illustrates a method 120, which is referred to herein as the “drain”
method. This is a fifth embodiment contemplated to fall within the scope of the
invention. Like the method 102, the drain method 120 is intended to follow the method
10 illustrated in Figs. 1-3.

[0075] As illustrated in Fig. 9, the drain method 120 begins at 122. At 124, the
method 120 retains an indication of the next address to read. At 126, the method 120
retains an indication of the next address to write. At 128, after the halt instruction, the
method 120 stops reading of the first number of bytes from the first source memory
locations. At 130, the method 120 stops writing any bytes to the first destination memory
locations that remain from the bytes read before stopping the reading. Then, at 132, the
method 120 determines a next address to read from the second source memory location
information. At 134, a next address to write from the second destination memory
location information is determined. As a result, copying of the second number of bytes
from the second memory locations to the second memory destinations may proceed at
least based upon the next address to read, the next address to write, and the quantity
information. The method 120 ends at 136.

[0076] As noted above, the method of the invention may be applied in the context
of scatter and/or gather operations. In the gather context, the method may include an
operation where the first number of bytes are retrieved from the first source memory
locations, which are distributed in a plurality of buffers. Then, the first number of bytes
may be buffered into a single data stream. A scatter operation may be employed after
this. If so, the method may include the additional operation of providing the first number
of bytes to the first destination memory locations from the single data stream. In this
context, the first destination memory locations may be distributed in a plurality of

buffers. Alternatively, a gather operation may pull information from a plurality of first

Page 18 of 25

WO 2010/017263 PCT/US2009/052794

destination memory locations directly. Distribution may then be directed to a plurality of

buffers.

[0077] As noted above, the invention has been described in connection with
several specific embodiments. It is not intended for the invention to be limited solely to
the embodiments described. To the contrary, the invention is intended to encompass any

equivalents and variations, as should be apparent to those skilled in the art.

Page 19 of 25

WO 2010/017263 PCT/US2009/052794

What is claimed is:

1. A method of operating a direct memory access engine, comprising:

initiating copying of a first number of bytes from first source memory locations to
first destination memory locations;

after initiating the copying, issuing a halt instruction before the first number of
bytes are copied from the first source memory locations to the first destination memory
locations;

in response to issuance of the halt instruction, halting the copying, thereby
establishing a second number of bytes, which comprise those bytes remaining to be
copied from the first number of bytes;

identifying a quantity of the second number of bytes;

generating quantity information concerning the quantity of the second number of
bytes;

storing the quantity information;

identifying second source memory locations in which the second number of bytes
are stored;

generating second source memory location information encompassing the second
source memory locations in which the second number of bytes are stored,

storing the second memory source location information,

identifying second destination memory locations into which the second number of
bytes are to be transferred;

generating second destination memory location information encompassing the
second destination memory locations into which the second number of bytes are to be
stored; and

storing the second destination memory location information.

2. The method of claim 1, further comprising:
retrieving the quantity information;
retrieving the second source memory location information; and

retrieving the second destination memory location information,

Page 20 of 25

WO 2010/017263 PCT/US2009/052794

wherein the quantity information, the second source memory location
information, and the second destination memory location information are read from at

least one register in the direct memory access engine.

3. The method of claim 2, wherein the at least one register comprises a plurality of
registers.
4. The method of claim 3, wherein the plurality of registers comprise:

at least one source register in which the first source memory locations are
retained; and
at least one destination register in which the first destination memory locations are

retained.

5. The method of claim 4, wherein the plurality of registers further comprise:

a quantity register in which the quantity information is retained.

6. The method of claim 2, further comprising:

resuming the halted transfer by initiating copying of the second number of bytes
from the second source memory locations to second destination memory locations using
the quantity information, the second source memory location information, and the second

destination memory location information .

7. The method of claim 6, further comprising:

determihing a next address to read from the second source memory location
information;

determining a next address to write from the second destination memory location
information,;

flushing all pending reads and writes;

determining, from the next address to read and the next address to write, a
decrement value, wherein the decrement value identifies a number of bytes by which the

next address to read is in advance of the next address to write; and

Page 21 of 25

WO 2010/017263 PCT/US2009/052794

decrementing the next address to read by the decrement value, thereby generating
a decremented read address,

wherein copying the second number of bytes from the second memory locations
to the second memory destinations proceeds based at least upon the decremented read

address, the next address to write, and the quantity information.

8. The method of claim 6, wherein further comprising:

determining a next address to read from the second source memory location
information;

determining a next address to write from the second destination memory location
information;

tracking a number of bytes by which the next address to read is in advance of the
next address to write, thereby establishing a run-ahead value;

storing the run-ahead value;

retrieving the run-ahead value; and

adjusting the next address to read by the run-ahead value, thereby generating an
adjusted next address to read,

wherein copying the second number of bytes from the second memory locations
to the second memory destinations proceeds based at least upon the adjusted next address

to read, the next address to write, and the quantity information.

9. The method of claim 6, further comprising:

determining a next address to read from the second source memory location
information; and

determining a next address to write from the second destination memory location
information,

wherein copying the second number of bytes from the second memory locations
to the second memory destinations proceeds using the next address to read, the next

address to write, and the quantity information.

10. The method of claim 1, further comprising:

Page 22 of 25

WO 2010/017263 PCT/US2009/052794

retaining an identification of the first source memory locations;

retaining an identification of the first destination memory locations;

retaining a count of the first number of bytes;

retrieving the quantity information;

establishing a next address to read at least based upon the identification of the first
source memory locations, the count of the first number of bytes, and the quantity
information; and

establishing a next address to write at least based upon the identification of the
first destination memory locations, the count of the first number of bytes, and the
quantity information,

wherein copying the second number of bytes from the second memory locations
to the second memory destinations relies at least upon the next address to read, the next

address to write, the count of the first number of bytes, and the quantity information.

11. The method of claim 1, further comprising:
retaining an indication of the next address to read;
retaining an indication of the next address to write;
after issuance of the halt instruction,
stopping reading of the first number of bytes from the first source memory
locations, and
writing any bytes to the first destination memory locations that remain
from the bytes read before stopping the reading,
determining a next address to read from the second source memory location
information; and
determining a next address to write from the second destination memory location
information,
wherein copying the second number of bytes from the second memory locations
to the second memory destinations relies at least upon the next address to read, the next

address to write, and the quantity information.

12. The method of claim 1, further comprising:

Page 23 of 25

WO 2010/017263 PCT/US2009/052794

retrieving the first number of bytes from the first source memory locations, which
are distributed in a plurality of buffers; and

funneling the first number of bytes into a single data stream.

13. The method of claim 12, further comprising:

providing the first number of bytes to the first destination memory locations from
the single data stream,

wherein the first destination memory locations are distributed in a plurality of

buffers.

14. The method of claim 1, wherein the first destination memory locations are

distributed in a plurality of buffers.

Page 24 of 25

WO 2010/017263

10

W

1/9

12

PCT/US2009/052794

Initiate Copying of First Number of -

Bytes

A

Bytes

Issue a Halt Instruction After Initiating 4
the Copying of the First Number of

Halting the Copying in Response to
the Halt Instruction, Thereby

-

Establishing a Second Number of

Bytes Remaining to Be Copied

Number of Bytes

|dentifying a Quantity of the Second

-

FIG. 1

o

22

14

16

18

20

WO 2010/017263 PCT/US2009/052794
2/9

22
10
« >

Generating Quantity Information 24
Concerning the Quantity of the
Second Number of Bytes

Storing the Quantity Information +— 20
— ‘ 28
|ldentifying Second Source Memory +—
Locations
Generating Second Source Memory | _ 30
Location Information in Which the
Second Number of Bytes Are Stored
; - 32
Storing the Second Source Memory +—
Location Information

Y 34
(s 7

FIG. 2

WO 2010/017263 PCT/US2009/052794

3/9

34
10
« GO

A

|dentifying Second Destination
Memory Locations into Which the
Second Number of Byes Are to Be
Transferred

A

Generating Second Destination
Memory Location Information

-t

A

Storing the Second Destination
Memory Location Information

i 42
End

FIG. 3

36

38

40

WO 2010/017263 PCT/US2009/052794

4/9

46
A4
“ Cstart >~

N

Retrieving the Quantity Information

\

A

Retrieving the Second Source
Memory Location Information

A

Retrieving the Second Destination
Memory Location Information

\

Resuming the Halted Transfer by
Initiating Copying of the Second
Number of Bytes

\

Y 56
End

FIG. 4

48

50

52

54

WO 2010/017263

58
W

PCT/US2009/052794

5/9

60

A 4

Determine a Next Address to Read
Based on the Second Source
Memory Location information

\

A

Determine a Next Address to Write
Based on the Second Destination
Memory Location information

\

A 4

Flushing All Pending Reads and
Writes g

A

\

Determining a Decrement Value

Decrementing the Next Address by
the Decrement Value, Thereby |
Generating a Decremented Read
Address

FIG. 5

Y 72
End

62

64

66

68

70

WO 2010/017263

74

6/9

“ tart

A

Determine a Next Address to Read -
Based on the Second Source
Memory Location information

A

Determine a Next Address to Write
Based on the Second Destination
Memory Location information 1

Tracking a Number of Bytes by
Which the Next Address to Read
Precedes the Next Address to Write
to Establish a Run-Ahead Value

Store the Run-Ahead Value g

A

-~

Retrieve the Run-Ahead Value

Generate An Adjusted Next Address-
to Read

v 90

FIG- 6 End

PCT/US2009/052794

78

80

82

84

86

88

WO 2010/017263

92
N

PCT/US2009/052794

7/9

94

A

Determine a Next Address to Read -

Based on the Second Source
Memory Location information

A

Determine a Next Address to Write
Based on the Second Destination
Memory Location information

e

FIG. 7

Y 100
End

96

98

WO 2010/017263 PCT/US2009/052794
8/9

104
102 Start
a4

A 4

Retain Identification of First Source + 106
Memory Locations
Retain ldentification of First | 108
Destination Memory Locations

Retain Count of the First Number of | 110

Bytes
. — . 112
Retrieve Quantity Information 4+ 114
. 17—
Establish Next Address to Read
Y 116

Establish Next Address to Write

v 118
End

FIG. 8

WO 2010/017263 PCT/US2009/052794
9/9

122
120

A

Retain Identification of Next 1 2%
Address to Read

Retain Identification of Next)5 126
Address to Write

After Halt Instruction, Stop Reading | 128
the First Number of Bytes

After Halt instruction, Write 4+
Remaining Bytes to the First
Destination Memory Locations

130

Y 132
Determine Next Address to Read
from Second Source Memory
Location Information

A

Determine Next Address to Write
from Second Destination Memory | 134
Location Information

v 136

FIG. 9 End

INTERNATIONAL SEARCH REPORT International application No.
PCT/US 09/52794

A. CLASSIFICATION OF SUBJECT MATTER
IPC(8) - GO6F 13/28 (2009.01)
USPC - 710/22

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC(8) - GO6F 13/28 (2009.01)
USPC - 710/22

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
USPC - 710/22,28,36,40-41,1; 709/230 - search terms below.

Electronic data base consulted during the intemnational search (name of data base and, where practicable, search terms used)

Google Scholar; WEST (PGPB,USPT,EPAB, JPAB) - direct memory access, DMA, process state, location, address, source, destination,
halt, stop, instruction, quantity, byte, number, count, register, copy, transfer, resume, continue, restart, flush, decrement, read, write, run-
ahead, value, adjust, buffer, data stream, funnel, interrupt, pause, command.

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X US 5,325,489 A (MITSUHIRA et al.) 28 June 1994 (28.06.1994) ? col 1, In 30-44; col 1,In62to | 1-14
col 2,In 18; col 2, In 30-43; col 3, In 18 to col 4, In 5; col 4, In 10-24; col 5, In 34-52; col 6, In 1-
17; col 6, In 21-55.
\J
A US 2007/0073925 A1 (LIM et al.) 29 March 2007 (29.03.2007). 1-14
A US 2004/0243739 A1 (SPENCER) 02 December 2004 (02.12.2004). 1-14
A US 7,380,114 B2 (SANE et al.) 27 May 2008 (27.05.2008). 1-14
A US 6,065,071 A (PRIEM et al.) 16 May 2000 (16.05.2000). 1-14
A US 5,623,622 A (YUKI et al.) 22 April 1997 (22.04.1997). 1-14
A US 5,497,501 A (KOHZONO et al.) 05 March 1996 (05.03.1996). 1-14
A US 5,481,756 A (KANNO) 02 January 1996 (02.01.1996). : 1-14
A US 5,251,312 A (SODOS) 05 October 1993 (05.10.1993). 1-14
D Further documents are listed in the continuation of Box C. [:l
" Special categories of cited documents: “T” later document published after the international filing date or priority
“A” document defining the general state of the art which is not considered date and not in conflict with the application but cited to understand
to be of particular relevance the principle or theory underlying the invention
“E” earlier application or patent but published on or afier the international «x» document of particular relevance; the claimed invention cannot be
filing date considered novel or cannot be considered to involve an inventive
“Lr dpcgmem w}tlnilqhhmﬁy thrglv_v dqubtg on prfion'ty hclairr_\(s)_ or whicl';,is step when the document is taken alone
gited fo establish the publication date of another citation or other «y» gocument of particular relevance; the claimed invention cannot be
o special reason (a‘s specified)) o considered top involve an inventive step when the document is
O” document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents, such combination

means being obvious to a person skilled in the art

“P" document published prior to the international filing date but later than ..,

the priority date claimed document member of the same patent family

Date of the actual completion of the international search Date of mailing of the international search report
07 September 2009 (07.09.2009) 2 3 S E P 20 09
Name and mailing address of the ISA/US Authorized officer:
Mail Stop PCT, Attn: ISA/US, Commissioner for Patents Lee W. Young
P.O. Box 1450, Alexandria, Virginia 22313-1450
. PCT Helpdesk: 571-272-4300
Facsimile No. 571.273-3201 PCT OSP: 571-272:7774

Form PCT/ISA/210 (second sheet) (July 2009)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - claims
	Page 22 - claims
	Page 23 - claims
	Page 24 - claims
	Page 25 - claims
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - wo-search-report

