wo 2010/047918 A2 I 10K 0 OO

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

Co o
1 rld Intellectual Property Organization 2 ey
(19) World Tntclectua Property Organizaion /53 1IN N A MU AR 0
International Bureau S,/ 0
3\ 10) International Publication Number
(43) International Publication Date \'{:/_?___/ (10)
29 April 2010 (29.04.2010) PCT WO 2010/047918 A2
(51) International Patent Classification: CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
GO6F 12/02 (2006.01) GO6F 12/08 (2006.01) DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
GO6F 12/06 (2006.01) HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
. o KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
(21) International Application Number: ME. MG. MK. MN., MW. MX. MY. MZ. NA. NG. NI
PCT/US2009/058511 NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD,
(22) International Filing Date: SE, S@G, SK, SL, SM, ST, SV, SY, TJ, TM, TN, TR, TT,
26 September 2009 (26.09.2009) TZ,UA, UG, US,UZ, VC, VN, ZA, ZM, ZW.
(25) Filing Language: English (84) Designated States (unless otherwise indicated, for every
L.) kind of regional protection available): ARIPO (BW, GH,
(26) Publication Language: English GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
(30) Priority Data: ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ,
12/257,091 23 October 2008 (23.10.2008) US TM), European (AT, BE, BG, CIL, CY, CZ, DE, DK, EE,
ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
(71) Applicant (for all designated States except US). MI- MC, MK, MT, NL, NO, PL, PT, RO, SE, SI, SK, SM,
CROSOFT CORPORATION [US/US]; One Microsoft TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
Way, Redmond, Washington 98052-6399 (US). ML, MR, NE, SN, TD, TG).
(72) Imventors: FOLTZ, Forrest, C.; c/o Microsoft Corpora- Declarations under Rule 4.17:
tion, International Patents, One Microsoft Way, Red- as to applicant's entitlement to apply for and be granted
mond, Washington 98052-6399 (US). CUTLER, David, . ten‘;p(Rule 1.1701) PPy &
N.; ¢/o Microsoft Corporation, International Patents, One p ’
Microsoft Way, Redmond, Washington 98052-6399 (US). — as to the applicant’s entitlement fo claim the priority of
o the earlier application (Rule 4.17(iii))
(81) Designated States (unless otherwise indicated, for every

kind of national protection available): AE, AG, AL, AM,
AOQ, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,

[Continued on next page]

(54) Title: OPPORTUNISTIC PAGE LARGIFICATION

START

500

¥

SCAN FOR CANDIDATE
PAGE TABLES

501~

FOUND N9
?
YES

502

LOCATE A MEMORY
SEGMENT

(]

COPY PHYSICAL MEMORY
ASSOCIATED WITH
CANDIDATE PAGE TABLE
ENTRIES TO LOCATED
MEMORY SEGMENT

L]

ADJUST ENTRY IN PAGE ONE
LEVEL BEFORE LAST LEVEL

504~
550~

506~

» WAIT X 503

FIG. 5.

506~ TO BE ASSOCIATED WITH

THE MEMORY SEGMENT

(57) Abstract: Page tables in the last level of a hierarchical page table system are scanned for candidate page tables. Candidate
page tables are converted to large pages, having a page table entry in a level before the last level of the hierarchical page table sys-
tem adjusted to be associated with the newly created large page. Upon receiving a notification that a large page is to be converted
into a page table, a new page table is created. Each entry in the new page table is associated with a small segment of memory in
the large page and an entry in a page table one level before the last level in a hierarchical page table system is adjusted to be asso-
ciated with the new page table.

WO 2010/047918 A2 I 0000)00 U0 YO AU A

Published:

— without international search report and to be republished
upon receipt of that report (Rule 48.2(g))

WO 2010/047918 PCT/US2009/058511

OPPORTUNISTIC PAGE LARGIFICATION

BACKGROUND

[0001] Processes executing on computing devices often require data to be used in
computations. This data is typically stored by the operating system in memory, such as
RAM. This memory is broken up into chunks called pages. Each page is associated with
a unique address. When processes require data, the data is referenced by its unique
address, and the address is used to lookup the physical location of the page to return the
data. One common way this address to physical location translation is performed is by
traversing a page table hierarchy. Such hierarchies trade off the size of the pages that are
addressed with the number of levels in the hierarchy. However, the size of the pages also
dictates how efficiently the memory space is used, with larger pages being less efficient.
Therefore, there is a direct trade off between space efficiency (due to page size) and
translation time efficiency (due to the number of pages in the page table hierarchy).

[0002] An additional factor in determining the efficiency of a page table system
consists of the needs of the processes. If processes typically require large amounts of data,
then larger pages may in fact be efficient in terms of memory usage. However, if
processes typically require small amounts of data, then smaller pages will be more
efficient. Since processes of both types tend to operate on computing devices, a method of
dynamically supporting both would lead to greater efficiency. Operating system support
for large pages is also not as robust in computing devices as support for smaller sized

pages. This leads to an additional challenge in using large pages.

SUMMARY

[0003] This summary is provided to introduce a selection of concepts in a
simplified form that are further described below in the Detailed Description. This

1

WO 2010/047918 PCT/US2009/058511

summary is not intended to identify key features or essential features of the claimed
subject matter, nor is it intended to be used as an aid in determining the scope of the
claimed subject matter.

[0004] Embodiments of the present invention relate to scanning the last level in a
page table hierarchy to locate candidate page table entries (PTEs) for conversion to large
page mappings. Once candidate PTEs are located, these candidate PTEs are converted to
large pages by locating a large, contiguous segment of physical memory, transferring the
data associated with all the PTEs in the candidate page table page to the located segment
of memory, and then adjusting a PTE in a page table page one level before the last level of
the page table hierarchy to be associated with the newly created large page. In some
embodiments, when a notification is received, indicating a large page that is to be
converted back to small pages, a new page table page is created. Each PTE in the new
page table page is associated with a small segment of the large page and a PTE in the page
table one level before the last level of the hierarchical page table system is adjusted to be

associated with the new page table page.

BRIEF DESCRIPTION OF THE DRAWINGS

[0005] The present invention is described in detail below with reference to the
attached drawing figures, wherein:

[0006] FIG. 1 depicts a block diagram of an exemplary computing device suitable
for use in implementing the present invention;

[0007] FIG. 2 is a diagram of a typical physical memory layout as used by
operating systems and user processes;

[0008] FIG. 3 depicts an exemplary relationship between a page table and physical

memory;

WO 2010/047918 PCT/US2009/058511

[0009] FIG. 4 depicts an exemplary hierarchical page table system;

[0010] FIG. 5 is a flow diagram showing a method for finding candidate page
tables for conversion into large pages and performing the conversion;

[0011] FIG. 6 is a flow diagram showing a method for receiving a notification that
a large page is to be converted into a page table associated with small pages and
performing the conversion; and

[0012] FIG. 7 is a flow diagram showing a method for either receiving a
notification that a large page is to be converted to a page table associated with small pages,
or receiving a timeout indicating it is time to scan for candidate page tables for conversion

to large pages.

DETAILED DESCRIPTION

[0013] The subject matter of the present invention is described with specificity
herein to meet statutory requirements. However, the description itself is not intended to
limit the scope of this patent. Rather, the inventors have contemplated that the claimed
subject matter might also be embodied in other ways, to include different steps or
combinations of steps similar to the ones described in this document, in conjunction with
other present or future technologies. Moreover, although the terms “step” and/or “block”
may be used herein to connote different elements of methods employed, the terms should
not be interpreted as implying any particular order among or between various steps herein
disclosed unless and except when the order of individual steps is explicitly described.

[0014] Embodiments of the present invention are directed to opportunistically
locating groups of PTEs that could be converted into a large page and performing a
conversion. Additionally, once a page table page has been converted into a large page, the

reverse process may be performed in reaction to a notification from the operating system.

WO 2010/047918 PCT/US2009/058511

[0015] In accordance with some embodiments of the present invention, the
memory subsystem of a computing device manages a shared memory resource. Data
required for computation by one or more processes are stored in the shared memory
resource. Typically, processes executing on the computation device are not aware of the
physical location of the data. Instead, these processes are presented with an address space
mapping addresses to physical locations in memory. The one or more processes executing
on the computation device use the address to refer to data required for computation. The
memory subsystem of the computing device handles the translation from address to
physical location, performing address lookups.

[0016] In modern computing devices, the physical memory is divided into
segments referred to as pages. These pages represent the minimum data size that can be
represented by the page table hierarchy. Page tables are used by the memory subsystem
of the computing device to map virtual addresses to physical locations in memory. There
are a number of possible layouts for page table systems; however, the most common
mappings from addresses to physical memory locations use multiple, hierarchical page
table lookups, which are described in detail below. These hierarchies allow fixed address
sizes (typically measured in bits) to address large amounts of physical memory. Such
hierarchical table lookups require multiple memory accesses to locate a physical page
associated with a given virtual address. The more levels in the hierarchical page table
system, the more expensive data access operations are in terms of time for the address to
physical memory translation. However, there is also a tradeoff between the number of
levels in the page table hierarchy and the page size. Fewer levels in the page table
hierarchy implies larger page size. Therefore, for applications using small segments of
data, small page sizes and therefore deeper hierarchies allow less memory waste.

However, for applications using a large amount of data, larger page sizes will reduce the

WO 2010/047918 PCT/US2009/058511

number of page table lookups required to locate the required data, and therefore increase
the lookup efficiency.

[0017] When a particular piece of data is no longer needed or has not been
accessed for a threshold period of time, it is common for memory subsystems to save that
piece of data to disk, freeing up memory for data that is more frequently or currently
needed. This processes is called swapping out memory. However, many memory
subsystems can only swap out some fixed page size. Therefore, any mechanism that
creates pages larger than this fixed size would have to have the capability to break the
large pages into multiple smaller-sized pages in the event some part of the large page must
be swapped out. There are many other additional situations wherein a large page would
need to be broken up into smaller-sized pages by a memory subsystem.

[0018] Accordingly, an embodiment of the invention is directed to computer-
readable storage media embodying computer-usable instructions for performing a method
of converting a plurality of small pages associated with one or more processes operating
on a computing device into a large page. Each of the pages is associated with an entry in a
page table from a hierarchical page table system containing at least two levels of page
tables. The method includes scanning the last level of the hierarchical page table system
for candidate PTEs, which are page tables with at least a threshold of entries associated
with pages. The method then locates a physically contiguous memory segment large
enough to store each of the pages associated with the entries in the candidate page table
and copies the segments of memory in each of the pages to the located memory segment.
The method adjusts a page table entry in a page table one level before the last level in the
hierarchical page table system to be associated with the newly created large page.

[0019] According to other embodiments, the invention is directed to computer-

readable media storing computer-executable instructions embodying a method of

WO 2010/047918 PCT/US2009/058511

converting a large page into a plurality of small pages associated with one or more
processes executing on a computer system. Each of the pages is associated with an entry
of a page table in a hierarchical page table system. The method includes receiving an
operating system notification indicating a large page that is to be converted into a group of
small pages. Upon receiving the notification, a new page table is created and the entries in
the new page table are associated with small segments of the large page. The method
includes adjusting an entry from a page table one level before the last level of the
hierarchical page table system to be associated with the new page table.

[0020] According to a further embodiment, the invention is directed to a computer-
readable media storing computer-executable instructions embodying a method of scanning
a last level of a hierarchical page table system, containing at least two levels of page
tables, in each of a plurality of address spaces associated with one or more processes
executing on a computer system. This scanning involves attempting to identify candidate
page tables, which are page tables for which each of the entries are associated with one or
more segments of physical memory. The method further includes locating a memory
segment composed of contiguous segments of physical memory large enough to store each
of the plurality of segments of physical memory associated with all the entries in a
candidate page table and copying those segments of physical memory into the newly
located memory segment. The method frees the segment of memory containing the
candidate page table and adjusts a page table entry in a page table one level before the last
level in the hierarchical page table system that was associated with the candidate page
table to be associated with the newly located segment of memory, called a large page. The
method further includes receiving an indication from a memory subsystem incapable of
swapping out large pages that indicates one or more segments of a large page is to be

swapped out. The method further includes creating a new page table, with each entry in

WO 2010/047918 PCT/US2009/058511

the new page table being associated with a segment of the large page containing the
segment or segments that are to be swapped out. The method further includes adjusting a
page table entry in a page table one level before the last level of the hierarchical page table
system that was previously associated with the large page to be associated with the new
page table.

[0021] Having briefly described an overview of embodiments of the present
invention, an exemplary operating environment in which embodiments of the present
invention may be implemented is described below in order to provide a general context for
various aspects of the present invention. Referring initially to FIG. 1 in particular, an
exemplary operating environment for implementing embodiments of the present invention
is shown and designated generally as computing device 100. Computing device 100 is but
one example of a suitable computing environment and is not intended to suggest any
limitation as to the scope of use or functionality of the invention. Neither should the
computing device 100 be interpreted as having any dependency or requirement relating to
any one or combination of components illustrated.

[0022] The invention may be described in the general context of computer code or
machine-useable instructions, including computer-executable instructions such as program
modules, being executed by a computer or other machine, such as a personal data assistant
or other handheld device. Generally, program modules including routines, programs,
objects, components, data structures, etc., refer to code that perform particular tasks or
implement particular abstract data types. The invention may be practiced in a variety of
system configurations, including hand-held devices, consumer electronics, general-
purpose computers, more specialty computing devices, etc. The invention may also be
practiced in distributed computing environments where tasks are performed by remote-

processing devices that are linked through a communications network.

WO 2010/047918 PCT/US2009/058511

[0023] With reference to FIG. 1, computing device 100 includes a bus 110 that
directly or indirectly couples the following devices: memory 112, one or more processors
114, one or more external storage components 116, input/output (I/O) ports 118, input
components 120, output components 121, and an illustrative power supply 122. Bus 110
represents what may be one or more busses (such as an address bus, data bus, or
combination thereof). Although the various blocks of FIG. 1 are shown with lines for the
sake of clarity, in reality, delineating various components is not so clear, and
metaphorically, the lines would more accurately be grey and fuzzy. For example, many
processors have memory. We recognize that such is the nature of the art, and reiterate that
the diagram of FIG. 1 is merely illustrative of an exemplary computing device that can be
used in connection with one or more embodiments of the present invention. Distinction is

EE 1Y

not made between such categories as “‘workstation,” “server,” “laptop,” “hand-held
device,” etc., as all are contemplated within the scope of FIG. 1 and reference to
“computing device.”

[0024] Computing device 100 typically includes a variety of computer-readable
media. Computer-readable media can be any available media that can be accessed by
computing device 100 and includes both volatile and nonvolatile media, removable and
non-removable media. By way of example, and not limitation, computer-readable media
may comprise computer storage media and communication media. Computer storage
media includes both volatile and nonvolatile, removable and non-removable media
implemented in any method or technology for storage of information such as computer-
readable instructions, data structures, program modules or other data. Computer storage
media includes, but is not limited to, RAM, ROM, EEPROM, flash memory or other

memory technology, CD-ROM, digital versatile disks (DVD) or other optical disk storage,

magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage

WO 2010/047918 PCT/US2009/058511

devices, or any other medium which can be used to store the desired information and
which can be accessed by computing device 100.

[0025] Memory 112 includes computer-storage media in the form of volatile
memory. Exemplary hardware devices include solid-state memory, such as RAM.
External storage 116 includes computer-storage media in the form of non-volatile
memory. The memory may be removable, nonremovable, or a combination thercof.
Exemplary hardware devices include solid-state memory, hard drives, optical-disc drives,
etc. Computing device 100 includes one or more processors that read data from various
entities such as memory 112, external storage 116 or input components 120. Output
components 121 present data indications to a user or other device. Exemplary output
components include a display device, speaker, printing component, vibrating component,
etc.

[0026] I/0 ports 118 allow computing device 100 to be logically coupled to other
devices including input components 120 and output components 121, some of which may
be built in. Illustrative components include a microphone, joystick, game pad, satellite
dish, scanner, printer, wireless device, etc.

[0027] According to an embodiment of the invention, computing device 100 could
be used as a hypervisor, which is a virtualization platform that abstracts the physical
components of the computing device 100, such as the input components 120 and the
memory 112 from the operating system or system running on the computing device 100.
Such hypervisors allow multiple operating systems run on a single computing device 100
through such abstraction, allowing each independent operating system to have access to its
own virtual machine. In hypervisor computing devices, the overhead associated with

traversing page table hierarchies is even larger and the benefits of using large pages are

WO 2010/047918 PCT/US2009/058511

even greater than in systems running single operating systems that have direct access to
the components of the computing device 100.

[0028] Turning to FIG. 2, a physical memory 200, such as a RAM, is divided into
a number of sections. According to some embodiments of the invention, the memory is
divided into two main partitions, an operating system memory space 201 and a user
memory space 202. A memory subsystem of an operating system executing on the
computing device manages the physical memory 200, allowing user applications to use
portions of user memory space 202. Applications may not have access to contiguous
memory locations, however. Referring to FIG. 2, according to some embodiments of the
present invention, the user memory space 202 is divided into pages (represented by boxes),
which are distributed between two hypothetical applications for illustration purposes only
and not limitation: application 1 space is represented by x’s (e.g., memory segment 203)
and application 2 space is represented by /’s (e.g., memory segment 204). Free memory
pages are clear in the diagram (e.g., memory segment 205). The operating system memory
space 201 can be used for a number of purposes, one of which is to store the page tables
206 that contain the mapping from the address space to physical memory. For
applications, these mappings associate pages in the user memory space 202 where data is
stored with addresses.

[0029] As shown in FIG. 3, according to an embodiment of the present invention, a
page table 301 includes entries 303, cach of which being associated with a particular page
in the user memory space, stored in physical memory 304. Note that entries 303 in the
page table 301 may not necessarily be associated with contiguous pages 304 in the
physical memory.

[0030] Referring now to FIG. 4, according to various embodiments of the present

invention, addresses 401 are represented by strings of bits. These addresses are mapped

10

WO 2010/047918 PCT/US2009/058511

through a hierarchical page table system 402. By way of example and not limitation,
consider a 48-bit addressing scheme 401 and a four-level hierarchical page table system
402. The 48-bit address 401 is divided into five sections. A first nine bits 403 are used to
index into a first page table 404. The entry located in the first page table 404 by the first
nine bits 403 of the address 401 is associated with a segment of memory 422 storing a
second page table 406. The second nine bits 405 index into the second page table 406.
The entry located in the second page table 406 is associated with a segment of memory
422 containing a third page table 408. The third nine bits 407 of the address 401 index
into the third page table 408. The entry located in the third page table 408 is associated
with a segment of memory 423 containing a fourth page table 410. The fourth nine bits
409 of the address 401 index into the fourth page table 410. The entry located in the
fourth page table 410 is associated with a segment of memory 424 in user space memory
containing a page 412. The last twelve bits 411 of the address 401 index into the page
412. The segment of memory in the page 412 at the index given by the last twelve bits
412 is the data referred to by the address 401. As can be seen there is at least one memory
access per page table lookup in the process of looking up data addressed via a hierarchical
page table system.

[0031] Those skilled in the art will recognize that the specific address sizes,
number of page tables, number of levels in the page table hierarchical system, and size of
pages can be varied. By way of example only and not limitation, page sizes can be 4KB,
2MB, or 1GB. Address sizes can range, for instance, from 32 bits to 64 bits. Given the
example in FIG. 4, each page table has 512 entries (2°) and each page is 4KB (2'%). It
takes four page table lookups to locate data in a page. If all of the data associated with all

512 entries in a page table were to be combined in a single page, the resulting page (called

11

WO 2010/047918 PCT/US2009/058511

a large page) would be 2MB and would require only three page table lookups in the
hierarchical page table system to locate.

[0032] Turning to FIG. 5, a flow diagram is provided that illustrates a method 500
for finding a candidate page table to convert to a large page and so converting the page
table (block 550 contains the steps of the method without the timeout portion shown in
block 503, all discussed below). Shown at block 501, the last level of the page table
hierarchical system is scanned for candidate page tables for conversion to large pages. For
example, the last level of the page table hierarchy of FIG. 4, in which the fourth page table
410 exists, could be scanned for candidate page tables. One skilled in the art will recognize
a wide variety of criteria could be used for determining whether a page table is a candidate
for conversion to a large page. By way of example only and not limitation, such criteria
could include finding a full page table or finding a page table with a threshold of entries
full. A full page table is one wherein all the entries of the page table are associated with
locations in physical memory. According to one embodiment of the invention, such
scanning involves scanning through each of the page tables associated with the entries in
page tables one level before the last level and examining the found last level page tables to
see if they constitute a full page table. One skilled in the art will recognize that there are
many ways a threshold could be defined, including but not limited to, a percentage of
entries being associated with physical memory locations or a total number of entries
associated with physical memory locations.

[0033] By scanning the last level in the hierarchical page table system (e.g., the
level in which page table 410 is located in FIG. 4) one or more candidate page tables may
be identified (see block 502). If no candidate page table has been identified, then there is a
time delay 503 before another scan is performed at block 501. This time delay 503 is a

parameter that could be adjusted by a programmer, system administrator, user, or anyone

12

WO 2010/047918 PCT/US2009/058511

else with appropriate access to the system. If, however, a candidate page table has been
identified, then a segment of contiguous memory large enough to store the data associated
with each entry in the candidate page table is located, as shown at block 504.

[0034] In embodiments, locating a segment of memory involves scanning the
physical memory for a sufficient number of contiguous segments of memory to store all of
the entries associated with the candidate page table. Recall that a page table may not have
contiguous entries that are associated with contiguous physical memory segments.
However, when the entries in the candidate page table are converted to a large page, they
must be stored in the order of the entries in the page table with which they are associated.
According to one embodiment of the invention, locating a memory segment is simply a
matter of scanning the physical memory and finding a large contiguous segment of
memory (¢.g. 2MB). In some embodiments, this scanning could be performed by scanning
a page frame number database containing the state of all physical pages in the system.
Additionally, the large contiguous segment of memory might be restricted to begin on a
predetermined byte-boundary. By way of example and not limitation, considering the
example above using 512 4KB small-sized pages to combine into a large page of 2MB, the
predetermined byte boundary could be a 2MB byte-boundary. Those skilled in the art will
recognize that many other values for the predetermined byte-boundary could be used.
According to another embodiment of the invention, if not enough contiguous segments of
memory can be found, then a memory management subroutine is activated that actively
creates a large contiguous segment of memory by moving stored data to free segments
away from a particular location in memory, and adjusting their respective page table
entries. In this way a large contiguous segment of memory is created for use in the large

page table conversion.

13

WO 2010/047918 PCT/US2009/058511

[0035] Once a contiguous segment of memory of sufficient size has been located
or created, all of the physical segments of memory associated with the entries in the
candidate page table are copied in order to the located memory segment, as shown at block
505. In one embodiment of the present invention, as the physical segments of memory are
copied into the located segment, the original location of physical memory is freed. In
another embodiment of the invention, the original memory locations of each of the
memory segments associated with each of the entries of the candidate page table also
maintain their copies of the data.

[0036] As shown at block 506, a page table entry one level before the last level of
the hierarchical page table system (e.g., page table 408 of FIG. 4) is associated with the
new large page. In one embodiment of the invention, the converted page table is freed and
the page table entry from one level before the last level in the hierarchical page table
system that was associated with the freed page table is adjusted to be associated with the
new large page. After converting candidates to large pages, there is a time delay at block
503 before another scan for new candidate page tables is started. This time delay at block
503 is a parameter that could be adjusted by a programmer, system administrator, user, or
any one else with appropriate access to the system.

[0037] Turning to FIG. 6, a flow diagram is provided that illustrates a method 600
for converting a large page into page table entries associated with multiple smaller-sized
pages. According to one embodiment of the present invention, an operating system
notification is received at block 601 identifying a large page to be converted to small
pages. One skilled in the art will recognize that there are many events that might trigger
such a notification. By way of example only and not limitation, such events include a

segment of the large page being scheduled for swapping out to disk in a system with an

14

WO 2010/047918 PCT/US2009/058511

operating system incapable of swapping out large pages and the page table entries
associated with memory belonging to an application memory space that is being destroyed.
[0038] Upon receiving a notification indicating a large page to be converted, a new
page table is created as shown at block 602. According to one embodiment of the
invention, this creation involves allocating memory in the operating system memory space
for a new table. Once the page table is created, each entry in the new page table is
associated with one smaller-sized segment of the large page at block 603, until all of the
segments of the large page are associated with some entry in the new page table.
Continuing the example of FIG. 4, each of the 512 page table entries in the new page table
would be associated with one 4KB segment of the large page.

[0039] Finally, a page table entry from one level before the last level of the
hierarchical page table system (e.g., the level in which page table 408 is located in FIG. 4)
is adjusted to be associated with the new page table, as shown in block 604. According to
one embodiment of the invention, the entry from the page table one level before the last
level of the hierarchical page table system associated with the new page table was the
entry previously associated with the large page.

[0040] According to a further embodiment of the invention, FIG. 7 presents a
method 700 of converting a page table into a large page and converting large pages into
page tables associated with numerous smaller-sized pages. First the method involves
waiting for an event, as shown at block 701. By way of example and not limitation, the
event could be either a timeout or an operating system notification. One skilled in the art
would recognize that there are numerous other events that could trigger either type of
conversion. Once an event occurs, a decision is made. If the event was a timeout
indicating that a time delay has expired 702, an attempt is made to convert a page table

from the last level of a hierarchical page table system into a large page, for instance

15

WO 2010/047918 PCT/US2009/058511

according to the method 550 of FIG. 5. This time delay is a parameter that could be
adjusted by a programmer, system administrator, user, or any one else with appropriate
access to the system. If the event is an operating system notification 702, then a large page
is converted to a page table of entries pointing to smaller-sized pages, for instance
according to the method 600 of FIG. 6. Upon completion of either the method of
attempting to convert a page table to a large page, or the method of converting a large page
to a page table with entries associated with numerous smaller-sized pages, a waiting period
is entered again at block 701. This waiting period again expires cither at the arrival of
another operating system notification or the expiration of a time delay.

[0041] Many different arrangements of the various components depicted, as well
as components not shown, are possible without departing from the spirit and scope of the
present invention. Embodiments of the present invention have been described with the
intent to be illustrative rather than restrictive. Alternative embodiments will become
apparent to those skilled in the art that do not depart from its scope. A skilled artisan may
develop alternative means of implementing the aforementioned improvements without
departing from the scope of the present invention.

[0042] It will be understood that certain features and subcombinations are of utility
and may be employed without reference to other features and subcombinations and are
contemplated within the scope of the claims. Not all steps listed in the various figures

need be carried out in the specific order described.

16

WO 2010/047918

PCT/US2009/058511

CLAIMS

1. One or more computer-readable media storing computer-executable

instructions for performing a method of converting a plurality of small pages associated

with one or more processes executing on a computer system into a large page, each of the

plurality of small pages being associated with one of a plurality of page table entries from

a hierarchical page table system containing at least two levels of page tables, the method

comprising:

scanning (501) a last level of the hierarchical page table system for
a page table in which each of at least a threshold of a plurality of entries are
associated with one of a plurality of pages, resulting in the identification of
a candidate page table;

locating (504) a memory segment composed of a plurality of
contiguous segments of physical memory, large enough to store each of the
plurality of segments of physical memory associated with all of the
plurality of entries of the candidate page table;

copying (505) each of the plurality of segments of physical memory
associated with all of the plurality of entries of the candidate page table into
the memory segment composed of a plurality of contiguous segments of
physical memory; and

adjusting (506) a page table entry in a page table one level before
the last level of the hierarchical page table system to be associated with the
memory segment composed of a plurality of contiguous segments of

physical memory.

17

WO 2010/047918 PCT/US2009/058511

2. The media of claim 1, wherein scanning a last level of the
hierarchical page table system comprises selectively scanning each of a plurality of
address spaces associated with the one or more processes executing on the computer

System.

3. The media of claim 1, wherein the threshold of a plurality of entries

is all of the plurality of entries.

4. The media of claim 1, wherein each of the plurality of entries of the
candidate page table are associated with a single one of the one or more processes

executing on the computer system.

5. The media of claim 1, wherein locating a memory segment
composed of a plurality of contiguous segments of physical memory comprises copying
data from a first location near an area of physical memory to a second location away from
said area in order to create a plurality of contiguous segments of physical memory large
enough to store each of the plurality of segments of physical memory associated with all of

the plurality of entries of the candidate page table.

6. The media of claim 1, wherein the memory segment composed of a

plurality of contiguous segments of physical memory is on a predetermined byte boundary.

7. The media of claim 1, wherein copying each of the plurality of
segments of physical memory associated with all of the plurality of entries of the candidate
page table further comprises freeing said plurality of segments of physical memory after

they have been copied.

18

WO 2010/047918 PCT/US2009/058511

8. The media of claim 1, wherein said page table entry in a page table
one level before the last level of the hierarchical page table system was previously

associated with the candidate page table.

9. The media of claim 1, wherein adjusting a page table entry further

comprises freeing a segment of memory containing the candidate page table.

10. One or more computer-readable media storing computer-executable
instructions for performing a method of converting a large page into a plurality of small
pages associated with one or more processes executing on a computer system, each of the
small pages associated with one or more page table entries from a hierarchical page table
system containing at least two levels of page tables, the method comprising:

receiving (601) an operating system notification indicating a large
page to be converted to a plurality of small pages;

creating (602) a new page table;

associating (603) each of a plurality of entries in the new page table
with a segment of the large page; and

adjusting (604) a page table entry in a page table one level before
the last level of the hierarchical page table system to be associated with the
new page table, wherein said page table entry in a page table one level
before the last level of the hierarchical page table system was previously

associated with the large page.

11. The media of claim 10, wherein the operating system notification is

due to a need to swap out one or more segments of the large page.

19

WO 2010/047918 PCT/US2009/058511

12. The media of claim 10, wherein the operating system notification is

due to an address space containing the large page being removed.

13. The media of claim 10, wherein the new page table has a number of

entries equal to a size of the large page divided by a predetermined small page size.

14. One or more computer-readable media storing computer-executable
instructions for performing a method comprising:

scanning (501) a last level of a hierarchical page table system,
containing at least two levels of page tables, in each of a plurality of
address spaces associated with one or more processes executing on a
computer system for a page table in which each of at least a threshold of a
plurality of entries are associated with one of a plurality of segments of
physical memory, resulting in the identification of a candidate page table;

locating (504) a memory segment composed of a plurality of
contiguous segments of physical memory, large enough to store each of the
plurality of segments of physical memory associated with all of the
plurality of entries of the candidate page table;

copying (505) each of the plurality of segments of physical memory
associated with all of the plurality of entries of the candidate page table into
the memory segment composed of a plurality of contiguous segments of
physical memory;

freeing (505) a segment of memory containing the candidate page
table;

adjusting (506) a page table entry in a page table one level before

the last level of the hierarchical page table system, said page table entry

20

WO 2010/047918 PCT/US2009/058511

being previously associated with the candidate page table, to be associated
with the memory segment composed of a plurality of contiguous segments
of physical memory;

receiving (601) an indication from a memory subsystem incapable
of swapping out large pages, indicating a segment of a large page is to be
swapped out;

creating (602) a new page table with each entry in said new page
table associated with a segment of the large page; and

adjusting (604) a page table entry in a page table one level before
the last level of the hierarchical page table system to be associated with the
new page table, wherein said page table entry in a page table one level
before the last level of the hierarchical page table system was previously

associated with the large page.

15. The media of claim 14, wherein the hierarchical page table system

contains four levels.

16. The media of claim 14, wherein each small page is 4KB.

17. The media of claim 14, wherein each large page is 2MB.

18. The media of claim 14, wherein the memory segment composed of
a plurality of contiguous segments of physical memory is on a predetermined byte

boundary.

19. The media of claim 18, wherein the predetermined byte boundary is

2MB.

21

WO 2010/047918 PCT/US2009/058511

20. The media of claim 14, wherein the page table hierarchical page

table system is addressed according to a 64-bit architecture.

22

PCT/US2009/058511

WO 2010/047918

1/5

[O

ol fddn 0c1 121 ST
JOVHOLS ATddns SININOdWOD | | SININOdNOD 104 O
TYNY3ILXT YIMOd 1NdNI 1Nd1NOo

oL’
21 4%
AdD AHOWIN

V/oov

PCT/US2009/058511

WO 2010/047918

2/5

€0¢

& OIA

N

31dVv1 39Vvd

10€

XXX XX XX XXX

rrrrrrrrrrd

[

v0€

‘¢ OId

XX XX XXX XXX
XXX X XXX XXX
F11 111171117
XXX X XXX XXX
111011171111

F11 111171117 R

. mmf.

AHMOW3AIN AHd ,me RN

vﬁm,xxxxxxxxxx

NN

NN

EOC| XX XXXXXXXX

NI XX XXX X

\\v RN

002
AHOW3IW AHd

>20¢

O~ NM T O O M~

> 102
W@ON
J

PCT/US2009/058511

WO 2010/047918

3/5

wov\m 319v1 39vd

SO

39Vvd

S31gvl

00z_/

30VdS
H¥3SN

SO

0c/LC

A

]

AHOWAN AHd

cecy

1444

/

¥ 319v1 39Vd

o’

30VvdS
H¥3SN

SO

N
\

L

)

AHOWN3IN >In_/OON ¢ 319vlL m_mu<n_/©ov AHONIIN AHd
P

A

/

I 3719vL 39Vd

/oom \ /#ov
L

30VdS
d3SN

SO

ecy

AHON3AIN AHd

oom\

(A4

010L0L0FOLOF 90100000, 00F000000° 0FO000000 100000000 } 0¥

LIy

601

10 SOb

cOp

>20

AHOHVH3IH 31GVL 39Vd

PCT/US2009/058511

WO 2010/047918

4/5

S O

€09

X LIVM

>

ININDIS AHOWIIN FHL
HLIM d31VvIOOSSY 39 OlL
13A3T LSV1 340439 13ATT
INO 39Vd NI AYLN3 LSNrav

~009

i

ININOIS AHOWIN
d31vO01 0L S3AIYLINT
319V1 39Vd 31VAIANVO
HLIM d31VIOOSSY
AHOWAN TVIISAHA AdOD

~G0G

i

ININO3S
AHONIN V 31V¥O01

~70S

S3A
¢

oK ANNO4>~208

S3719v1 39vd
J1VAIANVO Jd04 NVOS

~10S

i

~0GS

14Vv1S

009

PCT/US2009/058511

WO 2010/047918

5/5

2 OIHd

NOILVOIdIOYV] NOILVOIdI19dVT-3d

0GS / 009 /

1NO3INIL NO

NOILYOI4ILON

1NO3NIL NOILVOI4dILON

c0.L

1IVM

oz

004

14VI1S

9 DI

3719v1 39Vvd
M3AN HLIM d31VIOOSSY
7094 39 OL1 T3N3 LSV
340439 T73A37 IANO 319Vl
39Vd NI A41N3 LSNrav

a

39Vd 394dV1 3HL 40
ININOFS V HLIM 3T1aVL
3dOVd M3AN 3HL NI S3I41IN3
JH1 40 HOV3 31VIOOSSY

a

¢09-1 379VL 39Vd M3IN 31V3HD

a

NOILYOI4ILON
109 WALSAS
ONILY¥3dO
ENEREL

€09+

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - claims
	Page 20 - claims
	Page 21 - claims
	Page 22 - claims
	Page 23 - claims
	Page 24 - claims
	Page 25 - drawings
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - drawings

