This invention relates to an automated apparatus for subjecting samples (9) to one or more selected test procedures (45) at one or more test stations (27, 28). A conveyor system (1) transports uniquely labeled containers (8), said line (1) having at least two lanes (2, 3) for routing said containers (8) to one or more selectable test stations (27, 28). At least one of said lanes (2, 3) being a transport lane and the other being a queue lane. A container interface device (37) reads the labels (12) on the containers (8) and routes them as instructed by the information encoded on the labels (12).
<table>
<thead>
<tr>
<th>Code</th>
<th>Country</th>
<th>Code</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>AM</td>
<td>Armenia</td>
<td>GB</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>AT</td>
<td>Austria</td>
<td>GE</td>
<td>Georgia</td>
</tr>
<tr>
<td>AU</td>
<td>Australia</td>
<td>GN</td>
<td>Guinea</td>
</tr>
<tr>
<td>BB</td>
<td>Barbados</td>
<td>GR</td>
<td>Greece</td>
</tr>
<tr>
<td>BE</td>
<td>Belgium</td>
<td>HU</td>
<td>Hungary</td>
</tr>
<tr>
<td>BF</td>
<td>Burkina Faso</td>
<td>IE</td>
<td>Ireland</td>
</tr>
<tr>
<td>BG</td>
<td>Bulgaria</td>
<td>IT</td>
<td>Italy</td>
</tr>
<tr>
<td>BJ</td>
<td>Benin</td>
<td>JP</td>
<td>Japan</td>
</tr>
<tr>
<td>BR</td>
<td>Brazil</td>
<td>KE</td>
<td>Kenya</td>
</tr>
<tr>
<td>BY</td>
<td>Belarus</td>
<td>KG</td>
<td>Kyrgyzstan</td>
</tr>
<tr>
<td>CA</td>
<td>Canada</td>
<td>KP</td>
<td>Democratic People's Republic of Korea</td>
</tr>
<tr>
<td>CF</td>
<td>Central African Republic</td>
<td>KR</td>
<td>Republic of Korea</td>
</tr>
<tr>
<td>CG</td>
<td>Congo</td>
<td>KZ</td>
<td>Kazakhstan</td>
</tr>
<tr>
<td>CH</td>
<td>Switzerland</td>
<td>LI</td>
<td>Liechtenstein</td>
</tr>
<tr>
<td>CI</td>
<td>Côte d'Ivoire</td>
<td>LK</td>
<td>Sri Lanka</td>
</tr>
<tr>
<td>CM</td>
<td>Cameroon</td>
<td>LR</td>
<td>Liberia</td>
</tr>
<tr>
<td>CN</td>
<td>China</td>
<td>LT</td>
<td>Lithuania</td>
</tr>
<tr>
<td>CS</td>
<td>Czechoslovakia</td>
<td>LU</td>
<td>Luxembourg</td>
</tr>
<tr>
<td>CZ</td>
<td>Czech Republic</td>
<td>LV</td>
<td>Latvia</td>
</tr>
<tr>
<td>DE</td>
<td>Germany</td>
<td>MC</td>
<td>Monaco</td>
</tr>
<tr>
<td>DK</td>
<td>Denmark</td>
<td>MD</td>
<td>Republic of Moldova</td>
</tr>
<tr>
<td>EE</td>
<td>Estonia</td>
<td>MG</td>
<td>Madagascar</td>
</tr>
<tr>
<td>ES</td>
<td>Spain</td>
<td>ML</td>
<td>Mali</td>
</tr>
<tr>
<td>FI</td>
<td>Finland</td>
<td>MN</td>
<td>Mongolia</td>
</tr>
<tr>
<td>FR</td>
<td>France</td>
<td>MR</td>
<td>Mauritania</td>
</tr>
<tr>
<td>GA</td>
<td>Gabon</td>
<td>MW</td>
<td>Malawi</td>
</tr>
<tr>
<td>MX</td>
<td>Mexico</td>
<td>NE</td>
<td>Niger</td>
</tr>
<tr>
<td>NF</td>
<td>Netherlands</td>
<td>NO</td>
<td>Norway</td>
</tr>
<tr>
<td>NZ</td>
<td>New Zealand</td>
<td>PL</td>
<td>Poland</td>
</tr>
<tr>
<td>PT</td>
<td>Portugal</td>
<td>RO</td>
<td>Romania</td>
</tr>
<tr>
<td>RU</td>
<td>Russian Federation</td>
<td>SD</td>
<td>Sudan</td>
</tr>
<tr>
<td>SG</td>
<td>Singapore</td>
<td>SI</td>
<td>Slovenia</td>
</tr>
<tr>
<td>SK</td>
<td>Slovakia</td>
<td>SN</td>
<td>Senegal</td>
</tr>
<tr>
<td>SZ</td>
<td>Swaziland</td>
<td>TD</td>
<td>Chad</td>
</tr>
<tr>
<td>TG</td>
<td>Togo</td>
<td>TJ</td>
<td>Tajikistan</td>
</tr>
<tr>
<td>TT</td>
<td>Trinidad and Tobago</td>
<td>UA</td>
<td>Ukraine</td>
</tr>
<tr>
<td>US</td>
<td>United States of America</td>
<td>UZ</td>
<td>Uzbekistan</td>
</tr>
<tr>
<td>VN</td>
<td>Viet Nam</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Apparatus and Process

Scope of the Invention

This invention relates to an automated apparatus for subjecting samples to tests, particularly for subjecting biological samples to clinical tests. The invention also relates to an automated process using the apparatus.

Background of the Invention

Automated apparatus for subjecting samples, for example biological samples such as blood, urine, saliva, cerebrospinal fluid and other biological materials to one or more of a series of selectable clinical tests such as hematological tests, urinalysis, immunoassay, toxicology or other specific chemical tests, is known. In general such automated apparatus for clinical tests is constructed to test samples of biological materials which are obtained by a tester, such as a doctor or clinician, from a test subject, and which are sent for testing contained in tubes which are labeled to enable them to be associated with the originating test subject. Such automated apparatus generally comprises a conveyor line for transporting the samples in containers such as tubes to selected test stations at which tests are carried out, usually by presenting the sample in the tube, or a withdrawn specimen of the sample to test equipment. Test equipment of this type which is adapted to be used in combination with such a conveyor line is well known in the art. At each test station test result data is recorded and associated, usually by electronic data processing equipment, with the identity of the sample, thereby enabling this test result data to be related to the test subject from whom they originated.

There is a need for such automated testing apparatus to process samples at a high rate, so as for example to provide the tester, and ultimately the originating subject, with the results of the tests as quickly as possible. However it is also essential that the achievement of a high processing rate in such apparatus does not sacrifice accuracy of testing and reliable correlation of test result data with the identity of the sample.

It is an object of this invention to provide an automated apparatus for subjecting samples, particularly biological samples to tests, which increases the rate of processing of samples while maintaining such accuracy and reliability. Other objects and advantages of the present invention will be apparent from the following description.

Summary of the Invention

In a first aspect this invention relates to an automated apparatus for subjecting samples to one or more selected test procedures at one or more test stations comprising a conveyor line for transporting samples contained in uniquely
labeled containers, said line having at least two lanes for routing said containers to
one or more selectable test stations, at least one of said lanes being a transport lane
and at least one of said lanes being a queue lane, and having a container interface
device for transferring containers to said testing device from the queue lane and
back again onto said queue lane.

In a second aspect this invention relates to an automated apparatus for
subjecting samples to one or more selected test procedures at respective test stations,
said apparatus comprising:
a first conveyor line for transporting samples contained in uniquely labeled
containers, said line having at least two lanes with means for routing containers
between said lanes, at least one lane being a transport lane and at least one other
lane being an accumulator lane,
loading means for loading said containers onto the apparatus,
electronic means for reading and recording the unique label information
from said labels of containers,
data processing means for electronically recording, storing and processing
said information,
electronic control means for routing and tracking said samples in response to
said recorded information,
at least one interface means for routing containers from the first conveyor
line to a spur conveyor line,
one or more spur conveyor lines for transporting said containers to one or
more selectable test stations, said spur line(s) having at least two lanes, with means
for routing containers between said lanes, at least one of said lanes being a transport
lane and at least one of said lanes being a queue lane, and having a container
interface device and a sample testing procedure located adjacent to said spur line(s),
selection means and routing means, controlled by said data processing
means, for selecting containers for routing by the interface device from the first
conveyor transport lane to the transport lane of a selected spur line,
selection means and routing means, controlled by said data processing
means, for selecting containers and for routing selected containers from the spur
transport lane to the queue lane adjacent to a selected test station,
a container interface device for presenting a container or sample from the
container to a test procedure and capable of interacting with a container in the queue
lane and the staging area of a test procedure,
test means for carrying out the test procedure,
means to record and store the results of the said test procedure,
means to route containers from the queue lane to the spur line transport lane, at least one interface means for routing containers from the spur conveyor line to the first conveyor line, and off-loading means to off-load containers from the apparatus.

General Description of the Invention

Brief Description of the Drawings

Fig 1 shows a schematic plan diagram of the apparatus comprising a first conveyor line with attached spur conveyor.

Fig 2 shows a cross section through the conveyor line 1 of Fig 1

Fig 3 shows tubes mounted in holders

Fig 4 shows the layout of the spur conveyor line in a perspective dismantled view.

Fig 5 shows the layout of a single chain dual line conveyor.

Description of the Invention

This apparatus is particularly suitable for subjecting samples of biological materials to clinical test procedures for example of the general types discussed above and may be used in conjunction with known automated test equipment of the type discussed above, which may be floor or table mounted, for example on adjustable height tables to enable ease of integration with the apparatus. Also the apparatus of the invention is suitable for use with clinical tests which require some manual procedures, e.g. transfer to a long term incubation procedure, and the term "test station" used herein refers to parts of the apparatus where containers are presented either for automated or tests requiring manual procedures.

Samples of biological materials may be contained in tubes such as those having conventional rubber bung closures or screw cap closures of a generally known type commonly used in the art of clinical testing. As is normal practice in the art of clinical testing samples of biological materials are obtained at a sampling site by a sampler or under the sampler's supervision from the test subject by an appropriate sampling procedure, and are then introduced into a container such as a tube by the sampler or under the sampler's supervision. The tube is then normally uniquely labeled by the sampler or under the sampler's supervision at least with information relating to the identity of the test subject and sent, together with test requisition documentation identifying the test(s) to be carried out, to a receipt area of the testing site where the apparatus of the invention is located. Alternative forms of containers for biological samples include slides, absorbent strips or pads etc. impregnated with a liquid or solid sample for testing. However the sample is

- 3 -
contained in the apparatus of this invention, the sample may be subjected to standard
known preservative or pre-treatment steps before subjecting to the tests.

The unique labeling applied to the tube for the apparatus of this invention
may for example be the unique labeling applied at the sampling site as mentioned
above, or may for example be unique labeling subsequently applied to the tube and
based upon the unique labeling and/or test requisition documentation accompanying
the tube to the testing site. The unique labeling is preferably machine-readable
labeling, for example optically readable bar-codes of a generally known type, which
is preferred, or alternately magnetic strips or optically readable characters etc. The
unique labeling suitably encodes at least information relating to the identity of the
container, i.e. enabling the container to be associated with the test subject, and
information relating to the tests to which the sample contained therein is to be
subjected. The unique labeling may comprise an adhesive label manually or
mechanically affixed to the tube, or may comprise other forms of labeling such as
for example direct printing upon the tube wall. Labels should be placed on or in the
container in such a way as to be readable during processing.

When the containers are tubes of the above-described type they are mounted
during transport on the first and spur conveyor lines in holders. This is desirable as
tubes are generally in the form of glass or plastics materials tubes which require a
stable mounting for safe transport on the conveyor lines of the apparatus to
minimize risk of for example falling over on the line. Such holders may be made of
plastics materials and may include a resilient-sided gripping cavity in which the
tubes may be gripped while oriented upright. Such holders have a heavy, e.g. metal,
base to lower the center of gravity of the tube-holder combination and thereby to
impart stability against falling. The holders may incorporate guide means
engageable with part of the conveyor line, e.g. one or more grooves engageable with
a guide rail adjacent to the conveyor line, to assist in safe transport of the holder
along the conveyor line. It is also preferred that the combination of holder and tube,
or the tube within the holder, is capable of rotation about an axis perpendicular to
the conveyor line for example by means of engagement with part of the conveyor or
with a rotating mechanism of the conveyor, so as to enable the unique labeling to be
presented to the means for reading information regardless of the position and/or
orientation of the label on the container.

If the containers are the above-described slides, pads or strips, holders of a
type suitable for these and including the above mentioned suitable and preferred
features appropriate to such containers may be used.
In the system which employs a first and second conveyor, the first conveyor line may be linear, i.e. returning to its starting point without being able to transport samples back to the starting point, or circulating. It is preferred to use a circulating conveyor line which can circulate samples thereon back to the starting point.

The first conveyor line may be a substantially flat conveyor belt (optionally with alpine sections of flexible links thereby allowing linear and circulating operation in substantially a flat plane. An example is a layout including antiparallel moving linear straight sections. Flat belts of this type are known in the art, for example a known Flex-Link XM™ series conveyor with a horizontal variable speed drive, operable between for example speeds of 10-50 fpm, e.g. 10-30 fpm.

Preferably there is a single first conveyor line, although two or more first conveyor lines may be operated in series or in parallel to enlarge the handling capacity or processing speed of the apparatus. The said lanes of the first conveyor may be provided by utilizing a single broad conveyor belt and subdividing the belt across its width into respective lanes. Such subdivision may be by means of edge walls defining the outer edges of the lanes and one or more dividing walls located at intermediate positions between the edge walls, and dividing a single conveyor belt into the required number of lanes. The edge walls and dividing walls may comprise the above-mentioned guide rails.

As regards the two basic lanes in the first conveyor line, the function of the transfer lane is to move containers around the apparatus and the function of the accumulator lane is to move containers into position to be acted on or to be warehoused pending available space on a destination spur or the like. Once the container has been acted on in the accumulator lane it is routed back to the transfer lane. Preferably the selection means and an active routing means will be located solely on the transfer lane, and all devices, testing modules, and off-loading means will be located on the accumulator lane. Preferably the transport lane will be on the inside and the accumulator lane will be on the outside of an apparatus which has a circulating conveyor line design.

The function of the first conveyor line transport lane is inter alia to transfer containers to a destination such as a remote point where they are routed to the accumulator line for action or to a spur line. This lane transports the containers around the first conveyor line to a selection means and routing means at which point the containers are transferred to either the accumulator lane or a spur line.

Furthermore, this transport lane receives the containers back from the accumulator lane or a spur line via the return means and transports the containers to another destination such as the off-loading means. A preferred embodiment will locate the
transfer lane on the inside of the circulating line comprising the first conveyor line. This lane will preferably have active selection means and active transfer means such as movable gates for selecting and routing containers to the accumulator lane or a spur utilizing the information gleaned from the unique information on the container label.

The function of the accumulator lane is inter alia to provide a siding to which containers can be shunted for being acted on in some fashion after which they are returned to the transfer lane by a passive merge device (said return means). This lane also serves as an accumulation area where containers can be held in anticipation of being routed to a selected destination which is currently unavailable.

As regards the way in which containers are routed between transport and accumulator lane, the transport lane may be provided with selection means and routing means controlled by the data processor for selecting containers and for routing selected containers from the transport lane to the accumulator lane. The accumulator lane may also be provided with selection means and routing means controlled by said data processor for selecting containers and for routing selected containers from the first conveyor accumulator lane to the transport lane, but the preferred operation is to use a stop which holds the containers on the accumulator lane for a period, then releases them to a passive merge gate which directs them back to the transport lane.

The first conveyor may have a single accumulator lane serving these functions. Alternatively there may be more than one accumulator lane, for example a second accumulator lane for storage of containers or for gathering of containers into groups of two or more containers for transport to testing stations for which testing is advantageously carried out upon such groups of containers.

The loading means may be manual or wholly or partly automated. The loading means preferably loads the containers onto the accumulator lane of the first conveyor line. The loading means may load containers directly onto the first conveyor line. Alternatively the loading means may load the containers onto a loading spur conveyor line from which they are routed to the first conveyor line. Alternatively the loading means may load the containers onto one first conveyor line from which they are transferred to another first conveyor line. Manual loading of containers onto the first conveyor line may be by means of depositing the labeled containers which have been placed in holders onto the first conveyor line by hand. An automated loading means may comprise a conveyor upon which labeled containers are deposited, e.g. by hand, having guiding means such as a tapering region to direct deposited containers into a sequential stream of single containers,
and feeding means to feed this stream sequentially onto the first conveyor. The feeding means may comprise a known gate means such as a stepwise rotating wheel having circumferential receptacles each for a single container, by means of which a single container may be received into a receptacle from the stream, then by stepwise rotation be transferred onto the first conveyor with a suitable interval between containers. Alternative automated loading means will be apparent to those skilled in the art.

When containers are loaded onto the apparatus it is preferred to have done a prior check to insure that the label is readable and in a readable position if placed in a carrier device such as a puck. Once the containers are loaded onto the accumulator lane they are routed to the transfer lane where a second check may be performed to insure that the label is being properly read by the apparatus' automated reading devices, if they are being used. Preferably this review will comprise the first station on the transfer lane.

The means for reading and recording information from the labels may comprise known reading means appropriate to the nature of the label. For example one may use an optical bar code reader, a magnetic head or an optical character reader. Bar coding is preferred. It is preferred that the whole process of reading and acting on the container can take place within 0.5 sec. Preferably an initial means for reading and recording information are located at the point where the containers are loaded onto the first conveyor in which case the means may be at or comprise a part of the loading means, or may be adjacent to the first conveyor at a position downstream of loading the containers onto the first conveyor. The function of such initial means is to identify and record information about the containers relating to the identity of the patient, type of sample and the test to be done on that sample. This is in effect "checking in" the samples so that they can be tracked and routed through the apparatus.

The means for reading information at a particular point may include stopping means for temporarily stopping the movement along the conveyor of individual containers of which the label is to be read along the container so that the label may be held for a suitable length of time in the reading field of a reading means. Such stopping means suitably comprise sensors such as photoelectric or capacitance sensors which detect the presence of a container, and singulator means to isolate and stop a single container on the conveyor in the reading field. Singulator means may be of a known type, and may for example comprise moveable barriers which move in response to detection of a container by the sensor, so that a single container is isolated between two barriers. The means for reading information may
include means for orienting the container relative to the reading field of the reading means so the label can be read. Such rotating means may be the above-described engagement of rotatable holders with the conveyor. Constructions of such stopping and rotating means will be apparent to those skilled in the art. Alternatively a second reader can be placed on the opposite side of the lane to provide two readouts thus avoiding the need to rotate the carrier. In a third embodiment, a dynamic optical reading system can be employed. This may involve movable or stationary mirrors positioned to distribute the light from a light source around the circumference of the container and to reflect it back to a light-sensitive reader.

An automatic or semi-automatic decapper device may be interposed at some point in the operation of this device. Preferably it will be placed after the loading mechanism. Most preferably it will be placed just after the check-in module on the conveyor line.

The decapper will have a design which makes it capable of removing all types of closure which may have been used to seal a container which can be processed through this machine. So it should be able to accommodate a screw cap as well as friction sealing closure. It should be able to handle rigid, semi-rigid or flexible capping material. It should be able to process rigid plastic caps or flexible rubber bungs which have are inserted into a tube and held in place by friction. All without breaking the container wall.

Normally the decapper will be placed under the control of the computer controlling overall operation of this device. The decapper can be a universal decapper, that is it decaps everything which passes by. Or it can be programmed to selectively pass over certain containers which are slated for tests which require, or because of safety considerations, etc., should not be opened to the atmosphere until they have reached a designated testing device. An alternative, or supplementary, configuration is one where a decapper device is placed just ahead of a testing device on a spur line. Normally this would be a second decapper supplementing the function of the primary decapper on the first conveyor line. In this configuration, the container passes through the universal decapper on the first conveyor line without being decapped, shunted to a spur line, moved to the queue lane, and then decapped just before being placed in the control of the test interface device of the target testing device.

If an automated decapper is used, one may wish to place a cap detector device just downstream of the decapper, just to make sure the cap has been completely removed. This detector should control an adjacent gate. If it detects a cap, it would send a signal to the gate device, identifying the offending container
and directing the gate to operate and shunt aside the incomplete or improperly decapped container.

A recapping device can be integrated into this device as well. Such a device will in essence recap a container after it has passed a certain milestone. Or a recapper could be coupled with a testing device, just like a decapper, to effect closure of a container which contains sensitive or toxic materials which must be isolated when not undergoing sampling.

A spill containment system may be built into one or more of the conveyor configurations. This may be something slung under the conveyors, with or without side or top shielding means. It can be used selectively on certain testing devices. It can be used in conjunction with a container interface or be made part of a testing device. No particular device or material is specified. The choice of materials and configuration is left to the skill of the practitioner or the demands of regulatory and legal entities.

The recording and data processing means may be a computer or microprocessor programmed with appropriate software of a nature apparent to those skilled in the art. The data processing means must have sufficient computational and storage capacity to handle the real time control of the apparatus and to process data from the apparatus if that function is accorded to a single device. Apparatus control functions and data management functions can be done by the same computational device, or by separate devices. A preferred embodiment is to have a controller for the lines, the selection and routing means and a primary data processor which has an interface with this controller. A most preferred embodiment is one in which the controller and the data processor are bi-directional, that is the controller communicates with the data processor and the data processor in turn communicates with the controller. Normally the data processor will control the container interface device and the test module and receive output from the test module. This has been called a process control management execution system (PC/MES). An example of a controller is the Allen Bradley PLC 5/40ETM. One or more of any of the commercially available computers can be used to carry out the PC/MES function.

The spur conveyor line comprises a substantially flat conveyor belt (optionally with an alpine section) flat belt of flexible links thereby allowing operation in substantially a flat plane, for example in a layout including antiparallel moving linear straight sections. Flat belts of this type are known in the art, for example a known Flex-Link XMTM series conveyor with a concatenated variable speed drive, suitably between 10-50 fpm, e.g. 10-30 fpm. While a spur may be a simple out-and-back line, it may be preferable to have a means for recycling.
containers back through the line without routing them off to the first conveyor line. This is particularly useful in the event the queue lane (described below) can not accept a container for some reason and rather than recycle the container the whole way back out onto the first line, then back on the spur, the container can simply be cycled repeated around the spur until the queue lane for its designated test can accept it.

There may be one or more spur lines. The number of spur lines is determined inter alia by the size of the test equipment at the test stations and/or the handling capacity or processing speed of the apparatus. For example the same test can be carried out on two or more spur lines to increase capacity or to provide a back-up.

A spur line will have at least one transport lane and at least one queue lane. Said lanes of the spur conveyor may be of a construction similar to that of the first conveyor line. The lanes may be defined by edge walls defining the outer edges of the lanes and one or more dividing walls located at intermediate positions between the edge walls, and dividing the single conveyor belt across its width into the required number of lanes. The edge walls and dividing walls may comprise the above-mentioned guide rails.

The function of the spur's transport lane(s) is inter alia to move containers around the spur thus providing a means for routing them to a preselected testing station. Each spur conveyor line may have one or more transport lanes. The transport lane of the spur line also acts as a bypass lane along which containers may travel and bypass the test station(s) if they are not selected for testing. The transport lane may be either the inner or the outer lane; preferably it will be the inside lane of a circulating line. The transport lane will preferably have on it the selecting means and the routing means for routing containers into the queue lane.

The function of the queue lane of the spur conveyor line is similar to that of the accumulator lane in the first conveyor line in that it provides an area where the container can be acted on by the interface device and/or the testing module set up adjacent to the spur line. Thus containers in the queue lane are presented to the interface device for that test procedure while minimizing interference with the movement of containers along the spur line transport lane.

The spur transport lane preferably will be a circulating lane; the queue lane need not be so. This may be achieved by providing a circulating lane linking a part of the spur transport lane upstream of the point where the containers are returned from the spur line to the first conveyor line to a part of the spur conveyor downstream of the point where the containers are routed to the spur line from the
first conveyor line, and selection means and routing means, controlled by said data processing means, for selecting containers and for routing selected containers from the spur conveyor line transport lane to the said circulating lane. The circulating lane may be a conveyor belt of similar construction to the spur conveyor line or the first conveyor line, for example a Flex-Link XM or XS™ style conveyor or an alternative such as a rotary carousel.

While any number of test stations can be placed on the periphery of a spur, it is expected that a three meter section of spur will have two test stations on either side. This number is not critical to the practice of the invention but represents a practical placement of machines and devices.

Electrical, air, water, communication means and the like can be slung under the superstructure of the spur so they are out of the way but yet are readily accessible when needing repair. Preferably spurs will be set up as a module which can be treated as a plug-and-play system. This approach may also have electronic controllers build into the underbelly of the spur in close proximity to the selection means and routing means they control.

The container interface device is a device which can engage the container and/or a holder in which a container is mounted and present either to a test procedure staging area or to a test device sampling mechanism. Another embodiment is one in which this device removes a specimen of the sample directly from the container and places it in the receptacle of a test device sampling mechanism. In the simplest embodiment, a person may remove containers from the queue lane and place them in the staging area of a given test procedure.

Container interface devices which can perform these functions are known. or known devices can be modified for use in the apparatus of the invention. Examples of such interface devices include the following. A direct sampling engine, for example in which a container is moved from the queue lane to the sampling port of a test equipment. A pick-and-place engine, with a robot arm and grip, moving and operating responsive to container sensors, which can pick a container or a holder plus container from the queue lane and present the container to test equipment adjacent to the queue lane, for example placing the container in a feed magazine such as a carousel of test equipment. The pick-and-place engine will have at least one grip which can pick a container to be tested from the queue lane. Preferably two or more grips will be used. This allows for addressing multiple containers at one time. For example with two grips, one grip can remove a tested container from the test equipment while the other is removing another tube from the conveyor line. Another useful interface device is a pipetting engine which can insert one or more
pipette tips into respective one or more containers to withdraw specimens of the samples for testing therewith and present the withdrawn specimens to the test equipment. A batch movement engine which can remove numbers of containers from the queue line and load them into recorded positions in racks is yet another example of a useful interface device. The human hand can also be used.

It is preferred that before or during interface of the interface means with the container, means for reading and recording information from the labels of the containers which may be of similar construction to the reading and recording means discussed above, is used inter alai to read information from the label and via the data processing means correlate the identity of the container with the identity of a container recorded by the initial means for reading and recording information, and to correlate a specific test result with the identity of a sample being tested.

The test procedure comprises a test appropriate to the sample. For example in the case of biological samples this can be the clinical tests discussed above. These tests can be done using automated test equipment as discussed above. Alternately testing procedures may submit to manual processing.

As regards the selection means used in this invention, those means may comprise means for reading and recording information from the label on the container, e.g. as described above. The information read from the label suitable includes at least information relating to the identity of the container, which may be correlated with the identity of a container recorded by the initial means for reading and recording information, and information relating to the nature of the tests, so that the data processing means can confirm the identity of the container, and select whether to route containers to a spur line from the first conveyor line which transports the container to an appropriate test station, or from a spur transport lane to a queue lane adjacent to an appropriate test station. Additionally or alternatively the selection means may identify defects in the container, of the nature discussed above, and route containers to an accumulator lane.

The means for routing selected containers from the first conveyor transport lane to the transport lane of a selected spur line, for routing selected containers from the first or spur transport lane to the queue lane adjacent to a selected test station, for routing containers from the queue lane to the spur transport lane, for routing selected containers from the first conveyor transport lane to the accumulator lane, and for routing selected containers from the first conveyor accumulator lane to the transport lane may comprise singulator means to isolate a single container on the conveyor and a divertor means to divert the isolated container from one said lane to another, at a place where the two said lanes run adjacent and in parallel motion.
Divertor means may comprise fixed (passive) or moveable (active) barriers acting in response to a signal and which can move between a position which allows unobstructed travel along one lane but blocks access to another lane, and a position which blocks access to the first mentioned lane but diverts containers along the second mentioned lane. Fixed divertors are within the skill of the art. Ways of constructing movable barriers will also be apparent to those skilled in the art. It has been found that moveable barriers which move at a suitable speed are pivoted swinging barriers in which the movement is caused by compressed air actuation, the air supply being controlled by solenoid valves responsive to the data processing system.

As regards the interface device for transferring containers from the first conveyor line to the spur conveyor line, this may comprise a transfer conveyor onto which the divertor means may route containers from the first line transport lane and thus into the transfer lane of the spur line. The interface device may anything which is capable of transferring the containers from the first line to the spur. Manual means can be used. It is preferred to place both lines immediately adjacent to each other on the same level and use a mechanical device which can move the containers from one belt to the other without interrupting the normal movement of the containers. A preferred example is to use a single lane Flex-Link XM style conveyor belts running side by side with a set guide rail which routes prior selected containers of the first line to the selected spur's conveyor belt. Alternative routing means will be apparent to those skilled in the art, such as motor driven turntables, or turntables driven by the conveyor line.

Test data may be output and stored by any known means. Data can be manually outputted, stored in the test device, or electronically off-loaded to a computational device. The means to electronically record and store the results of the said testing procedures may comprise a data processing system such as a computer or microprocessor. This may be the same data processing system that records the said information from labels, but the invention is not so limited.

Test data can be become the basis for recycling or rerouting. This recycling or rerouting is done on the fly. It arises from data generated by a testing device which data is flagged as being inaccurate or incorrect as a result of comparing it against standards programmed into the data processing system which controls the routing of containers. Thus the data processing system not only controls the disposition of the container based on the initial read of the ID code, but can dynamically redirect the container if it detects an unacceptable variance in data from the test profile input from the sample source, e.g., a doctor's office or clinical
laboratory. This feature has the capability of inserting a retest into the existing cascade of tests originally programmed into the system, or adding the retest to the end of that cascade. This retest can be simply recirculating the container back to the same machine, or routing it to another machine which does the same test. Also, a new test can be added to the testing profile on the fly, that is without circulating and off-loading the container, then reprogramming its ID to include the new or repeat test, then reloading it onto the system for rerouting to the testing device.

The means for routing containers from the transfer lane of the spur line to the first conveyor line comprises the same functionality as was described above for routing containers from the first conveyor line to a spur line. It is preferred to use the same mechanism for this return routing as is used for routing a container to a spur, but that is not mandatory for the practice of this invention.

An off-loading means is utilized to remove fully tested containers from the apparatus. This off-loading can be done at any time or at any point on the apparatus. Preferably the containers will be directed back to the first conveyor line where they will then be removed from the apparatus. However, containers may be off-loaded from a spur line if so desired. Containers may be directed to the part of the apparatus which has the off-loading means. This can be done by a set divertor or by a selection and routing means of the type discussed above.

The off-loading means will remove the containers from the line or from a holder or other carrier device which was used to transport the container around the apparatus. This is achieved by manual or mechanical means. For example tubes can be manually pulled from the holders and placed in some repository such as a trash can or an indexed box for storage. Mechanical devices can be used for this task. For example a pick-and-place robot can be used to pull tubes from holders and place them in a receptacle. A preferred off-loading means is a pick-and-place robot which deposits tubes in recorded mapped locations recorded in the data processing system so that the identity of the tubes may be retrieved for re-testing.

The first conveyor line and spur line may each be driven by a motor such as an electric motor of known type specific thereto, or a single motor may drive both the first conveyor line and the spur conveyor. A dedicated motor can drive the circulating conveyor line.

The first conveyor line or a spur conveyor line may also include a decapping means to remove bungs or caps from containers such as tubes if this is necessary for the testing procedure. The first conveyor line or a spur conveyor line may also include a re-capping means to apply a closure over the mouth of open or decapped containers such as tubes, at a stage in the operation of the apparatus when
presentation of open or decapped containers to any testing procedures requiring de-
capped containers has been carried out.

The single conveyor, that is one without a spur line, combines all the
attributes of the first conveyor line and the spur line into a single conveyor
operation, except for the aspect of having a loading/transport operation that is
provided by the first conveyor in the above described operation. With the singly
conveyor system it is preferred to use an out-and-back or circulating line
configuration. The line can assume any physical form, provided that form can
accommodate the materials limitations of the conveyor belt and the requirement for
juxtaposing testing devices along the conveyor. For example it may be void,
elliptical, or have one or more coves or bulges along its path; these form can be
continuous or discontinuous. While it is preferred that the conveyor operate
essentially horizontally, its layout may include inclines or declines which at their
terminus may or may not return to the plane of their starting point.

Operationally, the single conveyor system involves loading a container on
the transport side of the line where its unique ID is read and recorded. Then said
container is carried along on the transport line to a gate mechanism placed on the
transport lane and capable diverting the container a test device, holding device or
off-loading device. This gate mechanism has a corresponding ID reader which
reads a container’s ID and then instructs the gate mechanism to remain closed or to
open and to divert that container. If the container is selected, it is diverted to the
queue lane by the gate mechanism. The container is then acted on as described
above, then passed back to the transport lane and either diverted to another test
station or off-loaded.

The apparatus of the invention suitably incorporates other desirable features
as summarized below. These features are given to illustrate the invention and are
not intended to limit its scope in any manner.

Specific Preferred Embodiments

As regards the first conveyor line, it include a sample checking procedure to
verify that the sample is in a suitable state to subject to the testing procedure(s).
prior to subjecting to the testing procedure(s). For example in the case of biological
samples the sample checking procedure may comprise a check on the suitability of
the samples for a selected clinical test, for example a turbidity or color test to check
for decomposition, contamination etc. Failure of this checking procedure may result
in transfer of containers containing failed samples from the first conveyor transport
lane to the accumulator lane, or alternately if the sample is still suitable for selection
of other tests, instruction of the selection means to bypass the test for which the
sample is not suitable. This checking procedure may be under the control of the data processing system.

In another embodiment the first conveyor line and spur line(s) may have one or more elevated sections ("alpines") to allow access for maintenance or circulation of persons through the area in which the apparatus is located. Suitably the conveyor line(s) rise to such elevated sections by means of sloping or ramped sections of the conveyor lines.

The conveyor lines may be constructed in modules, for example each module comprising a region of conveyor containing a small number, e.g. four, of sets of selection means and associated transfer means in each antiparallel section, with a local I/O control system specific to the module. Such modular construction and control has been found to be advantageous relative to a single centralized control system, in minimizing the amount of control wiring that is necessary, and facilitating maintenance.

At points on the conveyor lines where jamming of containers could occur for example where containers are transferred from one lane to another, the point may be provided with an anti-jamming mechanism, which may be of known type. For example the anti-jamming mechanism may comprise means to impart rotation to at least some of the containers about an axis perpendicular to the plane of the conveyor line. Such a mechanism may comprise holders which are rotatable about said axis, and means to contact such rotatable holders at a tangent to the axis of rotation. As such transfer points are likely to be points also where the containers are exposed to the means for reading and recording information the anti-jamming means may also comprise the rotating means which rotate the container(s) to expose the label to the means for reading information.

The spur line(s) may extend substantially at right angles from the region of the first conveyor line from which transfer of containers occurs. The combination of spur conveyor line and transfer conveyors may in such a construction be in a generally "T" shape, with the stem of the T forming the spur line, and each arm of the T being a transfer conveyor running generally parallel and alongside the first conveyor. In such a construction the spur conveyor and transfer conveyors may form an endless circulating loop, by means of the ends of the arms of the T (i.e. the ends of the transfer conveyors) being connected by a loop of the conveyor belt underneath the two arms of the T. This construction of the spur conveyor line(s) and transfer conveyors enables a particularly compact construction of the apparatus.

The invention also provides a process for subjecting samples to one or more selected test procedures at respective test stations, the process involving the use of
an apparatus as described above. The process is particularly applicable to the
subjecting of biological samples to clinical tests.

The sequence and physical layout of the above mentioned elements of the
apparatus of the invention will be determined by determinants such as: the nature of
the samples, the nature of the containers, the nature of the labels and the information
thereon, the rate at which samples are to be processed in the apparatus of the
invention, the number and nature of the testing procedures to which the samples are
to be subjected, and the physical constraints of the site where the apparatus is to be
located. Within the generality of the disclosure of the invention herein, and subject
to these determinants, ways of constructing an apparatus according to this invention
to meet any specific requirements will be apparent to those skilled in the art.

The apparatus of this invention will now be described by way of non
limiting example only, with reference to the accompanying drawings.

Discussion of the Figures

Referring to Fig. 1, the apparatus comprises a first counterclockwise
circulating conveyor line 1 (general) having an inner lane 2 and an outer lane 3.
Line 1 is a Flex-Link XMT™ conveyor belt, and is set out in two substantially
antiparallel moving long straight sides, turning at the ends, thereby forming a
generally lozenge shape. Other geometries are possible. The outer edges of the two
lanes 2, 3 are defined by respective edge walls 4, 5, and the line 1 is divided into the
two lanes 2, 3 by a central dividing wall 6. The edge walls 4, 5 and the dividing wall
6 are provided with guide ridges 7 on the surfaces thereof facing lanes 2, 3.

Containers 8 are tubes 9 mounted in rotatable circular section holders 10 the
holders having guide grooves 11 on their outer surface into which the guide ridges 7
can engage so as to guide and retain the holders on the conveyor 1, each contain a
sample (not shown) of a biological material for testing. Each tube 9 is uniquely
labeled with an optically readable bar code 12 which encodes information relating to
the identity of the sample in the tube and the test procedures to which the sample in
the tube 9 is to be subjected in the apparatus of the invention.

Containers 8 are loaded onto the outer lane 3 of conveyor 1 by a loading
means 13, which comprises a generally known construction of a broad conveyor belt
onto which containers 8 are placed, and are funneled to form a stream of sequential
individual containers 8, which are then loaded by known means such as a stepwise
rotatable wheel having circumferential receptacles for individual containers 8, and
from which containers 8 may be fed out individually onto lane 3 with suitable
intervals in between.
Shortly after loading onto lane 3, containers 8 are routed into inner lane 2 by a divertor 14 in the form of a set of ramp barrier. An initial means 15 for reading information from the labels, being an optical bar code reader provided with a singulator and container stopping means of generally known construction, reads information relating to the identity of each container 8 of the label, and transmits this information to a data processing system 16, via data bus 17, where it is recorded, in effect "checking in" each container 8 into the apparatus.

If a defect in a container 8 is detected by means 15, such as an unreadable or absent bar code for example, then under the control of data processing means 16 and control means 17 a divertor means 18 (the arrow drawn on the divertor means 18, and other divertor means shown indicates the direction of diversion) routes the defective container 8 onto the outer lane 3. Containers 8 which have no defects detectable at this stage are retained on the inner lane 2 of line 1. Divertor means 18 may suitably comprise a known construction of moveable barriers, for example which can be swung by compressed air actuation to close one lane and divert containers 8 to another lane. The operation of the means 15 and 18 takes optimally around 0.5 sec. in total. The inner lane 2 is consequently acting as a transport lane by which containers 8 are transported through the apparatus, and the outer lane 3 is acting as an accumulator lane into which defective containers and/or samples are routed.

After the initial reading and "checking in", samples 8 are subjected to a check procedure at 19. This check procedure at 19 comprises a means 20 for reading information from the labels, of similar construction and function to the means 15 described above and reads information relating to the identity of each container 8 and the testing procedures to which it is to be subjected, from the label. At 19 there is check equipment 21 of known type, controlled by data processing system 16 and control system 17, which applies a check of a nature appropriate to the tests to which the sample in the container 8 is to be subjected, e.g. turbidity, color etc.. If the means at 20 detects a defect in the container, in a similar manner to means 15, or if the check at 21 detects that the sample is unsuitable for a specific test, divertor means 22 similar to the means 18 route the defective container 8 into the outer, accumulator, lane 3, or alternately the data processing means 16 may record that the sample is unsuitable for the some test procedures, but suitable for others, and may subsequently cause the container 8 to bypass the testing procedure for which it is unsuitable.

At 23 is a decapping means. Means 23 comprises a means 24 for reading information from the labels, similar to means 15, which reads information relating

SUBSTITUTE SHEET (RULE 26)
to the identity of each container 8 and the test procedures to be applied from the label. Under the control of data processing system 16 and control system 17, if the test procedures to which the sample is to be subjected require the cap or closure of the tube 9 to be removed, a decapping device 25, which may be of known type, does so. The decapping means 23 may include divertor means 26 similar to means 18, responsive to means 24 under the control of data processing system 16 and control system 17, for routing containers 8 into the accumulator outer lane 3. The outer, accumulator, lane 3 is consequently functioning as a lane in which or from which actions can be carried out on the container 8. It will be understood that decapping means 23 may be positioned at other points in the apparatus, provided it is upstream of any test that requires a decapped container 8.

The apparatus is shown with two spur conveyor lines 27 and 28, although there may be one spur line or more than two spur lines. The general construction of each spur conveyor line 27, 28 is similar to first conveyor line 1. Each spur conveyor line 27, 28 comprises an counterclockwise circulating conveyor line having an inner lane 29 and an outer lane 30. Lines 27, 28 are Flex-Link XM™ conveyor belt, and is set out in two substantially antiparallel moving long straight sides, oriented substantially at right angles to the long straight sections of line 1, having one end immediately adjacent to a the first line 1, and turning at the end remote from the first conveyor line 1. Other geometries are possible. The outer edges of the two lanes 29, 30 are defined by respective edge walls 31, 32, and the lines 27, 28 are divided into the two lanes 29, 30 by a central dividing wall 33, the central wall 33 dividing the conveyor belt 27, 28 across its width into the necessary number of lanes 29, 30. The edge walls 31, 32 and the dividing wall 33 are provided with guide ridges (not shown) on the surfaces thereof facing lanes 29, 30, the cross section being generally identical to that of the first line as shown on Fig 2.

At the end of the spur lines 27, 28 adjacent to line 1, spur line 27, 28 bends to form transfer lanes 34, 35 which move parallel to, alongside, and at the same speed as the outer lane 3 of the first line 1. The use of Flex-Link XM™ conveyor belt enables this. The spur line 27, 28 consequently forms substantially a "T" shape, with the sideways limbs of the T of the spur being the transfer lanes 34, 35. At the ends of the transfer lanes 34, 35, the conveyor returns in a loop 36 directly underneath the limbs of the T. This is shown in a dismantled perspective view in Fig 4, the view being looking down on the limbs of the T along the stem, i.e. in the direction of the arrow A-> in Fig 1. The use of Flex-Link XM™ conveyor belt facilitates this, and construction in this way is found to be particularly convenient and power-efficient.
At 37 is selection means and routing means, controlled by data processing means 16 and control means 17, for selecting containers 8 and for routing selected containers 8 from the first conveyor transport lane 2 to transfer lane 34 and thence to the outer lane 29 of a selected spur line 27, from which containers 8 are shortly thereafter routed to the inner lane 29 of the spur lane 27 occurs by means of a ramp guide surface 38. The containers 8 are guided along transfer lane 34 by means of shaping the walls 5, 6 to guide the containers. Means 37 comprises a means 39 for reading information from the labels, similar to means 15, which reads information relating to the identity of each container 8 and the test procedures to be applied from the label. Under the control of data processing system 16 and control system 17, if the test procedures to which the sample is to be subjected require the container to be diverted to spur 27, a divertor means 40, similar to means 18, routes containers 8 onto the outer lane 3, and consequently onto transfer lane 34, and consequently onto outer lane 30 of spur conveyor 27. Conversely, if the test procedures to which the sample is to be subjected does not require the container to be diverted to spur 27, the divertor means 40 does not divert the container, and by default the container 8 remains on the inner, transport, lane 2 of line 1.

On spur 27 the container 8 then proceeds along the inner lane 29 of spur line 27. At 41 is selection means and transfer means, controlled by data processing means 16 and control means 17, for selecting containers 8 and for transferring selected containers 8 from the inner lane 29 of spur line 27 to the outer lane 30 of spur line 27. Means 41 comprises a means 42 for reading information from the labels, similar to means 15, which reads information relating to the identity of each container 8 and the test procedures to be applied from the label. Under the control of data processing system 16 and control system 17, if the test procedures to which the sample is to be subjected require the container to be diverted to outer lane 30, a divertor means 43, similar to means 18, routes containers 8 onto the outer lane 30. Conversely if the test procedures to which the sample is to be subjected do not require the container to be diverted to outer lane 30, or if the means 42 detects a defect in the container 8, in the manner described above, the divertor means 43 does not divert containers 8 onto the outer lane 30, so by default they remain in inner lane 29.

Outer lane 30 is a queue lane, into which containers 8 are diverted. Adjacent to lane 30 are container interface means 44 which under the control of data processing means 16 and control means 17 transfers a container 8 or a sample therein from the outer queue lane 30 to adjacent test equipment 45 controlled by data processing means 15. Data processing means 15 also records and stores the test
results and associates these with the identity of the sample. The interface means 44 may be of a known type, such as the above mentioned direct sampling engine, pick and place engine, pipetting engine and batch movement engine, and the test equipment 45 may also be of a known type, for example known automated clinical test equipment. If the interface means 44 removes the container from lane 30 for the purposes of the test procedure 45, it must also return the container to lane 30.

Upstream from interface means 44 may be means 46 for reading information from the labels, similar to means 14, which reads information relating to the identity of each container 8 and optionally the test procedure to be carried out, so that the test results can be associated with the identity of the sample therein, and to confirm just before testing at 45 that the test 45 is appropriate.

After completion of the test procedure at 45, and any necessary return of the container from the test procedure 45 by the interface means 44 to the outer lane 30, divertor means 47, a sloped section of wall 33, routes the container 8 back to the inner lane 29 for transport around the spur 27, inner lane 29 thus functioning as a transport lane.

Containers 8 which have at 41 not been diverted into outer lane 30 bypass the test procedure 45, and are transported further around spur 27 on inner lane 29, which functions as a transport lane.

Traveling around the spur 27 in inner transport lane 29, containers 8 may encounter a further part 48 of the spur, either simply being a conveyor line having one or more further sets of items corresponding to 41, 42, 43, 44, 45, 46, 47, which can subject the containers 8 to another test procedure. Additionally or alternatively the area 48 can subject containers 8 which have bypassed test procedure 45 to test procedures.

Although on line 27 two test procedures 45 are shown, there may be one test procedure or more than two test procedures 45. When there are two or more test procedures, 45 they may be the same test procedure or different test procedures.

At 49 the inner lane 29 is continued as a circulating lane, which may be a conveyor belt, or a turntable 50, driven by a motor (not shown). This enables containers on inner lane 27 to be recirculated on inner lane 27 of the spur 25, for example for re-testing, for example if the queue lane immediately upstream of a test procedure 45 is full (queue lane 30 between means 42 and 45 may include sensors (not shown) to detect if the lane 30 is filled, and by means of data processing means 16 and control means 17 may instruct divertor 43 not to route containers 8 into the filled queue lane 30), for example if the test procedure 45 is too busy and its capacity is exceeded. Means 51 for reading information from the labels, similar to
means 15, which reads information relating to the identity of each container 8 from
the label, and diverter means 52, similar to means 1 are located upstream of the
point where inner lane 29 meets or merges with circulating lane 49. Under the
control of data processing system 16 and control system 17, if the means 51
identifies containers 8 which are to be tested by a test procedure 45 which is busy,
then diverter means 48 routes such containers 8 onto the circulating lane 46 and
consequently back onto lane 30 at a point upstream of the test procedure 45 in
question. Conversely, if the means 51 finds no need to circulate the containers 8,
they are not routed by diverter means 52 to the circulating lane 49, and they routed
along transfer lane 35 functioning as a return means to transfer containers 8 back to
the inner transport lane 2 of line 1, being routed across the outer parts of conveyor 1
by a sloped part of the walls 32, 33.

Meanwhile, containers routed at 37 to bypass spur 27 flow along the inner
transport lane 2 of line 1, and the flow of containers 8 along transfer lane 35 merges
at 53 with the flow of containers 8 along the inner transport lane 2 of line 1.

Traveling along the inner transport lane 2 of line 1, containers 8 encounter a
further means 37 duplicating the function of means 37 to select and route containers
8 onto spur 28. The construction and operation of spur 28 is in general identical to
that of spur 27 and spur 28 may have additional, alternative or duplicate test
procedures corresponding to test procedures 45 of spur 27. Consequently spur 28 is
not drawn or described herein in detail, as its features correspond mutatis mutandis
to spur 27. Containers 8 are transferred by transfer lane 35' back onto the inner
transport lane 2 of line 1 in a manner analogous to spur 27, the flow of containers 8
merging at 53'.

On the inner transport lane 2 of line 1 downstream of 53' is located a
recapping means 50. Means 54 may be located anywhere on line 1 or on spur 27 or
28 where containers 8 are downstream of test procedures 45 which require uncapped
containers 8 for the test procedure 45 to be carried out. Means 54 comprises means
55 for reading information from the labels, similar to means 15, which reads
information relating to the identity of each container 8 from the label. Under the
control of data processing means 16 and control system 17, means 55 determines
whether the container 8 has been subjected to a decapping procedure at 23, and if it
has and requires a cap to be re-applied, a cap is applied to the container 8 by a
capping device 56, which may be of known type. A diverter means 57 similar to
means 18 routes the container 8 into outer, accumulator lane 3 where the recapping
operation can be carried out, and then ramped guide 58 routes the container 8 back
onto transport lane 2
On the first conveyor line 1 downstream of the spurs 27, 28 and recapper 54 is an off-loading means 59, which comprises means 60 for reading information from the labels, similar to means 15, which reads information relating to the identity of each container 8 from the label, and a divertor means 61 similar to means 18 to divert containers 8 off the inner transport lane 2 of line 1 and off line 1 altogether. The off loading means 59, under the control of the data processing means 16 and control system 17, responding to information read by means 60, deposits off-loaded containers 8 into known locations (not shown), for example in stacked trays, of which the XYZ coordinates of each container are recorded by the data processing system, and may be accessed if necessary subsequently. The reading of the information by means 60, and recording by data processing system 16 identifies that the container 8 has left the conveyor 1, in effect "checking out" the container 8 from the apparatus.

The means 15 and corresponding means for reading information from the label on the containers allow repetitive confirmation of the identity and position of the tube in the apparatus, and at each of these means defects can be detected, and defective containers can be diverted from transport lanes to accumulator lanes. This provides for accuracy and reliability in the apparatus, and a rapid identification of problems or faults in the apparatus.

Although test procedures 45 are described above as automated test equipment, they may alternatively be test stations where containers are off loaded by means analogous to 59 for manual tests, such as long term incubations.

Although line 1 is described as having one accumulator lane 3, it could alternatively have two or more accumulator lanes, which may for example be further lanes parallel to those 2, 3 shown, or may alternatively be elevated above the line 1, for example linked to lanes 2, 3 by ramped sections of conveyor belt.

Also sections of both lanes 2, 3 of line 1 may be elevated, for example to provide an access bridge between spurs 27, 28, and such elevated sections may be elevated by means of such ramped sections of conveyor belt.

The first line 1 and the spur lines 27, 28 may each be driven by respective motors, such as electric motors having speed controls, but the use of the above mentioned Flex-Link XM™ series conveyor enables a first conveyor line 1 and at least one spur line to be driven by a single motor.

At points such as 53, 53' and other points where a divertor means causes containers 8 to join another lane, there may be anti-jamming devices (not shown) to prevent jamming at the junction, suitably by causing the samples 8 to rotate and thereby roll apart from each other.

- 23 -

SUBSTITUTE SHEET (RULE 26)
In operation, when first conveyor 1 and spur conveyors 27, 28 are Flex-Link XM™ series conveyor, they can conveniently be driven at 10-50 fpm, for example being adjustable to set speeds from 10 fpm to 30 fpm, or modifiable to provide set speeds of 20-50 fpm. Such speeds enable the apparatus to throughput samples of biological materials in tubes at a rate of ca. 5000 samples per hour.

The spurs 27, 28 and line 1 may be of modular construction, such that short lengths of the line, including a small number of means controlled by control system 17, may be controlled as a unit. This modular construction minimizes the amount of interconnective wiring that is necessary.

Figure 5 is a representation of a single conveyor device. This oval construct and the various attributes identified in Figure 5 parallel those of the apparatus in Fig. 1, except that the machine in Fig. 5 does not employ a spur line. The numbered items in Fig. 5 up through number 61 are the same as identified in Fig. 5. They perform the same function in the same manner as described herein above. Several items have been added to Fig. 5. They are described in detail below.

Referring to the added items in Fig. 5, decap checking device 62 is placed just downstream of decap device 23. Its purpose is to confirm that decapper 23 has properly decapped a container. It can also detect a damaged container orifice resulting from the decapping process or arising from some other source. Sensor 65 acts as the detection means. It is an optical device constructed to sense the presence or absence of a cap on a given container. The sensor reads a container's unique ID and detects the presence or absence of a cap. This data is feed information back to decap checker 62 which communicates with data processor 16. Processor 16 compares the ID and cap data with the instruction set for that ID to confirm the fact that the cap was or was not to have been removed, and that the scheduled event actually occurred. If the data from sensor 65 is at odds with the decapper instructions, divertor means 68 is activated by decap checker 62 and the container is diverted from transport line 2 to holding/queue line 3. Normally a decap checker 62 and sensor 65 and divertor 68 will be used in combination with decapping device 23, wherever device 23 may be situated on a conveyor line.
What is claimed is:

1. An automated apparatus for subjecting samples to one or more selected test procedures at respective test stations, said apparatus comprising:
 a first conveyor line for transporting samples contained in uniquely labeled containers, said line having at least two lanes with means for routing containers between said lanes, at least one lane being a transport lane and at least one other lane being an accumulator lane,
 electronic means for controlling the operation of said line and the flow of containers in the lanes;
 at least one interface means for routing containers from the first conveyor line to a spur conveyor line,
 one or more spur conveyor lines for transporting said containers to one or more selectable test stations, said spur line(s) having at least two lanes, with means for routing containers between said lanes, at least one of said lanes being a transport lane and at least one of said lanes being a queue lane, and having a container interface device and a sample testing procedure located adjacent to said spur line(s),
 selection means and routing means for selecting containers and for routing selected containers from the spur transport lane to the queue lane adjacent to a selected test station,
 test means for carrying out a test procedure,
 means to route containers from the queue lane to the spur line transport lane,
 at least one interface means for routing containers from the spur conveyor line to the first conveyor line,
 off-loading means to off-load containers from the apparatus.

2. An automated apparatus for subjecting samples to one or more selected test procedures at respective test stations, said apparatus comprising:
 a first conveyor line for transporting samples contained in uniquely labeled containers, said line having at least two lanes with means for routing containers between said lanes, at least one lane being a transport lane and at least one other lane being an accumulator lane,
 loading means for loading said containers onto the apparatus,
 electronic means for reading and recording the unique label information from said labels of containers,
 data processing means for electronically recording, storing and processing said information,
 electronic control means for routing and tracking said samples in response to said recorded information,
at least one interface means for routing containers from the first conveyor line to a spur conveyor line,

one or more spur conveyor lines for transporting said containers to one or more selectable test stations, said spur line(s) having at least two lanes, with means

for routing containers between said lanes, at least one of said lanes being a transport lane and at least one of said lanes being a queue lane, and having a container interface device and a sample testing procedure located adjacent to said spur line(s),

selection means and routing means, controlled by said data processing means, for selecting containers for routing by the interface device from the first conveyor transport lane to the transport lane of a selected spur line,

selection means and routing means, controlled by said data processing means, for selecting containers and for routing selected containers from the spur transport lane to the queue lane adjacent to a selected test station,

a container interface device for presenting a container or sample from the container to a test procedure and capable of interacting with a container in the queue lane and the staging area of a test procedure,

test means for carrying out the test procedure,

means to record and store the results of the said test procedure,

means to route containers from the queue lane to the spur line transport lane,

at least one interface means for routing containers from the spur conveyor line to the first conveyor line,

off-loading means to off-load containers from the apparatus.

3. A device according to claim 1 or 2 wherein the data processing means can automatically reroute a container by interposing a retest or new test based on data received from a testing device.

4. A device according to any one of claims 1-3 wherein said first conveyor line has a decapping device for automatically decapping said containers.

5. A device according to any one of claims 1-4 wherein the interface means for routing containers from the first conveyor line to a spur line is an active gate controlled by the electronic control means which reads the unique label on a container just before the gate and causes a gate mechanism to redirect the container to another lane of the conveyor belt.

6. A device according to any one of claim 1-5 which has two lanes on the first line and two lanes on a spur line.

7. An automated apparatus for subjecting samples to one or more selected test procedures at one or more test stations comprising a conveyor line for transporting samples contained in uniquely labeled containers, said line having at
least two lanes for routing said containers to one or more selectable test stations, at
least one of said lanes being a transport lane and at least one of said lanes being a
queue lane, and having a container interface device for transferring containers to
said testing device from the queue lane and back again onto said queue lane.

8. A device according to claim 7 having
loading means for loading said containers onto the apparatus,
electronic means for reading and recording the unique label information from
said labels of containers,
data processing means for electronically recording, storing and processing
said information,
electronic control means for routing and tracking said samples in response to
said recorded information,
selection means and routing means, controlled by said data processing
means, for selecting containers and for routing selected containers from the spur
transport lane to the queue lane adjacent to a selected test station,
a container interface device for presenting a container or sample from the
container to a test procedure and capable of interacting with a container in the queue
lane and the staging area of a test procedure,
test means for carrying out the test procedure,
means to record and store the results of the said test procedure,
means to route containers from the queue lane to the spur line transport lane,
off-loading means to off-load containers from the apparatus.

9. A device according to claim 7 or 8 wherein the data processing
means can automatically reroute a container by interposing a retest or new test based
on data received from a testing device.

10. A device according to any one of claims 7 to 9 wherein said first
conveyor line has a decapping device for automatically decapping said containers.

11. A device according to any one of claims 8 - 10 wherein the interface
means for routing containers from the first conveyor line to a spur line is an active
gate controlled by the electronic control means which reads the unique label on a
container just before the gate and causes a gate mechanism to redirect the container
to another lane of the conveyor belt.

12. A device according to any one of claim 7 - 11 which has a two lane
conveyor belt.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

- IPC(6) : G06F 17/00, 19/00; B65G 47/26; B60P 1/00
- US CL : 364/478; 198/367, 370.01, 418; 414/507

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

- Minimum documentation searched (classification system followed by classification symbols)

 U.S. : 364/478; 198/367, 370.01, 418; 414/507

- Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

 NONE

- Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

 APS search terms: (product? or medici? or biologi? or fluid or liquid or sampi?)(5a)(test? or diagnosi? or analy?), transport? or convey?

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>US, A, 4,325,910 (JORDAN) 20 April 1982, fig. 4 and abstract.</td>
<td>1-3, 7-9</td>
</tr>
<tr>
<td>A</td>
<td>US, A, 4,707,251 (JENKINS ET AL) 17 NOVEMBER 1987, col. 1 and 2 (invention summary).</td>
<td>1-3, 7-9</td>
</tr>
<tr>
<td>A</td>
<td>US, A, 5,038,911 (DOANE ET AL) 13 AUGUST 1991, abstract and claims.</td>
<td>1-3, 7-9</td>
</tr>
<tr>
<td>A</td>
<td>US, A, 5,208,762 (CHARHUT ET AL) 04 MAY 1993, see entire document.</td>
<td>1-3, 7-9</td>
</tr>
<tr>
<td>A</td>
<td>US, A, 5,315,094 (LISY) 24 MAY 1994, col. 1-3 and abstract.</td>
<td>1-3, 7-9</td>
</tr>
</tbody>
</table>

- Further documents are listed in the continuation of Box C.
- See patent family annex.

Date of the actual completion of the international search

24 APRIL 1996

Date of mailing of the international search report

15 MAY 1996

Name and mailing address of the ISA/US Commissioner of Patents and Trademarks

Box PCT
Washington, D.C. 20231

Facsimile No. (703) 305-3230

Authorized officer
Paul Gordon

Telephone No. (703) 305-3800

Form PCT/ISA/210 (second sheet)(July 1992)*
INTERNATIONAL SEARCH REPORT

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)

This international report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. □ Claims Nos.:
 because they relate to subject matter not required to be searched by this Authority, namely:

2. □ Claims Nos.:
 because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:

3. ☒ Claims Nos.: 4-6 and 10-12
 because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

1. □ As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.

2. □ As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.

3. □ As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:

4. □ No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

☐ The additional search fees were accompanied by the applicant's protest.

☐ No protest accompanied the payment of additional search fees.