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DATA ENCODING AND DECODING

Field of the Invention

This disclosure relates to data encoding and decoding.
Description of the Related Art

The “background” description provided herein is for the purpose of generally presenting

the context of the disclosure. Work of the presently named inventors, to the extent it is
described in this background section, as well as aspects of the description which may not
otherwise qualify as prior art at the time of filing, are neither expressly or impliedly admitted as
prior art against the present disclosure.

There are several video data compression and decompression systems which involve
transforming video data into a frequency domain representation, quantising the frequency
domain coefficients and then applying some form of entropy encoding to the quantised
coefficients.

Entropy, in the present context, can be considered as representing the information
content of a data symbol or series of symbols. The aim of entropy encoding is to encode a
series of data symbols in a lossless manner using (ideally) the smallest number of encoded
data bits which are necessary to represent the information content of that series of data
symbols. In practice, entropy encoding is used to encode the quantised coefficients such that
the encoded data is smaller (in terms of its number of bits) than the data size of the original
guantised coefficients. A more efficient entropy encoding process gives a smaller output data
size for the same input data size.

One technique for entropy encoding video data is the so-called CABAC (context
adaptive binary arithmetic coding) technique.

Summary

This disclosure provides a data encoding method according to claim 1.

Further respective aspects and features are defined in the appended claims.

It is to be understood that both the foregoing general description and the following
detailed description are exemplary, but not restrictive of, the present disclosure.

Brief Description of the Drawings

A more complete appreciation of the disclosure and many of the attendant advantages
thereof will be readily obtained as the same becomes better understood by reference to the
following detailed description of embodiments, when considered in connection with the
accompanying drawings, wherein:

Figure 1 schematically illustrates an audio/video (A/V) data transmission and reception

system using video data compression and decompression;
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Figure 2 schematically illustrates a video display system using video data
decompression;

Figure 3 schematically illustrates an audio/video storage system using video data
compression and decompression;

Figure 4 schematically illustrates a video camera using video data compression;

Figure 5 provides a schematic overview of a video data compression and
decompression apparatus;

Figure 6 schematically illustrates the generation of predicted images;

Figure 7 schematically illustrates a largest coding unit (LCU);

Figure 8 schematically illustrates a set of four coding units (CU);

Figures 9 and 10 schematically illustrate the coding units of Figure 8 sub-divided into
smaller coding units;

Figure 11 schematically illustrates an array of prediction units (PU);

Figure 12 schematically illustrates an array of transform units (TU);

Figure 13 schematically illustrates a partially-encoded image;

Figure 14 schematically illustrates a set of possible prediction directions;

Figure 15 schematically illustrates a set of prediction modes;

Figure 16 schematically illustrates a zigzag scan;

Figure 17 schematically illustrates a CABAC entropy encoder;

Figures 18A to 18D schematically illustrate aspects of a CABAC encoding and decoding
operation;

Figure 19 schematically illustrates a CABAC encoder;

Figure 20 schematically illustrates a CABAC decoder;

Figure 21 is a schematic diagram showing an overview of an encoding system;

Figure 22 is a graph of bit rate against quantisation parameter (QP);

Figure 23 is a graph of bit rate against green channel PSNR for six test bit depths, with a
transform skip mode enabled;

Figure 24 is a graph of bit rate against green channel PSNR for six test bit depths, with a
transform skip mode disabled,;

Figure 25 is a graph of bit rate against green channel PSNR for six test bit depths, with
14 bit transform matrices;

Figure 26 is a graph of PSNR against bit rate for one test sequence comparing various
precision DCT matrices;

Figure 27 is a graph of PSNR against bit rate for one test sequence showing the use of
bypass fixed-bit encoding;

Figure 28 is a table providing examples of encoding profiles;
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Figures 29 to 31 are schematic flowcharts respectively illustrating versions of part of a
CABAC process;

Figures 32A-F are schematic diagrams illustrating different CABAC alignment schemes;

Figures 33 to 35 are schematic flowcharts respectively illustrating versions of a
termination stage of a CABAC process;

Figure 36 is a flowchart schematically illustrating a coding technique;

Figure 37 is a flowchart schematically illustrating an adaptation technique; and

Figure 38 is a schematic flowchart illustrating another example of an adaptation
technique.

Description of the Embodiments

Referring now to the drawings, Figures 1-4 are provided to give schematic illustrations of
apparatus or systems making use of the compression and/or decompression apparatus to be
described below in connection with embodiments.

All of the data compression and/or decompression apparatus is to be described below
may be implemented in hardware, in software running on a general-purpose data processing
apparatus such as a general-purpose computer, as programmable hardware such as an
application specific integrated circuit (ASIC) or field programmable gate array (FPGA) or as
combinations of these. In cases where the embodiments are implemented by software and/or
firmware, it will be appreciated that such software and/or firmware, and non-transitory machine-
readable data storage media by which such software and/or firmware are stored or otherwise
provided, are considered as embodiments.

Figure 1 schematically illustrates an audio/video data transmission and reception system
using video data compression and decompression.

An input audio/video signal 10 is supplied to a video data compression apparatus 20
which compresses at least the video component of the audio/video signal 10 for transmission
along a transmission route 30 such as a cable, an optical fibre, a wireless link or the like. The
compressed signal is processed by a decompression apparatus 40 to provide an output
audio/video signal 50. For the return path, a compression apparatus 60 compresses an
audio/video signal for transmission along the transmission route 30 to a decompression
apparatus 70.

The compression apparatus 20 and decompression apparatus 70 can therefore form
one node of a transmission link. The decompression apparatus 40 and decompression
apparatus 60 can form another node of the transmission link. Of course, in instances where the
transmission link is uni-directional, only one of the nodes would require a compression
apparatus and the other node would only require a decompression apparatus.

Figure 2 schematically illustrates a video display system using video data

decompression. In particular, a compressed audio/video signal 100 is processed by a
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decompression apparatus 110 to provide a decompressed signal which can be displayed on a
display 120. The decompression apparatus 110 could be implemented as an integral part of the
display 120, for example being provided within the same casing as the display device.
Alternatively, the decompression apparatus 110 might be provided as (for example) a so-called
set top box (STB), noting that the expression "set-top" does not imply a requirement for the box
to be sited in any particular orientation or position with respect to the display 120; it is simply a
term used in the art to indicate a device which is connectable to a display as a peripheral
device.

Figure 3 schematically illustrates an audio/video storage system using video data
compression and decompression. An input audio/video signal 130 is supplied to a compression
apparatus 140 which generates a compressed signal for storing by a store device 150 such as a
magnetic disk device, an optical disk device, a magnetic tape device, a solid state storage
device such as a semiconductor memory or other storage device. For replay, compressed data
is read from the store device 150 and passed to a decompression apparatus 160 for
decompression to provide an output audio/video signal 170.

It will be appreciated that the compressed or encoded signal, and a storage medium or
data carrier storing that signal, are considered as embodiments.

Figure 4 schematically illustrates a video camera using video data compression. In
Figure 4, and image capture device 180, such as a charge coupled device (CCD) image sensor
and associated control and read-out electronics, generates a video signal which is passed to a
compression apparatus 190. A microphone (or plural microphones) 200 generates an audio
signal to be passed to the compression apparatus 190. The compression apparatus 190
generates a compressed audio/video signal 210 to be stored and/or transmitted (shown
generically as a schematic stage 220).

The techniques to be described below relate primarily to video data compression. It will
be appreciated that many existing techniques may be used for audio data compression in
conjunction with the video data compression techniques which will be described, to generate a
compressed audio/video signal. Accordingly, a separate discussion of audio data compression
will not be provided. It will also be appreciated that the data rate associated with video data, in
particular broadcast quality video data, is generally very much higher than the data rate
associated with audio data (whether compressed or uncompressed). It will therefore be
appreciated that uncompressed audio data could accompany compressed video data to form a
compressed audio/video signal. It will further be appreciated that although the present examples
(shown in Figures 1-4) relate to audio/video data, the techniques to be described below can find
use in a system which simply deals with (that is to say, compresses, decompresses, stores,
displays and/or transmits) video data. That is to say, the embodiments can apply to video data

compression without necessarily having any associated audio data handling at all.
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Figure 5 provides a schematic overview of a video data compression and
decompression apparatus.

Successive images of an input video signal 300 are supplied to an adder 310 and to an
image predictor 320. The image predictor 320 will be described below in more detail with
reference to Figure 6. The adder 310 in fact performs a subtraction (negative addition)
operation, in that it receives the input video signal 300 on a "+" input and the output of the
image predictor 320 on a "-" input, so that the predicted image is subtracted from the input
image. The result is to generate a so-called residual image signal 330 representing the
difference between the actual and projected images.

One reason why a residual image signal is generated is as follows. The data coding
techniques to be described, that is to say the techniques which will be applied to the residual
image signal, tends to work more efficiently when there is less "energy" in the image to be
encoded. Here, the term "efficiently" refers to the generation of a small amount of encoded data;
for a particular image quality level, it is desirable (and considered "efficient") to generate as little
data as is practicably possible. The reference to "energy" in the residual image relates to the
amount of information contained in the residual image. If the predicted image were to be
identical to the real image, the difference between the two (that is to say, the residual image)
would contain zero information (zero energy) and would be very easy to encode into a small
amount of encoded data. In general, if the prediction process can be made to work reasonably
well, the expectation is that the residual image data will contain less information (less energy)
than the input image and so will be easier to encode into a small amount of encoded data.

The residual image data 330 is supplied to a transform unit 340 which generates a
discrete cosine transform (DCT) representation of the residual image data. The DCT technique
itself is well known and will not be described in detail here. There are however aspects of the
techniques used in the present apparatus which will be described in more detail below, in
particular relating to the selection of different blocks of data to which the DCT operation is
applied. These will be discussed with reference to Figures 7-12 below.

Note that in some embodiments, a discrete sine transform (DST) is used instead of a
DCT. In other embodiments, no transform might be used. This can be done selectively, so that
the transform stage is, in effect, bypassed, for example under the control of a “transform skip”
command or mode.

The output of the transform unit 340, which is to say, a set of transform coefficients for
each transformed block of image data, is supplied to a quantiser 350. Various quantisation
techniqgues are known in the field of video data compression, ranging from a simple
multiplication by a quantisation scaling factor through to the application of complicated lookup
tables under the control of a quantisation parameter. The general aim is twofold. Firstly, the

quantisation process reduces the number of possible values of the transformed data. Secondly,
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the quantisation process can increase the likelihood that values of the transformed data are
zero. Both of these can make the entropy encoding process, to be described below, work more
efficiently in generating small amounts of compressed video data.

A data scanning process is applied by a scan unit 360. The purpose of the scanning
process is to reorder the quantised transformed data so as to gather as many as possible of the
non-zero quantised transformed coefficients together, and of course therefore to gather as
many as possible of the zero-valued coefficients together. These features can allow so-called
run-length coding or similar techniques to be applied efficiently. So, the scanning process
involves selecting coefficients from the quantised transformed data, and in particular from a
block of coefficients corresponding to a block of image data which has been transformed and
guantised, according to a "scanning order" so that (a) all of the coefficients are selected once as
part of the scan, and (b) the scan tends to provide the desired reordering. Techniques for
selecting a scanning order will be described below. One example scanning order which can
tend to give useful results is a so-called zigzag scanning order.

The scanned coefficients are then passed to an entropy encoder (EE) 370. Again,
various types of entropy encoding may be used. Two examples which will be described below
are variants of the so-called CABAC (Context Adaptive Binary Arithmetic Coding) system and
variants of the so-called CAVLC (Context Adaptive Variable-Length Coding) system. In general
terms, CABAC is considered to provide a better efficiency, and in some studies has been shown
to provide a 10-20% reduction in the quantity of encoded output data for a comparable image
quality compared to CAVLC. However, CAVLC is considered to represent a much lower level of
complexity (in terms of its implementation) than CABAC. The CABAC technique will be
discussed with reference to Figure 17 below, and the CAVLC technique will be discussed with
reference to Figures 18 and 19 below.

Note that the scanning process and the entropy encoding process are shown as
separate processes, but in fact can be combined or treated together. That is to say, the reading
of data into the entropy encoder can take place in the scan order. Corresponding
considerations apply to the respective inverse processes to be described below.

The output of the entropy encoder 370, along with additional data (mentioned above
and/or discussed below), for example defining the manner in which the predictor 320 generated
the predicted image, provides a compressed output video signal 380.

However, a return path is also provided because the operation of the predictor 320 itself
depends upon a decompressed version of the compressed output data.

The reason for this feature is as follows. At the appropriate stage in the decompression
process (to be described below) a decompressed version of the residual data is generated. This
decompressed residual data has to be added to a predicted image to generate an output image

(because the original residual data was the difference between the input image and a predicted
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image). In order that this process is comparable, as between the compression side and the
decompression side, the predicted images generated by the predictor 320 should be the same
during the compression process and during the decompression process. Of course, at
decompression, the apparatus does not have access to the original input images, but only to the
decompressed images. Therefore, at compression, the predictor 320 bases its prediction (at
least, for inter-image encoding) on decompressed versions of the compressed images.

The entropy encoding process carried out by the entropy encoder 370 is considered to
be "lossless", which is to say that it can be reversed to arrive at exactly the same data which
was first supplied to the entropy encoder 370. So, the return path can be implemented before
the entropy encoding stage. Indeed, the scanning process carried out by the scan unit 360 is
also considered lossless, but in the present embodiment the return path 390 is from the output
of the quantiser 350 to the input of a complimentary inverse quantiser 420.

In general terms, an entropy decoder 410, the reverse scan unit 400, an inverse
quantiser 420 and an inverse transform unit 430 provide the respective inverse functions of the
entropy encoder 370, the scan unit 360, the quantiser 350 and the transform unit 340. For now,
the discussion will continue through the compression process; the process to decompress an
input compressed video signal will be discussed separately below.

In the compression process, the scanned coefficients are passed by the return path 390
from the quantiser 350 to the inverse quantiser 420 which carries out the inverse operation of
the scan unit 360. An inverse quantisation and inverse transformation process are carried out
by the units 420, 430 to generate a compressed-decompressed residual image signal 440.

The image signal 440 is added, at an adder 450, to the output of the predictor 320 to
generate a reconstructed output image 460. This forms one input to the image predictor 320, as
will be described below.

Turning now to the process applied to a received compressed video signal 470, the
signal is supplied to the entropy decoder 410 and from there to the chain of the reverse scan
unit 400, the inverse quantiser 420 and the inverse transform unit 430 before being added to the
output of the image predictor 320 by the adder 450. In straightforward terms, the output 460 of
the adder 450 forms the output decompressed video signal 480. In practice, further filtering may
be applied before the signal is output.

Operations of the arrangement of Figure 5 (and of Figure 6, and other operations
discussed below) can be controlled by a controller 345.

Figure 6 schematically illustrates the generation of predicted images, and in particular
the operation of the image predictor 320.

There are two basic modes of prediction: so-called intra-image prediction and so-called

inter-image, or motion-compensated (MC), prediction.
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Intra-image prediction bases a prediction of the content of a block of the image on data
from within the same image. This corresponds to so-called I-frame encoding in other video
compression techniques. In contrast to I-frame encoding, where the whole image is intra-
encoded, in the present embodiments the choice between intra- and inter- encoding can be
made on a block-by-block basis, though in other embodiments the choice is still made on an
image-by-image basis.

Motion-compensated prediction makes use of motion information which attempts to
define the source, in another adjacent or nearby image, of image detail to be encoded in the
current image. Accordingly, in an ideal example, the contents of a block of image data in the
predicted image can be encoded very simply as a reference (a motion vector) pointing to a
corresponding block at the same or a slightly different position in an adjacent image.

Returning to Figure 6, two image prediction arrangements (corresponding to intra- and
inter-image prediction) are shown, the results of which are selected by a multiplexer 500 under
the control of a mode signal 510 so as to provide blocks of the predicted image for supply to the
adders 310 and 450. The choice is made in dependence upon which selection gives the lowest
“‘energy” (which, as discussed above, may be considered as information content requiring
encoding), and the choice is signalled to the encoder within the encoded output datastream.
Image energy, in this context, can be detected, for example, by carrying out a trial subtraction of
an area of the two versions of the predicted image from the input image, squaring each pixel
value of the difference image, summing the squared values, and identifying which of the two
versions gives rise to the lower mean squared value of the difference image relating to that
image area.

The actual prediction, in the intra-encoding system, is made on the basis of image
blocks received as part of the signal 460, which is to say, the prediction is based upon encoded-
decoded image blocks in order that exactly the same prediction can be made at a
decompression apparatus. However, data can be derived from the input video signal 300 by an
intra-mode selector 520 to control the operation of the intra-image predictor 530.

For inter-image prediction, a motion compensated (MC) predictor 540 uses motion
information such as motion vectors derived by a motion estimator 550 from the input video
signal 300. Those motion vectors are applied to a processed version of the reconstructed image
460 by the motion compensated predictor 540 to generate blocks of the inter-image prediction.

The processing applied to the signal 460 will now be described. Firstly, the signal is
filtered by a filter unit 560. This involves applying a "deblocking" filter to remove or at least tend
to reduce the effects of the block-based processing carried out by the transform unit 340 and
subsequent operations. Also, an adaptive loop filter is applied using coefficients derived by
processing the reconstructed signal 460 and the input video signal 300. The adaptive loop filter

is a type of filter which, using known techniques, applies adaptive filter coefficients to the data to
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be filtered. That is to say, the filter coefficients can vary in dependence upon various factors.
Data defining which filter coefficients to use is included as part of the encoded output
datastream.

The filtered output from the filter unit 560 in fact forms the output video signal 480. It is
also buffered in one or more image stores 570; the storage of successive images is a
requirement of motion compensated prediction processing, and in particular the generation of
motion vectors. To save on storage requirements, the stored images in the image stores 570
may be held in a compressed form and then decompressed for use in generating motion
vectors. For this particular purpose, any known compression / decompression system may be
used. The stored images are passed to an interpolation filter 580 which generates a higher
resolution version of the stored images; in this example, intermediate samples (sub-samples)
are generated such that the resolution of the interpolated image is output by the interpolation
filter 580 is 8 times (in each dimension) that of the images stored in the image stores 570. The
interpolated images are passed as an input to the motion estimator 550 and also to the motion
compensated predictor 540.

In embodiments, a further optional stage is provided, which is to multiply the data values
of the input video signal by a factor of four using a multiplier 600 (effectively just shifting the
data values left by two bits), and to apply a corresponding divide operation (shift right by two
bits) at the output of the apparatus using a divider or right-shifter 610. So, the shifting left and
shifting right changes the data purely for the internal operation of the apparatus. This measure
can provide for higher calculation accuracy within the apparatus, as the effect of any data
rounding errors is reduced.

The way in which an image is partitioned for compression processing will now be
described. At a basic level, and image to be compressed is considered as an array of blocks of
samples. For the purposes of the present discussion, the largest such block under consideration
is a so-called largest coding unit (LCU) 700 (Figure 7), which represents a square array of 64 x
64 samples. Here, the discussion relates to luminance samples. Depending on the chrominance
mode, such as 4:4:4, 4:2:2, 4:2:0 or 4:4:4:4 (GBR plus key data), there will be differing numbers
of corresponding chrominance samples corresponding to the luminance block.

Three basic types of blocks will be described: coding units, prediction units and
transform units. In general terms, the recursive subdividing of the LCUs allows an input picture
to be partitioned in such a way that both the block sizes and the block coding parameters (such
as prediction or residual coding modes) can be set according to the specific characteristics of
the image to be encoded.

The LCU may be subdivided into so-called coding units (CU). Coding units are always
square and have a size between 8x8 samples and the full size of the LCU 700. The coding units

can be arranged as a kind of tree structure, so that a first subdivision may take place as shown
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in Figure 8, giving coding units 710 of 32x32 samples; subsequent subdivisions may then take
place on a selective basis so as to give some coding units 720 of 16x16 samples (Figure 9) and
potentially some coding units 730 of 8x8 samples (Figure 10). Overall, this process can provide
a content-adapting coding tree structure of CU blocks, each of which may be as large as the
LCU or as small as 8x8 samples. Encoding of the output video data takes place on the basis of
the coding unit structure.

Figure 11 schematically illustrates an array of prediction units (PU). A prediction unitis a
basic unit for carrying information relating to the image prediction processes, or in other words
the additional data added to the entropy encoded residual image data to form the output video
signal from the apparatus of Figure 5. In general, prediction units are not restricted to being
square in shape. They can take other shapes, in particular rectangular shapes forming half of
one of the square coding units, as long as the coding unit is greater than the minimum (8x8)
size. The aim is to allow the boundary of adjacent prediction units to match (as closely as
possible) the boundary of real objects in the picture, so that different prediction parameters can
be applied to different real objects. Each coding unit may contain one or more prediction units.

Figure 12 schematically illustrates an array of transform units (TU). A transform unit is a
basic unit of the transform and quantisation process. Transform units are always square and
can take a size from 4x4 up to 32x32 samples. Each coding unit can contain one or more
transform units. The acronym SDIP-P in Figure 12 signifies a so-called short distance intra-
prediction partition. In this arrangement only one dimensional transforms are used, so a 4xN
block is passed through N transforms with input data to the transforms being based upon the
previously decoded neighbouring blocks and the previously decoded neighbouring lines within
the current SDIP-P.

The intra-prediction process will now be discussed. In general terms, intra-prediction
involves generating a prediction of a current block (a prediction unit) of samples from
previously-encoded and decoded samples in the same image. Figure 13 schematically
illustrates a partially encoded image 800. Here, the image is being encoded from top-left to
bottom-right on an LCU basis. An example LCU encoded partway through the handling of the
whole image is shown as a block 810. A shaded region 820 above and to the left of the block
810 has already been encoded. The intra-image prediction of the contents of the block 810 can
make use of any of the shaded area 820 but cannot make use of the unshaded area below that.

The block 810 represents an LCU; as discussed above, for the purposes of intra-image
prediction processing, this may be subdivided into a set of smaller prediction units. An example
of a prediction unit 830 is shown within the LCU 810.

The intra-image prediction takes into account samples above and/or to the left of the
current LCU 810. Source samples, from which the required samples are predicted, may be

located at different positions or directions relative to a current prediction unit within the LCU
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810. To decide which direction is appropriate for a current prediction unit, the results of a trial
prediction based upon each candidate direction are compared in order to see which candidate
direction gives an outcome which is closest to the corresponding block of the input image. The
candidate direction giving the closest outcome is selected as the prediction direction for that
prediction unit.

The picture may also be encoded on a “slice” basis. In one example, a slice is a
horizontally adjacent group of LCUs. But in more general terms, the entire residual image could
form a slice, or a slice could be a single LCU, or a slice could be a row of LCUs, and so on.
Slices can give some resilience to errors as they are encoded as independent units. The
encoder and decoder states are completely reset at a slice boundary. For example, intra-
prediction is not carried out across slice boundaries; slice boundaries are treated as image
boundaries for this purpose.

Figure 14 schematically illustrates a set of possible (candidate) prediction directions. The
full set of 34 candidate directions is available to a prediction unit of 8x8, 16x16 or 32x32
samples. The special cases of prediction unit sizes of 4x4 and 64x64 samples have a reduced
set of candidate directions available to them (17 candidate directions and 5 candidate directions
respectively). The directions are determined by horizontal and vertical displacement relative to a
current block position, but are encoded as prediction "modes", a set of which is shown in Figure
15. Note that the so-called DC mode represents a simple arithmetic mean of the surrounding
upper and left-hand samples.

Figure 16 schematically illustrates a zigzag scan, being a scan pattern which may be
applied by the scan unit 360. In Figure 16, the pattern is shown for an example block of 8x8
transform coefficients, with the DC coefficient being positioned at the top left position 840 of the
block, and increasing horizontal and vertical spatial frequencies being represented by
coefficients at increasing distances downwards and to the right of the top-left position 840.

Note that in some embodiments, the coefficients may be scanned in a reverse order
(bottom right to top left using the ordering notation of Figure 16). Also it should be noted that in
some embodiments, the scan may pass from left to right across a few (for example between
one and three) uppermost horizontal rows, before carrying out a zig-zag of the remaining
coefficients.

Figure 17 schematically illustrates the operation of a CABAC entropy encoder.

In context adaptive encoding of this nature and according to embodiments, a bit of data
may be encoded with respect to a probability model, or context, representing an expectation or
prediction of how likely it is that the data bit will be a one or a zero. To do this, an input data bit
is assigned a code value within a selected one of two (or more generally, a plurality of)
complementary sub-ranges of a range of code values, with the respective sizes of the sub-

ranges (in embodiments, the respective proportions of the sub-ranges relative to the set of code
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values) being defined by the context (which in turn is defined by a context variable associated
with or otherwise relevant to that input value). A next step is to modify the overall range, which
is to say, the set of code values, (for use in respect of a next input data bit or value) in response
to the assigned code value and the current size of the selected sub-range. If the modified range
is then smaller than a threshold representing a predetermined minimum size (for example, one
half of an original range size) then it is increased in size, for example by doubling (shifting left)
the modified range, which doubling process can be carried out successively (more than once) if
required, until the range has at least the predetermined minimum size. At this point, an output
encoded data bit is generated to indicate that a (or each, if more than one) doubling or size-
increasing operation took place. A further step is to modify the context (that is, in embodiments,
to modify the context variable) for use with or in respect of the next input data bit or value (or, in
some embodiments, in respect of a next group of data bits or values to be encoded). This may
be carried out by using the current context and the identity of the current “most probable
symbol” (either one or zero, whichever is indicated by the context to currently have a greater
than 0.5 probability) as an index into a look-up table of new context values, or as inputs to an
appropriate mathematical formula from which a new context variable may be derived. The
modification of the context variable may, in embodiments, increase the proportion of the set of
code values in the sub-range which was selected for the current data value.

The CABAC encoder operates in respect of binary data, that is to say, data represented
by only the two symbols 0 and 1. The encoder makes use of a so-called context modelling
process which selects a "context" or probability model for subsequent data on the basis of
previously encoded data. The selection of the context is carried out in a deterministic way so
that the same determination, on the basis of previously decoded data, can be performed at the
decoder without the need for further data (specifying the context) to be added to the encoded
datastream passed to the decoder.

Referring to Figure 17, input data to be encoded may be passed to a binary converter
900 if it is not already in a binary form; if the data is already in binary form, the converter 900 is
bypassed (by a schematic switch 910). In the present embodiments, conversion to a binary
form is actually carried out by expressing the quantised transform coefficient data as a series of
binary “maps”, which will be described further below.

The binary data may then be handled by one of two processing paths, a "regular" and a
"bypass" path (which are shown schematically as separate paths but which, in embodiments
discussed below, could in fact be implemented by the same processing stages, just using
slightly different parameters). The bypass path employs a so-called bypass coder 920 which
does not necessarily make use of context modelling in the same form as the regular path. In
some examples of CABAC coding, this bypass path can be selected if there is a need for

particularly rapid processing of a batch of data, but in the present embodiments two features of
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so-called “bypass” data are noted: firstly, the bypass data is handled by the CABAC encoder
(950, 960), just using a fixed context model representing a 50% probability; and secondly, the
bypass data relates to certain categories of data, one particular example being coefficient sign
data. Otherwise, the regular path is selected by schematic switches 930, 940. This involves the
data being processed by a context modeller 950 followed by a coding engine 960.

The entropy encoder shown in Figure 17 encodes a block of data (that is, for example,
data corresponding to a block of coefficients relating to a block of the residual image) as a
single value if the block is formed entirely of zero-valued data. For each block that does not fall
into this category, that is to say a block that contains at least some non-zero data, a
“significance map” is prepared. The significance map indicates whether, for each position in a
block of data to be encoded, the corresponding coefficient in the block is non-zero. The
significance map data, being in binary form, is itself CABAC encoded. The use of the
significance map assists with compression because no data needs to be encoded for a
coefficient with a magnitude that the significance map indicates to be zero. Also, the
significance map can include a special code to indicate the final non-zero coefficient in the
block, so that all of the final high frequency / trailing zero coefficients can be omitted from the
encoding. The significance map is followed, in the encoded bitstream, by data defining the
values of the non-zero coefficients specified by the significance map.

Further levels of map data are also prepared and are CABAC encoded. An example is a
map which defines, as a binary value (1 = yes, 0 = no) whether the coefficient data at a map

position which the significance map has indicated to be “non-zero” actually has the value of

1 »

one”. Another map specifies whether the coefficient data at a map position which the
significance map has indicated to be “non-zero” actually has the value of “two”. A further map
indicates, for those map positions where the significance map has indicated that the coefficient
data is “non-zero”, whether the data has a value of “greater than two”. Another map indicates,
again for data identified as “non-zero”, the sign of the data value (using a predetermined binary
notation such as 1 for +, O for -, or of course the other way around).

In embodiments, the significance map and other maps are generated from the quantised
transform coefficients, for example by the scan unit 360, and is subjected to a zigzag scanning
process (or a scanning process selected from zigzag, horizontal raster and vertical raster
scanning according to the intra-prediction mode) before being subjected to CABAC encoding.

In some embodiments, the HEVC CABAC entropy coder codes syntax elements using
the following processes:

The location of the last significant coefficient (in scan order) in the TU is coded.

For each 4x4 coefficient group (groups are processed in reverse scan order), a
significant-coefficient-group flag is coded, indicating whether or not the group contains non-zero

coefficients. This is not required for the group containing the last significant coefficient and is
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assumed to be 1 for the top-left group (containing the DC coefficient). If the flag is 1, then the
following syntax elements pertaining to the group are coded immediately following it:
Significance map:

For each coefficient in the group, a flag is coded indicating whether or not the coefficient
is significant (has a non-zero value). No flag is necessary for the coefficient indicated by the
last-significant position.

Greater-than-one map:

For up to eight coefficients with significance map value 1 (counted backwards from the
end of the group), this indicates whether the magnitude is greater than 1.

Greater-than-two flag:

For up to one coefficient with greater-than-one map value 1 (the one nearest the end of
the group), this indicates whether the magnitude is greater than 2.

Sign bits:

For all non-zero coefficients, sign bits are coded as equiprobable CABAC bins, with the
last sign bit (in reverse scan order) possibly being instead inferred from parity when sign bit
hiding is used.

Escape codes:

For any coefficient whose magnitude was not completely described by an earlier syntax
element, the remainder is coded as an escape code.

In general terms, CABAC encoding involves predicting a context, or a probability model,
for a next bit to be encoded, based upon other previously encoded data. If the next bit is the
same as the bit identified as “most likely” by the probability model, then the encoding of the
information that “the next bit agrees with the probability model” can be encoded with great
efficiency. It is less efficient to encode that “the next bit does not agree with the probability
model”, so the derivation of the context data is important to good operation of the encoder. The
term “adaptive” means that the context or probability models are adapted, or varied during
encoding, in an attempt to provide a good match to the (as yet uncoded) next data.

Using a simple analogy, in the written English language, the letter “U” is relatively
uncommon. But in a letter position immediately after the letter “Q”, it is very common indeed.
So, a probability model might set the probability of a “U” as a very low value, but if the current
letter is a “Q”, the probability model for a “U” as the next letter could be set to a very high
probability value.

CABAC encoding is used, in the present arrangements, for at least the significance map
and the maps indicating whether the non-zero values are one or two. Bypass processing —
which in these embodiments is identical to CABAC encoding but for the fact that the probability
model is fixed at an equal (0.5:0.5) probability distribution of 1s and Os, is used for at least the

sign data and the map indicating whether a value is >2. For those data positions identified as
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>2, a separate so-called escape data encoding can be used to encode the actual value of the
data. This may include a Golomb-Rice encoding technique.

The CABAC context modelling and encoding process is described in more detail in
WD4: Working Draft 4 of High-Efficiency Video Coding, JCTVC-F803_d5, Draft ISO/IEC 23008-
HEVC; 201x(E) 2011-10-28.

The CABAC process will now be described in a little more detail.

CABAC, at least as far as it is used in the proposed HEVC system, involves deriving a
“context” or probability model in respect of a next bit to be encoded. The context, defined by a
context variable or CV, then influences how the bit is encoded. In general terms, if the next bit
is the same as the value which the CV defines as the expected more probable value, then there
are advantages in terms of reducing the number of output bits needed to define that data bit.

The encoding process involves mapping a bit to be encoded onto a position within a
range of code values. The range of code values is shown schematically in Figure 18A as a
series of adjacent integer numbers extending from a lower limit, m_Low, to an upper limit,
m_high. The difference between these two limits is m_range, where m_range = m_high —
m_Low. By various techniques to be described below, in a basic CABAC system m_range is
constrained to lie between 128 and 254; in another embodiment using a larger number of bits to
represent m_range, m_range may lie between 256 and 510. m_Low can be any value. It can
start at (say) zero, but can vary as part of the encoding process to be described.

The range of code values, m_range, is divided into two sub-ranges, by a boundary 1100
defined with respect to the context variable as:

boundary = m_Low + (CV * m_range)

So, the context variable divides the total range into two complementary sub-ranges or
sub-portions of the set of code values, the proportions of the set assigned to each sub-range
being determined by the variable CV, one sub-range being associated with a value (of a next
data bit) of zero, and the other being associated with a value (of the next data bit) of one. The
division of the range represents the probabilities assumed by the generation of the CV of the
two bit values for the next bit to be encoded. So, if the sub-range associated with the value
zero is less than half of the total range, this signifies that a zero is considered less probable, as
the next symbol, than a one.

Various different possibilities exist for defining which way round the sub-ranges apply to
the possible data bit values. In one example, a lower region of the range (that is, from m_Low
to the boundary) is by convention defined as being associated with the data bit value of zero.

If more than one bit was being encoded at a single operation, more than two sub-ranges
could be provided so as to give a sub-range corresponding to each possible value of the input

data to be encoded.
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The encoder and decoder maintain a record of which data bit value is the less probable
(often termed the “least probable symbol” or LPS). The CV refers to the LPS, so the CV always
represents a value of between 0 and 0.5.

A next bit is now mapped to the range m_range, as divided by the boundary. This is
carried out deterministically at both the encoder and the decoder using a technique to be
described in more detail below. If the next bit is a 0, a particular code value, representing a
position within the sub-range from m_Low to the boundary, is assigned to that bit. If the next bit
is a 1, a particular code value in the sub-range from the boundary 1100 to m_high is assigned to
that bit. This represents an example of a technique by which embodiments may select one of
the plurality of sub-ranges of the set of code values according to the value of the current input
data bit, and also an example of a technique by which embodiments may assign the current
input data value to a code value within the selected sub-range.

The lower limit m_Low and the range m_range are then redefined so as to modify the
set of code values in dependence upon the assigned code value (for example, which sub-range
the assigned code value fell into) and the size of the selected sub-range. If the just-encoded bit
is a zero, then m_Low is unchanged but m_range is redefined to equal m_range * CV. If the
just-encoded bit is a one then m_Low is moved to the boundary position (m_Low + (CV *
m_range)) and m_range is redefined as the difference between the boundary and m_high (that
is, (1-CV) * m_range).

After such modification, a detection is made as to whether the set of code values is less
than a predetermined minimum size (for example, is m_range at least 128).

These alternatives are illustrated schematically in Figures 18B and 18C.

In Figure 18B, the data bit was a 1 and so m_Low was moved up to the previous
boundary position. This provides a revised or modified set of code values for use in a next bit
encoding sequence. Note that in some embodiments, the value of CV is changed for the next
bit encoding, at least in part on the value of the just-encoded bit. This is why the technique
refers to “adaptive” contexts. The revised value of CV is used to generate a new boundary
1100’

In Figure 18C, a value of 0 was encoded, and so m_Low remained unchanged but
m_high was moved to the previous boundary position. The value m_range is redefined or
modified as the new values of m_high — m_Low.

In this example, this has resulted in m_range falling below its minimum allowable value
(such as 128). When this outcome is detected, the value m_range is renormalized or size-
increased — which in the present embodiments is represented by m_range being doubled, that
is, shifted left by one bit, as many times as are necessary to restore m_range to the required
range of 128 to 256. An example of this is illustrated in Figure 18D, which represents the range

of Figure 18C, doubled so as to comply with the required constraints. A new boundary 1100” is
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derived from the next value of CV and the revised m_range. Note that m_Low is similarly
renormalized or size-increased whenever m_range is renormalized. This is done in order to
maintain the same ratio between m_Low and m_range.

Whenever the range has to be multiplied by two in this way, an output encoded data bit
is generated, one for each renormalizing stage.

In this way, the interval m_range and the lower limit m_Low are successively modified
and renormalized in dependence upon the adaptation of the CV values (which can be
reproduced at the decoder) and the encoded bit stream. After a series of bits has been
encoded, the resulting interval and the number of renormalizing stage uniquely defines the
encoded bitstream. A decoder which knows such a final interval would in principle be able to
reconstruct the encoded data. However, the underlying mathematics demonstrate that it is not
actually necessary to define the interval to the decoder, but just to define one position within
that interval. This is the purpose of the assigned code value, which is maintained at the
encoder and passed to the decoder at the termination of encoding the data.

To give a simplified example, consider a probability space divided into 100 intervals. In
this case, m_Low would represent the bottom of a probability space, and 0 and m_Range would
represent its size, (100). Assume for the purposes of this example that the context variable is
set at 0.5 (as it is in respect of the bypass path), so the probability space is to be used to
encode binary bits with fixed probability of 50%. However, the same principles apply if adaptive
values of the context variable are used, such that the same adaptation process takes place at
the encoder and the decoder.

For the first bit, each symbol (0 or 1) would have a symbol range of 50, with the input
symbol O being assigned (say) the values 0 to 49 inclusive and the input symbol 1 being
assigned (say) the values 50 to 99 inclusive. If a 1 is to be the first bit to be encoded, then the
final value of the stream must lie in the 50 to 99 range, hence m_Low becomes 50 and
m_Range becomes 50.

To encode the second bit, the range is further subdivided into symbol ranges of 25, with
an input symbol of 0 taking the values 50 to 74 and an input symbol of 1 taking the values 75 to
99. As can be seen, whichever symbol is encoded as the second bit, the final value is still
between 50 and 99, preserving the first bit, but now a second bit has been encoded into the
same number. Likewise if the second bit were to use a different probability model to the first, it
still wouldn’t affect the encoding of the first bit because the range being subdivided is still 50 to
99.

This process continues at the encoder side for each input bit, renormalizing (for
example, doubling) m_Range and m_Low wherever necessary, for example in response to
m_Range dropping below 50. By the end of the encoding process (when the stream is

terminated) the final value has been written to the stream.
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At the decoder side, the final value is read from the stream (hence the name m_Value) —
say for example, the value is 68. The decoder applies the same symbol range split to the initial
probability space and compares its value to see which symbol range it lies in. Seeing that 68
lies in the 50 to 99 range, it decodes a 1 as the symbol for its first bit. Applying the second
range split in the same way as the encoder, it sees that 68 lies in the 50 to 74 range and
decodes 0 as the second bit, and so on.

In an actual implementation, the decoder may avoid having to maintain m_Low as the
encoder does by subtracting the bottom value of each decoded symbol's range from m_Value
(in this case, 50 is subtracted from m_Value to leave 18). The symbol ranges are then always
subdivisions of the 0 to (m_range - 1) range (so the 50 to 74 range becomes 0 to 24).

It is important to note that, if only two bits were to be encoded this way, the encoder
could pick any final value within the 50 to 74 range and they would all decode to the same two
bits “10” (one followed by zero). More precision is only needed if further bits are to be encoded
and in practice, the HEVC encoder would always pick 50, the bottom of the range. The
embodiments discussed in the present application seek to make use of that unused range by
finding certain bits that, when set appropriately, guarantee the final value will decode correctly
regardless of what the values of the remaining bits are, freeing those remaining bits for carrying
other information. For example, in the sample encode given above, if the first digit were set to 6
(or 5), then the final value would always be in the 50 to 74 range regardless of the value of the
second digit; hence the second digit can be used to carry other information.

As can be seen, an endless stream of bits can be coded using the same probability
range (given infinite-precision fractions) by repeatedly subdividing it. In practice however, infinite
precision is impossible and non-integer numbers are to be avoided. For this purpose,
renormalisation is used. If the 50 to 74 range were to be used to encode a third bit, the symbol
ranges would ordinarily have to be 12.5 intervals each, but instead, m_Range and m_Low can
be doubled (or otherwise multiplied by a common factor) to 50 and 100 respectively and the
symbol ranges would now be subdivisions of the range of 100 to 149 i.e. 25 intervals each. This
operation is equivalent to retroactively doubling the size of the initial probability space from 100
to 200. Since the decoder maintains the same m_Range, it can apply renormalisation at the
same times as the encoder.

The context variable CV is defined as having (in an example embodiment) 64 possible
states which successively indicate different probabilities from a lower limit (such as 1%) at CV =
63 through to a 50% probability at CV = 0.

In an adaptive system CV is changed or modified from one bit to the next according to
various known factors, which may be different depending on the block size of data to be
encoded. In some instances, the state of neighbouring and previous image blocks may be

taken into account. So, the techniques described here are examples of modifying the context
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variable, for use in respect of a next input data value, so as to increase the proportion of the set
of code values in the sub-range which was selected for the current data value.

The functions of selecting a sub-range, assigning the current bit to a code value,
modifying the set of code values, detecting whether the set is less than a minimum size, and
modifying the context variable may all be carried out by the context modeller 950 and the coding
engine 960, acting together. So, although they are drawn as separate items in Figure 17 for
clarity of the explanation, they act together to provide a context modelling and coding function.
However, for further clarity, reference is made to Figure 19 which illustrates these operations
and functionalities in more detail.

The assigned code value is generated from a table which defines, for each possible
value of CV and each possible value of bits 6 and 7 of m_range (noting that bit 8 of m_range is
always 1 because of the constraint on the size of m_range), a position or group of positions at
which a newly encoded bit should be allocated a code value in the relevant sub-range.

Figure 19 schematically illustrates a CABAC encoder using the techniques described
above.

The CV is initiated (in the case of the first CV) or modified (in the case of subsequent
CVs) by a CV derivation unit 1120. A code generator 1130 divides the current m_range
according to CV, selects a sub-range and generates an assigned data code within the
appropriate sub_range, for example using the table mentioned above. A range reset unit 1140
resets m_range to that of the selected sub-range so as to modify the set of code values as
described above. A normaliser 1150 detects whether the resulting value of m_range is below
the minimum allowable value and, if necessary, renormalises the m_range one or more times,
outputting an output encoded data bit for each such renormalisation operation. As mentioned,
at the end of the process, the assigned code value is also output.

In a decoder, shown schematically in Figure 20, the CV is initiated (in the case of the
first CV) or modified (in the case of subsequent CVs) by a CV derivation unit 1220 which
operates in the same way as the unit 1120 in the encoder. A code application unit 1230 divides
the current m_range according to CV and detects in which sub-range the data code lies. A
range reset unit 1240 resets m_range to that of the selected sub-range so as to modify the set
of code values in dependence upon the assigned code value and the size of the selected sub-
range. If necessary, a normaliser 1250 renormalises the m_range in response to a received
data bit.

Embodiments provide a technique to terminate a CABAC stream. The embodiments will
be described in the context of an example system in which the code value range has a
maximum value of 512 (instead of 128 as described above) and so is constrained to lie in the

upper half of this range, that is, from 256 to 510.
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The technique can produce a loss of on average 1.5 bits (which is to say, a much smaller
loss than previous stream termination techniques caused). A second alternative method is also
presented which can produce an average loss of 1 bit. Applications of these techniques have
been suggested to include termination of the CABAC stream prior to sending IPCM (non-
frequency separated) data, and termination of the stream for row-per-slice. The technique is
based on the recognition that the CABAC variable can be set to any value within the correct
range at the time of termination. So the CABAC variable is set to a value which has a number
of trailing (least significant bit) zeros, so that when the value is flushed to the data stream, the
zeros can effectively be ignored.

In current techniques, terminating a CABAC stream causes 8 bits to be flushed to the
data stream (that is, lost or wasted) The technique is illustrated with an example where intra
frames are terminated after each LCU or image slice (that is, after encoding a group of data
values representing data values relating to a particular respective image sub-area), allowing the
coefficient bypass data (sign bits/escape codes) to be placed into the bit-stream in a raw format.

A process to terminate the CABAC stream is applied at the end of each slice and prior to
IPCM data. In embodiments this process assumes (for the purposes of this discussion) that the
probability that the stream is to be terminated is fixed at on average 0.54%. (When a data value
(1 or Q) is encoded, the current m_range is subdivided into two symbol ranges, representing the
probability of 1 or O respectively. For the special “end-of-stream flag” value, the symbol range
for 1 is always 2. Hence the probability of the data value being 1 is dependent on the value of
the current m_range. In some embodiments, as discussed above, m_range may vary between
256 and 510, so the termination probability therefore varies between 2/510 = 0.3922% and
2/256 = 0.7813%).

For the encoder, this process is:

e if the stream is not to be terminated, the CABAC range m_range is decremented by
2, and the CABAC engine is renormalized by 1 place if required (which is to say that m_Low
and m_range are renormalized); processing on the current CABAC stream continues.

e if the stream is to be terminated, the CABAC ‘m_Low’ is incremented by ‘the range
less 2, the range is set to 2, and the CABAC engine is renormalized by 7 places, followed by
outputting a further binary ‘1. This process is equivalent to a renormalization of 8 places, where
the value being renormalized has been forced to be an odd number.

There may be occasions where the above process is not ideal — i.e. where the probability
of the stream is variable, or fixed at a higher percentage, or even a certainty (probability of 1).

Embodiments can provide a method whereby the CABAC stream can be immediately
terminated with just 2 renormalizations, with a loss of (on average) 1.5 bits and negligible
impact on the decoder and encoder complexity. An alternative method is also indicated that can

reduce the overhead to just 1 bit, but at the expense of an increase in CABAC decoder
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complexity. Both methods can then be used in conjunction with a standard adaptive context
variable if there is a variable probability of termination, or in conjunction with a fixed percentage
mechanism (akin to a non-adaptive context variable).

Note that as discussed above, m_Low and m_Range are renormalised together.

1 Algorithm

1.1 Method

The steps of the encoder are as follows:

m Low=(m Low+128) &~127

{or m Low=(m Low+127)&~127}

Force 2 stages of renormalization of m Low and call test write out()
[write the value to the stream]

Prior to encoding next CABAC stream, set m Range=510, m Low=0.

Notation: & is an AND operation, and ~ signifies the binary inverse (so ~127 is the binary
inverse of the binary value corresponding to decimal 127, so that an AND operation with the
binary inverse of a number such as decimal 127 (which has a plurality of least significant bits or
LSBs equal to 1) is equivalent to setting that number of LSBs of the resulting value to zero ).
The function test_write_out () checks whether any bits at the top (MSB end) of m_Low are
eligible to be sent to the output stream, writing them if so. In the context of the pseudo-code
shown above, the new bits created by the “forced renormalisation” will be written by this
operation.

The steps of the decoder are as follows:

Rewind input stream by 7 bits (i.e. move read position back by 7
Eizii.to decoding next CABAC stream, set m Range=0, and read m value
from bit-stream.

This method has a low processing impact on the decoder and encoder.

In respect of m_Low, note that the encoder generates a stream by repeatedly adding to
m_Low. The decoder reads that stream by starting with the encoder’s final result and repeatedly
subtracting from it. The decoder calls the bits read from the stream “m_uiValue” (or m_value in
the notation of this description) rather than m_Low and it is this that should be read from the bit
stream. This is relevant in this case where some embodiments require that the decoder
maintain m_Low as well as m_uiValue so it knows what the encoder is doing. In that case,

m_Low is generated at the decoder in exactly the same way as the encoder's m_Low.

Alternative Method

This method increases the complexity of current decoders as it requires that the decoder
maintains m_Low. If maintenance of m_Low is required by other proposals, then this additional
complexity is again minimal.

The steps of the encoder are as follows :
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Let test256=(m Low+255) &~255
If (testZb6+256 < m Low+m Range)

m Low=m test256
Force 1 stage of renormalization of m Low and call
test write out().
Else (as before)
m Low=(m Low+128)&~127 { or m Low=(m Low+127)&~127 }
Force 2 stages of renormalization of m Low and call
test write out().
Prior to encoding next CABAC stream, set m Range=510, m Low=0.

The steps of the decoder are as follows:

Let test256=(m Low+255) &~255
If (testZb6+256 < m Low+m Range)
Rewind stream by 8 bits
Else (as before)
Rewind stream by 7 bits
Prior to decoding next CABAC stream, set m Range=0, set m Low = 0
and read m value from bit-stream.

Theory

For the CABAC encoder, the data written to the stream (or buffered) is concatenated
with m_Low is an n-bit value /ow indicating the lowest value that the final output can be. The
highest value, high, is the sum of Jow and m_Range, a variable maintained by the encoder to be
within the range 256 (inclusive) to 511 (exclusive). At the end of the stream, any value between
low (inclusive) and high (exclusive) can be selected as the final output value, without affecting
the decode. If the decode could occur without being dependent on the n LSBs of the value, then
the n LSBs could be replaced with data from the next section of the bit-stream.

Let v be a value between /ow and high where n LSBs are 0, and where if the last n LSBs
were 1, the resulting value V would still be less than high. Since "high - low" is at least 256, then
there will always be a value v between Jow and high that has at least 7 LSBs that are 0. i.e. the
value v is the first value between low and high that is divisible by 128 without a remainder.

The simplest manner to achieve this is a standard power-of-2 alignment routine, namely:

v=(low+127)&~127

However, since range is at least 256, then:
v=(low+128)&~127
is also sufficient (and results in a slightly smaller encoder).

For the current part of the bit-stream, the encoder would output the value ‘v’, except for
the bottom 7 bits, this is achieved by renormalizing m_Low by 2 places. At the end of the bit-
stream, the decoder would have read 7 bits from the next section of the bit stream, and
therefore would have to ‘rewind’ the bit-stream by 7 bits.

There are cases where the bottom 8 bits are not required to fully decode the stream,

with the simplest illustration being where "m_Low = 0", and these are explored by the alternative
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algorithm. In this alternative algorithm, the value v between /ow and high with 8 LSBs of O is
calculated, and then a test is applied to check if there is a corresponding value V. The decision
process requires tests on Jow and high, and since the decoder must also make the same
decision, the decoder would need to track m_Low.

In both versions of the encoder algorithm, there is a choice for the 7-bit path, which will
result in a different bit-stream, but will be decodable by the same decoder.

With reference to Figure 19 described above, the units 1120 and 1130 represent
embodiments of a selector to select one of a plurality of complementary sub-ranges of a set of
code values, and a data assigning unit to assign the current input value to a code value. he unit
1140 represents an embodiment of a data modifying unit. The unit 1150 represents an
embodiment of a detector for detecting whether the set of code values is less than a minimum
size and to carry out the other functions of that detector accordingly. The unit 1150 also
represents an embodiment of a data terminator by carrying out the data termination functionality
described above and that described below, and in particular by making the decision as to when
to terminate the stream.

With reference to Figure 20 described above, the units 1220, 1230, 1240 and 1250
collectively represent embodiments of a pointer controller and a setting unit, in that they are
operable to carry out the functionality described above in respect of these units.

Applications

Possible applications for this include:

1. Termination for the last encoded LCU for a slice, especially in a ‘row-per-slice’ style
configuration, where the probability may be significantly higher than 0.54%; in this arrangement,
embodiments can provide a data encoding method for encoding successive input data values
representing video data, the method comprising the steps of: selecting one of a plurality of
complementary sub-ranges of a set of code values according to the value of a current input data
value, the proportions of the sub-ranges relative to the set of code values being defined by a
context variable associated with that input data value; assigning the current input data value to
a code value within the selected sub-range; modifying the set of code values in dependence
upon the assigned code value and the size of the selected sub-range; detecting whether the set
of code values is less than a predetermined minimum size and if so, successively increasing the
size of the set of code values until it has at least the predetermined minimum size; and
outputting an encoded data bit in response to each such size-increasing operation; modifying
the context variable, for use in respect of a next input data bit or value, so as to increase the
proportion of the set of code values in the sub-range which was selected for the current data
value; and after encoding a group of input data values corresponding to a set of blocks of video
data within a slice of the video data which is encoded without reference to other video data,

terminating the output data by: setting a value defining an end of the set of code values to a
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value having a plurality of least significant bits equal to zero; increasing the size of the set of
code values; and writing the value defining the end of the set of code values to the output data.

2. Termination for the last possible LCU for a slice, as termination after the last
possible LCU of a slice is a certainty; in this arrangement, embodiments can provide a data
encoding method for encoding successive input data values representing video data, the
method comprising the steps of: selecting one of a plurality of complementary sub-ranges of a
set of code values according to the value of a current input data value, the proportions of the
sub-ranges relative to the set of code values being defined by a context variable associated with
that input data value; assigning the current input data value to a code value within the selected
sub-range; modifying the set of code values in dependence upon the assigned code value and
the size of the selected sub-range; detecting whether the set of code values is less than a
predetermined minimum size and if so, successively increasing the size of the set of code
values until it has at least the predetermined minimum size; and outputting an encoded data bit
in response to each such size-increasing operation; modifying the context variable, for use in
respect of a next input data bit or value, so as to increase the proportion of the set of code
values in the sub-range which was selected for the current data value; and after encoding a
group of input data values representing the whole of a slice of video data which is encoded
without reference to other video data, terminating the output data by: setting a value defining an
end of the set of code values to a value having a plurality of least significant bits equal to zero;
increasing the size of the set of code values; and writing the value defining the end of the set of
code values to the output data.

3. Termination prior to IPCM data, possibly in conjunction with a context variable ;
in this arrangement, embodiments can provide a data encoding method for encoding
successive input data values representing frequency separated video data, the method
comprising the steps of: selecting one of a plurality of complementary sub-ranges of a set of
code values according to the value of a current input data value, the proportions of the sub-
ranges relative to the set of code values being defined by a context variable associated with that
input data value; assigning the current input data value to a code value within the selected sub-
range; modifying the set of code values in dependence upon the assigned code value and the
size of the selected sub-range; detecting whether the set of code values is less than a
predetermined minimum size and if so, successively increasing the size of the set of code
values until it has at least the predetermined minimum size; and outputting an encoded data bit
in response to each such size-increasing operation; modifying the context variable, for use in
respect of a next input data bit or value, so as to increase the proportion of the set of code
values in the sub-range which was selected for the current data value; and after encoding a
group of input data values such that a next group of data values to be encoded represent non-

frequency-separated video data, terminating the output data by: setting a value defining an end
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of the set of code values to a value having a plurality of least significant bits equal to zero;
increasing the size of the set of code values; and writing the value defining the end of the set of
code values to the output data.

4. Termination of the stream to prevent the “bits outstanding” mechanism getting
too long; in this arrangement, embodiments can provide a data encoding method for encoding
successive input data values, the method comprising the steps of. selecting one of a plurality of
complementary sub-ranges of a set of code values according to the value of a current input data
value, the proportions of the sub-ranges relative to the set of code values being defined by a
context variable associated with that input data value; assigning the current input data value to
a code value within the selected sub-range; modifying the set of code values in dependence
upon the assigned code value and the size of the selected sub-range; detecting whether the set
of code values is less than a predetermined minimum size and if so, successively increasing the
size of the set of code values until it has at least the predetermined minimum size; and
outputting an encoded data bit in response to each such size-increasing operation; modifying
the context variable, for use in respect of a next input data bit or value, so as to increase the
proportion of the set of code values in the sub-range which was selected for the current data
value; detecting whether a set of data values to be encoded by a different encoding technique
exceeds a predetermined size, and if so, terminating the output data by: setting a value defining
an end of the set of code values to a value having a plurality of least significant bits equal to
zero; increasing the size of the set of code values; and writing the value defining the end of the
set of code values to the output data.

The following part of the description is concerned with extending the operation of
encoders and decoders such as those described above to operation at higher video resolutions
and correspondingly low (including negative) QPs. Low operating QPs may be needed if the
codec is to truly support high bit depths. Possible sources of errors that may be caused by
internal accuracy limitations present in encoders and decoders such as those defined by HEVC
will be discussed. Some changes to those accuracies can mitigate the errors and thereby
extend the operating range of HEVC. In addition, changes to the entropy coding are presented.

At the time of filing the present application, HEVC Version 1 describes an 8 and 10 bit
codec; Version 2 is to include 12 and 14 bit operation. Although the test or demonstration
software has been written to allow input data bit depths up to 14, the ability of the codec to code
14 bits does not necessarily correspond to the way that the codec handles 8 or 10 bit resolution
data. In some instances the internal processing may introduce noise, which can lead to an
effective loss of resolution. For example, if the peak signal to noise ratio (PSNR) for 14-bit input
data is so low that the least-significant two bits are effectively reduced to noise, then the codec
is effectively only operating at 12-bit resolution. It is therefore appropriate to aim towards a

system having internal operating functions which allow higher resolution input data to be used
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(for example, 12 or 14 bit resolution input data) without introducing so much noise, errors or
other artefacts as to reduce the effective (useful) resolution of the output data by a significant
amount.

The term “bit depth” and the variable bitDepth are used here to indicate the resolution of
the input data and/or (according to the textual context) of the data processing carried out within
the codec (the latter being also known as “internal bit depth” using HEVC software
demonstration model terminology). For example, for 14-bit data processing, bitDepth = 14.

In the context of the 8 and 10 bit codec, quantisation parameters (QPs) in the positive
range (QP>0) are discussed. However, for each additional bit (over 8 bits) in the resolution of
the input data, the minimum allowable QP (minQP) can be 6 lower than 0, or in other words:

minQP = -6*(bitDepth-8)

The variable “PSNR”, or peak SNR, is defined as a function of mean-square error (MSE)
and bit depth:

PSNR=10 * log1o(((2°™®*"™")-1)* / MSE)

As can be seen in Figure 23, to be discussed below, no matter what value of the internal
processing bit depth of the example codec implementation , the general trend is that the PSNR
curves peak at around 90dB; for more negative QPs (than the QP corresponding to the peak of
the PSNR curve), the PSNR performance actually degrades.

Using the equation for PSNR, the following table of PSNRs for given bit depths and MSE

can be derived:

Bit depth
MSE 8 9 10 11 12 13 14 15 16
0.25 54.2 60.2 66.2 72.2 78.3 84.3 90.3 96.3 102.4
0.5 51.1 57.2 63.2 69.2 75.3 81.3 87.3 93.3 99.3
1 48.1 54.2 60.2 66.2 72.2 78.3 84.3 920.3 96.3
1.5 46.4 52.4 58.4 64.5 70.5 76.5 82.5 88.5 94.6
2 45.1 51.2 57.2 63.2 69.2 75.3 81.3 87.3 93.3
4 42.1 48.1 54.2 60.2 66.2 72.2 78.3 84.3 90.3
5.5 40.7 46.8 52.8 58.8 64.8 70.9 76.9 82.9 88.9
8 39.1 45.1 51.2 57.2 63.2 69.2 75.3 81.3 87.3
16 36.1 42.1 48.2 54.2 60.2 66.2 72.2 78.3 84.3
21.5 34.8 40.8 46.9 52.9 58.9 64.9 71.0 77.0 83.0
32 33.1 39.1 45.1 51.2 57.2 63.2 69.2 75.3 81.3
64 30.1 36.1 42.1 48.2 54.2 60.2 66.2 72.2 78.3

If a 14-bit codec is only able to achieve a PSNR of 72.2 dB, then each output value is
only accurate to within the range of 4 of the corresponding original value. The two least
significant bits are therefore effectively noise, so the codec is really equivalent to a 12-bit codec
with two additional random bits added at the output. (It is important to note that this analysis is
based upon averages, and that actually in some parts of the picture, better or worse quality than

this average may be achieved).
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Extending this argument, when comparing PSNRs in this purely numerical fashion, it
could be thought that the best system would therefore in fact be an 8-bit system with lossless
encoding, achieving an infinite PSNR (MSE=0). However, this does not take into account the
loss in initially rounding or truncating the video from n bits (where n is originally higher than 8)
down to 8 bits. This approach can be generalised according to the following examples:

o If alossless (n-1)-bit system were available to encode the n-bit data, then at the output,
the n-bit MSE observed would be (0+12)/2=0.5.

o If alossless (n-2)-bit system were available to encode the n-bit data, then at the output,
the n-bit MSE observed would be (0+1%+2%+12)/4=1.5.

o If alossless (n-3)-bit system were available to encode the n-bit data, then at the output,

the n-bit MSE observed would be (0+1%+2%+3%+4%+3%+22+1%)/8=5 5.

o If alossless (n-4)-bit system were available to encode the n-bit data, then at the output,
the n-bit MSE observed would be:

(0+1242%+3%+4%+ 52+62+ 72+8%+ 72+6%+52+4%+3%+2%+ 1%)/16=21.5.

Therefore, returning to the specific example, if the 14-bit system does not achieve an
MSE of 21.5 or less (equivalent to 71.0dB) and if the bit rate of a lossless 10-bit system were
similar, then numerically speaking, only 10 bits are effectively being coded.

Consider a lossy, low bit depth (n-r)-bit system with MSE of ‘m’. If this system is used to
code higher bit depth n-bit data, its MSE will therefore be given by (2")?m.

For example, for a lossy (n-1)-bit system, MSE in an n-bit system would be 4m; for a
lossy (n-2)-bit system, MSE in an n-bit system would be 16m; for a lossy (n-3)-bit system, MSE
in an n-bit system would be 64m; and for a lossy (n-4)-bit system, MSE in an n-bit system would
be 256m.

Therefore for the case where lossy lower bit depth systems encode higher (n-bit) bit
depth data, their loss is generally the main contributor for the MSE observed in the n-bit domain,
so simple PSNR figures can be used as straight comparisons of quality.

An implementation of a HEVC encoder (at the time of filing the application) peaks at
90dB (as shown in Figure 23); this may be considered suitable for encoding 11-bit data, but at
this operating point, the matter of whether any further improvement can be gained will be
discussed below.

First, the potential sources of error will be discussed.

The core HEVC system (version 1) has been designed for 8 and 10 bit operation. As the
number of bits increases, the internal accuracies of parts of the system may become relevant as
potential sources of error, noise or artefacts leading to an effective loss of overall resolution.

A simplified schematic diagram illustrating a flow of data through an encoder of the types
discussed above, such as a HEVC encoder, is shown in Figure 21. A purpose of summarising

the process in the form shown in Figure 21 is to indicate the potential limitations on operating
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resolution within the system. Note that for this reason, not all of the encoder functionality is
shown in Figure 21. Note also that Figure 21 provides an example of an apparatus for encoding
input data values of a data set (which may be video data values). Further, note that (as
discussed above) techniques used in a forward encoding path such as that shown in Figure 21
may also be used in the complementary reverse decoding path of the encoder and may also be
used in a forward decoding path of a decoder.

Input data 1300 of a certain bit depth is supplied to a prediction stage 1310 which
performs either intra- or inter-prediction and subtracts the predicted version from the actual
input image, generating residual data 1320 of a certain bit depth. So, the stage 1300 generally
corresponds to the items 320 and 310 of Figure 5.

The residual data 1320 is frequency-transformed by a transform stage 1330 which
involves multiple stages of transform processing (labelled as stage 1 and stage 2),
corresponding to left and right matric multiplications in the 2D transform equation, and operates
according to one or more sets of transform matrices 1340 (the transforms can be implemented
by a matrix multiplication process) having a certain resolution. A maximum dynamic range 1350
of the transform process, referred to as MAX_TR_DYNAMIC_RANGE, applies to the
calculations used in this process. The output of the transform stage is a set of transform
coefficients 1360 according to the MAX_TR_DYNAMIC_RANGE. The transform stage 1330
corresponds generally to the transform unit 340 of Figure 5.

The coefficients 1360 are then passed to a quantising stage 1370 generally
corresponding to the quantiser 350 of Figure 5. The quantising stage may use a multiply-shift
mechanism under the control of quantisation coefficients and scaling lists 1380, including
clipping to the maximum dynamic range ENTROPY_CODING_DYNAMIC_RANGE (which is, in
embodiments, the same as MAX_TR_DYNAMIC_RANGE). The output of the quantising stage
is a set 1390 of quantised coefficients according to ENTROPY_CODING_DYNAMIC_RANGE
which is then (in the full encoder, not shown here) passed to an entropy encoding stage such as
that represented by the scan unit 360 and entropy encoder 370 of Figure 5.

Using the notation introduced in respect of Figure 21, the main sources of calculation
noise, ignoring (for the purposes of this discussion) noise shaping caused by the various
predictions and the RQT (residual quad-tree) and RDOQ (rate distortion optimized quantisation)
decision processes, in HEVC are discussed below:

Transform matrix coefficient values

Ideally, the inverse transform applied to transformed coefficients will reproduce the
original input values. However, this is limited by the integer nature of the calculations. In HEVC,
the transform matrix coefficients have 6 fractional bits (i.e. they have an inherent left-shift of 6).
Shifting results to MAX_TR_DYNAMIC_RANGE after each stage of the transform
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The forward transform will result in values that are bitDepth+log,(size) bits in size. After
the first stage of the transform, the coefficients’ width in bits should be at least
bitDepth+log,(size) (though additional bits will help maintain more accuracy). However, in
HEVC, these intermediates are shifted in the forward (encoder only) transform so that they
never exceed MAX_TR_DYNAMIC_RANGE; similarly for the second stage. In the inverse
transform, the values at the output of each stage are clipped to MAX_TR_DYNAMIC RANGE.

If MAX_TR_DYNAMIC_RANGE is less than bitDepth+loga(size), then the values out of
the forward transform will actually be shifted left (instead of right) in the quantising stage, and
then clipped to 15-bit (ENTROPY_CODING_DYNAMIC_RANGE). Actually, if
ENTROPY_CODING_DYNAMIC_RANGE is less than bitDepth+log2(size)+1, clipping will occur
when QP is less than (4 - (6 * (bitDepth - 8))).

In HEVC, MAX_TR_DYNAMIC_RANGE (and ENTROPY_CODING_DYNAMIC_RANGE
of 15 is used for up to 10 bit operation, although coefficients in 32x32 blocks may be clipped for
QP < -8. In addition, the lack of headroom for internal accuracy may also introduce errors for
low QPs.

Noise added during quantisation

Although the quantiser and inverse quantiser of an encoder and decoder will add noise
when quantising, additional noise may be inadvertently added when the scaling lists are
applied, and because the quantisation coefficients defined in the arrays ‘quantScales’ and
‘invQuantScales’ are not necessarily perfect reciprocals.

The effects of transform matrix precision and MAX_TR_DYNAMIC_RANGE are
discussed below.

Empirical data was obtained by analysis (under the so-called intra coding profile) of the
coding of five video sequences from the so-called SVT test set (1920x1080 50p at 16bit, scaled
down from 4K video). Of these sequences, only the first 150 frames have been used in the
tests. A sixth sequence, referred to as Traffic_RGB (2560x1600 30p at 12 bit) is defined by the
standard Range Extension test conditions applicable to HEVC at the time of filing the present
application.

In the empirical tests, if the file (input data) bit depth was less than the internal bit depth
being tested (the codec’s input bit depth), then the samples were padded (with the LSBs set to
0); if the file bit depth was more than the internal bit depth, the samples were scaled and
rounded.

In the discussion below, bitDepth is used to describe the internal bit depth rather than
the bit depth of the input data. Systems with internal bit depth (bitDepth) up to 16 are
considered.

Figure 22 is a graph of bit rate against quantisation parameter (QP) which schematically

illustrates the empirical performance of the encoder system of Figure 21 at a number of internal
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bit depths. Figure 23 is a graph of PSNR for the green channel (on the basis that it is easier to
obtain empirical data for one channel, and green is the channel which contributes the most to
the viewer’s perception of the output video), against QP. The graphs of Figure 22 are formed
from a composite of data for 16-bit (QP -48 to -26), 14-bit (QP -24 to -14), 12-bit (QP -12 to -2),
10-bit (QP 0 to 10) and 8-bit (QP 12 to 22) processing. Vertical lines 1400 schematically
indicate the points at which the bit depth changes. The multiple curves in Figure 22 correspond
to results obtained with different respective test sequences.

Figure 22 shows that the bit rate changes generally monotonically with QP.

Referring to Figure 23, the PSNR for bitDepth = 8 and bitDepth = 10 increases sharply at
QPs of 4 and below (rightmost three data points on each curve). At QP 4, the quantisation
divisor for 8-bit is 1 (QP -8 for 10 bit), leaving the mismatch between the DCT and IDCT and
between the quantisation and dequantisation coefficients as the only probable sources of error.
As the system tends towards lossless processing, the MSE approaches zero and the SNR
spikes upward Figure 24 is a graph of PSNR against bit rate for one test sequence at a series of
different internal bit depths (8, 10, 12, 14, 16). The five curves overlie one another almost
exactly for most of their range and so cannot easily be distinguished.

A 10-bit system at the same operating point has errors mainly in the two least significant
bits, meaning it also approaches lossless processing when considering only 8-bit accuracy, but
as indicated elsewhere in this description, the act of converting 10-bit video to 8-bit video must
also be considered. This will add a MSE of 1.5, which is hidden (that is to say, not shown
explicitly as a result in these empirical tests but still resulting in a higher overall SNR) when
considering a lower accuracy.

In systems that are not limited by internal accuracy to a peak SNR, this increase towards
lossless processing can be seen for each bitDepth as QP drops below (4 - (6 * (bitDepth - 8))).
This is shown in Figure 25, which is a graph of green channel PSNR against bit rate for a range
of bit depths (8, 10, 12, 14, 16) with MAX_TR_DYNAMIC_RANGE = 21,
ENTROIPY_CODING_DYNAMIC_RANGE = 21 and 14 bit transform matrices, with RDOQ
disabled and transform skip disabled. The five curves overlie one another except for portions
1420 (of the 8 bit curve), 1430 (of the 10 bit curve), 1440 (of the 12 bit curve), 1450 (of the 14
bit curve) and 1460 (of the 16 bit curve). It can be seen that, for the same number of bits,
significantly higher SNRs are achievable than those shown in Figure 24.

The empirical results have shown that in embodiments of the present disclosure, the
transform matrix precision should be at least bitDepth-2. Figure 26 is a graph of PSNR against
bit rate for the green channel of one test sequence with bitDepth = 10 and
MAX_TR_DYNAMIC_RANGE = 17, comparing various precision DCT matrices.
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In embodiments, MAX_TR_DYNAMIC_RANGE should be at least 5 (which is the
minimum value of log,(size)) more than bitDepth. Additional accuracy has been shown to
further improve coding efficiency.

In embodiments, ENTROPY_CODING_DYNAMIC_RANGE should be at least 6 more
than the bitDepth (1 for the “quantisation” factor applied by QPs less than (4 - (6 * (bitDepth -
8))) plus 5 for the maximum value of logx(size)). In other embodiments, where the clipping for
the lowest QP values is not a concern, then the ENTROPY_CODING_DYNAMIC_RANGE
should be at least 5 (the minimum value of log,(size)) more than bitDepth.

For the 16-bit system, the transform matrix precision should be set to 14,
MAX_TR_DYNAMIC_RANGE should be set to 21, and
ENTROPY_CODING_DYNAMIC_RANGE should be set to 22. Since having more internal
accuracy is rarely considered harmful, these parameters have also been tested at different
bitDepths, producing results which demonstrate that, for the same number of bits, significantly
higher SNRs are achievable, and that the increased-accuracy system has PSNR/MSE
operating points that are suitable for bitDepths of up to 16.

If Range Extensions is intended to produce a single new profile for all bit depths, then
the system described above is suitable. However, if different profiles are to be described for
different maximum bitDepths, then having different parameter values may be useful for reducing
hardware complexity in systems that do not require the highest profiles. In some embodiments,
the different profiles may define different values for transform matrix precision,
MAX_TR_DYNAMIC_RANGE and ENTROPY_CODING_DYNAMIC_RANGE.

In other embodiments, the profile would allow the values of some or all of transform
matrix precision, MAX_TR_DYNAMIC_RANGE and ENTROPY_CODING_DYNAMIC_RANGE
to be chosen from a list of permissible values by the encoder (with the cost of implementation
being a selection criterion), or a function of side information such as the bitDepth. However, this
may require multiple sets of transform matrices if the transform matrix precision is to be varied
and for this reason, in further embodiments only one transform matrix precision is defined for a
profile, with that transform matrix precision corresponding to the recommended value for the
maximum bit depth for which the profile is designed. A set of possible profiles is proposed below
with reference to Figure 28.

Examples values of transform matrix precision, MAX_TR_DYNAMIC_RANGE,
ENTROPY_CODING_DYNAMIC_RANGE and bitDepth are shown in the following table:

bitDepth 16 15 14 13 12 11 10 9 8

Transform Matrix Precision 14 13 12 11 10 9 8% 7% 6
MAX_TR_DYNAMIC_RANGE 21 20 19 18 17 16 15 15* 15*
ENTROPY CODING DYNAMIC RANGE 22 21 20 19 18 17 16t 15 15*
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In the table, values marked with a *’ are clipped to a minimum of 15, in line with the
current description of HEVC. The values marked with ‘" and ‘}’ are greater than those
specified for the current description of HEVC, those being 15 and 6 respectively.

If different profiles are to be used, then in embodiments of the disclosure these
specifications may be used as minima (noting that the HEVC version 1 10-bit system does not
quite meet these targets). ). Using values less than these indicated minima is possible, although
this will degrade the PSNR for higher bit rates (lower QPs).

Turning now to the CABAC system, as discussed above this provides an example of an
encoding technique involving selecting one of a plurality of complementary sub-ranges of a set
of code values according to the value of a current input data value, the set of code values being
defined by a range variable, assigning the current input data value to a code value within the
selected sub-range, modifying the set of code values in dependence upon the assigned code
value and the size of the selected sub-range, and detecting whether the range variable defining
the set of code values is less than a predetermined minimum size and if so, successively
increasing the range variable so as to increase the size of the set of code values until it has at
least the predetermined minimum size; and outputting an encoded data bit in response to each
such size-increasing operation. In embodiments, the proportions of the sub-ranges relative to
the set of code values are defined by a context variable associated with the input data value.
Embodiments of the CABAC arrangement involve: following the coding of an input data value,
modifying the context variable, for use in respect of a next input data value, so as to increase
the proportion of the set of code values in the sub-range that was selected for the current input
data value.

Also as discussed above, in some embodiments the HEVC CABAC entropy coder codes
syntax elements using the following processes:

The location of the last significant coefficient (in scan order) in the TU is coded.

For each 4x4 coefficient group (groups are processed in reverse scan order), a
significant-coefficient-group flag is coded, indicating whether or not the group contains non-zero
coefficients. This is not required for the group containing the last significant coefficient and is
assumed to be 1 for the top-left group (containing the DC coefficient). If the flag is 1, then the
following syntax elements pertaining to the group are coded immediately following it
Significance map; Greater-than-one map; Greater-than-two flag; Sign bits; and Escape codes.

This arrangement is illustrated schematically in Figure 29. At a step 1500, the CABAC
encoder checks whether a current group contains the last significant coefficient. If so, the
process ends. If not, the process proceeds to a step 1510 at which the encoder checks whether
the current group is the top-left group containing the DC coefficient. If so, control passes to a

step 1530. If not, at a step 1520, the encoder detects whether the current group contains non-
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zero coefficients. If not, the process ends. If so, then at the step 1530 a significance map is
generated. At a step 1540, a >1 map is generated which indicates, for up to 8 coefficients with
significance map value 1, counted backwards from the end of the group, whether the magnitude
is greater than 1. At a step 1550, a >2 map is generated. For up to 1 coefficient with >1 map
value of 1 (the one nearest the end of the group), this indicates whether the magnitude is
greater than 2. At a step 1560, sign bits are generated and ante step 1570, escape codes are
generated for any coefficient whose magnitude was not completely described by an earlier
syntax element (that is to say, data generated in any of the steps 1530-1560).

For a 16-bit, 14-bit or even 12-bit system at the operating point where the MSE is less
than 1 (typically at QPs -34, -22 and -10 respectively), the system typically yields very little
compression (for 16-bit, it actually inflates the source data). The coefficients are generally large
numbers, and therefore are almost always escape-coded. For that reason, two proposed
changes have been made to the entropy coder to allow for higher bit depths by placing a fixed
number of LSBs, B, in the bit stream for each coefficient. In essence the schemes permit the
current HEVC CABAC entropy coder, which was developed for 8 and 10-bit operation, to
operate at the original bitDepth for which it was designed, by effectively converting a higher-bit
system, such as 16-bit, into a lower-bit system, such as 10-bit, with an alternative path for the
additional accuracy. The effectiveness of the splitting method employed is aided since the
lower-bit system values are significantly more predictable and therefore suitable for encoding
with more complex encoding schemes, whereas the additional accuracy required by the higher-
bit system is less predictable and therefore less compressible and complex encoding schemes
are less effective. For example a 16-bit system could configure Bg to be 8.

The use of the fixed bits schemes is indicated in the bit-stream by the encoder, and
when a scheme is used, the means to determine the number of fixed bits would indicated by the
encoder to the decoder. Those means would be either encoding the number directly, or
indicating how to derive the value Br from parameters present in the bit-stream (including QP,
bit depth, and/or profile) already coded in the bit-stream, or a combination thereof. The encoder
would also have the option to indicate different Be values for different Pictures, Slices and CUs,
using the same means, or by indicating delta values to the Br value derived for the sequence,
picture, slice or preceding CU. The value of B may also be configured to be different for the
different transform unit block sizes, the different prediction types (inter / intra), and different
colour channel, where the nature of the source video would steer the encoder in choosing
different parameters.

An example derivation for Bg based on QP is as follows:

Be = max(0, int(QP / -6))
An example derivation for B based on the bit depth is as follows:
Be = bitDepth— 8
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An example derivation for B based on the transform unit block size and QP:
Br = max(0, int(QP / -6) +2 — logx(size) )
The various values of Br could be determined in an encoder using a pre-coder (trial)

arrangement, or could be configured to follow pre-determined rules.

Entropy Coding Embodiment 1

To allow for processing at higher bit depths, the process of the HEVC entropy coder is
changed to the following for a number of fixed bits Br less than bitDepth:

The location of the last significant coefficient (in scan order) in the TU is coded.

For each 4x4 coefficient group (groups are processed in reverse scan order), each
coefficient C is split into a most-significant part Cyss and a least-significant part C,sg, where
Cwuss = abs(C) >>B¢
Ciss = abs(C) — (Cuss<<B)
and Bris the number of fixed bits to use, as determined from the bit stream.

The generation of Cysg and C sg as discussed provide an example (in respect of a
technique for encoding a sequence of data values) of generating, from the input data values,
respective complementary most-significant data portions and least-significant data portions,
such that the most-significant data portion of a value represents a plurality of most significant
bits of that value, and the respective least-significant data portion represents the remaining least
significant bits of that value.

A significant-coefficient-group flag is coded, indicating whether or not the group contains
non-zero values of Cysg. This is required for the group containing the last significant coefficient
and is assumed to be 1 for the top-left group (containing the DC coefficient). If the flag is 1, then
the following syntax elements pertaining to the group are coded immediately following it:
Significance map:

For each coefficient in the group, a flag is coded indicating whether or not the value of
Cuss is significant (has a non-zero value). The flag is coded for the coefficient indicated by the
last-significant position.

Greater-than-one map:

For up to eight coefficients with significance map value 1 (counted backwards from the
end of the group), this indicates whether Cysg is greater than 1.

Greater-than-two flag:

For up to one coefficient with greater-than-one map value 1 (the one nearest the end of
the group), this indicates whether Cysg is greater than 2.

Fixed bits:
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For each coefficient in the group, the value of C,sg is coded as bypass data using
equiprobable CABAC bins.
Sign bits:

For all non-zero coefficients, sign bits are coded as equiprobable CABAC bins, with the
last sign bit (in reverse scan order) possibly being instead inferred from parity when sign bit
hiding is used.

Escape codes:

For any coefficient whose magnitude was not completely described by an earlier syntax
element, the remainder is coded as an escape code.

However, where the significant-coefficient-group flag is a 0, then the following syntax
elements pertaining to the group are coded immediately following it:

Fixed bits:

For each coefficient in the group, the value of C,sg is coded equiprobable CABAC bins.
Sign bits:

For all non-zero coefficients, sign bits are coded as equiprobable CABAC bins, with the
last sign bit (in reverse scan order) possibly being instead inferred from parity when sign bit
hiding is used.

The generation of one or more of these maps and flags provides an example of
generating one or more data sets indicative of positions, relative to the array of the values, of
most-significant data portions of predetermined magnitudes. The encoding of one or more
maps using CABAC provides an example of encoding the data sets to an output data stream
using binary encoding. The encoding of other data using equiprobable CABAC bins provides
an example of including data defining the less-significant portions in the output data stream, or
(using other terminology) an example of including data defining the less-significant data portions
in the output data stream comprises encoding the least-significant data portions using arithmetic
coding in which symbols representing the least-significant data portions are encoded according
to respective proportions of a coding value range, in which the respective proportions of the
coding value range for each of the symbols that describe the least-significant data portion are of
equal size. As an alternative to equiprobable CABAC encoding, however, the step of including
data defining the less-significant portions in the output data stream can comprise directly
including the least-significant data portions in the output data stream as raw data.

An embodiment of this disclosure changes the interpretation of the significant coefficient
group flag to indicate whether any of the coefficients are non-zero (not just their Cyss
counterparts). In this case, the coefficient group containing the last coefficient in the reverse
scan order would not need to be indicated (as it would be 1), and additional syntax elements
would not needed to be coded when the significant-coefficient-group flag is a 0. This provides

an example of which the significance map comprising a data flag indicative of the position,
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according to a predetermined ordering of the array of values, of the last of the most-significant
data portions having a non-zero value.

This latter arrangement is illustrated schematically in Figure 30 which corresponds in
many respects to Figure 29. Comparing the two drawings, it will be seen that Figure 30 has no
equivalent of the step 1500 of Figure 29, corresponding to the fact that the process takes place
even for the group containing the last significant coefficient. Steps 1610 and 1620 generally
correspond to the steps 1510 and 1520 of Figure 29. At a newly introduced step 1625, the
coefficients are split into MSB and LSB portions as discussed above. Steps 1630, 1640 and
1650 generally correspond to respective steps 1530, 1540 and 1550 of Figure 29 except that
they act only on the MSB portion of the split coefficients. A newly introduced step 1655 involves
encoding the LSB portions of the split coefficients as fixed bits as discussed above. Steps 1660
and 1670 generally correspond to the steps 1560 and 1570 of Figure 29.

This modification can effectively produce a system where the CABAC entropy coder is
operating at the original bitDepth for which it was designed, by selecting Be so that a number of
MSBs equal to the design bit depth of the encoder is passed through the CABAC encoding, with
the higher bit depth’s LSBs (which are the least predictable and therefore least compressible)
being bypass-coded. For example, if the encoder is an 8 or 10 bit depth encoder, Be could
equal 8 or 10. This provides an example of a system in which the sequence of data values
represent image data having an image data bit depth; and the method comprises setting the
number of bits to be used as the plurality of most significant bits in each most-significant data
portion to be equal to the image data bit depth.

As discussed, the techniques may (in some embodiments) be applied to arrangements
in which the sequence of data values comprises a sequence of frequency transformed image
coefficients. However, other types of data (such as audio or simply numerical data) could be
used.The results for this proposal can be seen in Figure 27, which is a graph of PSNR against
QP for one test sequence with the DCT matrix precision and MAX_TR_DYNAMIC_RANGE set
according to bit depth, showing equivalent operations with (the curve 1680) and without (the
curve 1690) bypass fixed-bit encoding. The saving in bit rate for the system with fixed bits
(relative to the system without fixed bits) varies from 5% at QP 0 up to 37% at QP -48. The best
value of Be will be sequence dependent. An example of Br is 8 or 10 as discussed above.
Entropy Coding Embodiment 2

A similar scheme under other embodiments applies many of the same processing steps,
but retains the original functionality of the significance map — where a flag value of O indicates a
coefficient value of O (rather than — as in the Entropy Coding Embodiment 1 — a value of O for
the MSB portion of the coefficient). This may be more useful when considering (typically

smooth) computer generated video (where zeros are expected to be more common). This
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Entropy Coding Embodiment comprises the following processing steps for a number of fixed
bits Be less than bitDepth:

The location of the last significant coefficient (in scan order) in the TU is coded.

For each 4x4 coefficient group (groups are processed in reverse scan order), a
significant-coefficient-group flag is coded, indicating whether or not the group contains non-zero
coefficients. This is not required for the group containing the last significant coefficient and is
assumed to be 1 for the top-left group (containing the DC coefficient). If the flag is 1, then each
coefficient C is split into a most-significant part Cyss and a least-significant part C,sg, where
Cwuss = (abs(C) — 1) >> B¢
and
Ciss = (abs(C) — 1) — (Cuss << Bf)

The generation of Cysg and C sg as discussed provide an example (in respect of a
technique for encoding a sequence of data values) of generating, from the input data values,
respective complementary most-significant data portions and least-significant data portions,
such that the most-significant data portion of a value represents a plurality of most significant
bits of that value, and the respective least-significant data portion represents the remaining least
significant bits of that value.

The following syntax elements pertaining to the group are coded immediately following it:
Significance map:

For each coefficient in the group, a flag is coded indicating whether or not the coefficient
C is significant (has a non-zero value). No flag is necessary for the coefficient indicated by the
last-significant position.

Greater-than-one map:

For up to eight coefficients with significance map value 1 (counted backwards from the
end of the group), this indicates whether Cysg is greater than or equal to 1.

Greater-than-two flag:

For up to one coefficient with greater-than-one map value 1 (the one nearest the end of
the group), this indicates whether Cysg is greater than or equal to 2.

Sign bits:

For all non-zero coefficients, sign bits are coded as equiprobable CABAC bins, with the
last sign bit (in reverse scan order) possibly being instead inferred from parity when sign bit
hiding is used.

Fixed bits:
For each non-zero coefficient in the group, the value of C, sz is coded.
Escape codes:
For any coefficient whose magnitude was not completely described by an earlier syntax

element, the remainder is coded as an escape code.
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The generation of one or more of these maps and flags provides an example of
generating one or more data sets indicative of positions, relative to the array of the values, of
most-significant data portions of predetermined magnitudes. The encoding of one or more
maps using CABAC provides an example of encoding the data sets to an output data stream
using binary encoding. The encoding of other data using equiprobable CABAC bins provides
an example of including data defining the less-significant portions in the output data stream.

Note that there are various options for the order of these various components of the data
in the output stream. For example, with reference to the sign bits, fixed bits and escape codes,
the order for a group of (say) n coefficients (where n might be 16, for example) could be:

n x sign bits, then n x sets of fixed bits, then n x escape codes; or

n x sign bits, then n x (escape code and fixed bites for one coefficient).

This arrangement is schematically illustrated in the flowchart of Figure 31. Here, the
steps 1700...1770 correspond to respective steps of Figures 31 and 32 in the following way,
unless a difference is identified. Note that the step 1755 follows the step 1760 in Figure 31 (the
similar step 1655 preceded the step 1660 in Figure 30).

The step 1700 corresponds generally to the step 1500 of Figure 29. If this is not the
group containing the last significant coefficient, control passes to the step 1710. The steps 1710
and 1720 correspond to the steps 1610 and 1620 of Figure 30. The coefficients are split at the
steps 1725 corresponding to the step 1625 of Figure 30. However, at the steps 1730, in contrast
to the arrangement of the step 1630 discussed earlier, the whole coefficient (ignoring, for the
time being, the split executed in the step 1725) is used in the derivation of the significance map.
The steps 1740 and 1750 act on only the MSB portions of the split coefficients and correspond
in function to the steps 1640 and 1650. Apart from the fact that the ordering of the steps is
illustrated (by way of example) slightly differently between Figures 32 and 33, the steps 1755,
1760 and 1770 correspond to the functionality of the steps 1655, 1660 and 1670.

Results comparing these two Entropy Coding Embodiments can be seen in Figure 28.
Figure 28 is a graph illustrating, for each of six test sequences, a bit rate percentage
improvement for the Entropy Coding Embodiment 2 relative to the results achieved (with
otherwise identical parameters) for the Entropy Coding Embodiment 1.

The Entropy Coding Embodiment 2 has been shown to be 1% less efficient on average
for some source material than the Entropy Coding Embodiment 1 for negative QPs, rising to
approximately 3% for positive QPs. However, for some softer source material, the opposite is
observed, due to the increased presence of zeros in the coefficients. In an embodiment, the
encoder would be able to choose either entropy coding method and signal to the decoder the
choice.

Since the saving for positive QPs is small compared to the saving for negative QPs, the

entropy coding modifications could be enabled only when QP is negative. Considering that the



10

15

20

25

30

35

WO 2015/004441 39 PCT/GB2014/052076

Entropy Coding Embodiment 1 shows bit savings of up to 37% for negative QPs, there is little
difference between the two Entropy Coding Embodiments at these operating points when
compared to a system with no entropy coding modifications.

Accordingly, in example embodiments in which the frequency-transformed input image
coefficients are quantised frequency-transformed input image coefficients according to a
variable quantisation parameter selected from a range of available quantisation parameters, the
techniques can comprise encoding the array of frequency-transformed input image coefficients
according to the most-significant data portions and the least-significant data portions for
coefficients produced using a quantisation parameter in a first predetermined sub-range of the
range of available quantisation parameters; and for coefficients produced using a quantisation
parameter not in the first predetermined sub-range of the range of available quantisation
parameters, encoding the array of frequency-transformed input image coefficients such that the
number of bits in each most-significant data portion equals the number of bits of that coefficient
and the respective least-significant data portion contains no bits.

Since the quantity of data being coded is somewhat higher than observed for standard
HEVC version 1 operating points, an additional stage applicable to both proposed systems, and
indeed a system where the previously proposed systems cannot be or are not enabled will now
be discussed in connection with further embodiments of the disclosure.

This additional stage causes the CABAC stream to be bit-aligned prior to coding the
bypass data for each coefficient group. This allows quicker (and in-parallel) decoding of the
bypass data, since the values can now be read directly out of the stream, removing the
requirement for long-division when decoding bypass bins.

One mechanism to achieve this is to apply the CABAC termination method previously
presented above.

However, in the embodiment now described, instead of terminating the bit-stream, the
CABAC state is aligned to a bit boundary.

In embodiments, the set of CABAC code values comprises values from 0 to an upper
value defined by the range variable, the upper value being between the predetermined
minimum size (for example, 256) and a second predetermined value (for example, 510).

To bit-align the stream, m_Range is simply set to 256 in both the encoder and decoder.
This significantly simplifies the encoding and decoding process, allowing the binary data to be
read directly out of m_Value in raw form, and therefore many bits at a time can simultaneously
be processed by the decoder.

Note that the act of setting m_Range to 256 incurs a loss of, on average, 0.5 bits (if
m_Range was already 256, there is no loss; if m_Range was 510, then approximately 1 bit will

be lost; the average over all valid values of m_Range is therefore 0.5 bits).
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A number of methods can be used to mitigate the loss, or potential cost, incurred by
these techniques. Figures 33 to 35 are schematic flowcharts respectively illustrating versions of
a termination stage of a CABAC process as carried out by the CABAC encoder.

According to Figure 33, whether or not to bit-align could be selected depending on an
estimate of the expected quantity of bypass-coded data (for example, based on the number of
greater-than-one flags equal to 1). If few bypass-coded data are expected, bit-aligning is costly
(as it wastes on average 0.5 bits per alignment), and also unnecessary since the bit-rate is likely
to be lower. Accordingly, in Figure 33, a step 1800 involves detecting the estimated quantity of
bypass-encoded data by detecting the number of >1 flags which have been set, and comparing
that number to a threshold value Thr. If the estimate exceeds the threshold Thr then control
passes to a step 1810 at which the bit align mode is selected. Otherwise, control passes to a
step 1820 at which the non-bit-align mode is selected. The steps of Figure 33 can be repeated
each sub-group in each TU, for example. This provides an example of encoding data
representing coefficients which are not represented a data set as bypass data; detecting the
quantity of bypass data associated with a current array; and applying the setting step if the
quantity of bypass data exceeds a threshold amount, but not applying the setting step
otherwise.

Referring to Figure 34, rather than code bypass data at the end of each coefficient
group, all the bypass data for a TU can be coded together after the CABAC bin data for the TU.
The loss is therefore 0.5 bits per coded TU, rather than 0.5 bits per coefficient group.
Accordingly, at a step 1830 in Figure 34, a test is applied to detect whether the current group is
at the end of encoding a TU. If not, then bit alignment is not applied (indicated schematically as
a step 1840) and control returns to the step 1830. But if so, then bit alignment is applied at a
step 1850. This provides an example of an arrangement in which the input data values
represent image data; and in which the image data are encoded as transform units comprising a
plurality of arrays of coefficients, the method comprising applying the setting step at the end of
encoding a transform unit.

This alignment mechanism may also be used prior to other or all data in the stream that
are coded with a equiprobable mechanism, which although it may decrease the efficiency, may
simplify the coding of the stream.

As an alternative alignment, referring to Figure 35, m_Range can be set to one of a
number N of predetermined values rather than simply 256 (384, for example, would align to a
half-bit). Since the aligning value must be less than or equal to the original value of m_Range
(as range cannot be increased other than through renormalisation), the loss-per-alignment is
then (0.5 / N) for regularly spaced values. This method would still require division for values
other than 256, but the denominator would be known in advance and so the division could be

evaluated using a look-up table. Accordingly, at a step 1860 (which applies in a bit alignment
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situation) the value of m_range is detected, and at a step 1870 an aligned value is selected
according to m_range for use in the bit alignment process.

As a further refinement to this alternative alignment method, the bin (or bins)
immediately following the alignment can be coded using (unequal) symbol ranges that are
powers of two. In this way, all requirements for division for subsequent bins can be removed
without any further loss over (0.5 / N) in bit efficiency.

For example, when aligning to 384, the symbol ranges for [0,1] for the subsequent bin
can be [256,128]:

If a 0 is coded, m_Range is set to 256, making the cost to encode the bin 0.5 bits.

If a 1is coded, m_Range is set to 128 (and 256 is added to m_Value) and the system is
renormalised (again, m_Range becomes 256), making the cost to encode the bin 1.5 bits.

Since 0 and 1 are expected with equal probability, the average cost to encode the bin
immediately following alignment is still 1 bit. For the case where N=2, and the two alignment
points are 256 and 384, the method would be to pick the largest alignment point that is less than
or equal to the current m_Range. If that alignment point is 256, then m_Range is just set to 256
to align the CABAC engine; if the alignment point is 384, then the above process is required,
which would require the coding of one symbol.

This is shown in Figures 32A and B, and a further example with N=4 is shown in Figures
32C to 32F.

To illustrate the advantages of aligning the CABAC engine, the method to decode an
equiprobable (EP) bin without this alignment stage might be expressed as follows:

if ( m_Value>=m_Range/2)
the decoded EP value is a 1. Decrement m_Value by m_Range/2
else
the decoded EP value is a 0.
then, read next bit from the bit-stream:
m_Value=(m_Value*2) + next_bit_in_stream
A worked example of this is then:

let m_Range=458 and m_Value=303 and the next two bits in the bitstream are

cycle 1:
m_Value>= 229, so the next coded EP value is 1. m_Value = 74
then, read next bit from the bit-stream: m_Value=74*2 + 1 = 149
cycle 2:
m_Value< 229, so the EP value is 0 (m_Value unchanged)

then, read next bit from the bit-stream: m_Value=149*2 + 1 = 299
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The decoded equiprobable bins are equivalent to one stage of long division, and
arithmetic would be required to test the inequality. To decode two bins, then this example
process would be used twice, implementing a two-stage long division process.

However, if the alignment stage is applied, resulting in m_Range being the largest valid
power of 2 (such as 256 for the 9-bit HEVC CABAC entropy coder), then the above process
turns is simplified

the coded EP value is the most significant bit of m_Value.
Update m_Value, by treating it as a shift register, shifting in the next bit in the
stream into the least significant position.

Hence, m_Value essentially becomes a shift register, and the EP bins are read from the
most significant position, whilst the bit-stream is shifted into the least significant position.
Therefore multiple EP bits can be read by simply shifting more bits off the top of m_Value.

A worked example of this aligned case is:

Let m_Range=256, m_Value=189 and the next two bits in the bitstream are 1
cycle 1:

Next coded EP value is bit 7 of m_Value, which is a 1.

Update m_Value by shifting out bit 7, and shifting in 1 from the bit stream
into the least significant position: m_Value becomes 123.
cycle 2:

Next coded EP value is bit 7 of m_Value, which is a 0.

Update m_Value by shifting out bit 7, and shifting in 1 from the bit stream
into the least significant position: m_Value becomes 247.

The number of alignment points, N, that are selected can be seen as a trade-off
between complexity of implementation and the bit-cost of alignment. For an operating point
where there are many EP bins per alignment point, then the wastage is less significant, and an
alignment system with fewer points may suffice. Conversely, for an operating point where there
are fewer EP bins per alignment point, then the wastage is more significant, and an alignment
system with more points may be preferable; for some operating points disabling the alignment
algorithm entirely may be preferable. The encoder, and therefore bit-stream, could indicate the
number of alignment points that are to be used by the decoder, which may be chosen according
to the operating point for that section of the data stream. This number indicated may
alternatively be inferred from other information present in the bit-stream, such as a profile or
level.

Using multiple alignment positions, in a simple case, where the alignment positions are
just 256 and 384:

To align,

if m_Range < 384, just set m_Range=256, and see
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above worked example for decoding.
else
set m_Range=384, and the following process is
used for coding the next EP bin:
m_Range=384=256+128.
Assign the symbol range of 256 to the value of O
and 128 to the value of 1 for the next EP bin to

be coded.

If m_Value >= 256, then (a MSB bit test operation)
the next EP value is a 1.
m_Value-=256 (actually is a bit-clear operation)
m_Range=128.

Renormalise (because m_Range<256):
m_Range=256
m_Value=(m_Value*2) + next_bit_in_stream
else
the next EP value is a 0.
m_Range=256.
Then, m_Range=256, and the above simple process
can be used for all subsequent EP bins.

The results for Entropy Coding Embodiment 1 with the CABAC bit-alignment
mechanisms just discussed are shown in Figure 29, which is a graph of bit rate difference
against QP for six sequences with and without the bit alignment mechanisms for N=1. A
positive bit rate difference (on the vertical axis) indicates that the system with bit alignment
generates a higher bit rate than the scheme without the bit alignment bit alignment mechanism.
The bit rate difference for each sequence is approximately 0.5 times the number of thousand
coefficient groups per second (Traffic is 2560x1600 30p = 11520, all others are 1920x1080 50p
= 9720).

The alignment techniques discussed above are examples of:. after encoding a group of
input data values, setting the range variable to a value selected from a predetermined subset of
available range variable values, each value in the subset having at least one least significant bit
equal to zero. The subset may include the minimum size (example, 256). The subset may
comprise two or more values between the predetermined minimum size (such as 256) and the
second predetermined value (such as 510). A value may be selected from the according to a
current value of the range variable. Embodiments involve selecting a particular value from the
subset if the current value of the range variable is between that particular value and one less

than a next-higher value in the subset (as shown, for example, in Figures 32A-32F). In a
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particular example, the subset of available values comprises a set consisting of 256, 320, 384
and 448, the step of setting the range variable comprises selecting a value from the subset
according to a current value of the range variable, so that the range variable is set to 256 if the
current value of the range variable is between 256 and 319, the range variable is set to 320 if
the current value of the range variable is between 320 and 383,the range variable is set to 384 if
the current value of the range variable is between 384 and 447, and the range variable is set to
448 if the current value of the range variable is between 448 and 510. In another example, the
step of setting the range variable comprises selecting a value from the subset according to a
current value of the range variable, so that the range variable is set to 256 if the current value of
the range variable is between 256 and 383, and the range variable is set to 384 if the current
value of the range variable is between 384 and 510.

The options set out in Figure 30 are proposed as profiles.

If the High profile(s) are only required to support bitDepths of up to 14, then the
transform matrix coefficient precision, MAX_TR_DYNAMIC_RANGE and
ENTROPY_CODING_DYNAMIC_RANGE are proposed to be set to 12, 19 and 20 respectively.

In addition to these profiles, intra-only Main/Extended profiles could be defined, but
since an intra-only decoder is significantly less complex than an intra/inter decoder, only a High
intra profile has been described here.

In a similar vein, Extended/High profiles for coding still pictures in various chroma
formats could be defined.

Lower profiles could need to use the same matrix Precision,
MAX_TR_DYNAMIC_RANGE and ENTROPY_CODING_DYNAMIC_RANGE as used by the
higher profiles else the bit-streams produced by the two Profiles would not match.

Various options will now be discussed:

Option 1

High Bit Depth 16 (15 |14 |13 |12 |11 | 10

4:4:4 Transform Matrix Precision 14 (13 |12 |11 |10 |9 |8
MAX_TR_DYNAMIC_RANGE 21 120 (19 |18 |17 |16 | 15
ENTROPY_CODING_DYNAMIC_RANGE |22 |21 |20 |19 |18 |17 | 16

Extended | Bit Depth - - - - 12 |11 |10

4:4:4 Transform Matrix Precision - - - - 10 |9 |8
MAX_TR_DYNAMIC_RANGE - - - - 17 116 | 15
ENTROPY_CODING_DYNAMIC_RANGE | - - - - 18 |17 | 16

In this option, the bit depth will dictate the transform matrix precision,
MAX_TR_DYNAMIC_RANGE and ENTROPY_CODING_DYNAMIC_RANGE. This means that
a decoder that would need to support bit depths up to 16 would need to process 13 bit data with

a different set of matrices, and the internal accuracy would be limited to just 18 bits for
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MAX_TR_DYNAMIC_RANGE, although the decoder would have the ability to support up to 21.
However, 12 bit data encoded using the high profile could be decoded by a decoder compliant

at a lower profile.
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Option 2

High Bit Depth 16 (15 |14 |13 |12 |11 | 10

4:4:4 Transform Matrix Precision 14 |14 |14 |14 |10 | 10 | 10
MAX_TR_DYNAMIC_RANGE 21 121 (21 |21 |17 |17 | 17
ENTROPY_CODING_DYNAMIC_RANGE |22 |22 |22 |22 |18 |18 | 18

Extended | Bit Depth - - - - 12 |11 |10

4:4:4 Transform Matrix Precision - - - - 10 |10 | 10
MAX_TR_DYNAMIC_RANGE - - - - 17 |17 |17
ENTROPY_CODING_DYNAMIC_RANGE | - - - - 18 |18 | 18

In this option, the bit parameters for the overlapping bit depths are determined by the
lower profile, thereby making decoding 12-bit data encoded using the high profile decodable
using a decoder compliant to the extended profile. In addition, the internal accuracy of 13 bit
data would be the same as for the 16 bit data. In addition, few matrix precisions would need to
be supported than in Option 1.

In the present context, a single set of transform matrix values could be stored, and all
other values derived from this.

Note that if the transform matrices have an initial precision of 14 bits, generally the lower
precisions could be derived by divide by two and rounding.

Using this general rule to derive the lower-precision matrices from higher precision
matrices would lead to:

Example 1
Option 1: High 4:4:4 Define transform matrix precision = 14

Derive transform matrix precision = 13... from 14

Ext4:4:4 Define transform matrix precision = 14
Derive transform matrix precision = 10... from 14
i.e. Store at "High" precision.
Example 2
Option 1: High 4:4:4 Define transform matrix precision = 10

Derive transform matrix precision = 14... from 10

Ext4:4:4 Define transform matrix precision = 10
Derive transform matrix precision = 10... from 14
i.e. Store at "Extended" precision.
For better quality "Example 1" is preferred. However Example 2 can lead to reduced

storage requirements.
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Note - An alternative is of course to store a transform matrix set for each precision.
“Example 1" and "Example 2" rules can also be used for "Option 2".

As an aim is to increase quality and also split into profiles, there will be scaling errors if
each transform matrix set is derived from a single set at one precision.

In the case of "Example 1" the system is down-scaling the transform matrices from 14
bits, and in the case of "Example 2" the system is up-scaling and down-scaling the transform

matrices from 10 bits.

Option 3

High Bit Depth 16 (15 |14 |13 |12 |11 | 10

4:4:4 Transform Matrix Precision 14 |14 |14 |14 |14 |14 | 14
MAX_TR_DYNAMIC_RANGE 21 121 (21 |21 |21 |21 | 21
ENTROPY_CODING_DYNAMIC_RANGE |22 |22 |22 |22 |22 |22 |22

Extended | Bit Depth - - - - 12 |11 |10

4:4:4 Transform Matrix Precision - - - - 10 |10 | 10
MAX_TR_DYNAMIC_RANGE - - - - 17 |17 |17
ENTROPY_CODING_DYNAMIC_RANGE | - - - - 18 |18 | 18

i.e. Bit Depths of 12 bit Video can be encoded either as "High 4:4:4" or "Ext 4:4:4", although
only a high 4:4:4 decoder would be able to decode streams encoded using the high 4:4:4

scheme.

Option 4

High Bit Depth 16 (15 |14 |13 |12 |11 | 10

4:4:4 Transform Matrix Precision 14 114 |14 |14 | - - -
MAX_TR_DYNAMIC_RANGE 21 121 (21 |21 |- - -
ENTROPY_CODING_DYNAMIC_RANGE | 22 |22 |22 | 22 |- - -

Extended | Bit Depth - - - - 12 |11 |10

4:4:4 Transform Matrix Precision - - - - 10 |10 | 10
MAX_TR_DYNAMIC_RANGE - - - - 17 |17 |17
ENTROPY_CODING_DYNAMIC_RANGE | - - - - 18 |18 | 18

i.e. "High 4:4:4" Profile has to support the lower "Ext 4:4:4 Profile", with this "Option 4" there is

only one choice on how to code 12-bit video.
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Option 5

High Bit Depth 16 (15 |14 |13 |12 |11 | 10

4:4:4 Transform Matrix Precision 14 |14 |14 |14 |14 |14 | 14
MAX_TR_DYNAMIC_RANGE 21 120 (19 |18 |17 |16 | 15
ENTROPY_CODING_DYNAMIC_RANGE |22 |21 |20 |19 |18 |17 | 16

Extended | Bit Depth - - - - 12 |11 |10

4:4:4 Transform Matrix Precision - - - - 10 |10 | 10
MAX_TR_DYNAMIC_RANGE - - - - 17 116 | 15
ENTROPY_CODING_DYNAMIC_RANGE | - - - - 18 |17 | 16

In this option, the matrix precisions are limited to just 1 value per profile, reducing the overhead
for an encoder. In addition, MAX_TR_DYNAMIC_RANGE and
ENTROPY_CODING_DYNAMIC_RANGE are dictated by the bit depth, and therefore an
encoder that only requires coding 13 bit data would not need to include the implementation

overhead of using additional internal calculation accuracy.

Option 6

High Bit Depth 16 (15 |14 |13 | - - -

4:4:4 Transform Matrix Precision 14 114 |14 |14 | - - -
MAX_TR_DYNAMIC_RANGE 21 120 (19 |18 |- - -
ENTROPY_CODING_DYNAMIC_RANGE | 22 |21 |20 | 19 | - - -

Extended | Bit Depth - - - - 12 |11 |10

4:4:4 Transform Matrix Precision - - - - 10 |10 | 10
MAX_TR_DYNAMIC_RANGE - - - - 17 116 | 15
ENTROPY_CODING_DYNAMIC_RANGE | - - - - 18 |17 | 16

Option 6 is similar to Option 5, but where only the extended profiles are defined for coding 12 bit
data.

In summary, the proposed changes according to various embodiments of the present
disclosure are:

Use at least one additional transform matrix set for higher accuracy.

It is preferable to have a single set for all higher accuracies, to simplify multi-profile
encoders/decoders.

Proposed transform matrices are provided for transform matrix precisions 7 to 14 — see
the description below.

It is suggested to use the 14-bit accuracy transform matrices as these will fit within 16-bit
data types for software, and will provide sufficient accuracy to allow future extension to 16-bit

video.
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The choice of transform matrix precision could be configured by the bit depth of the input
data and the profile, or alternately determined by parameters specified at the sequence, picture
or slice level.

MAX_TR_DYNAMIC_RANGE and ENTROPY_CODING_DYNAMIC_RANGE can be
changed for higher accuracy.

Multiple values of MAX_TR_DYNAMIC_RANGE and
ENTROPY_CODING_DYNAMIC_RANGE should not present a problem for multi-profile
encoders/decoders.

It is suggested to derive MAX_TR_DYNAMIC_RANGE = bitDepth + 5 and
ENTROPY_CODING_DYNAMIC_RANGE = bitDepth + 6.

The use of MAX_TR_DYNAMIC_RANGE = bitDepth + 5 can be appropriate for many
situations and types of video material. However, a possible need for a variation of this will now
be discussed.

Empirical tests have shown that in some instances, for a subset of video sequences,
particularly some video sequences having a low noise content, the use of
MAX_TR_DYNAMIC_RANGE = bitDepth + 5 gives rise to a response curve (giving the
relationship between output bitrate and quantisation parameter) is not monotonic.

Normally such a response curve is monotonic as between output bitrate and
guantisation parameter, so that a harsher quantisation gives a lower output bitrate, and a less
harsh quantisation gives a higher output bitrate. This monotonic relationship forms the basis of
rate control algorithms, so that the rate control system adjusts the quantisation parameter to
keep the output bitrate within a desired range or under a desired threshold.

But in some instances of the use of MAX_TR_DYNAMIC_RANGE = bitDepth + 5, the
monotonic relationship has been found to break down, so that, for example, a change to a less
harsh quantisation can in fact give rise to a lower output bitrate, or even that there can be two
possible values of picture SNR for a particular output bitrate. These aberrations can cause the
rate control algorithm to struggle or even fail to arrive at a desired bitrate.

In empirical tests it has been found that such problems can be overcome by using
MAX_TR_DYNAMIC_RANGE = bitDepth + 6. Accordingly, in some embodiments, this
relationship between MAX_TR_DYNAMIC_RANGE and bitDepth is used.

IN a particular example of a 32 x 32 DCT matrix, the DCT process will tend to require
l0g»(32) bits of accuracy over bitDepth, which is how the value of bitDepth + 5 is derived.
However, the quantising process may add the equivalent of another bit of accuracy.
Significantly better results can be obtained, at least for some video material, if this additional bit
is provided as extra accuracy in the DCT process.

However, it has also been found in empirical tests that this problem, and accordingly the
solution of using MAX_TR_DYNAMIC_RANGE = bitDepth + 6, are relevant only to larger DCT
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matrix  sizes. An advantage of allowing different relationships between
MAX_TR_DYNAMIC_RANGE and bitDepth can be that this avoids unnecessary processing
overhead in instances where the additional accuracy is not required.

In particular, in the present examples, the problem outlined above, and the proposed
solution, are particularly relevant to 32 x 32 DCT matrix sizes. For smaller matrices, the
relationship MAX_TR_DYNAMIC_RANGE = bitDepth + 5 can be used.

More generally, an adaptive variation of the relationship between
MAX_TR_DYNAMIC_RANGE and bitDepth can be used, so that the offset (the value which is
added to bitDepth to generate MAX_TR_DYNAMIC_RANGE) is varied according to the matrix
size. So, MAX_TR_DYNAMIC_RANGE = bitDepth + offset, where offset is a function of matrix

size. In an example, the offset values could be selected as follows:

Matrix size Offset
32x32 +6
all others below 32 x 32 +5

In another example, a progressive relationship could be used so as to recognise the
need for more accuracy with higher matrix sizes, while a lower accuracy can be used with a

smaller matrix size:

Matrix size Offset
32x32 +6
16 x 16 +5
8x8 +4

The relationship between offset and matrix size should be the same, as between the
reverse (decoding) path of the encoder, and the decoding path of a decoder. There is therefore
a need to establish or communicate the relationship, as between these three areas of the
technology.

In an example, the relationship can be established as a predetermined, hard-coded
relationship at the encoder and decoder.

In another example, the relationship can be explicitly communicated as part of (or in
association with the encoded video data.

In another example, the relationship can be inferred at both the encoder and decoder
from the identity of a “profile” associated with the encoded vide data. Here, as discussed
elsewhere in this description, a profile is an identification of a set of parameters used for

encoding or decoding the video data. The mapping between a profile identification and the
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actual parameters set by that profile identification is pre-stored at both encoder and decoder.
The profile identification can be carried as part of the encoded data, for example.

In general, however, the value offset is dependent upon the matrix size of the transform
matrices.

As with the transform matrix precision, the choice of MAX_TR_DYNAMIC_RANGE and
ENTROPY_CODING_DYNAMIC_RANGE could be configured by the bit depth of the input data
and the profile, or alternately determined by parameters specified at the sequence, picture or
slice level (possibly the same parameters as those that select the DCT matrices).

These arrangements provide examples of frequency-transforming input image data to
generate an array of frequency-transformed input image coefficients by a matrix-multiplication
process, according to a maximum dynamic range of the transformed data and using transform
matrices having a data precision; and selecting the maximum dynamic range and the data
precision of the transform matrices according to the bit depth of the input image data.

In embodiments, the data precision of the transform matrices can be set to a first offset
number of bits (such as 2) less than the bit depth of the input image data; and the maximum
dynamic range of the transformed data can be set to a second offset number of bits (such as 5)
greater than the bit depth of the input image data.

The entropy coding can be changed to include some fixed-bit processing (see Entropy
Coding Embodiments 1 and 2) to increase compression at low QPs.

The presence of fixed bits could be configured at the sequence level.

The number of fixed bits Br could be configured at the sequence, picture (although this
is difficult since the picture parameter set does not know of sequence level settings), slice or CU
level (possibly by signalling a delta from the number of fixed bits for the previous
sequence/picture/slice/CU, parent entity or profile definition).

The entropy coding can be changed to include CABAC bit-alignment to allow bypass bits
to be extracted from the stream without the use of long division (it may also be preferable to
apply one or more of the aforementioned bit-loss mitigation methods).

Embodiments of the present disclosure therefore provide that internal accuracies be
increased to accommodate the requirement in the Range Extensions mandate to allow for
higher bit depths through HEVC. The various sources of error have been studied and
recommendations have been made. In addition, changes to improve coding efficiency have
been presented, and changes to improve throughput have also been presented.
Increased-Precision Transform Matrices

This part of the description details the transform matrices at various levels of precision.

4x4 DST

The transform matrix is of the form:
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where the values in the grid are defined by the matrix coefficient precision according to

included for comparison):

the following table (6-bit HEVC version 1 matrix values

14-bit

7472

14042

18919

21513

13-bit

3736

7021

9459

10757

12-bit

1868

3510

4730

5378

11-bit

934

1755

2365

2689

10-bit

467

878

1182

1345

9-bit

233

439

591

672

8-bit

117

219

296

336

7-bit

58

110

148

168

6-bit

29

54

73

83

Combined DCT Matrix

For ease of implementation, a single 32x32 DCT matrix Ms, can be described, from which each

smaller NxN DCT matrix My is derived through subsampling (as an example of deriving

transform matrices at a required data precision from respective source transform matrices at a

10

different data precision) according to the following:

0..(N—1).

MaXI[2C %My for x,y
The combined matrix Ms,is of the form:

MnXlY]
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with the values in the grid defined by the matrix coefficient precision according to the

following table (6-bit HEVC version 1 matrix values included for comparison):

6-bit 7-bit 8-bit 9-bit 10-bit 11-bit 12-bit 13-bit 14-bit
a 64 128 256 512 1024 2048 4096 8192 16384
b 83 167 334 669 1338 2676 5352 10703 21407
c 36 69 139 277 554 1108 2217 4433 8867
d 89 178 355 710 1420 2841 5681 11363 22725
e 75 151 301 602 1204 2408 4816 9633 19266
f 50 101 201 402 805 1609 3218 6436 12873
g 18 35 71 141 283 565 1130 2260 4520
h 90 180 360 721 1441 2882 5765 11529 23059
i 87 173 346 693 1386 2772 5543 11086 22173
i 80 160 319 639 1277 2554 5109 10217 20435
k 70 140 280 560 1119 2239 4478 8956 17911
| 57 115 230 459 919 1837 3675 7350 14699
m 43 85 171 341 683 1365 2731 5461 10922
n 25 53 105 210 420 841 1682 3363 6726
o 9 18 35 71 142 284 568 1136 2271
p 90 181 362 723 1446 2893 5786 11571 23143
q 90 179 358 716 1432 2865 5730 11460 22920
r 88 176 351 702 1405 2810 5619 11238 22476
S 85 170 341 682 1364 2727 5454 10908 21816
t 82 164 327 655 1309 2618 5236 10473 20946
u 78 155 311 621 1242 2484 4968 9937 19874
v 73 145 291 582 1163 2326 4653 9305 18611
w 67 134 268 537 1073 2146 4292 8584 17168
X 61 122 243 486 973 1945 3890 7780 15560
y 54 108 216 431 863 1725 3451 6901 13803
z 46 93 186 372 745 1489 2978 5956 11912
A 38 77 155 310 619 1238 2477 4953 9907
B 31 61 122 244 488 976 1951 3903 7806
c 22 44 88 176 352 704 1407 2815 5630
D 13 27 53 106 212 425 850 1700 3400
E 4 9 18 36 71 142 284 568 1137
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For information, the smaller DCT matrices derived from the 32x32 matrix are presented

here. The values in each grid are defined by the matrix coefficient precision according to the

above table.
4x4 DCT
5 The matrix M,is defined as the first 4 coefficients of every 8" row of the combined matrix
M32.
a a a a
b - -b
a -a  -a a
c -b b -
8x8 DCT
10 The matrix Mgis defined as the first 8 coefficients of every 4" row of the combined matrix
M32.
a a a a a a a a
d e f g g - -e -d
b c ¢ b b - b
e g -d f f d g -e
a -a -a a -a -a a
f -d g e g d
c -b - -C b -b o
g -f -d d -e f -g
16x16 DCT
15 The matrix Mysis defined as the first 16 coefficients of every even row of the combined
matrix Ms.
a a a a a a a a a a a a a a
h i j k I m n o -0 -n -m - -k A -i -h
d e f g g { e d d -e - g g f e d
i I o -m - -h -k -n n h j m -o -l i
b c ¢ b -b - C b b c - - b - C b
j o -k - -n I h -m -h | k -0 -
e -g -d f f d g -e -e g d f £ d - e
k  -m i o] - -l I j -n -h -0 | m -k
a -a -a a a -a -a a a -a -a a a -a -a a
I -4 -n h -0 - m k -k -m | -h n j -l
f d g e -e g d - f d -g -e e -d f
m -h I n - k o A -0 -k i o-n h -m
c -b b ¢ = -b C c -b b ¢ - b -b C
n -k h A m -l | -i Il o -m j -h k -n
g -f e d -e f g - f -e d -d e f g
o -n m A k4 i -h h - j -k |l -m n -0
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Further techniques relating to embodiments of fixed bit encoding or related techniques
will be discussed with reference to Figures 36 to 38.

First, however, techniques used to encode escape codes will be discussed.

So-called Golomb-Rice coding encodes a value, v, as a unary encoded prefix. A unary
code is a representation provided by a variable number of 1s followed by a 0O, or vice versa,
where the “value” of the prefix is dependent upon the number of 1s, for example being equal to
the number of 1s (or in other examples being equal to the number of 1s plus 1) followed by k
bits of suffix. Note that as an alternative, unary codes can instead be implemented as a number
of Os followed by a 1, where the value of the unary code is dependent upon the number of Os.

In the present example let prefix_length be the total number of 1s in the unary encoded
prefix. Let K be the value of the least significant k bits.

v = (prefix_length << k) + K

(where << m signifies a left shift by m bits; a similar notation >>m represents a right shift
by m bits)

The total number of bits equals prefix_length+1+k.

Next, so-called exponential Golomb order-k codes will be discussed. In such codes, a
number to be encoded is split into a variable length unary-encoded prefix and a variable length
suffix. The number of suffix bits = prefix_length + k. Here, prefix_length is once again the
number of 1s in the unary code.

The total number of bits in the code = prefix_length +1+ prefix_length + k.

Let K be the value of the last k bits.

When prefix_length is 0, v will be equal to K.

When prefix_length is 1, v will be between (1<<k)+K and (3<<k)+K

When prefix_length is 2, v will be between (3<<k)+K and (7<<k)+K

When prefix_length is 3, v will be between (7<<k)+K and (15<<k)+K

Note that in each case, the upper limit is exclusive, but the lower limit is inclusive.

Therefore v = ((2"prefix_length)-1)<<k) + suffix

In HEVC, both Golomb-Rice and exponential Golomb codes are used. If prefix_length is
less than 3, the code is interpreted as a Golomb-Rice code. However, if the prefix_length is
greater than or equal to 3, the code is interpreted as an exponential Golomb code of order k.
The prefix (in either system) is an example of a unary code. The suffix is an example of a non-
unary code. The two systems are each examples of a two-part variable length code.

In this case, the value of prefix_length used to decode the exponential Golomb code is
reduced by 3, and the value resulting from the decoding operation is increased by (3<<k), since
this is the smallest value that cannot be represented using the Golomb-Rice code.

As mentioned above, an escape code is an encoded value which, for any coefficient

whose magnitude was not completely described by an earlier syntax element, represents the



10

15

20

25

30

35

WO 2015/004441 56 PCT/GB2014/052076

remainder to the extent that the code format (taking into account the value k and any
modification of that value) of the escape code allows; an escape-escape code is a code value
representing any further excess remaining after encoding of the escape code. So, the one or
more data sets (such as the significance map and the like) are an example of a first portion of
an encoded data value. The escape code, if needed, has a number of bits defined by the
parameter k and any modification of that value and is an example of a second portion of an
encoded data value. The escape-escape code, if needed, may be encoded using similar
techniques and is an example of a third portion of that encoded data value.

The value “k” used for the HEVC escape and escape-escape codes varies. For each
group of 16 coefficients, the value k starts at 0, and is increased whenever the magnitude of a
coefficient value (within an ordered sequence of the coefficients within the group) is greater than
3<<k. In response to each occurrence of this situation, k is incremented, to a maximum of 4.
Note that the discussion relates to coefficient magnitudes, as a sign bit representing the sign of
a coefficient is sent separately.

Figure 36 is a schematic flowchart illustrating a process to generate escape codes as
discussed above. Several of the flowchart steps are similar to those discussed previously and
will not be described again in detail.

The method is operable with respect to a group of (for example, a square array of 16)
data values comprising (for example) a sequence of frequency transformed image coefficients,
or the non-zero constituents of that sequence or the non-zero constituents of that sequence
where the magnitude of each data value has been reduced by 1 (in this last case, a significance
map may be generated first, so that each coefficient is reduced by 1 before further processing
because the significance map accounts for the value of 1).

At a step 2000, an initial value of k is set. In a normal HEVC system, k is initially set to 0.
Steps 2010, 2020, 2030, 2040, 2050 and 2060 corresponds to similar steps in the flowcharts of
Figures 29-31 and will not be discussed further here. Note that in Figures 29-31 as well as in
Figure 36, in some example implementations of HEVC, not all of the maps need to be
generated for each coefficient. For example, within a group of (say) 16 coefficients, there may
be one or more coefficients for which some maps are not generated.

At a step 2070, if an escape code is needed, it is generated based on a current value of
k using the techniques just described. In particular, a coefficient which requires the use of an
escape code is first handled using the significance map and optionally one or more of the other
maps. Note that in the case of a coefficient which needs escape coding, any of the significance,
>1 and >2 maps that are used will be flagged as “1”. This is because any coefficient which
requires escape coding is by definition greater than a value which can be encoded using

whichever maps are available in respect of that coefficient.
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An escape code is needed if the current data value has not been fully encoded. Here,
the term “fully” encoded means that the data value, less the values already encoded (by the
maps, or the maps plus the fixed bits, for example) is zero. In other words, a data value is fully
encoded by components already generated if the residual amount of that data value, taking
those components into account, is zero.

So, assuming that for an example coefficient which has not been fully encoded, a
significance map and >1 and >2 maps are available, each of these will be flagged as
“significant”, “>1” and “>2” in respect of that coefficient.

This means (in this example) that the coefficient which has not been fully encoded, and
which needs an escape code, must be at least 3.

Therefore, the value of 3 can be subtracted from the coefficient before escape coding,
with no loss of information. The value of 3 (or more generally, a variable base_level which
indicates the numerical range which is defined by the maps which apply to that coefficient) is
reinstated at decoding.

Taking a coefficient value of 15 decimal (1111 binary) as an example, the significance
map is “17, the >1 map is “1” and the >2 map is “1”. The value base_level is 3 decimal.
Base_level is subtracted from the coefficient value to give a value of 12 decimal (1100 binary)
which is passed for escape coding.

The value k (see above) now defines the number of suffix bits. The suffix bits are taken
from the least significant bits of the coefficient value after the subtraction of base_level. If (for
example) k=2, then the two least significant bits of the remaining value 1100 are treated as
suffix bits, which is to say that the suffix bits in this example are 00. The remaining bits (11 in
this example) are handled and encoded as a prefix.

So in summary, the processing associated with an escape code for a coefficient
involves:

generating one or more maps defining one or more least significant bits of a coefficient
so that (if an escape code is required) the coefficient must have a value of at least base_level,

subtracting base_level from the coefficient;

encoding the least significant k bits of the remaining part of the coefficient as suffix bits;
and

encoding the remaining most significant bits of the remaining part of the coefficient as a
prefix.

Then, using the test described above, if the value of k needs to be changed, for example
in response to the value of a currently handled coefficient being greater than 3<<k, the change
is implemented at a step 2080 and the new value of k is provided for the next operation of the

step 2070 in respect of a next-handled coefficient of the group.
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A modification to the escape code technique which can provide a similar effect to the
use of fixed bits (Figures 30 and 31) is to apply an offset to the value k defining the number of
suffix bits used in an escape code.

For example, the value k in a HEVC system has a range of 0 to 4, and the transition (in
respect of a group of coefficients) is from a starting point of 0 up to a maximum value of 4. In
embodiments of the present technique, an offset is added to this value of k. For example, the
offset may be predetermined as a value param_offset, such as 3, so that the existing technique
for varying k in the course of coding a group of coefficients will, instead of varying k from k=0 to
k=4, vary it from k=param_offset to k = 4 + param_offset.

The value param_offset can be predetermined as between encoder and decoder.

Or the value param_offset can be communicated from the encoder and decoder, for
example as part of a stream, picture, slice or block (such as TU) header.

Or the value param_offset can be derived at the encoder and the decoder as a
predetermined function of the bit depth of the video data, such as (for example):

for bit_depth <10, param_offset =0
for bit_depth >10, param_offset = bit_depth -10

Or the value param_offset can be derived at the encoder and the decoder as a
predetermined function of the degree of quantisation (Qp) applicable to a block or group of
coefficients.

Or the value param_offset can be dependent (for example, in a predetermined manner)
upon one or more of which video component is being encoded, on block size, on mode (for
example, lossless or lossy), on picture type and so on.

Or the value param_offset can be derived at the encoder and the decoder on an
adaptive basis, taking a predetermined starting point, or a starting point communicated in a
header, or a starting point derived from (for example) bit_depth. An example of such an
adaptive process will be discussed below with reference to Figure 37. A further example will be
discussed below with reference to Figure 38.

Or more than one of these criteria could apply. In particular, where the value
param_offset is dependent upon another parameter (such as block size) and is adaptively
varied as in Figure 37 below, then the adaptive variation could be applied separately to each
possible value of param_offset (that is, separately for each block size).

Note that any or all of these dependencies could apply in respect of the number of fixed
bits used in the arrangements of Figure 30 and 31.

Comparing this modified technique and the fixed bits techniques discussed above with
relation to Figures 30 and 31, it can be seen that:

(a) in the fixed bits technique of Figures 30 and 31, a coefficient is split into more

significant and less significant portions before the generation of any of the maps, one or more
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maps are then generated from the more significant portion, and the less significant portion is
directly encoded (or otherwise treated as discussed above); but

(b) in the generation of escape codes using param_offset, the one or more maps are
generated first, and then the remaining part of the coefficient value (less the value base_level)
is handled either as a suffix or a prefix, with the boundary between suffix and prefix depending
on k + param_offset, and with the suffix representing the least significant bit(s) of the remaining
portion.

In either instance, the parameter(s) associated with the fixed bit encoding, or the value
param_offset, can be varied in an adaptive manner. An example of how this can be achieved
will now be discussed with reference to Figure 37. Another example will be discussed with
reference to Figure 38. In Figure 37, similar techniques can apply to either the number of fixed
bits (referred to as “NFB” in Figure 37, and denoting the number of bits of the least significant
portion derived at the step 1625 or 1725 of Figures 30 and 31 respectively) or the value
param_offset (shortened to “offset” in Figure 37) from the discussion above.

In the following discussion of an example arrangement with reference to Figure 37, it is
assumed that the adaptation of the offset or NFB value is carried out on a slice-by-slice basis.
Note that a slice can be defined within the HEVC family of systems as anything from one LCU
up to a whole picture, but a fundamental feature of a slice is that its encoding is independent of
the encoding applies to any other slice, so that an individual slice can be decoded without
reference to another slice. Of course, however, the adaptation could take place on a block-by-
block or a picture-by-picture basis.

Note that the process of Figure 37 takes place at the encoder and also, in a
complimentary decoding form, takes place at the decoder, so that the value of the offset/NFB
variable tracks identically as between the encoder and the decoder.

At a step 2100, the processing of a slice is commenced.

At a step 2110, the offset/NFB value is reset. This could involve resetting the value to a
fixed value such as 0. In an alternative arrangement, the value could be reset to a starting value
derived from the final value of the offset/NFB variable in respect of one or more previous slices.
In such a case, in order to maintain the ability to decode each slice independently,
embodiments of the present technology provide an indication of the starting value of the
offset/NFB variable in the slice header. Note that various different techniques for obtaining such
a starting value are available. For example, the starting value of the offset/NFB variable could
be set to 0 if the final value of that variable for the previous slice did not exceed 2, and could be
set to 1 otherwise. A similar arrangement could be applied to an average final value of the
variable obtained from all slices relating to a preceding picture. The skilled person will
appreciate that various other possibilities are available. For example, an alternative starting

point could be based on the Qp or bit depth (or both). Of course, if a predetermined starting
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value is used, then either this can be agreed in advance by a standard definition applicable to
the encoder and the decoder, or the predetermined starting value can be specified in a stream
or picture header.

With regards to header data, a flag may be included within a stream, picture or slice
header to indicate whether the adaptation process of Figure 37 is to take place in respect of that
stream, picture or slice.

At a step 2120, processing of the first transform unit (TU) is started. The processing of a
slice proceeds on a TU by TU basis as discussed earlier.

At a step 2130 three more variables are reset, this time to 0. These variables are
referred to as under, over and total. The purpose of these variables will be discussed below.

Within a TU, each coefficient is encoded in turn. At a step 2140, a next coefficient is
encoded. The encoding of the coefficient may follow the flow chart of Figures 30/31 or the
flowchart of Figure 36, in each case making use of the offset or NFB value applicable at that
stage in the process. Of course, for the first coefficient to be encoded, the offset/NFB value is
equal to that set at the step 2110. For later-processed coefficients, the current or prevailing
value of offset/NFB is used.

A test is applied in respect of the outcome of the encoding of the step 2140. Depending
on the outcome of the test, control passes to a step 2150, 2160 or 2170 or directly to a step
2180. First, the test will be described. Note that the test is slightly different depending on
whether the fixed bits system of Figures 30/31 or the param_offset system of Figure 37 and
accompanying discussion is used.

Fixed Bits Test

In the case of the fixed bits system, whenever a set of fixed bits is encoded (whenever
the step 1655 or the step 1755 is executed), then the variable “total” is incremented.
Accordingly, the variable "total" refers to the number of occasions, since the variable was last
reset, at which fixed bits have been encoded. In Figure 37, the increment of the variable “total”
is shown schematically as taking place at each of the steps 2150, 2160, 2170 to be discussed
below.

The test then derives a variable remaining_magnitude, which is defined as the part of
the coefficient magnitude that is not being encoded as fixed bits, so that:

remaining_magnitude = (magnitude -1) >> NFB

(where “magnitude” is the coefficient magnitude).

Another value, base_level, is defined (as discussed above) as the highest magnitude
that could be described without the use of an escape code. Here, it is noted that a particular
coefficient may have (for example) one, two or three flags or map entries encoded in respect of
that coefficient. So:

if the coefficient had a >2 flag, base_level = 3; else
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if the coefficient had a >1 flag, base_level = 2; else

base_level = 1

The value remaining_magnitude is then tested against base_level.

If ((remaining_magnitude >> 1) = base_level) then the variable "under" is incremented.
In Figure 37, this corresponds to the step 2150. The underlying meaning of this step is that a
so-called undershoot has been detected such that the number of fixed bits (NFB) was not
enough to encode the current coefficient. The significance of the right shift (>>1) in the test is
that the undershoot is only flagged as a noteworthy undershoot (so as to contribute to an
increment of the variable “under”) if the variable NFB is insufficient by two or more bits.

Similarly, if (NFB >0) AND ((remaining_magnitude <<1) < 0)), then the variable "over" is
incremented. In Figure 37, this corresponds to the step 2160. The underlying meaning of this
step is that an overshoot is detected if, even with one fewer fixed bit (detected by the <<1 shift
in the expression given above), the fixed bit component would have been capable of encoding
the entire magnitude of the coefficient. In other words, the number of fixed bits is significantly in
excess of the number required to encode that coefficient.

It will be understood that the various parameters used in these tests, in particular the
number of bit shifts applied, can be varied according to the design skill of the notional skilled
person.

If neither the undershoot nor the overshoot test is fulfilled, but fixed bits are encoded,
then control passes to the step 2170 at which only the variable total is incremented.

For completeness, it is noted that control passes directly to the step 2180 of Figure 37
where fixed bit operation is not enabled, so that no changes made to any of the variables:
under, over and total.

Param_Offset Test

In the case of a system based on param_offset, the underlying principles are similar, and
the same schematic flowchart is discussed, but some of the details are little different to those
discussed above in respect of the fixed bits system.

The variable "total" is incremented whenever an escape value is encoded. This is
shown schematically as taking place at each of the steps 2150, 2160 and 2170.

The coefficient value (having had the value base_level subtracted, and so being
equivalent to the variable escapeCodeValue discussed below with reference to Figure 38) is
tested against the parameter k which, as discussed above, is defined so as to take into account
the effect of the offset param_offset. In other words, the value of “k” used here is equal to the
previously discussed k (which varies from O to 4 within a group as discussed above) plus
param_offset.

If (escapeCodeValue > (3<<k)) then the variable "under" is incremented. This

corresponds to the step 2150 of Figure 37 and indicates an undershoot situation as discussed
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above. In other words, the variable k, taking into account param_offset, was insufficient to
encode the escape code as a two-part binary code dependent upon that value of k. In this
case, as discussed above, an escape-escape code is generated in dependence upon any
further excess or remainder after encoding of the escape code.

Otherwise, if ((escapeCodeValue *3)< (1 << k)) then the variable "over" is incremented.
This corresponds to the step 2160 of Figure 37. This represents an overshoot situation in which
the variable k, taking into account param_offset, provided a two-part binary code having a
format based on more suffix bits than were required to encode the escape code.

If neither the undershoot nor the overshoot test is fulfilled, but an escape code is
encoded, then control passes to the step 2170 at which only the variable total is incremented.

Again, it is noted that control passes directly to the step 2180 of Figure 37 in situations
where an escape code is not encoded, so that no changes made to any of the variables: under,
over and total.

Note that in either set of tests, it is checked whether the undershoot or overshoot is
“significant” by checking whether the undershoot or overshoot would have happened if NFB or
param_offset had been even higher or even lower respectively. But this extra margin is not
required; the tests could simply be “did an under- (over-) shoot happen?”

At a step 2180, if there is another coefficient available for encoding in that TU, then
control returns to the step 2140. Otherwise, control passes to a step 2190 which is performed at
the end of each TU, but before the next TU is encoded. At this step 2190, the variable
offset/NFB is potentially adaptively changed according to the variables under, over and total.
Here, the same adaptation applies to either the offset value or the NFB value, so that:

if ((under * 4) > total, the offset/NFB value is incremented (by 1); and

if ((over * 2) > total, the offset/NFB value is decremented (by 1) subject to a minimum
value of 0.

Note that if both tests are passed in respect of a single TU, then the value of NFB or
param_offset will remain the same at the step 2190.

Note that the division by slices and then by TUs is not essential — any set of values
(which may even not be video data values) can be treated in this way, and subdivided into
subsets in place of the TU division in this description.

This is equivalent to incrementing the offset/NFB if more than 25% of undershoots are
experienced, but decrementing the offset/NFB value if there are more than 50% of overshoots.
So the proportion used for the test of undershoots is lower than the proportion used for the test
of overshoots. A reason for this asymmetry is that undershoots generate more inefficiency than
overshoots because of the nature of the escape coding methods used in the case of
undershoots. It will be appreciated however that the same thresholds could be used, or

different values could be used.
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Finally, at a step 2200, if there is another TU in the slice then control returns to the step
2120. If there are no further TUs in the slice then control returns to the step 2100. Note that, as
discussed above, optionally the starting point for offset/NFB could be set (for use in the next
instance of the step 2120, for the next or a future slice) based on the results obtained during the
encoding process which has just completed.

Complementary steps are carried out at the decoding side (or at the decoding path of an
encoder). For example, a decoding method can comprise decoding a first portion of each data
value from one or more data sets indicative of first portions of predetermined magnitude ranges
and encoded to an input data stream using binary encoding; decoding a second portion of at
least those data values not fully encoded by the data sets, the number of bits of the second
portion depending upon a value n, where n is an integer, data defining the second portion being
included in the input data stream and, if a data value has not been fully decoded by the
respective first and second portions, decoding a remaining third portion of the data value from
the input data stream; detecting, for a subset of two or more of the data values, (i) a number of
instances of data values for which a third portion has been encoded and would still have been
required had a higher value of n been used, and (i) a number of instances of data values for
which a second portion has been encoded but the value of n was such that the data value could
have been fully encoded by first and second portions using a lower value of n; and after
decoding the subset of the data values, varying n for use in respect of subsequent data values
according to the results of the detecting step.

Figure 38 is a schematic flowchart illustrating another example of the techniques
discussed above, in respect of the param_offset variable (which is added to k as discussed
above). As before, corresponding techniques are carried out at the encoder and the decoder
side (including the decoding path of the encoder).

At a step 2300, the processing of a slice is started, in a similar manner to the step 2100
discussed above.

At a step 2310, a variable current_stat is reset, for example to a starting value (in
respect of that slice) of zero. The variable current_stat is used as discussed below.

At a step 2320 the processing in respect of a group of 16 coefficients within the current
slice is started. In the present example, the processing to be discussed below occurs a
maximum of once in respect of each such group. It will however be appreciated that the
division into groups of this particular size merely provides an example, and other group sizes
such as 64 coefficients could be used. In the present examples, a group forms all or a part of a
TU.

At a step 2330, the Golomb-Rice parameter for use in encoding any two-part data values
in the group is set as follows:

Golomb-Rice Parameter = k + INT (current_stat/ 4)
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= k + initialGolombRiceParameter (see below)

where INT signifies that the integer value of the term in the parentheses is taken, which
is to say that any fractional remainder is discarded. So, for example, INT (5/4) = 1.

Note that this is just one expression of the Golomb-Rice Parameter, so as to include the
value of k. Another expression of the Golomb-Rice Parameter set at the step 2330 could be:

Golomb-Rice Parameter = INT (current_stat/ 4)

= initialGolombRiceParameter (see below)

such that the Golomb-Rice Parameter is a value which is added to k to derive the value
used to define the two-part encoding. The skilled person will of course understand that this is a
matter of mere notation rather than a technical difference.

Therefore, the Golomb-Rice parameter is initialised at the start of each coefficient group
(a 4x4 region of a TU in this example). This is the only time at which current_stat is used other
than to modify current_stat as discussed below. Current_stat is modified during the current
group’s processing but any change (to the Golomb-Rice parameter) will only be implemented at
the start of the next group. However, in other examples, a change to the Golomb-Rice
parameter could be implemented before the start of the next group.

At a step 2340, a next coefficient is coded as discussed above in respect of the step
2140.

A step 2350 tests whether the coding of the coefficient at the step 2340 has given rise to
the generation of the first instance of an escape code in that group. If so, then control passes to
a step 2360. If not, then control passes to a step 2370.

At the step 2360, in respect of the first instance of the generation of an escape code in
the group, the value current_stat is (potentially) changed as follows:

let initialGolombRiceParameter = INT (current_stat / 4)

if escapeCodeValue >= (3 << initialGolombRiceParameter) then increment current_stat

else if (((escapeCodeValue * 2) < (1 << initialGolombRiceParameter)) AND (current_stat
> 0)) then decrement current_stat

Here, escapeCodeValue is the excess, after encoding the earlier syntax elements, which
requires encoding as an escape code. Incrementing involves, in this example, adding one, and
decrementing involves, in this examples, subtracting one.

The test set out above which leads to the incrementing of current_stat is effectively a
test of whether an escape-escape code was needed. If so, then current_stat is incremented. If
not, current_stat is not incremented.

The test set out above which leads to current_stat being decremented takes two factors
into account. First, was the value of initialGolombRiceParameter (as added to k) such that it

was in excess (by at least 1) of the quantity needed to encode that escape code? Secondly,
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was current_stat greater than zero (an example of a predetermined minimum value)? If both of
these tests are answered “yes” then current_stat is decremented.

Note that, as mentioned above, in this example the step 2360 is carried out in this
example in respect of only the first instance of an escape code within each group. In other
embodiments, the test could be carried out in resect of other encoded values giving rise to
escape codes.

Control passes to the step 2370, at which, if there remains another coefficient in the
group, control returns to the step 2340. Otherwise, control passes to a step 2380.

At the step 2380, if there remains another group in the slice, then control returns to the
step 2320. Otherwise control returns to the step 2300.

Note that as a similarity with the arrangement of Figure 37, the fact that the “INT” value
is used to relate initialGolombRIceParameter and the Golomb-Rice Parameter to current_stat,
with a divisor of 4 (or indeed any divisor greater than 1), means that
initialGolombRIceParameter and the Golomb-Rice Parameter do not in fact change at the first
group in which an escape code prompts an increment of current_stat. A subset of two or more
such instances are required to prompt a change in initialGolombRIceParameter and the
Golomb-Rice Parameter, based on a number of detections of such escape codes. The use of
the “INT” function and a divisor greater than 1 is equivalent to quantising the values of
current_stat to derive initialGolombRIceParameter and the Golomb-Rice Parameter.

As discussed before, corresponding processes to the steps shown in Figure 38 take
place at the encoding and the decoding sides, where the decoding side can include the
decoding path of an encoder, so that the derivation and development of the Golomb-Rice
parameter exactly track as between the encoding and decoding fuctions.

Accordingly, the arrangement of Figure 38, when implemented at the decoder side,
provides another example of a data decoding method for decoding a set of data values (a4 x 4
group in this example), the method comprising the steps of:

decoding a first portion of each data value from one or more data sets indicative of first
portions of predetermined magnitude ranges and encoded to an input data stream using binary
encoding (the data sets such as the significance map, the >1 map and the >2 map provide
examples of the first portion; one or more of such data sets may be used);

decoding a second portion of at least those data values not fully encoded by the data
sets, the number of bits of the second portion depending upon a value n, where n is an integer,
data defining the second portion being included in the input data stream and, if a data value has
not been fully decoded by the respective first and second portions, decoding a remaining third
portion of the data value from the input data stream (here, the escape code, encoded as a two-
part code dependent on a parameter referred to as n in this notation is an example of the

second portion; the escape-escape code, which may be encoded as a two-part code dependent
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on n, is an example of a third portion. Note that the notation n is used to indicate (with
reference to the examples) the combination of k and the variable parameter derived as
discussed above);

detecting, for a subset of the data values (such as the first data value of each group
having an escape code), (i) instances of data values for which a third portion (such as an
escape-escape code) has been encoded and would still have been required had a higher value
of n been used, and (ii) instances of data values for which a second portion has been encoded
but the value of n was such that the data value could have been fully encoded by first and
second portions using a lower value of n; and

varying n (for example, the step 2360 and its resultant effect on the Golomb-Rice
parameter derived at the step 2330 for a next group) for use in respect of subsequent data
values according to the results of the detecting step.

The step 2360 and its effect on the step 2330 provides an example of the varying step
comprising increasing n in response to a detection of more than one detected instance of a data
value for which a third portion has been encoded and would still have been required had a
higher value of n been used. The INT function means that a first such detection will tend not to
have an effect on the value n.

The derivation of current_stat in the step 2360 provides an example of the step of
varying n comprising generating a cumulative count (current_stat) of the instances (i) and (ii);
and the derivation of initialGolombRiceparameter using the INT function as discussed above
provides an example of deriving a value of n in dependence upon a quantised version of the
cumulative count.

The test discussed above (is current_stat above zero, or if not it cannot be decremented)
provides an example of the varying step being configured not to decrease n below a
predetermined minimum value.

Corresponding considerations apply to an encoding method.

The steps described above can be carried out by the entropy encoder 370 and the
entropy decoder 410 (in the case of an encoding process) or just by the entropy decoder 410 (in
the case of a decoding process). The processes may be implemented in hardware, software,
programmable hardware or the like. Note that the entropy encoder 370 can therefore act as an
encoder, a generator, a detector and a processor to implement the encoding techniques. The
entropy decoder 410 can accordingly act as one or more decoders, a detector, and a processor
to implement the decoding techniques described here.

Accordingly, the arrangements described above represent examples of a data decoding
method for decoding a group (for example, a slice) of data values (for example, image data), the

method comprising the steps of:
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decoding a first portion of each data value from one or more data sets (for example,
maps) indicative of first portions of predetermined magnitude ranges and encoded to an input
data stream using binary encoding;

decoding a second portion of at least those data values not fully encoded by the data
sets, the number of bits of the second portion depending upon a value n, where n is an integer,
data defining the second portion being included in the input data stream and, if a data value has
not been fully decoded by the respective first and second portions, decoding a remaining third
portion of the data value from the input data stream (here, for example, the second portion may
represent the fixed bits or a suffix portion; the value n can represent the number of fixed bits or
the suffix length (in Golomb-Rice encoding) or the order of the exponential Golomb encoding as
discussed above; the third portion can represent a prefix in the Golomb-Rice or exponential
Golomb systems, or an escape code in the fixed bits example);

detecting, for a subset of two or more of the data values, (i) a number (for example, the
variable “under”) of instances of data values for which a third portion has been encoded and
would still have been required had a higher value of n been used, and (ii) a number (for
example, the variable “under”) of instances of data values for which a second portion has been
encoded but the value of n was such that the data value could have been fully encoded by first
and second portions using a lower value of n; and

after decoding the subset of the data values, varying (for example, incrementing or
decrementing) n for use in respect of subsequent data values according to the results of the
detecting step.

The variable “total” represents an example of a detected total number of instances, in
respect of that subset of data values, for which a second portion was encoded.

The above embodiments also represent an example of a data encoding method for
encoding an array of data values as data sets and escape codes for values not encoded by the
data sets, an escape code comprising a unary coded portion and a non-unary coded portion,
the method comprising the steps of:

setting a coding parameter (param_offset, for example) defining a minimum number of
bits of a non-unary coded portion (in Golomb-Rice or exponential Golomb, k defines a minimum
suffix length or order) , the coding parameter being between 0 and a predetermined upper limit;

adding an offset value (param_offset in the examples) of 1 or more to the coding
parameter so as to define a minimum least significant data portion size;

generating one or more data sets (for example, the significance map, >1, >2 sets)
indicative of positions, relative to the array of data values, of data values of predetermined
magnitude ranges, so as to encode the value of at least one least significant bit of each data

value;
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generating, from at least the part of each data value not encoded by the one or more
data sets, respective complementary most-significant data portions and least-significant data
portions, such that the most-significant data portion of a value represents zero or more most
significant bits of that portion, and the respective least-significant data portion is dependent
upon a number of least significant bits of that part, the number of least significant bits being
greater than or equal to the minimum least significant data portion size;

encoding the data sets to an output data stream (for example, as binary encoded data);

encoding the most significant data portions to the output data stream (for example, as a
prefix); and

encoding the least-significant portions to the output data stream (for example, as a
suffix).

Note that the above processes can be carried out (in some embodiments) after the
generation of the significance map, so that the data values (on which the process is performed)
may be generated from respective input values by: generating a further data set, the further
data set being a significance map indicative of positions, relative to the array of input values, of
non-zero input values; and subtracting 1 from each input value to generate a respective data
value.

Further embodiments are defined by the following numbered clauses:

1. A data decoding method for decoding a group of data values, the method comprising the
steps of:

decoding a first portion of each data value from one or more data sets indicative of first
portions of predetermined magnitude ranges encoded an input data stream using binary
encoding;

decoding a second portion of at least those data values not fully encoded by the data
sets, the number of bits of the second portion depending upon a value n, where n is an integer,
data defining the second portion being included in the input data stream and, if a data value has
not been fully decoded by the respective first and second portions, decoding a remaining third
portion of the data value from the input data stream;

detecting, for a subset of two or more of the data values, (i) a number of instances of
data values for which a third portion has been encoded and would still have been required had
a higher value of n been used, and (i) a number of instances of data values for which a second
portion has been encoded but the value of n was such that the data value could have been fully
encoded by first and second portions using a lower value of n; and

after decoding the subset of the data values, varying n for use in respect of subsequent

data values according to the results of the detecting step.
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2. A method according to clause 1, in which the detecting step comprises detecting a total
number of instances, in respect of that subset of data values, for which a second portion was
encoded.
3. A method according to clause 1 or clause 2, in which the varying step comprises
increasing the value of n if the number of instances of data values, for which a third portion has
been encoded, exceeds a first predetermined proportion of the total number of instances, in
respect of that subset of data values, for which a second portion was encoded.
4. A method according to clause 3, in which the varying step comprises reducing the value
of n if the number of instances of data values for which a second portion has been encoded and
for which the data value was fully encoded by first and second portions, exceeds a second
predetermined proportion of the total number of instances, in respect of that subset of data
values, for which a second portion was encoded.
5. A method according to clause 2, in which the varying step comprises increasing the
value of n if the number of instances of data values, for which a third portion has been encoded
and would still have been required had a higher value of n been used, exceeds a first
predetermined proportion of the total number of instances, in respect of that subset of data
values, for which a second portion was encoded.
6. A method according to clause 5, in which the varying step comprises reducing the value
of n if the number of instances of data values for which a second portion has been encoded, but
the value of n was such that the data value could have been fully encoded by first and second
portions using a lower value of n, exceeds a second predetermined proportion of the total
number of instances, in respect of that subset of data values, for which a second portion was
encoded.
7. A method according to clause 6, in which the first predetermined proportion is lower than
the second predetermined proportion.
8. A method according to clause 7, in which the step of reducing the value of n comprises
reducing n by 1, and the step of increasing the value of n comprises increasing n by 1.
9. A method according to any one of the preceding clauses, comprising generating, for
each data value, respective complementary most-significant data portions and least-significant
data portions, such that:
the most-significant data portion of a data value represents a plurality of most significant
bits of that value, the first data portion being derived from the most-significant data portion; and
the least-significant data portion of that data value represents the remaining n least
significant bits of that value and forms the second portion of that data value.
10. A method according to any one of the preceding clauses, in which the first portion of

each data value represents one or more least significant bits of that data value.
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11. A method according to clause 10, in which the second and third portions of a data value
are encoded by a two-part variable length code such that the second portion represents a group
of suffix bits and the third portion represents a unary-encoded prefix.
12. A method according to clause 10 or claim 11, in which the second data portion is
decoded from the input data stream using arithmetic coding in which symbols representing the
second data portion are encoded according to respective proportions of a coding value range, in
which the respective proportions of the coding value range for each of the symbols that describe
the second portion are of equal size.
13. A method according to any one of the preceding clauses, in which one of the data sets is
a significance map indicative of positions, relative to an array of the data values, of most-
significant data portions which are non-zero.
14. A method according to any one of clauses 1 to 12, in which the data sets comprise:

a greater-than-one map indicative of positions, relative to the array of the values, of
most-significant data portions which are greater than 1; and

a greater-than-two map indicative of positions, relative to the array of the values, of
most-significant data portions which are greater than 2.
15. A method according to any one of the preceding clauses, in which the group of data
values comprises a sequence of frequency transformed image coefficients, or the non-zero
constituents of that sequence or the non-zero constituents of that sequence where the
magnitude of each data value has been reduced by 1.
16. A method according to clause 15, in which:

the group of data values represent image data having an image data bit depth; and

the method comprises setting an initial value of n in dependence upon the image data bit
depth.
17. A method according to clause 15 or clause 16, comprising the step of setting an initial
value of n in dependence upon one or more of:

an encoding mode;

a video data component to be encoded;

a size of the subset of data values; and

a picture type.
18. A data encoding method for encoding a group of data values, the method comprising the
steps of:

encoding a first portion of each data value by generating one or more data sets
indicative of first portions of predetermined magnitude ranges and encoding the data sets to an

output data stream using binary encoding;
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generating a second portion of at least those data values not fully encoded by the data
sets, the number of bits of the second portion depending upon a value n, where n is an integer,
and including data defining the second portion in the output data stream;

detecting whether a data value has been fully encoded by the respective first and
second portion, and if not, encoding a remaining third portion of the data value to the output
data stream;

detecting, for a subset of two or more of the data values, (i) a number of instances of
data values for which a third portion has been encoded and would still have been required had
a higher value of n been used, and (i) a number of instances of data values for which a second
portion has been encoded but the value of n was such that the data value could have been fully
encoded by first and second portions using a lower value of n; and

after encoding the subset of the data values, varying n for use in respect of subsequent
data values according to the results of the detecting step.
19. Image data encoded by the encoding method of clause 18.
20. A data carrier storing image data according to clause 19.
21. Computer software which, when executed by a computer, causes the computer to carry
out the method of any one of clauses 1 to 18.
22. A non-transitory machine-readable storage medium on which computer software
according to clause 21 is stored.
23. Data decoding apparatus for encoding a group of data values, the apparatus comprising:

a first decoder configured to decode a first portion of each data value from one or more
data sets indicative of first portions of predetermined magnitude ranges encoded an input data
stream using binary encoding;

a second decoder configured to decode a second portion of at least those data values
not fully encoded by the data sets, the number of bits of the second portion depending upon a
value n, where n is an integer, data defining the second portion being included in the input data
stream and, if a data value has not been fully decoded by the respective first and second
portions, to decode a remaining third portion of the data value from the input data stream;

a second detector configured to detect, for a subset of two or more of the data values, (i)
a number of instances of data values for which a third portion has been encoded and would still
have been required had a higher value of n been used, and (i) a number of instances of data
values for which a second portion has been encoded but the value of n was such that the data
value could have been fully encoded by first and second portions using a lower value of n; and

a processor operable after decoding the subset of the data values, the processor being
configured to vary n for use in respect of subsequent data values according to the results of the

detecting step.
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24. Data encoding apparatus configured to encode a group of data values, the apparatus
comprising:

an encoder configured to encode a first portion of each data value by generating one or
more data sets indicative of first portions of predetermined magnitude ranges and to encode the
data sets to an output data stream using binary encoding;

a generator configured to generate a second portion of at least those data values not
fully encoded by the data sets, the number of bits of the second portion depending upon a value
n, where n is an integer, and to include data defining the second portion in the output data
stream;

a first detector configured to detect whether a data value has been fully encoded by the
respective first and second portion, and if not, to encode a remaining third portion of the data
value to the output data stream;

a second detector configured to detect, for a subset of two or more of the data values, (i)
a number of instances of data values for which a third portion has been encoded and would still
have been required had a higher value of n been used, and (i) a number of instances of data
values for which a second portion has been encoded but the value of n was such that the data
value could have been fully encoded by first and second portions using a lower value of n; and

a processor operable after encoding the subset of the data values, the processor being
configured to vary n for use in respect of subsequent data values according to the detections by
the second detector.

25. Video data capture, transmission, display and/or storage apparatus comprising
apparatus according to clause 23 or clause 24.

26. A data decoding method for decoding a set of data values, the method comprising the
steps of:

decoding a first portion of each data value from one or more data sets indicative of first
portions of predetermined magnitude ranges and encoded to an input data stream using binary
encoding;

decoding a second portion of at least those data values not fully encoded by the data
sets, the number of bits of the second portion depending upon a value n, where n is an integer,
data defining the second portion being included in the input data stream and, if a data value has
not been fully decoded by the respective first and second portions, decoding a remaining third
portion of the data value from the input data stream;

detecting, for a subset of the data values, (i) instances of data values for which a third
portion has been encoded and would still have been required had a higher value of n been
used, and (ii) instances of data values for which a second portion has been encoded but the
value of n was such that the data value could have been fully encoded by first and second

portions using a lower value of n; and
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varying n for use in respect of subsequent data values according to the results of the
detecting step.

27. A method according to clause 26, in which the varying step comprises increasing n in

response to a detection of more than one detected instance of a data value for which a third

portion has been encoded and would still have been required had a higher value of n been used

28. A method according to clause 26 or clause 27, in which the step of varying n comprises:
generating a cumulative count of the instances (i) and (ii); and

deriving a value of n in dependence upon a quantised version of the cumulative count.
29. A method according to any one of clauses 26 to 28, in which the varying step is
configured not to decrease n below a predetermined minimum value.

29. A data encoding method for encoding a set of data values, the method comprising the
steps of:

encoding a first portion of each data value by generating one or more data sets
indicative of first portions of predetermined magnitude ranges and encoding the data sets to an
output data stream using binary encoding;

generating a second portion of at least those data values not fully encoded by the data
sets, the number of bits of the second portion depending upon a value n, where n is an integer,
and including data defining the second portion in the output data stream;

detecting whether a data value has been fully encoded by the respective first and
second portion, and if not, encoding a remaining third portion of the data value to the output
data stream;

detecting, for a subset of the data values, (i) instances of data values for which a third
portion has been encoded and would still have been required had a higher value of n been
used, and (ii) instances of data values for which a second portion has been encoded but the
value of n was such that the data value could have been fully encoded by first and second
portions using a lower value of n; and

varying n for use in respect of subsequent data values according to the results of the
detecting step.

30. Data decoding apparatus for encoding a set of data values, the apparatus comprising:

a first decoder configured to decode a first portion of each data value from one or more
data sets indicative of first portions of predetermined magnitude ranges encoded an input data
stream using binary encoding;

a second decoder configured to decode a second portion of at least those data values
not fully encoded by the data sets, the number of bits of the second portion depending upon a
value n, where n is an integer, data defining the second portion being included in the input data
stream and, if a data value has not been fully decoded by the respective first and second

portions, to decode a remaining third portion of the data value from the input data stream;
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a second detector configured to detect, for a subset of the data values, (i) instances of
data values for which a third portion has been encoded and would still have been required had
a higher value of n been used, and (ii) instances of data values for which a second portion has
been encoded but the value of n was such that the data value could have been fully encoded by
first and second portions using a lower value of n; and

a processor configured to vary n for use in respect of subsequent data values according
to the results of the detecting step.

31. Data encoding apparatus configured to encode a set of data values, the apparatus
comprising:

an encoder configured to encode a first portion of each data value by generating one or
more data sets indicative of first portions of predetermined magnitude ranges and to encode the
data sets to an output data stream using binary encoding;

a generator configured to generate a second portion of at least those data values not
fully encoded by the data sets, the number of bits of the second portion depending upon a value
n, where n is an integer, and to include data defining the second portion in the output data
stream;

a first detector configured to detect whether a data value has been fully encoded by the
respective first and second portion, and if not, to encode a remaining third portion of the data
value to the output data stream;

a second detector configured to detect, for a subset of the data values, (i) instances of
data values for which a third portion has been encoded and would still have been required had
a higher value of n been used, and (ii) instances of data values for which a second portion has
been encoded but the value of n was such that the data value could have been fully encoded by
first and second portions using a lower value of n; and

a processor configured to vary n for use in respect of subsequent data values according

to the detections by the second detector.
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CLAIMS

1. A data decoding method for decoding a set of data values, the method comprising the
steps of:

decoding a first portion of each data value from one or more data sets indicative of first
portions of predetermined magnitude ranges and encoded to an input data stream using binary
encoding;

decoding a second portion of at least those data values not fully encoded by the data
sets, the number of bits of the second portion depending upon a value n, where n is an integer,
data defining the second portion being included in the input data stream and, if a data value has
not been fully decoded by the respective first and second portions, decoding a remaining third
portion of the data value from the input data stream;

detecting, for a subset of the data values, (i) instances of data values for which a third
portion has been encoded and would still have been required had a higher value of n been
used, and (ii) instances of data values for which a second portion has been encoded but the
value of n was such that the data value could have been fully encoded by first and second
portions using a lower value of n; and

varying n for use in respect of subsequent data values according to the results of the

detecting step.

2. A method according to claim 1, in which the varying step comprises increasing n in
response to a detection of more than one detected instance of a data value for which a third

portion has been encoded and would still have been required had a higher value of n been used

3. A method according to claim 1, in which the step of varying n comprises:
generating a cumulative count of the instances (i) and (ii); and

deriving a value of n in dependence upon a quantised version of the cumulative count.

4. A method according to claim 1, in which the varying step is configured not to decrease n

below a predetermined minimum value.

5. A method according to claim 1, in which the detecting step comprises detecting a total
number of instances, in respect of that subset of data values, for which a second portion was

encoded.

6. A method according to claim 5, in which the varying step comprises increasing the value

of n if the number of instances of data values, for which a third portion has been encoded,
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exceeds a first predetermined proportion of the total number of instances, in respect of that

subset of data values, for which a second portion was encoded.

7. A method according to claim 6, in which the varying step comprises reducing the value
of n if the number of instances of data values for which a second portion has been encoded and
for which the data value was fully encoded by first and second portions, exceeds a second
predetermined proportion of the total number of instances, in respect of that subset of data

values, for which a second portion was encoded.

8. A method according to claim 5, in which the varying step comprises increasing the value
of n if the number of instances of data values, for which a third portion has been encoded and
would still have been required had a higher value of n been used, exceeds a first predetermined
proportion of the total number of instances, in respect of that subset of data values, for which a

second portion was encoded.

9. A method according to claim 8, in which the varying step comprises reducing the value
of n if the number of instances of data values for which a second portion has been encoded, but
the value of n was such that the data value could have been fully encoded by first and second
portions using a lower value of n, exceeds a second predetermined proportion of the total
number of instances, in respect of that subset of data values, for which a second portion was

encoded.

10. A method according to claim 9, in which the first predetermined proportion is lower than

the second predetermined proportion.

11. A method according to claim 10, in which the step of reducing the value of n comprises

reducing n by 1, and the step of increasing the value of n comprises increasing n by 1.

12. A method according to claim 1, comprising generating, for each data value, respective
complementary most-significant data portions and least-significant data portions, such that:
the most-significant data portion of a data value represents a plurality of most significant
bits of that value, the first data portion being derived from the most-significant data portion; and
the least-significant data portion of that data value represents the remaining n least

significant bits of that value and forms the second portion of that data value.

13. A method according to claim 1, in which the first portion of each data value represents

one or more least significant bits of that data value.
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14. A method according to claim 13, in which the second and third portions of a data value
are encoded by a two-part variable length code such that the second portion represents a group

of suffix bits and the third portion represents a unary-encoded prefix.

15. A method according to claim 13, in which the second data portion is decoded from the
input data stream using arithmetic coding in which symbols representing the second data
portion are encoded according to respective proportions of a coding value range, in which the
respective proportions of the coding value range for each of the symbols that describe the

second portion are of equal size.

16. A method according to claim 1, in which one of the data sets is a significance map
indicative of positions, relative to an array of the data values, of most-significant data portions

which are non-zero.

17. A method according to claim 1, in which the data sets comprise:

a greater-than-one map indicative of positions, relative to the array of the values, of
most-significant data portions which are greater than 1; and

a greater-than-two map indicative of positions, relative to the array of the values, of

most-significant data portions which are greater than 2.

18. A method according to claim 1, in which the set of data values comprises a sequence of
frequency transformed image coefficients, or the non-zero constituents of that sequence or the
non-zero constituents of that sequence where the magnitude of each data value has been

reduced by 1.

19. A method according to claim 18, in which:

the set of data values represent image data having an image data bit depth; and

the method comprises setting an initial value of n in dependence upon the image data bit
depth.

20. A method according to claim 18, comprising the step of setting an initial value of n in
dependence upon one or more of:

an encoding mode;

a video data component to be encoded;

a size of the subset of data values; and

a picture type.
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21. A data encoding method for encoding a set of data values, the method comprising the
steps of:

encoding a first portion of each data value by generating one or more data sets
indicative of first portions of predetermined magnitude ranges and encoding the data sets to an
output data stream using binary encoding;

generating a second portion of at least those data values not fully encoded by the data
sets, the number of bits of the second portion depending upon a value n, where n is an integer,
and including data defining the second portion in the output data stream;

detecting whether a data value has been fully encoded by the respective first and
second portion, and if not, encoding a remaining third portion of the data value to the output
data stream;

detecting, for a subset of the data values, (i) instances of data values for which a third
portion has been encoded and would still have been required had a higher value of n been
used, and (ii) instances of data values for which a second portion has been encoded but the
value of n was such that the data value could have been fully encoded by first and second
portions using a lower value of n; and

varying n for use in respect of subsequent data values according to the results of the

detecting step.

22. Image data encoded by the encoding method of claim 21.

23. A data carrier storing image data according to claim 22.

24. Computer software which, when executed by a computer, causes the computer to carry

out the method of claim 1.

25. A non-transitory machine-readable storage medium on which computer software

according to claim 24 is stored.

26. Data decoding apparatus for encoding a set of data values, the apparatus comprising:

a first decoder configured to decode a first portion of each data value from one or more
data sets indicative of first portions of predetermined magnitude ranges encoded an input data
stream using binary encoding;

a second decoder configured to decode a second portion of at least those data values
not fully encoded by the data sets, the number of bits of the second portion depending upon a

value n, where n is an integer, data defining the second portion being included in the input data
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stream and, if a data value has not been fully decoded by the respective first and second
portions, to decode a remaining third portion of the data value from the input data stream;

a second detector configured to detect, for a subset of the data values, (i) instances of
data values for which a third portion has been encoded and would still have been required had
a higher value of n been used, and (ii) instances of data values for which a second portion has
been encoded but the value of n was such that the data value could have been fully encoded by
first and second portions using a lower value of n; and

a processor configured to vary n for use in respect of subsequent data values according

to the results of the detecting step.

27. Video data capture, transmission, display and/or storage apparatus comprising

apparatus according to claim 26.

28. Data encoding apparatus configured to encode a set of data values, the apparatus
comprising:

an encoder configured to encode a first portion of each data value by generating one or
more data sets indicative of first portions of predetermined magnitude ranges and to encode the
data sets to an output data stream using binary encoding;

a generator configured to generate a second portion of at least those data values not
fully encoded by the data sets, the number of bits of the second portion depending upon a value
n, where n is an integer, and to include data defining the second portion in the output data
stream;

a first detector configured to detect whether a data value has been fully encoded by the
respective first and second portion, and if not, to encode a remaining third portion of the data
value to the output data stream;

a second detector configured to detect, for a subset of the data values, (i) instances of
data values for which a third portion has been encoded and would still have been required had
a higher value of n been used, and (ii) instances of data values for which a second portion has
been encoded but the value of n was such that the data value could have been fully encoded by
first and second portions using a lower value of n; and

a processor configured to vary n for use in respect of subsequent data values according

to the detections by the second detector.
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