US 20200059362A1

a9y United States

a2y Patent Application Publication (o) Pub. No.: US 2020/0059362 A1l

BRODY et al.

43) Pub. Date: Feb. 20, 2020

(54)

(71)

(72)

@
(22)

(60)

METHODS AND SYSTEMS FOR
ENHANCING PRIVACY ON DISTRIBUTED
LEDGER-BASED NETWORKS

Applicants:Ernst & Young U.S. LLP, New York,
NY (US); Ernst & Young Services
(UK) Limited, London (GB); Ernst &
Young Advisory, Courbevoie (FR)

Inventors: Paul Richard BRODY, Woodside, CA
(US); Duncan James WESTLAND,
Addlestone (GB); Chaitanya Reddy
KONDA, London (GB); Quentin
DROUOT, Antony (FR); Xavier De
BOISSIEU, Paris (FR)

Appl. No.: 16/534,858

Filed: Aug. 7, 2019

Related U.S. Application Data

Provisional application No. 62/719,636, filed on Aug.
18, 2018, provisional application No. 62/748,002,
filed on Oct. 19, 2018.

Publication Classification

(51) Int. CL
HO4L 9/32 (2006.01)
HO4L 9/30 (2006.01)
(52) US.CL
CPC oo HO4L 93221 (2013.01); HO4L 9/30
(2013.01); HO4L 9/3242 (2013.01); HO4L
9/3213 (2013.01)
(57) ABSTRACT

One or more embodiments described herein disclose meth-
ods and systems that are directed at providing enhanced
privacy and security to distributed ledger-based networks
(DLNs) via the implementation of zero-knowledge proofs
(ZKPs) in the DLNs. ZKPs allow participants of DLNs to
make statements on the DLNs about some private informa-
tion and to prove the truth of the information without having
to necessarily reveal the private information publicly. As
such, the disclosed methods and systems directed at the
ZKP-enabled DLNs provide privacy to participants of the
DLNs while still allowing the DLNs to remain as consensus-
based networks.

104e

Patent Application Publication Feb. 20,2020 Sheet 1 of 3 US 2020/0059362 A1

104e
... 104d e
i, \\‘4/} il’ A
\ ; \ i
B/ 102d 102e, % 5] /
‘\\ 4 f») ? A Slf[
100 K =] [———— PP ="
o T C
o 0 s N c o
N TN, (B Y S
\u “l ;; ‘9/
: AN =
=, \.../ Vs
1044 | =| _ 102c | 104b
\y\v""‘"-\ i ° 0 i PE liind
g . o <, R “
{ } ,/ ., § }
‘x li’ | ﬁ/ \‘\ ! ‘*\ /
WL S 100 by 7
\i Em?%za E ,E‘"
T T e 102

o
- o
"X e o s e o0

FIG. 1

Patent Application Publication Feb. 20,2020 Sheet 2 of 3 US 2020/0059362 A1

Receive a request to have a token commitment minted and registered
on a blockchain network to represent a physical asset on the

202 blockchain network

Obtain an off-chain asset token for use as an identifier of the physical
asset based on an identifying parameter of the asset

\

204

Generate the token commitment using the asset token, a public
identifier of the owner of the asset on the blockchain network and a
cryptographic nonce

\

206

Provide to the smart contract the token commitment, a hash of the
asset token and a zero-knowledge proof that the asset token is in the
208/ token commitment and in the hash of the asset token

Receive a confirmation from the smart contract that the hash of the
asset token is not already stored in a double-spend preventer data
210/ structure

Receive a confirmation from the smart contract that the token
/ commitment is added onto a token commitments data structure of the
212 blockchain network after verification of the ZKPs by the smart contract

FIG. 2

Patent Application Publication Feb. 20,2020 Sheet 3 of 3 US 2020/0059362 A1

Receive a request to represent on a blockchain network the transfer of
an asset from a sender to a recipient, the asset represented on the
302/ blockchain network by a sender token commitment

Generate a recipient token commitment using the asset token of the
asset, a public identifier of the recipient on the blockchain network
304/ and a cryptographic nonce

Generate a nullifier to nullify the sender token commitment using a
/ cryptographic nonce used in generating the sender token commitment
306 and a private key of the sender

Provide to the smart contract the recipient token commitment and a
zero-knowledge proof that, amongst other things, the asset token is in
the sender token commitment and in the recipient token
308/ commitment, the public key of the sender can be derived from the
private key of the sender, the nullifier is generated using the private
key of the sender and the cryptographic nonce, etc.

Receive a confirmation from the smart contract that the recipient
token commitment is added to a token commitments data structure of
310/ the blockchain network and the sender token commitment is nullified
after verification of the ZKPs by the smart contract

FIG. 3

US 2020/0059362 Al

METHODS AND SYSTEMS FOR
ENHANCING PRIVACY ON DISTRIBUTED
LEDGER-BASED NETWORKS

CROSS-REFERENCE TO RELATED PATENT
APPLICATION

[0001] This application claims priority to and the benefit
of U.S. Provisional Application No. 62/719,636, filed Aug.
18, 2018, entitled “Methods and Systems of ZKP-Based
Secure PE Transactions on Public Networks,” and U.S.
Provisional Application No. 62/748,002, filed Oct. 19, 2018,
entitled “Methods and Systems of ZKP-Based Secure Pri-
vate Enterprise Transactions on Public Networks,” both of
which are incorporated herein by reference in their entirety.

FIELD OF THE DISCLOSURE

[0002] Distributed ledger-based networks (DLNs) dis-
pense with the need for a central authority to manage the
operations of the networks due to their transparency and
consensus-based verification mechanisms for validating
actions occurring on the DLNs, which allow participants of
the networks to trust the accuracy of the validations without
the central authority. The transparency and consensus-based
verification mechanisms, however, compromise the privacy
of the actions and the involved parties, as relevant informa-
tion has to be shared with at least a substantial portion of the
participants of the DLNs for the actions to be validated. The
disclosure illustrates how the privacy and security of such
actions can be enhanced with the use of zero-knowledge
proofs (ZKPs) that can be used to verify the validity of at
least some aspects of the actions without private information
related to the actions necessarily being revealed publicly.
The disclosure discloses methods and systems that are
directed at providing enhanced security and privacy to
actions conducted on ZKP-enabled DLNs.

BACKGROUND

[0003] Organizations can use private networks as well as
public networks such as the internet and distributed ledger-
based networks (DLNs) to manage and track the production
and shipping of large quantities of items or assets. The use
of private networks, however, can be inefficient and costly,
while public networks may not provide the desired level of
privacy and/or security. For example, public DLNs can
expose, by virtue of being public networks, details of private
interactions occurring on the networks.

BRIEF DESCRIPTION OF THE FIGURES

[0004] FIG. 1 shows a distributed ledger-based network
configured for use in managing and conducting a private
transaction between two parties that are participants of the
network, according to some embodiment.

[0005] FIG. 2 shows a flow chart illustrating the minting
a token on a distributed ledger-based network to represent a
real world or physical asset on the distributed ledger-based
network, according to some embodiment.

[0006] FIG. 3 shows a flow chart illustrating the creation
or generation of new token commitment on the distributed
ledger-based network to represent the transfer of a real-
world or physical asset from a sender to a recipient, accord-
ing to some embodiment,

Feb. 20, 2020

SUMMARY

[0007] Some embodiments of the current disclosure dis-
close methods and systems that are directed at providing
enhanced security and privacy to actions conducted on
ZKP-enabled DLNs. For example, the actions may include
representing the transfer of an asset from a sender to a
recipient, where the asset is represented on the ZKP-enabled
DLN by a first token commitment. In such embodiments, the
methods may include the steps of: receiving a request that is
configured to cause a transfer of the asset from the sender to
the recipient; providing by a provider, in response to the
request and to a self-executing code segment on the distrib-
uted ledger, a zero-knowledge proof (ZKP) that the provider
of the ZKP has knowledge of an identity of an asset token,
where (1) an application of a first hashing function on the
asset token generating the first token commitment, and/or
(2) an application of a second hashing function on the asset
token generating a second token commitment representing
the asset on the distributed ledger. Further, the methods may
include the step of receiving, upon verification of the ZKP
by the self-executing code segment, a confirmation confirm-
ing an addition of the second token commitment onto a
token commitments data structure on the distributed ledger.

DETAILED DESCRIPTION

[0008] In some embodiments, parties participating in a
transaction may elect to use a public distributed ledger-
based network (DLN) to document the details of the trans-
action and manage its operations. DL.Ns can provide decen-
tralized platforms that are transparent to at least all the
participants of the networks, if not to the public at large, and
as such, can be viewed as consensus-based platforms that
facilitate trust between transaction participants without the
need for a central authority to administer the network. For
example, parties participating in a transaction for a sale of a
digital music file can use a self-executing code or program
(e.g., a smart contract) on the DLN (e.g., a blockchain) to
manage the sale of the music file. The self-executing code or
smart contract can regulate the exchange of the music file
and the correct payment for the file between the parties
without involvement from a third party. In some embodi-
ments, the DLNs can also be used to manage transactions
involving physical (e.g., non-digital) assets. In some imple-
mentations, this can be accomplished by using tokens to
represent the assets, and a sale of an asset can be represented
by the transfer of the token representing the asset from one
party (e.g., the seller) to a second party (e.g., the buyer).

[0009] In some embodiments, a DLN can be and/or sup-
port a blockchain. Throughout the instant disclosure, in
some embodiments, the terms “distributed ledger-based net-
work™ and “blockchain network™ may be used interchange-
ably. Similarly, in some embodiments, the terms “self-
executing code” or “self-executing code segment” and
“smart contract” may be used interchangeably. Further, in
some embodiments, the term “transaction” may be used to
refer to off-chain transactions (e.g., transactions involving
the sale of physical or digital assets between parties) and/or
on-chain representation of these off-chain transactions (e.g.,
the transaction of tokens that represent the assets on the
blockchain network). Whether the term refers to the former
or the latter case should be clear from context. The terms
“off-chain” or “off-the DLN” are to be understood to mean
“not on the blockchain network™ or “not on the DLN.” For

US 2020/0059362 Al

example, a statement such as “the application of a hashing
function is performed off-the DLN” is to be understood as
meaning “the application of the hashing function is not
performed on the DLN (and is performed elsewhere)”.
[0010] As noted above, in some embodiments, the trust the
distributed ledger-based networks provide with no need for
a central authority derives from the transparency of the
networks to at least all the participants of the network (and
in the case of public networks, to the public at large). This
transparency, however, can reduce or even eliminate any
privacy or confidentiality that participants need or seek
when interacting with the network or its participants. For
example, in the case of public networks, any interested
person can access and inspect the distributed ledgers on the
networks to obtain detailed information on all transactions
that are represented on the ledgers since the inception of the
networks (as the ledgers are, in at least most cases, largely
immutable). In some implementations, the lack of privacy or
confidentiality can render the use of a public ledger-based
network untenable. For instance, a pharmacy using a public
blockchain network to manage the fulfillment of orders for
shipment of prescription drugs without a mechanism to
conceal at least some aspects of the transaction would
publicly expose personal and health-related data of its
customers (thereby violating their privacy and possibly
health privacy laws).

[0011] Insome cases, private DLNs can be used to provide
participants a measure of privacy that may not be available
on public networks. The privacy afforded by private (non-
ZKP-enabled) DLNs, however, is far from adequate for most
purposes (how ZKPs can be used to provide privacy to
private and/or public blockchain networks will be discussed
in details below). For example, with reference to the above
example, the personal and health-related data of customers
would still be available for inspection by other members of
the private non-ZKP-enabled DLN (even if the data is
hidden from the public). Further, private non-ZKP-enabled
DLNs would be burdensome to maintain as, amongst other
reasons, applications developed for public blockchain net-
works would not seamlessly interoperate on private non-
ZKP-enabled blockchain networks.

[0012] The inefficiency and cost associated with private
non-ZKP-enabled DLNs may be illustrated with reference to
the internet, which suffers from several privacy and security-
related ills due to the openness of the network to anyone
capable of accessing the network. Setting up a “private”
intranet network can be one way to combat the noted privacy
and security-related ills. Such private networks, however,
are likely to severely lag in their developments, and even
then to be costly to maintain, compared to the open internet,
as the closed nature of the private networks would limit
interoperability of applications developed for the open or
public internet. Analogously, a private DLN would lag in its
development compared to a public DLN and still be costly
to maintain. One or more embodiments described herein
disclose methods and systems that are directed at providing
enhanced privacy and security to DLNs via the implemen-
tation of ZKPs in the DLNs. It is to be noted that, although
descriptions of these embodiments refer to public DLNs, the
methods and systems equally apply to private DLNs.

[0013] In some embodiments, as noted above, the current
disclosure discloses methods and systems that provide pri-
vacy to participants of a transaction on a ZKP-enabled DLN
while retaining the level of trust afforded by decentralized

Feb. 20, 2020

networks (i.e., with no central authority) such as DLNs. For
example, one or more of the methods and systems disclosed
herein allow for the identities of parties to a transaction (e.g.,
a sale or transfer of an asset between the parties) as well as
details of the transaction (e.g., details of the assets being
transferred) to remain secret when a public blockchain
network is used to manage the transaction. Referring to the
example provided above, one or more of the disclosed
methods and systems allow the pharmacy to use a public
blockchain network to facilitate the shipment of the drugs
without revealing on the blockchain network (or publicly)
any identifying information related to the assets (i.e., the
drugs), the sender (i.e., the pharmacy) and/or the recipient of
the assets (i.e., the clients), while depending on the trust
afforded by the blockchain network at least partly as a result
of the transparency inherent to public blockchain networks.
In such examples, the sender and the recipient may be
represented by their respective public keys on the block-
chain network.

[0014] FIG. 1 shows a ZKP-enabled DLN configured for
use in managing and representing a private transaction
between two parties that are participants of the network, in
particular a public network, according to some embodiment.
In some embodiments, the ZKP-enabled DLN or blockchain
network 100 includes a plurality of computing nodes 102a-
102¢ configured to communicate amongst each other via a
peer-to-peer (P2P) connection. In some implementations,
the computing nodes 102a-102¢ can be computing devices
including but not limited to computers, servers, processors,
data/information processing machines or systems, and/or the
like, and may include data storage systems such as data-
bases, memories (volatile and/or non-volatile), etc. In some
implementations, the P2P connections may be provided by
wired and/or wireless communications systems or networks
(not shown) such as but not limited to the internet, intranet,
local area networks (LLANs), wide area networks (WANs),
etc., utilizing wireless communication protocols or stan-
dards such as WiFi®, LTE®, WiMAX®, and/or the like.

[0015] In some embodiments, the ZKP-enabled DLN 100
may include self-executing codes or smart contracts that are
configured to execute upon fulfillment of conditions that are
agreed upon between transacting parties. For example, some
or all of the computing nodes 102a-102¢ may include copies
of'a self-executing code that self-execute upon fulfillment of
the conditions. In some implementations, the computing
nodes 102a¢-102¢ may communicate amongst each other
with the results of the executions of their respective self-
executing codes, for example, to arrive at a consensus on the
results. In some implementations, one or a few of the
computing nodes 102a-102¢ may have self-executing codes
that self-execute, and the results would be transmitted to the
rest of the computing nodes 1024-102¢ for confirmation.

[0016] In some embodiments, a self-executing code or a
smart contract can facilitate the completion of transactions
on the ZKP-enabled DLN 100 by providing the transacting
parties confidence that the other party would deliver the
promised product or payment. For example, with reference
to the above example related to the sale of a digital music
file, a smart contract can be used to verify that the seller of
the file is in fact an owner of the file, the buyer of the music
file has adequate resource to pay for the music, etc. Further,
the smart contract can facilitate the exchange of the music
file by allowing the transfer of a payment to occur only after
the transfer of the music file is completed (and validated).

US 2020/0059362 Al

[0017] In some embodiments, the ZKP-enabled DLN 100
may be linked to one or more oracles (not shown) or data
feeds that provide external data to the ZKP-enabled DLN
100. In some implementations, as discussed above, self-
executing codes or smart contracts can automatically
execute upon realization of some conditions of a transaction,
and the oracles may provide the data that can be used to
evaluate whether the conditions are met. For example, a
transaction may be contingent on the price of a stock, a
weather condition, etc., and an oracle may provide the
requisite information to the smart contract facilitating the
transaction. The smart contract, upon receiving the infor-
mation, may self-execute after determining that the condi-
tion for the transaction has been fulfilled. In some embodi-
ments, the oracles may facilitate for the smart contracts to
send data out to external systems. For example, a smart
contract may be configured to send out information to a
smartphone when an account on the ZKP-enabled DLN 100
receives a payment, and an oracle may serve as a transit hub
for the data including the information during its transmission
to the smartphone.

[0018] Insome embodiments, at least a substantial number
of the computing nodes 102a-102¢ include copies of a
distributed ledger 104a-104e onto which transactions that
occur on the network are recorded. The recording of the
transactions on the distributed ledger 104a-104¢ may occur
when some substantial proportion of the computing nodes
102a-102¢, or a subset thereof, agree on the validity of the
transactions. The distributed ledger 104a-104¢ can be
immutable or nearly immutable in the sense that to alter the
distributed ledger 104a-104e, at least this substantial portion
of the computing nodes 1024¢-102¢ would have to agree,
which can be increasingly difficult when the number of
computing nodes 102a-102¢ is large (and the distributed
ledger 104a-104e gets longer).

[0019] As noted above, the ZKP-enabled DLN 100 can be
used to facilitate transactions that involve digital assets (e.g.,
sale of digital music files). In some embodiments, the
ZKP-enabled DLN 100 can also be used to facilitate trans-
actions of assets that occur off-chain or off-line (e.g., trans-
actions of physical assets). In some implementations, off-
chain assets can be represented by tokens (e.g., token
commitments) on the ZKP-enabled DLN 100, and the sale
or transfer of the off-chain assets can be represented on the
ZKP-enabled DLN 100 by the transfer of the tokens between
the blockchain accounts of the transacting parties. In some
implementations, the types of tokens used to represent the
off-chain assets can depend on the nature of the assets
themselves. For example, fungible products (e.g., some
amount of gasoline or a currency) can be represented with
fungible tokens while non-fungible products (e.g., distin-
guishable products such as a product with a serial number)
can be represented by non-fungible tokens. FIG. 1 shows an
example embodiment of a transaction that involves the sale
of an off-chain asset (e.g., vehicle 112) from a first transac-
tion participant 110a to a second transaction participant
1105. In such example, the vehicle may be represented on
the ZKP-enabled DLN 100 with a non-fungible token that
can be transferred from the first transaction participant 110a
to the second transaction participant 1105 to represent the
sale or transfer of the vehicle 112 during the transaction
between the two parties. In some embodiments, tokens may
be stored off-chain, i.e., off of the ZKP-enabled DLN 100.
For example, tokens may be stored in storage systems or

Feb. 20, 2020

databases that are linked with the ZKP-enabled DLN 100.
For instance, if the ZKP-enabled DLN 100 is a ZKP-enabled
Ethereum blockchain network, the tokens may be stored in
the Swarm database. In some embodiments, the tokens may
be stored on the ZKP-enabled DLN 100 (e.g., in the storage
systems associated with the computing nodes 102a-102¢).

[0020] Insome embodiments, as noted above, transactions
that occur on the ZKP-enabled DLN 100 (including off-
chain transactions that are represented on the ZKP-enabled
DLN 100 with the use of tokens, for example) are recorded
onto at least a substantial number of the distributed ledgers
1044-104¢ that exist on the ZKP-enabled DLN 100. For
example, a transaction between a first transaction participant
110a and a second transaction participant 1105 on the
ZKP-enabled DLN 100 representing the transfer of an
off-chain asset 112 from the former to the latter would be
recorded on all or nearly all of the distributed ledgers
104a-104¢ once the transaction details are accepted as valid
by the participants of the ZKP-enabled DLN 100. In the case
of a blockchain network that is not ZKP-enabled, however,
the first transaction participant 110a and the second trans-
action participant 1105 are afforded little or no privacy as all
or nearly all the details of the transaction are made public or
visible to all that have access to the blockchain network (the
public, in case of public blockchains), such details including
confidential information on the transacting participants, the
asset being transacted, the tokens used to represent the asset
and the representation of its transfer on the blockchain
network, and/or the like. In some embodiments, the present
disclosure discloses methods and systems for providing
privacy to transactions that occur or are represented on
public blockchains with the use of zero knowledge proofs
(ZKPs).

[0021] In some embodiments, ZKPs can be used by a first
entity, the “prover” or “provider” of the proofs, to convince
a second entity, the “verifier” of the proofs, that a statement
about some secret information is truthful without having to
reveal the secret information to the verifier. ZKPs can be
interactive, i.e., require interaction from the prover for the
verifier to verify the truthfulness of the statement. In some
embodiments, the ZKPs can be non-interactive, requiring no
further interaction from the prover for the verifier to verify
the statement. Examples of non-interactive ZKPs include
zero-knowledge succinct non-interactive argument of
knowledge (zk-SNARK), zero-knowledge scalable transpar-
ent argument of knowledge (zk-STARK), etc. Discussions
of ZKPs can be found in U.S. patent application Ser. No.
16/383,845, filed on Apr. 15, 2019 and entitled “Methods
and Systems for Identifying Anonymized Participants of
Distributed Ledger-Based Networks Using Zero-Knowledge
Proofs,” which is incorporated by reference herein in its
entirety.

[0022] FIG. 2 shows a flow chart illustrating the steps of
minting a token on a distributed ledger to represent a real
world or physical asset on the distributed ledger, according
to some embodiment. To represent an off-chain transaction
for a non-fungible asset such as the transfer of a vehicle asset
112 from a first transaction participant 110a (referred here-
inafter as the sender 110qa) to a second transaction partici-
pant 1105 (referred hereinafter as the recipient 1105) on the
ZKP-enabled DLN 100, in some embodiments, the sender
110a may generate, at 204 and using the computing node
102a, an asset identifier that can serve as a unique identifier
for the asset while concealing the asset’s identity. In some

US 2020/0059362 Al

implementations, the asset identifier may be generated in
response to a request, at 202, to have a physical asset
represented on a ZKP-enabled DLN 100. For example, the
sender 110a can generate, using the computing node 102aq,
an alpha-numeric value that is uniquely associated with
some identifying parameters (e.g., serial numbers, model
numbers, etc.) of the asset, and the alpha-numeric value can
be used as the asset identifier that hides the real identity of
the asset. As another example, a unique asset identifier can
be generated by cryptographically hashing the identifying
parameters of the non-fungible asset to generate an asset
token that can serve as the unique asset identifier. The
cryptographic hashing includes the application of a crypto-
graphic hashing algorithm such as but not limited to the
SHA-256 algorithm, on the identifying parameters. For
instance, an asset token can be generated for the vehicle
asset 112 by applying a hashing function (e.g., SHA-256) on
one or more of the identifying parameters of the vehicle such
as the vehicle identification number, model type, model year,
etc. Accordingly, the asset token can serve as a unique asset
identifier without exposing or revealing to other participants
of the ZKP-enabled DLN 100 any of the identifying param-
eters of the asset (i.e., vehicle). In some embodiments, the
hashing can occur off the ZKP-enabled DLN 100. For
example, if the ZKP-enabled DLN 100 is a ZKP-enabled
Ethereum blockchain network, in some implementations,
the asset token can be generated and stored off the Ethereum
blockchain network at the Swarm storage network/database.

[0023] At 206, an off-chain non-fungible asset (e.g., physi-
cal asset such as the vehicle 112) can be registered or
represented on the ZKP-enabled DLN 100 for the first time
by generating or minting a non-fungible token commitment
that encodes at least some aspects of the non-fungible asset
and/or the ownership of the asset on the ZKP-enabled DLN
100. In some embodiments, minting of a token commitment
may refer to the registration or representation of an asset on
the ZKP-enabled DLN 100 by a token commitment for the
first time. As will be discussed below, new token commit-
ments may be generated later to represent an asset that is
being represented on the ZKP-enabled DLN 100 by an
existing token commitment. In such cases, however, the
asset is being transferred to a new owner, and the generation
of the new token commitment may be accompanied by the
nullification of the existing token commitment (which indi-
cates that the asset does not belong to the initial owner
anymore). In any case, whether an asset (e.g., non-fungible
asset) is being registered or represented on the ZKP-enabled
DLN 100 for the first time by the minting of a token
commitment or the transfer of the asset from one owner to
another is being registered on the ZKP-enabled DLN 100 by
generation of a new token commitment, the minted token
commitment and/or the new token commitment may encode
at least some aspects of the asset and/or the ownership of the
asset. To encode the aspects of the non-fungible asset, in
some implementations, a cryptographic hashing function or
algorithm can be applied to the unique asset identifier of the
asset such as the asset token that itself was obtained via an
application of a hashing function on the identifying param-
eters of the non-fungible asset, as discussed in the example
above. Further, to encode some aspects of the ownership of
the asset, in some implementations, the cryptographic hash-
ing function can also be applied to a public identifier on the
ZKP-enabled DLN 100 that is associated with the owner
(e.g., sender 110a when the sender 110q is minting the token

Feb. 20, 2020

commitment for the first time). An example of such public
identifier includes the public key of the sender on the
ZKP-enabled DLN 100 (i.e., the public key that is associated
with the sender 110a on the ZKP-enabled DLN 100).

[0024] In some embodiments, the cryptographic hashing
function can also be applied to a random nonce such as, but
not limited to, a random or serial number that is securely
generated and used, at least in most cases, only once. In
some implementations, the random nonce can be used as a
handle of the non-fungible token commitment independent
of the non-fungible asset (e.g., encoded by the asset token)
and/or its ownership (e.g., encoded by the public key). For
example, as discussed below, the transfer of a physical asset
to the recipient 1106 can be represented by the generation
and registration on the ZKP-enabled DLN 100 of a new
token commitment that associates the asset with the new
owner, the recipient 1105, and the nullification of the exist-
ing token commitment that associated the asset with the
sender 110qa. In such implementations, the token commit-
ment handle, the random nonce, can be used to nullify the
existing token commitment, as discussed below.

[0025] In some embodiments, the minting of a non-fun-
gible token commitment to represent an asset ZKP-enabled
DLN 100 for the first time may include the computation of
a token commitment (Z-token) as follows: Z=H(SG P,
(® A), where A is the asset token identifying the asset (e.g.,
obtained by hashing, off-chain, at least some identifying
parameters of the asset), P, is the public key on the block-
chain that is associated with the sender 110a (i.e., the current
owner of the asset), S is a random nonce, H is a crypto-
graphic hashing function or algorithm (e.g., SHA-256), and
(® represents a combining operator (e.g., the XOR operator
€D, the concatenation operator |, etc.). In some embodiments,
the computation of the token commitment Z may include
application of the hashing function on additional elements
besides or instead of S, P, and A. In some embodiments, the
token commitment comprises or consists of a random nonce
(e.g., a securely and randomly generated serial number), a
public identifier on the ZKP-enabled DLN 100 of the sender
110a (e.g., public key of the sender 110a) and an asset
identifier (e.g., asset token A). In some embodiments, the
application of the hashing function in computing for the
Z-token (i.e., token commitment) allows for the generation
or construction of the non-fungible token (e.g., Z-token or
token commitment) without revealing the identities of the
random nonce S and/or the asset token A on the ZKP-
enabled DLN 100 (i.e., S and A may be kept secret by the
sender 110a, except when A is transmitted (privately) to the
recipient 11056 as discussed below during an asset transfer
transaction).

[0026] After the token commitment is computed, at 208,
the sender 110a may provide or publish, anonymously and
using the computing node 102a, the Z-token and/or a hash
of'the asset token A, H(A), to a self-executing code or smart
contract on the ZKP-enabled DLN 100 to have the token
commitment (i.e., Z-token) minted or registered for the first
time on the ZKP-enabled DLN 100. Prior to the Z-token
being included in the distributed ledgers 104a-104¢ of the
ZKP-enabled DLN 100 as a representation of the off-chain
asset (e.g., vehicle asset 112) on the ZKP-enabled DLN 100,
however, the sender 110a may have to demonstrate to the
ZKP-enabled DLN 100 that (1) the Z-token in fact includes
the asset token A, and/or (2) the asset is not already
represented on the ZKP-enabled DLN 100, i.e., a Z-token is

US 2020/0059362 Al

not already minted for the asset on the ZKP-enabled DLN
100 (e.g., to avoid “double minting,” which can lead to
undesirable “double spend” or “double transfer” on the
ZKP-enabled DLN 100 of multiple token commitments all
representing the same asset), according to some embodi-
ments. In some implementations, the sender 110a may
generate and provide anonymously to the smart contract,
using the computing node 102a, a ZKP that the Z-token
includes the asset token A. Further, the ZKP may also
include a proof that a hash of the asset token A, H(A),
includes the asset token A. In some implementations, the
hash H(A) can be used by the smart contract to verify that
the asset is not already represented on the ZKP-enabled
DLN 100. That is, as discussed below, H(A) can be used to
prevent undesirable “double spend” by prohibiting a future
attempt to mint or register a new token commitment for the
asset identified off-chain by the asset token A while another
valid token commitment for the same asset (i.e., the asset
identified by the asset token A) exists on the ZKP-enabled
DLN 100. In other words, in some embodiments, H(A) can
be used to prevent the minting of a new token commitment
if there is an existing token commitment representing, on the
ZKP-enabled DLN 100, the asset identified off-chain by the
asset token A.

[0027] In some embodiments, if a token commitment
(Z-token) representing the asset (as identified by the asset
token A) already exists on the ZKP-enabled DLN 100, then
a new token commitment 7' representing the same asset can
be generated on the ZKP-enabled DLN 100 only upon the
nullification or invalidation of the existing token commit-
ment Z, as discussed below (by nullified or invalidated, in
some embodiments, it is meant, without limitations, that the
existing token commitment is no longer valid to represent
the asset on the DLN 100 (e.g., the smart contract would
reject the token commitment if it were provided to it as a
representation of the asset)).

[0028] In some embodiments, the sender 110q, using the
computing node 102a, provides the ZKP to the smart con-
tract without having revealed A to the ZKP-enabled DLN
100 (i.e., without exposing A to the participants of the
blockchain), thereby protecting the identity of the physical
asset being transacted between the sender 110a and the
recipient 11056. The hashing of the asset token A also allows
the sender 110a to hide the identity of the asset token A (and
hence the asset itself) from the ZKP-enabled DLN 100 or the
smart contract (and hence from the other participants on the
ZKP-enabled DLN 100).

[0029] Upon receiving the token commitment Z, the hash
of the asset token H(A), and/or the ZKPs, in some embodi-
ments, the self-executing code or smart contract may verify
the ZKPs. For example, the smart contract may obtain or
retrieve a public input and/or a verification key (e.g., from
the sender 110a) and compute the ZKPs to verify statements
included in the ZKPs, such as the statements that H(A)
includes A (i.e., the statement that H(A) is obtained by
applying a hashing function or algorithm on the asset token
A) and the statement that the token commitment Z also
includes A (i.e., the statement that Z is obtained by applying
a hashing function or algorithm on the asset token A).
Further, the smart contract may verify that there has never
been an H(A) provided to the smart contract previously (e.g.,
if the asset has never been represented on the ZKP-enabled
DLN 100). For example, at 210, the ZKP-enabled DLLN 100
may include a double-spend preventer data structure that

Feb. 20, 2020

includes all the hashes of asset tokens that have been
provided to the smart contract previously. In such embodi-
ments, the smart contract may check the double-spend
preventer data structure for the presence of a hash of the
asset token A, and if there is one, this may be understood as
the asset identified off-chain by the asset token A has already
been minted or registered on the ZKP-enabled DLN 100,
and as such, the smart contract may reject the token com-
mitment Z provided by the sender 110a, and prevent its
inclusion into a commitments data structure on the ZKP-
enabled DLN 100. In some embodiments, the commitments
data structure includes token commitments (e.g., a token
commitment such as the Z-token Z=H(S® P,(® A) that
serve as a representation, on the ZKP-enabled DLN 100, of
an asset identified by the asset token A), the token commit-
ment 7 having been included into the commitments data
structure after the smart contract verifies that the double-
spend preventer data structure does not contain the hashes of
the asset tokens (e.g., after the smart contract verifies that
H(A) is not included in the double-spend preventer data
structure). As such, the double-spend preventer data struc-
ture can be used to prevent the undesirable problem of
“double spend,” where a user of the ZKP-enabled DLN 100
may mint or generate two (or in general, multiple) token
commitments Z,=H(S, ® P,® A) for a single asset identi-
fied by A, and attempt to transfer the two (or multiple) Z, to
different entities (which is what a “double spend” is, since
there is only a single underlying asset for the multiple
transfers). Once there is a H(A) in the double-spend pre-
venter data structure, in some implementations, the smart
contract would not allow adding, into the commitments data
structure, a new token commitment representing the asset
identified by the asset token A. That is, the smart contract
would not allow the minting of a new token commitment
Z=H(S ® P,® A) for an asset identified by the asset token
A if H(A) is present in the double-spend preventer data
structure. In some embodiments, the double-spend preventer
data structure and/or the commitments data structure may be
stored on the ZKP-enabled DLN 100 (i.e., these data struc-
tures may be stored on storage systems that are linked to or
part of the computing nodes 1024-102¢ that make up the
ZKP-enabled DLN 100). As noted above, the combining
operator (® may include the XOR operator €D, the concat-
enation operator |, and/or the like.

[0030] In some embodiments, the smart contract may
discover that the hash of the asset token A, H(A), is not in
the double-spend preventer data structure. In such embodi-
ments, the smart contract may add H(A) into double-spend
preventer data structure and allow the addition of the token
commitment into the commitments data structure on the
ZKP-enabled DLN 100. The addition of the token commit-
ment into the commitments data structure, at 212, may
signify the representation or registration of the asset on the
ZKP-enabled DLN 100. Further, since the token commit-
ment includes an identifier (e.g., a public identifier) of the
sender 110a on the ZKP-enabled DLN 100 (e.g., public key
of the sender 110a), in some implementations, the token
commitment also serves as a notice or a record of the
ownership of the asset (e.g., ownership belonging to the
entity that is behind the public key on the ZKP-enabled DLN
100, i.e., the sender 110q). It is to be noted, however, that,
in some embodiments, other participants on the ZKP-en-
abled DLN 100 100 may not be privy to A (i.e., the identity
of the asset being transacted) and/or the owner/sender 110a

US 2020/0059362 Al

of the asset. That is, the privacy of the sender 110a (as it
related to ownership and the identity of the asset, for
example) can be protected as a result of the use of ZKP in
the methods and systems disclosed herein.

[0031] FIG. 3 shows a flow chart illustrating the genera-
tion of new token commitment on the distributed ledger to
represent the transfer of a real-world or physical asset from
a sender to a recipient, according to some embodiment. At
302, the new token commitment may be generated in
response to a request to represent the asset transfer on the
ZKP-enabled DLN 100. Once the asset 112 (e.g., non-
fungible asset) is represented on the ZKP-enabled DLLN 100
as discussed above, at 304, the transfer of the asset 112 from
the sender 110a to the recipient 1105 can be represented on
the ZKP-enabled DLN 100 by the generation of a new
non-fungible token commitment that is linked or associated
with the recipient 1105, and the nullification or invalidation
of the existing token commitment Z that included the
identifier (e.g., public key) of sender 110a. For example, the
new non-fungible token commitment (the “recipient token
commitment”) can be generated by an application of a
hashing function or algorithm on an identifier (e.g., public
identifier) of the recipient 1105, an example of such iden-
tifier including the public key of the recipient on the ZKP-
enabled DLN 100. Further, since the recipient token com-
mitment should represent the same off-chain asset 112 as the
existing token commitment (the “sender token commit-
ment”, which was obtained by an application of a hashing
function on the asset token A), in some implementations, the
application of the hashing function to obtain the recipient
token commitment may also include applying the hashing
function on the same asset token A. In addition, in some
implementations, the hashing function may also be applied
on a random nonce for reasons discussed above with refer-
ence to the computation of the sender token commitment. In
some implementations, the random nonce used to generate
the sender token commitment Z may be different from the
random nonce that would be used to generate the recipient
token commitment.

[0032] An example implementation of the generation of a
non-fungible recipient token commitment as discussed
above can include the computation of a recipient Z'-token as
follows: Z'=H(S'® P,'® A), where A is the asset token used
in generating the sender token commitment Z, P,' is the
public key on the ZKP-enabled DLN 100 that is associated
with the recipient 1105, S' is a random nonce, H is a
cryptographic hashing function or algorithm (e.g., SHA-
256), and (® represents a combining operator (e.g., the
XOR operator €D, the concatenation operator |, etc.). In some
embodiments, S' may be different from S. In some embodi-
ments, the computation of the recipient token commitment
7' may include application of the hashing function on
additional elements besides or instead of S', P,' and A. In
some embodiments, the recipient token commitment Z' may
comprise or consist S', P, and A. In some embodiments, the
recipient token commitment 7' may be generated by the
sender 110a and provided, via the computing node 1024, to
the smart contract of the ZKP-enabled DLN 100 anony-
mously. Further, the sender 110a may secretly provide the
recipient 11056 the random nonce S' and/or the asset token A
(i.e., without divulging or revealing S' and/or A ZKP-
enabled DLN 100 (i.e., to the public or the other participants
of the ZKP-enabled DLN 100)).

Feb. 20, 2020

[0033] Before the smart contract can allow the addition of
the recipient token commitment Z' onto the commitments
data structure, thereby passing the representation of the
ownership of the asset 112 on the ZKP-enabled DLN 100
from the sender 110a to the recipient 1105, in some embodi-
ments, the sender 110a may have to demonstrate to the smart
contract that the Z token (i.e., the sender token commitment)
belongs to the sender 110a (signifying that the asset 112
belongs to the sender 110qa). Further, the sender 110a would
have to demonstrate to the smart contract that a new token
commitment, the recipient token commitment 7', represent-
ing the same asset 112 but assigning ownership to the
recipient 1105, has been generated and that the sender token
commitment, which is already on the commitments data
structure, has been nullified or invalidated. These various
demonstrations are described below.

[0034] In some embodiments, to demonstrate to the smart
contract that the sender token commitment Z belongs to the
sender 110a, the sender 110a can provide the smart contract
anonymously a ZKP that the sender 110a knows that the
token commitment Z is obtained by an application of a
hashing function on a combination of a random nonce, an
asset identifier of the off-chain asset that is being transacted
and/or an identifier associated with the sender 110a on the
ZKP-enabled DLN 100 such as but not limited to a public
identifier. For example, the ZKP can include a proof that the
sender 110a has knowledge that Z is obtained by applying a
hashing function or algorithm on a combination of a random
nonce S, an asset token A that can be used as an identifier of
the asset 112, and/or the public key of the sender 1104 on the
ZKP-enabled DLN 100. As a specific example, the ZKP can
include a proof that Z is obtained by the computation H(S
® P,.® A), where the combining operator (® may include
the XOR operator b, the concatenation operator |, and/or the
like.

[0035] In some embodiments, providing a proof that the
sender 110a knows that the token commitment Z is obtained
by an application of a hashing function on a combination of
a random nonce, an asset identifier of the off-chain asset
and/or an identifier associated with the sender 110a on the
blockchain may not be sufficient as a proof that the sender
token commitment Z belongs to the sender 1104, since there
could be other participants of the ZKP-enabled DLN 100
that can have the stated information. For example, in some
embodiments, the asset 112 may not have been minted or
represented on the ZKP-enabled DLN 100 initially by the
sender 110a, but rather by a prior owner or sender (not
shown) that then transferred the asset to the sender 110a. In
such cases, the prior sender may have been the one that
generated the asset token A (off-chain, for example) and
represented the transfer of the asset 112 from the prior
sender to the sender 110a on the ZKP-enabled DLN 100 by
having the smart contract on the ZKP-enabled DLN 100 add
the token commitment Z=H(S® P, A) to the token com-
mitments data structure, where P, is the public key of the
sender 110q that is receiving the asset 112 from the prior
owner. In such embodiments, the prior owner would have
knowledge or possession of S, P, and/or A, and as such can
generate similar or same ZKP as one generated by the sender
110a and provided to the smart contract to represent the
transfer of the asset to the recipient 11056. As such, to
demonstrate that the sender 110q is the rightful (e.g., cur-
rent) owner of the asset, in some implementations, the
sender 110a may also provide to the smart contract, via the

US 2020/0059362 Al

computing node 102q, a ZKP that the sender 110a can
generate the public identifier associated with the sender 110a
on the ZKP-enabled DLN 100 from a corresponding secret
identifier associated with the sender 110a on the ZKP-
enabled DLN 100. For example, the public identifier asso-
ciated with the sender 110a can be the public key of the
sender 110a, and the sender 110a can provide the smart
contract a ZKP that the sender 1104 can derive or obtain the
public key P, from the private key V, of the sender 110a. As
the private key V, is known only to the sender 1104, at least
nominally, in such implementations, the prior sender or any
other party or participant of the ZKP-enabled DLN 100 may
not be able to generate such ZKP. As such, in some embodi-
ments, the sender’s claim that the sender token commitment
Z belongs to the sender 110a may be proved by verifying the
ZKP, generated and provided to the smart contract by the
sender 110a, that the sender 1104 has knowledge that Z can
be obtained by computing HS® P,(® A) and that P, can be
obtained from V,.

[0036] In some embodiments, the sender 110a may also
have to demonstrate to the smart contract that the sender
token commitment Z is no longer valid before the smart
contract can allow the addition of the recipient token com-
mitment Z' onto the commitments data structure. The smart
contract may enforce this condition to avoid a “double-
spend” by the sender 110a, where the sender 110a can
generate a plurality of token commitments for the same
off-chain asset 112 using the same asset token A but different
random nonces S and different public keys of other partici-
pants 110c-110e in the ZKP-enabled DLN 100. In some
embodiments, “double spend” by the sender 110a can be
prevented by having the sender 110a generate and provide to
the smart contract, via the computing node 1024, a nullifier
that nullifies the sender token commitment that is already on
the token commitments data structure. By requiring the
sender 110a to nullify an existing valid token commitment
Z (ie., a token commitment that is stored in the token
commitments data structure) prior to the addition of a new
token commitment 7' into the token commitments data
structure, in some implementations, the smart contract pre-
vents the “double spend” problem, since the sender 110a can
nullify Z only once (hence only one Z' can be added into the
commitments data structure, i.e., no “double spend”).

[0037] In some embodiments, the nullifier can be con-
structed or generated out of the random nonce S that was
used to generate the token commitment Z. The random
nonce S, however, may be known to other participants of the
ZKP-enabled DLN 100 (i.e., besides the sender 110a), such
as a previous owner of the asset. To demonstrate to the smart
contract that the nullifier is in fact constructed or generated
by the sender 110a (and not by a previous owner of the asset
112, for example), in some embodiments, the sender 110a
may include in the nullifier a secret element or identifier that
is known only to the sender 110a. For example, in some
embodiments, the nullifier can be computed via an applica-
tion of a hashing function H on the random nonce S and the
private key of the sender 110a, V,, as follows: N=H(S
(9 V,), where the combining operator (3 may include the
XOR operator €, the concatenation operator |, and/or the
like.

[0038] At 306, the sender 110a may provide the nullifier
N to the smart contract, via the computing node 1024, along
with a ZKP that the sender 1104 knows N is obtained via an
application of the hashing function H on the random nonce

Feb. 20, 2020

S and the private key V,. In some implementations, the
hashing allows the sender 110« to hide the identity of the
random nonce S and/or the private key V,, and the ZKP
allows the sender 1104 to convince the smart contract, if the
proof is verified, that N includes S and V,, without the
sender 110a having to reveal S and V, themselves to the
smart contract or the participants of the blockchain 100. In
some embodiments, the ZKP-enabled DLN 100 may include
a nullifier data structure that includes all the nullifiers that
have been provided to the smart contract. For example, the
nullifier data structure may be stored on the ZKP-enabled
DLN 100 (i.e., the data structure may be stored on storage
systems that are linked to or part of the computing nodes
102a-102¢ that make up the ZKP-enabled DLN 100). In
such embodiments, the smart contract may check to see if
the nullifier N provided by the sender 110« is already present
in the nullifier data structure, and if so, may reject the
addition of the recipient token commitment 7' onto the
commitments data structure as the presence of N in the
nullifier data structure indicates that the sender token com-
mitment 7 has already been nullified (which indicates that
the sender 110a does not own the asset 112, and as such
cannot be in the position to transfer the asset 112 to the
recipient 1105).

[0039] Before the smart contract can allow the addition of
the recipient token commitment Z' onto the commitments
data structure, in some embodiments, the sender 110a may
also have to demonstrate to the smart contract that the
recipient token commitment Z' includes an identifier asso-
ciated with the recipient (e.g., a public identifier such as the
public key P,' of the recipient), an identifier that can be used
to identify the asset (e.g., the asset token A) and/or the
random nonce S'. To accomplish this goal without revealing
identifying information about the public key P,', the asset
token A and/or the random nonce S' on the ZKP-enabled
DLN 100, at 308, the sender 110a may generate and provide
to the smart contract, via the computing node 102a, a ZKP
that 7' includes, or is generated using, the identifier associ-
ated with the recipient (e.g., the public key P,' of the
recipient), the asset identifier (e.g., the asset token A) and/or
the random nonce S'. In particular, the ZKP includes the
proof that the asset token in the recipient token commitment
7' is the same asset token as the asset token in the sender
token commitment Z, which demonstrates to the smart
contract, when verified, that the sender token commitment Z
and the recipient token commitment Z' represent the same
asset on the ZKP-enabled DLN 100 that is being transacted
between the sender 110a and the recipient 1105.

[0040] Upon receiving the above-identified ZKPs, in some
embodiments, the smart contract may verify the ZKPs
and/or check that the nullifier N is not already included in
the nullifier data structure of the ZKP-enabled DLN 100. As
N is configured to nullify the sender token commitment 7
upon addition onto the nullifier data structure, in some
implementations, its prior presence on nullifier data struc-
ture would indicate that Z has already been nullified, which
would cause the smart contract to reject the addition of the
recipient token commitment 7' onto the commitments data
structure. In some embodiments, upon verifying that the
nullifier N is not included in the nullifier data structure, the
smart contract may add the nullifier into the nullifier data
structure (after all the ZKPs are verified, for example).

[0041] As discussed above, the ZKPs provided by the
sender 110¢ include (a) the ZKP that the nullifier N is

US 2020/0059362 Al

obtained via an application of a hashing function or algo-
rithm on a random nonce and/or a private key on the
ZKP-enabled DLN 100 of the sender 1104, (b) the ZKP that
the sender token commitment Z is obtained via an applica-
tion of a hashing function on the same random nonce used
in generating the nullifier, a public identifier on the ZKP-
enabled DLN 100 of the sender 110a (e.g., the public key of
the sender 110qa) and/or the asset token, (¢) the ZKP that the
sender 110a can generate or derive the public identifier
associated with the sender 1104 from a secret identifier
associated with the sender 110a (e.g., the sender 110a can
derive its public key from its private key), and/or the (d)
ZKP that the recipient token commitment 7' is obtained via
an application of a hashing function on a random nonce
(e.g., different from the random nonce used to generate 7),
a public identifier on the ZKP-enabled DLN 100 of the
recipient 1105 (e.g., the public key of the recipient 1105)
and/or the same asset token used in generating or computing
the sender token commitment Z. After verifying one or more
of'the above-identified ZKPs, at 310, the smart contract may
allow the recipient token commitment Z' to be added onto
the commitments data structure of the ZKP-enabled DLN
100, which signifies the representation, on the ZKP-enabled
DLN 100, of the transfer of the asset 112 from the sender
1104 to the recipient 1104.

[0042] In some embodiments, if the recipient 1105 wishes
to transfer the asset 112 to another participant 110c¢ after
receiving it from the sender 110q, the recipient 1105 can
carry out all or nearly all the same steps undertaken by the
sender 110a to represent the transfer transaction on the
ZKP-enabled DLN 100 between the sender 110a and the
recipient 1105. The recipient 1105 may not, however, be able
to generate an asset token to identify the asset 112, as the
presence of the hash of the asset token H(A) in the preventer
data structure would cause the smart contract to reject the
token commitments the recipient 1105 would have to pro-
vide to the smart contract to represent the transfer of the
asset to the new recipient 110c. As such, once an asset is
minted on the blockchain 100 for the first time (and iden-
tified with an asset token A), it cannot be minted again, but
can only be transferred from one participant of the ZKP-
enabled DLN 100 to another via the generation of a token
commitment that includes the same asset token A that was
created during the initial minting or representation of the
asset 112 on the ZKP-enabled DLN 100. As such, the
double-spend preventer data structure can be used to prevent
“double-spend,” where multiple token commitments Z are
created for the same asset 112, and are transferred to a
plurality of participants.

[0043] As discussed above, with the use of ZKPs, a sender
1104 can represent on the ZKP-enabled DLN 100 a physical,
off-chain asset 112, without having to disclose or reveal to
other participants of the ZKP-enabled DLN 100 (or to the
public) any identifying information about the asset 112 (e.g.,
without revealing asset token A obtained by hashing iden-
tifying parameters of the asset 112 such as serial numbers,
model numbers, asset name, etc.). Further, the identity of the
sender 110a can also remain hidden from the blockchain
100. For example, in minting a token commitment Z on the
ZKP-enabled DLN 100 for the asset 112, the sender 110a
provides to the smart contract anonymously a hash of A,
H(A), and Z=H(S® P,.® A), which conceal or cloak the
identity of the sender 1104, the random nonce S, the public
key P,, the serial token A (which can be obtained by hashing

Feb. 20, 2020

some identifying information of the asset 112), etc. The
smart contract can verify the provided ZKPs, and allow the
token commitment Z to be added onto the token commit-
ments data structure, without having access to any of these
information (including the identity of the sender 110q, as
H(A) and Z are provided by the sender 110a anonymously).
As such, the use of ZKPs in the ZKP-enabled DLN 100
allows for the representation of an asset 112 on the ZKP-
enabled DLN 100 while preserving the confidentiality or
privacy of participants or users of the ZKP-enabled DLN
100 (such as sender 110a) and their assets (such as the
vehicle 112).

[0044] Further, the use of ZKPs also allows participants to
represent, on the ZKP-enabled DLN 100, their off-chain
asset 112 transactions without revealing or exposing the
transaction participants as well as details of the transaction
itself on the ZKP-enabled DLN 100 (i.e., to the other
participants of the ZKP-enabled DLN 100, which may
include the general public). As noted above, the sender 110a
provides to the smart contract anonymously (and hence
hidden from at least the other participants 110¢c-110¢) the
sender token commitment Z=H(S(® P,.(® A), the recipient
token commitment Z=H(S'®P,/® A) and the nullifier
N=H(S® S,), without revealing S, P,, S', P,/, A and/or S,
thereby protecting the identities of the sender 110a, the
recipient 1105 and/or the asset identified by A. As noted
above, the combining operator) may include the XOR
operator €, the concatenation operator |, and/or the like. In
some implementations, the identity of the sender 110a can
be protected as the sender 110a communicates with the
smart contract anonymously. The smart contract can, with-
out having access to any of these information, verify the
provided ZKPs and allow (i) the addition of the recipient
token commitment Z' onto the token commitments data
structure and (ii) the nullification of the sender token com-
mitment Z. As such, the use of ZKPs in the on the ZKP-
enabled DLN 100 allows for the representation of a trans-
action including the transfer of the asset 112 on the
blockchain while preserving the confidentiality or privacy of
the participants of the transaction (such as sender 110a and
recipient 1105) as well as the assets (such as the vehicle 112)
and the transaction itself (e.g., random nonces, asset tokens,
etc. generated during the transaction).

[0045] Some embodiments of the current disclosure
include a method comprising: sending a request to cause an
asset identifiable by an identifying parameter be registered
on a distributed ledger-based network (DLN); and receiving,
in response to the request, a confirmation confirming the
registration of the asset on the DLN, the confirmation being
issued after verification of a zero-knowledge proot (ZKP),
provided by a prover, that the prover has knowledge of an
identity of an asset token that when a hashing function is
applied to the asset token, a token commitment representing
the asset on the DLN is generated.

[0046] In some embodiments, the hashing function is a
first hashing function; and the asset token is obtained via an
application of a second hashing function on the identifying
parameter of the asset.

[0047] In some embodiments, the hashing function is a
first hashing function; the ZKP includes the ZKP that the
prover of the ZKP has knowledge of the identity of the asset
token that when a second hashing function is applied to the
asset token, a first hash value is generated; the verification
of the ZKP includes verifying that the first hash value is not

US 2020/0059362 Al

stored in a double-spend preventer data structure on the
DLN prior to the issuance of the confirmation.

[0048] In some embodiments, the hashing function is a
first hashing function; the ZKP includes the ZKP that the
prover of the ZKP has knowledge of the identity of the asset
token that when a second hashing function is applied to the
asset token, a first hash value is generated; the confirmation
is issued after the first hash value is added onto a double-
spend preventer data structure on the DLN after a verifica-
tion that the first hash value is not stored in the double-spend
preventer data structure.

[0049] In some embodiments, the application of the hash-
ing function includes the application of the hashing function
on an identifier associated with an owner of the token
commitment and/or a random nonce, the identifier including
a public key of the owner on the DLN.

[0050] In some embodiments, the ZKP and/or the verifi-
cation of the ZKP do not reveal the identifying parameter of
the asset and/or a random nonce used to generate the token
commitment on the DLN.

[0051] In some embodiments, the confirmation is issued
without revealing any identifying information of the asset,
an owner of the asset, and/or a random nonce used to
generate the token commitment on the DLN.

[0052] Some embodiments of the current disclosure
include a method comprising: receiving a request that is
configured to cause a transfer of an asset from a sender to a
recipient, the asset represented on a distributed ledger-based
network (DLN) by a first token commitment; and causing, in
response to the request and on the DLN, a registration of the
transfer of the asset from the sender to the recipient, the
registration occurring after verification of a zero-knowledge
proof (ZKP), provided by a prover, that the prover has
knowledge of an identity of an asset token, (1) the first token
commitment obtained via an application of a first hashing
function on the asset token, and/or (2) a second token
commitment representing the asset on the DLN obtained via
an application of a second hashing function on the asset
token.

[0053] In some embodiments, the ZKP includes the ZKP
that the prover has knowledge of an identity of: (a) a first
identifier associated with the sender, the first token commit-
ment obtained via the application of the first hashing func-
tion on the first identifier, and/or (b) a second identifier
associated with the recipient, the second token commitment
obtained via the application of the second hashing function
on the second identifier.

[0054] In some embodiments, the ZKP includes the ZKP
that the prover has knowledge of an identity of: (a) a first
identifier associated with the sender, the first token commit-
ment obtained via the application of the first hashing func-
tion on the first identifier, the first identifier including a
public key of the sender on the DLN, and/or (b) a second
identifier associated with the recipient, the second token
commitment obtained via the application of the second
hashing function on the second identifier, the second iden-
tifier including a public key of the recipient on the DLN.
[0055] In some embodiments, the ZKP includes the ZKP
that the prover is capable of deriving a first identifier
associated with the sender from a secret identifier associated
with the sender, the first identifier and the secret identifier
including a public key and a private key, respectively, of the
sender on the DLN.

Feb. 20, 2020

[0056] Insome embodiments, the registration of the trans-
fer occurs after a verification that a nullifier is not stored in
a nullifier data structure on the DLN, a presence of the
nullifier in the nullifier data structure indicating invalidity of
the first token commitment.

[0057] Insome embodiments, the registration of the trans-
fer occurs after a nullifier is added into a nullifier data
structure on the DLN after a verification that the nullifier is
not stored in the nullifier data structure, a presence of the
nullifier in the nullifier data structure indicating invalidity of
the first token commitment.

[0058] In some embodiments, the ZKP includes the ZKP
that the prover has knowledge of an identity of a nullifier
obtained via an application of a third hashing function on a
random nonce and/or a secret identifier associated with the
sender, a presence of the nullifier in a nullifier data structure
on the DLN indicating invalidity of the first token commit-
ment.

[0059] In some embodiments, the ZKP includes the ZKP
that the prover has knowledge of an identity of a nullifier
obtained via an application of a third hashing function on a
random nonce and/or a secret identifier associated with the
sender, a presence of the nullifier in a nullifier data structure
on the DLN indicating invalidity of the first token commit-
ment, the application of the first hashing function including
the application of the first hashing function on the random
nonce.

[0060] In some embodiments, the ZKP includes the ZKP
that the prover has knowledge of an identity of a nullifier
obtained via an application of a third hashing function on a
random nonce and/or a secret identifier associated with the
sender, a presence of the nullifier in a nullifier data structure
on the DLN indicating invalidity of the first token commit-
ment, the secret identifier including the private key of the
sender.

[0061] In some embodiments, the verification of the ZKP
occurs without any identifying information of the asset
including the identifying parameter of the asset being
revealed on the DLN.

[0062] In some embodiments, the verification of the ZKP
occurs without any identifying information of the sender
and/or the recipient being revealed, the identifying informa-
tion of the sender and/or the recipient including a public key
of'the sender, a private key of the sender, a public key of the
recipient and/or a private key of the recipient, on the DLN.
[0063] In some embodiments, the verification of the ZKP
occurs without any identifying information of the first token
commitment and/or a random nonce being revealed on the
DLN.

[0064] While various embodiments have been described
and illustrated herein, one will readily envision a variety of
other means and/or structures for performing the function
and/or obtaining the results and/or one or more of the
advantages described herein, and each of such variations
and/or modifications is deemed to be within the scope of the
embodiments described herein. More generally, one will
readily appreciate that all parameters, dimensions, materials,
and configurations described herein are meant to be exem-
plary and that the actual parameters, dimensions, materials,
and/or configurations will depend upon the specific appli-
cation or applications for which the teachings is/are used.
One will recognize, or be able to ascertain using no more
than routine experimentation, many equivalents to the spe-
cific embodiments described herein. It is, therefore, to be

US 2020/0059362 Al

understood that the foregoing embodiments are presented by
way of example only and that, within the scope of the
disclosure, including the appended claims and equivalents
thereto, disclosed embodiments may be practiced otherwise
than as specifically described and claimed. Embodiments of
the present disclosure are directed to each individual feature,
system, tool, element, component, and/or method described
herein. In addition, any combination of two or more such
features, systems, articles, elements, components, and/or
methods, if such features, systems, articles, elements, com-
ponents, and/or methods are not mutually inconsistent, is
included within the scope of the present disclosure.

[0065] The above-described embodiments can be imple-
mented in any of numerous ways. For example, embodi-
ments may be implemented using hardware, software or a
combination thereof. When implemented in software, the
software code can be stored (e.g., on non-transitory
memory) and executed on any suitable processor or collec-
tion of processors, whether provided in a single computer or
distributed among multiple computers.

[0066] Further, it should be appreciated that a computer
may be embodied in any of a number of forms, such as a
rack-mounted computer, a desktop computer, a laptop com-
puter, netbook computer, or a tablet computer. Additionally,
a computer may be embedded in a device not generally
regarded as a computer but with suitable processing capa-
bilities, including a smart phone, smart device, or any other
suitable portable or fixed electronic device.

[0067] Also, a computer can have one or more input and
output devices. These devices can be used, among other
things, to present a user interface. Examples of output
devices that can be used to provide a user interface include
printers or display screens for visual presentation of output
and speakers or other sound generating devices for audible
presentation of output. Examples of input devices that can be
used for a user interface include keyboards, and pointing
devices, such as mice, touch pads, and digitizing tablets. As
another example, a computer can receive input information
through speech recognition or in other audible format.
[0068] Such computers can be interconnected by one or
more networks in any suitable form, including a local area
network or a wide area network, such as an enterprise
network, and intelligent network (IN) or the Internet. Such
networks can be based on any suitable technology and can
operate according to any suitable protocol and can include
wireless networks, wired networks or fiber optic networks.
[0069] The various methods or processes outlined herein
can be coded as software that is executable on one or more
processors that employ any one of a variety of operating
systems or platforms. Additionally, such software can be
written using any of a number of suitable programming
languages and/or programming or scripting tools, and also
can be compiled as executable machine language code or
intermediate code that is executed on a framework or virtual
machine.

[0070] In this respect, various disclosed concepts can be
embodied as a computer readable storage medium (or mul-
tiple computer readable storage media) (e.g., a computer
memory, one or more floppy discs, compact discs, optical
discs, magnetic tapes, flash memories, circuit configurations
in Field Programmable Gate Arrays or other semiconductor
devices, or other non-transitory medium or tangible com-
puter storage medium) encoded with one or more programs
that, when executed on one or more computers or other

Feb. 20, 2020

processors, perform methods that implement the various
embodiments of the disclosure discussed above. The com-
puter readable medium or media can be transportable, such
that the program or programs stored thereon can be loaded
onto one or more different computers or other processors to
implement various aspects of the present disclosure as
discussed above.

[0071] The terms “program” or “software” are used herein
in a generic sense to refer to any type of computer code or
set of computer-executable instructions that can be
employed to program a computer or other processor to
implement various aspects of embodiments as discussed
above. Additionally, it should be appreciated that according
to one aspect, one or more computer programs that when
executed perform methods of the present disclosure need not
reside on a single computer or processor, but can be dis-
tributed in a modular fashion amongst a number of different
computers or processors to implement various aspects of the
disclosure.

[0072] Computer-executable instructions can be in many
forms, such as program modules, executed by one or more
computers or other devices. Generally, program modules
include routines, programs, objects, components, data struc-
tures, etc. that perform particular tasks or implement par-
ticular abstract data types. Typically the functionality of the
program modules can be combined or distributed as desired
in various embodiments.

[0073] Also, data structures can be stored in computer-
readable media in any suitable form. For simplicity of
illustration, data structures may be shown to have fields that
are related through location in the data structure. Such
relationships can likewise be achieved by assigning storage
for the fields with locations in a computer-readable medium
that convey relationship between the fields. However, any
suitable mechanism can be used to establish a relationship
between information in fields of a data structure, including
through the use of pointers, tags or other mechanisms that
establish relationship between data elements.

[0074] Also, various concepts can be embodied as one or
more methods, of which an example has been provided. The
acts performed as part of the method may be ordered in any
suitable way. Accordingly, embodiments can be constructed
in which acts are performed in an order different than
illustrated, which can include performing some acts simul-
taneously, even though shown as sequential acts in illustra-
tive embodiments. All publications, patent applications,
patents, and other references mentioned herein are incorpo-
rated by reference in their entirety.

[0075] All definitions, as defined and used herein, should
be understood to control over dictionary definitions, defini-
tions in documents incorporated by reference, and/or ordi-
nary meanings of the defined terms.

[0076] The indefinite articles “a” and “an,” as used herein
in the specification and in the claims, unless clearly indi-
cated to the contrary, should be understood to mean “at least
one.”

[0077] The phrase “and/or,” as used herein in the speci-
fication and in the claims, should be understood to mean
“either or both” of the elements so conjoined, i.e., elements
that are conjunctively present in some cases and disjunc-
tively present in other cases. Multiple elements listed with
“and/or” should be construed in the same fashion, i.e., “one
or more” of the elements so conjoined. Other elements may
optionally be present other than the elements specifically

US 2020/0059362 Al

identified by the “and/or” clause, whether related or unre-
lated to those elements specifically identified. Thus, as a
non-limiting example, a reference to “A and/or B”, when
used in conjunction with open-ended language such as
“comprising” can refer, in one embodiment, to A only
(optionally including elements other than B); in another
embodiment, to B only (optionally including elements other
than A); in yet another embodiment, to both A and B
(optionally including other elements); etc.
[0078] As used herein, “or” should be understood to have
the same meaning as “and/or” as defined above. For
example, when separating items in a list, “or” or “and/or”
shall be interpreted as being inclusive, i.e., the inclusion of
at least one, but also including more than one, of a number
or list of elements, and, optionally, additional unlisted items.
Only terms clearly indicated to the contrary, such as “only
one of” or “exactly one of,” or, when used in claims,
“consisting of,” will refer to the inclusion of exactly one
element of a number or list of elements. In general, the term
“or” as used herein shall only be interpreted as indicating
exclusive alternatives (i.e. “one or the other but not both”)
when preceded by terms of exclusivity, such as “either,”
“one of,” “only one of,” or “exactly one of” “Consisting
essentially of,” when used in claims, shall have its ordinary
meaning as used in the field of patent law.
[0079] As used herein, the phrase “at least one,” in refer-
ence to a list of one or more elements, should be understood
to mean at least one element selected from any one or more
of the elements in the list of elements, but not necessarily
including at least one of each and every element specifically
listed within the list of elements and not excluding any
combinations of elements in the list of elements. This
definition also allows that elements may optionally be
present other than the elements specifically identified within
the list of elements to which the phrase “at least one” refers,
whether related or unrelated to those elements specifically
identified. Thus, as a non-limiting example, “at least one of
A and B” (or, equivalently, “at least one of A or B,” or,
equivalently “at least one of A and/or B”) can refer, in one
embodiment, to at least one, optionally including more than
one, A, with no B present (and optionally including elements
other than B); in another embodiment, to at least one,
optionally including more than one, B, with no A present
(and optionally including elements other than A); in yet
another embodiment, to at least one, optionally including
more than one, A, and at least one, optionally including more
than one, B (and optionally including other elements); etc.
[0080] All transitional phrases such as “comprising,”
“including,” “carrying,” “having,” “containing,” “involv-
ing,” “holding,” “composed of,” and the like are to be
understood to be open-ended, i.e., to mean including but not
limited to. Only the transitional phrases “consisting of” and
“consisting essentially of” shall be closed or semi-closed
transitional phrases, respectively, as set forth in the United
States Patent Office Manual of Patent Examining Proce-
dures, Section 2111.03.
1. A method, comprising:
receiving a request that is configured to cause a registra-
tion of a token commitment on a distributed ledger-
based network (DLN), the token commitment repre-
senting an asset on the DLN and the request including
an identifying parameter of the asset;
providing by a provider, in response to the request and to
a self-executing code segment on the DLN, a zero-

Feb. 20, 2020

knowledge proof (ZKP) that the provider has knowl-
edge of an identity of an asset token where when a
hashing function is applied to the asset token, the token
commitment is generated; and

receiving, after verification of the ZKP by the self-

executing code segment, a confirmation confirming the
registration of the token commitment on the DLN
including an addition of the token commitment onto a
token commitments data structure on the DLN.

2. The method of claim 1, wherein:

the hashing function is a first hashing function;

the asset token is obtained via an application of a second

hashing function on the identifying parameter of the
asset.

3. The method of claim 1, wherein:

the hashing function is a first hashing function;

the ZKP includes the ZKP that the provider of the ZKP

has knowledge of the identity of the asset token that
when a second hashing function is applied to the asset
token, a first hash value is generated;

the token commitment is registered after the self-execut-

ing code segment verifies that the first hash value is not
stored in a double-spend preventer data structure on the
DLN prior to the registration of the token commitment.

4. The method of claim 1, wherein:

the hashing function is a first hashing function;

the ZKP includes the ZKP that the provider of the ZKP

has knowledge of the identity of the asset token that
when a second hashing function is applied to the asset
token, a first hash value is generated;
the token commitment is registered after the self-execut-
ing code segment adds the first hash value into a
double-spend preventer data structure on the DLN after
verifying that the first hash value is not stored in the
double-spend preventer data structure.
5. The method of claim 1, wherein the token commitment
represents a non-fungible token.
6. The method of claim 1, wherein the application of the
hashing function includes the application of the hashing
function on an identifier associated with an owner of the
token commitment and/or a random nonce.
7. The method of claim 1, wherein the application of the
hashing function includes the application of the hashing
function on an identifier associated with an owner of the
token commitment and/or a random nonce, the identifier
including a public key of the owner on the DLN.
8. The method of claim 1, wherein the ZKP and/or the
verification of the ZKP do not reveal the identifying param-
eter of the asset and/or a random nonce used to generate the
token commitment on the DLN.
9. The method of claim 1, wherein the registration of the
token commitment occurs without revealing any identifying
information of the asset, any identifying information of the
asset, and/or a random nonce used to generate the token
commitment on the DLN.
10. A method, comprising:
receiving a request that is configured to cause a transfer of
an asset from a sender to a recipient, the asset repre-
sented on a distributed ledger-based network (DLN) by
a first token commitment;

providing by a provider, in response to the request and to
a self-executing code segment on the DLN, a zero-
knowledge proof (ZKP) that the provider of the ZKP
has knowledge of an identity of an asset token,

US 2020/0059362 Al

(1) an application of a first hashing function on the asset
token generating the first token commitment, and/or

(2) an application of a second hashing function on the
asset token generating a second token commitment
representing the asset on the DLN; and

receiving, upon verification of the ZKP by the self-
executing code segment, a confirmation confirming an
addition of the second token commitment onto a token
commitments data structure on the DLN.

11. The method of claim 10, wherein the ZKP includes the

ZKP that the provider has knowledge of an identity of:

(a) a first identifier associated with the sender, the appli-
cation of the first hashing function including the appli-
cation of the first hashing function on the first identifier,
and/or

(b) a second identifier associated with the recipient, the
application of the second hashing function including
the application of the second hashing function on the
second identifier.

12. The method of claim 10, wherein the ZKP includes the

ZKP that the provider has knowledge of an identity of:

(a) a first identifier associated with the sender, the appli-
cation of the first hashing function including the appli-
cation of the first hashing function on the first identifier,
the first identifier including a public key of the sender
on the DLN, and/or

(b) a second identifier associated with the recipient, the
application of the second hashing function including
the application of the second hashing function on the
second identifier, the second identifier including a
public key of the recipient on the DLN.

13. The method of claim 10, wherein the ZKP includes the
ZKP that the provider has knowledge of an identity of a
nullifier obtained via an application of a third hashing
function on a random nonce and/or a secret identifier asso-
ciated with the sender,

a presence of the nullifier in a nullifier data structure on
the DLN indicating invalidity of the first token com-
mitment.

14. The method of claim 10, wherein the ZKP includes the
ZKP that the provider has knowledge of an identity of a
nullifier obtained via an application of a third hashing
function on a random nonce and/or a secret identifier asso-
ciated with the sender,

Feb. 20, 2020

a presence of the nullifier in a nullifier data structure on
the DLN indicating invalidity of the first token com-
mitment,

the application of the first hashing function including the
application of the first hashing function on the random
nonce.

15. The method of claim 10, wherein the ZKP includes the
ZKP that the provider has knowledge of an identity of a
nullifier obtained via an application of a third hashing
function on the random nonce and/or a secret identifier
associated with the sender,

a presence of the nullifier in a nullifier data structure on
the DLN indicating invalidity of the first token com-
mitment,

the secret identifier including the private key of the
sender.

16. The method of claim 10, wherein the ZKP includes the
ZKP that the provider is capable of deriving a public
identifier associated with the sender from a secret identifier
associated with the sender.

17. The method of claim 10, wherein the ZKP includes the
ZKP that the provider is capable of deriving a public
identifier associated with the sender from a secret identifier
associated with the sender, the public identifier and the
secret identifier including a public key and a private key,
respectively, of the sender on the DLN.

18. The method of claim 10, wherein the second token
commitment is added onto the commitments data structure
after the self-executing code segment verifies a nullifier is
not stored in a nullifier data structure on the DLN, a presence
of the nullifier in the nullifier data structure indicating
invalidity of the first token commitment.

19. The method of claim 10, wherein the second token
commitment is added onto the commitments data structure
after the self-executing code segment adds a nullifier into a
nullifier data structure on the DLN after verifying that the
nullifier is not stored in the nullifier data structure, a pres-
ence of the nullifier in the nullifier data structure indicating
invalidity of the first token commitment.

20. The method of claim 10, wherein the verification of
the ZKP by the self-executing code segment occurs without
revealing any identifying information of the asset on the
DLN.

21-30. (canceled)

