2008/068742 A2 I} 0 00 10 0RO O A

O

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization Vd”Ij

International Bureau

(43) International Publication Date
12 June 2008 (12.06.2008)

) IO O OO 0

(10) International Publication Number

WO 2008/068742 A2

(51) International Patent Classification: Not classified
(21) International Application Number:
PCT/L2007/001479

(22) International Filing Date:
29 November 2007 (29.11.2007)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
60/868,361
11/944,639

Us
Us

4 December 2006 (04.12.2006)
26 November 2007 (26.11.2007)

(71) Applicant (for all designated States except US): SAN-
DISK IL LTD. [IL/IL]; Central Park, 7 Atir Yeda, 44643
Kfar Saba (IL).

(72) Inventors; and

(75) Inventors/Applicants (for US only): GOLDE, Ittai
[IL/L]; 62A Bilu St., 75321 Rishon Letzion (IL). BEN
ZVI, Kobi [IL/IL]; Hasharon Street 23, 47240 Ra-
mat-Hasharon (IL). VEXLER, Oron [IL/IL]; Rachavat
Tlan 4A/15, 54056 Givat Shmuel (IL). POMERANTZ,
Itzhak [IL/IL]; 18 Golomb Street, 44357 Kfar Saba (IL).

(74) Agent: FRIEDMAN, Mark; Moshe Aviv Tower, 54th
Floor, 7 Jabotinsky Street, 52520 Ramat Gan (IL.).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH,
CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG,
ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, 1L,
IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK,
LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW,
MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL,
PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, SV, SY,
TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA,
M, ZW.
(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL, PL,
PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM,
GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:
without international search report and to be republished
upon receipt of that report

(54) Title: INCREMENTAL TRANSPARENT FILE UPDATING

122a

120b 121b

‘ . L
........... Application

136b

patnn |
Application — 13\W g
| ! L 150
i 120a o, /
] i
E A4 v
....... YOG |7 Wrapper
1378 1348 13(;
a i i
1340~ : 1340
7 v‘\\}s 152b
’ 1T 1§7d 'f e / 124b
‘ » i A ¥
‘ File system 1376 1 ¥ \ 4 o arstar ;J
135a VY
/
(_, Storage device .
130a \ c 300 133b
126a = 135d)
113300:-:i < \\ L— 4300-1 || Dete 4=
-ii <€
. L130a- i \ 12004 { \¥4///,//"7
| \ 130b-iii 126b
\ 193
130b
\—. 13\9a Storage device 156
A B

(57) Abstract: A system and method to protect a target file from data damage wherein a wrapper application transparently intercepts
a write call operative to affect the target file and stores the pertinent data in a delta file. Occasionally the target file is backed up in
a temporary file and then updated. The wrapper application also intercepts a read call operative to access the target file and merges
the update information with data from the target file in a temporary file. The resulting merged data is returned as read results data.

10

15

20

25

30

WO 2008/068742 PCT/IL2007/001479

1
INCREMENTAL TRANSPARENT FILE UPDATING

FIELD AND BACKGROUND OF THE INVENTION

Various methods and systems to protect a target file from damage are possible, and
particularly, methods and systems may prevent data damage that occurs due to
disruption while the target file is open for writing.

Flash memory devices are very well known in the art of computer engineering.

The normal way of storing information in such memories is in data files that are
managed by the operating system.

It is a known property of flash storage systems that a data file is vulnerable to data
damages if certain unexpected events, such as power failures or software crashes, occur
while the file is open for writing. This poses a severe problem because writing into a file
is routinely necessary, and a file must be open for writing in order for it to be updated.

Solutions have been developed for software applications to handle files in special
ways that reduce the risk. Such solutions can be seen in many word processing
applications, which periodically makes a backup copy of open files. Alternatively, a fix
utility runs post-effect, when corruption of the file has been detected. However, such
solutions are application dependent, slowing down the development of applications, and
are a source of other types of problems due to programming errors. Furthermore, when a
running application is protecfing an original version of a file and also keeping an
updated temporary copy, there arises a problem of access conflicts (if a different
application calls the file, which file will it access?). This requires inconvenient locking
of files. Protection methodologies are also available for system-wide file protection
schemes, which constantly update permanent backup copies of an entire data storage
device or particular impoi'tant data. Keeping a permanent back up requires significant
data storage space and system resources to constantly check and update files.

There is thus a widely recognized need for, and it would be highly advantageous to
have, a solution that allows any application to use any data file without the risk that the
file will be damaged due to the above-mentioned causes and without keeping a
permanent back up copy.

SUMMARY OF THE INVENTION

Various methods and systems to protect a target file from data damage are possible,

10

15

20

25

30

WO 2008/068742 PCT/IL2007/001479
2

and particularly, methods and systems may prevent data damage that occurs due to
disruption while the target file is open for writing.

An embodiment of a system for storing a target file and protecting the target ﬁlé
from data damage ‘may include: a) a processor configured to retrieve and execute
program code of a wrapper application including: i) code for intercepting at least one
file command issued by a second application, the at least one file command being
operative to affect the target file, ii) code for saving update information pertinent to the
at least one file command, and iii) code for updating the target file with the update
information; b) a first memory space for storing the target file, and c) a second memory
space for storing the update information. The wrapper application may be independent
from the second application issuing the file command.

In an embodiment of a computer readable storage medium having computer
readable code embodied thereon, the computer readable code for protecting a target file
from data damage, the computer readable code may include: a) program code for
intercepting at least one file command issued by an application and operative to affect
the target file; b) program code for saving update information pertaining to the at least
one file command without modifying the target file, and c) program code for updating
the target file with the update information. The computer readable code may be
independent of the application issuing the command.

An embodiment of 2 method of employiﬁg a wrapper program to protect a target file
from data damage, may include the steps of: a) intercepting by the wrapper program of
at least one file command operative to affect the target file and issued by an application,
the step of intercepting Being transparent to the application; b) saving update
information pertaining to the at least one file command without altering the target file,
and c) updating the target file with the update information.

An embodiment of a system for reading data from a protected target file may include
a processor configured to retrieve and execute program code of a wrapper application
including: code for intercepting at least one file command issued by an application
independent of the wrapper application, the file command operative to access the
protected target file, and code for reading update information pertaining to the file
command. The system may also include a first memory space for storing the protected

target file and a second memory space for storing the update information.

10

15

20

25

30

WO 2008/068742 PCT/IL2007/001479
3

An embodiment of a method of employing a wrapper program to read a protected
target file may include the step of: intercepting by the wrapper program of at least one
file command issued by an application, the file command operative to access the
protected target file. The step of intercepting may be transparent to the application. The
method may also include the step of reading from a delta file update information
pertaining to the at least one file command. The delta file may be separate from the
protected target file. The method may further include the steps of merging data from the
target file with the update information and returning the merged data as a response to the
file command.

An embodiment of a system for storing a target file and protecting the target file
from data damage may include a first memory space for storing the target file. The
system may also include a second memory space for storing update information
pertaining to at least one file command operative to affect the target file. The system
may also include a processor configured to retrieve and execute program code of a
wrapper application including code for intercepting the at least one file command
operative to affect the target file, code for saving the update information to the second
merﬁory space and code for updating the target file with the update information. The
wrapper program may be independent of the application issuing the file command.

In the system for storing a target file, the first memory space may reside in a
nonvolatile memory of a data processing device. In some embodiments of the system,
the second memory space may reside in the same nonvolatile memory as the first
memory space, with the target file and the update information being stored in separate
locations in the memory. In other embodiments, the second memory space may reside in
a volatile memory of the data processing device. In other embodiments, the second
memory space may reside in a memory (volatile or nonvolatile) of a data storage device.

In the system for storing a target file, the first memory space may reside in a
nonvolatile memory of a portable data storage device. Examples of portable data storage
devices include a removable medium (for example a magnetic disk or an optical disk) or
a portable drive (for example a flash disk, an external hard drive or a smart-card). In
some embodiments, the second memory space may reside in the same memory as the
first memory space, with the target file and the update information being stored in

separate Jocations in the memory. In other embodiments, the second memory space may

10

15

20

25

30

WO 2008/068742 PCT/IL2007/001479
4

reside in a memory (volatile or nonvolatile) of a data processing device. In other
embodiments, the second memory space may reside in a volatile memory of the portable
data storage device.

In the system for storing a target file, the update information may include only data
pertaining to the at least one file command. Particularly, the update data, the second
memory space and the delta file may not contain data copied from the target file. Thus,
even after a command issued by the application and operative to affect the target file has
been stored, there would remain only one copy of the data in the target file (the copy of
the data of the target file is stored only in the first memory space) and one copy of the
update information pertinent to the stored file command (the data pertinent to the stored
file command is stored only in the second memory space). Only after a merge event
would a second copy of data from the target file be placed into a temporary file.

An embodiment of a system for storing a target file may further include a third
memory space for storing a temporary file and the wrapper application may further
include code for copying at least part of the target file into the temporary file. In
alternative embodiments, the temporary file is an independent file or a temporarily
allotted location in an existing file or a temporarily allotted location in a volatile
memory. The wrapper application may also further include code for applying the stored
update information to the temporary file to produce an updated version of the target file.
The wrapper application may also further include code for replacing part of the target
file with the temporary file. According to an alternative embodiment the third memory
space may reside in the same memory as the first memory space. In another alternative
embodiment the third memory space may reside in the same memory as the second
memory space. In a further alternative embodiment, the third memory space may reside
in any one of the memories listed above. Thus, it is understood that the third memory
space could reside in a volatile or nonvolatile memory of a data processing device or of
a data storage device and each alternative location for the third memory space may be in
combination with each of the alternative locations of the first and second memory
spaces.

An embodiment of a computer readable storage medium having embodied thereon
computer readable code for protecting a target file from data damage may include

program code for intercepting at least one file command issued by an application, the

10

15

20

25

30

WO 2008/068742 PCT/IL2007/001479
5

program code being independent from the application issuing the file command. In an
embodiment described below, the program code can be executed separately from any
particular application and intercepts file commands from an arbitrary application. The
file command is operative to affect the target file. Program code may also be included
for saving update information pertaining to the file command without modifying the
target file and for updating the target file with the update information. In alternative
embodiments, the code may specify that the updating is to be carried according to a
fixed time schedule or that the updating is to be carried out in response to one or more
termination events or that the updating is to be carried out according to a combination of
a fixed time schedule and one or more termination events. Examples of a computer
readable medium may include, a ROM contained in a portable storage device or a
removable media (for example a CD) included in a package sold with a storage device.
Alternatively, the computer readable medium may be a hard disk installed on a server
accessible over the Internet. The program code may serve as a stand-alone program to
protect data on one or more arbitrary storage devices. Alternatively, the code may be
included in a driver program for execution on a data processing device, the driver
program serving as an interface between the data processing device and a data storage
device. Alternatively the code may be incorporated into an operating system or into a
file server application. In a further possible alternative embodiment, the code is
executed by a processor internal to a data storage device.

An embodiment of the program code for intercepting the file command and saving
the update information may make the intercepting and saving contingent upon one or
more conditions. For example the intercepting and saving may be performed only when
the application issuing the command is one of a plurality of “included” applications. In
the context of the description herein, an “included” application, may be defined as an
application that has been designated as one from which the wrapper program is fo
intercept a file command to modify ‘the target file (generally the included applications
are applications that store important files without power out protection [for example
Microsoft Visual Studio®]). In an alternative example, the file command may be
intercepted and the update information saved if the file command is issued by an
application that is not an “excluded” application. In the context of the description

herein, an “excluded” application, may be defined as an application that has been

10

15

20

25

30

WO 2008/068742 PCT/IL2007/001479

6

designated as one from which the wrapper program is not to intercepts a file command
to modify the target file (for example Microsoft Word® may be an excluded application
since it has its own automatic file protection'or Microsoft Internet Explorer® may be
excluded because it saves a large number of temporary files but does not generally save
user modified files). In an alternative example, the file command may be intercepted and
the update information saved if the file command is operative to affect a file that isnot a
temporary file. In an alternative examble, the file command may be intercepted and the
update information saved if the file command is operative to affect a file belonging to an
“included” file type. In the context of the description herein, an “included” file type may
be a type of file that has been designated to be protected by the wrapper application [for
example a .txt file may be an included file type]. In an alternative example, the file
command may be intercepted and the update information saved if the file command is
operative to affect a file not belonging to an “excluded” file type. In the context of the
description herein, an “excluded” file type may be a type of file that has been designated
to not be protected by the wrapper application [for example .doc and .tmp file types may
be excluded] and in an alternative example, the file command may be intercepted and
the update information saved if the file command is operative to affect a file stored in an
included storage device. In the context of the description herein, an included device may
be defined as a device designated for protection, such that a file on the included device
is to be protected.

An embodiment of the computer readable code may further include code to intercept
every write command that is operative to affect the target file after the code for saving is |
executed and until the code for updating is executed.

An embodiment of the computer readable code may further include code for
detecting a termination event and for updating the target file with the update information
upon detection of the termination event. Some examples of termination events may
include an issuing of a command to close the target file, a closing down of an
application that accessed the target file, an occurrence of a condition.dependent on a
statistic related to a plurality of file commands [for example if eighty percent of the file
commands issued to the target file change less than 10 Kbytes of data, then a
termination event may be triggered when a file command is issued changing more than

10 Kbytes of data in the target file], and an exceeding of a maximum time threshold

10

15

20 .

25

30

WO 2008/068742 PCT/IL2007/001479
7

since a previous updating of the target file.

An embodiment of the computer readable code may further include program code
for copying part of the target file into .a temporary file, and program code for applying
the saved update information to the temporary file. In one alternative embodiment, the
code may provide for opening the temporary file and copying the data immediately
following the saving of the update information. In a second alternative embodiment, the
code may provide for opening of the temporary file and copying of data immediately
preceding the updating of the target file.

An embodiment of the computer readable code may further include program code
for applying the saved update information to the temporary file upon the occurrence of a
merge event.

According to still further features in the described preferred 'embodiments, Some
examples of merge events include: i) an issuing of a command to close the target file, i1)
a closing down of an application that accessed the target file, iii) an occurrence of a
condition dependent on a statistic related to a plurality of file commands [for example if
eighty percent of the file commands issued to the target file change less than 10 Kbytes
of data, then a termination event is triggered when a file command is issued changing
more than 10 Kbytes of data in the target file] iv) an exceeding of the size of a delta file
containing the update information over a maximum size threshold, v) a passing of level
of activity of an operating system under a minimum activity threshold, vi) an exceeding
of a maximum time threshold since a previous merge event, or vii) an issuing of a
command to read the target file, in which case the applying of the saved update
information to the temporary file would immediately precede emulation of execution of
the read command. Thus, the updated data contained in temporary file would be
returned as read information to the ‘application that issued the read command.
Alternatively, the applying of the saved file commands to the temporary file may
immediately precede the updating of the target file. |

According to still further features in the described preferred embodiments, the
computer readable code may further include program code for detecting a termination
event, and program code upon detection of the termination event for updating the target
file with the saved update information and then for deleting the target file or the

temporary file or a delta file containing the saved update information.

10

15

20

25

30

WO 2008/068742 PCT/IL2007/001479

8

An embodiment of a method of using a wrapper program to protect a target file from
data damage may include the step of the wrapper program transparently intercepting at
least one file command operative to affect the target file, the wrapper program being
independent of the application issuing the file command, and the step of the wrapper
program saving update information pertaining to the at least one file command without
altering the target file. The update information may contain the information necessary to
execute the at least one file command. The method may also include the step of
updating the target file with the update information.

According to still further features in the described preferred embodiments, in the
time interval between the start of saving the update information until the end of updating
the target file with the saved update information, every write command initiated by an
application from a plurality of included applications and operative to affect the target
file may be intercepted and saved.

According to still further features in the described preferred embodiments, updating
the target file may include the substeps of copying at least part of the target file into a
temporary file and applying the saved update information to the temporary file, and
replacing all or part of the target file with the all or part of the temporary file, thus
effectively updating the target file and deleting the temporary file.

According to still further features in the described preferred embodiments, the delta
file containing the update information may be deleted subsequent to the step of applying
the stored update information to the temporary file.

According to still further features in the described preferred embodiments, the step
of updating may be performed upon occurrence one Or more termination events.
Examples of termination events include the following: i) an issuing of a command to
close the target file, ii) a closing down of an application that accessed the target file, iii)
an occurrence of a condition dependent on a statistic related to a plurality of file
commands [for example, if for a period of one half hour an application accessed the
target file at least once every five minutes, then the application not accessing the target
file for a ten minute period is a termination event which triggers updating of the target
file], iv) a passing of level of activity of an operating system under a minimum activity
threshold, v) an exceeding of a maximum time threshold since the issuing of the

previously saved file command, and vi) an exceeding of a maximum time threshold

10

15

20

25

30

WO 2008/068742 PCT/IL2007/001479

since a previous merge event.

According to still further features in the described preferred embodiments, the steps
of intercepting a file command and saving update information may be contingent on a
condition. For example intercepting and saving may only occur when the file command
is issued by a application from a plurality of included applications, when the file
command is issued by a application other than an excluded application, when the file
command is operative to affect a file other than a temporary file, when the file command
is operative to affect an included file type, when the file command is not operative to
affect a file of an excluded file type or when the file command is operative to affect a
file stored in an included storage device.

An embodiment of a system for reading data from a protected target file may include
a processor configured to retrieve code of a wrapper application from a storage media
and configured to execute the code. The wrapper application may include code for
intercepting at least one file command issued by an application independent of the
wrapper application, the file command operative to access the protected target file. The
wrapper application may also include code for reading update information pertaining to
the file command. The system may also include a first memory space for storing the
protected target file and a second memory space for storing the update information.

According to further features in the described preferred embodiments, the wrapper
application of the system for reading from protected target file may also include code for
merging data from the protected target file with the update information into a temporary
file. The temporary file may be the file containing the update information or the
temporary file may be a separate temporary file. The temporary file and the update
information may be stored on the same memory device as the target file or on a separate
memory device.

An embodiment of a method of employing a wrapper program to read a protected
target file may include the step of: intercepting by the wrapper program of at Jeast one
file command issued by an application, the file command operative to access the
protected target file. The step of intercepting may be transparent to the application
issuing the command. The method may also include the step of reading update
information pertaining to the at least one file command and stored in a delta file. The

delta file may be separate from the protected target file. The method further contains the

10

15

20

25

30

WO 2008/068742 PCT/IL2007/001479

10

steps of merging data from the target file with said update information and returning the

merged data as a response (the response being the read results data) to the file command.

TERMINOLOGY

The following terms are used in this application in accordance with their plain
meanings, which are understood to be known to those of skill in the pertinent art(s).
However, for the sake of further clarification in view of the subject matter of this
application, the following explanations, elaborations and exemplifications are given as
to how these terms may be used or applied herein It is to be understood that the below
explanations, elaborations and exemplifications are to be taken as exemplary or
representative and are not to be taken as exclusive or limiting. Rather, the terms
discussed below are to be construed as broadly as possible, consistent with their
ordinary meanings and the below discussion.

o Merging: The process of, e.g., applying update information saved in a delta file to
content copied from a target file into a temporary file (for example the temporary
file may be the delta file or a separate temporary file).

o Merge Event: An event that triggers a merging process. The event may be based
on operating system events, such as a time base, a file system operation, or an
indication from the wrapper application.

o Updating a target file: The process of applying update information to the target file
(see above). In a preferred embodiment (below), updating the target file is
performed by copying a part of the target file to a temporary file, applying update
information to the temporary file and replacing the part of the target file with the
corresponding updated data in the temporary file.

o Delta File: A temporary file that may be used for, e.g., accumulating update
information related to intended changes in a target file.

o Target File: A file that is the intended object of some action, operation, process
etc., whether or not the file is in fact acted upon, affected, etc. Herein, “target
file” may be used to refer to a file to be protected from data damage.

o Interception: The process of monitoring, checking, altering and/or redirecting
communications, e.g., between an application and a file system or between an

application and an operating system.

10

15

20

25

30

WO 2008/068742 PCT/IL2007/001479
11

o Independent application: a first application is said to be independent of a second
application if the first application is not contingent on the second application, i.e.,
does not require the second application in order to function as intended.

o Wrapper: An application that monitors, intercepts and/or controls
communications, e.g., between another application and the computer system or
between one or more applications and a device.

o Data storage device: A mechanism that is employed, e.g., by a data processing
device to store data and from which data can be retrieved. A data storage device
may be installable (for example a hard disk) or removable (for example a flash
disk) or a removable medium (for example a compact disk or a magnetic tape).

o Storing a command: For the sake of the current application, “storing a command
in a delta file” may be used to refer to the operation of storing in the delta file
update information pertaining to the command, the update information containing

data necessary to apply the command at a future time.

BRIEF DESCRIPTION OF THE DRAWINGS

Various embodiments of a system and method for protecting a file from data damage

are herein described, by way of example only, with reference to the accompanying

drawings, where:

Figure 1A is a schematic illustration of a prior art file storage system;

Figure 1B is a schematic illustration of a first embodiment of a system for storing and
protecting a target file;

Figure 2 Is a schematic illustration of a second embodiment of a system for storing and
protecting a target file;

Figure 3 is a flow chart illustrating interception and redirection of a read command and
emulation of reading a target file;

Figure 4 is a flow chart illustrating applying update information to a temporary file, and

Figure 5 is a flow chart illustrating the process of intercepting and redirecting a write
call to a target file.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

The principles and operation of incremental transparent file updating according to

various embodiments may be better understood with reference to the drawings and the

10

15

20

25

30

WO 2008/068742 PCT/IL2007/001479
12

accompanying description.

Various preferred embodiments exemplify a system that minimizes the risk of
damaging a data file by minimizing the time that the file is kept open for writing, thus
minimizing the risk that an unexpected event will occur while the file is open.

According to the preferred embodiments, applications implement read and write
commands operative to access a protected data file (the target file), while the target file
rémains opened for reading only — a process that does not place the file at risk. A small
service storage area, hereinafter called a delta file, is kept open and is used to store
update information pertinent to file commands operative to affect one or more data files
(target files) by one or more applications. Meanwhile reading and writing to the target
file is emulated by a wrapper application. The wrapper application launches, monitors,
intercepts and emulates basic elements in the communication between a functional
application and a device or between a functional application and an operating system.
Particularly, all the update information is accumulated in one or more delta files. When
necessary (for example in order to emulate a reading the updated target file or as
preparation for updating the target file) the stored update information and data read from
the target file are merged into a temporary file. In the merge process, the temporary file
is opened for writing and part or all of the target file is copied to the temporary file. The
wrapper application then updates the temporary file based on the update information
stored in the delta file.

Occasionally, the target file is also updated. When updating the target file, first the
temporary file is closed and checked. Then part of the target file is replaced by the
temporary file. This process protects the target file from data damage by minimizing the
time that the target file is open and vulnerable to data damage. Furthermore, if a power
failure occurs while the target file is being copied to the temporary file, then the target
file remains intact. If a power failure occurs while part of the target file is being updated,
the temporary file remains intact.

Both the file system and the functional application are blind to this wrapping
process, which is transparent to both. The functional application functions exactly as
when there is no wrapper application. The file system handles all file commands that
reach the file system exactly as when there is no wrapper application.

Thus, a functional application programmer writes his program according to

5 I

10

15

20

25

30

WO 2008/068742 PCT/IL2007/001479
13

operating system standards without need to adapt the program for or even be aware of
the file protection routine. Likewise, the programmer does not need to devise an
application dependent routine to prevent data damage due to interruption while writing
to storage.

Because the functioning of the wrapper program is transparent to the functional
application and to the file system, the wrapper program can function independently of
any particular functional application. Thus, the wrapper program can be sold separately
as a stand-alone program for protecting files accessed by an arbitrary functional
application. Since the wrapper program is independent of any particular functional
application, the wrapper program can be included in a device driver or in an operating
system that must respond to commands from any program that a user may install.

Figure 1A shows a prior art data processing device 120a (such as a personal
computer), having a processor 121a. Processor 121a is executing an application 122a
(such as the Microsoft Windows® Notepad text editor) and a file management system
124a (such as FAT32 or NTFS). Application 122a and file management system 124a
are illustrated inside of processor 121a to indicate that processor 121a is executing
them.

Application 122a issues a file command, for example a read call 134a operative to
access a file 130a. File 130a is stored in a portable data storage device 126a. Read call
134a is processed directly by file management system 124a. File management system
124a opens file 130a for reading and reads 135a data from file 130a and sends 137a the
data to application 122a. At a later time, application 122a issues a second file command,
a write call 136a operative to affect file 130a. As is known to those skilled in the art, a
file does not generally reside in a single continuous set of memory addresses, but
consists of a string of parts whose addresses are associated by a set of memory address
pointers. Particularly file 130a is composed of three sections 130a-i, 130a-ii, and 130a-
jii. When modifying a file it may be necessary to add information that does not fit in the
memory currently allocated to the file. In such a case, it is not necessary to move the
entire file to a new memory range, rather a new address is associated to the file and the
new data are written in the new memory space. File management system 124a receives
write call' 136a, opens file 130a for writing and writes 139a data directly to file 130a.
Such is the state of the art.

10

15

20

25

30

WO 2008/068742 PCT/IL2007/001479
14

It is well known that valuable data can be lost from open files when a disruption
occurs (for instance a power failure, or removal of portable data storage device 126a
from a socket, or a software failure) while writing to a device such as portable data
storage device 126a. Thus, file 130a of the system of Figure 1A is in grave danger of
data loss whenever an application such as application 122a issues a write command
such as write command 136a.

Figure 1B shows a first embodiment of a system for incremental transparent file
updating, including a data processing device 120b (such as a personal computer), which
contains a processor 121b running an application 122b (such as the Microsoft Windows
Notepad text editor), a wrapper application 150 (also being executed on processor
121b), and a file management system 124b (such as FAT32 or NTFS). Application
122b and wrapper application 150 are represented in Figure 1B i;xside of processor 121b
to indicate that application 121b and wrapper application 150 are being executed by
processor 121b.

Application 122b issues a file command, for example a write call 136b operative to
affect a file 130b stored on a mobile storage device 126b. Application 122b is a
standard application and all file commands (including write call 136b) are issued
according to standard operating system protocols.

Target file 130b consists of three parts marked 130b-i, 130b-ii, and 130b-iii. Each
part 130b-i, 130b-ii, and 130b-iii occupies a continuous string of memory addresses.
The last byte of each parts 130b-i and 130b-ii is a pointer that points to the first address
of the next part of target file 130b. The last bit of part 130b-iii is a stop bit representing
the end of file 130b. Write call 136b is intercepted by wrapper épplication 150. In this
example, write call 136b is operative to affect part 130b-ii. When wrapper application
150 detects write call 136b then wrapper application 150 checks to determine if write
call 136b is to be intercepted and redirected. In the example of the embodiment of
Figure 1B, intercepting and redirecting write call 136b is contingent on fulfilling all of
the following conditions: storage device 126b being of a type included amongst storage
device types to be protected and the type of file 130b being included amongst file types
to be protected. Since, in this example, during set up of wrapper application 150 a user
specified that all portable storage devices should be protected and since the driver

routine of portable storage device 126b defines portable storage device 126b as a

10

15

20

25

30

WO 2008/068742 PCT/IL2007/001479
15

portable storage device, therefore portable storage device 126b is an included storage
device. Similarly, file 130b is of an included file type (a .txt file) therefore wrapper
application 150 intercepts and redirects write call 136b.

Interception of a system call can be done in many ways known to those skilled in the
art of programming as described in detail in computer programming text books such as
“[oadable Kemel Module Programming and System Call Interception” by Nitesh
Dhanjani and Gustavo Rodriguez-Rivera published in the Linux Journal 2006.
Particularly, Wrapper application 150 prevents direct transmission of write call 136b to
file management system 124b. Instead, wrapper application 150 instructs 152b file
management system 124b to save update information pertinent to write call 136b in a
delta file 158. File management system 124b writes 139b.to delf[a file 158 the update
information that is necessary to update target file 130b. In the example of Figure 1B,
update information includes data to add to target file 130b. It will be understood that
update information may be editing information (for example instructions to move a
piece of data from one location to another location within target file 130b or instructions
to remove a piece of data from target file 130b) in which case it update information may
include no new data for target file 130b. Altemnatively, if delta file 158 does not exist,
file management system will first create delta file 158 before writing 139b the data.
Wrapper application 150 reports back to running application 122b as if target File 130b
has been updated, thus emulating writing to target file 130b. During the emulated
writing process, all writing has been to delta file 158. Target file 130b has not been
modified and target file 130b has not even been opened for writing. It is emphasized
that wrapper application 150 receives file commands according to standard operating
system protocols and returns responses and data to application 122b exactly emulating
operating system responses and data. Therefore the activity of wrapper application 150
is transparent to application 122b and therefore the activity of application 122b is
according to operation standards and requires no modification due to the presence of
wrapper application 150.

In the example of Figure 1B, wrapper application 150 and application 122b are both
being executed by a single processor 121b. Therefore in order to facilitate interception
of commands, wrapper application wraps application 122b. “Wrapping” application

122b means that application 122b does not run independently. Rather, when a user

5

10

15

20

25

30

WO 2008/068742 PCT/IL2007/001479
16

requests to start application 122b, the request is passed through wrapper application
150. Wrapper application 150 invokes application 122b which runs “inside” of (is
wrapped by) wrapper application 150 (that is to say all input and output to and from
application 122b is via wrapper application 150).

At a later time, application 122b issues a second file command, a read call 134b.
Read call 134b accesses a target file 130b and particularly at part 130b-ii. Wrapper
application 150, in turn redirects read call 134b and emulates reading data from target
file 130b by issuing a first read call 134¢ that accesses target file 130b. Read call 134c is
processed by file management system 124b. File management system 124b opens file
130b for reading and reads 135¢ data from part 130b-ii of file 130b and sends 137¢ the
read results data to wrapper application 150.

Wrapper application 150, then checks whether there exists a delta file 158 associated
with target file 130b and whether the update information in delta file 158 applies to the
range of read call 134b. In the example of Figure 1B, delta file 158 exists and the range
of read call 134b is contained in part 130b-ii of file 130b, and delta file 158 does
contains update information for the range of read call 134b. Therefore, in order to fulfill
read call 134b and return up to date read results data (the emulated read information) to
application 122b it is necessary to merge the update information pertaining to file
command 152b stored in delta file 158 with data from target file 130b. Thus, read call
134b constitutes a merge event that triggers merging of commands stored in delta file
158 with data stored in target file 130b. To execute the merging, wrapper application
150 issues second read call 134d thét accesses delta file 158. Read call 134d is
processed by file management system 124b. File mﬁnagement system 124b opens delta
file 158 for reading and reads 135d data from delta file 158 and sends 137d the read
results data to wrapper application 150. ‘

The read results data from reads 135¢-d are merged by the wrapper application 150
by applying the update information from read 135d to the data from read 135¢, and the
merged data are sent 137b to running application 122b emulating the return of read
results data in response to the read request 134b. Thus, wrapper application has
emulated reading updated data from target file 130. Application 122b in unaware that it
has not communicated directly with file management system 124b.

At this point, the merged data from reads 135¢-d constitute an updated version of

10

15

20

25

30

WO 2008/068742 PCT/IL2007/001479
17

part 130b-ii of target file 130b. Because activity on data processing device 120b is
currently low in this example (there is plenty of free processing power so that updating
target file 130 will not disturb any other process), wrapper application 150 updates
target file 130b. It will be understood that it is not necessary to update target file 130b
every time data are merged into a temporary file. To update target file 130b, wrapper
application 150 first instructs 152¢ file system 124b to write 139¢ the merged data into
delta file 158 (thus replacing the file command information previously stored in delta
file 158). Then wrapper application 150 instructs file system 124b to update target file
130b by replacing 193 part 130b-ii with the merged data now stored in delta file 158.
Since both target file 130b and delta file 158 already exist on the same storage device
126b, then replacing 193 is accomplished merely by changing the address pointers to
incorporate delta file 158 into target file 130b in place of the part 130b-ii. Particularly
in the example of Figure 1B, the address of the pointer at the end of delta file 158 is set
to point at the beginning of part 130b-iii of file 130b.and then delta file 158 is closed.
After wrapper application 150 verifies that delta file 130b has been closed, target file
130b is opened for writing and the pointer at the end of part 130b-i of target file 130b is
set to point at the address of the beginning of delta file 158 and target file 130b is
closed. Finally the memory space of part 130b-ii of délta file 130b is freed for use by a
future write command. Since delta file 158 has been entirely reallocated to target file
130b therefore a memory pointer for the beginning of delta file 158 is removed from the
directory of storage device. 126b effectively deleting delta file 158. When there is a
future write command, wrapper application 150 will need to create a new delta file.

In the example of Figure 1B, merging data copied from target file 130b with
commands stored in delta file 158 is triggered by read call 134b. Merging is also
triggered whenever there is a termination event that makes it necessary to update target
file 130b. Before updating target file 130b, the update information stored in delta file
158 and data stored in target file 130b are merged into a temporary file (as above, delta
file 158 may serve as a temporary file). In this way the temporary file serves as a back
up for target file 130b, if a power failure occurs while updating target file 130b thereby
damaging target file 130b, the data of target file 130b can be recovered from the
temporary file. Merging may also be triggered any time when there are available

resources [memory space and processor time] after a time threshold has been exceeded

!
!

10

15

20

25

30

WO 2008/068742 PCT/IL2007/001479
18 .

since the last merging.

Many events may trigger the updating of a target file. Updating may be trigged
periodically (for example, target file 130b may be updated once every 15 minutes) or
updating may be triggered by a termination event. Examples of terminations events
include a closing down of application 122b that has accessed the target file, or delta file
158 becoming too large (exceeding a size threshold), or a combination event (an
example of a combination event is the combination of there being available resources
(memory space and processor time) after a time threshold has been exceeded since the
last updating).

It will be understood by one skilled in the art that delta file 158 may also consist of
parts and a first part of delta file 158 may include a file command for part 130b-ii, while
the second part of delta file 158 contains a file command for part 130b-iii. In such a case
it is possible to merge part 130b-ii with the first part of delta file 130b and then update
part 130b-ii keeping part 130b-iii of file 130b in its original state, leaving delta file 158
containing only the second part. Similarly it will be understood that the first or last part
of a file can be changed by changing a file directory address pointer or a stop bit. Other
existing means of exchanging parts of files will be understood by one skilled in the art.

In the embodiment of Figure 1B, delta file 158 is stored on the same memory
(portable memory device 126b) as target file 130b. It is to be understood that delta file
158 could be part of a temporary file residing in a fast volatile memory of data
processing device 120b or in a hard disk or in a non-volatile memory of data processing
device 120b or in another portable storage device or in a removable medium (for
example a writable compact disk). Similarly, in the embodiment of Figure 1B, wrapper
application 150 merges the data of reads 135¢-d info a space a volatile memory of
computing device 120b thus effectively redirecting read call 134b to the space
containing the merged data. It is understood that merged information could be stored on
any memory device for example in a hard disk or in a non-volatile memory of data
processing device 120b or in another portable storage device or in a removable medium
(for example a writable compact disk).

Figure 2 shows a data processing device 220 (such as a network of parallel
processors), running an application 222 (such as the Microsoft Visual Studio®), a

wrapper application 250, and a file management system 224 (such as FAT32 or NTFS).

10

15

20

25

30

WO 2008/068742 PCT/IL2007/001479
19

Application 222 issues a file command, a write call 236 operative to affect file 230
stored in a storage device 226. Write call 236 is intercepted by wrapper application 250.
In the embodiment of Figure 2, wrapper application 250 is being executed by a
processor 221b while application 222 is being executed on a separate processor 221a, a
processor in the network of data processing device 220. Wrapper application 250
redirects write call 236 by instructing 252 file management system 224 to save update
information pertaining to write call 236 in delta file 258. File management system 224
writes 239 to delta file 258 only the update information that is needed to update target
file 230. The update information pertaining to write call 236 is saved to delta file 258
while target file 230 remains unchanged. Wrapper application 250 reports back to
running application 222 as if target file 230 has been updated, thus emulating writing to
file 230. In the example of Figure 2 delta file 258 is stored in a volatile memory of data
processing device 220. |

Later upon detecting the occurrence of a “termination event” 288, (in the example of
Figure 2, the termination event 288 is the closing down of application 222, which had
issued write call 236 operative to affect target file 230), wrapper application 250 updates
target file 230. Because delta file 258 is not stored on the same storage device 226 as
file 230, it is not possible to update target file 230 by copying data into delta file 258,
and applying the update information to the copied data in delta file 258 and changing
pointers (as in the example of Figure 1B). In order to update target file 230 wrapper
application 250 must first merge stored update information from delta file 258 with data
from target file 230 into a temporary file 292 on storage device 226. Thus, wrapper
application 250 instructs 290 files system 224 to create 294 temporary file 292, to copy
296 contents from target file 230 into temporary file 292 and to apply 298 the file
commands (update information pertaining to write call 236) stored in delta file 258 to
temporary file 292. Once merging ends successfully, wrapper application 250 instructs
file system 224 to close temporary file 292 and to replace 293 target file 230 with
temporary file 292. Because both target file 230 and temporary file 292 already exist on
the same storage device 226, replacing 293 is accomplished merely by removing the
pointer to the temporary file 292 from the from the file directory and changing the
pointer (the stored address) of target file 230 to the address of temporary file 292 (thus
effectively updating target file 230 and deleting the temporary file 292).

10

15

20

25

30

WO 2008/068742 PCT/IL2007/001479
20

In the example of Figure 2, because application 222 is not being executed by the
same processor 221 as wrapper application 250, wrapper application 250 cannot wrap
(control all input and output of) application 222. Therefore wrapper application 250
wraps file system 224 such that all calls to file system 224 pass through wrapper
application 250. Thus, wrapper application 250 effectively wraps storage device 226.

Tt is understood that file 230 may be accessed by multiple applications. Thus, write
commands from each application are intercepted by wrapper application 250 and
redirected to delta file 258. Similarly an attempt to read file 230 by any application will
be intercepted and trigger a merge event. It will be understood to one familiar in the art
that, unlike prior art single application file protection schemes (such as that used by
Microsoft® Word) which must lock access to protected files, wrapper application 250
permits multiple applications simultaneous read-write access to target file 230.

The possibility of locking file access and file access conflicts will also be understood
by those familiar with the prior art. Particularly in the embodiment of Figure 1 where
wrapper application 150 wraps only one or more particular applications (for example
application 222) but does not wrap file system 124b, it is possible for a separate
application (not wrapped by wrapper application 150) to access file 130b not via
wrapper application 150. In such cases, prior art solutions (such as locking file 130b)
exist (for example as described in Advanced Windows 3" Edition by Jeffery Richter,
Microsoft Press, Redmond Washington, 1997, and particularly pp 711-715).

It is understood that in an alternative embodiment data can be copied 296 from target
file 230 to temporary file 292 as part of intercepting the first write call 236. In such an
embodiment, temporary file 292 would be a constantly updated version of target file 230
and updating target file 230 would consist only of closing temporary file 292 and
moving the address pointer of target file 230 to the address of temporary file 292.

In the example of Figure 2, processors 221a-b are components of the multiprocessor
network of data processing device 220. It is understood by one skilled in the art that
alternative processor configurations exist and are compatible with various embodiments
of a system and method to protect a file. For example, processor 221b could be an
internal component of data storage device 226 or processor 221b could be a component
of dedicated file system server on a network.

Figure 3 shows a simplified flow chart of the reading process of the embodiment of

10

15

20

25

30

WO 2008/068742 PCT/IL2007/001479

21

Figure 2. A read command from application 222 is intercepted 301 by wrapper
application 250. Wrapper application 250 first tests 302 if there exists a delta file
containing update information for file 230 at which the read command is directed. If no
delta file exists, then control is returned to file management system 224, which
processes the read command normally according to the prior art, reading 306 the
requested range directly from target file 230 and returning 309 read results data to
requesting application 222.

If testing 302 returns a positive result (that there exists a delta file 258 containing
update information for file 230 which is to be read), then wrapper application 250
further checks 304 if the update information of delta file 258 is operative to affect the
range of the read command. If there is no update information for the requested range,
then control is returned to file management system 224 which processes the read
command normally according to the prior art by reading 306 the requested range directly
from target file 230 and returning 309 data to requesting application 222.

If testing 304 returns a positive results (delta file 258 contains update information for
the range of data to be read), then wrapper application 250 merges 308 the data of the
range to be read from the delta file and update information from the target file (by
copying the range to be read from target file 230 to temporary file 292 and applying the
update information from delta file 258 to the copied data in temporary file 292), and
returns 309 the merged data from the requested range to requesting application 222.

Figure 4 shows a simplified flow chart of a merge process acco‘rdingv to the -
embodiment of Figure 2. Wrapper application 250 detects 410 an occurrence of
termination event 288 that indicates the need to start a merge process (before updating
target file 230). Particularly in the example of Figure 4, a user closes down application
222, which has issued at least one command to modify target file 230 in the current
session. When wrapper application 250 detects that the operating system of device 220
is closing down application 222 then wrapper application 250 commands 290 file
system 224 to open 294 an empty temporary file 292 and to copy 296 content from
target file 230 into temporary file 292. Particularly in the example of Figure 4, the data
to be copied to temporary file 292 are the data range that was to be accessed in write call
236. Wrapper application 250 further commands file system 224 to apply 298 update
information stored in delta file 258 to temporary file 292. Particularly in the example of

10

15

20

25

30

WO 2008/068742 PCT/IL2007/001479

22
Figure 4, delta file 258 contains update information pertinent to write call 236. Once the

update information stored in delta file 258 has been applied 298 to temporary file 292,
wrapper application 250 issues a command to close 411 temporary file 292 and a
command to replace 293 part of target file 230 with temporary file 292 by changing the
address in the pointer for the part of target file 230 to the address of temporary file 292.
Wrapper application 250 then proceeds to discard 413 the replaced part of target file 230
and delta file 258 by instructing file system 224 to report the memory space of the
replaced part of target file 230 and delta file 258 as free space since they are no longer
needed.

If a merge event is triggered while a separate application is writing to delta file 258,
then the merge process is suspended until the write operation is completed. Should there
be a new write call to target file 230 after the completion of the merge process, then a
new delta file will be opened 414. Alternatively, a new delta file may automatically be
opened 414 immediately after a merge process.

Alternatively or in addition to the closing down of application 222, other examples
occurrences that are interpreted as a merge event include (1) an issuing of a command to
close target file 230, (2) an occurrence of a condition dependent on a statistic related to a
plurality of file commands for example when an application has been accessing data on
storage device 226 on average once every minute over a predefined period of one hour
and afterwards there passes a time interval thirty times the average access interval (30
times 1 minute equals 30 minutes) in which the application does not access storage
device 226 then a merge process ‘is automatically triggered, (3) an exceeding of a size of
delta file 258 over a maximum size threshold (for example if the stored update
information in delta file 258 exceed 100 kilobytes of information), (4) a passing of level
of activity of an operating system under a minimum activity threshold (for instance
when the memory and processor are less than 50% occupied over a 10 second period) or
(5) an exceeding of a maximum time threshold since a prior merge event (for example
wrapper application 250 may have a rule that whenever there passes for any file a 15
minute period since a previous merge event then a new merge process is begun. Another
occurrence that may trigger a merge event is an issuing of a command to read target file
230 (as explained in the description of Figure 3, in order to read updated data it is
necessary to merge data from target file 230 with the update information of delta file

10

15

20

25

30

WO 2008/068742 PCT/IL2007/001479

23
258).

Figure 5 shows a simplified flowchart of a writing process. Application 222 issues a
write call 236 to file system 224. Wrapper application detects 5S40 write call 236 and
checks 542 fo determine if file 230 (to which the write command is directed) is a file to
be protected. Specifically in the example of Figure 5 storage device 226 is a protected
storage device. More particularly target file 230 is to be protected because target file 230
fulfills the following conditions. Target file 230 is stored on device 226, which is a
removable portable storage device that is subject to sudden unpredictable disruption due
to premature removal. Therefore wrapper application 250 protects all permanent
unprotected user files in storage device 226. More specifically, by default all write
commands {o storage device 226 are intercepted and redirected unless the application
issuing the write command is an excluded application (for example Microsoft® Word is
an excluded application because Word has internal file protection and backup, also
Adobe Acrobat® reader is excluded because Adobe Acrobat® reader does not store any
modified user files) or unless the write command is operative to affect an excluded file
type (for example a temporary file of type .tmp are excluded since data loss from a
temporary files is seldom serious). When application 222 is an excluded application or
the file to which the write command is directed is an excluded file type or the file at
which the write command is directed is not in storage device 226 then file system 224
writes directly 549 to the file.

Alternatively, the conditions for intercepting and redirecting a file command may
include one or more of the following conditions: the file command being issued by an
included application (an included application is an application that is included on a list
or group of applications whose file commands are to be intercepted by wrapper
application 250), the file command being issued by an application that is not an
excluded application (an excluded application is an application belonging to a list or
group of applications whose file commands are not to be intercepted), the file command
being operative to affect a file that is not a temporary file, the file command being
operative to affect an included file type (an included file type is a file having a type that
is included in a list or group of files types to be protected), the file command being
operative to affect a file that is not of an excluded file type (an excluded file type is a

file having a type that is in a list or group of files types not to be protected) and the file

10

15

20

WO 2008/068742 PCT/IL2007/001479

24
command being operative to affect a file stored in a protected storage device. Contingent
on the fulfillment of one or more of the above conditions, a wrapper applications will
either intercept 501 and redirect 548 a write call, or wrapper application 250 will allow a
file system to write directly 549 to a file as described above for a prior art file system of
Figure 1A.

In the example of Figure 5, file 230 is a .txt file (which is not an excluded type) in
storage device 226 (which is an included storage device) and application 222 is
Microsoft Visual Studio® (which is not an excluded application). Therefore wrapper
application intercepts 501 write call 236. Wrapper application 250 then checks 544
whether or not a merge operation for file 230 is in process. If a merge operation is in
progress, the write command process is suspended 546 until the merge operation is
completed. When the merge operation is complete, the suspended write operation is
resumed and the content of the write command is redirected 548 by saving to delta file
258 the update information pertaining to the write call 236. If no merge operation is in
progress, wrapper application 250 redirects 548 write call 236 and saves update
information to delta file 258. If a merge event is triggered while writing to delta file 258,
the merge event is suspended until the write operation is completed.

In sum, although various embodiments and preferred versions thereof have been
described in considerable detail, other versions are possible. Therefore, the spirit and
scope of the appended claims should not be limited to the description of the preferred

versions contained herein.

WO 2008/068742 PCT/IL2007/001479
25

WHAT IS CLAIMED IS:

1. A system for storing a target file and protecting the target file from data damage
comprising:

a) a processor configured to retrieve and execute program code of a wrapper
application, the program code including:

i) code for intercepting at least one file command issued by another
application, said at least one file command being operative to affect the
target file, and said wrapper application being independent of said other
application;

ii) code for saving update information pertaining to said at least one file
command, and

iii) code for updating the target file according to said update information;

b) a first memory space for storing the target file, and
¢) a second memory space for storing said update information.

2. The system of claim 1, wherein said first memory space resides in a nonvolatile
memory of a data processing device.

3. The system of claim 2, wherein said second memory space resides in at least one
memory selected from the list consisting of said nonvolatile memory of said data
processing device, a separate nonvolatile memory of said data processing device,
and a volatile memory of said data processing device,

4. The system of claim 1, wherein said first memory space resides in a nonvolatile
memory of a portable data storage device.

5. The system of claim 4, wherein said second memory space resides in at least one
memory selected from the list consisting of said nonvolatile memory of said
portable data storage device, a memory of a data processing device, and a volatile
memory of said portable data storage device.

6. The system of claim 1, wherein said update information includes only data
pertaining to said at least one file command.

7. The system of claim 1, further comprising
e) a third memory space for storing a temporary file, and
wherein said wrapper application further includes

iv) code for copying at least part of the target file into said temporary file;

v) code for applying said update information to said temporary

WO 2008/068742 ' PCT/IL2007/001479
26

WHAT IS CLAIMED IS:

1. A system for storing a target file and protecting the target file from data damage

comprising:
a) a processor configured to refrieve and execute program code of a wrapper
application, the program code including: |
i) code for intercepting at least one file command issued by another
application, said at least one file command being operative to affect the
target file, and said wrapper application being independent of said other
application;
ii) code for saving update information pertaining to said at least one file
command, and
iii) code for updating the target file according to said update information;
b) a first memory space for storing the target file, and
'¢) asecond memory space for storing said update information.

2. The system of claim 1, wherein said first memory space resides in a nonvolatile‘
memory of a data processing device.

3. The system of claim 2, wherein said second memory space resides in at least one
memory selected from the list éonsisting of said nonvolatile memory of said data
processing device, a separate nonvolatile memory of said data processing device,
and a volatile memory of said data processing device, |

4, The system of claim 1, wherein said first memory space resides in a nonvolatile
memory of a portable data storage device.

5. The system of claim 4, wherein said second memory space resides in at least one
memory selected from the' list consisting of said nonvolatile memory of said
portable data storage device, a memory of a data processing device, and a volatile
memory of said portable data storage device.

6. The system of claim 1, wherein said update information includes only data
pertaining to said at least one file command.

7. The system of claim 1, further comprising

‘@), a third memory space for storing a temporary file, and
wherein said wrapper application further includes
iv) code for copying at least part of the target file into said temporary file;

v) code for applying said update information to said temporary

WO 2008/068742 PCT/IL2007/001479

27
file, and

vi) code for replacing said at least part of the target file with said temporary
file.

8. A method of employing a wrapper program to protect a target file from data
damage, the method comprising:

a) intercepting by the wrapper program of at least one file command issued by an
application, said at least one file command operative to affect the target file, said
intercepting step being transparent to said application;

b) saving update information pertaining to said at least one file command without
altering the target file, and

¢) updating the target file with said update information. ‘

9. The method of claim 8§, wherein said at least one file command includes every
write command operative to affect the target file and issued by said application
between a start of said saving and an end of said updating.

10. The method of claim 8, wherein said updating step includes:

i) copying at least part of the target file into a temporary file;

ii) applying said update information to said temporary file, and

iii) replacing said at least part of the target file with at least part of said
temporary file. |

1 1. The method of claim 10, further comprising:

d) deleting a delta file containing said update information subsequent to said
applying step.

12. The method of claim 8, wherein said updating step is performed upon occurrence
of at least one termination event selected from the group consisting of:

i) an issuing of a command to close the target file,

ii) aclosing down of said application,

iii) a closing down of an application that accessed the target file,

iv) an occurrence of a condition dependent on a statistic related to a plurality of

file commands,

v) apassing of level of activity of an operating system under a minimum activity

threshold,

vi) an exceeding of a maximum time threshold since an issuing of said at least one

file command, and

WO 2008/068742 PCT/IL2007/001479

28
vii) an exceeding of a maximum time threshold since a previous merge event.

13. The method of claim 8, wherein said intercepting step and said saving step are
contingent on at least one condition selected from the group consisting of said
application being one of a plurality of included applications, said application being
other than an excluded application, said at least one file command being operative
to affect a file other than a temporary file, said at least one file command being
operative to affect an included file type, said at least one file command being
operative to affect a file other than an excluded file type and said at least one file
command being operative to effect a file stored in an included storage device.

14. A system for reading data from a protected target file comprising:

a) a processor configured to retrieve and execute program code of a wrapper
application, the program code including:

i) code for intercepting at least one file command issued by an application
i'ndependént of said wrapper application, said at least one file command
operative to access the protected target file;

ii) code for reading update information pertaining to said at least one file
command, and

b) a first memory space for storing the protected target file, and

¢) a second memory space for storing said update information.

15. The system of claim 14, wherein said wrapper application further includes:

iii) code for merging data from said protected target file with said update
information into a temporary file.

16.A miethod of employing a wrapper program to read a protected target file
comprising:

a) intercepting by the wrapper program of at least one file command issued by an
application, said at least one file command being operative to access the
protected target file, said intercepting step being transparent to said application;

b) reading update information pertaining to said at least one file command stored
in a delta file, said delta file being separate from the protected target file, and

¢) merging data from the target file with said update information,

d) returning a result of said merging as a response to said at least one file

command.

PCT/IL2007/001479

WO 2008/068742

g1 ainbi4 V| ainbi4

90IA8p abelols =519
8G1L ~ g

c6l qoci
. // I-G0e) b —
- TR
h\/ | FI0Er TE0E]

imu_mn_; I-qoct > .._-momv M
%MH/ >0t - \Mﬁ "oet |
290lA8p abel0ls w
Y Bael
wisishs o1 oL | wajsAs o|i4 <«
EQ Al 4 1 | P . |
oza} N et | o & “
".... | | AT m
prel : /(L\ ovelL ege] w
Py m 1IN AN I |
“ ._QQQNL\/\/ m m -.c.-.o--.m W
1 | |
M iagi . eozl |
uoneolddy %r voneolddy «
w I 1 cesecssned w M \\u\ﬁw
L STAA N m ezzl
q9el | m m

PCT/IL2007/001479

WO 2008/068742

2/5

Z 2.nBi4

20IA8p obelols

86¢

\'lomm
96¢

ey

9¢c

8g¢

wajsAs 9l

.j>
>
(9

leddelpp

A

uoneonddy

s —88¢

PCT/IL2007/001479

WO 2008/068742

3/5

¢ ainbi

elep
sjnsal pes.

uiniay ‘80¢

A

ol yeb.e}
wodj Ajpoalip
pesy 90¢

A

o|l yobliey
pue sl elsp
ablJsIN :80¢

+

&89 aq 03 ebuel sy}
10} UopewLIoul ayepdn

z/c_mpcoo all} eljag ¥0¢

IAAHHMﬂ%aoEEaaN%”
N

A

1senball
3l pesd
1deousiu] (Log

PCT/IL2007/001479

WO 2008/068742

4/5

 ainbi4

o|lj E}OP MBU 8)ealD YL ¥

i

9|l Bj|sp pue sji
1e6.e) |eulbuo pieosiq L

i

ajiy Aretoduway yim ofi
1ob1e} Jo Hed soejdey €67

A

ol Aresodwal 8s0[D (L LY -

i

o|l} B}j9(WOJ} uoljewloul
ojepdn A|ddy 1862

i

ol
Arelodwsy o} ol 196.1e} wol)
Jusju090 Jusulpad Ado) (1967

t

ol Aretodwie) e1eal)) Y62

f

oli} 196.e] 8y}
‘_OUF JUBSA3 mm._mE Jo8la(Oy

PCT/IL2007/001479

WO 2008/068742

5/5

9|l} uoljeuUnsSsp
0} obuel
SIIM 617G
A

¢,9)14 pejosyold e je pajoallp
[[eS S}4m 38U} S| (2 g

120 SlLMm
19818 -0vS

G aJnbi4

S[l} Bl=p
0] Uoljewlioul
ayepdn
S}LIM pUE
108lipsy 8rg

<

A

a1e|dw oo
st afisw |un
uoljesado allm

%0019 -9vr4

¢.ssalbold ur sseooud
ablaw e s] ppg

[[e0 Sjm B
ydeossiuy :1L.0s

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - claims
	Page 27 - claims
	Page 28 - claims
	Page 29 - claims
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - drawings

