(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum
Internationales Büro

(43) Internationales Veröffentlichungsdatum

(10) Internationale Veröffentlichungsnummer
WO 2004/108932 A1

(51) Internationale Patenklassifikation:
C12N 15/31, 1/21, C07K 14/31, 14/32, C12Q 1/68

(21) Internationales Aktenzeichen:
PCT/DE2004/001107

(22) Internationales Anmeldedatum:

(25) Einreichungssprache:
Deutsch

(26) Veröffentlichungssprache:
Deutsch

(30) Angaben zur Priorität:
103 25 026.3 2. Juni 2003 (02.06.2003) DE

(72) Erfinder; und

(75) Erfinder/Anmelder (nur für US): KÖBERLING, Oliver [DE/DE]; Gladbachstrasse 29, 40219 Düsseldorf (DE).
FREUDL, Roland [DE/DE]; Isolstrasse 1, 52353 Düren (DE).

(74) Gemeinsamer Vertreter: FORSCHUNGSZENTRUM JÜLICH GMBH; Fachbereich Patente, 52425 Jülich (DE).

(54) Title: BACTERIA WITH INCREASED LEVELS OF PROTEIN SECRETION, NUCLEOTIDE SEQUENCES CODING FOR SECA PROTEIN WITH INCREASED LEVELS OF PROTEIN SECRETION, AND METHOD FOR PRODUCING PROTEINS

(54) Bezeichnung: BAKTERIEN MIT ERHÖHTER PROTEINSEKRETION, NUKLEOTIDSEQUENZEN CODIEREND FÜR EIN SECA PROTEIN MIT ERHÖHTER PROTEINSEKRETION SOWIE VERFAHREN ZUR PRODUKTION VON PROTEINEN

(57) Abstract: The invention relates to bacteria that have increased levels of protein secretion due to genetic modification, to nucleotide sequences and gene structures containing at least one gene coding for a SecA protein having increased levels of protein secretion, to a SecA having increased levels of protein secretion, and to a method for producing desired proteins using the inventive bacteria. The invention also relates to nucleic acids coding for a SecA protein having increased levels of protein secretion and containing a gene sequence SecA<e> SecA</e> or an allele, homologue or derivative of said nucleotide sequences or nucleotide sequences hybridising therewith and comprising at least one mutation. Surprisingly, just one mutation in a nucleotide of a SecA gene leads to increased levels of protein secretion or to protein secretion for the first time.

(57) Zusammenfassung: Die Erfindung betrifft Bakterien, die auf Grund genetischer Modifikation eine erhöhte Sekretion für Proteine aufweisen, Nukleotidsequenzen sowie Genstrukturen, die mindestens ein Gen enthalten, welches für ein SecA Protein mit erhöhter Sekretion für Proteine codiert, ein SecA mit erhöhter Proteinsekretion sowie ein Verfahren zur Produktion gewünschter Proteine unter Verwendung der erfindungsgemäßen Bakterien. Gegenstand der Erfindung sind Nukleinsäuren codierend für ein SecA Protein mit erhöhter Sekretion für Proteine, enthaltend eine Gensequenz SecA oder ein Allel, Homolog oder Derivat dieser Nukleotidsequenzen oder mit diesen hybridisierende Nukleotidsequenzen, welche mindestens eine Mutation aufweisen. In überraschender Weise wurde festgestellt, dass bereits eine Mutation in einem Nukleotid des secA Gens zu einer erhöhten Sekretion für Proteine bzw. zu einer erstmals möglichen Sekretion von Proteinen führt.
Beschreibung

Bakterien mit erhöhter Proteinsekretion, Nukleotidsequenzen codierend für ein SecA Protein mit erhöhter Proteinsekretion sowie Verfahren zur Produktion von Proteinen

Die Erfindung betrifft Bakterien, die auf Grund genetischer Modifikation eine erhöhte Sekretion von Proteinen aufweisen, Nukleotidsequenzen sowie Plasmide, die mindestens ein Gen enthalten, welches für ein SecA Protein mit erhöhter Sekretion für Proteine codiert, ein SecA mit erhöhter Proteinsekretion sowie ein Verfahren zur Produktion gewünschter Proteine unter Verwendung der erfindungsgemäßen Bakterien.

Deutlich geringer als die Mengen, die bei der Sekretion von homologen Exoproteinen erreicht werden können. Einer der Gründe hierfür ist der ineffiziente oder gar völlig ausbleibende Transport des heterologen Proteins über die Cytoplasmamembran [1-4].

Der Transport von Proteinen über die bakterielle Plasmamembran wird durch die sogenannte Sec-Translokase (Fig.1) katalysiert. Diese besteht aus den membranintegriten Bestandteilen SecY, SecE, SecG, SecD, SecF und YajC sowie der zentralen Komponente SecA, die als sogenannte Translokations-ATPase die Energie der ATP-Bindung und -Hydroyse an die Translokation der Polypeptidkette über die Membran koppelt [5,6].

Eine effiziente Initiation der Translokation eines sekretorischen Proteins über die bakterielle Cytoplasmamembran erfordert die Ausbildung eines funktionellen Komplexes aus mindestens dem SecA Protein, SecY und dem Exportprotein an der Membran. In Folge dieser funktionalen Wechselwirkungen, sowie dem Austausch von ADP gegen ATP an der Nukleotidbindestelle 1 (NBS I) von SecA, führt eine Konformationsänderung zur Membraninsertion von SecA, sowie der Aktivierung der SecA ATPase Aktivität und der Initiation der Translokation. Die ATP Hydrolyse an SecA wird durch einen zweifachen intramolekularen Mechanismus reguliert. Untersuchungen in Escherichia coli zeigten, dass im freien cytosolisch vorliegenden SecA die ATPase Aktivität durch Wechselwirkungen der regulatorischen Elemente IRA-1 und IRA-2 (intramolekularer Regulator der ATP Hydrolyse) mit der NBS 1 herabreguliert wird. Es wird angenommen, dass die
auf Grund funktioneller Wechselwirkungen zwischen SecA, SecY und dem Exportprotein hervorgerufene Konformationsänderung von SecA zu einer räumlichen Entfernung vom IRA-1 und IRA-2 von der NBS 1 führt, wodurch die SecA ATPase aktiviert wird [7,8].

Bei der sekretorischen Gewinnung von heterologen Proteinen mit gram-positiven Bakterien kann die Translokation einen limitierenden Schritt auf Grund der Qualitätskontrolle oder "Proofreading Aktivität" der Translokase darstellen. Dieser Kontrollmechanismus ist für die Zelle notwendig, um bezüglich der eigenen Proteine nur diejenigen in den Sekretionsweg einzuschleusen, die für den Export aus dem Cytosol bestimmt sind. Hinsichtlich heterologer Proteine, die nicht optimal an den fremden Exportapparat angepasst sind, kann diese Qualitätskontrolle jedoch einen wesentlichen limitierenden Schritt darstellen. Sehr wahrscheinlich ist die Fähigkeit der heterologen Exportproteine zur Aktivierung der Translokations-ATPase-Aktivität des SecA Proteins entscheidend dafür, ob und mit welcher Effizienz ein Membrantransport des heterologen Exportproteins stattfindet bzw. ob und in welchem Ausmaß eine Zurückweisung des heterologen Exportproteins durch die Qualitätskontrolle der Sec-Translokase erfolgt.

Es ist daher Aufgabe der Erfindung, Nukleotidsequenzen, Proteinsequenzen, Bakterien sowie ein Verfahren bereit zu stellen, mit denen eine gegenüber bisher bekannten mikrobiologischen Prozessen verbesserte sekretorische Gewinnung von Proteinen möglich wird.

Mit den erfindungsgemäßen Nukleinsäuren sowie Polypeptiden ist es nunmehr möglich, Proteine, die bisher nur in geringer Menge oder gar nicht von den Mikroorganismen exportiert wurden, sekretorisch mit Mikroorganismen zu gewinnen bzw. mit einer erhöhten Effizienz herzustellen. Die erfindungsgemäßen Nukleinsäuren codieren gegenüber natürlich vorkommenden oder gentechnisch nicht veränderten Nukleinsäuren für ein Translokations-ATPase Protein, im folgenden mit SecA bezeichnet, wel-

Vorteilhafte Weiterbildungen sind in den Unteransprüchen angegeben.

Gegenstand der Erfindung ist ein SecA Protein (Translokations-ATPase), mit einer Aminosäuresequenz, welches gegenüber der Wild Typ SecA Aminosäuresequenz mindestens eine Veränderung der Aminosäuresequenz aufweist oder eine modifizierte Form dieser Polypeptidsequenzen oder Isoformen davon, wodurch ein SecA mit erhöhter Sekretion für Proteine ausgebildet wird.

In überraschender Weise wurde festgestellt, dass bereits eine Veränderung (= Austausch) einer Aminosäure der Aminosäuresequenz des SecA Proteins zu einer erhöhten Sekretion für Proteine bzw. zu einer erstmals möglichen Sekretion von Proteinen führt. Mehrere ausgetauschte Aminosäuren, beispielsweise 2 bis 7, können jedoch ebenfalls die erhöhte Sekretion für Proteine bewirken.

Veränderungen im Bereich der Aminosäuresequenzen, die für die Ausbildung der regulatorischen Elemente IRA-1/IRA-2 verantwortlich sind oder eine modifizierte Form dieser Polypeptidsequenzen oder Isoformen davon, erwie-
sen sich als vorteilhaft für das SecA mit erhöhter Sekretion für Proteine, wobei hier der Begriff „Bereich“ nicht nur Veränderungen umfassen soll, die genau in den Aminosäurepositionen liegen, die für die Ausbildung der IRA-1/IRA-2 verantwortlich sind, sondern auch Veränderungen, die beispielsweise 250 bis 300 Aminosäuren vor oder hinter den jeweiligen Aminosäurepositionen für IRA-1 bzw. IRA-2 liegen.

Die Positionen der erfindungsgemäßen Veränderungen in der Aminosäuresequenz des SecA können innerhalb unterschiedlicher Mikroorganismen verschoben sein. So sollen ausgehend von den Veränderungen in den Aminosäurepositionen des SecA von Staphylococcus carnosus auch die Veränderungen in der Aminosäuresequenz des SecA anderer Mikroorganismen umfasst sein, die diesen Positionen entsprechen.

Es konnte sowohl durch eine einzige Veränderung als auch durch mehrere Veränderungen im Bereich der Aminosäuresequenz, die für die Ausbildung von IRA-1 bzw. IRA-2 verantwortlich ist, sowie durch Kombinationen von Veränderungen in diesen Bereichen, ein SecA mit erhöhter Sekretion für Proteine erhalten werden.

Die erfindungsgemäßen Polypeptide zeichnen sich dadurch aus, dass sie aus gram-positiven oder gram-negativen Bakterien, bevorzugt aus der Familie der Bacillaceae, Staphylococcaceae, Enterobacteriaceae oder Corynebacteriaceae, besonders bevorzugt der Gattung Bacillus, Staphylococcus, Escherichia oder Corynebacterium, ganz besonders bevorzugt der Art Bacillus subtilis, Bacillus licheniformis, Bacillus amyloliquefaciens, Staphylococcus carnosus, Escherichia coli oder Corynebacterium

Bei Staphylococcus carnosus erstrecken sich die Aminosäuresequenzen, die das IRA-1 im SecA ausbilden auf Position 721 bis 772 und für IRA-2 auf Position 448 bis 567.

Bei Bacillus subtilis erstrecken sich die Aminosäuresequenzen, die das IRA-1 im SecA ausbilden auf die Position 716 bis 767 und für IRA-2 auf die Position 442 bis 561.

Bei dem aus Staphylococcus carnosus isolierten SecA Protein erwies sich mindestens eine Veränderung im Bereich der Aminosäuren von Position 198 bis 772 oder eine modifizierte Form dieser Polypeptidsequenzen oder Isoformen davon, als vorteilhaft.

Bei dem aus Bacillus subtilis isolierten SecA Protein erwies sich mindestens eine Veränderung im Bereich der Aminosäuren von Position 442 bis 767 oder eine modifizierte Form dieser Polypeptidsequenzen oder Isoformen davon, als vorteilhaft.

Gegenstand der vorliegenden Erfindung ist ein SecA mit erhöhter Sekretion für Proteine oder ein Teil davon.
enthaltend eine Aminosäuresequenz gemäß SEQ ID No 2, welche mindestens eine Veränderung aus der Gruppe der Aminosäuren in Position 198, 470, 474, 493, 537, 665 und/oder 734 aufweist oder eine modifizierte Form dieser Polypeptidsequenzen oder Isoformen davon.

Folgende Aminosäureaustausche im SecA von Staphylococcus carnosus erwiesen (s. Fig. 2) sich beispielsweise als erfolgreich:

Position 198: Tyrosin zu Histidin
Position 470: Histidin zu Glutamin
Position 474: Alanin zu Valin
Position 493: Alanin zu Valin
Position 537: Asparaginsäure zu Alanin
Position 665: Valin zu Glutaminsäure
Position 734: Asparaginsäure zu Valin

Die vorliegende Erfindung betrifft ebenso ein SecA mit erhöhter Sekretion für Proteine mit einer Aminosäuresequenz gemäß der SEQ ID No 4, welche mindestens eine Veränderung aus der Gruppe der Aminosäuren in Position 464, 468, 487, 531 und/oder 729 aufweist oder eine modifizierte Form dieser Polypeptidsequenzen oder Isoformen davon.

Folgende Aminosäureaustausche im SecA von Bacillus subtilis erwiesen (s. Fig. 2) sich beispielsweise als erfolgreich:

Position 464: Histidin zu Glutamin
Position 468: Alanin zu Valin
Position 487: Alanin zu Valin
Position 531: Asparaginsäure zu Alanin
Position 729: Asparaginsäure zu Valin
Unter Isoformen sind Proteine mit gleicher oder vergleichbarer Wirkungsspezifität zu verstehen, die jedoch eine unterschiedliche Primärstruktur aufweisen.

Unter modifizierten Formen sind erfindungsgemäß Proteine zu verstehen, bei denen Änderungen in der Sequenz, beispielsweise am C- oder N-Terminus des Polypeptids oder im Bereich konservierter Aminosäuren vorliegen, ohne jedoch die Funktion der erhöhten Proteinsekretion zu beeinträchtigen. Diese Veränderungen können in Form von Aminosäureaustauschen nach an sich bekannten Methoden vorgenommen werden.

Gegenstand der vorliegenden Erfindung sind Polypeptide mit der Funktion eines SecA mit erhöhter Sekretion für Proteine, die in ihrer Aminosäuresequenz derart verändert sind, dass sie homologue und/oder heterologe Proteine mit erhöhter Aktivität aus den Zellen exportieren können.

Gegenstand der Erfindung sind Nukleinsäuren codierend für ein SecA mit erhöhter Sekretion für Proteine, enthaltend eine Gensequenz secA, welche im secA Gen mindestens eine Mutation aufweisen oder ein Allel, Homolog oder Derivat dieser Nukleotidsequenzen oder mit diesen hybridisierende Nukleotidsequenzen.

In überraschender Weise wurde festgestellt, dass bereits eine Mutation in einem Nukleotid des secA Gens zu einer erhöhten Sekretion für Proteine bzw. zu einer erstmals möglichen Sekretion von Proteinen führt. Mehrere Mutationen, beispielsweise 2 bis 7, können jedoch ebenfalls die erhöhte Sekretion der Proteine bewirken.
Mindestens eine Mutation in Nukleotidbereichen, die für die regulatorischen Elemente IRA-1 und/oder IRA-2 der SecA-Proteine codieren oder ein Allel, Homolog oder Derivat dieser Nukleotidsequenzen oder mit diesen hybridi- disierende Nukleotidsequenzen, erwies sich als vorteil- haft für die Expression eines SecA mit erhöhter Sekre- tion für Proteine, wobei unter dem Begriff „Bereich“ nicht nur Mutationen umfasst sein sollen, die genau in den für die IRA-1/IRA-2 codierenden Bereichen liegen, sondern auch Mutationen umfasst sein sollen, die beispielsweise 750 bis 900 Nukleotide vor oder hinter den jeweils für IRA-1/IRA-2 codierenden Bereichen liegen.

Es konnte sowohl durch eine einzige Mutation als auch durch mehrere Mutationen im Bereich der für IRA-1 bzw. IRA-2 codierenden Nukleotidsequenzen sowie Kombination von Mutationen in diesen Bereichen, ein erhöhter Export von Proteinen bewirkt werden.

Die erfindungsgemäßen Nukleinsäuren zeichnen sich dadurch aus, dass sie aus gram-positiven oder gram-negati- ven Bakterien, wie z. B aus der Familie der Bacilla- ceae, Staphylococcaceae, Enterobactericeae oder Coryne- bacteriaceae, bevorzugt der Gattung Bacillus, Staphylo- coccus, Escherichia oder Corynebacterium, besonders bevorzugt aus Bacillus subtilis, Bacillus licheniformis oder Bacillus amyloliquefaciens, Staphylococcus carno- sus, Escherichia coli oder Corynebacterium glutamicum isoliert werden. Die vorliegende Erfindung wird durch die Angabe der zuvor genannten Bakterienstämmche näher charakterisiert, die jedoch nicht limitierend wirkt.
Bei Staphylococcus carnosus erstreckt sich der Nukleotidbereich, der für IRA-1 codiert, auf die Nukleotide von Position 2161 bis 2316 und für IRA-2 von Position 1342 bis 1701 (s.a. SEQ ID No 1).

Bei Bacillus subtilis erstreckt sich der Nukleotidbereich, der für IRA-1 codiert, auf die Nukleotide von Position 2146 bis 2301 und für IRA-2 von Position 1324 bis 1683 (s.a. SEQ ID No 3).

Bei den aus Staphylococcus carnosus isolierten Nukleinsäuren erwies sich mindestens eine Mutation im Bereich der Nukleotide von Position 592 bis 2210 oder ein Allel, Homolog oder Derivat dieser Nukleotidsequenzen oder mit diesen hybridisierende Nukleotidsequenzen, als vorteilhaft.

Bei den aus Bacillus subtilis isolierten Nukleinsäuren erwies sich mindestens eine Mutation im Bereich der Nukleotide von Position 1392 bis 2186 oder ein Allel, Homolog oder Derivat dieser Nukleotidsequenzen oder mit diesen hybridisierende Nukleotidsequenzen, als vorteilhaft.

Besonders vorteilhaft erwies sich eine Nukleinsäure enthaltend ein Gen secA gemäß SEQ ID No 1, welche mindestens eine Mutation im Gen aus der Gruppe der Nukleotide in Position 592, 1410, 1421, 1478, 1610, 1994 und/oder 2210 aufweist oder ein Allel, Homolog oder Derivat dieser Nukleotidsequenzen oder mit diesen hybridisierende Nukleotidsequenzen.

Folgende Mutationen erwiesen sich im secA-Gen von Staphylococcus carnosus als erfolgreich:
Position 592: T zu C
Position 1410: T zu A
Position 1421: C zu T
Position 1478: C zu T
Position 1610: A zu C
Position 1994: T zu A
Position 2210: A zu T

Weiterhin besonders vorteilhaft erwies sich eine Nukleinsäure, enthaltend ein secA Gen gemäß SEQ ID No 3, welche mindestens eine Mutation aus der Gruppe der Nukleotide in Position 1392, 1403, 1404, 1460, 1461, 1592 und/oder 2186 aufweist oder ein Allel, Homolog oder Derivat dieser Nukleotidsequenzen oder mit diesen hybridisierende Nukleotidsequenzen.

Folgende Mutationen erwiesen sich im secA-Gen von Bacillus subtilis als erfolgreich:
Position 1392: T zu A
Position 1403: C zu T
Position 1404: G zu T
Position 1460: C zu T
Position 1461: G zu T
Position 1592: A zu C
Position 2186: A zu T

Im Gegensatz zu den Mutationen in Position 1392, 1592 und 2186 führen die beiden Mutationen der Nukleotide in Position 1403 und 1404 bzw. 1460 und 1461 auf Protein-ebene jeweils zum Austausch nur einer Aminosäure. Mit den erfindungsgemäßen Nukleinsäuren können Proteine, die in Gegenwart eines unveränderten SecA nur in geringem Maße bzw. gar nicht exportiert werden, effizient aus den Zellen exportiert werden. Die erfindungs-
gemäß Nukleinsäuren, die für ein SecA mit erhöhter Sekretion für Proteine codieren, bewirken einen veränderten Kontrollmechanismus des SecA für die Proteine, die aus der Zelle ausgeschleust werden. Insbesondere heterologe Proteine, die nicht optimal an den Exportapparat der Wirtszelle angepasst sind, können nunmehr mit Hilfe der erfindungsgemäßen secA Sequenz besonders erfolgreich exportiert werden. Aber auch der Export von homologen Proteinen kann mit Hilfe der veränderten secA Sequenz in vorteilhafter Weise verbessert werden.

Unter einer Nukleinsäure oder einem Nukleinsäurefragment ist erfindungsgemäß ein Polymer aus RNA oder DNA zu verstehen, das einzel- oder doppelsträngig sein kann und optional natürliche, chemisch synthetisierte, modifizierte oder artifizielle Nukleotide enthalten kann. Der Begriff DNA-Polymer schließt hierbei auch genomische DNA, cDNA oder Mischungen davon ein.

Unter Allelen sind erfindungsgemäß äquivalente Nukleotidsequenzen zu verstehen, die für SecA Proteine mit erhöhter Sekretion für Proteine codieren. Äquivalente Sequenzen sind solche Sequenzen, welche trotz abweichender Nukleotidsequenz, beispielsweise durch die Degenerierung des genetischen Codes bedingt, noch für das SecA Protein mit der gewünschten erhöhten Sekretion für Proteine codieren. Äquivalente Nukleotidsequenzen umfassen somit natürliche vorkommende Varianten der hierin beschriebenen Sequenzen sowie künstliche, z.B. durch chemische Synthese erhaltene und gegebenenfalls an den Kodon-Gebrauch des Wirtsorganismus angepasste, Nukleotidsequenzen.
Unter äquivalenten Nukleotidsequenzen sollen auch Sequenzen mit Mutationen verstanden werden, insbesondere natürliche oder künstliche einer ursprünglich isolierten Sequenz, welche weiterhin für ein SecA Protein mit erhöhter Sekretion für Proteine codieren. Mutationen der Äquivalente umfassen Substitutionen, Additionen, Deletionen, Vertauschungen oder Insertionen eines oder mehrerer Nukleotidreste. Inbegriffen sind hier auch sogenannte Sinnmutationen, die auf Protein-Ebene beispielsweise zum Austausch konservierter Aminosäuren führen können, welche aber zu keiner grundsätzlichen Veränderung der erhöhten Sekretion für Proteine des erfindungsgemäßen SecA Proteins führen und somit funktionsneutral sind. Dies beinhaltet auch Veränderungen der Nukleotidsequenz, die auf Proteinebene den C-Terminus oder N-Terminus eines Proteins betreffen, ohne jedoch die Funktion des Proteins wesentlich zu beeinträchtigen.

Durch die vorliegende Erfindung werden auch solche Nukleotidsequenzen umfasst, welche man durch Modifikation der Nukleotidsequenz, resultierend in entsprechenden Derivaten, erhält. Ziel einer solchen Modifikation kann z. B. die weitere Eingrenzung der darin enthaltenen codierenden Sequenz oder z. B. auch die Einführung weiterer Restriktionsenzym-Schnittpunkte sein.

Außerdem sind artifizielle DNA-Sequenzen Gegenstand der vorliegenden Erfindung, solange sie, wie oben beschrieben, die gewünschten Eigenschaften vermitteln. Solche artifiziellen DNA-Sequenzen können beispielsweise durch

Erfindungsgemäß sind auch die den codierenden Bereichen (Strukturgenen) vorausgehenden (5'-oder upstream) und/oder nachfolgenden (3'-oder downstream) Sequenzbereiche eingeschlossen. Insbesondere sind hierin Sequenzbereiche mit regulatorischer Funktion inbegriffen. Sie können die Transkription, die RNA-Stabilität oder die RNA-Prozessierung sowie die Translation beeinflussen. Beispiele für regulatorische Sequenzen sind u.a.
Promotoren, Enhancer, Operatoren, Terminatoren, Translationsverstärker oder Ribosomen-Bindstellen.

Eine weitere Vorgehensweise zur Isolierung von codierenden Nukleotidsequenzen ist die Komplementation von sogenannten Defekt-Mutanten, die zumindest phänotypisch einen Funktionsverlust in der Aktivität des zu untersuchenden Gens oder entsprechenden Proteins aufweisen.

Unter einer Komplementation ist die Aufhebung des Gen-defektes der Mutante und weitgehende Wiederherstellung des ursprünglichen Erscheinungsbildes vor der Mutagene se zu verstehen, die durch die Einbringung funktioneller Gene oder Genfragmente erreicht wird.

Ein klassisches Mutagenese-Verfahren zur Herstellung von Defektmutanten ist beispielsweise die Behandlung der Bakterienzellen mit Chemikalien wie z. B. N-Methyl-N-Nitro-N-Nitrosoguanidin oder UV-Be strahlung. Derartige Verfahren zur Mutationsauslösung sind allgemein bekannt und können unter anderem bei Miller (A Short Course in Bacterial Genetics, A Labora-

Gegenstand der Erfindung ist ferner eine Genstruktur enthaltend wenigstens eine der zuvor beschriebenen Nukleotidsequenzen codierend für ein SecA mit erhöhter Sekretion für Proteine sowie mit diesen operativ verknüpfte regulatorische Sequenzen, welche die Expression der codierenden Sequenzen in der Wirtszelle steuern. Entsprechende Genstrukturen können beispielsweise Chromosomen, Plasmide, Vektoren, Phagen oder andere, nicht zirkulär geschlossene, Nukleotidsequenzen sein.

Die vorliegende Erfindung betrifft einen Vektor enthaltend eine Nukleotidsequenz der zuvor beschriebenen Art codierend für ein SecA mit erhöhter Sekretion für Proteine, mit dieser operativ verknüpfte regulatorische Nukleotidsequenzen sowie zusätzliche Nukleotidsequenzen zur Selektion transformierter Wirtszellen, für die Replication innerhalb der Wirtszelle oder zur Integration in das entsprechende Wirtszell-Genom.

Unter Ausnutzung der erfindungsgemäßen Nukleinsäuresequenzen können entsprechende Sonden oder auch Primer synthetisiert und dazu verwendet werden, beispielsweise mit Hilfe der PCR-Technik analoge Gene aus anderen Mikroorganismen, bevorzugt gram-positiven Bakterien zu amplifizieren und isolieren.

ren nach gängigen Methoden eingesetzt werden. Diese Vorgehensweise kann analog auch auf andere gram-
positive oder gram-negative Bakterienstämme angewendet werden. Dabei werden als Wirtssysteme Bakterien der
Gattung Bacillus oder Staphylococcus bevorzugt. Besonders bevorzugt kann hier die Art Bacillus subtilis, Ba-
cillus licheniformis, Bacillus amyloliquefaciens oder Staphylococcus carnosus genannt werden.
Darüber hinaus schließt die vorliegende Erfindung auch Bakterienstämme als Wirtssystem ein, die sich als für die Proteinproduktion geeignete mutierte oder Wild-Typ Stämme auszeichnen, da ihr Stoffwechselfluss verstärkt in Richtung der Biosynthese von Proteinen verläuft.
Ferner sind erfindungsgemäß auch diejenigen Mikroorga-
nismen geeignet, die dem Fachmann aus mikrobiellen Her-
stellungsverfahren bekannt sind, wie z. B. Enterobacte-
raceae oder Corynebacteriaceae.
Als Wirtsorganismen können auch Mikroorganismen einge-
setzt werden, bei denen ein oder mehrere Gen(e)
codierend für Proteine, Komponenten oder Faktoren, die für den Transport von Proteinen durch die bakterielle Plasmamembran verantwortlich sind, derart verändert sind, dass sie zusätzlich zu dem erfindungsgemäßen SecA Protein zu einem erhöhten Transport von Proteinen durch die Plasmamembran beitragen. Dies können beispielsweise die weiteren bekannten Bestandteile (secY, secE, secG, secD, secF und yajC) der Sec-Translokase sein. Bei-
spielhaft seien hier Wirtsorganismen der Gattung Bacil-
lus oder Staphylococcus genannt.
Die vorliegende Erfindung wird durch die ausgewählten Beispiele an Mikroorganismen näher charakterisiert, je-
doch nicht limitiert.
Die vorliegende Erfindung betrifft ferner einen genetisch veränderten Mikroorganismus enthaltend in replizierbarer Form eine erfindungsgemäße Nukleinsäure der zuvor beschriebenen Art.

Ebenso umfasst die vorliegende Erfindung einen genetisch veränderten Mikroorganismus enthaltend in replizierbarer Form eine Genstruktur oder einen Vektor der zuvor beschriebenen Art.

Gegenstand der vorliegenden Erfindung ist darüber hinaus auch ein genetisch veränderter Mikroorganismus, enthaltend ein erfindungsgemäßes Polypeptid mit der Funktion einer im Vergleich zu dem entsprechend nicht genetisch veränderten Mikroorganismus erhöhten Sekretion für Proteine. Ein erfindungsgemäß genetisch veränderter Mikroorganismus zeichnet sich ferner dadurch aus, dass er ein gram-positives oder gram-negatives Bakterium, wie beispielsweise ein Organismus aus der Familie der Bacillaceae, Staphylococcaceae, Enterobacteriaceae oder Corynebacteriaceae, besonders bevorzugt der Gattung Bacillus oder Staphylococcus ist. Besonders bevorzugt ist beispielsweise Bacillus subtilis, Bacillus licheniformis, Bacillus amyloliquefaciens oder Staphylococcus carnosus.

Die vorliegende Erfindung betrifft darüber hinaus ein Verfahren zur mikrobiellen Herstellung von Proteinen, wobei wenigstens eine der erfindungsgemäßen Nukleinsäuren, isoliert aus einem gram-positiven oder gram-negativen Bakterium, in einen Wirtsorganismus übertragen oder dort mit dem dem Fachmann bekannten Mitteln erzeugt wird und dort exprimiert wird, dieser genetisch
veränderte Mikroorganismus zur mikrobiellen Herstellung von Proteinen eingesetzt wird und das entsprechend gebildete Protein aus dem Kulturmedium isoliert wird.

haltige Verbindungen wie Peptone, Hefeextrakt, Fleischextrakt, Malzextrakt, Maisquellwasser, Sojabohnenmehl und Harnstoff oder anorganische Verbindungen wie Ammoniumsulfat, Ammoniumchlorid, Ammoniumphosphat, Ammoniumcarbonat und Ammoniumnitrat verwendet werden. Die Stickstoffquellen können einzeln oder als Mischung verwendet werden. Als Phosphorquelle können Phosphorsäure, Kaliumdihydrogenphosphat oder Dikaliumhydrogenphosphat oder die entsprechenden natriumhaltigen Salze verwendet werden. Das Kulturmedium muss weiterhin Salze von Metallen enthalten wie z. B. Magnesiumsulfat oder Eisen-sulfat, die für das Wachstum notwendig sind. Schließ-
lich können essentielle Wuchsstoffe wie Aminosäuren und Vitamine zusätzlich zu den oben genannten Stoffen eingesetzt werden. Dem Kulturmedium können überdies geeig-
nete Vorstufen zugesetzt werden. Die genannten Einsatz-
stoffe können zur Kultur in Form eines einmaligen An-
satzes hinzu gegeben oder in geeigneter Weise während der Kultivierung zugefüllt werden.

Zur pH - Kontrolle der Kultur werden basische Verbin-
dungen wie Natriumhydroxid, Kaliumhydroxid, Ammoniak bzw. Ammoniakwasser oder saure Verbindungen wie Phos-
phorsäure oder Schwefelsäure in geeigneter Weise eingesetzt. Zur Kontrolle der Schaumentwicklung können Anti-

Die Mikroorganismen, die Gegenstand der vorliegenden Erfindung sind, können Proteine beispielsweise aus Glucose, Saccharose, Lactose, Mannose, Fructose, Maltose, Melasse, Stärke, Cellulose oder aus Glycerin und Ethanol herstellen. Es kann sich um die zuvor bereits näher beschriebenen Vertreter der gram-positiven oder gram-negativen Bakterien handeln. Hierbei zeichnen sich die erfindungsgemäß genetisch veränderten Mikroorganismen durch eine erhöhte Protein-Sekretion gegenüber den entsprechend nicht veränderten Mikroorganismen (Wild Typen) oder den Mikroorganismen aus, die lediglich den Vektor ohne Gen-Insert enthalten. In einer besonderen Ausführungsvariante der vorliegenden Erfindung ist gezeigt, dass die Expression des erfindungsgemäßen secA Gens im homologen Bacillus subtilis System (d.h. alle Komponenten des Sec-Transportapparats stammen aus Bacillus subtilis) zu einer wenigstens 3-fachen Steigerung der Protein-Akkumulation im Medium im Vergleich zu den Kontrollstämmen führt. Durch Überexpression weiterer Gene, die positiv auf den allgemeinen Stoffwechsel der Protein-Biosynthese wirken, ist eine weitere Steigerung der Protein-Produktion zu erwarten.

Mit dem erfindungsgemäßen Verfahren können Pharmaproteine, Hormone, Enzyme, Wachstumsfaktoren oder beispiels-
weise Cytokine hergestellt werden. So können beispielsweise Proteasen, Amylasen, Carbohydrasen, Lipasen, Epimerasen, Tautomerasen, Mutasen, Transferasen, Kinasen oder Phosphatasen mikrobiell hergestellt werden.

Die Figuren zeigen beispielhaft verwendete Plasmide, eine schematische Übersicht über den Sec-Proteinsekretionsapparat, eine Darstellung der SecA Proteine mit den erfindungsgemäßen Mutationen sowie einen experimentellen Nachweis der erhöhten Proteinsekretion unter Verwendung der erfindungsgemäßen Nukleinsäuren.

Es zeigt:

Fig. 1:
Sec-Proteinsekretionsapparat gram-positiver Bakterien

Fig. 2:
Schematische Darstellung der SecA Proteine von *S. carnosus* und *B. subtilis*. Eingezeichnet sind die durch Selektion erhaltenen supprimierenden Mutationen des *S. carnosus* SecA. Die durch Pfeile markierten Mutationen wurden durch ortsgerechtete Mutagenese einzeln auf die korrespondierenden Aminosäurepositionen vom plasmid-kodierten *B. subtilis* SecA übertragen.

Fig. 3:
0,5 mM IPTG, die SecA Expression wurde mit 0,2 % Xylose induziert. **p**: PhoB L15Q Vorläufer; **m**: reifes PhoB (signifikant erhöhte Mengen sind mit Pfeil gekennzeichnet); **L15Q**: Variante der alkalischen Phosphatase PhoB, die aufgrund eines Aminosäureaustausches von Leucin zu Glutamin an Position 15 in der Signalsequenz nur sehr ineffizient im unveränderten *Bacillus subtilis* exexpradiert wird; **pWA - secA**: Leerlektor; **pWA + secA**: Vektor mit Wild Typ SecA; **pWAX**: Plasmid mit erfindungsgemäßer

Mutation des **secA** von *Bacillus subtilis*, X steht für eine der Mutationen in Position 464, 468, 487, 531 bzw. 729

<table>
<thead>
<tr>
<th>Spur</th>
<th>Versuchsansatz</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Zelleextrakt; Plasmid pWA - secA, PhoB unverändert</td>
</tr>
<tr>
<td>2</td>
<td>Überstand; Plasmid pWA - secA, PhoB unverändert</td>
</tr>
<tr>
<td>3</td>
<td>Zelleextrakt; Plasmid pWA - secA, L15Q</td>
</tr>
<tr>
<td>4</td>
<td>Überstand; Plasmid pWA - secA, L15Q</td>
</tr>
<tr>
<td>5</td>
<td>Zelleextrakt; Plasmid pWA + secA, PhoB unverändert</td>
</tr>
<tr>
<td>6</td>
<td>Überstand; Plasmid pWA + secA, PhoB unverändert</td>
</tr>
<tr>
<td>7</td>
<td>Zelleextrakt; Plasmid pWA + secA, L15Q</td>
</tr>
<tr>
<td>8</td>
<td>Überstand; Plasmid pWA + secA, L15Q</td>
</tr>
<tr>
<td>9</td>
<td>Zelleextrakt; Plasmid pWA464; L15Q</td>
</tr>
<tr>
<td>10</td>
<td>Überstand; Plasmid pWA464; L15Q</td>
</tr>
<tr>
<td>11</td>
<td>Zelleextrakt; Plasmid pWA468; L15Q</td>
</tr>
<tr>
<td>12</td>
<td>Überstand; Plasmid pWA468; L15Q</td>
</tr>
<tr>
<td>13</td>
<td>Zelleextrakt; Plasmid pWA487; L15Q</td>
</tr>
<tr>
<td>14</td>
<td>Überstand; Plasmid pWA487; L15Q</td>
</tr>
<tr>
<td>15</td>
<td>Zelleextrakt; Plasmid pWA531; L15Q</td>
</tr>
<tr>
<td>16</td>
<td>Überstand; Plasmid pWA531; L15Q</td>
</tr>
<tr>
<td>17</td>
<td>Zelleextrakt; Plasmid pWA729; L15Q</td>
</tr>
<tr>
<td>18</td>
<td>Überstand; Plasmid pWA729; L15Q</td>
</tr>
</tbody>
</table>
Fig. 4:
Plasmidvektor pDEL6;
secAS.c.: secA-Gen von Staphylococcus carnosus;
cat: Chloramphenicol-Resistenzgen;
5 orf1 und orf3: Bereiche, die im Chromosom von Bacillus
subtilis vor (orf1) bzw. hinter (orf3) dem secA Gen liegen. Diese Bereiche die-
nen dazu, das secA Gen im Chromosom von
Bacillus subtilis gegen das secA Gen von
Staphylococcus carnosus auszutauschen.
bla: Gensequenz codierend für β-Lactamase

Fig. 5:
Plasmidvektor pCU3seq; (entspricht dem pEF1 Plasmid aus
der Veröffentlichung [19])
cat: Chloramphenicol-Resistenzgen
P25/O: Bakteriophagen T5 Promotor PN_{25}/lac Operator
lacI: Gen kodierend für lac-Repressor
Pv: B. subtilis vegII Promotor
20 bla: β-Lactamase

Fig. 6:
Plasmidvektor pWH1520
bla: β-Lactamase
tet: Tetracyclin Resistenzgen
xylR: Repressoren des Xylose Operons aus Bacillus
megaterium
xylA^: N-terminales Fragment der Xylose Isomerase
unter Kontrolle eines Xylose induzierbaren
30 Promotors
Fig. 7:
Plasmidvektor pXR100;
bla: β-Lactamase
xylR : Repressorgen des Xylose Operons aus Bacillus megaterium
PxylA: Xylose induzierbarer Promotor der Xylose Isomerase
cat: Chloramphenicol- Resistenzgen

10 **Ausführungsbeispiele:**

Allgemeine Beschreibung:
Zunächst wurde ein Bacillus subtilis Stamm mit einer künstlich erhöhten Qualitätskontrolle des SecA Proteins, (im folgenden RMA = replacement mutant SecA genannt), konstruiert.

Im Folgenden wurden Suppressormutanten der RMA selektioniert, die wieder bei 25°C wachsen können und/oder die wieder die Fähigkeit zur Sporenbildung besitzen. Die
Charakterisierung dieser Suppressormutanten ergab, dass in diesen Mutanten Veränderungen in dem fremden seca-Gen aufgetreten waren. Die entsprechenden Aminosäure-
veränderungen betrafen vor allem die beiden Bereiche
IRA-1 und IRA-2, die an der Regulation der ATP-Hydro-
lyse an der NBS-1 von SecA beteiligt sind. Die weitere
Charakterisierung der Suppressormutanten zeigte darüber
hinaus, dass das in der RMA vom Export fast vollständig
ausgeschlossene heterologe OmpA Protein in den Suppres-
sormutanten deutlich besser exportiert werden kann.

Aufgrund des Vergleichs mit Escherichia coli SecA Mut-
anten aus Literaturdaten [10], die zum Teil mit den er-
findungsgemäßen Mutationen im seca-Gen bzw. den erfin-
dungsgemäßen Veränderungen in der Aminosäuresequenz des
SecA Proteins an den entsprechenden Positionen iden-
tisch waren, kann angenommen werden, dass die in den
IRA Elementen von Staphylococcus carnosus SecA identi-
fizierten Mutationen die Repression der ATP Hydrolyse
an der NBS-1 in SecA abschwächen, wodurch die basale
ATPase Aktivität erhöht wird [9, 10]. Die veränderten
Staphylococcus carnosus SecA Varianten stellen somit
SecA Proteine dar, die einen besseren Export von norma-
lerweise ineffizient oder gar nicht exportierten hetero-
logen Proteinen erlauben.

Da die RMA und die isolierten Suppressormutanten alle
noch das fremde seca-Gen von Staphylococcus carnosus
besitzen und somit nach wie vor eine künstliche Situa-
tion mit einer gemischten Sec-Translokase darstellen,
wurden im Folgenden die gefundenen Veränderungen (ein-
zeln und auch in Kombination) auf das homologe Bacillus
subtilis SecA übertragen. Die Coexpression der mutier-

ten Bacillus subtilis SecA-Proteine mit verschiedenen ineffizient transportierten Exportproteinen in Bacillus subtilis zeigte, dass auch im nun homologen System (d.h. alle Komponenten des Sec-Transportapparats stam-
men aus B. subtilis) ein verbesserter Export der untersuchten Proteine zu beobachten war (gezeigt in Fig.3 am Beispiel einer ineffizient exportierten Variante der alkalischen Phosphatase PhoB von B subtilis).

1. Konstruktion der Bacillus subtilis SecA-
Austauschmutante (RMA)

Das pDEL6 Plasmid, welches zur Konstruktion der RMA verwendet wurde, wurde wie folgt konstruiert:

RMA eingesetzt wurde, enthält damit Bereiche aus fünf verschiedenen Plasmiden:
- secA-Gen aus dem Plasmid pMA12
- Chloramphenicol-Resistenzgen (cat) aus dem Plasmid pDG268
- orf1 aus Plasmid pBO4
- orf3 aus Plasmid pMKL4
- Restlicher Bereich (lacZ und bla) aus Plasmid pGEM3Z

2. Isolierung von Suppressormutanten der B. subtilis

Die B. subtilis RMA wurde als Parentalstamm verwendet, um Suppressormutanten zu isolieren, die wieder bei 25 °C wachsen können, bzw. besser sporulieren können als die RMA.

3. Klonierung und Sequenzierung der secA Gene der Suppressormutanten

B. subtilis DB 104 wurde verwendet, um zu unterscheiden, ob die supprimierenden Mutationen der Suppressormutanten im secA Gen von *S. carnosus* oder einem anderen Gen von *B. subtilis* lokalisiert sind. Hierzu wurde *B. subtilis* DB 104 mit chromosomaler DNA der Suppressormutanten transformiert und Chloramphenicol resistente Klone selektioniert. Die so erhaltenen Transformanten wurden getestet, ob sie auch bei 25 °C wachsen können, somit außer dem Gen für die Chloramphenicol Acetyltransferase auch das benachbarte, stromabwärts liegende *S. carnosus* secA Gen mit der supprimierenden Mu-

Um die S. carnosus secA Gene der Suppressormutanten unter der Kontrolle des Xylose induzierbaren Promoters xyIA zu klonieren, erfolgte eine Amplifizierung von secA mittels PCR unter Verwendung chromosomaler DNA der Suppressormutanten als Matrise. Hierfür wurden die Primer

SecAS.c.NBamH1 (5’ CGGGATCCAAAGGAGCGAACGAATGGG 3’)
SecAS.c.CSph1 (5’ ACATGCATGCATCAACTTACTATTTCACCACG 3’) verwendet (unterstrichene Basen zeigen die BamHI bzw. SphI Schnittstelle an). Nach Amplifikation wurde ein 2,56 kb Fragment erhalten, welches mit BamHI und SphI verdaut wurde und in den ebenfalls BamHI/SphI verdauten Vektor pWH1520 [17] litiert wurde, wodurch die Plasmide pWHsecAS.c.supp. erhalten wurden. Die Sequenzierung der secA Gene erfolgte mit IRD800 markierten Primern

SecAS.c.H1 (5’ AACTGCAAAGATGCACG 3’),
SecAS.c.H2 (5’ GTGCTGATAAGCAGTGACC 3’)
SecA S.c.H3 (5’ AATCCCAACGAACGGTCC 3’),
SecAS.c.H4 (5’ GACAAAGTGACCGCAG 3’),
SecAS.c.H5 (5’ AAGGTTAACGATCGTG 3’) und
SecAS.c.R5 (5’ CTGTTCAAGGGTTCCAGTCCG 3’) (MWG) unter Verwendung des Thermo Sequenase fluorescent labelled primer cycle sequencing Kit (Amersham Pharmacia Biotech) nach Angaben des Herstellers.
4. Transfer supprimierender Mutationen in das SecA von B. subtilis

1. Austausch von Histidin zu Glutamin an Aminosäureposition 464
5′ GTGTTAAATGCCAAAACCAAAGAAGCCTGAGCAGATC 3′
5′ GATCTGGCTTCACGTTCTTGGTTTGGCATTTAACAC 3′

2. Austausch von Alanin zu Valin an Position 468
5′ CATGAACGTGAAAGTTCTAGACATGATTGAAAGGCGGCCGC 3′
5′ GCCCGGCTCCTTCAATGATCTGAACCTTCGACGTGATGG 3′

3. Austausch von Alanin zu Valin an Position 487
5′ CGATTGCGACTAACATGGTTCGCCCACGCCGGAGACGG 3′
5′ CGGTTACCGCCGGCCAACCATGTAGTGCACATGG 3′

4. Austausch von Asparaginsäure zu Alanin an Position 531
5′ CCGGACGTCAGGGAGCCCCGGGGATTACTC 3′
5′ GAGTAATCCCCGGGGCTCCCTGACGTCGG 3′
5. Austausch von Asparaginsäure zu Valin an Position 729
5’GGATGGATCATATTGGTTGCATGGATCAGCTCCGCCAAGGG 3’
5’CCCTGGCGGAGCTCATCCGCAACAATATGATCCATCC 3’

SecAB.s.H1 (5’ GTACAGCTAAGACAGACAGG 3’),
SecAB.s.H2 (5’ TTAGCCGCTTCCGCTAG 3’),
SecAB.s.H3 (5’ AAGGGATTCACCTTCGTGC 3’),
SecAB.s.R1 (5’ TTTCCCTTCATCGGCGG 3’),
SecAB.s.R2 (5’ TTCAGTAAGGTGTACAGC 3’ und
SecAB.s.R3 (5’ TTTCCCGTC ATGAAGCGCC 3’).

Die Expression der SecA Proteine wurde überprüft, indem LB Medium nach Zugabe von 0,2 % (w/v) Xylose mit den Stämmen B. subtilis DB104, welche die Plasmide pWAX enthielten, zu einer OD600 von 0,4 angeimpft wurde und anschließend 4 Stunden bei 37 °C inkubiert wurde. Zellen aus 2 ml Kultur wurden abzentrifugiert und nach Aufschluß mit 50 μl Lysispuffer (10 mM Tris/HCl pH 8,0,
25 mM MgCl2, 200 mM NaCl, 5 mg/ml Lysozym) in dem gleichen Volumen 2 × Laemmli Probenpuffer aufgekocht. Die Proteine wurden in einem 10 % SDS Polyacrylamidgel auf-
getrennt und das SecA mittels Western-Blot Analyse unter Verwendung von B. subtilis SecA spezifischen Antikörpern nachgewiesen. Die Funktionalität der veränderten B. subtilis SecA Proteine wurde überprüft, indem die temperatursensitive B. subtilis secA Mutante NIG1152 (met, his, div341^Ⅵ) [18] mit den Plasmiden pWAX transformiert wurde und durch Induktion der SecA Expression mit 0,2 % (w/v) Xylose der Wachstumsdefekt der Mutante bei der nicht-permissiven Temperatur von 42 °C komplementiert wurde.

5. Untersuchung des Proteinexports einer alkalischen Phosphatase PhoB

Es wurde untersucht, ob durch Expression der veränderten B. subtilis SecA Proteine der Proteinexport im B. subtilis Wildtyp verbessert wird. Als Exportsubstrat wurde eine Variante der alkalischen Phosphatase PhoB verwendet, die aufgrund eines Aminosäureaustausches von Leucin zu Glutamin an Position 15 (PhoBL15Q) in der Signalsequenz nur sehr ineffizient im B. subtilis Wildtyp exportiert wird. B. subtilis DB104 wurde mit den Plasmiden pCU3phoB bzw. pCU3phoBL15Q, welche die Gene für das Wildtyp PhoB bzw. die Variante PhoBL15Q enthalten, sowie den Plasmiden pWA_x, welche die veränderten secA B. subtilis Gene enthalten, transformiert. Mit den so erhaltenen Stämmen wurde LB Medium, mit 0,5 mM IPTG und 0,2 % Xylose versetzt, zu einer OD₆₀₀ von 0,4 angeimpft und die Kulturen 4 Stunden bei 37 °C inkubiert. 2 ml Zellen wurden durch Zentrifugation vom Überstand getrennt, mit 50 µl Lysispuffer aufgeschlossen und in dem gleichen Volumen 2x Laemmli Probenpuffer aufgekocht.
Proteine aus den Überständen wurden über Nacht mit 13 % Trichloressigsäure bei 4 °C gefällt, zweimal mit 80 % Azeton gewaschen und in 50 µl Laemmli Probenpuffer aufgekocht. Von den Zellextrakten wurde ein Volumen entsprechend 0,2 OD Zellen und von den Überständen ein Volumen entsprechend 1,0 OD Zellen auf ein 12,5 % SDS Polyacrylamidgel aufgetragen und das PhoB mittels PhoB spezifischer Antikörper im Western-Blot nachgewiesen. Die Ergebnisse zeigt Fig. 3.

Literatur

17. Rygus, T., Hillen, W. (1991) Inducible high-level expression of heterologous genes in Bacillus megaterium using the regulatory elements of the xylose-

Patentansprüche

1. SecA Protein (Translokations-ATPase) mit einer Aminosäuresequenz, welches gegenüber der Wild Typ SecA Aminosäuresequenz mindestens eine Veränderung der Aminosäuresequenz aufweist oder eine modifizierte Form dieser Polypeptidsequenzen oder Isoformen davon, wodurch ein SecA mit erhöhter Sekretion für Proteine ausgebildet wird.

2. SecA nach Anspruch 1, welches im Bereich der Aminosäuren, die für die Ausbildung der regulatorischen Elemente IRA-1 und/oder IRA-2 verantwortlich sind, mindestens eine Veränderung aufweist oder eine modifizierte Form dieser Polypeptidsequenzen oder Isoformen davon.

3. Polypeptide nach einem der Ansprüche 1 bis 2, dadurch gekennzeichnet, dass sie aus gram positiven oder gram negativen Bakterien stammen.

4. Polypeptide nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass sie aus Bacillaceae, Staphylococcaceae, Enterobacteriaceae oder Corynebacteriaceae stammen.

5. Polypeptide nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass sie aus Bacillus, Staphylococcus, Escherichia oder Corynebacterium stammen.
6. Polypeptide nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass sie aus Bacillus subtilis, Bacillus licheniformis, Bacillus amyloliquefaciens, Staphylococcus carnosus, Escherichia coli oder Corynebacterium glutamicum stammen.

7. SecA gemäß einem der Ansprüche 1 bis 6, welches aus Staphylococcus carnosus isoliert wurde und im Bereich der Aminosäuren von Position 198 bis 772 mindestens eine Veränderung aufweist oder eine modifizierte Form dieser Polypeptidsequenzen oder Isoformen davon.

8. SecA gemäß einem der Ansprüche 1 bis 6, welches aus Bacillus subtilis isoliert wurde und im Bereich der Aminosäuren von Position 442 bis 767 mindestens eine Veränderung aufweist oder eine modifizierte Form dieser Polypeptidsequenzen oder Isoformen davon.

9. SecA nach einem der Ansprüche 1 bis 7, mit einer Aminosäuresequenz, gemäß SEQ ID No 2, welches mindestens eine Veränderung aus der Gruppe der Aminosäuren in Position 198, 470, 474, 493, 537, 665 und/oder 734 aufweist oder eine modifizierte Form dieser Polypeptidsequenzen oder Isoformen davon.

10. SecA nach einem der Ansprüche 1 bis 6 sowie 8, mit einer Aminosäuresequenz, gemäß SEQ ID No 4, welches mindestens eine Veränderung aus der Gruppe der Aminosäuren in Position 464, 468, 487, 531 und/oder 729 aufweist oder eine
modifizierte Form dieser Polypeptidsequenz oder Isoform davon.

12. Nukleinsäure gemäß Anspruch 11, welche im Bereich der Nukleotide, die für die regulatorischen Elemente IRA-1 und/oder IRA-2 codieren, mindestens eine Mutation aufweist oder ein Allel, Homolog oder Derivat dieser Nukleotidsequenz oder mit dieser hybridisierende Nukleotidsequenzen.

15. Nukleinsäure nach einem der Ansprüche 11 bis 14, dadurch gekennzeichnet, dass sie aus Bacillus, Staphylococcus, Escherichia oder Corynebacterium isoliert wird.

16. Nukleinsäure nach einem der Ansprüche 11 bis 15, dadurch gekennzeichnet,
dass sie aus Bacillus subtilis, Bacillus licheniformis, Bacillus amyoliquefaciens, Staphylococcus carnosus, Escherichia coli oder Corynebacterium glutamicum isoliert wird.

20. Nukleinsäure gemäß einem der Ansprüche 11 bis 16 sowie 18, enthaltend ein Gen secA gemäß SEQ ID No 3, welche mindestens eine Mutation aus der Gruppe der Nukleotid in Position 1392, 1403, 1404, 1460, 1461, 1592 und/oder 2186 aufweist oder ein Allel,
Homolog oder Derivat dieser Nukleotidsequenzen oder mit diesen hybridisierende Nukleotidsequenzen.

22. Vektor enthaltend wenigstens eine Nukleotidsequenz gemäß Anspruch 11 bis 20 oder eine Genstruktur gemäß Anspruch 21 sowie zusätzliche Nukleotidsequenzen zur Selektion, zur Replikation in der Wirtszellle oder zur Integration in das Wirtszell-Genom.

23. Mikroorganismus enthaltend wenigstens eine Nukleinsäure gemäß Anspruch 11 bis 20 in replizierbarer Form.

24. Mikroorganismus gemäß Anspruch 23 enthaltend in replizierbarer Form eine Genstruktur gemäß Anspruch 21 oder einen Vektor gemäß Anspruch 22.

25. Mikroorganismus gemäß einem der Ansprüche 23 bis 24 enthaltend wenigstens ein Polypeptid gemäß Anspruch 1 bis 10, welches in den Vergleich zu dem entsprechenden Wild Typ Stamm SecA Protein mit erhöhter Sekretion für Proteine aufweist.

26. Mikroorganismus gemäß einem der Ansprüche 23 bis 25, dadurch gekennzeichnet, dass er ein gram positives oder gram negatives Bakterium ist.

27. Mikroorganismus gemäß einem der Ansprüche 23 bis 26, dadurch gekennzeichnet,
dass er zur Familie der Bacillaceae, Staphylococcae, Enterobacteriaceae oder Corynebacteriaceae gehört.

28. Mikroorganismus gemäß einem der Ansprüche 23 bis 27,
dadurch gekennzeichnet,
dass er zur Gattung Bacillus, Staphylococcus, Escherichia oder Corynebacterium gehört.

29. Mikroorganismus gemäß einem der Ansprüche 23 bis 28,
dadurch gekennzeichnet,
dass er zu Bacillus subtilis, Bacillus licheniformis, Bacillus amyloboquefaciens, Staphlococcus carnosus, Escherichia coli oder Corynebacterium glutamicum gehört.

30. Sonde zur Identifizierung und/oder Isolierung von Genen codierend für an der Sekretion von Proteinen beteiligten Proteinen,
dadurch gekennzeichnet,
dass sie ausgehend von Nukleinsäuren gemäß einem der Ansprüche 11 bis 20 hergestellt wird und eine zur Detektion geeignete Markierung enthält.

31. Verfahren zur mikrobiellen Herstellung von Proteinen,
dadurch gekennzeichnet, dass

a) wenigstens eine Nukleinsäure gemäß einem der Ansprüche 11 bis 20 isoliert aus einem gram positiven oder gram negativen Bakterium in einen
Mikroorganismus übertragen oder dort erzeugt
wird und diese dort exprimiert wird,

b) dieser genetisch veränderte Mikroorganismus aus
Schritt a) zur mikrobiellen Herstellung von Pro-
teinen eingesetzt wird und
c) das entsprechend gebildete Protein aus dem Kul-
turmedium isoliert wird.

32. Verfahren nach Anspruch 31,
dadurch gekennzeichnet,
dass das Protein ein homologes oder heterologes
Protein ist.

33. Verfahren nach einem der Ansprüche 31 bis 32,
dadurch gekennzeichnet,
dass das Protein ein Hormon, Enzym, Wachstumsfak-
tor, Pharmaprotein oder Cytokin ist.

34. Verfahren nach einem der Ansprüche 31 bis 33,
dadurch gekennzeichnet,
dass das Enzym eine Protease, Amylase, Carbohydra-
se, Lipase, Epimerase, Tautomerase, Mutase, Trans-
ferase, Kinase oder Phosphatase ist.
SecA *S. carnosus*

SecA *B. subtilis*

Fig. 2
Fig. 5
SEQUENZPROTOKOLL

Forschungszentrum Jülich GmbH

Bakterien mit erhöhter Proteinsekretion

PT 1.2076

DNA

Staphylococcus carnosus

atgggttttt tgttgagcgac aataagagaa aatcaacagt cctaaagtaa 60
cagctgacaa agtaaatgct aatggagaa gaaagtcaga tcttactga tgaagaatt 120
agaataaa ccaagcatt ccaagaaaga tggcaacggt aagagatgt aagcaacca 180
gataaatttt tagaagaat tattcgtgaa gctatttgctg tctgcgtgta aggacataa 240
cgtgtatattta atatgacacc ttcacagtct caaatcaatt gttgtatcgc cattcataat 300
gttgacacttt cagaaatgag aacaggtgaa gttacaacat taactcgaacc gttgctgacct 360
tatataacgc ccttgagcag acgttggtgtc cattttattta cagtcacatgt atactccggca 420
ggttcacaa cagaaagaaa ggcgcagttta tataattttccc tgtgttttaatc agtggattgg 480
aacctggaaca cctttacaca agaacaagag cgtgaacgtc ataagccaga ttacacgtat 540
agtataaaatta atgaaattagg ctctgactat ttaccgcata acatgtgtta ttattccagaa 600
gaagcgtgtta tctgctccgctt tcatatatgtg agttggacatct tatttaaatcc 660
agttaagcgcc atacaccacc gattttttccc cgggagctg ctaaacaac acetcttttat 720
accacgtgaa attttttcctt tataaatgtta aacgcagaa atgataattaa tataattcga 780
aaaaaacaat caggtatcata caggtcataa acggttgaag tttggttcaag 840
tatgataact tatgataattt gaataaaagct gattatataa cgcataataac tacagcatta 900
cgtgcatcact tatatacattgca acgcacatgtg tattcaattgc gaaatagtt 960
attggtggacct tttttatcct ttccaggaact caggtgctgc agtttcttcaag 1020
caagcagttt agggttaaag attgggctttaa attcaaaatctg aatcttaac 1080
atcaacactctc atcgtatgta ataataattag caggtatgacatc agttactgtct 1140
aaaaacaggtt aagaaagattt cgttaaatcc ttataatagt gattacacaa aataccaaac 1200
aaccgctcgtc tttcaagcagtt cagttagatcct catcagccaa aagggcagaa 1260
attgctgatct tgttgtgtaga aaccaaaa gatgccaaa aatcttttatta 1320
gtgtgtatgag cgcgtgggaa aaggtgaacct attcacaactcgttgaagaaa aacgcgggtggt 1380
cgctatgactt tttataacgc taaaaccat tgggaacat gttggatgcag attaacagca 1440
gttgtaaaagattgtcagc aacaggtgcagtt cttggtgacct cagttttaaa 1500
ttggcgaagagcgttgtgaaca attgcctgacc cttcgtgttcatt gttggatgaa 1560
tccagcggta ttgatgacatc gttgctgtgact ctgtctgtagac gacaagttc gacgcggagaa 1620
agccgttttc atttatcatt acaagatgac ttgatgggtc gtttcgggttc tgaacgtctg 1680
caaaaatgga tggcgcgcatt aggtatggat gactctacac cgattgaatcc aaaaatggta 1740
tttcgagtcttg ttaaatctgc acaaaaaagct gttgaaggtta acaacttcca tgcacgtaaa 1800
cgtatcttag aatacgatga aagtttacctg aaacaacggt aaactaatata tggtaacgct 1860
aataataatta tgcattcaga atccaagttctt gataatgtca ttacaatgat acgtcttaca 1920
ttagctgtg caaatcgtta ttatgttaat gaagaatttga aagaaatttga catgctgccgc 1980
ttttataatt tggttgaaga tgtttttcttg cacgaaggtg aagtgcaaga agatgaaatcc 2040
aaaggttaag gtaaatgatcg tgaggatatt ttctgatacag tatgggctaa aattgaaaaa 2100
gcttatgaag cccaaaagac ccaatataccc gaccaatttca atggaatttca acgtatgatt 2160
ttatagcatt catttgagtgg aagatgggcac cacataatcga atcaaatggcatactttcc 2220
cagggcagcc acacatgatc aatcagttcag cacaaaccac ttcgctgaact tcaaatggata 2280
gggcacccac cacatgatgatc gaaatctgag ccaatatatc gcaaatgggcacct 2340
ttgaaatctaa ttgcatcagttg atagatgatg ctgaaatcctt ataagccaaa gaagatataca 2400
ggcacacag ttagcagcag ttaggaaattg aagaaatggg aacgcggacc agttttacaa 2460
goataaatca tcggaagaaa ttagactctgct ccatgctggca gcoogtaaaa gtaaaaaat 2520
tgctgcccgtta aatag 2535

<210> 2
<211> 844
<212> PRT
<213> Staphylococcus carnosus

<400> 2
Met Gly Phe Leu Thr Lys Ile Val Asp Gly Asn Lys Arg Glu Ile Lys 1 5 10 15
Arg Leu Ser Lys Gln Ala Asp Lys Val Ile Ser Leu Glu Glu Glu Met 20 25 30
Ser Ile Leu Thr Asp Glu Glu Ile Arg Asn Lys Thr Lys Ala Phe Gln 35 40 45
Glu Arg Leu Gln Ala Glu Asp Val Ser Lys Gln Asp Lys Ile Leu 50 55 60
Glu Glu Ile Leu Pro Glu Ala Phe Ala Leu Val Arg Glu Gly Ala Lys 65 70 75 80
Arg Val Phe Asn Met Thr Pro Tyr Pro Val Gln Ile Met Gly Gly Ile 85 90 95
Ala Ile His Asn Gly Asp Ile Ser Glu Met Arg Thr Gly Gly Gly Lys 100 105 110
Thr Leu Thr Ala Thr Met Pro Thr Tyr Leu Asn Ala Leu Ala Ala Arg 115 120 125

2
Gly Val His Val Ile Thr Val Asn Glu Tyr Leu Ala Ser Ser Gln Arg
130 135 140
Glu Glu Met Ala Glu Leu Tyr Asn Phe Leu Gly Leu Ser Val Gly Leu
145 150 155 160
Asn Leu Asn Ser Leu Ser Thr Glu Gln Lys Arg Glu Ala Tyr Asn Ala
165 170 175
Asp Ile Thr Tyr Ser Thr Asn Asn Glu Leu Gly Phe Asp Tyr Leu Arg
180 185 190
Asp Asn Met Val Asn Tyr Ser Glu Glu Arg Val Met Arg Pro Leu His
195 200 205
Phe Ala Ile Ile Asp Glu Val Asp Ser Ile Leu Ile Asp Glu Ala Arg
210 215 220
Thr Pro Leu Ile Ile Ser Gly Glu Ala Glu Lys Ser Thr Ser Leu Tyr
225 230 235 240
Thr Gln Ala Asn Val Phe Ala Lys Met Leu Lys Ala Glu Asp Asp Tyr
245 250 255
Asn Tyr Asp Glu Lys Thr Lys Ser Val Gln Leu Thr Asp Gln Gly Ala
260 265 270
Asp Lys Ala Glu Arg Met Phe Lys Leu Asp Asn Leu Tyr Asp Leu Lys
275 280 285
Asn Val Asp Ile Ile Thr His Ile Asn Thr Ala Leu Arg Ala Asn Tyr
290 295 300
Thr Leu Gln Arg Asp Val Asp Tyr Met Val Val Asp Gly Glu Val Leu
305 310 315 320
Ile Val Asp Gln Phe Thr Gly Arg Thr Met Pro Gly Arg Arg Phe Ser
325 330 335
Glu Gly Leu His Gln Ala Ile Glu Ala Lys Glu Gly Val Gln Ile Gln
340 345 350
Asn Glu Ser Lys Thr Met Ala Ser Ile Thr Phe Gln Asn Tyr Phe Arg
355 360 365
Met Tyr Asn Lys Leu Ala Gly Met Thr Gly Thr Ala Lys Thr Glu Glu
370 375 380
Glu Glu Phe Arg Asn Ile Tyr Asn Met Thr Val Thr Gln Ile Pro Thr
385 390 395 400

Asn Arg Pro Val Gln Arg Glu Asp Arg Pro Asp Leu Ile Phe Ile Ser
405 410 415

Gln Lys Gly Lys Phe Asp Ala Val Val Glu Asp Val Val Glu Lys His
420 425 430

Lys Lys Gly Gln Pro Ile Leu Leu Gly Thr Val Ala Val Glu Thr Ser
435 440 445

Glu Tyr Ile Ser Gln Leu Leu Lys Arg Gly Val Arg His Asp Val
450 455 460

Leu Asn Ala Lys Asn His Glu Arg Ala Glu Ile Val Ser Thr Ala
465 470 475 480

Gly Gln Lys Gly Ala Val Thr Ile Ala Thr Asn Met Ala Gly Arg Gly
485 490 495

Thr Asp Ile Lys Leu Gly Glu Gly Val Glu Leu Gly Gly Leu Ala
500 505 510

Val Ile Gly Thr Glu Arg His Glu Ser Arg Arg Ile Asp Asp Gln Leu
515 520 525

Arg Gly Arg Ser Gly Arg Gln Gly Asp Arg Gly Glu Ser Arg Phe Tyr
530 535 540

Leu Ser Leu Gln Asp Glu Leu Met Val Arg Phe Gly Ser Glu Arg Leu
545 550 555 560

Gln Lys Met Met Gly Arg Leu Gly Met Asp Asp Ser Thr Pro Ile Glu
565 570 575

Ser Lys Met Val Ser Arg Ala Val Glu Ser Ala Gln Lys Arg Val Glu
580 585 590

Gly Asn Asn Phe Asp Ala Arg Lys Arg Ile Leu Glu Tyr Asp Glu Val
595 600 605

Leu Arg Lys Gln Arg Glu Ile Ile Tyr Gly Glu Arg Asn Asn Ile Ile
610 615 620

Asp Ser Glu Ser Ser Ser Glu Leu Val Ile Thr Met Ile Arg Ser Thr
625 630 635 640
Leu Asp Arg Ala Ile Ser Tyr Tyr Val Asn Glu Glu Leu Glu Glu Ile
645 650 655

Asp Tyr Ala Pro Phe Ile Asn Phe Val Glu Asp Val Phe Leu His Glu
660 665 670

Gly Glu Val Lys Glu Asp Glu Ile Lys Gly Lys Gly Lys Asp Arg Glu
675 680 685

Asp Ile Phe Asp Thr Val Trp Ala Lys Ile Glu Lys Ala Tyr Glu Ala
690 695 700

Gln Lys Ala Asn Ile Pro Asp Gln Phe Asn Glu Phe Glu Arg Met Ile
705 710 715 720

Leu Leu Arg Ser Ile Asp Gly Arg Trp Thr Asp His Ile Asp Thr Met
725 730 735

Asp Gln Leu Arg Gln Gly Ile His Leu Arg Ser Tyr Gly Gln Gln Asn
740 745 750

Pro Leu Arg Asp Tyr Gln Asn Glu Gly His Gln Leu Phe Asp Thr Met
755 760 765

Met Val Asn Ile Glu Glu Asp Val Ser Lys Tyr Ile Leu Lys Ser Ile
770 775 780

Ile Thr Val Asp Asp Ile Glu Arg Asp Lys Ala Lys Glu Tyr Gln
785 790 795 800

Gly Gln His Val Ser Ala Glu Asp Gly Lys Glu Lys Val Lys Pro Gln
805 810 815

Pro Val Val Lys Asp Asn His Ile Gly Arg Asn Asp Pro Cys Pro Cys
820 825 830

Gly Ser Gly Lys Lys Tyr Lys Asn Cys Cys Gly Lys
835 840

<210> 3
<211> 2526
<212> DNA
<213> Bacillus subtilis

<400> 3
atgcttggaa ttttaataaa aatgttttagt ccaacaaaaac gtaogctgaa tagatacgaag 60
aaatgttca tegactttacgc ggagactatg aaaatccttc tgaacacgc 120
ttgaacacata aacaatagtg attaaaagag ctttgctgaa aagggcscga aaggtcatg 180
tctctttgtgc aagcactttcg tttggctgctc gaaagcttac gcccgtttaa aaggcatgtt 240
ccttttaagg tttgaccctgt tttttaaatg caatttaaac tggcc(ac)tg 300
aattacgaacctt accctgtcccc atgttgtttaa tttattttaa tcgcrttaacc 360
gttaaagcgc aatgcgttctg ctgactgcttc gaatttaagt tttgtgtcga ctgac 420
aaggggaaaacttactt cacgagtgttg cttttcggt gcagctgtgc 480
aagacgccaaa gacactgcctc gacaactgctg gtcgacgtag gggactgggtc 540
aactatgact ctgagcttgaa aacgacatgc ggtcatcaag cctttattcg 600
gtgggacctga cttgcctgcc gttgcgttcag gttggtcct tataacactc 660
aaggggttctg aatcagcattca cagacagcata gacagtctgcat acagttggcag 720
gactgttatg cttttctcttg cctttttaag ctccttttaa tttttttagt 780
aagaggttaag ctttattcgcgt gttgcgtttct gtttttgaag ctttttttagt 840
gtacatgatc cagtaacatgc cttttcattt tgaacacgc 900
tggcactgtct ctttttatgc actgtctgctt ctattttttt tttatttttt 960
gactggtgttgtatc gattttctgta aacggtgcagg gttgccgcttc acagaagcag 1020
ggggtttttc gagctgctagatat aacgagctgctg cttcctacta cagacagcata 1080
ccaggttgctg cttcctttttt ggttttttat tttttttttt ttatttttttt 1140
cattctctcag gctgctgctgctg ggttttttttt ttttttttttt ttattttttttt 1200
agatgctgttctt tttttttaag cttttttttt ttttttttttt ttattttttttt 1260
ggtggtcag ctggtgctttt cttttttttt ttttttttttt ttattttttttt 1320
acatcattact gcgtctccttt ttttttttttt ttattttttttt ttattttttttt 1380
gcattctctct gcgtctttttt ttttttttttt ttattttttttt ttattttttttt 1440
agatgttcccctttt ttttttttttt ttattttttttt ttattttttttt ttattttttttt 1500
agcactggttgcc gttgctctctt ttttttttttt ttattttttttt ttattttttttt 1560
cattctttttt gttgctgctgctg ggttttttttt ttttttttttt ttattttttttt 1620
agatcattctt ttttttttttt ttattttttttt ttattttttttt ttattttttttt 1680
tttttttttttttt ttttttttttt ttattttttttt ttattttttttt ttattttttttt 1740
tttttttttttttt ttttttttttt ttattttttttt ttattttttttt ttattttttttt 1800
tttttttttttttt ttttttttttt ttattttttttt ttattttttttt ttattttttttt 1860
tttttttttttttt ttttttttttt ttattttttttt ttattttttttt ttattttttttt 1920
tttttttttttttt ttttttttttt ttattttttttt ttattttttttt ttattttttttt 1980
tttttttttttttt ttttttttttt ttattttttttt ttattttttttt ttattttttttt 2040
tttttttttttttt ttttttttttt ttattttttttt ttattttttttt ttattttttttt 2100
tttttttttttttt ttttttttttt ttattttttttt ttattttttttt ttattttttttt 2160
<210> 4
<211> 841
<212> PRT
<213> Bacillus subtilis
Met Leu Gly Ile Leu Asn Lys Met Phe Asp Pro Thr Lys Arg Thr Leu
 1 5 10 15
Asn Arg Tyr Glu Lys Ile Ala Asn Asp Ile Asp Ala Ile Arg Gly Asp
 20 25 30
Tyr Glu Asn Leu Ser Asp Asp Ala Leu Lys His Lys Thr Ile Glu Phe
 35 40 45
Lys Glu Arg Leu Glu Lys Gly Ala Thr Thr Asp Asp Leu Leu Val Glu
 50 55 60
Ala Phe Ala Val Val Arg Glu Ala Ser Arg Arg Val Thr Gly Met Phe
 65 70 75 80
Pro Phe Lys Val Gln Leu Met Gly Gly Val Ala Leu His Asp Gly Asn
 85 90 95
Ile Ala Glu Met Lys Thr Gly Glu Gly Lys Thr Leu Thr Ser Thr Leu
 100 105 110
Pro Val Tyr Leu Asn Ala Leu Thr Gly Lys Gly Val His Val Val Thr
 115 120 125
Val Asn Glu Tyr Leu Ala Ser Arg Asp Ala Glu Gln Met Gly Lys Ile
 130 135 140
Phe Glu Phe Leu Gly Leu Thr Val Gly Leu Asn Leu Asn Ser Met Ser
 145 150 155 160
Lys Asp Glu Lys Arg Glu Ala Tyr Ala Ala Asp Ile Thr Tyr Ser Thr
 165 170
Asn Asn Glu Leu Gly Phe Asp Tyr Leu Arg Asp Asn Met Val Leu Tyr
 180 185 190
Lys Glu Gln Met Val Gln Arg Pro Leu His Phe Ala Val Ile Asp Glu
 195 200 205
Val Asp Ser Ile Leu Ile Asp Glu Ala Arg Thr Pro Leu Ile Ile Ser
 210 215 220
Gly Gln Ala Ala Lys Ser Thr Lys Leu Tyr Val Gln Ala Asn Ala Phe
 225 230 235 240
Val Arg Thr Leu Lys Ala Glu Lys Asp Tyr Thr Tyr Asp Ile Lys Thr
Lys Ala Val Glu Leu Thr Glu Gly Met Thr Lys Ala Glu Lys Ala
265
Phe Gly Ile Asp Asn Leu Phe Asp Val Lys His Val Ala Leu Asn His
275
His Ile Asn Gln Ala Leu Lys Ala His Val Ala Met Gln Lys Asp Val
290
Asp Tyr Val Val Glu Asp Gly Gln Val Val Ile Val Asp Ser Phe Thr
305
Gly Arg Leu Met Lys Gly Arg Arg Tyr Ser Glu Gly Leu His Gln Ala
325
Ile Glu Ala Lys Glu Gly Leu Glu Ile Gln Asn Glu Ser Met Thr Leu
340
Ala Thr Ile Thr Phe Gln Asn Tyr Phe Arg Met Tyr Glu Lys Leu Ala
355
Gly Met Thr Gly Thr Ala Lys Thr Glu Glu Glu Phe Arg Asn Ile
370
Tyr Asn Met Gln Val Val Thr Ile Pro Thr Asn Arg Pro Val Val Arg
385
Asp Asp Arg Pro Asp Leu Ile Tyr Arg Thr Met Glu Gly Lys Phe Lys
405
Ala Val Ala Glu Asp Val Ala Gln Arg Tyr Met Thr Gln Gln Pro Val
420
Leu Val Gly Thr Val Ala Val Glu Thr Ser Glu Leu Ile Ser Lys Leu
435
Leu Lys Asn Lys Gly Ile Pro His Gln Val Leu Asn Ala Lys Asn His
450
Glu Arg Glu Ala Gln Ile Ile Glu Ala Gly Gln Lys Gly Ala Val
465
Thr Ile Ala Thr Asn Met Ala Gly Arg Gly Thr Asp Ile Lys Leu Gly
485
Glu Gly Val Lys Glu Leu Gly Gly Leu Ala Val Val Gly Thr Glu Arg

His Glu Ser Arg Arg Ile Asp Asn Gln Leu Arg Gly Arg Ser Gly Arg
515 520 525
Gln Gly Asp Pro Gly Ile Thr Gln Phe Tyr Leu Ser Met Glu Asp Glu
530 535 540
Leu Met Arg Arg Phe Gly Ala Glu Arg Thr Met Ala Met Leu Asp Arg
545 550 555 560
Phe Gly Met Asp Asp Ser Thr Pro Ile Gln Ser Lys Met Val Ser Arg
565 570 575
 Ala Val Glu Ser Ser Gln Lys Arg Val Glu Gly Asn Asn Phe Asp Ser
580 585 590
Arg Lys Gln Leu Leu Gln Tyr Asp Val Leu Arg Gln Gln Arg Glu
595 600 605
Val Ile Tyr Lys Gln Arg Phe Glu Val Ile Asp Ser Glu Asn Leu Arg
610 615 620
Glu Ile Val Glu Asn Met Ile Lys Ser Ser Leu Glu Arg Ala Ile Ala
625 630 635 640
Ala Tyr Thr Pro Arg Glu Glu Leu Pro Glu Glu Trp Lys Leu Asp Gly
645 650 655
Leu Val Asp Leu Ile Asn Thr Thr Tyr Leu Asp Glu Gly Ala Leu Glu
660 665 670
 Lys Ser Asp Ile Phe Gly Lys Glu Pro Asp Glu Met Leu Glu Leu Ile
675 680 685
Met Asp Arg Ile Ile Thr Lys Tyr Asn Glu Lys Glu Gln Phe Gly
690 695 700
Lys Glu Gln Met Arg Glu Phe Glu Lys Val Ile Val Leu Arg Ala Val
705 710 715 720
Asp Ser Lys Trp Met Asp His Ile Asp Ala Met Asp Gln Leu Arg Gln
725 730 735
Gly Ile His Leu Arg Ala Tyr Ala Gln Thr Asn Pro Leu Arg Glu Tyr
740 745 750
 Gln Met Glu Gly Phe Ala Met Phe Glu His Met Ile Glu Ser Ile Glu
<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>755</td>
<td>760</td>
<td>765</td>
</tr>
<tr>
<td>Asp Glu Val Ala Lys Phe Val Met Lys Ala Glu Ile Glu Asn Asn Leu 770</td>
<td>775</td>
<td>780</td>
</tr>
<tr>
<td>Glu Arg Glu Glu Val Val Gln Gly Gln Thr Thr Ala His Gln Pro Gln 785</td>
<td>790</td>
<td>795</td>
</tr>
<tr>
<td>Glu Gly Asp Asp Asn Lys Lys Ala Lys Ala Pro Val Arg Lys Val 805</td>
<td>810</td>
<td>815</td>
</tr>
<tr>
<td>Val Asp Ile Gly Arg Asn Ala Pro Cys His Cys Gly Ser Gly Lys Lys 820</td>
<td>825</td>
<td>830</td>
</tr>
<tr>
<td>Tyr Lys Asn Cys Cys Gly Arg Thr Glu 835</td>
<td>840</td>
<td></td>
</tr>
</tbody>
</table>
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

IPC 7 C12N15/31 C12N1/21 C07K14/31 C07K14/32 C1201/68

According to International Patent Classification (IPC) or to both national classification and IPC.

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 C12N C07K C12Q

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal, Sequence Search, WPI Data, PAJ, BIOSIS, EMBASE

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>MATSUMOTO GEN ET AL: "Genetic dissection of SecA: Suppressor mutations against the secY205 translocase defect" GENES TO CELLS, vol. 5, no. 12, December 2000 (2000-12), pages 991-999, XP002302227 ISSN: 1356-9597 cited in the application the whole document</td>
<td>1-29, 31-34</td>
</tr>
</tbody>
</table>

X Further documents are listed in the continuation of box C

X Patent family members are listed in annex

* Special categories of cited documents

** document defining the general state of the art which is not considered to be of particular relevance

E earlier document but published on or after the international filing date

" document which may throw doubt on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)

O document referring to an oral disclosure, use, exhibition or other means

P document published prior to the international filing date but later than the priority date claimed

Date of the actual completion of the international search

22 October 2004

Date of mailing of the international search report

17/11/2004

Name and mailing address of the ISA

European Patent Office, P B 5818 Patentlaan 2 NL - 2280 MV Rotterd, Tel (+31-70) 340-2040, Tx 31 651 epo nl, Fax (+31-70) 340-3016

Authorized officer

Schneider, P
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2233590 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0892064 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 11103871 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 6348342 B1</td>
</tr>
</tbody>
</table>
INTERNA'TIONALER RECHERCHENBERICH'T

A. KLASSEIFZIERUNG DES ANMELDUNGSZEITANDES

IPK 7 C12N15/31 C12N1/21 C07K14/31 C07K14/32 C1201/68

Nach der internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Rechercherter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole)

IPK 7 C12N C07K C12Q

Rechercherte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

EPO-Internal, Sequence Search, WPI Data, PAJ, BIOSIS, EMBASE

C. ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr
X | MATSUMOTO GEN ET AL: "Genetic dissection of SecA: Suppressor mutations against the secY205 translocase defect" GENES TO CELLS, Bd. 5, Nr. 12, Dezember 2000 (2000-12), Seiten 991-999, XP002302227 ISSN: 1356-9597 in der Anmeldung erwähnt das ganze Dokument ---/--- | 1-29; 31-34

X | Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen | |

X | Siehe Anhang: Patentfamilie | |

* Besondere Kategorien von angegebenen Veröffentlichungen
 * A* Veröffentlichung, die den allgemeinen Stand der Technik dementiert, aber nicht als besonders bedeutsam anerkannt ist
 * E* älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist
 * L* Veröffentlichung, die geprüft ist, einen Prioritätsanspruch zweiwohlt er-scheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Rechercherbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgedruckt)
 * OF Veröffentlichung, die sich auf eine mundliche Offenbarung, eine Einarbeitung, eine Autodoktrin oder andere Maßnahmen bezieht
 * P* Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem besprachten Prioritätsdatum veröffentlicht worden ist

** Spätere Veröffentlichungen, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden sind und mit der Anmeldung nicht kollektiert, sondern nur zum Verständnis der Erfindung zugrundeliegenden Prinzip oder der ihr zugrundeliegenden Theorie angegeben ist

* X* Veröffentlichung von besonderer Bedeutung, die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erforderlicher Tängigkeit beruhend betrachtet werden

** V* Veröffentlichung von besonderer Bedeutung, die beanspruchte Erfindung kann nicht als auf erforderlicher Tängigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbundenheit für einen Fachmann nahelegend ist

Datum des Abschlusses der internationalen Recherche

22. Oktober 2004

Abschieddatum des internationalen Recherchenberichts

17/11/2004

Name und Postanschrift der Internationalen Recherchenbehörde,

Europäisches Patentamt, P.B. 5816 Patentamt 2 NL - 2330 HV Rijswijk
Tel. (+31-70) 340-2040, Tx 31 651 epo nl
Fax (+31-70) 340-3016

Befolgter Bedenker

Schneider, P

Formblatt PCT/SA210 (Batt 2) (Januar 2004)
<table>
<thead>
<tr>
<th>Kategorie</th>
<th>Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile</th>
<th>Betr. Anspruch Nr</th>
</tr>
</thead>
</table>
INTERNATIONALER RECHERCHENBERICHT

<table>
<thead>
<tr>
<th>Im Recherchenbericht angeführtes Patentdokument</th>
<th>Datum der Veröffentlichung</th>
<th>Mitglied(e) der Patentfamilie</th>
<th>Datum der Veröffentlichung</th>
</tr>
</thead>
<tbody>
<tr>
<td>CA 223590 A1</td>
<td></td>
<td>CA 223590 A1</td>
<td>04-12-1998</td>
</tr>
<tr>
<td>JP 11103871 A</td>
<td></td>
<td>US 6348342 B1</td>
<td>19-02-2002</td>
</tr>
</tbody>
</table>