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DATA EMBEDDING

FIELD OF THE INVENTION

The present application is a continuation-in-part application out of U.S. Patent Application
Serial Number 08/392,624, filed February 23, 1995.

The present invention generally relates to digital manipulation of numerical data and, more
specifically, to the embedding of external data into existing data fields. This invention was made
with Government support under Contract No. W-7405-ENG-36 awarded by the U.S. Department
of Energy. The Government has certain rights in the invention.

BACKGROUND OF THE INVENTION

The use of data in digital form is revolutionizing communication throughout the world.

Much of this digital communication is over wire, microwaves, and fiber optic media. Currently,
data can be transmitted flawlessly over land, water, and between satellites. Satellites in orbit
allow communication virtually between any two points on earth, or in space.

In many situations, it may be of benefit to send particular secondary data along with the
primary data. Secondary data could involve the closed captioning of television programs,
identification information associated with photographs, or the sending of covert information with
facsimile transmissions. Such a technique is suited also for use as a digital signature verifying
the origin and authenticity of the primary data.

Data in digital form are transmitted routinely using wide band communications channels.
Communicating in digital fashion is facilitated greatly by error-correcting software and hardware
protocols that provide absolute data fidelity. These communication systems ensure that the
digital bit stream transmitted by one station is received by the other station unchanged.

However, most digital data sources contain redundant information and intrinsic noise. An
example is a digital image generated by scanning a photograph, an original work of electronic
art, or a digitized video signal. In the scanning or digital production process of such images,
noise is introduced in the digital rendition. Additionally, image sources, such as photographic
images and identification cards, contain noise resulting from the grain structure of the film,
optical aberrations, and subject motion. Works of art contain noise which is introduced by brush

strokes, paint texture, and artistic license.
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Redundancy is intrinsic to digital image data, because any particular numerical value of
the digital intensity exists in many different parts of the image. For example, a given grey-level
may exist in the image of trees, sky, people or other objects. In any digital image, the same or
similar numerical picture element, or pixel value, may represent a variety of image content. This
means that pixels having similar numerical values and frequency of occurrence in different parts
of an image can be interchanged freely, without noticeably altering the appearance of the image
or the statistical frequency of occurrence of the pixel values.

Redundancy also occurs in most types of digital information, whenever the same values
are present more than once in the stream of numerical values representing the information. For a
two-color, black and white FAX image, noise consists of the presence or absence of a black or
white pixel value. Documents scanned into black and white BITMAP® format contain runs of
successive black (1) and white (0) values. Noise in these images introduces a variation in the
length of a pixel run. Runs of the same value are present in many parts of the black and white
image, in different rows. This allows the present invention also to be applied to facsimile
transmissions.

The existence of noise and redundant pixel information in digital data permits a process
for implanting additional information in the noise component of digital data. Because of the
fidelity of current digital communication systems, the implanted information is preserved in
transmission to the receiver, where it can be extracted. The embedding of information in this
manner does not increase the bandwidth required for the transmission because the data implanted
reside in the noise component of the host data. One may convey thereby meaningful, new
information in the redundant noise component of the original data without it ever being detected
by unauthorized persons.

It is therefore an object of the present invention to provide apparatus and method for
embedding data into a digital information stream so that the digital information is not changed
significantly.

It is another object of the present invention to provide apparatus and method for thwarting
unauthorized access to information embedded in normal digital data.

Additional objects, advantages and novel features of the invention will be set forth in part

in the description which follows, and in part will become apparent to those skilled in the art upon
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examination of the following or may be learned by practice of the invention. The objects and
advantages of the invention may be realized and attained by means of the instrumentalities and

combinations particularly pointed out in the appended claims.

SUMMARY OF THE INVENTION

In accordance with the purposes of the present invention there is provided a method of
embedding auxiliary data into host data comprising the steps of creating a digital representation
of the host data consisting of elements having numerical values and containing a noise
component; creating a digital representation of the auxiliary data in the form of a sequence of
bits; evaluating the noise component of the digital representation of the host data; comparing
elements of the host data with the noise component to determine pairs of the host elements
having numerical values which differ by less than said value of said noise component; and
replacing individual values of the elements with substantially equivalent values from said pairs
of elements in order to embed individual bit values of the auxiliary data corresponding to the
sequence of bits of the auxiliary data; and outputting the host data with the auxiliary data
embedded into the host data as a file.

In accordance with the purposes of the present invention there is further provided a
method of extracting embedded auxiliary data from host data containing a noise component
comprising the steps of extracting from the host data a bit sequence indicative of the embedded
auxiliary data, and which allows for verification of the host data; interpreting the host data-
element pairs which differ by less than the value of the noise component and which correspond
to bit values of the auxiliary data;identifying the auxiliary data bit sequence corresponding to the
pair values; and extracting the auxiliary data as a file.

BRIEF DESCRIPTION OF THE DRAWINGS
The accompanying drawings, which are incorporated in and form a part of the

specification, illustrate the embodiments of the present invention and, together with the

description, serve to explain the principles of the invention. In the drawings:
FIGURE 1 is a block diagram illustrating the processes used in the embedding and

extraction of data from a host.
FIGURE 2 is a partial listing of computer code used for determining host data pairs having

similar values and for converting RGB components to HSI components.
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FIGURE 3 is a partial listing of computer code used for
eliminating duplicate host data pairs.

FIGURE 4 is a partial listing of computer code which, for Truecolor images, introduces a
constraint on the frequency of occurrence of host data pairs that minimizes the effect of
embedding on the host data histogram.

FIGURE 5 is a partial listing of computer code
that performs the actual embedding of auxiliary data into the host data, including the
considerable information which is necessary to manipulate the data in the header information,
auxiliary bit-stream, and the host data files.

FIGURE 6 is a partial listing of computer code that analyzes the data in a histogram to
determine the general degeneracy present.

FIGURE 7 is a partial listing of computer code that analyzes the lengths of runs in a row
of pixels in two-color facsimile host data.

FIGURE 8 is a partial listing of computer code whose purpose is to ensure that the first
pixel in a PACKET-START data row starts in an even column number. The location of the first
pixel in the row flags the start of the data packets.

FIGURE 9 is a partial listing of computer code for embedding data into two-color host

images, such as facsimile transmissions.

DETAILED DESCRIPTION

The present invention allows data to be embedded into a digital transmission or image
without naturally discernible alteration of the content and meaning of the transmission or image.
This is made possible because of the technique of the present invention, in which similar pixel
values in a set of digital host data are re-ordered according to the desired embedded or implanted
information. The host data image examples are represented in the MICROSOFT® BITMAP®
(.BMP) format, so that the resulting image contains the embedded auxiliary information without
that information being readily discernible.

The MICROSOFT® BITMAP® image format is a public-domain format supporting
images in the Truecolor, color palette, grey-scale, or black and white representations. Truecolor
images have 24-bits per pixel element, with each byte of the pixel element representing the

intensity of the red, green. and blue (RGB) color component. Color palette images contain a
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table of the permitted RGB values. The pixel value in a color palette image is an index to this
table. Grey-scale images give the numerical intensity of the pixel values. Black and white
representation assigns either zero or one as one of the two possible pixel values. The invention
will be made understandable in the context of the BITMAP® image types by reference to the
following description.

At the point when most sensory obtained information is represented in digital form,
whether it be from video, photographs, laboratory measurements, or facsimile transmissions, the
digital data contain intrinsic noise and redundant information which can be manipulated to carry
extra information. Through use of this invention, the extra information also can be extracted
easily by an authorized and enabled receiver of the data.

Redundancy in digital image data occurs when a particular numerical value of the digital
intensity exists in many different parts of the image. Redundancy is found commonly in images
because a given grey-level exists in the rendition of trees, sky, clouds, people, and other objects.
The presence of noise in digital images permits the picture elements, pixels. to vary slightly in
numerical value. For 8-bit digital data, the pixel numerical values range from 0-255. As the
pixels having the same or similar numerical values represent a variety of image content, many
values in different locations of an image can be interchanged freely. The image appearance and
the statistical frequency of occurrence of a particular pixel value are affected little by the
interchanging of the spatial position of pixels close in numerical value.

Initially, from the original digital data (hereinafter often referred to as the “host™ data), the
present invention first converts the host data to digital form, if necessary, and then creates an
image histogram to show the probability density of numerical pixel values occurring in the
image. The number of times a particular pixel value occurs in the image is plotted versus the
value. For 8-bit digital data, the pixel values range from 0-255. Of course. the level of noise in
an image will depend on the source of the data, with different noise levels expected between
photos, original artwork, digital audio, video, and facsimile transmissions.

The actual embedding of the auxiliary data into the host data is a three-part process, the
basic steps of which are illustrated in Figure 1. First, an estimate of the noise component of the
host data is determined and used in combination with an analysis of a histogram of the host data

numerical values to identify pairs of values in the host data that occur with approximately the
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same statistical frequency, and that differ in value by less than the value of the noise component.
Second, the position of occurrence of the pair values found is adjusted to embed the bitstream of
the auxiliary information set. Third, the identified pairs of values in the host data are used to
create a key for the extraction of the embedded data.

Extracting embedded data inverts this process. The key placed in the image in the
embedding phase specifies the pair-values which contain the embedded auxiliary information.
With the pair-values known, extraction consists of recreating the auxiliary data according to the
positions of pixels having the pair-values given in the key. The key data are used first to extract
header information. The header information specifies the length and the file name of the
auxiliary data, and serves to validate the key. If the image containing embedded information has
been modified, the header information will not extract data correctly. However, successful
extraction recreates the auxiliary data exactly in an output file.

The principle of data embedding according to the present invention involves the
rearrangement of certain host data values in order to encode the values of the extra data which is
to be added. For the purposes of this description of the invention, consider a host data set
represented by 8 bits of binary information, with values ranging between 0 and 255 bits for each
host data sample. Further, assume that the noise value, N, for a signal, S, is given by N=+S/10,
or approximately 10% of the signal value. For many data, the noise component can be
approximated by a constant value or percentage, such as the 10% value used for this description.

Two values in the host data, d; and d;, are within the noise value if:
d,-d,|=¢< N 10

The frequency of occurrence or histogram value of a certain value, d,, is f(d;). Data values
meeting the criteria of Equation 10, and occurring in the host data with frequency of occurrence
f(d,)-f(d)< &, where & is the tolerance imposed for statistical equality, are candidates for
embedding use. The values, d; and d;, constitute a pair of data values, p,. There are k=0,1,2,..N,

such pairs in the host data set, giving a total number of embedding bits, M,, for each pair:
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M, =3 f(d)+2.f(d) 20

where the summations for i and j run to the limits of the frequency of occurrence in the data set,
f(d;) and f(d,), for the respective data values.

It is now helpful to refer to Figure 2, wherein a partial listing of computer code in the C-
Language is printed. The determination of the host data pixel pair values, d; and d;, in Equation
10, is accomplished through the code listed in Figure 2. In Figure 2, these 8 bit values are
interpreted as indices in a color palette table. The comparison indicated in Equation 10 is
therefore required to be a comparison between the corresponding colors in the palette. Entries in
the color palette are Red, Green, and Blue (RGB) color-component values, each within the range
of 0-255.

If additional information is desired on the format used for BITMAP® images, reference
should be made to two sources. One is the book, Programming for Graphics Files, by J.
Levine, 1994 (J. Wiley & Sons, New York). The other is a technical article, “The BMP Format,”
by M. Luse, Dr. Dobb’s Journal, Vol. 19, Page 18, 1994.

The code fragment in Figure 2 begins at line 1 with a loop running over the number of
colors in the palette. The loop index, i, is used to test each palette color against all other entries,
in sequence, to identify pairs of color entries meeting the criteria established by Equation 10.
Each color identified in the i-loop then is tested against all other colors in the palette by a second
loop using another index, j, starting at line 16. Line 7 provides a modification for images which
have a palette for greyscale instead of colors. For greyscale images, the RGB components are
identical for each palette entry, although some grey scale formats include a 16-color table as
well.

The comparison indicated in Equation 10 is made by converting the Red, Green, and Blue
(RGB) color component values to corresponding Hue, Saturation, and Intensity (HSI) color
components. Line 12 uses a separate routine, rgbhsi(), to effect this conversion. Line 20
converts RGB color component values in the j-loop to HSI data structure components, and line
21 calculates the color difference in the HSI system. Line 24 then implements the test required

by Equation 10. If the color difference is less than a fixed noise value (COLOR_NOISE=10 in
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the listing of Figure 2), the intensity difference is tested to determine if the two palette entries are
acceptable as differing by less than the noise value specified. Two additional constraints are
imposed before accepting the entries as candidate pair values. First, the difference in color is
required to be the smallest color difference between the test (i-loop) value, and all the other (j-
loop) values. Second, the number of pairs selected (k) must be less than half the number of
columns in a row of pixels in the image, in order for the pair-value key to be stored in a single
row of pixels. This is an algorithmic constraint, and is not required by the invention.

A data-structure array, pair[], is used to hold the values of candidate pairs (i,j) and their
total frequency of occurrence, M,. If the image is a greyscale palette, the test at line 35 is used to
force comparison of only the intensity of the two palette entries. Greyscale images do not
require the RGB to HSI conversion made for color palettes.

The embedding process of the present invention ignores differences in the saturation
component of color palette entries because saturation is ordinarily not noticeable in a color
image. Only the Hue and Intensity components are constrained to fall within fixed noise limits
to determine the palette pair values.

Pixel pair values found by the code listed in Figure 2 include generally redundant values.
The same pixel value, i, is found in several different pair combinations. Because multiple pairs
cannot contain the same palette entry, due to each pair combination of pixel values having to be
unique, it is necessary to eliminate some pairs. The number of pairs located by applying the
criterion of Equation 10 is stored in the variable, no_pairs, in line 51.

Refetring now to Figure 3, the code fragment listed therein illustrates the manner in which
duplicate pairs are eliminated by a separate routine. First, the histogram of the image is used to
calculate the total number of occurrences in each pair, as required by Equation 20, above. Line 1
shows the i-loop used to calculate the value, M,, for each pair. Next, the pairs are sorted
according to decreasing order of the pair[].count data-structure member in line 5. The
elimination of duplicates in the following line retains the pairs, p,, having the largest total
number of frequency values, M,. Line 10 and the lines following calculate the total number of
bytes that can be embedded into the host data using the unique pixel pairs found by this code

fragment.
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Sorting the pair values in decreasing order of value, M,, minimizes the number of pairs
required to embed a particular auxiliary data stream. However, the security of the embedded data
is increased significantly if the pair values are arranged in random order. Randomizing the pair-
value order is part of this invention. This is accomplished by rearranging the pair-values to
random order by calculating a data structure having entries for an integer index pts[k].i,
k=0,1,2,..., no_pairs; and pts[k].gamma=5,, §,,...5,,...0,, ,.i-» Where the 8, values are random.
Sorting the data structure, pts[], to put the random values in ascending order randomizes the
index values. The random index values are used with the pair-values calculated as indicated
above, to re-order the table to give random pair-value ordering.

The algorithm described for palette-format images permits manipulating pixel values
without regard to the individual frequency of occurrence. Reference should now be made to
Figure 4 where another code fragment is listed in which, for Truecolor images, a constraint is
introduced on the frequency of occurrence that minimizes the effect of embedding on the host
data histogram.

Truecolor images consist of three individual 8-bit greyscale images, one each for the red,
green, and blue image components. Truecolor images have no color palette. The possible
combinations of the three 8-bit components give approximately 16 million colors. The present
invention embeds data into Truecolor images by treating each RGB color component image
separately. The effect of embedding on the composite image color is therefore within the noise
value of the individual color intensity components.

In Figure 4, the ip-loop starting in line 2 refers to the color plane (ip=0,1,2 for R,G,B).
The frequency of occurrence of each numerical value (0 through 255) is given in the array,
hist_values[], with the color plane histograms offset by the quantity, ip*256, in line 7. The
variable, fvaluef], holds the floating point histogram values for color-component, ip. Line 11
begins a loop to constrain the pairs selected for nearly equal frequency of occurrence. Pixel
intensities within the noise limit, RANGE, are selected for comparison of statistical frequency.
The tolerance, §, for statistical agreement is fixed at 10% of the average in line 17. This
tolerance could be adjusted for particular applications.

After all possible values are tested for the constraints of noise and statistical frequency, the

pairs found are sorted in line 27, the duplicates are removed, the starting index is incremented in
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line 31, and the search continued. A maximum number of pairs again is set by the algorithmic
constraint that the i and j pair values must be less than one-half the number of pixels in an image
row. As with palette-format images, the security of the invention includes randomizing the pair-
value entries.

Applying the statistical constraint minimizes the host image effects of embedding the
auxiliary data. If the tolerance, 3, is set at 0, each pair chosen will contain data values less than
the noise value in intensity separation, and occurring with exactly the same statistical frequency.
Setting the tolerance at 8=10%, as in the code fragment of Figure 4, permits the acceptance of
pixel pairs that are close in frequency, while still preserving most of the statistical properties of
the host data. Few, if any, pairs might be found by requiring exactly the same frequency of
occurrence.

The actual embedding of auxiliary data into a set of host data consists of rearranging the
order of occurrence of redundant numerical values. The pairs of host data values found by
analysis are the pixel values used to encode the bit-stream of the auxiliary data into the host data.
It is important to realize that the numerical values used for embedding are the values already
occurring in the host data. The embedding process of the current invention does not alter the
number or quantity of the numerical values in the host data.

In the embedding process of the present invention, the host data are processed
sequentially. A first pass through the host data examines each value and tests for a match with
the pixel-pair values. Matching values in the host data are initialized to the data-structure value,
pair[k].i, for k=0,1,2..N,. This step initializes the host BITMAP® image (Figure 1) to the pair
values corresponding to zeroes in the auxiliary data. A second pass through the auxiliary data
examines the sequential bits of the data to be embedded, and sets the pair-value of the host data
element to the value i or j, according to the auxiliary bit value to be embedded. If the bit-stream
being embedded is random, the host data pair-values, i and j, occur with equal frequency in the
host image after the embedding process is completed.

Figure 5 illustrates the code fragment that performs the actual embedding, including the
considerable information which is necessary to manipulate the data in the header information,

auxiliary bit-stream, and the host data files. Lines 1-12 allocate memory and initialize variables.
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The header and bit-stream data to be embedded are denoted the “data-image,” and are stored in
the array, data_row[]. The host data are denoted the “image-data.”

The index, li, is used in a loop beginning at line 12 to count the byte position in the data-
image. The loop begins with 1i=-512 because header information is embedded before the data-
image bytes. Line 14 contains the test for loading data_row([] with the header information. Line
20 contains the test for loading data_row[] with bytes from the data-image file, tape5.

Line 30 starts a loop for the bits within a data-image byte. The variable,
bitindex=(0,1,2...7), counts the bit position within the data-image byte, data_row[d_inrow],
indexed by the variable, d_inrow. The variable, Ij, indexes the byte (pixel) in the host image.
The variable, inrow, indexes the image-data buffer, image row[inrow]. Line 32 tests for output
of embedded data (a completed row of pixels) to the image-data file, and line 40 tests for
completion of a pass through the image-data. One pass through the image-data is made for each
of the pixel pairs, pair(k], k=0,1,2..N,.

In line 47, the pair index is incremented. A temporary pair data-structure variable named
"pvalue" is used to hold the working pair values of the host data pixels being used for
embedding. Line 60 provides for refreshing the image-data buffer, image row.

The embedding test is made at line 72. If the image row[inrow] content equals the pair
value representing a data-image bit of zero, no change is made, and the image-data value remains
pvalue.i. However, if the bit-stream value is one, the image-data value is changed to equal
pvalue.j. Line 84 treats the case for image-data values not equal to the embedding pair value,
pvalue.i. In this case, the bitindex variable is decremented, because the data-image bit is not yet
embedded, and the image-data indices are incremented to examine the next host data value.

The extraction of embedded data is accomplished by reversing the process used to embed
the auxiliary data-image bit-stream. A histogram analysis of the embedded image-data set will
reveal the candidate pairs for extraction for only the case where the individual statistical
frequencies are unchanged by the embedding process. In the listings of Figures 2-5, the
statistical frequencies are changed slightly by the embedding process. The pairs of host data
values selected for embedding are a “noise key.” The noise key used for embedding can be
recreated by analysis of the original image-data, but it cannot generally be recovered exactly

from the embedded image-data.
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Additionally, as described above, the invention includes randomizing the order of the pair-
values, thereby increasing greatly the amount of analysis needed to extract the embedded data
without prior knowledge of the pair-value order.

As previously described, the ordered pairs selected for embedding constitute the "key" for
extraction of the auxiliary data from the image-data. The listings illustrated in Figures 2-5
demonstrate how embedding analysis reduces the statistical properties of the noise component in
host data to a table of pairs of numerical values. The key-pairs are required for extraction of the
embedded data, but they cannot be generated by analyzing the host data after the embedding
process is completed. However, the key can be recreated from the original, unmodified host
data. Thus, data embedding is similar to one-time-pad encryption, providing extremely high
security to the embedded bit-stream.

Data embedding as taught above uses pairs of data values to embed one bit of auxiliary
information. The location of each host data pair value corresponds to a zero- or one-bit auxiliary
data value. The method taught can be generalized to utilize better the noise present normally in
the host data. Depending on the noise criteria used to identify the data values that can be
exchanged, more than two host data values can represent equally well, an average host value.

The cases for which several host data values can be exchanged consitute host data
degeneracy, wherein the noise permits any one of several possible values to be used to encode
the auxiliary information. Generalizing, the number of degenerate values is a binary power 2",
each degenerate value can be used to encode a unique combination of n bits.

In the general case, data encoding follows a degeneracy constraint, wherein the required

number of degenerate data values N is an integral binary power:

N=2", n>0;(n=123.). 30)

In the example taught above, n = 1. Thus, N =2 (paired) data values encode uniquely a
single bit. For n =2, the degeneracy is N =4, meaning that four data values are needed to
encode uniquely all possible combinations of two bits. Forn =3, each of the N = 8 degenerate

data values encode 3-bit combinations (octals) of auxiliary data.
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According to the constraint in equation 30, some host value degeneracies are not
permitted. For example N =5 is not allowed, because the degeneracy does not correspond to an
integral number bit combination. Practically, this constraint is not a significant limitation
because the unused degeneracy is incorporated into in N = 2 (pair) embedding combinations, as
taught above.

Generalizing the embedding algorithm to the limits of the host data degeneracy increases
the amount of auxiliary data that can be embedded. Analysis consists of identifying the
degeneracy present in the histogram of data values. Data embedding of the auxiliary information
proceeds according to the heirarchical sequence of the degenerate host data values, starting with
the largest degeneracy, and moving toward pair embedding.

The improvement in efficiency of the embedding algorithm can be seen by recognizing
that for a particular degeneracy N, each host data value embeds the n bits of auxiliary data. Thus,

the total number of bits embedded by N-fold degenerate host data values is

T = Nn= Nlog, N. 40)

For N =2, T, = 2 bits are embedded. Embedding with an N =4 degeneracy embeds T, = 8 bits
and is therefore more efficient by the factor T,/T, = 4. Embedding with N = 8-fold degeneracy is
12 times more efficient than pair embedding as taught above. Heirarchical embedding with
degenerate host data values increases significantly the size of the noise-channel in the host data.

The embedding algorithm for a degenerate heirarchy of host data values is table-driven.
Each member of the N-fold degenerate host data values corresponds to a unique combination of
n bits. The assignment of the correspondence of the N data values to the bit combinations they
encode is arbitrary, and the security of the embedded information is thereby increased
significantly.

Figure 6 shows a code fragment used to analyze the histogram of a Truecolor image for
degenerate pixel values. Line 2 starts the analysis of the Truecolor histogram data. Line 9 tests
the variable table_flag to select the code path for analyzing degenerate pixel values. The loop
over the variable ip. starting at line 23, processes the three color-component image planes in the

Truecolor image. The histogram data for each color plane is analyzed separately.
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The algorithm in Figure 6 processes the histogram data by examining first the histogram
frequency, or ordinate, values to identify potential pixel, or abcissa, values. Next, the pixel
values are examined to apply the constraint of equation 10, and to identify sets of degenerate
pixels.

The histogram frequency values are processed starting with the value specified by htest,
to the value specified by the variable hist_stop. In this example, the limits for processing the
histogram are set by the defined value RANGE, which is interpreted as a percentage value.
Thus, for RANGE = 10, the value of hist_stop is 10% below the maximum frequency of
occurrence in the histogram. The value of htest varies as degenerate pixels are located. The
variable nvalue[] is an array of histogram (ordinate) values corresponding to the pixel (abcissa)
values.

The loop starting at line 44 transfers histogram, or ordinate, values to the array nvalue(],
for subsequent examination, and determines the maximum histogram value.

Line 55 starts a loop over the histogram frequency, or ordinate, values. The variable li
indexes the ordinate loop. The value j for the range of the ordinate analysis that begins with the
value li reflects the percentage error specified by the RANGE value. Any degenerate abcissa
values must be found within the limits in frequency indexed by li and j. The range permitted for
the ordinate values is calculated in line 61. The loop over the histogram starts at line 62, and it is
incremented by the range of examination, htest. The examination range varies with the ordinate
value. The variable lj is used to expand the range as the frequency value, 1, increases in the
loop.

The pixel, or abcissa values, are indexed by a loop starting at line 67. For the limited
range of ordinate values selected, the loop examines the entire range of pixel, or abcissa, values.
All the abcissa values within the ordinate range are saved, and stored in the array variable
htable[], in lines 71-74. The variable n counts the number of pixel values having frequency
within the htest range. The entries in htable] for pixels outside the acceptable ordinate range
are set to zero.

A test at line 77 controls the execution flow after the htable[] array is filled. 1f fewer
than 2 degenerate values are located, the histogram loop indexes upward toward the hist_stop

value. If more than 2 values are located, there is degeneracy in the pixel data. A second loop
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over the pixel (abcsissa) values starts at line 80. The pixels found above, and stored in the array
htable[], are tested against the criterion in equation 10. Pixels meeting within the error range in
frequency of occurrence and pixel value are degenerate, and may be exchanged freely in the
embedding algorithm.

We refer to a group of degenerate pixels by using the term “cluster.” The number of
pixels in a cluster is calculated in the loop starting at line 87, and is stored in the variable
ncluster.

Code starting at line 91 selects the integral cluster sizes permitted by equation 40, for N =
4,8,16,32. Clusters larger than 32 are not likely to occur in image data, and clusters of two pixels
are treated as pairs, as taught above.

Line 95 begins the processing of clusters located between the index value i and j, in the
htable[] array. An array of data structures named ctable[] is used to retain the information on
clusters of degenerate pixels. The element ctable[cndx].total contains the number of bits
embedded by the cluster values, the element ctable[cndx].ncluster contains the number of pixels
in the cluster, and the element ctable[cndx].values[] is an array containing the pixel values in the
cluster.

The loop starting at line 104 stores the pixel values in the appropriate cluster structure. A
separate routine named check_table() is called in line 106 to ensure the pixel values are unique,
belonging to only one of the cluster structure elements.

Line 116 tests the cluster member counter variable, nx. The variable decrements to zero
if the requisite number of unique cluster elements is located in the loop above. In the event that
nx differs from zero, the cluster elements are processed as pairs by branching to the label DEUX
from line 116.

Line 126 starts a loop to total the number of embedding bits that can be processed by the
clusters. The variable ip_total is the running total of the number of bits that can be embedded
into the Truecolor plane indexed by ip. Line 134 completes the loop over the cluster histogram
ordinate values, indexed by li.

Lines 135, 136 provide a code path to process the pixel values as embedding pairs, as
taught above. Pairs are processed if the number of entries in the htable[] array is less than 8, or

the htable[] array contains an insufficient number of unique values to form a cluster.
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The variable n contains the number of pairs to locate in the htable[] data. Line 239 starts
a loop to locate and store the pair data into the structure array pair{]. Line 156 tests the variable
n to determine when the pair processing is complete.

Line 164 completes the loop started at line 80, over the abcissa values in the htable(}
array. The variable i increments, and the cluster and pair search repeats.

Analysis of the histogram produces tables of the pixel values ordered into clusters or
pairs. The table is referred to as the “noise key.” Embedding data with clusters of pixels follows
the method taught above, for pairs of pixels. However, when clusters are used for embedding,
the pixel values represent groups of bits corresponding to the level of degeneracy of the cluster.
Thus, clusters containing 8 pixel elements encode three bits per pixel value instead of the single
bit embedded by pixels in a pair.

The method taught above applies constraints to ensure the host data histogram is
modified by a minimal amount. In consequence the method taught is nearly adiabatic, because
the image entropy is affected minimally. The host image responds approximately the same to
loss-less compression, whether it contains embedded data or not. The embedding method can be
relaxed by selecting the clusters and pairs of host data values without regard to the constraints
applied in the method taught above. Unconstrained embedding is non-adiabatic, because the
image entropy changes and the response to loss-less compression is affected. However, non-
adiabatic data embedding increases substantially the amount of auxiliary information that can be
embedded. For non-adiabatic embedding, an amount of auxiliary data approximately 50% of the
host image size can be embedded with little visible degradation of the host image quality.

With the noise key known, extraction consists of sequentially testing the pixel values to recreate
an output bit-stream for the header information and the data-image. In the present invention, the
noise key is inserted into the host image-data, where it is available for the extraction process.
Optionally, the present invention permits removing the noise key, and storing it in a separate file.
Typically, the noise key ranges from a few to perhaps hundreds of bytes in size. The maximum
table size permitted is one-half the row length in pixels. With the noise key missing, the
embedded data are secure. as long as the original host image-data are unavailable. Thus, the

embedding method gives security potential approaching a one-time-pad encryption method.



10

20

25

30

WO 97/39410 PCT/US97/05481

17

Another way of protecting the noise key is to remove the key and encrypt it using public-
key or another encryption process. The present invention permits an encrypted key to be placed
into the host image-data, preventing extraction by unauthorized persons.

Embedding auxiliary data into a host slightly changes the statistical frequency of
occurrence of the pixel values used for encoding the bit-stream. Compressed or encrypted
embedding data are excellent pseudo-random auxiliary bit-streams. Consequently, embedding
auxiliary data having pseudo-random properties minimizes changes in the average frequency of
occurrence of the values in the embedding pairs. Embedding character data without compression
or encryption reduces significantly the security offered by the present invention.

The existence of embedded data is not detected easily by analyzing the embedded image-
data, because it is not apparent how to recover the correspondence between the pixel values and
the clusters and pairs used for embedding. The changes made to the histogram of the data by
embedding data into image-data modify the results of an analysis.

When viewed as a cryptographic method, data embedding convolves the data-image with
the image-data. The original data-image bit-stream embedded represents a plaintext. The
combination of the host and embedded data implants ciphertext in the noise component of the
host. The existence of ciphertext is not evident however, because the content and meaning of the
host carrier information is preserved by the present invention. Data embedding according to the
present invention is distinct from encryption because no obvious ciphertext is produced.

Those who are unfamiliar with the terms "plaintext," and "ciphertext” can refer, for
example, to B. Schneier, Applied Cryptography Protocols, Algorithms, and Source Code in C,
J. Wiley & Sons, New York, New York, 1994. This reference is incorporated herein by
reference.

As mentioned previously, the present invention is useful in the embedding of auxiliary
information into facsimile (FAX) data. In the previous discussion concerning embedding
auxiliary information into image host data, the noise component originates from uncertainty in
the numerical values of the pixel data, or in the values of the colors in a color pallet.

Facsimile transmissions are actually images consisting of black and white BITMAP®
data, that is, the data from image pixels are binary (0,1) values representing black or white,

respectively, and the effect of noise is to either add or remove pixels from the data. The present
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invention, therefore, processes a facsimile black-and-white BITMAP® image as a 2-color
BITMAP®.

The standard office FAX machine combines the scanner and the digital hardware and
software required to transmit the image through a telephone connection. The images are
transmitted using a special modem protocol, the characteristics of which are available through
numerous sources. One such source, the User's Manual for the EXP Modem (UM, 1993),
describes a FAX/data modem designed for use in laptop computers. FAX transmissions made
between computers are digital communications, and the data are therefore suited to data
embedding.

As has been previously discussed with relation to embedding into images, the FAX
embedding process is conducted in two stages: analysis and embedding. In the case of a FAX 2-
color BITMAP®, image noise can either add or subtract black pixels from the image. Because
of this, the length of runs of consecutive like pixels will vary.

The scanning process represents a black line in the source copy by a run of consecutive
black pixels in the two color BITMAP® image. The number of pixels in the run is uncertain by
at least +1. because of the scanner resolution and the uncertain conversion of original material to
black-and-white BITMAP® format.

Applying data embedding to the two color BITMAP® data example given here therefore
consists of analyzing the BITMAP® to determine the statistical frequency of occurrence, or
histogram. of runs of consecutive pixels. The embedding process of the present invention varies
the length of runs by (0,+1) pixel according to the content of the bit-stream in the auxiliary data-
image. Host data suitable for embedding are any two color BITMAP® image which is scaled in
size for FAX transmission. A hardcopy of a FAX transmission can be scanned to generate the
two color BITMAP®, or the image can be created by using FAX-printer driver software in a
computer.

The FAX embedding process begins by analyzing the lengths of runs in each row of
pixels. The implementation of this step is illustrated by the code fragment in Figure 7. The
arguments to the routine, rowstats() arc a pointer to the pixel data in the row, which consists of
one byte per pixel, either a zero or a one in value; a pointer to an array of statistical frequencies;

the number of columns (pixels) in the data row; and a flag for internal program options. The
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options flag is the size of blocks, or packets, of the auxiliary bitstream to be embedded. The
options flag is tested in line 9, and the routine, packet_col() is used for a positive option flag.
The packet_col() routine is given in the listing of Figure 8, and its purpose is to ensure that the
first pixel in the data row starts in an even column number. The location of the first pixel in the
row flags the start of the data packets, which will be further described below.

Line 12 begins a loop to examine the runs of pixels in the data row. Runs between the
defined values MINRUN and MAXRUN are examined by the loop. The j-loop, and the test at
line 15, locate a run of pixels, and sets the variable, k, to the index of the start of the run. The
test at line 21 selects only blocks of pixels having length, i, less than the length of the row. The
loop in line 22 moves the pixel run to temporary storage in the array block[].

The two tests at lines 24 and 25 reject blocks having run lengths other than the one
required by the current value of the i-loop. The embedding scheme selects blocks of length, i, for
embedding by adding a pixel to make the length i+1. This assures that the run can contain either
i or i+1 non-zero pixel values, according to the bit-stream of the auxiliary embedded data. If the
run stored in the variable block[] array does not end in at least two zeroes, it is not acceptable as
a run of length, i+1, and the code branches to NEXT, to examine the next run found.

Line 28 begins a loop to count the number of pixels in the run. The number found is
incremented by one in line 31 to account for the pixel added to make the run length equal to i+1.
Line 33 contains a test ensuring that the run selected has the correct length. The histogram|]
array for the run-length index, 1, is incremented to tally the occurrence frequency of the run. The
data row bytes for the run are flagged by the loop in line 36, with a letter code used to distinguish
the runs located. This flagging technique permits the embedding code to identify easily the runs
to be used for embedding the bit-stream. On exit from this routine, the data row bytes contain
runs flagged with letter codes to indicate the usable pixel positions for embedding the bit-stream.
The return value is the number of runs located in the data row. A return of zero indicates no runs
within the defined limits of MINRUN and MAXRUN were located.

FAX modem protocols emphasize speed, and therefore do not include error-correction.
For this reason, FAX transmissions are subject to drop-outs, to impulsive noise, and to lost data,
depending on the quality of the telephone line and the speed of the transmission. For successful

embedding, the present invention must account for the possible loss of some portion of the image
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data. To accomplish this, a variation of modem block-protocols is used to embed the header and
the auxiliary data. The two color image is treated as a transmission medium, with the data
embedded in blocks, or packets, providing for packet-start flags, and parity checks. The start of a
packet is signaled by an image row having its first pixel in an even column. The packet ends
when the number of bits contained in the block are extracted, or, in the case of a corrupted
packet, when a packet-start flag is located in a line. A checksum for parity, and a packet
sequence number, are embedded with the data in a packet. Using this method, errors in the FAX
transmission result in possible loss of some, but not all, of the embedded data.

The amount of data lost because of transmission errors depends on the density of pixels in
the source image and the length of a dropout. Using 20 bytes per packet, a large dropout in
transmission of standard text results in one or two packets of lost data. Generally, the success of
the invention follows the legibility of the faxed host image information.

Turning now to Figure 8, there can be seen a listing of the steps necessary to initialize the
two color BITMAP® lines to flag the start of each packet. Each row in the two color image
contains a non-zero value beginning in an even column (packet start), or in an odd column
(packet continuation).

In Figure 8, it can be seen that line 4 starts a loop over the number of pixels in a data row.
In FAX images, a zero (0) pixel value indicates a black space, and a one (1) value indicates a
white space. Line 5 locates the first black space in the data for the row. If the variable,
packet_size, is positive, the column index is tested to be even and the pixel is forced to be a
white space. If the packet_size variable is negative, the routine returns an indicator of the data
row flag without making changes. If packet_size is greater than zero, the first data row element
is flagged as a white space. Line 11 deals with the case in which packet_size=0, indicating a
continuation row. In the event of a continuation row, the first data row element is forced to a
black space. The values returned by subroutines in lines 17-20 show the nature of the pixel row
examined.

The code fragment listed in Figure 9 provides auxiliary data embedding into two color
BITMAP® FAX images. The pixels in a row are processed as described above by examining the
contents of the data row after it has been analyzed and flagged with letter codes to indicate the

run lengths. Lines 1 through 49 are part of a large loop (not shown) over the pixel index, lj, in
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the two color BITMAP® image. Lines 1-26 handle the reading of one line of pixels from the
two color BITMAP®, and store the row number of the image in the variable, nrow, in line 1.
The pixel value bits are decoded and expanded into the image_row[] array in lines 12-36. The
image row[] array contains the pixel values stored as one value (0 or 1) per byte.

Line 28 uses the packet_col() routine to return the packet-index for the row. Ifjis 0 in
line 28, the row is a packet-start row, and if j is 1, the row is a continuation row. Line 29 uses
the rowstats() routine to assign run-length letter flags to the pixels in the row buffer. The return
value, i, gives the number of runs located in the image row. Consistency tests are made at lines
31,37, and 41. The index, kp, gives the pixel row number within a data packet. If kp is 0, the
line must be a packet-start index, and if kp>0, the line must be a continuation line. Line 49
completes the process of reading and preprocessing a row of two color image data.

The data-structure array, pair{], contains the run length for (i), the augmented run length,
(i+1), and the total number of runs in the two color BITMAP® image. The index, k, in the loop
starting at line 51, is the index for the run lengths being embedded. The index, inrow. counts
pixels within the image row buffer, and the variable, bitindex is the bit-position index in the bit-
stream byte.

Line 57 sets the value of the run-length letter-code in the variable, testitr. The value of an
image pixel is tested against the letter-code in line 58. If the test letter-code flag is located, line
60 advances the index in the row to the end of the pixel run being used for embedding. The test
function in line 62 checks the value for the current bit index in the bit-stream packet byte. If the
value is one, the last pixel in the run is set to one. Otherwise, the last pixel in the run is set to 0.

Setting the value of the pixel trailing a run implements the embedding in the two color
BITMAP® images by introducing noise generated according to the pseudo-random bit-stream in
the packet data. The letter flag values written into the row buffer by the call to rowstats() in
Figure 9are reset to binary unit value before the image_row array data are packed and written
back to the . BMP format file. The process for doing this is not illustrated in Figure 9. but is
straightforward for those skilled in the art.

Extraction of data embedded into a two color BITMAP® FAX image, according to the
present invention, can be accomplished only if the transmission of the FAX is received by a

computer. The image data are stored by the receiving computer in a file format (preferably a
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FAX compressed format), permitting the processing necessary to convert the image to
BITMAP® format and to extract the embedded data. FAX data sent to a standard office machine
are not amenable to data extraction because the printed image is generally not of sufficient
quality to allow for recovery of the embedded data through scanning.

However, the invention does apply to scanning/printing FAX machines that process data
internally with computer hardware. Auxiliary embedded data are inserted after the scanning of
the host data, but prior to transmission. The auxiliary embedded data are extracted after they
have been received, but before they are printed.

The key for two color image embedding can be recovered by analyzing the embedded
image, because the run lengths are not changed from the original (i,i+1) values. The order in
which the values are used depends on the frequency of occurrence in the image. As in the
example for palette-color images, a key to the value and order of the pairs used for embedding is
inserted into the FAX. However, the key is not strictly required, because, in principle,
knowledge of the defined values MINRUN and MAXRUN permits re-calculating the run-length
statistics from the received image. In practice, the key is required because transmission errors in
the FAX-modem communication link can introduce new run-lengths that alter the statistical
properties of the image, and because the pair ordering is not known. Even though FAX
embedding is somewhat less secure than embedding auxiliary data into palette-color images, the
two color BITMAP® FAX embedding of data still can be regarded as similar to one-time-pad
cryptography.

The foregoing description of the preferred embodiments of the invention have been
presented for purposes of illustration and description. It is not intended to be exhaustive or to
limit the invention to the precise form disclosed, and obviously many modifications and
variations are possible in light of the above teaching. The embodiments were chosen and
described in order to best explain the principles of the invention and its practical application to
thereby enable others skilled in the art to best utilize the invention in various embodiments and
with various modifications as are suited to the particular use contemplated. It is intended that the

scope of the invention be defined by the claims appended hereto.
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WHAT IS CLAIMED IS:
1. A method of embedding auxiliary data into host data comprising the
steps of:

creating a digital representation of said host data in the form of elements having
numerical values and containing a noise component;

creating a digital representation of said auxiliary data in the form of a sequence
of INDIVIDUAL bit VALUES;

evaluating said noise component of said digital representation of said host data;

comparing the values of said elements with said noise component to determine
degenerate clusters of said elements having numerical values which differ by less than
said value of said noise component;

replacing individual values of said elements with equivalent values taken from
said degenerate clusters of elements in order to embed bit values of said auxiliary data
corresponding to said sequence of bit values of said auxiliary data; and

outputting said host data with said auxiliary data embedded into said host data
as a file.

2. The method as described in Claim 1 further comprising the step of
combining said auxiliary data with predetermined information indicative of said
auxiliary data, its file name, and file size, said step to be performed after the step of
digitizing said auxiliary data.

3. The method as described in Claim 1 further comprising the step of
determining a protocol for embedding said auxiliary data into said host data which
allows for verification of said auxiliary data upon extraction from said host data.

4. A method of extracting embedded auxiliary data from host data
containing a noise component comprising the steps of:

extracting from said host data a bit sequence indicative of said embedded
auxiliary data, and which allows for verification of said host data;

interpreting said host data to determine host element degenerate clusters and
pairs which differ by less than said noise component and which correspond to bit

values of said auxiliary data;
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identifying said auxiliary data using said bit sequence; and

extracting said auxiliary data as a file.

5. The method as described in Claim 1, wherein said host data comprises a
color photograph.

6. The method as described in Claim 1, wherein said host data comprises a
black and white photograph

7. The method as described in claim 1, wherein said host data comprises a
television signal.

8. The method as described in Claim 1, wherein said host data comprises a
painting.

9. The method as described in Claim 1, wherein said host data comprises a

facsimile transmission.

10.  The method as described in Claim 1, wherein said host data comprises
an identification card.

11.  The method as described in Claim 1, wherein said host data comprises
digital audio information.

12.  The method as described in Claim 1, wherein said host data comprises a
digital image and said auxiliary data comprises picture elements removed from said
host data to form a digital watermark signature.
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Computer code for determining pair values.
for(i = 0; i < (int)bh.colors; i++) {

int avg;

if(i % 10 == O)fprintf(stderr,".");

c1.red = colormaplil.r;

c1.grn = colormaplil.g;

¢1.blu = colormapli).b;

if(greyscale) {

avg = (int)(c1.red + c1.grn + ¢1.blu)/3;
if(avg==0)continue;

if(avg!=c1.red Il avgl=c1.gr |
avgl=c1.blu)continue;

}

(void)rgbhsi(&c1, &d1); /* convert to HSI
components */

if((int)d1.inten == 255)unused++;
old_diff = O.f;
if((int)d1.inten==0 Il (int)d1.inten==(int)bh.colors)continue;
for(j=i+1; j < (int)bh.colors; j++) {
c2.red = colormaplj].r;
c2.grn = colormaplj].g;
c2.blu = colormap(j].b;

(void)rgbhsi(&c2, &d2); /* convert to HSI
components */

color_diff = d2.hue - d1.hue;

Fig. 2A
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/* hue & inten. difference must be ok */

if(Igreyscale) {

if((abs((int)color_diff) < COLOR_NOISEM\
&& (color_diff < old_diff)\

&& ((int)fabs((double)(d2.inten-d1.inten)) <
INTEN_NOISE) ) {

if(k>(int)bh.cols/2 -1)break;
pairfkl.i = i;
pair(k].j =j;
pairfk].count = Q;
K++;
old_diff = color_diff;
}
}

else {
avg = (int)(c2.red + c2.grn + c2.blu)/3;
if(avg==0)continue;
if(avg!=c2.red Il avgl=c2.grn Il avg!=c2.blu)continue;
if( (int)fabs((double)(d2.inten-d1.inten))<
INTEN_NOISE &&
(int)fabs((double)(d2.inten-d1.inten)) !=0) {
if(k>(int)bh.cols/2 -1)break;
pair[kl.i=i;
pairfk].j = j;

Fig. 2B
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pair{k].count = O;
K++;
}
}
} /*jloop */
if(k>(int)bh.cols/2 -1)break;
} /" iloop */
no_pairs = k;

Fig. 2C
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Computer code to eliminate duplicate pairs.
for(i=0;i<k;i++) {

pairfi].count += (hist_values[pair[i].i] +
hist_values[pair(i].j]);

if(pairfi].i==0 II pair[i].j==0)pairfi].count = 0;
}
p_sort(pair, k);
no_pairs = duplicate (k, pair);
total = 0;
for(i=0;i<no_pairs;i++)
total += pair[i].count;
total /=8;
value = (float)total - (float)NCOLS;

if(value > 0.f) fprintf(stderr,"\n%.1f Kb embedding space
located", value/1000.f);

if(value == O.f)fprintf(stderr,"\nNo embedding space available in
this image");

if(value < 0.f) fprintf(stderr,"\ninsufficient embedding space");

Fig. 3
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Computer code constraining pair values for Truecolor images.

/* Find histogram point-pairs within RANGE counts, within
10% in number */

for(ip=0;ip<3;ip++) {
int nstart;
long 1i;
fprintf(stderr,"\nAnalyzing intensity histogram for plane %d", ip);
for (i=0;i<256;i++) {
fvalue[ij=(float)hist_values[ip*256+i];
}
nstart = RANGE;
k=0;
while(nstant<256 && k<(int)bh.cols/2) {
for (i=nstart;i<256;i++) {
for(j=i-1;j>i-RANGE;j--) {
li = hist_values(ip*256+i];
if((int)(fvalue[j]*fvalue[i])==0)break;
if((float)fabs((double)(fvalue[jl-fvalue[i)\
< 0.05f*(fvalue[j]+fvalue[i])) {
pair[kl.i = i;
pair(k].j = j;
pairfk].count = li + hist_values[ip*256+];
K++;

Fig. 4 A
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if(k>(int)bh.cols/2-1)break;

}
} I elzjc)i f;f inner pixel comparison loop
if(k>(int)bh.cols/2-1)break;
} /* end of outer pixel comparison loop (i) */
p_sort(pair, K);
no_pairs = duplicate (k, pair);
k = no_pairs;
if(verbose)fprintf(stderr,"%3d pairs\r®, k);
nstart = i;
} /* end of while loop */

Fig. 4 B
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Computer code for embedding auxiliary data.
EMBEDDING CODE */

/*

*/

lj, index over pixels in the image-data

inrow, index within the image-data row buffer
nrow, row number in the image-data

li, index over pixels in the data-image

d_inrow, " within the data-image row buffer

K, index within the PAIRS structure array
maxval, no. of bits embedded

bitindex, bit position within the data-image byte
byteplace, position for read/write in tape6 file

data_row = (unsigned char *)malloc((size_t)NCOLS);
if(data_row==NULL) {
pm_error("Data row data allocation failed!");
return(1);

maxval = bit_place_index.maxval;
d_inrow = bit_place_index.d_inrow;
bit_place_index.li += d_inrow;

lj = (long)krow;

nrow = -1;
for(li=bit_place_index.li; li<length-NCOLS; li++) {
bit_place_index.li = Ii;

if(li==-512L)  { /* header information */

byteptr=(unsigned char *)&data_header;

for(d_inrow=0;d_inrow<sizeof(data_header);d_inrow++)
data_row[d_inrow]="(byteptr+d_inrow);

d_inrow = 0;

}

Fig.5 A
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if((li >= OL && (li % (long)NCOLS) == 0OL) Il reread != 0)
{ /" next row of data-image */
j = fgetpos(tape5,&tape5_pos);
j = fread(data_row, 1, (size_t)NCOLS, tapeb);
if(lreread) {
for(i=0;i<j;i++) checksum += data_rowf{i];
d_inrow = 0;
bit_place_index.d_inrow = 0;

reread = 0, /* turn off flag for re-read on next Truecolor
plane */

for (bitindex=bit_place_index.bitplace;
bitindex<NO_BITS; bitindex++) {
bit_place_index.bitplace = bitindex;
if((li-krow) % (long)(BYTES_IN_ROW) ==0L) {
if(nrow >= 0) { /* write only after you read */
intow = fseek(tape6, byteplace, SEEK_SET);
inrow =fwrite(image_row,1,(size_t)
(BYTES_IN_ROW),tape6b);
byteplace += inrow;
byteplace += pad; /* skip pad bytes */
inrow = krow;

}
if(1j/(long)OFFSET == OL (|
(li+(BYTES_IN_ROW-+pad))/
(BYTES_IN_ROW-+pad) > (unsigned \long)bh.rows)

{
if(bailout()) { /* end of
image-data--user
termination */

i=1:

Fig. 5B
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goto QUIT;

}

if(k==no_pairs)goto PLANE; /* next plane of
image */

lj = krow; /* pick next pair and start over */

pvalue.i=(unsigned int)pair[k}.i; /*zero*/

pvalue.j =(unsigned int)pair{k].j; /* one */

if(verbose && k>0) fprintf(stderr," %Id ",
pvalue.count);

pvalue.count = OL;

if(verbose) fprintf(stderr,"\rEmbedding Pair
%2d\ (%3d,%3d)"\
k, pvalue.i, pvalue.j);

else fprintf(stderr,".");

K++;

byteplace = bh.pixeloffset;

}
inrow = (int)((lj-krow)/((long)BYTES_IN_ROW4+pad)); /*
read next row */
inrow = fseek(tape6, byteplace, SEEK_SET);
inrow = fread(image_row,1,(size_t)
BYTES_IN_ROW tape6);
inrow = Krow;
}/* end new row (lj) test */
/* Embed one byte */
if(ip>=0 && pair{k-1].count==0) { /* finished a pair */
lj +=OFFSET,;
inrow += OFFSET;
bitindex--;
continue;

Fig.5C
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if((int)image_row[inrow}==pvalue.i) { /* find a zero
value */
if(test((int)data_row[d_inrow],bitindex))
image_row[inrow]=(unsigned char)pvalue.j;
maxval++;
if(pairfk-1].count==0) {
pm_error("\nPair count error!");
i=1;
goto QUIT;
}
pair{k-1].count--;
pvalue.count++;
if(bitindex==NO_BITS-1)bit_place_index.bitplace
=0;

else bitindex--; /* haven't got this bit yet! */
lj+=OFFSET;
inrow+= OFFSET,;
} /* end of bitindex loop */
d_inrow++;
} /* end of li (data index) loop */

Fig. 5 D
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Computer code to analyze lengths of runs.
int rowstats(unsigned char *data_row, long *histogram,

int ncols, int packet_size) {
inti, j, k, ; /* loop counters */
int runs=0; /* return value */
int count; /* no. of pixels in the run */
char letter = ‘A’ /* starting code for flagging runs
in the row */

unsigned char blocklMAXRUN+3]; /* a block
containing the run being
examined */

/* find first bit in the row & adjust as a packet flag */
if(packet_size >=0) {

j = packet_col(data_row, packet_size, ncols);

}

if(ncols <=0) return(-1);

for(i=MINRUN;i<=MAXRUN;i+=2) { /*iis the runiength being
searched */

k=0;

for(j=1;j<ncols;j++) { /* NOTE: data_row[0] is assumed
to be zerol! */

if(data_row(j]==(unsigned char)ONE) {
if(data_row(j-1}!=(unsigned char)ZERO) continue;

Fig.6 A
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k=j; /* ablock start */
}
else continue;
/* find a block of data ending with a zero pixel */
if(k+i+2 > ncols) break;
for(l=k;lI<k+i+3;1++) block[l-k] = data_row]l];
I=j;
if(block[i+1] != (unsigned char)ZERO) goto NEXT;
if(block[i+2] > (unsigned char)ONE ) goto NEXT,;
/* examine block for pixel count */
count = 0;
for(I=0;l<i;i++) { /* all but last bit in block must = 1 */
if(block[l]==(unsigned char)ONE) count++;
}
count++;
| =j+1;

if(count == i+1) { /* set all but last pixel in run to flag
value */

if(histogram != NULL)histogram[i}++;

rUNS++;
for(l=j;l<j+count-1;l++) data_row[l] = letter;
[++

}

NEXT: for(j=I+1;j<NCOLS;j++) if(data_row[jl==(unsigned

char)ZERO)break;

Fig. 6 B
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} /* end of row (j) loop */
letter++;
} /* end of run (1) loop */

return(runs);

}

Fig. 6 C
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Computer code to set packet-start pixel flag.

int packet_col(unsigned char *data_row, int packet_size, int
ncols) { inti;

/* find first bit in the row & adjust as a packet flag */
for(i=1;i<ncols;i++) {
if(data_row[i}==(unsigned char)ZERO) {
if(packet_size<0) break;

if(packet_size>0) { /* first bit set to an even
column */

if(i%2 == O)break;

data_row[i] = (unsigned char)ONE;

}

else { /* first bit set to an odd column */
if(i%2 = O)break;

data_row]i] = (unsigned char)ONE;

}

}
if(i==ncols)return(-1); /* no black pixels in the row */
if(packet_size>=0) return(i); /* index of the first black pixe! */
if(i%2) return(1); /* if(packet_size==-1) return odd */
else return(0); I/ return even */

}

Fig. 7
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Computer code to embed data in two-color images.

READLINE: nrow = (int)(lj/((long)bh.cols)); /*
data from next

if(verbose) {
if(nrow==0)fprintf(stderr,"\n");
fprintf(stderr,"\rrow %4d", nrow);
}

else motion(stderr);

bit_count =0;

image_row[0] = O; /* row buffer always starts
with a zero */

if(verbose==2 && nrow <=61)fprintf(tape9,"\nnrow
byteplace %d %l|d",  nrow,byteplace);

inrow = fseek(tape6, byteplace, SEEK_SET);,
writeplace = byteplace;
for(j = 1; j < (int)bh.cols+1; j++) {
int pix;
if(bit_count <= 0) { /* need another byte */
bit_count = 8;
bit_store = pbm_getrawbyte(tape6);
byteplace++; ‘

}

Fig. 8 A
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bit_count -= bh.bitsperpixel;

pix = ( bit_store >> bit_count ) & mask;
image_row(j] = (unsigned char)pix;
#ifdef INSERT_KEY

/* key row set to zero to hold key pairs */

if(nrow == KEYLINE)image_row[j] = (unsigned
char)ZERO;

#endif
}/* cols */
byteplace += pad;
j = packet_coi(image_row,-1,(int)bh.cols);

i = rowstats(image_row,NULL,(int)bh.cols+1,-1); /*
flag the embedding pixels */

if(verbose==2) fprintf(tape9,"\n nrow,i,j: %d %d
%d", nrow,i,j);

if(j<0 Il i==0) { /* a row of white pixels or no
pixels for embedding */

if(nrow+1<(int)bh.rows) {
lj += bh.cols;
goto READLINE;

}

}
if(j==1 && kp==0) {

Fig. 8 B
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fprintf(stderr,"\nPacket start-index error,
packet %d", packet_no-1);

goto QUIT;
}
if(j==0 && kp > 0) {

fprintf(stderr,"\nContinuation packet-index
error, packet %d", packet_no-1);

goto QUIT;
}
inrow = 1;
if(kp==0 && verbose==2)

fprintf(tape9,"\nPacket start-row %d, bits found
%d",nrow,i);

Kp++;
} /* end new row (lj) test */
/* Embed one byte, use all pairs for each row */
for(k=0;k<no_pairs;k++) {
if(pairfk].count<0) {
pm_error("\nPair count error!");
i=1;
goto QUIT;
}

testitr = (unsigned char)(letter+(unsigned char)pair[k].i/2 -
1); /* flag letter */

Fig. 8 C
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if(image_rc:}/v[inrow]::testltr) { /* find a flagged run

if(verbose==2 && nrow==60) fprintf(tape9,"inrow %d",
inrow);

inrow += (unsigned int)pair{k].j;

lj += pair[K].j;

if(test((int)packet{inpacket_row],bitindex)) image_row

[inrow-1}=1;

else image_row[inrow-1]=0;

Fig. 8 D
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