
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization

International Bureau
(10) International Publication Number

(43) International Publication Date
13 November 2014 (13.11.2014)

WO 2014/182900 Al
P O P C T

(51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every
G06F 9/455 (2006.01) H04L 12/24 (2006.01) kind of national protection available): AE, AG, AL, AM,
H04L 29/08 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,

BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
(21) International Application Number: DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,

PCT/US20 14/037303 HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
(22) International Filing Date: KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,

8 May 2014 (08.05.2014) MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,

(25) Filing Language: English SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM,

(26) Publication Language: English TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM,
ZW.

(30) Priority Data:
61/820,966 8 May 2013 (08.05.2013) US (84) Designated States (unless otherwise indicated, for every

kind of regional protection available): ARIPO (BW, GH,
(71) Applicant: CONVIDA WIRELESS, LLC [US/US]; 200 GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,

Bellevue Parkway, Suite 300, Wilmington, DE 19809- UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
3727 (US). TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,

EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, ΓΓ, LT, LU, LV,(72) Inventors: WANG, Chonggang; 9 Carlyle Court, Prin
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,ceton, NJ 08540 (US). SEED, Dale, N.; 229 N. 36th
TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,

Street, Allentown, PA 18104 (US). DONG, Lijun; 10530
KM, ML, MR, NE, SN, TD, TG).

Greenford Drive, San Diego, CA 92126 (US).
Published:(74) Agents: SAMUELS, Steven, B. et al; Baker & Hostetler

LLP, Cira Centre, 12th Floor, 2929 Arch Street, Phil — with international search report (Art. 21(3))
adelphia, PA 19104-289 1 (US).

(54) Title: METHOD AND APPARATUS FOR THE VIRTUALIZATION OF RESOURCES USING A VIRTUALIZATION
BROKER AND CONTEXT INFORMATION

(57) Abstract: A method and entities for virtualiz-
ing resources by receiving a first virtualization re
quest from a first entity at a virtualization broker in
a network of connected entities, wherein the first
virtualization request comprises context informa
tion associated with the first entity, transmitting a
request from the virtualization broker to a virtualiz
ation manager for a virtualization server identifier,
and receiving a virtualization server identifier from
the virtualization manager. A second virtualization
request may be transmitted to a virtualization server
associated with the virtualization server identifier,
and a first response may be received from the vir tu
alization server comprising an indication that a re
source has been virtualized. A second response
comprising the indication from the virtualization

f broker may be transmitted to the first entity. The
method is applied in the context of the Internet of
Things (loT).

FIG. 10

METHOD AND APPARATUS FOR THE VIRTUALIZATION OF RESOURCES
USING A VIRTUALIZATION BROKER AND CONTEXT INFORMATION

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] This application claims the benefit of U.S. Provisional Patent Application No.

61/820,966, filed on May 8, 2013, entitled "METHOD AND APPARATUS FOR IOT

VIRTUALIZATION SERVICES", the contents of which are hereby incorporated by reference

herein.

BACKGROUND

[0002] Machine-to-machine (M2M) technologies allow devices to communicate more

directly with each other using wired and wireless communications systems. M2M technologies

enable further realization of the Internet of Things (IoT), a system of uniquely identifiable

objects and virtual representations of such objects that communicate with each other and over a

network, such as the Internet. IoT may facilitate communication with even mundane everyday

objects, such as products in a grocery store or appliances in a home, and thereby reduce costs and

waste by improving knowledge of such objects. For example, stores may maintain very precise

inventory data by being able to communicate with, or obtain data from, objects that may be in

inventory or may have been sold.

[0003] The IoT includes a variety of physical entities or "things", such as objects,

devices, gateways, routers, servers, users, and applications. Each IoT entity may have various

physical resources on different protocol layers that can be virtualized. A protocol (e.g., a media

access control (MAC) protocol or routing protocol) can be one of several physical resources

associated with protocols that a physical entity can dynamically support through virtualization.

A physical IoT entity itself can also be a resource. A deployed IoT system or a physical IoT

entity can support different applications at different times or at the same time based on its

configuration and requirements. For example, a large-scale outdoor wireless heterogeneous

sensor network deployed in a city can support an air quality monitoring application, a traffic

monitoring application, a public safety management application, etc. In another example, a

physical IoT gateway installed at a home can support several applications such as a remote

healthcare application, a house monitoring application, and a smart appliance application. As a

result, virtualization may be used to support sharing of such resources among multiple

applications and/or users.

[0004] The access to resources by IoT entities is essential to successful operation of the

IoT. Physical and software resources that may be needed by various IoT entities may be

represented in a such a way that IoT entities can interact with such resources through interfaces

to the resources without having to have knowledge of the resources' underlying physical and/or

software implementations. In the IoT this may be referred to as resource "virtualization", and

the resources used may be provided as a service to requesting IoT entities through the use of, for

example, logical interfaces. Examples of virtualized resources may include infrastructure as a

service (IaaS) where cloud providers provide a cloud infrastructure as a physical or a virtual

machines to users, platform as a service (PaaS) where cloud providers provide a cloud

computing platform (e.g., an operating system, a programming language execution environment,

a database, and a web server), software as a service (SaaS) where cloud providers run software in

the cloud, receiving input for the software from users and providing the software's output to

users, and other virtualization-enabled services, such as storage as a service, data as a service,

etc.

[0005] Existing virtualization techniques, however, are not service-layer common

functionalities and not specifically defined for IoT systems. Service-layer virtualization

functionalities are underdeveloped in existing M2M/IoT architectures and service capabilities as

defined in ETSI TC M2M, TS 102 690 (Architecture), the Europe IoT-A Project, the Europe

iCore Project, and the Europe Butler Project. What is needed in the art are systems and methods

that include new service-layer virtualization functionalities as a common service and that can

support the integration of efficient and flexible IoT resource virtualization.

SUMMARY

[0006] Embodiments disclosed herein include methods for virtualizing resources by

receiving a first virtualization request from a first entity at a virtualization broker in a network of

connected entities, wherein the first virtualization request comprises context information

associated with the first entity, transmitting a request from the virtualization broker to a

virtualization manager for a virtualization server identifier, and receiving a virtualization server

identifier from the virtualization manager. A second virtualization request may be transmitted to

a virtualization server associated with the virtualization server identifier, and a first response may

be received from the virtualization server comprising an indication that a resource has been

virtualized. A second response comprising the indication from the virtualization broker may be

transmitted to the first entity.

[0007] Embodiments disclosed herein further include a virtualization manager in a

network of connected entities comprising that, when executing stored instructions, effectuates

operations including receiving a request to register resources associated with a virtualization

server, storing context information associated with the virtualization server and the resources,

pushing virtualization policies to a virtualization server, maintaining a lookup history from a

virtualization client or a virtualization broker, generating virtualization charging records, and

receiving a request for a recommended virtualization server identifier from a virtualization

broker or a virtualization client, where the request for the recommended virtualization server

identifier includes context information. The virtualization server may be selected based on the

context information and a virtualization server identifier may be sent to the virtualization broker

or a virtualization client.

[0008] Embodiments disclosed herein further include a virtualization server entity in a

network of connected entities comprising that, when executing stored instructions, effectuates

operations including receiving a request to create a virtual resource from a first entity,

determining to accept the request to create the virtual resource, creating the virtual resource,

registering itself and physical resources to a virtualization management entity, reporting

virtualization context information to a virtualization management entity, accessing virtualization

polices from a virtualization management entity, adjusting a previously created virtual resource,

combining previously created virtual resources, and transmitting a response to the first entity

indicating that the virtual resource has been created.

[0009] This Summary is provided to introduce a selection of concepts in a simplified

form that are further described below in the Detailed Description. This Summary is not intended

to identify key features or essential features of the claimed subject matter, nor is it intended to be

used to limit the scope of the claimed subject matter. Furthermore, the claimed subject matter is

not limited to limitations that solve any or all disadvantages noted in any part of this disclosure.

BRIEF DESCRIPTION OF THE DRAWINGS

[0010] FIG. 1 illustrates an exemplary network configuration in which IoT

virtualization services may be implemented according to an embodiment.

[0011] FIG. 2 illustrates an exemplary IoT configuration in which IoT virtualization

services may be implemented according to an embodiment.

[0012] FIG. 3 illustrates another exemplary IoT configuration in which IoT

virtualization services may be implemented according to an embodiment.

[0013] FIG. 4 illustrates an exemplary protocol stack according to an embodiment.

[0014] FIG. 5 illustrates another exemplary IoT configuration in which IoT

virtualization services may be implemented according to an embodiment.

[0015] FIG. 6 illustrates another exemplary IoT configuration in which IoT

virtualization services may be implemented according to an embodiment.

[0016] FIG. 7 illustrates another exemplary IoT configuration in which IoT

virtualization services may be implemented according to an embodiment.

[0017] FIG. 8 illustrates another exemplary IoT configuration in which IoT

virtualization services may be implemented according to an embodiment.

[0018] FIG. 9 illustrates another exemplary IoT configuration in which IoT

virtualization services may be implemented according to an embodiment.

[0019] FIG. 10 illustrates an exemplary signal flow that may be used for which IoT

virtualization services according to an embodiment.

[0020] FIG. 11 illustrates another exemplary signal flow that may be used for which

IoT virtualization services according to an embodiment.

[0021] FIG. 12 illustrates another exemplary signal flow that may be used for which

IoT virtualization services according to an embodiment.

[0022] FIG. 13 illustrates another exemplary signal flow that may be used for which

IoT virtualization services according to an embodiment.

[0023] FIG. illustrates another exemplary signal flow that may be used for which IoT

virtualization services according to an embodiment.

[0024] FIG. 15 illustrates another exemplary signal flow that may be used for which

IoT virtualization services according to an embodiment.

[0025] FIG. 16 illustrates an exemplary network configuration in which IoT

virtualization services may be implemented according to an embodiment.

[0026] FIG. 17 illustrates another exemplary network configuration in which IoT

virtualization services may be implemented according to an embodiment.

[0027] FIG. 18A is a system diagram of an example machine-to-machine (M2M) or

Internet of Things (IoT) communication system in which one or more disclosed embodiments

may be implemented.

[0028] FIG. 18B is a system diagram of an example architecture that may be used

within the M2M/IoT communications system illustrated in FIG. 18A.

[0029] FIG. 18C is a system diagram of an example M2M / IoT terminal or gateway

device that may be used within the communications system illustrated in FIG. 18A.

[0030] FIG. 18D is a block diagram of an example computing system in which aspects

of the communication system of FIG. 18A may be embodied.

DETAILED DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS

[0031] The embodiments set forth herein may be described in terms of a

representational state transfer (REST) architecture, with components and entities described

conforming to the constraints of a REST architecture (RESTful architecture). A RESTful

architecture is described in terms of the constraints applied to components, entities, connecters,

and data elements used in the architecture rather than in terms of physical component

implementation or communications protocols used. Thus, the roles and functions of the

components, entities, connecters, and data elements will be described. In a RESTful

architecture, representations of uniquely addressable resources may be transferred between

entities. One skilled in the art will recognize that implementations of the instant embodiments

may vary while remaining within the scope of the present disclosure. One skilled in the art will

also recognize that the disclosed embodiments are not limited to implementations using the ETSI

M2M architecture that is used herein to describe exemplary embodiments. The disclosed

embodiments may be implemented in other architectures and systems, such as oneM2M and

other M2M systems and architectures.

[0032] FIG. 1 illustrates an exemplary embodiment of the instant disclosure. System

100 may include edge network 110, within which IoT entity 130 and IoT gateway 140 may

reside. IoT entity 130 may have physical resource 132. Physical resource 132 may be any

physical resource, including, but not limited to, storage, computation or CPU, communication

bandwidth, other provided services, sensors, actuators, etc. Physical resource 132 may be made

available for use by other IoT entities as virtual resource 133 offered via virtualization service

131 and accessible via service layer interface 135. Likewise, IoT gateway 140 may have

physical resource 142 that may also be any physical resource and that may be made available for

use by other IoT entities as virtual resource 143 offered via virtualization service 141 and

accessible via service layer interface 135. Note that each of IoT entity 130 and IoT gateway 140

may use the other's virtual resources. There is no contemplated limitation on the direction of

interaction over a logical interface that provides access to a virtual resource. That is, in many

embodiments IoT entity 130 may use service 141 and IoT gateway 140 may use service 131.

[0033] Virtualized resources may be available across networks as well. IoT router 150

located in core network 120 may have physical resource 152 that may also be any physical

resource and that may be made available for use by other IoT entities as virtual resource 153

offered via virtualization service 151 and accessible by entities in edge network 110, such as IoT

gateway 140, via service layer interface 145. Here again, each of IoT router 150 and IoT

gateway 140 may use the other's virtual resources. IoT server 160 located in core network 120

may have physical resource 162 that may also be any physical resource and that may be made

available for use by other IoT entities as virtual resource 163 offered via virtualization service

161 and accessible by entities in core network 120, such as IoT router 150, via service layer

interface 155. Each of IoT router 150 and IoT server 160 may use the other's virtual resources.

IoT user 170 may use virtualization service 171 to access virtualized services via service layer

interface 165. IoT user 170 may also use services representing physical resources of other IoT

entities, such as using service 161 of IoT server 160 via service layer interface 165. Additional

detail of these interactions and virtualizations are set forth herein.

[0034] FIG. 2 illustrates another exemplary embodiment of the instant disclosure.

System 200 may include IoT gateway 210 that may be configured to accept requests to create a

virtual resource from a user. In response to such a request, IoT gateway 210 may create virtual

resources 213 associated with physical resource 212 and made available via virtualization service

11. IoT user 230, through its virtualization service 231, may request, via service layer interface

225 to virtualization service 221 of IoT server 220, that a virtual resource be created. IoT server

220 may determine that the appropriate recipient for such a request is IoT gateway 210, and may

forward the request to service 2 11 of IoT gateway 210 via service layer interface 215. In

response, IoT gateway 210 may create the requested virtual resource.

[0035] FIG. 3 illustrates another exemplary embodiment of the instant disclosure.

System 300 may include IoT entity 310 that may be any IoT entity, such as a sensor node

installed at a home for temperature monitoring, etc., and that may request that its own resources

be virtualized and made available to other IoT entities as a service. IoT entity 310, through its

virtualization service 3 11, may request via service layer interface 315 that IoT server 320' s

virtualization service 321 makes virtualization service 3 11 available. In response, IoT server 320

may advertise or otherwise make virtualization service 311 available, in some embodiments via

virtualization service 321. Service 321 may also provide a virtual resource interface to virtual

resource 323 associated with physical resource 322 of IoT server 320. In each of the systems

described in FIGs. 1, 2, and 3, and in the remaining embodiment described herein, created virtual

resources may be accessed or consumed by other IoT entities, such as IoT users, IoT servers, IoT

routers, IoT gateways, IoT things/devices, and the like.

[0036] FIG. 4 illustrates an exemplary position of the exemplary virtualization services

in a protocol stack implemented in exemplary IoT entity 400. The protocol stack may include

physical layer 410, MAC layer 420, network layer 430, messaging and/or transport layer 440,

service layer 450, and application layer 460. Virtualization services may reside at service layer

450 or on above of messaging/transport layer 440. Thus, the exemplary virtualization-related

commands and messages may be contained in a payload of different messaging and/or transport

protocols, such as HTTP, TCP, CoAP, UDP, XMPP, and the like.

[0037] In exemplary virtualization services, a physical resource may generate multiple

virtual resources that each may be shared by different users. Upon creation of such virtual

resources by one or more virtualization services as set forth herein, each virtual resource may be

requested, accessed, or assigned to various users in a transparent way. For example, a network

provider may deploy several types of network resources, such as access points and gateways,

along roadways or elsewhere about or proximate to a community. In an embodiment, these

physical access points may be shared by different IoT service providers and/or other types of

service providers. The disclosed virtualization services may enable efficient and flexible

virtualization management between the physical resource provider and a service provider. Such

management may include virtual resource creation, monitoring, and cancellation, among other

functions. Physical access point manufacturers may support the disclosed virtualization

functions (e.g. a virtualization server as described herein) so that the manufactured physical

access point may receive virtualization commands and create corresponding virtual resources.

[0038] For example, in an embodiment, a gateway or access point may connect a sensor

network to the Internet. In the sensor network, each sensor node may be an IoT device, such as a

temperature sensor or a pressure sensor. The sensor network may be deployed and owned by an

IoT service provider, or owned by and/or deployed by a network provider and accessed or

otherwise used by an IoT service provider, using the embodiments set forth herein.

[0039] FIG. 5 illustrates exemplary virtualization service architecture 500 that may be

used with a variety of standards. Some of the contemplated standards applications are listed in

Table 1 below that provides application examples for the disclosed virtualization services.

Standards Possible Applications
ETSI TC M2M The exemplary architecture and virtualization service functions (i.e. VTC, VTS, VTB, and VTM)

can be integrated into M2M service capability layer (SCL). For example, VTM can integrate with
network SCL (NSCL), VTB can integrated with gateway SCL (GSCL), and VTS can integrate with
device SCL (DSCL).

• New resource structures can to be developed to support the exemplary virtualization
service procedures.

oneM2M Since one M2M targets M2M service layer, the exemplary virtualization architecture and service
functions are potentially within its scope and can be adopted as advanced M2M service functions.

3GPP 3rd Generation Partnership Project (3GPP) has study/work item about network sharing (as discussed
in 3GPP TS 23.25 1: "Network sharing; Architecture and functional description", which is hereby
incorporated by reference in its entirety) such as base station virtualization and sharing. In addition,
it is possible to virtualize a physical smart phone into multiple virtual phones. As a result, the
exemplary virtualization architecture and service functions can be integrated into 3GPP control
plane.

• New signaling protocols based on non-access stratum (NAS) or short message service
(SMS) or other approaches can be developed to support the exemplary virtualization
procedures.

IETF/IRTF The exemplary virtualization architecture and service functions can be applied to IETF constrained
management (COMAN) and Internet Research Task Force (IRTF) software defined networking
research group (SDNRG) (as discussed in 3GPP TS 23.251 : "Network sharing; Architecture and
functional description", which is hereby incorporated by reference in its entirety). For example,
new management data model can be developed for the exemplary virtualization architecture and
service functions.

OMA Virtualization can be a type of device management (DM) functions. The exemplary virtualization
architecture and service functions can be applied to Open Mobile Alliance (OMA) especially to
OMA Device Management (DM).

• New management objects can be developed to support the exemplary virtualization
procedures.

ONF The exemplary virtualization architecture and service functions can extend Open Networking
Foundation (ONF) OpenFlow protocol (as discussed in 3GPP TS 23.25 1: "Network sharing;
Architecture and functional description", which is hereby incorporated by reference in its entirety)
by adding support for virtualization functions since the current OpenFlow only supports dynamic
configuration of routing tables.

TABLE 1

[0040] In FIG. 5, general virtualization service architecture 500 illustrates how IoT

resources may be managed in different resource domains. The definition of a "resource domain"

may vary in some embodiments. For example, all IoT systems and elements of an IoT service

provider may be regarded as a single resource domain or an IoT service provider may divide all

IoT resources into multiple domains based on criteria such as resource location, resource type,

supported service and/or application categories, scalability, and the like.

[0041] In the exemplary general virtualization service architecture depicted in FIG. 5,

each of resource domains 501 and 502 may include one or more of the elements listed in Table 2

below, which describes the functions of a virtualization manager (may also be referred to as a

"VTM" and as a "virtualization management entity"), a virtualization server (may also be

referred to as a "VTS" and as a "virtualization server entity"), a virtualization client (may also be

referred to as a "VTC" and as a "virtualization client entity"), and a virtualization broker (may

also be referred to as a "VTB" and as a "virtualization broker entity"). In an embodiment, each

element is a logical service function and a virtualization service. Thus, each virtualization

element may reside in various IoT entities as depicted in FIGs. 1-3. The functions of each

virtualization element are described in more detail herein

TABLE 2

[0042] In general virtualization service architecture 500, virtualization elements may

interact with each other over the exemplary virtualization interfaces listed below in Table 3 to

realize the virtualization functions described herein.

Interfaces Description
VT1 Interface between a VTS and a VTC to support the following interactions:
(e.g., 539, 565 in • Basically, the VTC issues virtualization requests to the VTS and receives response back from the
FIG. 5) VTS via this interface.

• Later, the VTC can issue requests to the VTS to cancel a pending virtualization request or to
adjust/retrieve/delete the created virtual resource.

VT2 Interface between a VTC and a VTM to support the following interactions:
(e.g., 554 in FIG. 5) • The VTC discovers appropriate VTS or VTB from VTM.
VT3 Interface between a VTS and a VTM to support the following interactions:
(e.g., 552 in FIG. 5) • The VTS registers its resources to VTM, and can update the registered resources at the VTM.

• The VTS reports context information about itself and its resources to the VTM.
• The VTS accesses virtualization policies and virtualization context information maintained at the

VTM.
• The VTM updates and enforces new virtualization policies at the VTS.

VT4 Interface between a VTM and another VTM to support the following interactions:
(e.g., 531, 532, and • VTMs exchange information about VTS and VTB and their resource and context information.
55 1 in FIG. 5) • VTMs collaboratively serve discovery requests from VTCs.

• VTMs collaboratively serve virtualization computation offloading from VTBs or VTSs.
• VTM collaboratively manage virtualization policies and virtualization context.

VT5 Interface between a VTC and a VTB to support the following interactions:
(e.g., 538, 540, 562, • The VTC issues virtualization requests to a VTB via this interface.
560 in FIG. 5) • Later, the VTC can issue requests to the VTB to cancel a pending virtualization request or to

adjust/retrieve/delete the created virtual resource.
VT6 Interface between a VTS and a VTB to support the following interactions:
(e.g., 537, 557, 561 • The VTB forwards virtualization requests to a VTS via this interface.
in FIG. 5) • Later, the VTB can issue requests to the VTB to cancel a pending virtualization request or to

adjust/retrieve/delete the created virtual resource.

VT7 Interface between a VTB and another VTB to support the following interactions:
(e.g., 536, 559 in • One VTB can forward virtualization requests to other VTBs (one or more).
FIG. 5)

• One VTB can cancel pending virtualization requests maintained at other VTBs.
VT8 Interface between a VTS and another VTS to support the following interactions:
(e.g., 558 in FIG. 5) • A VTS moves the created virtual resource from one VTS to another VTS.

• A VTS requests or borrows more resources from another VTS.
VT9 Interface between a VTB and a VTM to support the following interactions:
(e.g., 534, 535, 553, • The VTB registers itself and reports its context information to VTM.
and 555 in FIG. 5) • The VTB accesses virtualization policies and virtualization context information maintained at the

VTM.
• The VTM updates and enforces new virtualization policies at the VTB.
• The VTB offloads virtualization computation to the VTM.

VT10 Interface between a legacy VTS and a VTB to support the following interactions:
(e.g., 563 in FIG. 5) • The VTB translates virtualization request from a VTC into the legacy virtualization request

which the legacy VTS can understand.
VT1 1 Interface between a legacy VTC and a VTB to support the following interactions:
(e.g., 564 in FIG. 5) • The VTB translates the legacy virtualization request from the legacy VTC into the format which

the VTB or VTS can understand.

TABLE 3

[0043] In an exemplary embodiment, a VTM (e.g., 510, 511, 512, and 520 in FIG. 5)

may maintain the list of IoT resources within a resource domain. A VTM may also maintain

virtualization-related policy and context information. A VTM may update and enforce the

virtualization policy at a VTB, a VTS, and/or another VTM. In an example embodiment, a

resource domain may have one or more than one VTM, as seen in, for example, in FIG. 5, where

VTMs 510, 5 11 and 512 reside in resource domain 501. A VTM may perform simple resource

discovery via communications with one or more of a VTC, VTB, or VTM, and may also, or

instead, use complex virtualization algorithms to identify appropriate resources as requested by a

VTC, VTB, or VTM. A VTM may assist a resource or a VTS, VTB, or VTC in moving from

one resource domain to another resource domain. Multiple VTMs within one resource domain

(e.g., VTMs 510, 511 and 512 in FIG. 5) may form a hierarchical or mesh structure to improve

resource maintenance and discovery performance. A VTM may also facilitate collaboration

between VTSs or between VTBs.

[0044] In an exemplary embodiment, a VTS (e.g., 515, 521, and 522 in FIG. 5) may

have access to one or more physical resources. A VTS may receive a virtualization request from

a VTC or a VTB and, in response, may create the requested virtual resource. Virtual resources

may be created according to parameters and requirements contained in one or more policies

received from a VTM. A VTS may register and update its resources to a VTM. VTSs may

communicate with each other to enable cross-VTS collaborative resource virtualization and

management.

[0045] VTCs (e.g., 516 and 527 in FIG. 5) may send virtualization requests to a VTS or

a VTB to request virtual resource creation. Before sending such a request, a VTC may send a

discovery request to a VTM to determine the appropriate VTS and/or VTC to which to send the

request.

[0046] A VTB (e.g., 513, 514, 523, and 524 in FIG. 5) may assist in interactions

between a VTC and a VTS as an intermediary node. For example, a VTB may intelligently

process incoming virtualization requests from a VTC (e.g., a VTB may buffer and/or merge

requests before forwarding them to a VTS). Multiple VTBs may form a hierarchical or mesh

broker structure to improve performance and scalability. A VTB may facilitate communication

and interoperability between legacy VTSs and VTCs (e.g., 525 and 526, respectively, in FIG. 5)

and the disclosed VTSs and VTCs.

[0047] Table 4 below lists several exemplary IoT virtualization scenarios and

exemplary locations of VTCs, VTSs, and VTBs. Also shown in Table 4 are example protocols

that may support the disclosed virtualization interfaces. For example, virtualization request

messages and corresponding responses may be bound to protocols such as HTTP and CoAP,

among others. Protocols such as HTTP or CoAP may be used as an underlying transport

protocol for carrying various virtualization service request and response messages.

Virtualization request and response messages may be encapsulated within the payload of HTTP

or CoAP message. Alternatively, or in addition, some information within a virtualization service

request or response may be bound to fields within HTTP and/or CoAP headers and/or options.

For example, in an embodiment, virtualization service requests and response protocol primitives

may be encoded as JavaScript Object Notation (JSON) or extensible Markup Language (XML)

descriptions that may be carried in the payload of HTTP or CoAP request and response

messages. Thus, virtualization functions and services may encode and/or decode virtualization

service protocol JSON and/or XML primitives and may use HTTP and/or CoAP as an underlying

transport for exchanging these virtualization service primitives. In other embodiments, rather

than using existing protocols, the exemplary virtualization interfaces and the messages

transmitted using such interfaces may be implemented as a new virtualization service protocol.

Scenarios Description Virtualization Service Virtualization
Functions Interface and Protocol

Example
1. IoT Device A 3GPP MTC device has multiple sensors VTC: The IoT network VT1 : HTTP Protocol
Virtualization integrated (e.g. temperature, smoke, application. VT2: HTTP Protocol

humidity, etc.). An IoT network application VTS: Service function at the VT3: HTTP Protocol
directly talks to the MTC device to request MTC device.
to create a virtual MTC device with a VTM: Service function at the
temperature sensor. 3GPP core network.

2. IoT Device A 3GPP MTC device has multiple sensors VTC: The IoT network VT5: HTTP Protocol
Virtualization integrated (e.g. temperature, smoke, application. VT6: HTTP Protocol

humidity, etc.).) . An IoT network VTB: Service function at a VT9: HTTP Protocol
application indirectly talks to the MTC 3GPP core network entity
device via 3GPP core network entities (e.g. (e.g. MTC-IWF).
MTC-IWF) to request to create a virtual VTS: Service function at the
MTC device with a humidity sensor. MTC device.

VTM: Service function at the
3GPP core network.

3. IoT Gateway An IoT gateway (e.g. a WiFi access point VTC: Service function at the VT1 : HTTP Protocol
Virtualization with cellular connection) is deployed along IoT server. VT2: HTTP Protocol

the roadside. The gateway provides VTS: Service function at the VT3: HTTP Protocol
connections for both moving vehicles and a IoT gateway.
sensor network for monitoring potential VTM: Service function at the
landslide. An IoT server in the cloud wants IoT server.
to create two virtual gateways: one for
traffic monitoring and intelligent transport
system, and another for landslide
monitoring.

4. IoT Sensor An IoT gateway connects a large-scale VTC: Service function at the VT5: HTTP Protocol
Network sensor network which is deployed in a city. IoT server VT6: CoAP Protocol
Virtualization The sensor network provides various VTB: Service function at the VT9: HTTP Protocol

sensory data such as temperature, pollution, IoT gateway
light, traffic, etc. An IoT server deployed in VTS: Service function at the
the cloud wants to request and create IoT sensor node
multiple different virtual sensor networks. VTM: Service function at the
Each virtual sensor network supports IoT server.
different applications such as air quality
monitoring, weather prediction, etc.

5. IoT Thing An IoT thing wants to virtualize itself to IoT VTC: Service functions at the VT5: CoAP Protocol
Virtualization server so that accesses to the physical thing IoT thing. VT6: HTTP Protocol

can be offloaded onto the virtual thing to be VTB (optional): Service VT9: HTTP Protocol
created in the IoT server. IoT server may function at the IoT gateway.
create multiple virtual things for the same VTS: Service functions at the
physical IoT thing. Note that the IoT thing IoT server.
may have a communication module to VTM: Service function at the
connect itself to the Internet, likely via an IoT server.
IoT gateway.

TABLE 4

[0048] FIG. 6 illustrates exemplary VTC-to-VTS virtualization architecture 600, which

may include VTS 630, VTC 640, VTMs 610 and 620. Virtualization interface VT1 635 may

enable communication between VTS 630 and VTC 640. Virtualization interface VT2 645 may

enable communication between VTC 640 and VTM 620. Virtualization interface VT3 625 may

enable communication between VTS 630 and VTM 620. Virtualization interface VT4 615 may

enable communication between VTM 610 and VTM 620. As noted above in Table 4, several

IoT virtualization scenarios are contemplated, with some example locations of each VTC, VTS,

and VTM provided in the table.

[0049] A VTS (e.g., VTS 630 in FIG. 6) may be a system with a logic service function.

A VTS may reside on any IoT entities that provide or have access to a physical resource (e.g.,

IoT devices, IoT gateways, IoT servers). In some embodiments, a VTS may receive

virtualization requests from a VTC and create virtual resources for the VTC in response. The

created virtual resource may be co-located with the physical resource. For example, an IoT

network application (i.e., the VTC) may issue a virtualization request to an IoT device (i.e., the

VTS) to virtualize the IoT device into multiple virtual devices via a VT1 interface (e.g., VT1 635

in FIG. 6). Note that an internal interface between a VTS and any physical resources may be

needed at the IoT entity where the VTS resides.

[0050] A VTS may perform a variety of operations. Among these is resource

registration, where a VTS registers itself and its physical resources to a VTM using a VT3 (e.g.,

VT3 625 in FIG. 6) interface so that a VTC may discover an appropriate VTS, or so that a VTM

may summarize its VTSs and re-register them to another VTM. A VTS may register to multiple

VTMs.

[0051] Another operation performed by a VTS may be virtualization request

management, where a VTS analyzes virtualization requests from a VTC received via a VT1

interface. A VTS may accept, reject, or buffer such incoming virtualization requests. Upon the

request from a VTC after receiving a virtualization request from that VTC, a VTS may cancel a

buffered and/or pending virtualization request.

[0052] Still another operation performed by a VTS may be virtual resource creation,

where a VTS creates a virtual resource upon the request of a VTC and sends a response back to

the requesting VTC via the VT1 interface. A VTS may report the created virtual resource to a

VTM via a VT3 interface.

[0053] Yet another operation performed by a VTS may be virtual resource

management, where a VTS may receive further requests from a VTC to cancel, adjust, or retrieve

an existing virtual resource, or to combine multiple virtual resources.

[0054] Another operation performed by a VTS may be virtualization context

management. Virtualization context information may include, but is not limited to, supported

virtualization type(s) at a VTS, virtualization pricing information, and information about a virtual

resource such as a VTC's requirements, performance measurement, corresponding physical

resource, lifetime, etc. A VTS may create such context information for each virtual resource. A

VTS may monitor the created virtual resources to ensure that the virtual resource performance

meets the VTC's requirements. If there is potential issue about a created virtual resource, a VTS

may automatically increase allocated physical resources, send notification to the associated VTC,

and/or report the issue to a VTM.

[0055] Still another operation performed by a VTS may be virtualization policy

management, where a VTS may access virtualization policies maintained at a VTM. VTS may

download certain virtualization policies from the VTM and maintain them locally.

[0056] A VTC (e.g., VTC 640 in FIG. 6) may be a system with a logic service function

that sends virtualization requests to a VTS to create virtual resources. A VTC may be a user

application or may reside in other IoT entities. For example, a VTC such as an IoT network

application may send a virtualization request to an IoT device, such as a VTS, requesting that the

IoT device virtualize itself into multiple virtual devices.

[0057] A VTC may perform a variety of operations. Among these is VTS lookup,

where a VTC sends a lookup request to a VTM via interface VT2 (e.g., VT2 645 in FIG. 6) to

discover potential VTSs that may be able to provide desired virtual resources. A VTC may

subscribe to a VTM and receive automatic notifications from the VTM when there are new VTSs

available, previously available VTSs are no longer available, and/or when any other VTS status

or state changes.

[0058] Another operation performed by a VTC may be virtual resource creation, where

a VTC sends a virtualization request to a VTS to request the creation of a virtual resource. A

VTC may send multiple, different virtualization requests to a VTS sequentially or

simultaneously. Simultaneous transmission of requests enables a VTS to consider the multiple

requests together and in turn more requests may be allowed and satisfied, resulting in an

increased virtualization success rate. In contrast, sequential virtualization request processing,

where each virtualization request is processed sequentially and independently, may result in a

lower virtualization success rate. A VTC can cancel a previously transmitted and still pending

virtualization request at a VTS by send a cancellation to the VTS via a VT1 interface.

[0059] Another operation that may be performed by a VTC may be virtual resource

management, where a VTC issues, via VT1 interface, additional requests to cancel, adjust, or

retrieve an existing virtual resource, and/or to combine multiple virtual resources at a VTS.

[0060] A VTM (e.g., VTC 620 in FIG. 6) may be a system with a logic service function

that facilitates interactions between a VTC and a VTS. It may reside in an IoT server and/or in

the cloud. Optionally, a VTM may be a part of a VTS that is hidden from VTCs.

[0061] A VTM may perform a variety of operations. Among these is physical/virtual

resource management, where a VTM may maintain a list of available VTSs and their physical

resources that may be queried by a VTC or a VTS. A VTM may interact with another VTM via

a VT4 interface (e.g., VT4 615 in FIG. 6) so that multiple VTMs may collaboratively keep track

of available VTSs and physical resources in a more scalable approach. Optionally, a VTM may

maintain a mapping relationship between physical resources and virtual resources for

management purposes that may be inaccessible to VTC.

[0062] Another operation that may be performed by a VTM is virtualization policy

management, where a VTM may dynamically adjust, void, and/or push virtualization policies to

a VTS via a VT3 interface. A VTM may dynamically push or pull virtualization policies from

another VTM via a VT4 interface.

[0063] Another operation that may be performed by a VTM is virtualization context

management, where a VTM may maintain virtualization context information about physical and

virtual resources that may be accessed and/or manipulated by a VTS and/or a VTC.

[0064] Another operation that may be performed by a VTM is virtualization charging

management, where a VTM maintains lookup history information from VTCs, and maintains

virtualization request processing results as reported by a VTS. Based on this information, a

VTM may generate virtualization charging records.

[0065] A VTl interface (e.g., VTl 635 in FIG. 6) may be a system that handles

interactions between a VTS and a VTC. Such interactions may include VTC requests to create,

update, adjust, and/or remove virtual resources at VTS. For example, a VTC may request that

multiple virtual resources previously created by a VTS be combined. These interactions may

also include VTC requests to cancel a pending virtualization request at VTS. Such interactions

may further include a VTS sending notifications to a VTC about changes and monitored

performance in virtual resources. Such interactions may also include a VTS and a VTC

establishing and maintaining a logic connection over VTl so that the VTS may send notifications

such as performance results of virtual resources to VTC.

[0066] A VT2 interface (e.g., VT2 645 in FIG. 6) may be a system that facilitates

interactions between a VTC and a VTM. Such interactions may include a VTC sending a VTM

a lookup request asking the VTM to find desired VTSs and the VTM sending a response back to

the VTC. These interactions may also include a VTC accessing virtualization policies and

virtualization context information maintained at a VTM. These interactions may further include

a VTC sending a resource subscription to a VTM and receives automatic notification from the

VTM about changes in VTSs, virtualization policies, and/o virtualization context information.

[0067] A VT3 interface (e.g., VT3 625 in FIG. 6) may be a system that handles

interactions between a VTS and a VTM. The interactions may include a VTS registering itself to

a VTM. During registration, the VTS may indicate pricing information and other virtualization

context information. The interactions may further include a VTS reporting its physical resource

and created virtual resources to a VTM. Such interactions may further include a VTS reporting

virtualization request process results to a VTM and a VTS reporting malicious VTCs to a VTM.

A VTM can block "VTS lookup" messages from VTCs identified as malicious.

[0068] A VT4 interface (e.g., VT4 615 in FIG. 6) may be a system that handles

interactions between two VTMs. These interactions may include a VTM forwarding and/or

aggregating a VTS registration to another VTM, a VTM looking up a desired VTS from another

VTM, and a VTM accessing and adjusting virtualization policies at another VTM.

[0069] FIG. 7 illustrates system 700 where a VTS (or, in other embodiments, a VTC)

may interface with multiple VTCs (or, in other embodiments, one or more VTSs) based on the

basic virtualization service architecture disclosed herein. In a one-VTC-multiple-VTS

embodiment (e.g. VTC 740 in FIG. 7), a VTS (e.g. VTC 720 in FIG. 7) may not be able to

provide enough resources to fulfil a request by a VTC. In this case, the VTC can choose

multiple VTSs and send separate virtualization requests to each of them. However, the VTC

may determine how many and which VTSs are to be selected in the basic VTC-to-VTS

virtualization service architecture. In a one-VTS-multiple-VTC embodiment, a VTS (e.g., VTS

710 in FIG. 7) may service multiple VTCs. A VTS can create and provide virtual resources for

multiple VTCs if the VTS have enough physical resources.

[0070] FIG. 8 shows exemplary system 800 illustrating an embodiment of a broker-

based virtualization service architecture, where a VTB is a system with a logic service function

and one or more virtualization interfaces. Table 4 above lists several IoT virtualization

embodiments and details the locations of VTBs in such embodiments. A VTB (e.g. VTB 840

and VTB 850 in FIG. 8) may perform the functions and operations of both a VTC and a VTS to

coordinate interactions between a VTS and a VTC in either a transparent or a non-transparent

way. For example, a VTB can connect a VTC to legacy VTS. A VTB may coordinate multiple

VTSs and may interface with another VTB as well.

[0071] A VTB may perform a variety of operations. Among these is a VTB registering

itself to a VTM so that a VTC and a VTS may discover the potential VTB from the VTM. A

VTB may also receive virtualization requests from a VTC and forward such requests to a VTS.

A VTB may search and select one or more appropriate VTSs on behalf of a VTC. A VTB may

split a single virtualization request into multiple virtualization requests. A VTB may also

aggregate multiple virtualization requests into a single virtualization request.

[0072] Other operations that a VTB may perform include buffering incoming requests

and forwarding them to a VTS in a differentiated and prioritized manner. A VTB may serve

VTCs on behalf of a VTS. A VTB may coordinate virtual resource migration from one VTS to

another VTS. A VTB may receive virtualization requests from a VTC and forward them to

another VTB. A VTB may interface with a VTM to discover and select a proper VTS and/or

VTB. A VTB may interface with a VTM to access virtualization policies and virtualization

context information, in one embodiment to user in dynamic policy adjustment and enforcement.

A VTB may facilitate the interworking of different types of VTSs and VTCs. For example, as

shown in FIG. 8, VTB 850 interfaces with legacy VTS 830 via the legacy virtualization interface

VT10 814. VTB 850 may perform translation between legacy VTS 830 and VTC 840.

[0073] A Legacy VTS (e.g., legacy VTS 830) may be a system that has a traditional

logic service function to support resource virtualization. It may not be able to communicate with

VTCs or other VTSs directly. Instead, it may communicate with, for example, VTS 820 through

VTB 850 via legacy interface VT10 814.

[0074] A VT5 interface (e.g., VT5 815 in FIG. 8) may be a system that handles

interactions between a VTC and a VTB. A VT5 interface may support similar functions as a

VT1 interface.

[0075] A VT6 interface (e.g., VT5 812 and VT6 817 in FIG. 8) may be a system that

handles interactions between a VTB and a VTS. A VT6 interface may also support similar

functions as a VT1 interface, but may also support additional functions that are related to VTB-

controlled multi-VTS coordination (discussed in more detail herein).

[0076] A VT7 interface (e.g., VT7 813 in FIG. 8) may be a system that handles

interactions between two VTBs. Such interactions may include one VTB forwarding

virtualization requests to another VTB, and transmission of a virtualization response to the

forwarding VTB.

[0077] A VT8 interface (e.g., VT8 811 in FIG. 8) may be a system that handles

interactions between two VTSs. Such interactions may include direct VTS-to-VTS interactions,

for example, as used in VTB-controlled multi-VTS coordination (discussed in more detail

herein). A VT8 interface may also supports virtual resource migration from one VTS to another

VTS. In some embodiments, a VTC is not notified of the migrated virtual resource.

[0078] A VT9 interface (e.g., VT9 818 in FIG. 8) may be a system that handles

interactions between a VTB and a VTM. A VT9 interface may support similar functions as a

VT2 interface and a VT3 interface.

[0079] A VT10 interface (e.g., VT10 814 in FIG. 8) may be a system that handles

interactions between a VTB and a legacy VTS. A VT10 interface may be a legacy or proprietary

virtualization interface

[0080] A VT1 1 interface (e.g., VT1 1 816 in FIG. 8) may be a system that handles

interactions between a VTB and a legacy VTC. A VT11 interface may also be a legacy or

proprietary virtualization interface.

[0081] FIG. 9 illustrates example interactions 930 between virtualization service 910

and other IoT services 920. The exemplary virtualization elements or functions (e.g., VTC 911,

VTS 912, VTB913, and VTM 914) may be implemented as IoT services and referred to as

virtualization services. An IoT service platform may include services such as mobility

management service 921, event management service 922, identity management service 923,

discovery service 924, policy management service 925, and charging service 926, among others.

Virtualization service 910 may interface with those IoT services to make IoT resource

virtualization more efficient by using the following interactions.

[0082] Virtualization service 910 may receive a trigger from mobility management

service 921 to trigger a new virtualization, virtualization cancellation, or virtualization

adjustment/adaptation. Virtualization service 910 may use mobility management service 921 to

assist in fulfilling virtual resource migration.

[0083] Virtualization service 910 may generate and/or create new events that may be

provided to event management service 922. Virtualization service 910 may receive a trigger from

event management service 922 to trigger a new virtualization, a virtualization cancellation, or a

virtualization adjustment or adaptation. Virtualization service 910 may manipulate events (e.g.,

virtualization-related events) in event management service 922 (e.g., retrieving, updating,

deleting, combining events).

[0084] Virtualization service 910 may request services from identity management

service 923 such as identity mapping for authentication and other security purposes.

Virtualization service 910, and in particular VTS 911 and VTM 914, may create and store a new

identity or identifier for a newly created virtual resource (e.g., object, sensor, connectivity,

network, etc.). Virtualization service 910 may access and manipulates virtualization-related

identities or identifiers stored in identity management service 923.

[0085] Virtualization service 910 may use discovery service 924 to find other services,

such as mobility management service 921, event management service 922, identity management

service 923, policy management service 925, and charging service 926. Alternatively, or in

addition, virtualization service 910 may use discovery service 924 to discover other

virtualization services.

[0086] Virtualization service 910 may obtain virtualization-related policies from policy

management service 925. Such policies may be retrieved by virtualization service 910 when

needed and/or received as automatic transmissions from policy management service 925. Policy

management service 925 may update or cancel existing virtualization-related policies at VTM

914, VTB913, and/or VTS 912.

[0087] Virtualization service 910 may keep records of virtualization requests and

virtual resources and may generate charging records to be provided to charging service 926.

Charging service 926 may configure and manage virtualization service 910's charging record

generation operations. Charging service 926 may access and pull charging records generated by

virtualization service 910.

[0088] In an embodiment, messages may be exchanged between two virtualization

elements (e.g., VTC, VTS, VTB, and VTM) over different virtualization interfaces as described

herein. Messages may be contained in different protocols (e.g., HTTP and CoAP) as payload

and/or within headers or options fields. Table 4 above illustrates several examples of the

interfaces to which HTTP and CoAP may be applied to. Alternatively, a new virtualization

service protocol may be used to transport virtualization request and response messages.

[0089] FIG. 10 illustrates exemplary signal flow 1000 that may be used in context-

aware virtualization embodiments. In such embodiments, VTC 1010 may requests that a virtual

resource be created at VTS 1030 via VTB 1020. The exemplary embodiment illustrated in

FIG. 10 may virtualization context information to improve virtualization efficiency.

[0090] At 101 1, VTS 1030 sends a "VTS Registration" message to VTM 1040 to

register itself and its physical resources. Alternatively, VTS 1030 may send a "VTS Update"

message to VTM 1040 if it has already registered with VTM 1040. This VTS Registration

message or VTS update message may include any of several parameters. Among these are

information representing the physical location of VTS 1030, resource types and resource

attributes of each type that VTS 1030 manages and/or can provide, a lifetime of each type of

resource, a physical location of each type of resource, a volume of each type of resource, a

granularity of each type of resource with which VTS 1030 can create virtual resource, a response

time for creating each type of resource, a maximum number of virtual resources that each type of

resource can support, and pricing information (e.g. charging plan and rate) for the resources VTS

1030 may provide. At 1012 a response may be sent back to VTS 1030 indicating the success or

failure of the registration.

[0091] At 1013, VTC 1010 may send a first virtualization request to VTB 1020. This

message may contain context information about VTC 1010, such as its location, its moving

speed, its capabilities, and the like. This message may contain one or more resource request

items ("RRIs"). Each RRI may contain following context information such as a type of the

requested resource, a volume of the requested resource, an affordable price for the requested

resource, an expected location of the requested resource, an expected response time of the

requested resource, an expected lifetime of the requested resource, and a tolerable delay with

which the resource request item may be processed by VTB 1020.

[0092] At 1014, VTB 1020 may perform a context-aware virtualization request

processing. VTB 1020 may analyze and process the incoming request message received at 1013

in a context-aware approach. For example, VTB 1020 may reject request 1013 based on context

information about VTC 1010 such as the location of VTC 1010 or the affordable price. In

another example, VTB 1020 may buffer or immediately process request 1013 based on the

contained "tolerable delay" information for each RRI. If VTB 1020 decides to reject or buffer

request 1013 for a while, the remaining messages and actions described in regard to FIG. 10 may

not be performed.

[0093] At 1015, VTB 1020 sends a VTS lookup message to VTM 1040. This message

may be used to discover a list of VTS candidates that may potentially provide the resources

requested in messagel013. The VTS lookup message may contain context information, such as

any or all of the context information contained in messagel013, whether messagel013 contained

multiple RRIs, and context information about VTB 1020, such as its identity and location. If

messagel013 contains multiple RRIs, VTB 1020 may buffer some RRI and accordingly only

contain context information about other non-buffered RRI. Alternatively, VTB 1020 may have

previously registered itself to VTM 1040 and VTM 1040 may maintains VTB 1020's context

information. In that case, there is no need to piggyback VTB 1020's context information in a

VTS lookup message until its context information has changed. At 1016, VTM 1040 returns a

list of VTS candidates to VTB 1020. The context information about each VTS as listed in

registration message 101 1 may be piggybacked in this message.

[0094] At 1017, VTB 1020 may perform a context-aware virtualization strategy and

VTS selection. In this operation, VTB 1020 may determine a virtualization strategy (e.g., split-

and-merge) and select appropriate VTSs based on context information contained in request 1013

and in response 1016 returned from VTM 1040. For example, VTB 1020 may split request 1013

into multiple virtualization request messages.

[0095] At 1018, VTB 1020 sends a second virtualization request to the selected VTS

1030. This message requests that VTS 1030 create certain required virtual resources. VTB 1020

may translate request 1013 into request 1018 in a different format that VTS 1030 can understand.

Additionally, request 1018 may contain fewer RRIs than contained in request 1013. As with

request 1013, request 1018 may contain context information as well.

[0096] At 1019, VTS 1030 determines whether to accept or reject request 1018 based

on context information contained in the request and sends a response to VTB 1020. If VTS 1030

decides to accept request 1018, it will create the requested virtual resource by allocating the

corresponding physical resource(s) and establishing the mapping relationship between the

created virtual resource and original physical resource. If VTS 1030 does not have enough

physical resources to meet request 1018's requirements, VTS 1030 may borrow resources from

another VTS through direct interactions with that VTS.

[0097] At 1021, VTB 1020 translates response 1019 into response 1021 and forwards it

to VTC 1010. If VTS 1030 rejects request 1018, VTB 1020 may re-select other VTS and re-

send the request to the newly selected VTS. If VTS 1030 rejects request 1018, VTS 1030 may

recommend another VTS to VTB 1020, or it may directly contact another VTS on behalf of VTB

1020.

[0098] At 1021, VTS 1030 sends a context update message to VTM 1040 to update its

context information such as remaining physical resources, changes to a charging rate, and any

other changes. VTS 1030 may also generate a charging record for the created virtual resource

and report the charging record to VTM 1040. At 1023, VTB 1020 sends a context update

message to VTM 1040 to update its remaining physical resources, changes to a charging rate,

and any other changes.

[0099] In collaborative virtualization embodiments, a VTC may create certain virtual

resources via a first VTB, but the requested virtual resources may not be able to be provided by a

single VTS, and so must be provided by multiple VTSs. The exemplary virtualization split-and-

merge process to address such a situation is illustrated in the signal flow of FIG. 11. Where there

are multiple VTCs requesting virtual resources via the same VTB and the requested virtual

resources can be potentially created at a single VTS, the requests may be merged. The exemplary

virtualization merge-and-split process as shown in FIG. 1 may be used to address this situation.

[0100] FIG. 11 illustrates exemplary signal flow 1100 that may be used in

embodiments employing the disclosed virtualization split-and-merge process. At 1 1 11, VTC

1110 sends a virtualization request to VTB 1120. At 1112, VTB 1120 analyzes request 1 1 11 and

finds that a single VTS cannot satisfy the request. Note that VTB 1120 may be in contact with a

VTM during this process. Further at 1112, VTB 1120 splits request 11 1 1 into multiple requests

(i.e., virtualization request A and virtualization request B) and selects two appropriate VTSs,

VTS 1130 and VTS 1140. Note that VTB 1120 may split request 11 1 1 into more than two

requests and select more than two VTSs. In an embodiment, VTB 1120 may have used a VTS

lookup procedure asset forth herein in conjunction with a VTM to get a list of VTS candidates.

[0101] At 1113, VTB 1120 sends virtualization request A to VTS 1130 and receives a

response from VTS 1130 at 1 1 14. At 1115, VTB 1120 sends virtualization request B to VTS

1140 and receives a response from VTS 1140 at 1116. At 1117, VTB 1120 merges response A

and B to generate an aggregated response and at 1 1 18 sends the aggregated response to VTC

1110.

[0102] FIG. 12 illustrates exemplary signal flow 1200 that may be used in

embodiments employing the disclosed virtualization merge-and-split process. At 121 1, VTC

1210 sends virtualization request A to VTB 1230, and at 1212, VTC 1220 sends virtualization

request B to VTB 1230. At 1213, VTB 1230 buffers and merges virtualization request A and

virtualization request B into a single merged request. At 1214, the merged request is sent to VTS

1240. VTB 1230 may have sent a VTS lookup to a VTM to get a list of VTS candidates. At

1215, VTS 1240 sends a response back to VTB 1230. At 1216, VTB 1230 splits the response

into response A and response B, corresponding respectively to virtualization request A and

virtualization request B. Response A is then sent to VTC 1210 at 1218 and response B is sent to

VTC 1220 at 1217.

[0103] In an embodiment, a process for virtual resource migration within one VTM

may be implemented. A VTB or VTC may need to move virtual resources from a first VTS to

another VTS. There may be a single VTM that manages all these elements. After the VTB or

VTC has previously created a virtual resource through the first VTS, migration may be needed

due to any of a variety of factors, including load-balancing, mobility, reducing energy -

consumption, policy-based virtualization adaption and/or adjustment, context-based

virtualization adaptation and/or adjustment. Thus the VTB or VTC may select another VTS and

may migrate existing virtual resource from the first VTS to the newly selected VTS.

[0104] FIG. 13 illustrates exemplary signal flow 1300 that may be used in

embodiments employing the disclosed procedure for virtual resource migration within one VTM.

At 131 1, due to detecting a need to migrate resources, VTC/VTB 13 10 may select a new VTS,

VTS 1330 in this example. To do this, VTC/VTB 13 10 may have sent a VTS lookup message to

a VTM such as VTTM 1340, to get a list of VTS candidates, as described herein. Note that

resource migration may be triggered by the VTS currently hosting the virtual resource (e.g., VTS

1320), the VTB (e.g., VTC/VTB 13 10), or a VTM (e.g., VTM 1340) due to changes in

virtualization context information and/or virtualization polices.

[0105] At 13 12, VTC/VTB 1310 may send a migration request to the newly selected

VTS 1330. This message may contain context information about the requested resource and

context information about VTS 1310. At 13 13, VTS 1330 sends a response back to VTC/VTB

1310. If VTS 1330 has rejected the migration request, VTC/VTB 13 10 may select another VTS

and try again. If VTS 1330 accepts the request, VTS 1330 will be prepared to receive a context

transfer from the prior VTS 1320.

[0106] At 13 14, VTC/VTB 1310 may send a migration notification" to VTS 1320.

This message may contain context information about new VTS 1330 that may be used for

preparing for the migration. A 13 15, VTS 1320 sends a context transfer message to the new VTS

1330. This message may contain some or all of the context information associated with the

virtual resource to be migrated. For example, if the virtual resource is storage, the stored content

may be indicated so that it may be transferred from the VTS 1320 to new VTS 1330. At 13 16,

VTS 1330 sends a response to VTS 1320 indicating whether the context transfer was successful.

If the transfer was successful, upon receipt of response 1316, VTS 1320 may cancel or otherwise

delete or remove the virtual resource and relevant context information.

[0107] At 13 17, VTS 1320 sends a response to VTC/VTB 1310, responding to

migration notification 1314. At 1318, VTS 1330 performs a context update" with VTM 1340 to,

for example, update the resource changes at VTS 1330 due to the migration. At 13 19, VTS 1320

also performs a context update with VTM 1340, for example, to update resource changes at VTS

1320 due to the migration. Finally, at 1321, VTC/VTB 1310 performs a context update with

VTM 1340, for example, to update VTC/VTB 13 10's relationship with VTSs.

[0108] In an embodiment, a process for virtual resource migration across different

VTMs may be implemented. A VTB or a VTC may need to move previously created resources

at a first VTS to another VTS. A first VTM may manage the VTB or VTC, while a second VTM

may manage a second VTB and VTS. According to an embodiment, a virtual resource may be

moved from one VTM domain to another VTM domain.

[0109] FIG. 14 illustrates exemplary signal flow 1400 that may be used in

embodiments employing the disclosed procedures for virtual resource migration from one VTM

domain to another. At 141 1, VTB 1410 sends a VTS lookup message to VTM 1450 to find an

appropriate VTB in VTM 1460's domain. At 1412, VTM 1450 forwards the VTS lookup to

VTM 1460 to find an appropriate VTB in VTM 1460's domain. At 1413, VTM 1460 sends a

response to VTM 1450 that may include information about the determined VTB(s), such as

addresses. At 1414, VTM 1450 sends that response to VTB 1410.

[0110] At 1415, VTB 1410 sends a VTB registration message to VTM 1460 with, in

some embodiments, information about VTS 1450 contained in the message. At 1416, VTM

1460 sends a response back to VTB 1410. If VTB 1410 sis not determine information about a

VTB and VTS in VTM 1460's domain from earlier exchanges, at 1417 it may send a VTS

lookup message to VTM 1460 and receive a response at 1418 with the VTB and VTS

information.

[0111] At 1419, VTB 1410 sends a migration request to VTS 1440. This message may

be relayed via VTB 1430 if VTM 1460 selects a VTB in previous steps. Information about VTS

1420 may be contained in this message. At 1421, VTS 1440 may send a response to VTB 1410,

which may also be relayed via VTB 1430. At 1422, a migration notification may be sent to VTS

1420 containing information about VTB 1430 and VTS 1440. In response, VTS 1420 may send

a context transfer message 1423 to VTS 1440, via VTB 1430 where that entity is known. At

1424, a response may be sent by VTS 1440, via VTB 1430 where that entity is known. At 1425,

the response is relayed to VTB 1410 by VTS 1420.

[0112] At 1426, VTS 1440 sends a context update to VTM 1460 to inform VTM 1460

of the migrated virtual resource and other virtualization context information. At 1427, VTS 1420

sends a context update to VTM 1450 to inform VTM 1450 of the migrated virtual resource and

other virtualization context information. At 1428, VTB 1410 sends a context update to VTM

1450 to inform VTM 1450 of the migrated virtual resource and other virtualization context

information. And finally, at 1429, VTB 1430 sends a context update to VTM 1460 to inform

VTM 1460 of the migrated virtual resource and other virtualization context information.

[0113] In cloud-based virtualization embodiments, a VTC may request to create virtual

resources at a certain VTS via a first VTB. However, the first VTB may have limited capability

to run computation-intensive virtualization algorithms and may not be able to determine the

appropriate VTS itself. In such an embodiment, the first VTB may offload virtualization

computation to a VTM.

[0114] FIG. 15 illustrates exemplary signal flow 1500 that may be used in

embodiments employing the disclosed procedures for offloading virtualization computation. At

1511, VTC 1510 may send a virtualization request to VTB 1520. However, VTB 1520 may not

be able to run the necessary virtualization algorithms to decide the proper VTSs due to the

virtualization algorithms generally introducing high computation overhead, VTB 1520 may only

have limited information about some VTSs, which may make it difficult to obtain a globally

optimal solution, or certain preconfigured policies may prevent VTB 1520 from running a

virtualization algorithm for certain types of virtual resources. Instead, VTB 1520 may offload

virtualization computation tasks to VTM 1540, which may be deployed in a cloud with more

powerful computation capability and more complete information about VTSs. Thus, VTB 1520

may send an offloading virtualization computation message to VTM 1540 at 1512. This

message may contain the some or all of the context information contained in request 151 1.

Some RRIs contained in request 151 1 may be buffered at VTB 1520. Rather than sent to VTM

1540. In some embodiments, VTC 1510 may directly send a virtualization request to VTM 1540

if it learns that VTB 1520 cannot perform the computation-intensive virtualization algorithms,

for example from previous notifications from the VTB 1520 or VTM 1540.

[0115] VTM 1540 conducts the virtualization computation and determines the

appropriate VTSs for VTB 1520. At 1513, it returns the list of selected VTSs to VTB 1520. At

1514, VTB 1520 sends a virtualization request to VTS 1530, the selected VTS chosen from the

list provided by VTM 1540. VTS 1530determines whether or not to accept the request and

returns a response at 1515. If VTS 1530 decides to accept the request, it will create the requested

virtual resources by allocating the corresponding physical resources and establishing the

mapping relationship between the created virtual resource and original physical resource. If VTS

1530 rejects the request VTB 1520 may obtain other VTS by repeating the steps 1512 and 1513

and sending the request to another VTS. At 1516, VTB 1520 forward the response from VTS

1530 to VTC 1510, performing any necessary translation in the process.

[0116] FIG. 16 illustrates an exemplary embodiment of a virtual resource provider

(VRP). In system 1600 of FIG. 16, virtualization services may be leveraged to manage IoT

resource virtualization and to facilitate IoT VRPs. System 1600 includes IoT Resource Providers

("RESPs") 1610, 1620, and 1630, each with physical resources 1612, 1622, and 1632,

respectively. System 1600 also includes IoT VRPs 1640 and 1650 that do not have physical

resources, but host virtualization services and may provide virtual resources to users and/or

applications. VRPs 1640 and 1650 may request resources from IoT RESPs 1610, 1620, and

1630, or from each other or other IoT VRPs and RESPs statically or dynamically based on the

demands of users or applications. An example of a RESP may be a network provider that

deploys many access points along highways for connecting and relaying data traffic from

moving cars to the cloud. An example of a VRP may be a car manufacturer or intelligent

transportation service provider. These entities do not need to own physical access points but

instead rent virtual access points from a network provider to provide intelligent transportation

services, such as real-time traffic notification and car condition monitoring to car drivers. In

such embodiments, the car manufacturer or intelligent transportation service provider is a virtual

resource provider, the network provider is a physical resource provider, the car drivers are users,

and the access point manufacturer is a physical resource manufacturer. Each of these may

support the exemplary virtualization functionalities, interfaces, and procedures disclosed herein.

[0117] As illustrated in FIG. 16, IoT VRP 1640 may request virtual resources from IoT

VRP 1650 and vice versa. IoT VRP 1640 may also request resources from IoT RESPs, such as

RESPs 1610, 1620, and 1630. An example of an IoT RESP may be a company that deploys a

large-scale sensor network infrastructure in a neighborhood to monitor environments. The

sensor network infrastructure may be rented to users, including an IoT VRP. Another IoT RESP

example may be a company that deploys numerous access points or gateways along a highway.

These gateways and access points may be rented by VRPs and users.

[0118] Users and applications may request resources from IoT RESPs or IoT VRPs that

may be provided transparently to the users and applications perspective. IoT users and

applications may not know and/or may not need to know if the requested resources are granted

from an IoT VRP or an IoT RESP.

[0119] Where an IoT RESP only has legacy VTS, such as IoT RESP 1610 and legacy

VTS 161 1, such a RESP may connect to a VTB in an IoT VRP via a VT10 interface, such as

legacy VTS 1611 is connecting to VTB 1641 in IoT VRP 1640 using VT10 1671. Where an IoT

RESP hosts a VTB, such as IoT RESP 1620 that hosts VTB 1623 and legacy VTS 1621, the

RESP may connect to VTBs and VTMs in an IoT VRP via VT7 and VT9 interfaces,

respectively. For example, VTB 1623 is connected to VTB 1641 via VT7 1672 and to VTM

1642 and VTM 1651 via VT9 1673 and VT9 1674, respectively. Where an IoT RESP hosts a

VTS, such as IoT RESP 1630 hosting VTS 1634, the IoT RESP may connect to a VTB and VTM

in an IoT VRP via VT6 and VT3 interfaces, respectively. For example, VTS 1634 is connected

to VTM 1651 via VT3 1675 and to VTB 1652 via VT6 1676. As can be seen from the figure,

other entities throughout system 1600 are connected using the interfaces and means set forth

herein.

[0120] FIG. 17 illustrates an example of base station virtualization management.

System 1700 may include cellular core network 1710, base station 1720, and users and

applications 1730. Virtualization functions VTM 1713, VTC 171 1, and VTB1712 may reside in

cellular core network 1710 as standalone core network entities or they may be integrated into

existing entities such as MTC-IWF, HSS, or MME. VTS 1721 may reside in base station 1720.

VTC 171 1 in cellular core network 1710 may trigger the creation and management of virtual

base stations 1722, 1723, etc. at the base station 1720 over interface VT1 1741. Third-party

users and applications VTC 173 1 may also trigger the creation and management of virtual base

stations 1722, 1723, etc. at the base station 1720, but via VTB 1712 residing in cellular core

network 1710 via interface VT5 1744, thus leaving virtual base station management is under the

control of cellular core network 1710.

[0121] FIG. 18A is a diagram of an example M2M or IoT communication system 10 in

which one or more disclosed embodiments of systems and methods for IoT virtualization

services may be implemented. Generally, M2M technologies provide building blocks for the

IoT, and any M2M device, gateway, or service platform may be a component of the IoT as well

as an IoT service layer, etc.

[0122] As shown in FIG. 18A, the M2M/IoT communication system 10 includes a

communication network 12. The communication network 12 may be a fixed network or a

wireless network (e.g., WLAN, cellular, or the like) or a network of heterogeneous networks.

For example, the communication network 12 may comprise of multiple access networks that

provide content such as voice, data, video, messaging, broadcast, or the like to multiple users.

For example, the communication network 12 may employ one or more channel access methods,

such as code division multiple access (CDMA), time division multiple access (TDMA),

frequency division multiple access (FDMA), orthogonal FDMA (OFDMA), single-carrier

FDMA (SC-FDMA), and the like. Further, the communication network 12 may comprise other

networks such as a core network, the Internet, a sensor network, an industrial control network, a

personal area network, a fused personal network, a satellite network, a home network, or an

enterprise network for example.

[0123] As shown in FIG. 18A, the M2M/IoT communication system 10 may include an

M2M gateway device 14, and M2M terminal devices 18. It will be appreciated that any number

of M2M gateway devices 14 and M2M terminal devices 18 may be included in the M2M/IoT

communication system 10 as desired. Each of the M2M gateway devices 14 and M2M terminal

devices 18 may be configured to transmit and receive signals via the communication network 12

or direct radio link. The M2M gateway device 14 allows wireless M2M devices (e.g., cellular

and non-cellular) as well as fixed network M2M devices (e.g., PLC) to communicate either

through operator networks, such as the communication network 12, or through direct radio link.

For example, the M2M devices 18 may collect data and send the data, via the communication

network 12 or direct radio link, to an M2M application 20 or M2M devices 18. The M2M

devices 18 may also receive data from the M2M application 20 or an M2M device 18. Further,

data and signals may be sent to and received from the M2M application 20 via an M2M service

platform 22, as described below. M2M devices 18 and gateways 14 may communicate via

various networks including, cellular, WLAN, WPAN (e.g., Zigbee, 6L0WPAN, Bluetooth),

direct radio link, and wireline for example. Any of the entities described herein, including the

disclosed virtualization managers (VTMs), virtualization servers (VTSs), virtualization clients

(VTCs), and virtualization brokers (VTBs), may be implemented, in whole or in part, at devices

or entities such as M2M devices 18, gateways 14, and service platform 22. All such

embodiments are contemplated as within the scope of the present disclosure.

[0124] The illustrated M2M service platform 22 provides services for the M2M

application 20, M2M gateway devices 14, M2M terminal devices 18, and the communication

network 12. It will be understood that the M2M service platform 22 may communicate with any

number of M2M applications, M2M gateway devices 14, M2M terminal devices 18, and

communication networks 12 as desired. The M2M service platform 22 may be implemented by

one or more servers, computers, or the like. The M2M service platform 22 provides services

such as management and monitoring of M2M terminal devices 18 and M2M gateway devices 14.

The M2M service platform 22 may also collect data and convert the data such that it is

compatible with different types of M2M applications 20. The functions of the M2M service

platform 22 may be implemented in a variety of ways, for example as a web server, in the

cellular core network, in the cloud, etc.

[0125] Referring also to FIG. 18B, the M2M service platform typically implements a

service layer 26 (e.g. a network service capability layer (SCL) as described herein) that

provides a core set of service delivery capabilities that diverse applications and verticals can

leverage. These service capabilities enable M2M applications 20 to interact with devices and

perform functions such as data collection, data analysis, device management, security, billing,

service/device discovery, etc. Essentially, these service capabilities free the applications of the

burden of implementing these functionalities, thus simplifying application development and

reducing cost and time to market. The service layer 26 also enables M2M applications 20 to

communicate through various networks 12 in connection with the services that the service layer

26 provides.

[0126] In some embodiments, M2M applications 20 may include desired applications

that form the basis for creation of one or more peer-to-peer networks that include devices that

may use the disclosed of systems and methods for IoT virtualization services. M2M applications

20 may include applications in various industries such as, without limitation, transportation,

health and wellness, connected home, energy management, asset tracking, and security and

surveillance. As mentioned above, the M2M service layer, running across the devices, gateways,

and other servers of the system, supports functions such as, for example, data collection, device

management, security, billing, location tracking/geofencing, device/service discovery, and

legacy systems integration, and provides these functions as services to the M2M applications 20.

The applications with which the described service layer and objects interact may be applications

such as those of M2M applications 20.

[0127] FIG. 18C is a system diagram of an example M2M device 30, such as an M2M

terminal device 18 or an M2M gateway device 14 for example. As shown in FIG. 18C, the

M2M device 30 may include a processor 32, a transceiver 34, a transmit/receive element 36, a

speaker/microphone 38, a keypad 40, a display/touchpad/indicators (e.g., one or more light

emitting diodes (LEDs)) 42, non-removable memory 44, removable memory 46, a power source

48, a global positioning system (GPS) chipset 50, and other peripherals 52. It will be appreciated

that the M2M device 40 may include any sub-combination of the foregoing elements while

remaining consistent with an embodiment. This device may be a device that uses the disclosed

systems and methods for IoT virtualization services.

[0128] The processor 32 may be a general purpose processor, a special purpose

processor, a conventional processor, a digital signal processor (DSP), a plurality of

microprocessors, one or more microprocessors in association with a DSP core, a controller, a

microcontroller, one or more Application Specific Integrated Circuits (ASICs), one or more Field

Programmable Gate Array (FPGAs) circuits, any other type and number of integrated circuits

(ICs), a state machine, and the like. The processor 32 may perform signal coding, data

processing, power control, input/output processing, and/or any other functionality that enables

the M2M device 30 to operate in a wireless environment. The processor 32 may be coupled to

the transceiver 34, which may be coupled to the transmit/receive element 36. While FIG. 18C

depicts the processor 32 and the transceiver 34 as separate components, it will be appreciated

that the processor 32 and the transceiver 34 may be integrated together in an electronic package

or chip. The processor 32 may perform application-layer programs (e.g., browsers) and/or radio

access-layer (RAN) programs and/or communications. The processor 32 may perform security

operations such as authentication, security key agreement, and/or cryptographic operations, such

as at the access layer and/or application layer for example.

[0129] The transmit/receive element 36 may be configured to transmit signals to, and/or

receive signals from, an M2M service platform 9. For example, in an embodiment, the

transmit/receive element 36 may be an antenna configured to transmit and/or receive RF signals.

The transmit/receive element 36 may support various networks and air interfaces, such as

WLAN, WPAN, cellular, and the like. In an embodiment, the transmit/receive element 36 may

be an emitter/detector configured to transmit and/or receive IR, UV, or visible light signals, for

example. In yet another embodiment, the transmit/receive element 36 may be configured to

transmit and receive both RF and light signals. It will be appreciated that the transmit/receive

element 36 may be configured to transmit and/or receive any combination of wireless or wired

signals.

[0130] In addition, although the transmit/receive element 36 is depicted in FIG. 18C as

a single element, the M2M device 30 may include any number of transmit/receive elements 36.

More specifically, the M2M device 30 may employ MIMO technology. Thus, in an

embodiment, the M2M device 30 may include two or more transmit/receive elements 36 (e.g.,

multiple antennas) for transmitting and receiving wireless signals.

[0131] The transceiver 34 may be configured to modulate the signals that are to be

transmitted by the transmit/receive element 36 and to demodulate the signals that are received by

the transmit/receive element 36. As noted above, the M2M device 30 may have multi-mode

capabilities. Thus, the transceiver 34 may include multiple transceivers for enabling the M2M

device 30 to communicate via multiple RATs, such as UTRA and IEEE 802.1 1, for example.

[0132] The processor 32 may access information from, and store data in, any type of

suitable memory, such as the non-removable memory 44 and/or the removable memory 46. The

non-removable memory 44 may include random-access memory (RAM), read-only memory

(ROM), a hard disk, or any other type of memory storage device. The removable memory 46

may include a subscriber identity module (SIM) card, a memory stick, a secure digital (SD)

memory card, and the like. In other embodiments, the processor 32 may access information

from, and store data in, memory that is not physically located on the M2M device 30, such as on

a server or a home computer. The processor 32 may be configured to control lighting patterns,

images, or colors on the display or indicators 42 in response to various conditions and

parameters, such as virtualization requests being generated, transmitted, and responded to,

context updates being generated and/or received, and any other virtualization related conditions

and parameters such as those described in some of embodiments set forth herein.

[0133] The processor 32 may receive power from the power source 48, and may be

configured to distribute and/or control the power to the other components in the M2M device 30.

The power source 48 may be any suitable device for powering the M2M device 30. For

example, the power source 48 may include one or more dry cell batteries (e.g., nickel-cadmium

(NiCd), nickel-zinc (NiZn), nickel metal hydride (NiMH), lithium-ion (Li-ion), etc.), solar cells,

fuel cells, and the like.

[0134] The processor 32 may also be coupled to the GPS chipset 50, which may be

configured to provide location information (e.g., longitude and latitude) regarding the current

location of the M2M device 30. It will be appreciated that the M2M device 30 may acquire

location information by way of any suitable location-determination method while remaining

consistent with an embodiment.

[0135] The processor 32 may further be coupled to other peripherals 52 that may

include one or more software and/or hardware modules that provide additional features,

functionality and/or wired or wireless connectivity. For example, the peripherals 52 may include

an accelerometer, an e-compass, a satellite transceiver, a sensor, a digital camera (for

photographs or video), a universal serial bus (USB) port, a vibration device, a television

transceiver, a hands free headset, a Bluetooth® module, a frequency modulated (FM) radio unit,

a digital music player, a media player, a video game player module, an Internet browser, and the

like.

[0136] FIG. 18D is a block diagram of an exemplary computing system 90 on which,

for example, the M2M service platform 22 of FIGs. 18A and 18B may be implemented.

Computing system 90 may comprise a computer or server and may be controlled primarily by

computer readable instructions that may be in the form of software, wherever, or by whatever

means such software is stored or accessed. Such computer readable instructions may be

executed within central processing unit (CPU) 9 1 to cause computing system 90 to do work. In

many known workstations, servers, and personal computers, central processing unit 9 1 is

implemented by a single-chip CPU called a microprocessor. In other machines, the central

processing unit 9 1 may comprise multiple processors. Coprocessor 8 1 is an optional processor,

distinct from main CPU 9 1 that performs additional functions or assists CPU 91. CPU 9 1 and/or

coprocessor 8 1 may receive, generate, and process data related to the disclosed systems and

methods for IoT virtualization services.

[0137] In operation, CPU 9 1 fetches, decodes, and executes instructions, and transfers

information to and from other resources via the computer's main data-transfer path, system bus

80. Such a system bus connects the components in computing system 90 and defines the

medium for data exchange. System bus 80 typically includes data lines for sending data, address

lines for sending addresses, and control lines for sending interrupts and for operating the system

bus. An example of such a system bus 80 is the PCI (Peripheral Component Interconnect) bus.

[0138] Memory devices coupled to system bus 80 include random access memory

(RAM) 82 and read only memory (ROM) 93. Such memories include circuitry that allows

information to be stored and retrieved. ROMs 93 generally contain stored data that cannot easily

be modified. Data stored in RAM 82 may be read or changed by CPU 91 or other hardware

devices. Access to RAM 82 and/or ROM 93 may be controlled by memory controller 92.

Memory controller 92 may provide an address translation function that translates virtual

addresses into physical addresses as instructions are executed. Memory controller 92 may also

provide a memory protection function that isolates processes within the system and isolates

system processes from user processes. Thus, a program running in a first mode can access only

memory mapped by its own process virtual address space; it cannot access memory within

another process's virtual address space unless memory sharing between the processes has been

set up.

[0139] In addition, computing system 90 may contain peripherals controller 83

responsible for communicating instructions from CPU 91 to peripherals, such as printer 94,

keyboard 84, mouse 95, and disk drive 85.

[0140] Display 86, which is controlled by display controller 96, is used to display

visual output generated by computing system 90. Such visual output may include text, graphics,

animated graphics, and video. Display 86 may be implemented with a CRT-based video display,

an LCD-based flat-panel display, gas plasma-based flat-panel display, or a touch-panel. Display

controller 96 includes electronic components required to generate a video signal that is sent to

display 86.

[0141] Further, computing system 90 may contain network adaptor 97 that may be used

to connect computing system 90 to an external communications network, such as network 1 of

FIGs. 18A and 18B. In an embodiment, network adaptor 97 may receive and transmit data

related to the disclosed systems and methods for IoT virtualization services.

[0142] It is understood that any or all of the systems, methods, and processes described

herein may be embodied in the form of computer executable instructions (i.e., program code)

stored on a computer-readable storage medium embodied as a physical device or apparatus.

Such instructions, when executed by a machine, or a processor configured in a machine, such as

a computer, server, M2M terminal device, M2M gateway device, or the like, effectuate, perform,

and/or implement the systems, methods and processes described herein. Specifically, any of the

steps, operations or functions described above may be implemented in the form of such computer

executable instructions. Computer readable storage media include both volatile and nonvolatile,

removable and non-removable media implemented in any method or technology for storage of

information, but such computer readable storage media do not include signals. Computer

readable storage media include, but are not limited to, RAM, ROM, EEPROM, flash memory or

other memory technology, CDROM, digital versatile disks (DVD) or other optical disk storage,

magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or

any other physical medium that can be used to store the desired information and that can be

accessed by a computer.

[0143] In describing preferred embodiments of the subject matter of the present

disclosure, as illustrated in the figures, specific terminology is employed for the sake of clarity.

The claimed subject matter, however, is not intended to be limited to the specific terminology so

selected, and it is to be understood that each specific element includes all technical equivalents

that operate in a similar manner to accomplish a similar purpose.

[0144] This written description uses examples to disclose the invention, including the

best mode, and also to enable any person skilled in the art to practice the invention, including

making and using any devices or systems and performing any incorporated methods. The

patentable scope of the invention is defined by the claims and may include other examples that

occur to those skilled in the art. Such other examples are intended to be within the scope of the

claims if they have structural elements that do not differ from the literal language of the claims,

or if they include equivalent structural elements with insubstantial differences from the literal

languages of the claims.

What is claimed is:

1. A method comprising:

receiving a first virtualization request from a first entity at a virtualization broker in a

network of connected entities, wherein the first virtualization request comprises context

information associated with the first entity;

transmitting a request from the virtualization broker to a virtualization manager for a

virtualization server identifier;

receiving a virtualization server identifier from the virtualization manager;

transmitting a second virtualization request to a virtualization server associated with the

virtualization server identifier;

receiving a first response from the virtualization server comprising an indication that a

resource has been virtualized;

transmitting a second response comprising the indication from the virtualization broker to

the first entity.

2. The method of claim , wherein the second virtualization request comprises a subset of

the context information associated with the first entity.

3. The method of claim 1, wherein receiving the virtualization server identifier from the

virtualization manager comprises receiving a plurality of virtualization server identifiers.

4. The method of claim 3, further comprising selecting the virtualization server identifier

from among the plurality of virtualization server identifiers based on the context information

associated with the first entity.

5. The method of claim , further transmitting a context update to a virtualization manager.

6. The method of claim 5, further comprising translating the first response from a first

format into the second response in a second format.

7. The method of claim 1, further comprising transmitting a registration request to a

virtualization manager, the registration request comprising information associated with the

virtualization server.

8. A virtualization management entity in a network of connected entities comprising:

a processor adapted to execute computer-readable instructions; and

a memory communicatively coupled to the processor and having stored therein computer-

readable instructions that, when executed by the processor, cause the processor to effectuate

operations comprising:

receiving a request to register resources associated with a virtualization server

entity;

storing information associated with the virtualization server entity and the

resources;

receiving a request for a recommended virtualization server entity identifier from

a virtualization broker entity, wherein the request for the recommended virtualization

server entity identifier comprises context information;

selecting the virtualization server entity based on the context information; and

transmitting a virtualization server entity identifier to the virtualization broker.

9. The virtualization management entity of claim 8, wherein the memory has further stored

therein computer-readable instructions that, when executed by the processor, cause the processor

to effectuate operations comprising:

receiving a context update from the virtualization server entity; and

modifying the stored information associated with the virtualization server entity and the

resources based on the context update.

10. The virtualization management entity of claim 8, wherein the memory has further stored

therein computer-readable instructions that, when executed by the processor, cause the processor

to effectuate operations comprising:

receiving a context update from the virtualization broker entity; and

modifying second stored information associated with the virtualization broker entity

based on the context update.

11. The virtualization management entity of claim 8, wherein the memory has further stored

therein computer-readable instructions that, when executed by the processor, cause the processor

to effectuate operations comprising:

receiving a context update from the virtualization server entity indicating that a resource

provided by the virtualization server entity will be provided by a second virtualization server

entity and no longer provided by the virtualization server entity; and

modifying stored information associated with the virtualization server entity and the

resources based on the context update.

12. The virtualization management entity of claim 8, wherein the memory has further stored

therein computer-readable instructions that, when executed by the processor, cause the processor

to effectuate operations comprising:

receiving a second request for a second recommended virtualization server entity

identifier from a second virtualization management entity in a second domain, wherein the

virtualization management entity is in a first domain, wherein the second request for the second

recommended virtualization server entity identifier comprises second context information;

selecting a second virtualization server entity based on the second context information;

and

transmitting a second virtualization server entity identifier to the second virtualization

management entity.

13. The virtualization management entity of claim 8, wherein the memory has further stored

therein computer-readable instructions that, when executed by the processor, cause the processor

to effectuate operations comprising:

receiving a request to execute a virtualization algorithm from a second virtualization

broker entity;

executing the virtualization algorithm to determine a second virtualization server entity;

and

transmitting a second virtualization server entity identifier associated with the

virtualization server entity to the second virtualization broker entity.

14. The virtualization management entity of claim 13, wherein the request to execute the

virtualization algorithm comprises context information.

15. A virtualization server entity in a network of connected entities comprising:

a processor adapted to execute computer-readable instructions; and

a memory communicatively coupled to the processor and having stored therein computer-

readable instructions that, when executed by the processor, cause the processor to effectuate

operations comprising:

receiving a request to create a virtual resource from a first entity;

determining to accept the request to create the virtual resource;

creating the virtual resource;

transmitting a response to the first entity indicating that the virtual resource has

been created.

16. The virtualization server entity of claim 15, wherein the request comprising context

information, and wherein the determining to accept the request to create the virtual resource is

based on the context information.

17. The virtualization server entity of claim 15, wherein the memory has further stored

therein computer-readable instructions that, when executed by first processor, cause the

processor to effectuate operations comprising:

transmitting a context update to a virtualization management entity indicating that the

virtual resource has been created.

18. The virtualization server entity of claim 15, wherein the memory has further stored

therein computer-readable instructions that, when executed by first processor, cause the

processor to effectuate operations comprising:

obtaining a virtualization policy from a virtualization management entity.

19. The virtualization server entity of claim 18, wherein the memory has further stored

therein computer-readable instructions that, when executed by first processor, cause the

processor to effectuate operations comprising:

receiving a request for the virtual resource from a second entity; and

providing the virtual resource to the second entity according to the virtualization policy.

20. The virtualization server entity of claim 15, wherein the memory has further stored

therein computer-readable instructions that, when executed by first processor, cause the

processor to effectuate operations comprising:

receiving a request to update the virtual resource from the first entity;

modifying information associated with the virtual resource based on the request to update

the virtual resource; and

transmitting a second response to the first entity indicating that the virtual resource has

been updated.

A . CLASSIFICATION O F SUBJECT MATTER

G06F9/455
H04L29/08 H04L12/24

According to International Patent Classification (IPC) or to both national classification and IPC

B . FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

G06F H04L

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal , WPI Data, INSPEC

C . DOCUMENTS CONSIDERED TO B E RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

FOUED J RAD ET AL: "A broker-based 1-20
framework for mul t i -cl oud workfl ows" ,
PROCEEDINGS OF THE 2013 INTERNATIONAL
WORKSHOP ON MULTI -CLOUD APPLICATIONS AND

FEDERATED CLOUDS,
22 Apri l 2013 (2013-04-22) , pages 61-68,
XP055131327 ,
DOI : 10. 1145/2462326.2462339
ISBN : 978-1-45-032050-4
page 63 , r i ght-hand col umn
page 64
f i gures 1, 2

US 2012/179817 Al (BADE STEVEN A [US] ET 1-20
AL) 12 July 2012 (2012-07-12)
paragraph [0045] - paragraph [0052]
f i gure 4

-/-

X| Further documents are listed in the continuation of Box C . See patent family annex.

* Special categories of cited documents :
"T" later document published after the international filing date or priority

date and not in conflict with the application but cited to understand
"A" document defining the general state of the art which is not considered the principle or theory underlying the invention

to be of particular relevance

"E" earlier application or patent but published o n or after the international "X" document of particular relevance; the claimed invention cannot be
filing date considered novel or cannot be considered to involve an inventive

"L" documentwhich may throw doubts on priority claim(s) orwhich is step when the document is taken alone
cited to establish the publication date of another citation or other "Y" document of particular relevance; the claimed invention cannot be
special reason (as specified) considered to involve an inventive step when the document is

"O" document referring to an oral disclosure, use, exhibition or other combined with one o r more other such documents, such combination
means being obvious to a person skilled in the art

"P" document published prior to the international filing date but later than
the priority date claimed "&" document member of the same patent family

Date of the actual completion of the international search Date of mailing of the international search report

29 July 2014 13/08/2014

Name and mailing address of the ISA/ Authorized officer

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,
Fax: (+31-70) 340-3016 Dely, Peter

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

GB 2 477 092 A (NEC CORP [P]) 1-20
27 July 2011 (2011-07-27)
page 6 , l i ne 25 - page 13 , l i ne
f i gures 4 , 7 , 8

J RAD F ET AL: "SLA based servi ce 1-20
brokeri ng i n i ntercl oud envi ronments" ,
PROCEEDINGS OF THE 2ND INTERNATIONAL
CONFERENCE ON CLOUD COMPUTING AND SERVICES
SCI ENCE (CLOSER 2012) ,
2012 , pages 76-81 , XP002727802 ,
INSTICC PRESS SETUBAL, PORTUGAL
ISBN : 978-989-8565-05-1
page 78
tabl e 1
f i gures 2 , 3

W0 2011/008219 Al (CLUSTER RESOURCES INC 12
[US] ; JACKSON DAVID BRIAN [US])
20 January 2011 (2011-01-20)
paragraph [0056]
f i gure 4

Patent document Publication Patent family Publication
cited in search report date member(s) date

US 2012179817 Al 12-07-2012 NONE

GB 2477092 A 27-07-2011 CN 102713871 A 03-10-2012
EP 2526491 Al 28-11-2012
GB 2477092 A 27-07-2011
P 2013517541 A 16-05-2013

US 2012290643 Al 15-11-2012
O 2011089775 Al 28-07-2011

W0 2011008219 Al 20-01-2011 US 2011016214 Al 20-01-2011
W0 2011008219 Al 20-01-2011

	abstract
	description
	claims
	drawings
	wo-search-report

