

(19) 日本国特許庁(JP)

(12) 公開特許公報(A)

(11) 特許出願公開番号

特開2007-285923
(P2007-285923A)

(43) 公開日 平成19年11月1日(2007.11.1)

(51) Int.C1.

GO 1 B 15/02 (2006.01)
GO 1 N 23/20 (2006.01)

F 1

GO 1 B 15/02
GO 1 N 23/20

D

テーマコード(参考)

2 F 0 6 7
2 G 0 0 1

審査請求 未請求 請求項の数 38 O L 外国語出願 (全 47 頁)

(21) 出願番号

特願2006-114489 (P2006-114489)

(22) 出願日

平成18年4月18日 (2006.4.18)

(71) 出願人 505427193

ジョルダン バレー セミコンダクターズ
リミテッド
イスラエル国 ミグダル ハエメック ピ
ー. オー. ボックス 103

(74) 代理人 100109955

弁理士 細井 貞行

(74) 代理人 100111785

弁理士 石渡 英房

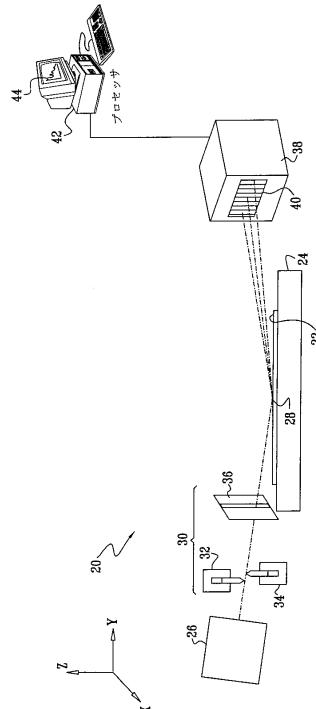
(72) 発明者 イサク マゾル

イスラエル国 ハアイファ、ハグ ストリ
ート 29

(72) 発明者 ポリス ヨクビン

イスラエル国 ナザレス イリト、ガノット
ストリート 7/6

最終頁に続く


(54) 【発明の名称】反射モードのX線回折を用いた限界寸法の測定

(57) 【要約】

【課題】表面から散乱したX線の検出に基づいて、試料の表面上における周期構造の寸法を測定するための、改善された方法および装置を提供する。

【解決手段】試料をX線解析する方法は、試料の表面上の周期構造の領域に衝突するようにX線ビームを方向付け、方位角の関数として散乱X線の回折スペクトルを検出するように反射モードで表面から散乱したX線を受け取ることを含む。回折スペクトルは、構造の寸法を決定するために解析される。

【選択図】 図1

【特許請求の範囲】**【請求項 1】**

試料を X 線解析するための方法であって、
X 線ビームを前記試料表面上の周期構造の領域に衝突するように方向付け、
方位角の関数として散乱 X 線の回折スペクトルを検出するために、反射モードで前記表面
から散乱した前記 X 線を受け取り、
前記構造の寸法を決定するために前記回折スペクトルを解析することを含む方法。

【請求項 2】

前記ビームを方向付けることが、前記表面に衝突する前記 X 線ビームをコリメートする
ことを含む、請求項 1 に記載の方法。 10

【請求項 3】

前記ビームを方向付けることが、ある仰角で前記表面に衝突するように前記ビームを方
向付けることを含み、前記 X 線を受け取ることが、前記表面の前記領域からのすべての外
部反射に関連した前記散乱 X 線のばらつきを検出することを含む、請求項 1 に記載の方法
。

【請求項 4】

前記周期構造が、第 2 の臨界角を有する基板上に形成された第 1 の臨界角を有する層を
含み、前記ビームを方向付けることが、前記第 1 および第 2 の臨界角の間の角度で前記ビ
ームを方向付けることを含む、請求項 3 に記載の方法。

【請求項 5】

前記層が有機材料を含み、前記基板が、金属、半導体および誘電材料の少なくとも 1 つ
を含む、請求項 4 に記載の方法。 20

【請求項 6】

前記構造が平行な線状要素のパターンを含み、前記スペクトルを解析することが、前記平
行な線の間の間隔を決定するために、前記スペクトルのサイドロープ間の分離を測定す
ることを含む、請求項 1 に記載の方法。

【請求項 7】

前記構造が薄膜で覆われた側壁を含み、前記スペクトルを解析することが、前記側壁上
の前記薄膜の厚さを測定することを含む、請求項 1 に記載の方法。

【請求項 8】

前記試料が半導体ウエハを含む、請求項 1 に記載の方法。 30

【請求項 9】

前記周期構造が前記表面上に蒸着されたフォトレジストを含む、請求項 8 に記載の方法
。

【請求項 10】

試料を X 線解析するための方法であって、
試料の平面に垂直な、薄膜がその上にある側壁を有する構造を含む、平面の試料の領域に
衝突するように X 線ビームを方向付け、
前記構造によって前記試料から散乱した前記 X 線のスペクトルを検出し、
前記側壁上の前記薄膜の特性を測定するために前記スペクトルを解析することを含む方法 40

【請求項 11】

前記ビームを方向付けることが、前記表面に衝突する前記 X 線ビームをコリメートする
ことを含む、請求項 10 に記載の方法。

【請求項 12】

前記ビームを方向付けることが、ある仰角で前記表面に衝突するように前記ビームを方
向付けることを含み、前記 X 線を受け取ることが、前記表面の前記領域からのすべての外
部反射に関連した前記散乱 X 線のばらつきを検出することを含む、請求項 10 に記載の方
法。

【請求項 13】

10

20

30

40

50

前記構造が周期パターンを含み、前記スペクトルを解析することが、前記周期パターンによる回折スペクトルを解析することを含む、請求項 10 に記載の方法。

【請求項 14】

前記回折スペクトルが複数のサイドロープを含み、前記回折スペクトルを解析することが、角度の関数としての前記サイドロープの変調を観察することを含む、請求項 13 に記載の方法。

【請求項 15】

前記変調を観察することが、前記サイドロープの角度間隔に対応して前記薄膜の厚さを決定することを含む、請求項 14 に記載の方法。

【請求項 16】

前記試料が半導体ウエハを含む、請求項 10 に記載の方法。

【請求項 17】

前記薄膜がバリア層を含む、請求項 16 に記載の方法。

【請求項 18】

表面に周期構造を有する試料を X 線解析するための装置であって、前記周期構造を含む前記表面の領域に衝突するように X 線ビームを方向付けるように構成された X 線源と、

方位角の関数として散乱 X 線の回折スペクトルを検出するために、反射モードで前記表面から散乱した前記 X 線を受け取るように構成された検出器と、

前記構造の寸法を決定するために、前記回折スペクトルを解析するように構成された信号プロセッサとを含む装置。

【請求項 19】

前記試料に衝突する前記 X 線ビームをコリメートするように構成された平行光学系を含む、請求項 18 に記載の装置。

【請求項 20】

前記 X 線源が、ある仰角で前記表面に衝突するように前記ビームを方向付けるように構成され、前記検出器が、前記表面の前記領域からのすべての外部反射に関連した前記散乱 X 線のばらつきを検出するように配置された、請求項 18 に記載の装置。

【請求項 21】

前記周期構造が、第 2 の臨界角を有する基板上に形成された第 1 の臨界角を有する層を含み、前記 X 線源が、前記第 1 および第 2 の臨界角の間の角度で前記ビームを方向付けるように構成された、請求項 20 に記載の装置。

【請求項 22】

前記層が有機材料を含み、前記基板が、金属、半導体および誘電材料の少なくとも 1 つを含む、請求項 21 に記載の装置。

【請求項 23】

前記構造が平行な線状要素のパターンを含み、前記信号プロセッサが、前記平行な線の間隔を決定するために、前記スペクトルのサイドロープ間の分離を測定するように構成された、請求項 18 に記載の装置。

【請求項 24】

前記構造が薄膜で覆われた側壁を含み、前記信号プロセッサが、前記スペクトルに基づいて前記側壁上の前記薄膜の厚さを測定するように構成された、請求項 18 に記載の装置。

【請求項 25】

前記試料が半導体ウエハを含む、請求項 18 に記載の装置。

【請求項 26】

前記周期構造が前記表面上に蒸着されたフォトトレジストを含む、請求項 25 に記載の装置。

【請求項 27】

試料平面に垂直な、薄膜がその上にある側壁を有する構造を包含する、平面の試料を X

10

20

30

40

50

線解析するための装置であって、

前記構造を含む前記試料の領域に衝突するようにX線ビームを方向付けるように構成されたX線源と、

前記構造によって前記試料から散乱した前記X線のスペクトルを検出するように構成された検出器と、

前記側壁上の前記薄膜の特性を測定するために、前記スペクトルを解析するように構成された信号プロセッサとを含む装置。

【請求項28】

前記表面に衝突する前記X線ビームをコリメートするように構成された平行光学系を含む、請求項27に記載の装置。

【請求項29】

前記X線源が、ある仰角で前記表面に衝突するように前記ビームを方向付けるように構成され、前記検出器が、前記表面の前記領域からのすべての外部反射に関連した前記散乱X線のばらつきを検出するように配置された、請求項27に記載の装置。

【請求項30】

前記構造が周期パターンを含み、前記信号プロセッサによって解析される前記X線の前記スペクトルが、前記周期パターンによる回折スペクトルを含む、請求項27に記載の装置。

【請求項31】

前記回折スペクトルが複数のサイドロープを含み、前記信号プロセッサが、角度の関数としての前記サイドロープの変調を観察することによって前記特性を測定するように構成された、請求項30に記載の装置。

【請求項32】

前記信号プロセッサが、前記サイドロープの角度間隔に対応して前記薄膜の厚さを決定するように構成された、請求項31に記載の装置。

【請求項33】

前記試料が半導体ウエハを含む、請求項27に記載の装置。

【請求項34】

前記薄膜がバリア層を含む、請求項33に記載の装置。

【請求項35】

マイクロ電子デバイスを作成するためのクラスタツールであって、
半導体ウエハの表面上に周期構造を形成するように構成された形成加工ステーションと、
検査ステーションであって、

前記周期構造を含む前記表面の領域に衝突するようにX線ビームを方向付けるように構成されたX線源と、

方位角の関数として散乱X線の回折スペクトルを検出するため、反射モードで前記表面から散乱した前記X線を受け取るように構成された検出器と、

前記構造の寸法を決定するために、前記回折スペクトルを解析するように構成された信号プロセッサを含む検査ステーション、とを含むクラスタツール。

【請求項36】

前記周期構造が薄膜で覆われた側壁を含み、前記信号プロセッサが、前記スペクトルに基づいて前記側壁上の前記薄膜の厚さを測定するように構成された、請求項35に記載のクラスタツール。

【請求項37】

マイクロ電子デバイスを作成するための装置であって、
半導体ウエハを受け取れるように構成された作成チャンバと、

前記チャンバ内で前記半導体ウエハの表面に周期構造を形成するように構成された形成加工デバイスと、

前記周期構造を含む前記表面の領域に衝突するように、前記作成チャンバ内の前記半導体ウエハに向けてX線ビームを方向付けるように構成されたX線源と、

10

20

30

40

50

方位角の関数として散乱 X 線の回折スペクトルを検出するために、反射モードで前記表面から散乱した前記 X 線を受け取るように構成された検出器と、
前記構造の寸法を決定するために、前記回折スペクトルを解析するように構成された信号プロセッサとを含む装置。

【請求項 3 8】

前記周期構造が薄膜で覆われた側壁を含み、前記信号プロセッサが、前記スペクトルに基づいて前記側壁上の前記薄膜の厚さを測定するように構成された、請求項 3 7 に記載の装置。

【発明の詳細な説明】

【技術分野】

10

【0 0 0 1】

本発明は、一般に、半導体製造およびプロセス制御に関し、特に半導体デバイス構造の限界寸法 (critical dimensions) の測定に関する。

【背景技術】

【0 0 0 2】

マイクロ電子デバイスを半導体ウエハ上に作成する場合、デバイスの限界寸法を指定の許容誤差内に維持することが重要である。限界寸法は、この文脈では、ウエハ上に蒸着される導電体などの構造の幅、および隣接する構造間の間隔を指す。指定の寸法からの偏差は、性能および収率の低下につながる。したがって、偏差が生じるとすぐにそれを検出し、修正措置をとり、また製造過程にある高価なウエハの損失を回避するために、製造プロセスは注意深くモニタし、制御しなければならない。例えば、ウエハ上に蒸着され、エッチングされたフォトレジストの限界寸法が、規格の範囲外にあることがわかると、それを除去し、再塗布することができる。

20

【0 0 0 3】

限界寸法を測定する多様なシステムおよび方法が、当該技術分野で既知である。現在、ほとんどのマイクロ電子機器の製造設備は、光計測を用いて限界寸法をモニタしている。しかしながら、半導体デバイスの設計基準が $0.25 \mu m$ 以下とさらに高密度になるにしたがって、従来の光計測システムで正確な結果を提供することが不可能になる。電子ビーム (e - ビーム) 計測が代替手段として提案されてきたが、e - ビームシステムもやはり性能が限定される。

30

【0 0 0 4】

限界寸法の X 線測定が、米国特許第 6,556,652 号に記載されており、その開示を参考として本明細書に組み込む。この特許に記載された方法によれば、基板の表面に X 線ビームが照射される。次いで、表面上に形成された構造によって表面から散乱した X 線のパターンを検出し、解析して、表面に平行な方向で構造の寸法が測定される。

【0 0 0 5】

X 線を用いた CD (限界寸法) 測定におけるさらなる研究は、ジョーンズらの「 100 nm 未満のパターン特性決定のための小角 X 線散乱」 (Applied Physics Letters, 83:19, 2003 年、4059 ~ 4061 ページ) に記載されており、これを参考として本明細書に組み込む。著者らは、シンクロトロン X 線源による透過モードでの小角 X 線散乱 (SAXS) を使用して、基板上に形成された一連の高分子フォトレジスト回折格子の特性決定を行っている。X 線ビームは回折格子および基板を通過し、SAXS パターンは、二次元 CCD 検出器を用いて測定される。フォトレジスト回折格子は、検出器上の SAXS パターンに一次元の一連の回折スポットを生成する。散乱ベクトル q の関数としての SAXS 強度を解析して、回折格子間隔および側壁角度が決定される。(X 線散乱の技術の慣例によれば、 $q = 4 \sin \theta / \lambda$ であり、この場合、 2θ は入射ビームに対する散乱角、 λ は X 線の波長である。)

40

【特許文献 1】米国特許第 6,556,652 号

【特許文献 2】米国特許第 6,381,303 号

【特許文献 3】米国特許第 5,619,548 号

50

【特許文献4】米国特許第6,512,814号

【特許文献5】米国特許第6,639,968号

【特許文献6】米国特許公開公報U.S.2001/0043668 A1

【非特許文献1】ジョーンズら著「100nm未満のパターン特性決定のための小角X線散乱」(Applied Physics Letters, 83:19, 2003年、4059~4061ページ)

【非特許文献2】フーら著「ナノメートルスケールのライングレーティングの側壁角度および断面のための小角X線散乱計測」(Journal of Applied Physics, 96:4, 2004年、1983~1987ページ)

【非特許文献3】ウーら著「ナノスケールのリソグラフィ形状の小角中性子散乱測定」(Journal of Applied Physics, 88:12, 2000年、7298~7303ページ)

【非特許文献4】ウィーナーら著 論文「斜出射蛍光X線分光分析による窒化チタン層の特性決定」(Applied Surface Science, 125, 1998年、129ページ)

【発明の開示】

【課題を解決するための手段】

【0006】

本発明の実施形態は、表面から散乱したX線の検出に基づいて、試料の表面上における周期構造の寸法を測定するための、改善された方法および装置を提供する。標準的には、散乱の測定は反射モードで行われる。X線ビームは、周期構造の領域に衝突するように方向付けられ、表面から散乱したX線は、方位角の関数として検出される。散乱X線は、標準的には回折パターンを示し、これが、周期構造の寸法に関する情報を抽出するために解析される。

【0007】

本発明の実施形態のいくつかでは、試料は半導体ウエハを含み、また、周期構造は、当該技術分野で既知のように、リソグラフィプロセスによってウエハ上に形成された1組の線を含む。回折パターンは、ウエハ上の線の限界寸法および形状を決定するために解析される。これらの実施形態にしたがって、反射モード測定により、ジョーンズらによる前述の論文に記載された従来の透過モード測定よりも、高い信号強度およびより小型の測定形状が得られる。

【0008】

本発明のいくつかの実施形態では、X線回折測定は、周期構造の側壁上における薄膜コーティングの特性を測定するために使用される。(この文脈における「側壁」は、試料表面の平面に垂直であるか、または少なくとも平行ではない構造の部分を指す。)半導体デバイス製造では、例えば、薄膜コーティングは一般に、溝または穴の周期構造の上に蒸着されるが、側壁上のコーティングの厚さは、精密に制御するのが困難であり、また測定が困難である。これらの実施形態では、特に側壁厚さおよび/または他の側壁特性を測定するために、方位角方向のX線散乱パターンが解析される。以下にさらに記載されるように、反射モードで散乱パターンを測定することが、一般にはより便利であるが、これらの実施形態の原理は、代替方法として透過モードで実施されてもよい。

【0009】

故に、本発明の一実施形態にしたがって、
X線ビームを試料表面上の周期構造の領域に衝突するように方向付け、
方位角の関数として散乱X線の回折スペクトルを検出するために、反射モードで表面から散乱したX線を受け取り、
構造の寸法を決定するために回折スペクトルを解析することを包含する、試料をX線解析するための方法が提供される。

【0010】

標準的には、ビームを方向付けることは、表面に衝突するX線ビームを平行にすること

10

20

30

40

50

を包含する。

【0011】

開示される実施形態では、ビームを方向付けることが、ある仰角 (a grazing angle) で表面に衝突するようにビームを方向付けることを包含し、X線を受け取ることが、表面の領域からのすべての外部反射に関連した散乱X線のばらつきを検出することを包含する。これらの実施形態のいくつかでは、周期構造は、第2の臨界角を有する基板上に形成された第1の臨界角を有する層を包含し、ビームを方向付けることは、第1および第2の臨界角の間の角度でビームを方向付けることを包含する。一実施形態では、層が有機材料を包含し、基板が、金属、半導体および誘電材料の少なくとも1つを包含する。

【0012】

いくつかの実施形態では、構造が平行な線状要素のパターンを包含し、スペクトルを解析することが、平行な線の間の間隔を決定するために、スペクトルのサイドロープ間の分離を測定することを包含する。

【0013】

さらなる実施形態では、構造が、薄膜で覆われた側壁を包含し、スペクトルを解析することが、側壁上の薄膜の厚さを測定することを包含する。

【0014】

開示される一実施形態では、試料が半導体ウエハを包含し、周期構造が、表面上に蒸着されたフォトレジストを包含する。

【0015】

本発明の一実施形態にしたがって、さらに、

試料の平面に垂直な、薄膜がその上にある側壁を有する構造を包含する、平面の試料の領域に衝突するようにX線ビームを方向付け、

構造によって試料から散乱したX線のスペクトルを検出し、

側壁上の薄膜の特性を測定するためにスペクトルを解析することを包含する、試料をX線解析するための方法が提供される。

【0016】

いくつかの実施形態では、構造が周期パターンを包含し、スペクトルを解析することが、周期パターンによる回折スペクトルを解析することを包含する。標準的には、回折スペクトルが、複数のサイドロープを包含し、回折スペクトルを解析することが、角度の関数としてのサイドロープの変調を観察することを包含する。一実施形態では、変調を観察することが、サイドロープの角度間隔に対応して薄膜の厚さを決定することを包含する。

【0017】

開示される一実施形態では、試料が半導体ウエハを包含し、薄膜がバリア層を包含する。

【0018】

本発明の一実施形態にしたがって、さらに、表面上に周期構造を有する試料をX線解析するための装置が提供され、装置は、

周期構造を含む表面の領域に衝突するようにX線ビームを方向付けるように構成されたX線源と、

方位角の関数として散乱X線の回折スペクトルを検出するために、反射モードで表面から散乱したX線を受け取るように構成された検出器と、

構造の寸法を決定するために、回折スペクトルを解析するように構成された信号プロセッサとを包含する。

【0019】

本発明の一実施形態にしたがって、さらに、試料平面に垂直な、薄膜がその上にある側壁を有する構造を包含する、平面の試料をX線解析するための装置がさらに提供され、装置は、

構造を含む試料の領域に衝突するようにX線ビームを方向付けるように構成されたX線源と、

10

20

30

40

50

構造によって試料から散乱したX線のスペクトルを検出するように構成された検出器と、側壁上の薄膜の特性を測定するために、スペクトルを解析するように構成された信号プロセッサと包含する。

本発明の一実施形態にしたがって、さらに：

半導体ウエハの表面上に周期構造を形成するように構成された形成加工ステーションと、検査ステーションであって、

周期構造を含む表面の領域に衝突するようにX線ビームを方向付けるように構成されたX線源と、

方位角の関数として散乱X線の回折スペクトルを検出するために、反射モードで表面から散乱したX線を受け取るように構成された検出器と、

構造の寸法を決定するために、回折スペクトルを解析するように構成された信号プロセッサを包含する検査ステーション、とを包含するマイクロ電子デバイスを作成するためのクラスタツールが提供される。

本発明の一実施形態にしたがって、さらに、

半導体ウエハを受け取るように構成された作成チャンバと、

チャンバ内で半導体ウエハの表面に周期構造を形成するように構成された形成加工デバイスと、

周期構造を含む表面の領域に衝突するように、作成チャンバ内の半導体ウエハに向けてX線ビームを方向付けるように構成されたX線源と、

方位角の関数として散乱X線の回折スペクトルを検出するために、反射モードで表面から散乱したX線を受け取るように構成された検出器と、

構造の寸法を決定するために、回折スペクトルを解析するように構成された信号プロセッサとを包含する、マイクロ電子デバイスを作成するための装置が提供される。

本発明は、本発明の実施形態の以下の詳細な説明を図面と併せ読むことで、より完全に理解されるであろう。

【発明を実施するための最良の形態】

【0020】

図1は、本発明の一実施形態にしたがった、半導体ウエハ22上の限界寸法を測定するためのシステム20の概略図である。X線源26は、平行光学系30によって平行にされ、ウエハ22上の対象領域28上に方向付けられ、X線ビームを発光する。ウエハは、標準的には、ウエハ表面上の異なるポイントに対して対象領域28を走査できるようにウエハを移動させる、可動ステージ24上に載置される。以下に記載される実施形態は特にウエハ22に関連しているが、本発明の原理は、他のパターニングされた試料に同様に適用されてもよい。

【0021】

X線源26は、標準的には、単色化光学系(図示せず)を備えたX線管を備える。例えば、X線管は、オクスフォード・インストゥルメンツ社(カリフォルニア州スコットバレー)製のXTF-5011チューブであってもよい。システム20で使用されてもよい多数の異なるタイプの単色化光学系が、米国特許第6,381,303号に記載されており、その開示を参考として本明細書に組み込む。例えば、光学系は、XOS社(ニューヨーク州アルバニー)製の二重湾曲集光結晶光学部品などの、湾曲結晶モノクロメータを含んでもよい。他の好適な光学系は、米国特許第5,619,548号に記載されており、その開示を参考として本明細書に組み込む。

【0022】

平行光学系30は、一般に、当該技術分野で既知のあらゆる好適なX線コリメート手段を含んでもよい。本実施例では、光学系30は、調節可能なナイフエッジ32およびシャッター34を含み、これらは、X線ビームの垂直(Z方向)角度および範囲を制御する。幅も可変であってよいスリット36は、ビームの水平(X方向)角度および範囲を制御す

る。便宜上、図 1 に示されるように、Y 方向は、X - Y 面上（すなわち、ウエハ 2 2 の表面上）に対する入射ビームの軸の投影として解釈される。別の方法としてまたはそれに加えて、平行光学系 3 0 は、例えば、1 以上のピンホールまたは好適な反射素子を含んでもよい。

【 0 0 2 3 】

ウエハ 2 2 から散乱した放射は、X 線検出器 3 8 によって集光される。システム 2 0 は反射モードで作動し、すなわち検出器 3 8 は、試料平面の X 線源 2 6 と同じ側に配置される。（対照的に、ジョーンズらによる前述の論文に記載された透過モードでは、X 線源と検出器が試料の対向する面にあるので、散乱 X 線は試料の全幅を通過した後に検出される。）標準的には、検出器 3 8 は、C C D アレイなどの X 線検出素子のアレイ 4 0 を含む。あるいは、当該技術分野で既知のように、他のタイプの X 線検出器がこの文脈で使用されてもよい。アレイ検出器は、方位角のある範囲全体にわたって、散乱放射線を同時に受け取り測定できる点で有利である。（本特許出願の文脈および請求項において、用語「方位角」および「方位角の」は、Z 軸周りの角度、すなわちウエハ 2 2 の X - Y 面に平行な平面における角度を指す。）以下にさらに記載されるように、散乱放射線は、領域 2 8 における周期パターンの限界寸法の特性である、方位角方向の回折スペクトル 4 4 を示す。

【 0 0 2 4 】

検出器 3 8 は、検出器に入射する X 線光子のフラックスに応答して信号を出力する。信号は、信号プロセッサ 4 2 によって、好ましくは好適な信号処理ハードウェアおよびソフトウェアを備えた汎用コンピュータによって受け取られ、解析される。プロセッサは、散乱放射線の回折スペクトルを解析し、ウエハ 2 2 上のパターンの選択された限界寸法の測定値を出力する。

【 0 0 2 5 】

次に、ウエハ 2 2 の詳細、および特にその上に形成される周期パターン 5 2 を概略的に示す、図 2 および 3 を参照する。図 2 は、挿入図に拡大して示されるパターン 5 2 を備えるウエハの平面図であり、図 3 は、図 2 の線 I I I - I I I に沿ったテストパターンの拡大断面図である。本実施例におけるパターン 5 2 は、Y 方向に沿って整列すると仮定した、隆起部 5 4 などの平行な線状要素の回折格子を含む。パターン 5 2 は、C D 測定に使用するための、ウエハ 2 2 上の隣接したダイ間のスクライブライン 5 0 上に形成される、特別なテストパターンであってもよい。この場合、隆起部 5 4 は、標準的には、パターン 5 2 をテストすることが意図されるウエハ上の機能回路構造と同様の、材料蒸着、フォトリソグラフィおよびエッチングのプロセスによって形成される。あるいは、パターン 5 2 は、ウエハ上のダイ内に実際の機能パターンを含んでもよい。

【 0 0 2 6 】

図 2 および 3 の実施例では、隆起部 5 4 はフォトレジストを含む。フォトレジストは、隆起部間にギャップ 5 8 を形成するために、マスキングされ、エッチングされる。ギャップ 5 8 内では、下にある基板層 5 6 が露出する。層 5 6 は、標準的には酸化物層または金属層を含み、または、シリコンウエハ基板を自体を含んでもよい。最新のデバイスでは、隆起部 5 4 の高さ h は、標準的にはギャップ 5 8 の幅の 5 ~ 6 倍である。この高いアスペクト比、およびギャップ 5 8 を作成するのに使用される化学エッチングプロセスの性質のため、ギャップの幅は一般に均一ではない。より正確には、幅は、隆起部 5 4 の上面でより大きな寸法 W_1 と、ギャップ底部でより小さな寸法 W_2 とを有する傾向がある。以下に記載される測定方法は、隆起部 5 4 の側壁の傾斜を測定することができ、ひいては W_1 および W_2 の両方を得ることができる。

【 0 0 2 7 】

平行光学系 3 0 によって出力される X 線ビームは、ある仰角で、すなわち表面の平面にほぼ平行に、領域 2 8 に衝突する。検出器 3 8 で回折パターン 4 4 を観察するために、X 線ビームは、すべての外部反射に対する基板層 5 6 の臨界角よりも小さいが、隆起部 5 4 を構成するフォトレジストのより小さな臨界角よりも大きい角度で、パターン 5 2 に入射することが望ましい。基板層 5 6 がシリコンを含み、隆起部 5 4 が有機物のフォトレジ

10

20

30

40

50

トを含むと仮定すると、CuKa (8.05 keV) のX線ビームの入射角は、約0.1°～0.23°になるはずである。この低角度では、X線ビームは、X方向の幅よりもはるかに大きなY方向のスポット長さを有する細長いスポット全体にわたって、ウエハ2の表面に入射する。例えば、平行光学系30から出るビームの幅が80 μmの場合、ウエハ22のスポットは、幅約80 μm、長さ20～30 mmになる。したがって、ウエハ22上のパターン52が少なくともこの長さであるのが有利である。この場合、入射X線ビームは、広い面積全体にわたって表面上のパターンと互いに影響し合うので、回折スペクトル44は比較的高いコントラストを有するようになる。

【0028】

図4は、本発明の一実施形態にしたがって、システム20で生成された回折スペクトル44を示す散乱強度の概略プロットである。上述したように、アレイ40によって提供される方位角の測度は、散乱ベクトル単位 q に変換される。スペクトル44は、ゼロ次の強いピーク60と、より高次の回折に相当するサイドロープ62とを含む。回折の基本原理に基づき、ロープ62の間隔 q は単純に $2/\lambda$ であり、ここで、 λ はパターン52の周期である。例えば $\lambda = 130 \text{ nm}$ のとき、ロープ間隔 q は 0.005 nm^{-1} であり、これは、前述のCuKa X線ラインについては 0.068° に相当する。アレイ40が、約 $25 \mu\text{m}$ の検出素子間のピッチを有し、かつウエハ22上の領域28から30～40 cmの位置に配置された場合、パターン44は、検出器38で良好に分解される。

【0029】

スペクトル44の検出におけるばやけを最小限にし、すなわちコントラストを最大限にするために、ウエハ22に入射するX線ビームの角度の広がりを制限することが望ましい。一般に、角度の広がりは、検出器38において依然として適切な計数率(スループット)および信号対雑音比が得られる、可能な最小値まで低減されるべきである。実際には、システム20では、これは、標準的には水平(X)および垂直(Z)の両方向でビーム発散度を約0.1°以下に制限するように、平行光学系30を調節するべきであることを意味する。しかしながら、これらは経験的数値であり、所定の測定装置に対する最適な設定は、単純な試行錯誤による調節プロセスで決定されてもよい。そのような調節を可能にするために、平行光学系30の角度範囲が、水平および垂直の両方向において、0.01°以下のステップで可変であることが望ましい。

【0030】

ギャップ58(図3)の幅W1および側壁角度は、スペクトル44中のサイドロープ62の相対高さに基づいてもよい。この目的のため、パラメータとしてギャップ幅および側壁角度を包含する、パターン52の散乱スペクトルの数学的モデルは、測定された回折スペクトル44に適合される。最適な適合が得られるパラメータは、パターン52の実パラメータを表す。この種のフィッティングを実行する方法は、例えば、フーラによる「ナノメートルスケールのライングレーティングの側壁角度および断面のための小角X線散乱計測」(Journal of Applied Physics, 96:4, 2004年、1983～1987ページ)、およびウーラによる「ナノスケールのリソグラフィ形状の小角中性子散乱測定」(Journal of Applied Physics, 88:12, 2000年、7298～7303ページ)に記載されている。これらの出版物の両方を、参考として本明細書に組み込む。

【0031】

図5は、基板層56上に形成されたパターン70の概略断面図であり、その特性は、本発明の別の実施形態にしたがって、X線散乱によって測定される。この実施形態では、パターン70は、薄膜層74で覆われた隆起部72を含む。例えば、層74は、隆起部間のギャップを金属で充填する前に酸化物または半導体材料の隆起部72上に蒸着される、拡散隔膜を含んでもよい。パターン70上に層74を蒸着するプロセスは、層の厚さが、標準的には10～20 nmである既定の処理制約内に収まるように、注意深く制御されなければならない。しかしながら、実際には、ウエハの幾何学形状および蒸着設備のため、隆起部72の側壁76上に蒸着される層の厚さは、標準的には、隆起部の頂部および底部の水

10

20

30

40

50

平面上における厚さよりも小さい。そのため、側壁層の厚さを測定することは特に重要である。

【0032】

図6は、本発明の一実施形態にしたがった、システム20において側壁層の厚さを測定する方法を概略的に示すフローチャートである。厚さの測定は、回折スペクトル44中のサイドロープ62の相対強度におけるばらつきに基づく。測定を行なうため、基準獲得ステップ80において、パターン70を備えるが、パターンの側壁上に層74が形成されていない基準試料を、領域28に配置する。プロセッサ42は、基準試料を用いて基準回折スペクトルを獲得する。プロセッサは、ピーク位置決めステップ82において、このスペクトルを解析してロープ62の位置を確定し、ロープのピーク強度を記録する。最初のN個のサイドロープのピーク強度（対称であるべきである回折パターンの左側および右側全体にわたって平均化されたもの）を、アレイ $f[k]$ （ $k = 1, \dots, N$ ）の形で格納する。

【0033】

次に、試料獲得ステップ84において、側壁76上の層74を包含する、パターン70を備えた実際の試料を領域28に配置し、プロセッサ42で、試料の回折スペクトルを獲得する。プロセッサは、ピーク測定ステップ86において、このスペクトル中のサイドロープのピーク強度を記録し、対応するアレイ $F[k]$ の形でピーク強度を格納する。この回折スペクトル中のサイドロープの間隔 q は、基準スペクトルと同じであるべきであり、サイドロープのピーク強度に何らかの変化があれば、層74の影響によるものと考えることができる。したがって、プロセッサ42は、正規化ステップ88において、格納された基準アレイ $f[k]$ を用いて試料ピーク測定値を正規化し、それにより、ピーク強度の正規化したアレイ $G[k] = F[k] / f[k]$ を得て、回折スペクトルに対する層74の影響を分離する。

【0034】

$G[k]$ における各ピークの次数 k は、対応する方位角（対応するロープ62の中央ピーク60からの角変位に等しい）に関連付けられ、回折角の関数としてのスペクトル $G(\cdot)$ が得られる。 \cdot を有するサイドロープのピーク強度におけるばらつき（ステップ88の正規化後）が、側壁76の反射特性に依存するという意味で、 $G(\cdot)$ は反射率スペクトルである。この特性を、後に続く図を参照してさらに説明する。

【0035】

図7は、本発明の一実施形態にしたがった、図6の方法を用いてシステム20で生成される反射率スペクトル100（ $G(\cdot)$ ）を示す概略プロットである。縦棒102は、回折次数 $k = 0, 1, 2, \dots$ に対する $G(\cdot)$ の値を表す。値は、周期 \cdot での、振動変調パターンの角度に応じて変わる。振動は、側壁76上の層74の外側表面から反射したX線と、層74表面下の隆起部72の垂直側面から反射したX線との干渉によるものである。周期 \cdot は、側壁上の層74の厚さによって決まる。

【0036】

スペクトル100は、したがって、例えば米国特許第6,512,814号および第6,639,968号に記載されるように、X線反射率（XRR）スペクトルと類似しており、それらの開示を、参考として本明細書に組み込む。（ただし、このようなスペクトルは、通常は仰角の関数として測定され解析され、スペクトル100は、方位角の関数として測定され解析される。）XRRスペクトルは、試料表面上に形成された薄膜層の特性を表す、振動パターンを含む。前述の特許に記載されるように、厚さ、密度および表面品質を包含する薄膜層の特性を導き出すために、パラメトリックモデルはXRRスペクトルに適合されてもよい。同様に、本発明の場合、プロセッサ42は、フィッティングステップ90（図6）で、曲線104をスペクトル100に適合させる。この種のフィッティングを実行する方法は、例えば、コジマラの「X線反射率による薄膜の構造特性決定」（理学ジャーナル、16:2、1999年、31~41ページ）に記載されるように、XRR分野において既知であり、これを参考として本明細書に組み込む。曲線104の振動周波数

(すなわち、1 / 104)は、側壁76上の層74の厚さに比例する。したがって、プロセッサ42は、曲線104を用いて、この厚さが所望の範囲内にあるか否かを判断する。

【0037】

図8は、本発明の一実施形態にしたがった、半導体デバイス形成加工で使用されるクラスタツール110の概略平面図である。クラスタツールは、半導体ウエハ112上に薄膜を蒸着するための蒸着ステーション114、検査ステーション116、および洗浄ステーションなどの当該技術分野で既知の他のステーション118を包含する、複数のステーションを備える。検査ステーション116は、上述のようなシステム20と類似の方式で構成され、作動する。ロボット120は、システムコントローラ122の制御の下で、ステーション114、116、118、…の間でウエハ112を移送する。ツール110の動作は、コントローラ122に結合されたワークステーション124を使用して、オペレタによって制御され、モニタされてもよい。

【0038】

検査ステーション116は、標準的には反射モードのX線散乱によって、ウエハ112上で限界寸法の測定を実行するのに使用される。そのような測定は、ツール110の蒸着ステーション114および他のステーションによって実行される、作成プロセスにおける選択された工程の前および/または後に実施される。ステーション116を使用することで、コントローラ122および場合によってはワークステーション124を用いて、プロセスの偏差を早期に検出し、また作成ウエハ上のプロセスパラメータを簡便に調節し、評価することが可能になる。

【0039】

図9は、本発明の別の実施形態にしたがった、半導体ウエハの形成加工およびその場(in situ)検査のためのシステム130の概略側面図である。システム130は、当該技術分野で既知のように、ウエハ112上に薄膜を作成するための、蒸着装置134を含む真空チャンバ132を備える。ウエハは、チャンバ132内の可動ステージ24上に載置される。チャンバは、標準的にはX線ウインドウ136を備える。これらのウインドウは、米国特許公開公報U.S.2001/0043668 A1に記載されるタイプのものであってもよく、その開示を参考として本明細書に組み込む。X線源26は、上述の方式で、ウインドウ136の1つを介してウエハ112の領域28を照射する。図1に示される要素のいくつかは、簡便のため図9では省略するが、標準的には、この種の要素は同様にシステム130に組み込まれる。

【0040】

領域28から散乱したX線は、別のウインドウ136を介して、検出器アセンブリ38のアレイ40で受け取られる。プロセッサ42は、ウエハ112からのX線散乱を測定することで、チャンバ132内の作成における構造の限界寸法を評価するために、検出器アセンブリ38から信号を受け取り、信号を処理する。限界寸法の測定結果は、システム130で作成される薄膜が所望の寸法を有するように、蒸着装置134を制御する上で使用してもよい。

【0041】

上述の実施形態は、特にX線散乱に言及しているものの、本発明の原理は、X線解析の他の分野において、必要な変更を加えて同様に使用されてもよい。代表的な応用分野としては、特に斜出射XRFを包含する蛍光X線(XRF)分析、ならびに当該技術分野で既知の他のXRF技術が挙げられる。斜出射XRFは、例えば、ウィーナーによる論文「斜出射蛍光X線分光分析による窒化チタン層の特性決定」(Applied Surface Science 125, 1998年, 129ページ)に記載されており、これを参考として本明細書に組み込む。例えば前述の米国特許第6,381,303号に記載されるように、蛍光X線測定は、システム20に組み込まれてもよい。加えてまたは別の方法として、米国特許公開公報2004/0156474 A1として発行された、米国特許出願第10/364,883号に記載されるように、システムを、X線反射率測定ならびに小角散乱測定に適応させてもよく、その開示を参考として本明細書に組み込む。さら

に加えてまたは別 の方法として、システム 20 を、他のタイプの X 線回折測定に適応させてもよい。さらに、システム 20 の原理は、X 線および他の核放射線を検出するものなど、他のエネルギー範囲に対する位置感知可能な検出システムで利用してもよい。

【 0 0 4 2 】

したがって、上述の実施形態は例示目的で挙げられたものであり、また本発明は、上記に特に示し、記載してきたものに限定されないことが理解されるであろう。より正確には、本発明の範囲は、上述の多様な特徴の組み合わせおよび下位の組み合わせの両方、ならびに、上述の記載を読むことによって当業者が想到するであろうと考えられ、かつ従来技術には開示されていない、組み合わせの変形および修正を包含する。

【 図面の簡単な説明 】

10

【 0 0 4 3 】

【 図 1 】本発明の一実施形態にしたがった、X 線を用いて限界寸法を測定するための装置の概略側面図である。

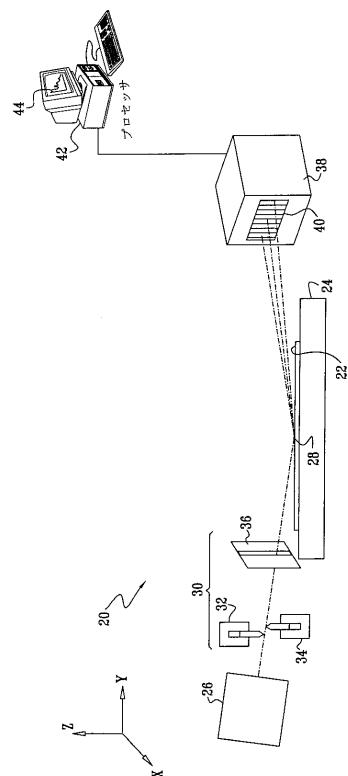
【 図 2 】半導体ウエハおよびウエハ上の周期パターンの詳細の概略平面図である。

【 図 3 】線 I I I - I I I に沿った図 2 のテストパターンの概略断面図である。

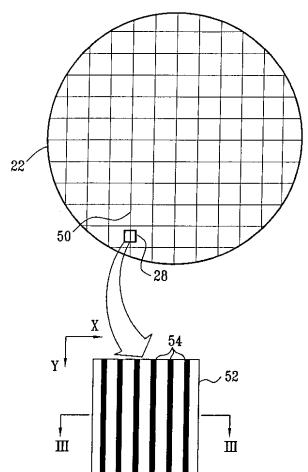
【 図 4 】本発明の一実施形態にしたがった、散乱ベクトル q の関数としての散乱強度の概略プロットである。

【 図 5 】薄膜層で覆われた試料表面上の周期パターンの概略断面図である。

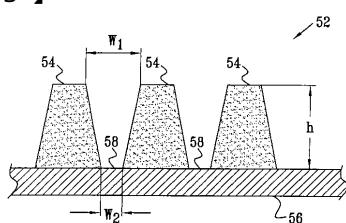
【 図 6 】本発明の一実施形態にしたがった、薄膜層の側壁の厚さを測定する方法を概略的に示すフローチャートである。

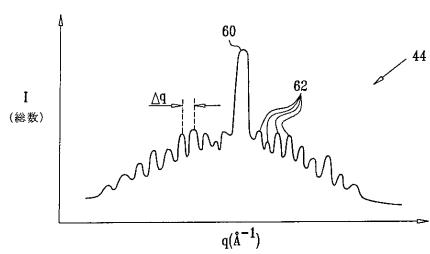

【 図 7 】本発明の一実施形態にしたがった、一連の回折次数の強度の概略プロットである。

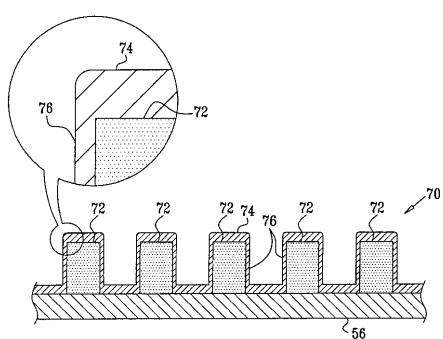
20

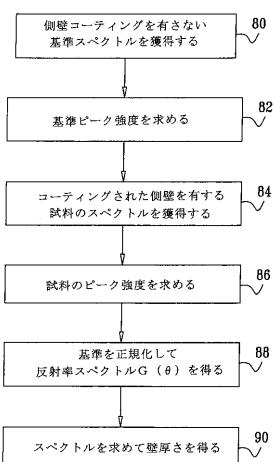

【 図 8 】本発明の一実施形態にしたがった、検査ステーションを包含する半導体デバイス形成加工のためのクラスタツールの概略平面図である。

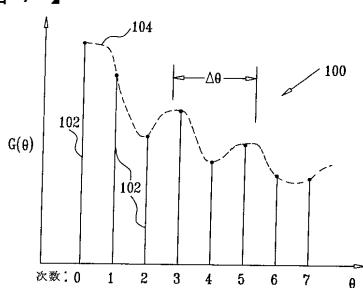
【 図 9 】本発明の一実施形態にしたがった、X 線検査能力を備えた半導体加工チャンバの概略側面図である。

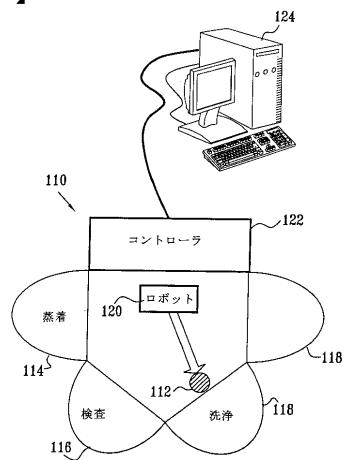

【図1】

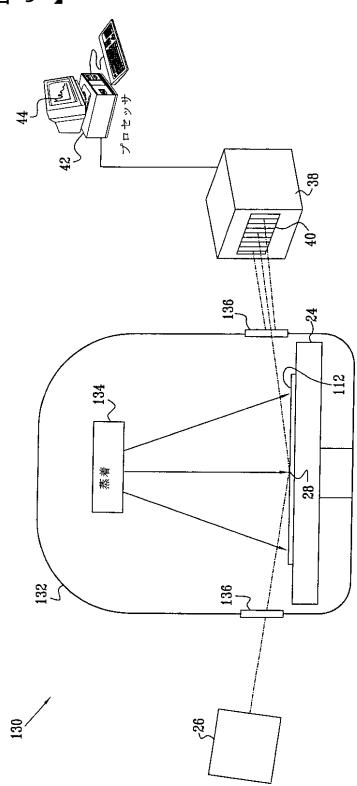

【図2】


【図3】


【図4】


【図5】


【図6】


【図7】

【図8】

【図9】

フロントページの続き

F ターム(参考) 2F067 AA27 BB01 BB04 BB16 CC17 DD09 HH04 HH05 HH12 JJ03
JJ04 JJ09 KK08 KK09 LL03 LL15 MM00 PP12 UU02
2G001 AA01 BA04 BA14 BA15 BA18 BA30 CA01 DA09 EA02 EA09
FA01 FA02 GA01 GA05 GA13 JA07 KA01 KA11 KA20 LA11
MA05 PA07 SA01 SA02

【外国語明細書】

MEASUREMENT OF CRITICAL DIMENSIONS USING X-RAY
DIFFRACTION IN REFLECTION MODE

FIELD OF THE INVENTION

The present invention relates generally to semiconductor manufacturing and process control, and specifically to measurements of critical dimensions of semiconductor device features.

BACKGROUND OF THE INVENTION

When microelectronic devices are produced on a semiconductor wafer, it is crucial that the critical dimensions of the devices be held within specified tolerances. Critical dimensions, in this context, refer to the widths of features, such as conductors, that are deposited on the wafer and the spacing between adjacent features. Deviations from the specified dimensions lead to performance and yield degradation. The manufacturing process must therefore be carefully monitored and controlled, in order to detect deviations as soon as they occur and to take corrective action to avoid the loss of costly wafers in process. For example, when a critical dimension in photoresist that has been deposited and etched on the wafer is found to be out of specification, it is possible to remove and reapply it.

A variety of systems and methods for measurement of critical dimensions are known in the art. Most microelectronic production facilities currently use optical metrology to monitor critical dimensions. As semiconductor devices become ever denser, however, with design rules of 0.25 μm and below, it becomes impossible for classical optical metrology systems to provide

accurate results. Electron beam (e-beam) metrology has been suggested as an alternative, but e-beam systems also suffer from performance limitations.

X-ray measurement of critical dimensions is described in U.S. Patent 6,556,652, whose disclosure is incorporated herein by reference. According to the method described in this patent, a surface of a substrate is irradiated with a beam of X-rays. A pattern of the X-rays scattered from the surface due to features formed on the surface is then detected and analyzed to measure a dimension of the features in a direction parallel to the surface.

Additional work on X-ray based CD measurements is described by Jones et al., in "Small Angle X-ray Scattering for Sub-100 nm Pattern Characterization," *Applied Physics Letters* 83:19 (2003), pages 4059-4061, which is incorporated herein by reference. The authors use transmission-mode small angle X-ray scattering (SAXS) with a synchrotron X-ray source to characterize a series of polymer photoresist gratings formed on a substrate. The X-ray beam passes through the grating and the substrate, and the SAXS pattern is measured using a two-dimensional CCD detector. The photoresist grating produces a one-dimensional series of diffraction spots in the SAXS pattern on the detector. The SAXS intensity as a function of the scattering vector q is analyzed to determine the grating spacing and sidewall angle. (According to convention in the X-ray scattering art, $q = 4\pi \sin \theta / \lambda$, wherein 2θ is the scattering angle relative to the incident beam, and λ is the X-ray wavelength.)

SUMMARY OF THE INVENTION

Embodiments of the present invention provide improved methods and apparatus for measuring dimensions of periodic features on the surface of a sample, based on detection of X-rays scattered from the surface. Typically, the scattering measurements are made in reflection mode. A beam of X-rays is directed to impinge on the area of the periodic feature, and the X-rays scattered from the surface are detected as a function of azimuth. The scattered X-rays typically exhibit a pattern of diffraction, which is analyzed in order to extract information regarding the dimensions of the periodic feature.

In some embodiments of the present invention, the sample comprises a semiconductor wafer, and the periodic feature comprises a set of lines formed on the wafer by a lithographic process, as is known in the art. The diffraction pattern is analyzed in order to determine the critical dimensions and shape of the lines on the wafer. Reflection-mode measurements, in accordance with these embodiments, afford greater signal intensity and more compact measurement geometry than the conventional transmission-mode measurements described in the above-mentioned paper by Jones et al.

In some embodiments of the present invention, X-ray diffraction measurements are used to measure characteristics of a thin film coating on the sidewalls of a periodic structure. ("Sidewalls" in this context refers to the parts of the structure that are perpendicular, or at least not parallel, to the plane of the sample surface.) In semiconductor device manufacturing, for example, thin film coatings are

commonly deposited over periodic structures of grooves or holes, but the thickness of the coating on the sidewalls is difficult to control precisely and difficult to measure. In these embodiments, the pattern of X-ray scattering in the azimuthal direction is analyzed in order to specifically measure the sidewall thickness and/or other sidewall characteristics. Although it is generally more convenient to measure the scattering pattern in reflection mode, as described further hereinbelow, the principles of these embodiments may alternatively be implemented in transmission mode.=

There is therefore provided, in accordance with an embodiment of the present invention, a method for X-ray analysis of a sample, including:

directing a beam of X-rays to impinge on an area of a periodic feature on a surface of the sample;

receiving the X-rays scattered from the surface in a reflection mode so as to detect a spectrum of diffraction in the scattered X-rays as a function of azimuth; and

analyzing the spectrum of diffraction in order to determine a dimension of the feature.

Typically, directing the beam includes collimating the beam of X-rays that is to impinge on the surface.

In disclosed embodiments, directing the beam includes directing the beam to impinge on the surface at a grazing angle, and receiving the X-rays includes detecting a variation in the scattered X-rays associated with total external reflection from the area of the surface. In some of these embodiments, the periodic feature includes a layer having a first critical angle formed over a substrate having a second critical angle, and directing the beam includes directing the beam at an

angle between the first and second critical angles. In one embodiment, the layer includes an organic material, and the substrate includes at least one of a metal, a semiconductor and a dielectric material.

In some embodiments, the feature includes a pattern of parallel linear elements, and analyzing the spectrum includes measuring a separation between side lobes in the spectrum in order to determine a spacing between the parallel lines.

In further embodiments, the feature includes sidewalls, which are overlaid with a thin film, and analyzing the spectrum includes measuring a thickness of the thin film on the sidewalls.

In a disclosed embodiment, the sample includes a semiconductor wafer, and the periodic feature includes photoresist deposited on the surface.

There is also provided, in accordance with an embodiment of the present invention, a method for X-ray analysis of a sample, including:

directing a beam of X-rays to impinge on an area of a planar sample that includes a feature having sidewalls perpendicular to a plane of the sample, the sidewalls having a thin film thereon;

detecting a spectrum of the X-rays scattered from the sample due to the feature; and

analyzing the spectrum to measure a characteristic of the thin film on the sidewalls.

In some embodiments, the feature includes a periodic pattern, and analyzing the spectrum includes analyzing a diffraction spectrum due to the periodic pattern. Typically, the diffraction spectrum includes multiple side lobes, and analyzing the diffraction spectrum

includes observing a modulation of the side lobes as a function of angle. In one embodiment, observing the modulation includes determining a thickness of the thin film responsively to an angular spacing of the side lobes.

In a disclosed embodiment, the sample includes a semiconductor wafer, and the thin film includes a barrier layer.

There is additionally provided, in accordance with an embodiment of the present invention, apparatus for X-ray analysis of a sample having a periodic feature on a surface thereof, the apparatus including:

an X-ray source, which is adapted to direct a beam of X-rays to impinge on an area of the surface containing the periodic feature;

a detector, which is adapted to receive the X-rays scattered from the surface in a reflection mode so as to detect a spectrum of diffraction in the scattered X-rays as a function of azimuth; and

a signal processor, which is adapted to analyze the spectrum of diffraction in order to determine a dimension of the feature.

There is further provided, in accordance with an embodiment of the present invention, apparatus for X-ray analysis of a planar sample that includes a feature having sidewalls perpendicular to a plane of the sample, the sidewalls having a thin film thereon, the apparatus including:

an X-ray source, which is adapted to direct a beam of X-rays to impinge on an area of the sample containing the feature;

a detector, which is adapted to detect a spectrum of the X-rays scattered from the sample due to the feature; and

a signal processor, which is adapted to analyze the spectrum to measure a characteristic of the thin film on the sidewalls.

There is moreover provided, in accordance with an embodiment of the present invention, a cluster tool for producing microelectronic devices, including:

a fabrication station, which is adapted to form a periodic feature on a surface of a semiconductor wafer; and

an inspection station, including:

an X-ray source, which is adapted to direct a beam of X-rays to impinge on an area of the surface containing the periodic feature;

a detector, which is adapted to receive the X-rays scattered from the surface in a reflection mode so as to detect a spectrum of diffraction in the scattered X-rays as a function of azimuth; and

a signal processor, which is adapted to analyze the spectrum of diffraction in order to determine a dimension of the feature.

There is furthermore provided, in accordance with an embodiment of the present invention, apparatus for producing microelectronic devices, including:

a production chamber, which is adapted to receive a semiconductor wafer;

a fabrication device, which is adapted to form a periodic feature on a surface of the semiconductor wafer within the chamber;

an X-ray source, which is adapted to direct a beam of X-rays toward the semiconductor wafer in the production chamber so as to impinge on an area of the surface containing the periodic feature;

a detector, which is adapted to receive the X-rays scattered from the surface in a reflection mode so as to detect a spectrum of diffraction in the scattered X-rays as a function of azimuth; and

a signal processor, which is adapted to analyze the spectrum of diffraction in order to determine a dimension of the feature.

The present invention will be more fully understood from the following detailed description of the embodiments thereof, taken together with the drawings in which:

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 is a schematic side view of apparatus for measurement of critical dimensions using X-rays, in accordance with an embodiment of the present invention;

Fig. 2 is a schematic top view of a semiconductor wafer and a detail of a periodic pattern on the wafer;

Fig. 3 is a schematic, cross-sectional view of the test pattern of Fig. 2, taken along a line III-III;

Fig. 4 is a schematic plot of scattering intensity as a function of the scattering vector q , in accordance with an embodiment of the present invention;

Fig. 5 is a schematic, sectional view of a periodic pattern on a sample surface, which is overlaid by a thin film layer;

Fig. 6 is a flow chart that schematically illustrates a method for measuring sidewall thickness of a thin film layer, in accordance with an embodiment of the present invention;

Fig. 7 is a schematic plot of the intensity of a sequence of diffraction orders, in accordance with an embodiment of the present invention;

Fig. 8 is a schematic top view of a cluster tool for semiconductor device fabrication, including an inspection station in accordance with an embodiment of the present invention; and

Fig. 9 is a schematic side view of a semiconductor processing chamber with X-ray inspection capability, in accordance with an embodiment of the present invention.

DETAILED DESCRIPTION OF EMBODIMENTS

Fig. 1 is a schematic, pictorial illustration of a system 20 for measurement of critical dimensions on a semiconductor wafer 22, in accordance with an embodiment of the present invention. An X-ray source 26 emits a beam of X-rays, which is collimated by collimating optics 30 and directed onto a target area 28 on wafer 22. The wafer is typically mounted on a motion stage 24, which moves the wafer so that target area 28 may be scanned to different points on the wafer surface. Although the embodiments described hereinbelow relate specifically to wafer 22, the principles of the present invention may similarly be applied to other patterned samples.

X-ray source 26 typically comprises an X-ray tube with monochromatizing optics (not shown in the figures). For example, the X-ray tube may be an XTF 5011 tube produced by Oxford Instruments, Inc. (Scotts Valley, California). A number of different types of monochromatizing optics that may be used in system 20 are described in U.S. Patent 6,381,303, whose disclosure is incorporated herein by reference. For example, the optics may comprise a curved crystal monochromator, such as the Doubly-Bent Focusing Crystal Optic, produced by XOS Inc., of Albany, New York. Other suitable optics are described in U.S. Patent 5,619,548, whose disclosure is likewise incorporated herein by reference.

Collimating optics 30 may generally comprise any suitable X-ray collimating means known in the art. In the present example, optics 30 comprise an adjustable knife edge 32 and shutter 34, which control the vertical (Z-direction) angle and extent of the X-ray beam. A slit 36, whose width may also be variable, controls the

horizontal (X-direction) angle and extent of the beam. For the sake of convenience, as shown in Fig. 1, the Y-direction is taken to be the projection of the axis of the incident beam onto the X-Y plane (i.e., onto the surface of wafer 22). Alternatively or additionally, collimating optics 30 may comprise one or more pinholes or suitable reflective elements, for example.

Radiation scattered from wafer 22 is collected by an X-ray detector 38. System 20 operates in reflection mode, i.e., detector 38 is located on the same side of the sample plane as source 26. (By contrast, in the transmission mode described in the above-mentioned article by Jones et al., the X-ray source and detector are on opposite sides of the sample, so that scattered X-rays are detected after passing through the entire width of the sample.) Typically, detector 38 comprises an array 40 of X-ray detecting elements, such as a CCD array. Alternatively, other types of X-ray detectors may be used in this context, as are known in the art. The array detector is advantageous in being able to simultaneously receive and measure the scattered radiation over a range of azimuthal angles. (In the context of the present patent application and in the claims, the terms "azimuth" and "azimuthal" refer to the angle about the Z-axis, i.e., an angle in a plane parallel to the X-Y plane of wafer 22.) The scattered radiation exhibits a diffraction spectrum 44 in the azimuthal direction that is characteristic of the critical dimensions of a periodic pattern in area 28, as described further hereinbelow.

Detector 38 outputs a signal responsive to the flux of X-ray photons incident on the detector. The signal is

received and analyzed by a signal processor 42, preferably a general-purpose computer equipped with suitable signal processing hardware and software. The processor analyzes the diffraction spectrum of the scattered radiation and outputs a measurement of selected critical dimensions of the pattern on wafer 22.

Reference is now made to Figs. 2 and 3, which schematically show details wafer 22, and specifically a periodic pattern 52 formed thereon. Fig. 2 is a top view of the wafer, with pattern 52 shown enlarged in an inset, while Fig. 3 is an enlarged, cross-sectional view of the test pattern, taken along line III-III in Fig. 2. Pattern 52 in this example comprises a grating of parallel linear elements, such as ridges 54, which are assumed to be aligned along the Y-direction. Pattern 52 may be a special test pattern, which is formed on a scribe line 50 between adjacent dies on wafer 22 for use in CD measurement. In this case, ridges 54 are typically formed by the same processes of material deposition, photolithography and etching as are functional circuit features on the wafer that pattern 52 is intended to test. Alternatively, pattern 52 may comprise an actual, functional pattern within the dies on the wafer.

In the example of Figs. 2 and 3, ridges 54 comprise photoresist. The photoresist is masked and etched to form gaps 58 between the ridges. Within gaps 58, an underlying substrate layer 56 is exposed. Layer 56 typically comprises an oxide or metal layer, or it may comprise the silicon wafer substrate itself. In modern devices, the height h of ridges 54 is typically five to six times the width of gaps 58. Because of this high aspect ratio and the nature of the chemical etching

process used to create gaps 58, the widths of the gaps are generally not uniform. Rather, the widths tend to have a larger dimension W_1 at the upper surface of ridges 54, and a smaller dimension W_2 at the bottom of the gaps. The methods of measurement described hereinbelow are capable of measuring the slope of the sidewalls of ridges 54, and thus can give both W_1 and W_2 .

The X-ray beam that is output by collimating optics 30 impinges on area 28 at a grazing angle, i.e., nearly parallel to the surface plane. In order to observe diffraction pattern 44 at detector 38, it is desirable that the X-ray beam be incident on pattern 52 at an angle below the critical angle of substrate layer 56 for total external reflection, but above the smaller critical angle of the photoresist making up ridges 54. Assuming substrate layer 56 to comprise silicon, and ridges 54 to comprise an organic photoresist, the incident angle for a CuKa (8.05 keV) X-ray beam should then be between about 0.15° and 0.23° . At this low angle, the X-ray beam will be incident on the surface of wafer 22 over an elongated spot - with the spot length in the Y-direction much greater than the width in the X-direction. For example, if the width of the beam exiting collimating optics 30 is 80 μm , the spot on wafer 22 will be about 80 μm wide by 20-30 mm long. It is thus advantageous that pattern 52 on wafer 22 be at least this long. In this case, the incident X-ray beam will interact with the pattern on the surface over a large area, resulting in a diffraction spectrum 44 with relatively high contrast.

Fig. 4 is a schematic plot of scattering intensity showing diffraction spectrum 44 produced in system 20, in accordance with an embodiment of the present invention.

The azimuthal angular measure provided by array 40 is translated into scattering vector units q , as defined above. Spectrum 44 comprises a strong, zero-order peak 60, with side lobes 62 corresponding to the higher diffraction orders. By the basic principles of diffraction, the spacing of lobes 62 is simply $\Delta q = 2\pi/L$, wherein L is the period of pattern 52. For example, for $L = 130$ nm, the lobe spacing is $\Delta q = 0.005 \text{ \AA}^{-1}$, which corresponds to 0.068° for the above-mentioned CuKa X-ray line. Assuming array 40 to have a pitch between detector elements of about $25 \mu\text{m}$ and to be located 30-40 cm from area 28 on wafer 22, pattern 44 will be well-resolved by detector 38.

To minimize blur, and thus maximize contrast, in the detection of spectrum 44, it is desirable to limit the angular spread of the X-ray beam that is incident on wafer 22. Generally speaking, the angular spread should be reduced to the minimum possible value that will still give adequate count rate (throughput) and signal/noise ratio at detector 38. Practically speaking, in system 20, this means that collimating optics 30 should typically be adjusted to limit the beam divergence to no more than about 0.1° in both the horizontal (X) and vertical (Z) directions. These are empirical figures, however, and the optimal settings for any given measurement setup may be determined by a simple trial-and-error adjustment process. To permit such adjustments, it is desirable that the angular range of collimating optics 30 be variable in steps of 0.01° or less, in both the horizontal and vertical directions.

The width W_1 and the sidewall angle of gaps 58 (Fig. 3) may be derived from the relative heights of side lobes 62 in spectrum 44. For this purpose, a mathematical model of the scattering spectrum of pattern 52, including the gap width and sidewall angle as parameters, is fitted to the measured diffraction spectrum 44. The parameters that give the optimal fit are indicative of the actual parameters of pattern 52. Methods for performing this sort of fitting are described, for example, by Hu et al., in "Small Angle X-ray Scattering Metrology for Sidewall Angle and Cross Section of Nanometer Scale Line Gratings," *Journal of Applied Physics* 96:4 (2004), pages 1983-1987, and by Wu et al., in "Small Angle Neutron Scattering Measurements of Nanoscale Lithographic Features," *Journal of Applied Physics* 88:12 (2000), pages 7298-7303. Both of these publications are incorporated herein by reference.

Fig. 5 is a schematic, sectional illustration of a pattern 70 formed on substrate layer 56, whose characteristics are measured by means of X-ray scattering in accordance with another embodiment of the present invention. In this embodiment, pattern 70 comprises ridges 72, which are overlaid by a thin film layer 74. For example, layer 74 may comprise a diffusion barrier, which is deposited over ridges 72 of oxide or semiconductor material before filling the gaps between the ridges with metal. The process by which layer 74 is deposited over pattern 70 must be carefully controlled so that the thickness of the layer is within the predefined process bounds, typically 10-20 Å. In practice, however, because of the geometry of the wafer and the deposition equipment, the thickness of the layer that is deposited

on sidewalls 76 of ridges 72 is typically less than the thickness on the horizontal surfaces at the top and bottom of the ridges. It is therefore particularly important to measure the sidewall layer thickness.

Fig. 6 is a flow chart that schematically illustrates a method for measuring sidewall layer thickness in system 20, in accordance with an embodiment of the present invention. The thickness measurement is derived from variations in the relative intensities of side lobes 62 in diffraction spectrum 44. In order to make the measurement, a reference sample with pattern 70 but without layer 74 formed on the sidewalls of the pattern is placed in area 28, at a reference capture step 80. Processor 42 captures a reference diffraction spectrum using the reference sample. The processor analyzes this spectrum to locate lobes 62, and records the peak intensities of the lobes, at a peak location step 82. The peak intensities for the first N side lobes (averaged over the left and right sides of the diffraction pattern, which should be symmetrical) are stored in an array $f[k]$, wherein $k = 1, \dots, N$.

Now the actual sample with pattern 70, including layer 74 on sidewalls 76, is placed in area 28, and processor 42 captures the diffraction spectrum of the sample, at a sample capture step 84. The processor records the peak intensities of the side lobes in this spectrum, at a peak measurement step 86, and stores the peak intensities in a corresponding array $F[k]$. The spacing Δq of the side lobes in this diffraction spectrum should be the same as that in the reference spectrum, and any changes in the peak intensities of the side lobes can be attributed to the effect of layer 74. Therefore,

processor 42 uses the stored reference array $f[k]$ to normalize the sample peak measurement, at a normalization step 88, giving a normalized array of peak intensities $G[k] = F[k]/f[k]$, which isolates the effects of layer 74 on the diffraction spectrum.

Each peak order k in $G[k]$ is associated with the corresponding azimuthal angle θ (equal to the angular displacement of the corresponding lobe 62 from central peak 60), giving a spectrum $G(\theta)$ as a function of the diffraction angle. $G(\theta)$ is a reflectivity spectrum, in the sense that the variation of the peak intensities of the side lobes with θ (after normalization at step 88) depends on the reflection properties of sidewalls 76. This property is explained further with reference to the figure that follows.

Fig. 7 is a schematic plot showing a reflectivity spectrum 100, $G(\theta)$, which is produced by system 20 using the method of Fig. 6, in accordance with an embodiment of the present invention. Vertical bars 102 represent the values of $G(\theta)$ for diffraction orders $k = 0, 1, 2, \dots$. The values vary with angle in an oscillatory modulation pattern, with period $\Delta\theta$. The oscillation is due to the interference of X-rays reflected from the outer surface of layer 74 on sidewalls 76 with the X-rays that are reflected from the vertical sides of ridges 72 underneath layer 74. The period $\Delta\theta$ is determined by the thickness of layer 74 on the sidewalls.

Spectrum 100 is thus analogous to an X-ray reflectivity (XRR) spectrum, as described, for example, in U.S. Patents 6,512,814 and 6,639,968, whose

disclosures are incorporated herein by reference. (Such spectra, however, are normally measured and analyzed as a function of elevation angle, while spectrum 100 is measured and analyzed as a function of the azimuthal angle.) XRR spectra contain oscillatory patterns, which are indicative of properties of thin film layers formed on the surface of a sample. As described in the above-mentioned patents, a parametric model may be fitted to XRR spectra in order to derive properties of the thin film layers, including thickness, density and surface quality. Similarly, in the present case, processor 42 fits a curve 104 to spectrum 100, at a fitting step 90 (Fig. 6). Methods for performing this sort of fitting are known in the XRR art, as described, for example, by Kojima et al., in "Structural Characterization of Thin Films by X-ray Reflectivity," *Rigaku Journal* 16:2 (1999), pages 31-41, which is incorporated herein by reference. The frequency of oscillation of curve 104 (i.e., $1/\Delta\theta$) is proportional to the thickness of layer 74 on sidewalls 76. Processor 42 thus uses curve 104 in order to determine whether this thickness is within the desired range.

Fig. 8 is a schematic top view of a cluster tool 110 for use in semiconductor device fabrication, in accordance with an embodiment of the present invention. The cluster tool comprises multiple stations, including a deposition station 114, for depositing thin films on a semiconductor wafer 112, an inspection station 116, and other stations 118, as are known in the art, such as a cleaning station. Inspection station 116 is constructed and operates in a manner similar to system 20, as described hereinabove. A robot 120 transfers wafer 112

among stations 114, 116, 118, ..., under the control of a system controller 122. Operation of tool 110 may be controlled and monitored by an operator using a workstation 124, coupled to controller 122.

Inspection station 116 is used to perform critical dimension measurements on wafer 112, typically by means of reflection-mode X-ray scattering. Such measurement is carried out before and/or after selected steps in production processes performed by deposition station 114 and other stations in tool 110. Use of station 116 allows early detection of process deviations and convenient adjustment and evaluation of process parameters on production wafers, using controller 122 and possibly workstation 124.

Fig. 9 is a schematic side view of a system 130 for semiconductor wafer fabrication and *in situ* inspection, in accordance with another embodiment of the present invention. System 130 comprises a vacuum chamber 132, containing deposition apparatus 134, for creating thin films on wafer 112, as is known in the art. The wafer is mounted on motion stage 24 within chamber 132. The chamber typically comprises X-ray windows 136. These windows may be of the type described in U.S. Patent Application Publication US 2001/0043668 A1, whose disclosure is incorporated herein by reference. X-ray source 26 irradiates area 28 on wafer 112 via one of windows 136, in the manner described above. Some of the elements shown in Fig. 1 are omitted from Fig. 9 for the sake of simplicity, but typically, elements of this sort are integrated into system 130, as well.

X-rays scattered from area 28 are received by array 40 in detector assembly 38 via another one of windows

136. Processor 42 receives signals from detector assembly 38, and processes the signals in order to assess critical dimensions of features in production within chamber 132, by measuring X-ray scattering from wafer 112. The results of the critical dimension measurement may be used in controlling deposition apparatus 134 so that the films produced by system 130 have desired dimensions.

Although the embodiments described above refer specifically to X-ray scattering, the principles of the present invention may similarly be used, *mutatis mutandis*, in other fields of X-ray analysis. Exemplary fields of application include X-ray fluorescence (XRF) analysis, including particularly grazing emission XRF, as well as other XRF techniques known in the art. Grazing emission XRF is described, for example, in an article by Wiener et al., entitled "Characterization of Titanium Nitride Layers by Grazing-Emission X-ray Fluorescence Spectrometry," in *Applied Surface Science* 125 (1998), p. 129, which is incorporated herein by reference. X-ray fluorescence measurement may be incorporated in system 20, as described in the above-mentioned U.S. Patent 6,381,303, for example. Additionally or alternatively, the system may be adapted for X-ray reflectometry, as well as small-angle scattering measurements, as described in U.S. Patent Application 10/364,883, published as US 2004/0156474 A1, whose disclosure is incorporated herein by reference. Further additionally or alternatively, system 20 may be adapted for other types of X-ray diffraction measurements. Furthermore, the principles of system 20 may be implemented in position-sensitive

detection systems for other energy ranges, such as for detection of gamma rays and other nuclear radiation.

It will thus be appreciated that the embodiments described above are cited by way of example, and that the present invention is not limited to what has been particularly shown and described hereinabove. Rather, the scope of the present invention includes both combinations and subcombinations of the various features described hereinabove, as well as variations and modifications thereof which would occur to persons skilled in the art upon reading the foregoing description and which are not disclosed in the prior art.

CLAIMS

1. A method for X-ray analysis of a sample, comprising:
 - directing a beam of X-rays to impinge on an area of a periodic feature on a surface of the sample;
 - receiving the X-rays scattered from the surface in a reflection mode so as to detect a spectrum of diffraction in the scattered X-rays as a function of azimuth; and
 - analyzing the spectrum of diffraction in order to determine a dimension of the feature.
2. The method according to claim 1, wherein directing the beam comprises collimating the beam of X-rays that is to impinge on the surface.
3. The method according to claim 1, wherein directing the beam comprises directing the beam to impinge on the surface at a grazing angle, and wherein receiving the X-rays comprises detecting a variation in the scattered X-rays associated with total external reflection from the area of the surface.
4. The method according to claim 3, wherein the periodic feature comprises a layer having a first critical angle formed over a substrate having a second critical angle, and wherein directing the beam comprises directing the beam at an angle between the first and second critical angles.
5. The method according to claim 4, wherein the layer comprises an organic material, and the substrate comprises at least one of a metal, a semiconductor and a dielectric material.
6. The method according to claim 1, wherein the feature comprises a pattern of parallel linear elements, and

wherein analyzing the spectrum comprises measuring a separation between side lobes in the spectrum in order to determine a spacing between the parallel lines.

7. The method according to claim 1, wherein the feature comprises sidewalls, which are overlaid with a thin film, and wherein analyzing the spectrum comprises measuring a thickness of the thin film on the sidewalls.

8. The method according to claim 1, wherein the sample comprises a semiconductor wafer.

9. The method according to claim 8, wherein the periodic feature comprises photoresist deposited on the surface.

10. A method for X-ray analysis of a sample, comprising:
directing a beam of X-rays to impinge on an area of a planar sample that comprises a feature having sidewalls perpendicular to a plane of the sample, the sidewalls having a thin film thereon;

detecting a spectrum of the X-rays scattered from the sample due to the feature; and

analyzing the spectrum to measure a characteristic of the thin film on the sidewalls.

11. The method according to claim 10, wherein directing the beam comprises collimating the beam of X-rays that is to impinge on the surface.

12. The method according to claim 10, wherein directing the beam comprises directing the beam to impinge on the surface at a grazing angle, and wherein receiving the X-rays comprises detecting a variation in the scattered X-rays associated with total external reflection from the area of the surface.

13. The method according to claim 10, wherein the feature comprises a periodic pattern, and wherein analyzing the spectrum comprises analyzing a diffraction spectrum due to the periodic pattern.

14. The method according to claim 13, wherein the diffraction spectrum comprises multiple side lobes, and wherein analyzing the diffraction spectrum comprises observing a modulation of the side lobes as a function of angle.

15. The method according to claim 14, wherein observing the modulation comprises determining a thickness of the thin film responsively to an angular spacing of the side lobes.

16. The method according to claim 10, wherein the sample comprises a semiconductor wafer.

17. The method according to claim 16, wherein the thin film comprises a barrier layer.

18. Apparatus for X-ray analysis of a sample having a periodic feature on a surface thereof, the apparatus comprising:

an X-ray source, which is adapted to direct a beam of X-rays to impinge on an area of the surface containing the periodic feature;

a detector, which is adapted to receive the X-rays scattered from the surface in a reflection mode so as to detect a spectrum of diffraction in the scattered X-rays as a function of azimuth; and

a signal processor, which is adapted to analyze the spectrum of diffraction in order to determine a dimension of the feature.

19. The apparatus according to claim 18, and comprising collimating optics, which are adapted to collimate the beam of X-rays that is to impinge on the sample.

20. The apparatus according to claim 18, wherein the X-ray source is adapted to direct the beam to impinge on the surface at a grazing angle, and wherein the detector is positioned to detect a variation in the scattered X-rays associated with total external reflection from the area of the surface.

21. The apparatus according to claim 20, wherein the periodic feature comprises a layer having a first critical angle formed over a substrate having a second critical angle, and wherein the X-ray source is adapted to direct the beam at an angle between the first and second critical angles.

22. The apparatus according to claim 21, wherein the layer comprises an organic material, and the substrate comprises at least one of a metal, a semiconductor and a dielectric material.

23. The apparatus according to claim 18, wherein the feature comprises a pattern of parallel linear elements, and wherein the signal processor is adapted to measure a separation between side lobes in the spectrum in order to determine a spacing between the parallel lines.

24. The apparatus according to claim 18, wherein the feature comprises sidewalls, which are overlaid with a thin film, and wherein the signal processor is adapted to measure a thickness of the thin film on the sidewalls based on the spectrum.

25. The apparatus according to claim 18, wherein the sample comprises a semiconductor wafer.

26. The apparatus according to claim 25, wherein the periodic feature comprises photoresist deposited on the surface.

27. Apparatus for X-ray analysis of a planar sample that includes a feature having sidewalls perpendicular to a plane of the sample, the sidewalls having a thin film thereon, the apparatus comprising:

an X-ray source, which is adapted to direct a beam of X-rays to impinge on an area of the sample containing the feature;

a detector, which is adapted to detect a spectrum of the X-rays scattered from the sample due to the feature; and

a signal processor, which is adapted to analyze the spectrum to measure a characteristic of the thin film on the sidewalls.

28. The apparatus according to claim 27, and comprising collimating optics, which are adapted to collimate the beam of X-rays that is to impinge on the surface.

29. The apparatus according to claim 27, wherein the X-ray source is adapted to direct the beam to impinge on the surface at a grazing angle, and wherein the detector is positioned to detect a variation in the scattered X-rays associated with total external reflection from the area of the surface.

30. The apparatus according to claim 27, wherein the feature comprises a periodic pattern, and wherein the spectrum of the X-rays that is analyzed by the signal

processor comprises a diffraction spectrum due to the periodic pattern.

31. The apparatus according to claim 30, wherein the diffraction spectrum comprises multiple side lobes, and wherein the signal processor is adapted to measure the characteristic by observing a modulation of the side lobes as a function of angle.

32. The apparatus according to claim 31, wherein the signal processor is adapted to determine a thickness of the thin film responsively to an angular spacing of the side lobes.

33. The apparatus according to claim 27, wherein the sample comprises a semiconductor wafer.

34. The apparatus according to claim 33, wherein the thin film comprises a barrier layer.

35. A cluster tool for producing microelectronic devices, comprising:

 a fabrication station, which is adapted to form a periodic feature on a surface of a semiconductor wafer; and

 an inspection station, comprising:

 an X-ray source, which is adapted to direct a beam of X-rays to impinge on an area of the surface containing the periodic feature;

 a detector, which is adapted to receive the X-rays scattered from the surface in a reflection mode so as to detect a spectrum of diffraction in the scattered X-rays as a function of azimuth; and

a signal processor, which is adapted to analyze the spectrum of diffraction in order to determine a dimension of the feature.

36. The cluster tool according to claim 35, wherein the periodic feature comprises sidewalls, which are overlaid with a thin film, and wherein the signal processor is adapted to measure a thickness of the thin film on the sidewalls based on the spectrum.

37. Apparatus for producing microelectronic devices, comprising:

a production chamber, which is adapted to receive a semiconductor wafer;

a fabrication device, which is adapted to form a periodic feature on a surface of the semiconductor wafer within the chamber;

an X-ray source, which is adapted to direct a beam of X-rays toward the semiconductor wafer in the production chamber so as to impinge on an area of the surface containing the periodic feature;

a detector, which is adapted to receive the X-rays scattered from the surface in a reflection mode so as to detect a spectrum of diffraction in the scattered X-rays as a function of azimuth; and

a signal processor, which is adapted to analyze the spectrum of diffraction in order to determine a dimension of the feature.

38. The apparatus according to claim 37, wherein the periodic feature comprises sidewalls, which are overlaid with a thin film, and wherein the signal processor is adapted to measure a thickness of the thin film on the sidewalls based on the spectrum.

ABSTRACT

A method for X-ray analysis of a sample includes directing a beam of X-rays to impinge on an area of a periodic feature on a surface of the sample and receiving the X-rays scattered from the surface in a reflection mode so as to detect a spectrum of diffraction in the scattered X-rays as a function of azimuth. The spectrum of diffraction is analyzed in order to determine a dimension of the feature.

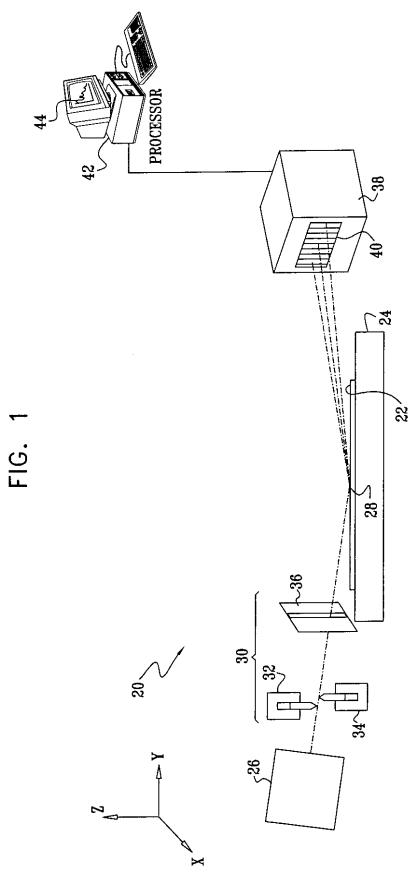


FIG. 1

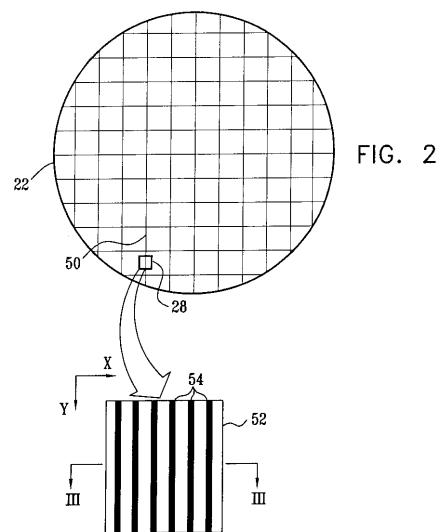


FIG. 2

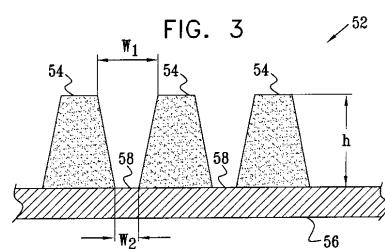


FIG. 3

FIG. 4

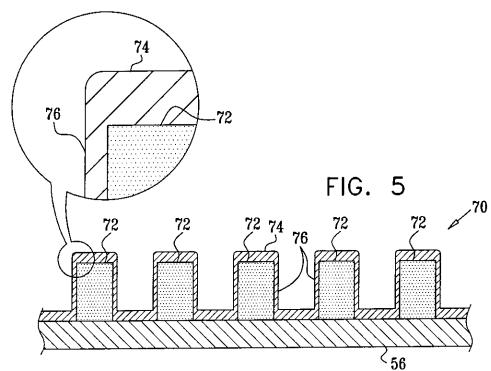
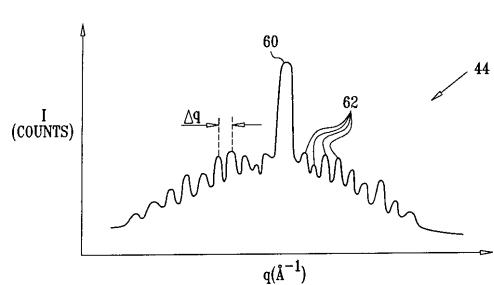



FIG. 5

FIG. 6

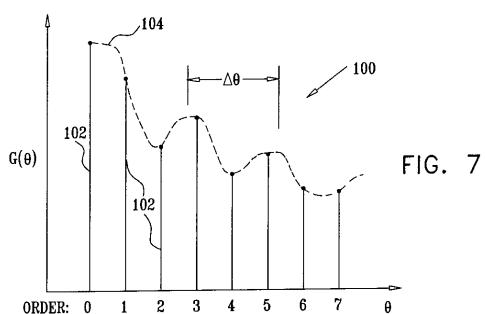
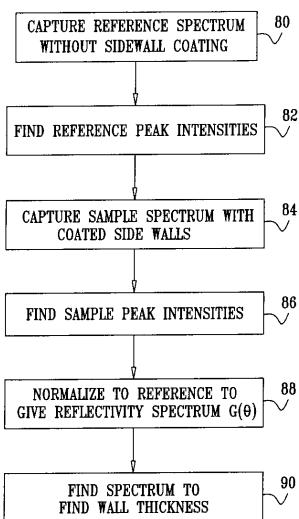
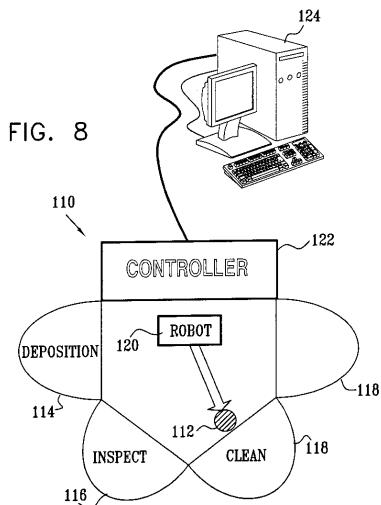
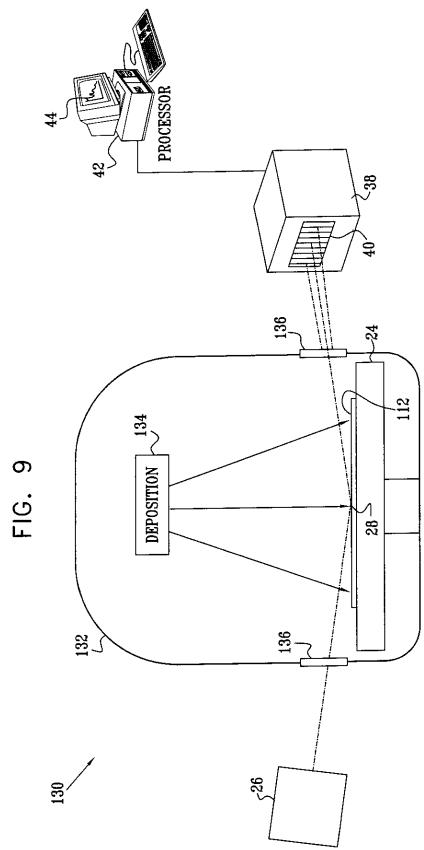





FIG. 7

