
(19) *DE112013007724B420240111*

(10) DE 11 2013 007 724 B4 2024.01.11

(12) Patentschrift

(21) Deutsches Aktenzeichen: 11 2013 007 724.8
(86) PCT-Aktenzeichen: PCT/US2013/077785
(87) PCT-Veröffentlichungs-Nr.: WO 2015/099730
(86) PCT-Anmeldetag: 26.12.2013
(87) PCT-Veröffentlichungstag: 02.07.2015
(43) Veröffentlichungstag der PCT Anmeldung

in deutscher Übersetzung: 15.09.2016
(45) Veröffentlichungstag

der Patenterteilung: 11.01.2024

(51) Int Cl.: G06F 13/14 (2006.01)
G06F 13/20 (2006.01)
G06F 12/0806 (2016.01)

Innerhalb von neun Monaten nach Veröffentlichung der Patenterteilung kann nach § 59 Patentgesetz gegen das Patent
Einspruch erhoben werden. Der Einspruch ist schriftlich zu erklären und zu begründen. Innerhalb der Einspruchsfrist ist
eine Einspruchsgebühr in Höhe von 200 Euro zu entrichten (§ 6 Patentkostengesetz in Verbindung mit der Anlage zu § 2
Abs. 1 Patentkostengesetz).

(62) Teilung in:
11 2013 007 841.4; 11 2013 007 842.2

(73) Patentinhaber:
INTEL CORPORATION, Santa Clara, Calif., US

(74) Vertreter:
Samson & Partner Patentanwälte mbB, 80538
München, DE

(72) Erfinder:
Das Sharma, Debendra, Saratoga, CA, US;
Blankenship, Robert G., Tacoma, Wash., US;
Chittor, Suresh S., Portland, Oreg., US; Creta,

Kenneth C., Gig Harbor, Wash., US; Fleischer,
Balint, Groton, Mass., US; Jen, Michelle C.,
Sunnyvale, Calif., US; Kumar, Mohan J., Aloha,
Oreg., US; Morris, Brian S., Santa Clara, Calif., US

(56) Ermittelter Stand der Technik:

US 2013 / 0 268 694 A1
CN 1 03 430 161 A

CN 1 03 430 161 A (in maschineller
Übersetzung)

(54) Bezeichnung: SYSTEM, VORRICHTUNG UND VERFAHREN ZUR GEMEINSAMEN BENUTZUNG VON SPEICHER
UND I/O-DIENSTEN ZWISCHEN KNOTEN

(57) Hauptanspruch: Apparat aufweisend:
eine Steuerung (515; 515a, 515b) eines gemeinsam benutz
ten Speichers (505; 505a, 505b) zum:
Bedienen von Last- und Speicheroperationen, die über
Datenverbindungen von mehreren unabhängigen Knoten
(510a,......, 510n; 510a,............, 510e) empfangen werden,
um einen Zugang zu einer gemeinsam benutzten Speicher
ressource vorzusehen, wobei jedem der mehreren unab
hängigen Knoten (510a,......,510n; 510a,...........510e)
Zugang zu einem entsprechenden Teil der gemeinsam
benutzten Speicherressource gewährt wird; und
eine I/O-Logik zum:
Identifizieren von Übergängen zwischen Zwischenverbin
dungsprotokolldaten und Speicherzugangsprotokolldaten,
die auf den Datenverbindungen gesendet werden,
dadurch gekennzeichnet dass Übergänge zwischen Zwi
schenverbindungsprotokolldaten und Speicherzugangspro
tokolldaten durch ein Datenstrom-Framing-Token, das zum
Identifizieren der Übergänge codiert ist, identifziert werden.

Beschreibung

GEBIET

[0001] Diese Offenbarung betrifft ein System, eine
Vorrichtung und ein Verfahren zum Identifizieren
von Übergängen zwischen Zwischenverbindungs
protokolldaten und Speicherzugangsprotokolldaten.
Die Druckschrift US 2013/0 268 694 A1 offenbart
einen externen Host sowie ein System von Switches,
an das über eine PCIe-Schnittstelle mehrere PCIe-
Geräte angeschlossen werden können, wobei es
die PCIe-Schnittstelle den daran angeschlossenen
Geräten einen direkten Speicherzugriff erlaubt.

HINTERGRUND

[0002] Fortschritte in der Halbleiterbearbeitung und
im logischen Design haben eine Erhöhung der
Menge an Logik ermöglicht, die auf integrierten
Schaltungsvorrichtungen vorhanden sein kann. Als
unmittelbare Folge haben sich Computersystemkon
figurationen von einer einzelnen oder mehreren
integrierten Schaltungen zu einem System mehrfa
cher Kerne, mehrfacher Hardware-Threads, und
mehrfacher logischer Prozessoren entwickelt, die
auf einzelnen integrierten Schaltungen vorhanden
sind, wie auch anderen Schnittflächen, die in solchen
Prozessoren integriert sind. Ein Prozessor oder eine
integrierte Schaltung weist typischerweise ein einzel
nes physisches Prozessor-Die auf, wobei das Pro
zessor-Die eine beliebige Anzahl von Kernen, Hard
ware-Threads, logischen Prozessoren,
Schnittstellen, Speicher, Controller-Hubs, usw. ent
halten kann.

[0003] Infolge der besseren Möglichkeit mehr Verar
beitungsleistung in kleinere Packages einzufügen,
haben kleinere Rechnervorrichtungen an Beliebtheit
gewonnen. Smartphones, Tablets, ultradünne Not
ebooks und andere Benutzergeräte haben exponen
tiell zugenommen. Diese kleineren Vorrichtungen
basieren jedoch auf Servern sowohl zur Datenspei
cherung wie auch zur komplexen Verarbeitung, was
den Formfaktor überschreitet. Folglich hat auch der
Bedarf am Hochleistungsrechnermarkt (d.h., Server-
Raum) zugenommen. Zum Beispiel ist in modernen
Servern typischerweise zur Erhöhung der Rechen
leistung nicht nur ein einzelner Prozessor mit mehr
fachen Kernen vorhanden, sondern es gibt auch
mehrfache physische Prozessoren (auch als mehrfa
che Buchsen bezeichnet). Mit steigender Verarbei
tungsleistung im Zusammenhang mit der Anzahl
von Vorrichtungen in einem Rechnersystem wird
jedoch die Kommunikation zwischen Buchsen und
anderen Vorrichtungen kritischer.

[0004] Tatsächlich haben sich Zwischenverbindun
gen von eher traditionellen Multi-Drop-Bussen, die
vorwiegend elektrische Kommunikationen bewältig

ten, zu vollständig ausgearbeiteten Zwischenverbin
dungsarchitekturen entwickelt, die eine schnelle
Kommunikation erleichtern. Da der Verbrauch
zukünftiger Prozessoren bei noch höheren Raten lie
gen wird, besteht leider ein entsprechender Bedarf
bei den Fähigkeiten bestehender Zwischenverbin
dungsarchitekturen.

[0005] Die CN 103 430 161 A beschreibt ein Verfah
ren, eine Vorrichtung und ein System, die auf einer
PCIE-(Peripheral Component Interconnect
Express)-Switch-Kommunikation basieren, bezieht
sich auf den Kommunikations- und den Rechnerbe
reich und wird für die Realisierung der gemeinsamen
Nutzung von Daten zwischen Prozessoren durch
einen PCIE-Switch verwendet. Bei dem Verfahren
empfängt ein erstes Steuerungsprogramm eine von
einem ersten Prozessor gesendete RAM-Anforde
rung. Ein zweites Steuerungsprogramm wird durch
erste Markierungsinformationen in der RAM-Anfor
derung bestimmt und eine PCIE-Markierung des
zweiten Steuerungsprogramms wird erhalten. Ent
sprechend der RAM-Anforderung, der PCIE-Markie
rung des ersten Steuerungsprogramms und der
PCIE-Markierung des zweiten Steuerungspro
gramms wird eine PCIE-Anforderungsnachricht
erzeugt, die über den PCIE-Switch an das zweite
Steuerungsprogramm gesendet wird, sodass das
zweite Steuerungsprogramm die RAM-Anforderung
an einen zweiten Prozessor senden kann, der von
dem ersten Prozessor entsprechend der PCIE-
Anforderungsnachricht besucht wird. Der erste Pro
zessor kann die Speicherdaten des zweiten Prozess
ors über den PCIE-Switch besuchen und die Daten
des zweiten Prozessors abrufen. Dadurch wird der
Zweck der gemeinsamen Nutzung von Daten zwi
schen den Prozessoren realisiert.

[0006] Der Erfindung liegt die Aufgabe zugrunde,
einen verbesserten Zugang zu einem gemeinsam
benutzten Speicher bereitzustellen.

[0007] Zur Lösung der Aufgabe schlägt die Erfin
dung einen Apparat gemäß Anspruch 1, einen Appa
rat gemäß Anspruch 21 und ein Verfahren gemäß
Anspruch 25 vor.

KURZE BESCHREIBUNG DER ZEICHNUNGEN

Fig. 1 veranschaulicht eine Ausführungsform
eines Rechnersystems, das eine Zwischenver
bindungsarchitektur enthält.

Fig. 2 veranschaulicht eine Ausführungsform
einer Zwischenverbindungsarchitektur, die
einen schichtenförmigen Stapel enthält.

Fig. 3 veranschaulicht eine Ausführungsform
einer Anfrage oder eines Pakets, die bzw. das
in einer Zwischenverbindungsarchitektur zu
generieren ist.

2/50

DE 11 2013 007 724 B4 2024.01.11

Fig. 4 veranschaulicht eine Ausführungsform
eines Sender- und Empfängerpaares für eine
Zwischenverbindungsarchitektur.

Fig. 5A veranschaulicht ein vereinfachtes
Blockdiagramm einer Ausführungsform eines
beispielhaften Knotens.

Fig. 5B veranschaulicht ein vereinfachtes
Blockdiagramm einer Ausführungsform eines
beispielhaften Systems, das mehrere Knoten
enthält.

Fig. 6 ist eine Darstellung von Daten, die gemäß
einer beispielhaften, Verbindung zu einem
gemeinsam benutzten Speicher übertragen
werden.

Fig. 7A ist eine Darstellung von Daten, die
gemäß einer anderen beispielhaften, Verbin
dung zu dem gemeinsam benutzten Speicher
übertragen werden.

Fig. 7B ist eine Darstellung eines beispielhaften
Beginns eines Daten-Framing-Tokens.

Fig. 8 ist eine Darstellung von Daten, die gemäß
einer anderen beispielhaften, Verbindung zu
dem gemeinsam benutzten Speichers übertra
gen werden.

Fig. 9A-9D sind Ablaufdiagramme, die beispiel
hafte Techniken zur Speicherzugangsnachrich
tenübermittlung zeigen.

Fig. 10 veranschaulicht eine Ausführungsform
eines Blockdiagramms für ein Rechnersystem,
das einen Mehrfachkern-Prozessor enthält.

Fig. 11 veranschaulicht eine andere Ausfüh
rungsform eines Blockdiagramms für ein Rech
nersystem, das einen Mehrfachkern-Prozessor
enthält.

Fig. 12 veranschaulicht eine Ausführungsform
eines Blockdiagramms für einen Prozessor.

Fig. 13 veranschaulicht eine andere Ausfüh
rungsform eines Blockdiagramms für ein Rech
nersystem, das einen Prozessor enthält.

Fig. 14 veranschaulicht eine Ausführungsform
eines Blocks für ein Rechnersystem, das mehr
fache Prozessoren enthält.

Fig. 15 veranschaulicht ein beispielhaftes Sys
tem, das als System-on-Chip (SoC) implemen
tiert ist.

[0008] Gleiche Bezugszahlen und -zeichen in den
verschiedenen Zeichnungen geben gleiche Ele
mente an.

AUSFÜHRLICHE BESCHREIBUNG

[0009] In der folgenden Beschreibung sind für ein
umfassendes Verständnis der vorliegenden Erfin
dung zahlreiche spezielle Einzelheiten angegeben,
wie beispielsweise spezielle Arten von Prozessoren
und Systemkonfigurationen, spezielle Hardware-
Strukturen, spezielle architektonische und mikroar
chitektonische Einzelheiten, spezielle Registerkonfi
gurationen, spezielle Befehlsarten, spezielle Sys
temkomponenten, spezielle Maße/Höhen, spezielle
Prozessor-Pipeline-Stufen und spezieller Betrieb
usw. Für den Fachmann auf dem Gebiet ist jedoch
klar, dass diese speziellen Einzelheiten in der Aus
führung der vorliegenden Erfindung nicht verwendet
werden müssen. In anderen Beispielen sind allge
mein bekannte Komponenten oder Verfahren, wie
spezielle und alternative Prozessorarchitekturen,
spezielle Logikschaltungen/ein spezieller Code für
beschriebene Algorithmen, ein spezieller Firmware-
Code, ein spezieller Zwischenverbindungsbetrieb,
spezielle Logikkonfigurationen, spezielle Herstel
lungstechniken und -materialien, spezielle Compi
ler-Implementierungen, ein spezieller Ausdruck von
Algorithmen in einem Code, spezielle Abschalt- und
Steuerungstechniken/Logik und andere spezielle
betriebliche Einzelheiten eines Computersystems
nicht ausführlich beschrieben, um die vorliegende
Erfindung nicht unnötig zu verschleiern.

[0010] Obwohl die folgenden Ausführungsformen in
Bezug auf Energieeinsparung und Energieeffizienz
in speziellen integrierten Schaltungen, wie Rechner
plattformen oder Mikroprozessoren, beschrieben
sein können, sind andere Ausführungsformen bei
anderen Arten von integrierten Schaltungen und
Logikvorrichtungen anwendbar. Ähnliche Techniken
und Lehren von hier beschriebenen Ausführungsfor
men können bei anderen Arten von Schaltungen
oder Halbleitervorrichtungen angewendet werden,
die auch von einer besseren Energieeffizienz und
Energieeinsparung profitieren können. Zum Beispiel
sind die offenbarten Ausführungsformen nicht auf
Desktop-Computersysteme oder Ultrabooks™
begrenzt. Und können auch in anderen Vorrichtun
gen, wie in der Hand gehaltenen Vorrichtungen, Tab
lets, anderen dünnen Notebooks, System-on-Chip-
(SOC) Vorrichtungen und eingebetteten Anwendun
gen verwendet werden. Einige Beispiele für in der
Hand gehaltene Vorrichtungen enthalten Mobiltele
fone, Internet-Protokollvorrichtungen, Digitalkame
ras, persönliche digitale Assistenten (PDAs) und in
der Hand gehaltene PCs. Eingebettete Anwendun
gen enthalten typischerweise eine Mikrosteuerung,
einen Digitalsignalprozessor (DSP), ein System auf
einem Chip, Netzwerkcomputer (NetPC), Set-Top-
Boxes, Netzwerk-Hubs, Weitverkehrsnetz- (WAN)
Schalter oder jedes andere System, das die in der
Folge gelehrten Funktionen und Operationen aus
führen kann. Ferner sind die hier beschriebenen

3/50

DE 11 2013 007 724 B4 2024.01.11

Apparate, Verfahren und Systeme nicht auf physi
sche Rechnervorrichtungen begrenzt, sondern kön
nen sich auch auf Software-Optimierungen zur Ener
gieeinsparung und -effizienz beziehen. Wie in der
folgenden Beschreibung sofort offensichtlich wird,
sind die Ausführungsformen von Verfahren, Appara
ten und Systemen (egal ob unter Bezugnahme auf
Hardware, Firmware, Software oder eine Kombina
tion davon) für eine Zukunft `grüner Technologie',
ausgewogen mit Leistungsüberlegungen, wesent
lich.

[0011] Mit der Weiterentwicklung von Rechnersyste
men werden die darin enthaltenen Komponenten
komplexer. Infolgedessen nimmt auch die Komplexi
tät der Zwischenverbindungsarchitektur zur Kopp
lung und Kommunikation zwischen den Komponen
ten zu um sicherzustellen, dass
Bandbreitenanforderungen für einen optimalen Kom
ponentenbetrieb erfüllt sind. Ferner verlangen unter
schiedliche Marktsegmente unterschiedliche
Aspekte von Zwischenverbindungsarchitekturen zur
Erfüllung der Marktbedürfnisse. Zum Beispiel erfor
dern Server eine höhere Leistung, während das
mobile Ökosystem manchmal aus Gründen der Leis
tungseinsparung bei der Gesamtleistung Abstriche
hinnehmen kann. Dennoch ist es eine singuläre Auf
gabe der meisten Matrizen, eine höchstmögliche
Leistung mit einer maximalen Leistungseinsparung
zu bieten. In der Folge werden zahlreiche Zwischen
verbindungen besprochen, die möglicherweise von
Aspekten der hier beschriebenen Erfindung profitie
ren würden.

[0012] Eine Zwischenverbindungsmatrixarchitektur
enthält die Peripheral Component Interconnect
(PCI) Express (PCIe) Architektur. Ein primäres Ziel
von PCIe besteht darin, einen Betrieb zwischen
Komponenten und Vorrichtungen von verschiedenen
Verkäufern in einer offenen Architektur zu ermögli
chen, wobei mehrfache Marktsegmente überspannt
werden; Clients (Desktops und mobile), Server
(Standard und firmeneigene) und eingebettete und
Kommunikationsvorrichtungen. PCI Express ist eine
Hochleistungs-, Allzweck-, I/O-Zwischenverbindung,
die für eine breite Palette zukünftiger Rechner- und
Kommunikationsplattformen definiert ist. Einige PCI-
Attribute, wie sein Gebrauchsmodell, seine Last-
Speicherarchitektur und seine Software-Schnittstel
len, wurden durch seine Überarbeitungen beibehal
ten, während vorherige parallele Bus-Implementie
rungen durch eine hoch skalierbare, vollständig
serielle Schnittstelle ersetzt wurden. Die jüngeren
Versionen von PCI Express nutzen den Vorteil von
Fortschritten in Punkt-zu-Punkt-Zwischenverbindun
gen, schalterbasierter Technologie und paketiertem
Protokoll, um neue Leistungsebenen und Merkmale
bereitstellen. Leistungsmanagement, Dienstgüte
(Quality Of Service, QoS), Hot-Plug/Hot-Swap-
Unterstützung, Datenintegrität und Fehlermanage

ment zählen zu den weiterentwickelten Merkmalen,
die von PCI Express unterstützt werden.

[0013] Unter Bezugnahme auf Fig. 1 ist eine Aus
führungsform einer Matrix dargestellt, die aus
Punkt-zu-Punkt-Verbindungen besteht, die einen
Satz von Komponenten verbinden. System 100 ent
hält einen Prozessor 105 und einen Systemspeicher
110, der an ein Controller-Hub 115 gekoppelt ist. Der
Prozessor 105 enthält jedes Verarbeitungselement,
wie einen Mikroprozessor, einen Host-Prozessor,
einen eingebetteten Prozessor, einen Co-Prozessor
oder anderen Prozessor. Der Prozessor 105 ist an
den Controller-Hub 115 durch einen Front-Side Bus
(FSB) 106. In einer Ausführungsform ist der FSB 106
eine serielle Punkt-zu-Punkt-Zwischenverbindung,
wie unten beschrieben. In einer anderen Ausfüh
rungsform enthält die Verbindung 106 eine serielle,
differentielle Zwischenverbindungsarchitektur, die
mit verschiedenen Zwischenverbindungsstandards
übereinstimmt.

[0014] Der Systemspeicher 110 enthält jede Spei
chervorrichtung, wie Direktzugriffsspeicher (RAM),
nicht flüchtigen (NV) Speicher oder einen anderen
Speicher, der für Vorrichtungen im System 100
zugänglich ist. Der Systemspeicher 110 ist durch
eine Speicherschnittstelle 116 an den Controller-
Hub 115 gekoppelt. Beispiele einer Speicherschnitt
stelle enthalten eine Doppeldatenrate- (DDR) Spei
cherschnittstelle, eine Dualkanal-DDR-Speicher
schnittstelle und eine dynamische RAM (DRAM)
Speicherschnittstelle.

[0015] In einer Ausführungsform ist der Controller-
Hub 115 ein Root-Hub, Root-Komplex oder ein
Root-Controller in einer Peripheral Component Inter
connect Express (PCIe oder PCIE) Zwischenverbin
dungshierarchie. Beispiele für den Controller-Hub
115 enthalten einen Chipsatz, einen Memory Con
troller-Hub (MCH), eine Northbridge, einen Intercon
nect Controller-Hub (ICH), eine Southbridge und
einen Root Controller/Hub. Oftmals bezieht sich der
Begriff Chipsatz auf zwei physisch getrennte Control
ler-Hubs, d.h., einen Memory Controller-Hub (MCH),
der an einen Interconnect Controller-Hub (ICH)
gekoppelt ist. Es ist zu beachten, dass derzeitige
Systeme häufig den MCH mit dem Prozessor 105
integriert enthalten, während der Controller 115 mit
I/O Vorrichtungen auf gleiche Weise, wie unten
beschrieben, kommunizieren kann. In einigen Aus
führungsformen wird optional ein Peer-zu-Peer Rou
ting durch den Root Komplex 115 unterstützt.

[0016] Hier ist der Controller-Hub 115 durch eine
serielle Verbindung 119 an einen Schalter/eine Brü
cke 120 gekoppelt. Eingangs-/Ausgangsmodule 117
und 121, die auch als Schnittstellen/Ports 117 und
121 bezeichnet werden können, enthalten/imple
mentieren einen schichtenförmigen Protokollstapel

4/50

DE 11 2013 007 724 B4 2024.01.11

zum Vorsehen einer Kommunikation zwischen dem
Controller-Hub 115 und dem Schalter 120. In einer
Ausführungsform können mehrfache Vorrichtungen
an den Schalter 120 gekoppelt werden.

[0017] Der Schalter/die Brücke 120 leitet Pakete/
Nachrichten von der Vorrichtung 125 stromaufwärts,
d.h., eine Hierarchie nach oben hin zu einem Root-
Komplex, zum Controller-Hub 115 und stromab
wärts, d.h., eine Hierarchie nach unten, weg vom
Root-Komplex, vom Prozessor 105 oder System
speicher 110 zur Vorrichtung 125. Der Schalter 120
wird in einer Ausführungsform als eine logische
Zusammenstellung mehrfacher virtueller PCI-zu-
PCI Überbrückungsvorrichtungen bezeichnet. Die
Vorrichtung 125 enthält jede interne oder externe
Vorrichtung oder Komponente, die an ein elektri
sches System gekoppelt werden soll, wie eine I/O-
Vorrichtung, eine Network Interface Controller
(NIC), eine Erweiterungskarte, einen Audioprozes
sor, einen Netzwerkprozessor, ein Festplattenlauf
werk, eine Speichervorrichtung, einen CD/DVD
ROM, einen Monitor, einen Drucker, eine Maus,
eine Tastatur, einen Router, eine tragbare Speicher
vorrichtung, eine Firewire-Vorrichtung, eine Univer
sal Serial Bus (USB) Vorrichtung, einen Scanner
und andere Eingangs-/Ausgangsvorrichtungen.
Häufig wird im PCIe-Jargon eine solche Vorrichtung
als Endpunkt bezeichnet. Obwohl nicht im Speziellen
dargestellt, kann die Vorrichtung 125 eine Brücke
von PCIe zu PCI/PCI-X enthalten, um altherge
brachte oder eine andere Version von PCI Vorrich
tungen zu unterstützen. Endpunktvorrichtungen in
PCIe sind häufig als althergebrachte, PCIe, oder
Root-Komplex integrierte Endpunkte klassifiziert.

[0018] Es ist auch ein Grafikbeschleuniger 130
durch die serielle Verbindung 132 an den Control
ler-Hub 115 gekoppelt. In einer Ausführungsform ist
der Grafikbeschleuniger 130 an einen MCH gekop
pelt, der an einen ICH gekoppelt ist. Der Schalter
120, und somit die I/O-Vorrichtung 125, wird dann
an den ICH gekoppelt. I/O-Module 131 und 118 sol
len auch einen schichtenförmigen Protokollstapel für
eine Kommunikation zwischen Grafikbeschleuniger
130 und Controller-Hub 115 implementieren. Ähnlich
wie bei der vorangehenden Besprechung des MCH
können eine Grafiksteuerung oder der Grafikbe
schleuniger 130 selbst im Prozessor 105 integriert
sein.

[0019] In Hinblick nun auf Fig. 2 ist eine Ausfüh
rungsform eines schichtenförmigen Protokollstapels
dargestellt. Der schichtenförmige Protokollstapel 200
enthält jede Form eines schichtenförmigen Kommu
nikationsstapels, wie einen Quick Path Interconnect
(QPI) Stapel, einen PCie-Stapel, einen Hochleis
tungsrechner- Zwischenverbindungsstapel der
nächsten Generation oder einen anderen schichten
förmigen Stapel. Obwohl sich die unmittelbare fol

gende Besprechung unter Bezugnahme auf Fig. 1-
4 auf einen PCIe-Stapel bezieht, können dieselben
Konzepte bei anderen Zwischenverbindungsstapeln
angewendet werden. In einer Ausführungsform ist
der Protokollstapel 200 ein PCIe-Protokollstapel,
der eine Transaktionsschicht 205, eine Verbindungs
schicht 210 und eine physische Schicht 220 enthält.
Eine Schnittstelle, wie Schnittstellen 117, 118, 121,
122, 126 und 131 in Fig. 1, kann als Kommunika
tionsprotokollstapel 200 dargestellt werden. Die Dar
stellung als Kommunikationsprotokollstapel kann
auch als Modul oder Schnittstelle bezeichnet wer
den, das bzw. die einen Protokollstapel implemen
tiert/enthält.

[0020] PCI Express verwendet Pakete zur Kommu
nikation von Informationen zwischen Komponenten.
In der Transaktionsschicht 205 und Datenverbin
dungsschicht 210 werden Pakete gebildet, um die
Informationen von der sendenden Komponente zur
empfangenden Komponente zu befördern. Während
die gesendeten Pakete durch die anderen Schichten
gehen, werden sie mit zusätzlichen Informationen
erweitert, die zum Handhaben von Pakete in diesen
Schichten erforderlich sind. An der Empfangsseite
läuft der umgekehrte Prozess und die Pakete werden
aus ihrer Darstellung in der physischen Schicht 220
in die Darstellung der Datenverbindungsschicht 210
und letztendlich (für Transaktionsschichtpakete) in
die Form umgewandelt, die von der Transaktions
schicht 205 der Empfangsvorrichtung verarbeitet
werden kann.

Transaktionsschicht

[0021] In einer Ausführungsform dient die Transak
tionsschicht 205 zum Vorsehen einer Schnittstelle
zwischen einem Verarbeitungskern einer Vorrichtung
und der Zwischenverbindungsarchitektur, wie der
Datenverbindungsschicht 210 und der physischen
Schicht 220. In dieser Hinsicht ist eine primäre
Zuständigkeit der Transaktionsschicht 205 die
Zusammenstellung und Zerlegung von Paketen
(d.h., Transaktionsschichtpaketen oder TLPs). Die
Translationsschicht 205 verwaltet typischerweise
die Credit-Based Flow Control für TLPs. PCIe imple
mentiert geteilte Transaktionen, d.h., Transaktionen,
bei welchen Anfrage und Antwort zeitlich getrennt
sind, wodurch eine Verbindung anderen Verkehr
befördern kann, während die Zielvorrichtung Daten
für die Antwort sammelt.

[0022] Zusätzlich verwendet die PCIe die Credit-
Based Flow Control. In diesem Schema kündigt
eine Vorrichtung eine anfängliche Menge an Credits
für jeden der Empfangspuffer in der Transaktions
schicht 205 an. Eine externe Vorrichtung am gegen
überliegenden Ende der Verbindung, wie der Con
troller-Hub 115 in Fig. 1, zählt die Anzahl von
Credits, die von jedem TLP verbraucht wird. Eine

5/50

DE 11 2013 007 724 B4 2024.01.11

Transaktion kann gesendet werden, wenn die Trans
aktion einen Credit-Grenzwert nicht übersteigt. Bei
Empfang einer Antwort wird die Credit-Menge wie
derhergestellt. Ein Vorteil eines Credit-Schemas ist,
dass die Latenz der Credit-Rückgabe die Leistung
nicht beeinflusst, vorausgesetzt, der Credit-Grenz
wert wird nicht erreicht.

[0023] In einer Ausführungsform enthalten vier
Transaktionsadressenräume einen Konfigurations
adressenraum, einen Speicheradressenraum, einen
Eingangs-/Ausgangsadressenraum und einen Nach
richtadressenraum. Speicherraumtransaktionen ent
halten eine oder mehrere Leseanfragen und Schreib
anfragen zum Übertragen von Daten zu/von einer
speicherabgebildeten Stelle. In einer Ausführungs
form sind Speicherraumtransaktionen imstande,
zwei verschiedene Adressenformate zu verwenden,
z.B. ein kurzes Adressenformat, wie eine 32-Bit-
Adresse, oder ein langes Adressenformat, wie eine
64-Bit-Adresse. Konfigurationsraumtransaktionen
werden für einen Zugriff auf den Konfigurationsraum
der PCIe-Vorrichtungen verwendet. Transaktionen
zum Konfigurationsraum enthalten Leseanfragen
und Schreibanfragen. Nachrichtenraumtransaktio
nen (oder einfach Nachrichten) sind zum Unterstüt
zen einer Kommunikation innerhalb des Bandes zwi
schen PCIe-Agenten definiert.

[0024] Daher stellt in einer Ausführungsform die
Transaktionsschicht 205 die Paketkopfzeile/Nutzlast
206 zusammen. Das Format für aktuelle Paketkopf
zeilen/Nutzlasten findet sich in der PCIe-Spezifika
tion auf der PCIe-Spezifikationen-Website.

[0025] Unter Bezugnahme auf Fig. 3 ist kurz eine
Ausführungsform eines PCIe-Transaktionsdeskrip
tors dargestellt. In einer Ausführungsform ist der
Transaktionsdeskriptor 300 ein Mechanismus zur
Beförderung von Transaktionsinformationen. In die
ser Hinsicht unterstützt der Transaktionsdeskriptor
300 die Identifizierung von Transaktionen in einem
System. Andere mögliche Anwendungen enthalten
eine Verfolgung von Modifizierungen einer vorgege
benen Transaktionsreihung und eine Zuordnung
einer Transaktion mit Kanälen.

[0026] Der Transaktionsdeskriptor 300 enthält ein
globales Kennungsfeld 302, ein Attributfeld 304 und
ein Kanalkennungsfeld 306. In dem dargestellten
Beispiel ist das globale Kennungsfeld 302 mit
einem lokalen Transaktionskennungsfeld 308 und
Quellenkennungsfeld 310 dargestellt. In einer Aus
führungsform ist die globale Transaktionskennung
302 für alle ausstehenden Anfragen einzigartig.

[0027] Gemäß einer Implementierung ist das lokale
Transaktionskennungsfeld 308 ein Feld, das von
einem anfragenden Agenten generiert wird, und ist
für alle ausstehenden Anfragen einzigartig, die für

diesen anfragenden Agenten vollendet werden müs
sen. Ferner identifiziert in diesem Beispiel die Quel
lenkennung 310 den anfragenden Agenten einzigar
tig innerhalb einer PCIe-Hierarchie. Daher sieht das
lokale Transaktionskennungs- 308 Feld gemeinsam
mit der Quellen-ID 310 eine globale Identifizierung
einer Transaktion innerhalb einer Hierarchiedomäne
vor.

[0028] Das Attributfeld 304 spezifiziert Eigenschaf
ten und Verhältnisse der Transaktion. In dieser Hin
sicht wird das Attributfeld 304 möglicherweise zum
Vorsehen zusätzlicher Informationen verwendet, die
eine Modifizierung der vorgegebenen Handhabung
von Transaktionen ermöglichen. In einer Ausfüh
rungsform enthält das Attributfeld 304 ein Prioritäts
feld 312, ein reserviertes Feld 314, ein Reihungsfeld
316, und ein No-Snoop-Feld 318. Hier kann ein Prio
ritätsteilfeld 312 von einem Initiator modifiziert wer
den, um der Transaktion eine Priorität zu verleihen.
Das reservierte Attributfeld 314 bleibt für die Zukunft
oder für eine vom Verkäufer definierte Nutzung reser
viert. Mögliche Gebrauchsmodelle, die Prioritäts-
oder Sicherheitsattribute verwenden, können mit
Hilfe des reservierten Attributfeldes implementiert
werden.

[0029] In diesem Beispiel wird ein Reihungsattribut
feld 316 zum Zuleiten optionaler Informationen ver
wenden, die die Art der Reihung angeben, die vorge
gebene Reihungsregeln modifizieren kann. Gemäß
einer beispielhaften Implementierung gibt ein Rei
hungsattribut von „0“ an, dass vorgegebene Rei
hungsregeln gelten, wobei ein Reihungsattribut von
„1“ eine entspannte Reihung angibt, wobei Schreib
vorgänge Schreibvorgänge in derselben Richtung
durchlaufen können und Lesevervollständigungen
Schreibvorgänge in derselben Richtung durchlaufen
können. Das Snoop-Attributfeld 318 wird zur Bestim
mung verwendet, ob Transaktionen ausspioniert
(„snooped“) werden. Wie dargestellt, identifiziert
das Kanal-ID-Feld 306 einen Kanal, dem eine Trans
aktion zugeordnet ist.

Verbindungsschicht

[0030] Die Verbindungsschicht 210, auch als Daten
verbindungsschicht 210 bezeichnet, dient als Zwi
schenstufe zwischen der Transaktionsschicht 205
und der physischen Schicht 220. In einer Ausfüh
rungsform ist eine Zuständigkeit der Datenverbin
dungsschicht 210 ein Vorsehen eines zuverlässigen
Mechanismus zum Austauschen von Transaktions
schichtpaketen (TLPs) zwischen zwei Komponenten
einer Verbindung. Eine Seite der Datenverbindungs
schicht 210 akzeptiert TLPs, die von der Transak
tionsschicht 205 zusammengestellt wurden, verleiht
eine Paketsequenzkennung 211, d.h., eine Identifi
zierungsnummer oder Paketnummer, berechnet
einen Fehlererfassungscode, d.h. CRC 212, und

6/50

DE 11 2013 007 724 B4 2024.01.11

wendet ihn an, und unterbreitet die modifizierten
TLPs der physischen Schicht 220 zur Übertragung
über eine physische zu einer externen Vorrichtung.

Physische Schicht

[0031] In einer Ausführungsform enthält die physi
sche Schicht 220 einen logischen Teilblock 221 und
einen elektrischen Teilblock 222 zum physischen
Senden eines Pakets zu einer externen Vorrichtung.
Hier ist der logische Teilblock 221 für die „digitalen“
Funktionen der physischen Schicht 221 zuständig. In
dieser Hinsicht enthält der logische Teilblock einen
Sendeabschnitt zur Vorbereitung ausgehender Infor
mationen, die vom physischen Teilblock 222 gesen
det werden, und einen Empfangsabschnitt zum Iden
tifizieren und Vorbereiten empfangener
Informationen, bevor diese zur Verbindungsschicht
210 geleitet werden.

[0032] Der physische Block 222 enthält einen Sen
der und einen Empfänger. Dem Sender werden vom
logischen Teilblock 221 Symbole zugleitet, die der
Sender serialisiert und zu einer externen Vorrichtung
sendet. Dem Empfänger werden die serialisierten
Symbole von einer externen Vorrichtung zugeleitet,
und er wandelt die empfangenen Signale in einen
Bit-Strom um. Der Bit-Strom wird entserialisiert und
zum logischen Teilblock 221 geleitet. In einer Ausfüh
rungsform wird ein 8b/10b Sendungscode verwen
det, wobei zehn-Bit Symbole gesendet/empfangen
werden. Hier werden Spezialsymbole verwendet,
um ein Paket mit Frames 223 zu versehen. Zusätz
lich sieht in einem Beispiel der Empfänger auch
einen Symboltakt vor, der aus dem eingehenden
seriellen Strom gewonnen wird.

[0033] Wie oben angegeben, obwohl die Transak
tionsschicht 205, die Verbindungsschicht 210 und
die physische Schicht 220 in Bezug auf eine spe
zielle Ausführungsform eines PCIe-Protokollstapels
besprochen werden, ist ein schichtenförmiger Proto
kollstapel nicht derart begrenzt. Tatsächlich kann
jedes schichtenförmige Protokoll enthalten/imple
mentiert sein. Als ein Beispiel enthält ein Port/eine
Schnittstelle, dargestellt als ein schichtenförmiges
Protokoll: (1) eine erste Schicht zum Zusammenstel
len von Paketen, d.h., eine Transaktionsschicht; eine
zweite Schicht zur Reihung von Paketen, d.h., eine
Verbindungsschicht; und eine dritte Schicht zum
Senden der Pakete, d.h., eine physische Schicht.
Als ein spezielles Beispiel wird ein schichtenförmiges
Protokoll einer allgemeinen Standardschnittstelle
(Common Standard Interface, CSI) verwendet.

[0034] Unter Bezugnahme im Anschluss auf Fig. 4
ist eine Ausführungsform einer seriellen Punkt-zu-
Punkt-PCIe-Matrix dargestellt. Obwohl eine Ausfüh
rungsform einer seriellen Punkt-zu-Punkt- PCIe-Ver
bindung dargestellt ist, ist eine serielle Punkt-zu-

Punkt-Verbindung nicht derart begrenzt, da sie
jeden Sendepfad zum Senden serieller Daten ent
hält. In der dargestellten Ausführungsform enthält
eine grundlegende PCIe-Verbindung zwei unter
schiedliche angesteuerte Niederspannungssignal
paare: ein Sendungspaar 406/411 und ein Emp
fangspaar 412/407. Daher enthält die Vorrichtung
405 eine Sendelogik 406 zum Senden von Daten
zur Vorrichtung 410 und eine Empfangslogik 407
zum Empfangen von Daten von der Vorrichtung
410. Mit anderen Worten, in einer PCIe-Verbindung
sind zwei Sendepfade, d.h., Pfade 416 und 417, und
zwei Empfangspfade, d.h., Pfade 418 und 419, ent
halten.

[0035] Ein Sendepfad bezieht sich auf jeden Pfad
zum Senden von Daten, wie eine Sendeleitung,
eine Kupferleitung, eine optische Leitung, einen
drahtlosen Kommunikationskanal, eine Infrarot-
Kommunikationsverbindung oder einen anderen
Kommunikationspfad. Eine Anbindung zwischen
zwei Vorrichtungen, wie Vorrichtung 405 und Vorrich
tung 410, wird als Verbindung bezeichnet, wie Ver
bindung 415. Eine Verbindung kann eine Spur unter
stützen - wobei jede Spur einen Satz
unterschiedlicher Signalpaare darstellt (ein Paar
zum Senden, ein Paar zum Empfangen). Zur Skalie
rung der Bandbreite kann eine Verbindung mehrfa
che Spuren zusammenfassen, die mit xN bezeichnet
sind, wobei N jede unterstützte Verbindungsbreite,
wie 1, 2, 4, 8, 12, 16, 32, 64 oder breiter, ist.

[0036] Ein unterschiedliches Paar bezieht sich auf
zwei Sendepfade, wie Leitungen 416 und 417, zum
Senden unterschiedlicher Signale. Als ein Beispiel,
wenn die Leitung 416 von einem Niederspannungs
pegel zu einem Hochspannungspegel wechselt, d.h.,
eine ansteigende Flanke, steuert die Leitung 417 von
einem hohen Logikpegel zu einem niederen Logikpe
gel, d.h., eine abfallende Flanke. Unterschiedliche
Signale zeigen möglicherweise bessere elektrische
Eigenschaften, wie eine bessere Signalintegrität,
d.h., Kreuzkopplung, Spannungsüberschreitung/-
unterschreitung, Ringing, usw. Dies erlaubt ein bes
seres Zeitsteuerungsfenster, das schnellere Sende
frequenzen ermöglicht.

[0037] Physische Schichten bestehender Zwischen
verbindungs- und Kommunikationsarchitekturen,
einschließlich PCIe, können aufgebaut werden, um
gemeinsam benutzte Speicher- und I/O-Dienste in
einem System vorzusehen. Üblicherweise können
cachebare Speicher nicht zwischen unabhängigen
Systemen unter Verwendung herkömmlicher Last-
/Speicher- (LD/ST) Speichersemantik geteilt werden.
Ein unabhängiges System oder ein „Knoten“, kann in
dem Sinn unabhängig sein, dass es bzw. er als eine
einzige logische Einheit funktioniert, von einem ein
zigen Betriebssystem (und/oder einem einzigen
BIOS oder Virtual Machine Monitor (VMM)) gesteuert

7/50

DE 11 2013 007 724 B4 2024.01.11

wird und/oder eine unabhängige Fehlerdomäne hat.
Ein einzelner Knoten kann eine oder mehrere Pro
zessorvorrichtung(en) enthalten, kann auf einer ein
zigen Platine oder mehreren Platinen implementiert
sein und einen lokalen Speicher, einschließlich eines
cachebaren Speichers, enthalten, auf den mit Hilfe
von LD/ST-Semantik durch die Vorrichtungen auf
demselben Knoten zugegriffen werden kann. In
einem Knoten kann ein gemeinsam benutzter Spei
cher einen Speicherblock oder mehrere Speicherblö
cke enthalten, wie einen Direktzugriffsspeicher
(RAM), auf den mehrere verschiedene Prozessoren
(z.B. zentrale Verarbeitungseinheiten (CPUs)) in
einem Knoten zugreifen können. Ein gemeinsam
benutzter Speicher kann auch den lokalen Speicher
der Prozessoren oder anderer Vorrichtungen im Kno
ten enthalten. Die mehrfachen Vorrichtungen in
einem Knoten mit einem gemeinsam benutzten Spei
cher können sich eine einzelne Ansicht von Daten im
gemeinsam benutzten Speicher teilen. Die I/O-Kom
munikation, die den gemeinsam benutzten Speicher
beinhaltet, kann eine sehr geringe Latenz aufweisen
und einen raschen Zugang zum Speicher durch die
mehrfachen Prozessoren ermöglichen.

[0038] Üblicherweise hat eine gemeinsame Spei
cherbenutzung zwischen verschiedenen Knoten
nach einem Last-/Speicherparadigma keine gemein
same Speicherbenutzung ermöglicht. Zum Beispiel
wurde in einigen Systemen eine gemeinsame Spei
cherbenutzung zwischen verschiedenen Knoten
durch verteilte Speicherarchitekturen erleichtert. In
herkömmlichen Lösungen bearbeiten Rechenaufga
ben lokale Daten und wenn Daten eines anderen
Knotens erwünscht sind, kommuniziert die Rechen
aufgabe (die z.B. von einem anderen CPU-Knoten
ausgeführt wird) mit dem anderen Knoten zum Bei
spiel über einen Kommunikationskanal, der einen
Kommunikationsprotokollstapel, wie Ethernet, Infini
Band oder ein anderes schichtenförmiges Protokoll
verwendet. In herkömmlichen Mehrfachknotensyste
men muss den Prozessoren verschiedener Knoten
nicht bewusst sein, wo die Daten liegen. Eine
gemeinsame Datenbenutzung unter Verwendung
herkömmlicher Methoden, wie über einen Protokoll
stapel, kann eine signifikant höhere Latenz als eine
gemeinsame Speicherbenutzung in einem Knoten
haben, der ein Last-/Speicherparadigma verwendet.
Anstatt eines direkten Adressierens und Bearbeitens
von Daten in einem gemeinsam benutzten Speicher
kann ein Knoten, neben anderen Beispielen, Daten
von einem anderen mit Hilfe eines bestehenden Pro
tokoll-Handshakes wie Ethernet (oder Infiniband)
anfragen und der Quellenknoten kann die Daten
bereitstellen, so dass die Daten durch den anfragen
den Knoten gespeichert und bearbeitet werden
können.

[0039] In einigen Implementierungen, kann eine
gemeinsam benutzte Speicherarchitektur vorgese

hen sein, die eine gemeinsame Speicherbenutzung
zwischen unabhängigen Knoten für einen aus
schließlichen oder gemeinsamen Zugang unter Ver
wendung einer Last-/Speicher- (LD/ST) Speicherse
mantik ermöglicht. In einem Beispiel können die
Speichersemantik (und, falls zutreffend, Verzeichni
sinformationen) und I/O-Semantik (für Protokolle wie
PCIe) entweder auf einen gemeinsamen Satz von
Pins oder einen separaten Satz von Pins exportiert
werden. In einem solchen System kann jeder von
mehreren Knoten in einem System die verbesserte,
gemeinsam benutzte Speicherarchitektur, um seine
eigene unabhängige Fehlerdomäne (und lokalen
Speicher) beizubehalten, während ein gemeinsam
benutzter Speicherpool für einen Zugang durch den
Knoten und eine Nachrichtübermittlung niedriger
Latenz, die zwischen Knoten läuft, unter Verwen
dung eines Speichers nach der LD/ST-Semantik
möglich ist. In einigen Implementierungen kann ein
solcher, gemeinsam benutzter Speicherpool dyna
misch (oder statisch) zwischen verschiedenen Kno
ten zugeordnet werden. Daher können die verschie
denen Knoten eines Systems als sich dynamisch
ändernde Gruppen von Knoten konfiguriert werden,
die bei Bedarf gemeinsam und flexibel verschiedene
Aufgaben bearbeiten, welche zum Beispiel die
gemeinsam benutzte Speicherinfrastruktur verwen
den.

[0040] In Hinblick nun auf Fig. 5A ist ein vereinfach
tes Blockdiagramm 500a dargestellt, das ein bei
spielhaftes System zeigt, das einen gemeinsam
benutzten Speicher 505 enthält, auf den mit Hilfe
von Last-/Speichertechniken von jedem der mehre
ren unabhängigen Knoten 510a-510n zugegriffen
werden kann. Zum Beispiel kann eine Steuerung
515 des gemeinsam benutzten Speichers 505 vorge
sehen sein, die Last-/Speicherzugangsanfragen der
verschiedenen Knoten 510a-510n auf dem System
annehmen kann. Der gemeinsam benutzte Speicher
505 kann durch Verwendung eines synchronen
dynamischen Direktzugriffsspeichers (SDRAM),
dualer In-line-Speichermodule (DIMM) und eines
anderen nicht flüchtigen Speichers (oder flüchtigen
Speichers) implementiert sein.

[0041] Jeder Knoten kann selbst eine oder mehrere
CPU-Buchse(n) haben und kann auch einen lokalen
Speicher enthalten, der von einem LD/ST-Zugang
durch andere Knoten im System isoliert bleibt. Der
Knoten kann mit anderen Vorrichtungen auf dem
System (z.B. der Steuerung 515 des gemeinsam
benutzten Speichers 505, der Netzwerksteuerung
520, einem anderen Knoten, usw.) unter Verwen
dung eines Protokolls oder mehrerer Protokolle, ein
schließlich PCIe, QPI, Ethernet, neben anderen Bei
spielen, kommunizieren. In einigen
Implementierungen kann ein Verbindungsprotokoll
des gemeinsam benutzten Speichers (SML-Proto
koll) vorgesehen sein, durch das eine LD/ST-Spei

8/50

DE 11 2013 007 724 B4 2024.01.11

chersemantik niedriger Latenz unterstützt werden
kann. Zum Beispiel kann SML in der Kommunikation
von Lese- und Schreibvorgängen eines gemeinsam
benutzten Speichers 505 (durch die Steuerung 515
des gemeinsam benutzten Speichers 505) von den
verschiedenen Knoten 510a-510n eines Systems
verwendet werden.

[0042] In einem Beispiel kann die SML auf einem
Speicherzugangsprotokoll, wie Scalable Memory
Interconnect (SMI) der 3. Generation (SMI3), basie
ren. Alternativ können andere Speicherzugangspro
tokolle verwendet werden, wie transaktionale Spei
cherzugangsprotokolle, wie, neben anderen
Beispielen, ein vollständig gepuffertes DIMM (FB-
DIMM), DDR transaktional (DDR-T). In anderen Fäl
len kann die SML auf einer nativen PCIe-Speicher
lese-/-schreibsemantik mit zusätzliche Verzeich
niserweiterungen basieren. Eine auf einem
Speicherprotokoll basierte Implementierung der
SML kann Vorteile in der Bandbreiteneffizienz bieten,
da sie auf Cachezeilen-Speicherzugänge zuge
schnitten ist. Während Hochleistungskommunika
tionsprotokolle zwischen Vorrichtungen bestehen,
wie PCIe, können obere Schichten (z.B. Transak
tions- und Verbindungsschichten) solcher Protokolle
eine Latenz einführen, die die Anwendung des voll
ständigen Protokolls zur Verwendung in LD/ST-Spei
chertransaktionen verschlechtert, einschließlich
Transaktionen, die einen gemeinsam benutzten
Speicher 505 beinhalten. Ein Speicherprotokoll, wie
SMI3, kann einen möglichen zusätzlichen Vorteil
bedeuten, indem Zugänge mit niedriger Latenz
geboten werden, da es den Großteil eines anderen
Protokollstapels, wie PCIe, umgehen kann. Daher
können SMI,-Implementierungen SMI3 oder ein
anderes Speicherprotokoll nutzen, das auf einer logi
schen und physischen PHY eines anderen Proto
kolls, wie SMI3 on PCIe, läuft.

[0043] Wie festgehalten wurde, kann in einigen
Implementierungen eine Steuerung 515 des gemein
sam benutzten Speichers (SMC) vorgesehen sein,
die eine Logik zur Bearbeitung von Last-/Speicher
anfragen von Knoten 510a-510n im System enthält.
Last-/Speicheranfragen können von der SMC 515
über Verbindungen empfangen werden, die die
SML verwenden und die Knoten 510a-510n mit der
SMC 515 verbinden. In einigen Implementierungen
kann die SMC 515 als eine Vorrichtung implementiert
sein, wie eine anwendungsspezifische integrierte
Schaltung (ASIC), einschließlich einer Logik zum
Bedienen der Zugangsanfragen der Knoten
510a-510n für gemeinsam benutzte Speicherres
sourcen. In anderen Fällen kann die SMC 515 (wie
auch der gemeinsam benutzte Speicher 505) auf
einer Vorrichtung, einem Chip oder einer Platine,
getrennt von einem oder mehreren (oder sogar
allen) der Knoten 510a-510n liegen. Die SMC 515
kann ferner eine Logik zum Koordinieren verschiede

ner Transaktionen der Knoten enthalten, die den
gemeinsam benutzten Speicher 505 beinhalten.
Zusätzlich kann die SMC einen Verzeichnisverfol
gungszugang zu verschiedenen Datenressourcen
führen, wie jede Cachezeile, die im gemeinsam
benutzten Speicher 505 enthalten sind. Zum Beispiel
kann eine Datenressource, unter anderen möglichen
Beispielen, in einem gemeinsam benutzten
Zugangszustand (z.B. imstande, dass mehrere Ver
arbeitungs- und/oder I/O-Vorrichtungen in einem
Knoten gleichzeitig zugreifen (z.B. geladen oder
gelesen)), einem ausschließlichen Zugangszustand
(z.B. ausschließlich, wenn nicht temporär von einer
einzigen Verarbeitungs- und/oder I/O-Vorrichtung in
einem Knoten (z.B. für einen Speicher- oder Schreib
vorgang) reserviert), einem Nicht-Cache-Zustand
sein. Während ferner jeder Knoten einen direkten
Zugang zu einem oder mehreren Abschnitt(en)
eines gemeinsam benutzten Speichers 505 haben
kann, können verschiedene Adressierungsschemata
und -werte von den verschiedenen Knoten (z.B.
510a-510n) verwendet werden, was dazu führt,
dass im selben gemeinsam benutzten Speicher von
einem ersten Knoten gemäß einem ersten Adressen
wert und einem zweiten Knoten, der auf dieselben
Daten durch einen zweiten Adressenwert verweist,
auf Daten (z.B. in einem Befehl) verwiesen wird.
Die SMC 515 kann eine Logik enthalten, die Daten
strukturen beinhaltet, die Adressen der Knoten auf
gemeinsam benutzte Speicherressourcen abbildet,
so dass die SMC 515 die verschiedenen Zugangsan
fragen der verschiedenen Knoten interpretieren
kann.

[0044] Zusätzlich kann in einigen Fällen ein gewis
ser Teil des gemeinsam benutzten Speichers (z.B.
gewisse Trennungen, Speicherblöcke, Aufzeichnun
gen, Dateien, usw.) gewissen Genehmigungen,
Regeln und Zuordnungen unterliegen, so dass nur
ein Teil der Knoten 510a-510n (z.B. durch die SMC
515) auf entsprechende Daten zugreifen kann. Tat
sächlich kann jede gemeinsam benutzte Speicher
ressource einem entsprechenden (und in einigen
Fällen anderen) Teilsatz der Knoten 510a-510n des
Systems zugeordnet werden. Diese Zuordnungen
können dynamisch sein und die SMC 515 kann sol
che Regeln und Genehmigungen (z.B. auf Anfrage,
dynamisch, usw.) modifizieren, um neue oder geän
derte Regeln, Genehmigungen, Knotenzuordnungen
und Eigentumsrecht anzupassen, die für einen
bestimmten Teil des gemeinsam benutzten Spei
chers 505 gelten.

[0045] Eine beispielhafte SMC 515 kann ferner ver
schiedene Transaktionen verfolgen, die Knoten (z.B.
510a-510n) im System beinhalten, die auf eine oder
mehrere gemeinsam benutzte Speicherressourcen
zugreifen. Zum Beispiel kann die SMC 515 Informa
tionen für jede Transaktion eines gemeinsam benutz
ten Speichers 505 verfolgen, einschließlich einer

9/50

DE 11 2013 007 724 B4 2024.01.11

Identifizierung des (der) Knoten(s), der (die) an der
Transaktion beteiligt ist (sind), des Fortlaufs der
Transaktion (z.B. ob sie vollendet ist), neben ande
ren Transaktionsinformationen. Dies kann ermögli
chen, dass einige der transaktionsorientierten
Aspekte herkömmlicher verteilter Speicherarchitek
turen bei der hier beschriebenen, verbesserten,
gemeinsam benutzten Mehrfachknoten-Speicherar
chitektur angewendet werden. Zusätzlich kann eine
Transaktionsverfolgung (z.B. von der SMC) verwen
det werden, eine Aufrechterhaltung oder Durchset
zung der separaten und unabhängigen Fehlerdomä
nen jedes entsprechenden Knoten zu unterstützen.
Zum Beispiel kann die SMC die entsprechende Kno
ten-ID für jede laufende Transaktion in ihren internen
Datenstrukturen, einschließlich im Speicher, verwal
ten und diese Informationen verwenden, um
Zugangsrechte durchzusetzen und einzelne Fehler
domänen für jeden Knoten zu verwalten. Wenn einer
der Knoten abgeschaltet wird (z.B. aufgrund eines
kritischen Fehlers, einer ausgelösten Wiederherstel
lungssequenz oder eines anderen Fehlers oder
Ereignisses), werden daher nur dieser Knoten und
seine Transaktionen, die den gemeinsam benutzten
Speicher 505 beinhalten, unterbrochen (z.B. von der
SMC fallengelassen) - Transaktionen der übrigen
Knoten, die den gemeinsam benutzten Speicher
505 beinhalten, laufen unabhängig von dem Fehler
in dem anderen Knoten weiter.

[0046] Ein System kann mehrfache Knoten enthal
ten. Zusätzlich können einige beispielhafte Systeme
mehrfache SMCs enthalten. In einigen Fällen kann
ein Knoten imstande sein, auf einen gemeinsam
benutzten Speicher jenseits einer fernen SMC zuzu
greifen, mit welcher er nicht direkt verbunden ist
(d.h., die lokale SMC des Knotens ist mit der fernen
SMC durch einen oder mehrere SML-Verbindungs-
Hops verbunden). Die ferne SMC kann sich in der
selben Platine befinden oder könnte sich in einer
anderen Platine befinden. In einigen Fällen können
einige der Knoten abseits des Systems sein (z.B.
abseits der Platine oder abseits des Chips), aber
dennoch auf einen gemeinsam benutzten Speicher
505 zugreifen. Zum Beispiel, können ein oder meh
rere Knoten abseits des Systems unter Verwendung
einer SML-konformen Verbindung, neben anderen
Beispielen, direkt an die SMC angeschlossen sein.
Zusätzlich können andere Systeme, die ihre eigene
SMC und einen gemeinsam benutzten Speicher ent
halten, auch mit der SMC 510 verbunden sein, um
eine gemeinsame Benutzung des Speichers 505
auf Knoten zu erweitern, die zum Beispiel auf einer
anderen Platine enthalten sind, die eine Schnittstelle
mit der anderen SMC hat, die mit der SMC über eine
SML-Verbindung verbunden ist. Ferner können Netz
werkverbindungen durchgetunnelt sein, um den
Zugang auf die anderen Knoten abseits der Platine
oder abseits des Chips zu erweitern. Zum Beispiel
kann die SML über eine Ethernet-Verbindung (die

z.B. durch die Netzwerksteuerung 520 bereitgestellt
ist) tunneln, die das beispielhafte System von Fig. 5A
kommunikativ mit einem anderen System koppelt,
das auch einen oder mehrere andere Knoten enthält,
und diesen Knoten ebenso einen Zugang zur SMC
515 und dadurch zum gemeinsam benutzten Spei
cher 505, neben anderen Beispielen, ermöglichen.

[0047] Als weiteres Beispiel, wie in dem vereinfach
ten Blockdiagramm 500b von Fig. 5B dargestellt,
kann eine verbesserte, gemeinsam benutzte Spei
cherarchitektur, die einen gemeinsamen Zugang
durch mehrfache unabhängige Knoten gemäß einer
LD/ST-Speichersemantik ermöglicht, flexibel ein Vor
sehen einer Reihe verschiedener Mehrfachknoten
systemdesigns ermöglichen. Es können verschie
dene Kombinationen der mehrfachen Knoten
zugeordnet werden, um Teile eines gemeinsam
benutzten Speicherblocks oder mehrerer gemein
sam benutzten Speicherblöcke gemeinsam zu
benutzen, die in einem beispielhaften System vorge
sehen sind. Zum Beispiel kann ein anderes beispiel
haftes System, das in dem Beispiel von Fig. 5B dar
gestellt ist, mehrfache Vorrichtungen 550a-550d
enthalten, die zum Beispiel als separate Dies, Plati
nen, Chips, usw. implementiert sind, wobei jede Vor
richtung einen oder mehrere unabhängige CPU-Kno
ten (z.B. 510a-510h) enthält. Jeder Knoten kann
seinen eigenen lokalen Speicher enthalten. Eine
oder mehrere der mehrfachen Vorrichtungen
550a-550d können ferner einen gemeinsam benutz
ten Speicher enthalten, auf den zwei oder mehr der
Knoten 510a-510h des Systems zugreifen können.

[0048] Das in Fig. 5B dargestellte System ist ein
Beispiel, das zur Veranschaulichung eines Teils der
Variabilität vorgesehen ist, die durch eine verbes
serte, gemeinsam benutzte Speicherarchitektur
erreicht werden kann, wie hier dargestellt und
beschrieben. Zum Beispiel kann jede von einer Vor
richtung A 550a und Vorrichtung C 550c ein entspre
chendes gemeinsam benutztes Speicherelement
(z.B. 505a, 505b) enthalten. Daher kann in einigen
Implementierungen jedes gemeinsam benutzte Spei
cherelement auf einer eigenen Vorrichtung ferner
eine entsprechende Steuerung 515a, 515b des
gemeinsam benutzten Speichers (SMC) enthalten.
Verschiedene Kombinationen von Knoten
510a-510h können kommunikativ an jede SMC
(z.B. 515a, 515b) gekoppelt sein, wodurch die Kno
ten Zugang zu dem entsprechenden gemeinsam
benutzten Speicher (z.B. 505a, 505b) erlangen. Als
ein Beispiel kann die SMC 515a von Vorrichtung A
550a mit den Knoten 510a, 510b auf Vorrichtung A
unter Verwendung einer direkten Datenverbindung,
die SML unterstützt, verbunden sein. Zusätzlich kön
nen andere Knoten 510c auf einer anderen Vorrich
tung (z.B. Vorrichtung C 550c) auch durch eine
direkte, hartverdrahtete Verbindung (die SML unter
stützt) vom Knoten 510c (und/oder seiner Vorrich

10/50

DE 11 2013 007 724 B4 2024.01.11

tung 550c) zur SMC 515a Zugang zum gemeinsam
benutzten Speicher 505a haben. Indirekte, auf dem
Netzwerk basierende und andere derartige Verbin
dungen können auch verwendet werden, um Knoten
(z.B. 510f-510h) einer fernen Vorrichtung oder
abseits der Platine (z.B. Vorrichtung D 550d) die Ver
wendung eines herkömmlichen Protokollstapels zu
ermöglichen, um eine Schnittstelle mit der SMC
515a zu haben, um ebenso auf den gemeinsam
benutzten Speicher 505a Zugang zu haben. Zum
Beispiel kann ein SML-Tunnel 555 über eine Ether
net-, InfiniBand- oder andere Verbindung errichtet
werden, die Vorrichtung A und Vorrichtung D koppelt.
Während der Errichtung und Aufrechterhaltung kann
der Tunnel einen gewissen zusätzlichen Mehrauf
wand und eine Latenz im Vergleich zur SML einfüh
ren, die auf anderen, weniger durch Software verwal
teten physischen Verbindungen läuft, wobei der
SML-Tunnel 555, wenn er errichtet ist, wie andere
SML-Kanäle arbeiten und dem Knoten 510f-510h
ermöglichen kann, eine Schnittstelle mit der SMC
515a über SML zu haben und auf den gemeinsam
benutzten Speicher 505a zuzugreifen, wie dies
jeder andere Knoten kann, der mit der SMC über
eine SML-Verbindung kommuniziert. Zum Beispiel
können Zuverlässigkeit und Reihung der Pakete in
den SML-Kanälen entweder durch die netzwerken
den Komponenten im System durchgesetzt werden
oder können Ende zu Ende zwischen den SMCs
durchgesetzt werden.

[0049] In einem weiteren anderen Beispiel können
Knoten (z.B. 515d, 515e) auf einer Vorrichtung, die
sich von jener unterscheidet, die einen bestimmten
Teil des gemeinsam benutzten Speichers (z.B.
505a) beherbergt, indirekt mit der entsprechenden
SMC (z.B. SMC 515a) durch eine direkte Verbindung
mit einer anderen SMC (z.B. 515b) verbunden sein,
die selbst (z.B. unter Verwendung einer SML Verbin
dung) an die entsprechende SMC (z.B. 515a) gekop
pelt ist. Ein Verbinden von zwei oder mehr SMCs
(z.B. 515a, 515b) kann effektiv die Menge an verfüg
barem gemeinsam benutzten Speicher erhöhen, die
den Knoten 510a-510h auf dem System zur Verfü
gung steht. Zum Beispiel kann aufgrund einer Verbin
dung zwischen SMCs 515a, 515b im Beispiel von
Fig. 5B in einigen Implementierungen jeder der Kno
ten (z.B. 510a-510c, 510f-510h), der auf einen
gemeinsam benutzten Speicher 505a durch die
SMC 515a zugreifen kann, auch möglicherweise
auf einen gemeinsam benutzbaren Speicher 505b
aufgrund der Verbindung zwischen der SMC 515a
und der SMC 515b zugreifen. Ebenso kann in eini
gen Implementierungen jeder der Knoten, die direkt
auf die SMC 515b zugreifen kann, auch auf einen
gemeinsam benutzbaren Speicher 505a aufgrund
der Verbindung zwischen den SMCs 515a, 515b
zugreifen, neben anderen möglichen Beispielen.

[0050] Wie oben festgehalten wurde, kann eine ver
besserte, gemeinsam benutzte Speicherarchitektur
ein Verbindungsprotokoll niedriger Latenz (d.h.,
SML) auf der Basis eines Speicherzugangsproto
kolls, wie SMI3, enthalten und vorgesehen sein, um
Last-/Speicheranfragen zu erleichtern, die den
gemeinsam benutzten Speicher beinhalten. Wäh
rend das traditionelle SMI3 und andere Speicherzu
gangsprotokolle zur Verwendung in einer gemeinsa
men Speicherbenutzung innerhalb eines einzigen
Knotens konfiguriert sein können, kann die SML die
Speicherzugangssemantik auf mehrfache Knoten
erweitern, um eine gemeinsame Speicherbenutzung
zwischen den mehrfachen Knoten zu ermöglichen.
Ferner kann die SML möglicherweise auf jeder phy
sischen Kommunikationsverbindung verwendet wer
den. Die SML kann ein Speicherzugangsprotokoll
verwenden, das eine LD/ST-Speichersemantik
unterstützt, die auf eine physische Schicht (und ent
sprechende physische Schichtlogik) aufgelegt ist, die
dazu angepasst ist, verschiedene Vorrichtungen
(und Knoten) miteinander zu verbinden. Zusätzlich
kann eine physische Schichtlogik der SML neben
anderen Merkmalen keine Paketverlust- und Fehler
wiederholungsfunktionalität vorsehen.

[0051] In einigen Implementierungen kann die SML
durch Auflegen des SMI3 auf ein PCIe PHY imple
mentiert sein. Eine SML-Verbindungsschicht kann
(z.B. anstelle einer traditionellen PCIe-Verbindungs
schicht) vorgesehen sein, um auf eine Strömungs
steuerung und andere Merkmale zu verzichten und
einen Speicherzugang niedriger Latenz zu erleich
tern, wie für traditionelle CPU-Speicherzugangsar
chitekturen charakteristisch wäre. In einem Beispiel
kann die SML-Verbindungsschichtlogik zwischen
Transaktionen mit dem gemeinsam benutzten Spei
cher und anderen Transaktionen multiplexen. Zum
Beispiel kann die SML-Verbindungsschichtlogik zwi
schen SMI3- und PCIe-Transaktionen multiplexen.
Zum Beispiel kann das SMI3 (oder ein anderes Spei
cherprotokoll) auf einer PCIe (oder anderen Zwi
schenverbindungsprotokoll) liegen, so dass die Ver
bindung dynamisch zwischen SMI3- und PCIe-
Transaktionen wechseln kann. Dies ermöglicht,
dass in einigen Fällen traditioneller PCIe-Verkehr
gleichzeitig auf derselben Verbindung wie SML-Ver
kehr vorhanden ist.

[0052] In Hinblick nun auf Fig. 6 ist eine Darstellung
600 gezeigt, die eine erste Implementierung von
SML veranschaulicht. Zum Beispiel kann die SML
durch Auflegen eines SMI3 auf eine PCIe PHY imple
mentiert sein. Die physische Schicht kann eine Stan
dard-PCIe 128b/130b verwenden, die für alle Aktivi
täten der physischen Schicht codiert, einschließlich
Verbindungstraining- wie auch PCIe-Datenblöcke.
Die SML kann einen Verkehr auf den Spuren (z.B.
Lane0 - Lane7) der zu multiplexenden Verbindung
zwischen PCIe-Paketen und SMI3-Flits vorsehen.

11/50

DE 11 2013 007 724 B4 2024.01.11

Zum Beispiel kann in der in Fig. 6 dargestellten
Implementierung die Sync-Kopfzeile der PCIe
128b/130b Codierung modifiziert sein und zur
Anzeige verwendet werden, dass SMI3-Flits und
nicht PCIe-Pakete auf den Spuren der Verbindung
gesendet werden. In der traditionellen PCIe
128b/130b Codierung können gültige Sync-Kopfzei
len (z.B. 610) das Senden entweder eines 10b Mus
ters auf allen Spuren der Verbindung (zur Anzeige,
dass die Art von Nutzlast des Blocks der PCIe-
Datenblock sein soll) oder eines 01b Musters auf
allen Spuren der Verbindung (zur Anzeige, dass die
Art von Nutzlast des Blocks der PCIe gereihte Block
satz sein soll) enthalten. In einem Beispiel einer SML
kann eine alternative Sync-Kopfzeile zur Unterschei
dung eines SMI3-Flit Verkehrs von PCIe-Datenblö
cken und gereihten Sätzen definiert sein. In einem
Beispiel, das in Fig. 6 dargestellt ist, kann die PCIe
128b/130b Sync-Kopfzeile (z.B. 605a, 605b) mit
abwechselnden 01b, 10b Mustern auf ungeraden/
geraden Spuren codiert sein um anzugeben, dass
SMI3-Flits gesendet werden sollen. In einer anderen
alternativen Implementierung, kann die 128b/130b
Sync-Kopfzeile, die für SMI3-Verkehr codiert, durch
abwechselnde 10b, 01b Muster auf ungeraden/ger
aden Spuren, neben anderen beispielhaften Codie
rungen, definiert sein. In einigen Fällen können
SMI3-Flits unmittelbar nach der SMI3 Sync-Kopfzeile
auf einer pro-Byte-Basis gesendet werden, wobei
der Übergang zwischen PCIe- und SMI3-Protokollen
an der Blockgrenze erfolgt.

[0053] In einigen Implementierungen, wie jenen, die
in dem Beispiel von Fig. 6 gezeigt sind, kann der
Übergang zwischen den Protokollen so definiert
sein, dass er an der Blockgrenze erfolgt, unabhängig
davon, ob er einer SMI3-Flit- oder PCIe-Paketgrenze
entspricht. Zum Beispiel kann ein Block so definiert
sein, dass er eine vordefinierte Datenmenge (z.B. 16
Symbole, 128 Bytes, usw.) enthält. Wenn in solchen
Implementierungen die Blockgrenze nicht einer
SMI3-Flit- oder PCIe-Paketgrenze entspricht, kann
die Sendung eines gesamten SMI3-Flits unterbro
chen werden. Ein unterbrochenes SMI3-Flit kann im
nächsten SMI3-Block wiederaufgenommen werden,
was durch das Senden einer anderen Sync-Kopf
zeile angezeigt wird, die für SMI3 codiert ist.

[0054] In Hinblick nun auf Fig. 7A ist eine Darstel
lung 700 gezeigt, die eine andere beispielhafte
Implementierung einer SML veranschaulicht. In
dem Beispiel von Fig. 7A können anstelle einer Ver
wendung einer spezialisierten Sync-Kopfzeile, die
Signalübergänge zwischen Speicherzugangs- und
Zwischenverbindungsprotokollverkehr codiert, phy
sische Schicht-Framing-Token verwendet werden.
Ein Framing-Token (oder „Token“) kann eine Daten
einkapselung auf der physischen Schicht sein, die
die Anzahl von Symbolen spezifiziert oder impliziert,
die in einem Datenstrom enthalten sein soll, der mit

dem Token verknüpft ist. Folglich kann das Framing-
Token angeben, dass ein Strom beginnt, wie auch
implizieren, wo er enden wird, und kann daher auch
zum Angeben der Stelle des nächsten Framing-
Tokens verwendet werden. Ein Framing-Token
eines Datenstroms kann sich im ersten Symbol
(Symbol 0) der ersten Spur (z.B. Spur 0) des ersten
Datenblocks des Datenstroms befinden. In dem Bei
spiel von PCIs können fünf Framing-Token definiert
sein, die das TLP-Verkehrsstart- (STP) Token,
Datenstromende- (EDS) Token, Schlechtes-Ende-
(EDB) Token, DLLP-Start- (SDP) Token und logi
schen Leerlauf- (IDL) Token enthalten.

[0055] In dem Beispiel von Fig. 7A kann die SML
durch Auflegen eines SMI3- oder anderen Datenzu
gangsprotokolls auf eine PCIe implementiert sein
und der Standard-PCIe STP-Token kann so modifi
ziert sein, dass er einen neuen STP-Token definiert,
der angibt, dass SMI3 (anstelle von TLP-Verkehr) auf
den Spuren der Verbindung beginnen wird. In einigen
Beispielen können Werte von Reserve-Bits des Stan
dard-PCIe STP-Tokens modifiziert werden, um das
SMI3 STP-Token in SML zu definieren. Wie ferner
in Fig. 7B dargestellt ist, kann ein STP-Token 705
mehrere Felder enthalten, einschließlich eines 710
Feldes, das die Länge der SMI3-Nutzlast (im Sinne
der Anzahl von Flits) angibt, die folgen wird. In eini
gen Implementierungen können eine oder mehrere
Standardnutzlastlängen für TLP-Daten definiert
sein. SMI3-Daten können in einigen Implementierun
gen so definiert sein, dass sie eine festgesetzte
Anzahl von Flits enthalten, oder in anderen Fällen
eine variable Anzahl von Flits enthalten, wobei in die
sem Fall das Längenfeld für die Anzahl von SMI3-
Flits ein Feld wird, das vernachlässigt werden kann.
Ferner kann das Längenfeld für ein SMI3 STP als
eine Länge definiert sein, die sich von jener der defi
nierten TLP-Nutzlastlängen unterscheidet. Daher
kann ein SMI3 STP, als ein Beispiel, auf der Basis
eines Nicht-TLP-Längenwerts angegeben sein, der
im STP-Längenfeld vorhanden ist. Zum Beispiel kön
nen in einer Implementierung die oberen 3-Bits des
11-Bit STP-Längenfeldes auf 111b gesetzt sein, um
das SMI3 Paket anzugeben (z.B. basierend auf der
Annahme, dass kein spezifikationskonformes PCIe
TLP lang genug sein kann, um eine Länge aufzuwei
sen, wo die oberen 3 Bits des Längenfelds jeweils zu
„1“ führen würden). Andere Implementierungen kön
nen andere Felder des STP-Tokens verändern oder
codieren, um ein PCIe STP-Token, das eine traditio
nelle PCIe TLP-Datennutzlast identifiziert, von einem
SMI3 STP-Token zu unterscheiden, das angibt, dass
SMI3-Daten in TLP-Daten eingekapselt sind.

[0056] Unter erneuter Bezugnahme auf das Beispiel
von Fig. 7A können, Sync-Kopfzeilendaten der
Codierung folgen, die für eine traditionelle PCIe
128b/130b Codierung spezifiziert ist. Zum Beispiel
werden bei 715a-c Sync-Kopfzeilen mit einem Wert

12/50

DE 11 2013 007 724 B4 2024.01.11

10b empfangen, die anzeigen, dass Datenblöcke
bevorstehen. Wenn ein PCIe STP (z.B. 720) empfan
gen wird, wird eine PCIe-TLP-Nutzlast erwartet, und
der Datenstrom wird entsprechend verarbeitet. In
Übereinstimmung mit der Nutzlastlänge, die im
PCIe STP 720 identifiziert ist, kann die PCIe-TLP-
Nutzlast die volle zugewiesene Nutzlastlänge nut
zen. Ein anderes STP-Token kann im Wesentlichen
zur selben Zeit innerhalb eines Datenblocks empfan
gen werden, der dem Ende der TLP-Nutzlast folgt.
Zum Beispiel kann bei 725 ein SMI3 STP empfangen
werden, das einen Übergang von PCIe-TLP-Daten
zu SMI3-Flit Daten signalisiert. Das SMI3 STP kann
zum Beispiel gesendet werden, sobald ein Ende der
PCIe-Paketdaten identifiziert ist.

[0057] In Fortsetzung mit dem Beispiel von Fig. 7A
kann, wie bei den PCIe-TLP-Daten, das SMI3 STP
725 eine Länge der SMI3-Flit-Nutzlast definieren,
die folgen soll. Zum Beispiel kann die Nutzlastlänge
der SMI3-Daten der Anzahl von SMI3-Flits im Sinne
von DW entsprechen, die folgen sollen. Ein Fenster
(das z.B. bei Symbol 15 von Spur 3 endet), das der
Nutzlastlänge entspricht, kann dadurch auf den Spu
ren definiert sein, in welchen nur SMI3-Daten wäh
rend des Fensters gesendet werden sollen. Wenn
sich das Fenster schließt, können andere Daten
gesendet werden, wie ein anderes PCIe STP, das
wiederbeginnt, TLP-Daten oder andere Daten, wie
einen gereihten Datensatz, zu senden. Wie zum Bei
spiel in dem Beispiel von Fig. 7A dargestellt, wird ein
EDS-Token nach dem Ende des SMI3-Datenfensters
gesendet, das durch das SMI3 STP-Token 725 defi
niert ist. Das EDS-Token kann das Ende des Daten
stroms signalisieren und implizieren, dass ein gereih
ter Blocksatz folgen wird, wie im Falle des Beispiels
von Fig. 7A. Eine Sync-Kopfzeile 740, die 01b
codiert ist, wird gesendet um anzugeben, dass ein
gereihter Blocksatz gesendet werden soll. In diesem
Fall wird ein gereihter PCIe-SKP-Satz gesendet. Sol
che gereihten Sätze können periodisch oder in ein
gestellten Intervallen oder Fenstern gesendet wer
den, so dass verschiedene Aufgaben auf PHY-
Ebene und eine Koordination durchgeführt werden
können, einschließlich eines Initialisierens einer Bit-
Ausreichung, eines Initialisierens einer Symbolaus
richtung, eines Austausches von PHY-Parametern,
eines Kompensierens verschiedener Bit-Raten für
zwei kommunizierende Ports, neben anderen Bei
spielen. In einigen Fällen kann ein angeordneter
gereihter Satz gesendet werden, um ein definiertes
Fenster oder einen Datenblock, der für SMI3-Flit-
Daten spezifiziert ist, durch ein entsprechendes
SMI3 STP-Token zu unterbrechen.

[0058] Obwohl im Beispiel von Fig. 7A nicht aus
drücklich dargestellt, kann ein STP-Token auch für
einen Übergang von SMI3-Flit Daten auf der Verbin
dung zu PCIe-TLP-Daten verwendet werden. Zum
Beispiel kann nach dem Ende eines definierten

SMI3 Fensters ein PCIe STP-Token (z.B. ähnlich
dem Token 720) gesendet werden um anzuzeigen,
dass das nächste Fenster zum Senden einer spezifi
zierten Menge an PCIe-TLP-Daten dient.

[0059] Speicherzugangs-Flits (z.B. SMI3-Flits) kön
nen in einigen Ausführungsformen in der Größe vari
ieren, wodurch es schwierig wird vorherzusagen, wie
viele Daten im entsprechenden STP-Token (z.B.
SMI3 STP-Token) für die Speicherzugangsnutzlast
zu reservieren sind. Als ein Beispiel, wie in Fig. 7 dar
gestellt, kann das SMI3 STP 725 ein Längenfeld
haben, das anzeigt, dass erwartet wird, dass 244
Bytes SMI3-Daten dem SMI3 STP 725 folgen. In die
sem Beispiel jedoch sind nur zehn Flits (z.B. SMI3-
Flits 0-9) zur Sendung während des Fensters bereit
und diese zehn SMI3-Flits verwenden nur 240 der
244 Bytes. Daher verbleiben vier (4) Bytes leere
Bandbreite und diese werden mit IDL-Token gefüllt.
Dies kann insbesondere suboptimal sein, wenn
PCIe-TLP-Daten in einer Warteschlange sind und
auf ein Schließen des SMI3-Fensters warten. In
anderen Fällen kann das für die Sendung von
SMI3-Flits vorgesehene Fenster unzureichend sein,
um die Menge an SMI3-Daten zu senden, die für die
Spur bereit ist. Es können Entscheidungstechniken
zur Bestimmung verwendet werden, wie zwischen
SMI3- und PCIe-TLP-Daten entschieden wird, die
gleichzeitig auf der Verbindung vorhanden sind. Fer
ner kann in einigen Implementierungen die Länge
der SMI3-Fenster dynamisch modifiziert werden,
um eine effizientere Verwendung der Verbindung zu
unterstützen. Zum Beispiel kann eine Entschei
dungs- oder andere Logik überwachen, wie gut die
definierten SMI3-Fenster zur Bestimmung genutzt
werden, ob die definierte Fensterlänge besser ange
sichts der für die Spur erwarteten Menge an SMI3
(und konkurrierenden PCIe-TLP-Verkehr) optimiert
werden kann. Daher können in solchen Implementie
rungen die Längenfeldwerte von SMI3 STP-Token
abhängig von der Menge an Verbindungsbandbreite,
der SMI3-Flit Daten zugewiesen werden sollten (z.B.
relativ zu anderen PCIe-Daten, einschließlich TLP-,
DLLP-Daten und eines gereihten Datensatzes),
neben anderen Beispielen, dynamisch (z.B. zwi
schen verschiedenen Werte) eingestellt werden.

[0060] In Hinblick nun auf Fig. 8 ist eine Darstellung
800 einer anderen beispielhaften Implementierung
einer SML dargestellt. In dieser alternativen Ausfüh
rungsform kann die SML verschachtelte SMI3- und
PCIe-Protokolle durch ein modifiziertes PCIe-Fra
ming-Token vorsehen. Wie oben festgehalten
wurde, kann ein EDS-Token in der PCIe zum Anzei
gen eines Endes eines Datenstroms und zum Anzei
gen, dass der nächste Block ein gereihter Blocksatz
sein wird, verwendet werden. In dem Beispiel von
Fig. 8 kann die SML eine SMI3 EDS-Token (z.B.
805) definieren, der das Ende eines TLP-Daten
stroms und den Übergang zu SMI3-Flit-Sendungen

13/50

DE 11 2013 007 724 B4 2024.01.11

anzeigt. Ein SMI3 EDS (z.B. 805) kann durch Codie
ren eines Teils der reservierten Bits des traditionellen
EDS-Tokens definiert werden, um anzuzeigen, dass
SMI3-Daten folgen werden und nicht gereihte PCIe-
Sätze oder andere Daten, die einem PCIe EDS fol
gen. Anders als beim traditionellen EDS-Token kann
der SMI3 EDS im Wesentlichen überall in einem
PCIe-Datenblock gesendet werden. Dies kann eine
zusätzliche Flexibilität beim Senden von SMI3-
Daten und Aufnehmen entsprechender Transaktio
nen mit dem gemeinsam benutzten Speicher gerin
ger Latenz ermöglichen. Zum Beispiel kann ein Über
gang von PCIe zu SMI3 mit einem einzelnen
Doppelwort (DW) an Mehraufwand erfolgen. Ferner
kann, wie bei traditionellen EDS-Token, ein beispiel
haftes SMI3 EDS keine Länge spezifizieren, die mit
den SMI3-Daten verknüpft ist, die dem Token folgen
sollen. Nach einem SMI3 EDS können PCIe-TLP-
Daten enden und SMI3-Flits auf der Verbindung fort
fahren. Der SMI3-Verkehr kann fortfahren, bis die
SMI3-Logik die Steuerung zur PCIe-Logik zurück
stellt. In einigen Implementierungen bewirkt ein Sen
den eines SMI3 EDS, dass die Steuerung von der
PCIe-Logik zur SMI3-Logik geht, die zum Beispiel
auf Vorrichtungen vorgesehen ist, die mit der Verbin
dung verbunden sind.

[0061] In einem Beispiel kann SMI3 (oder ein ande
res Protokoll) seine eigene Verbindungssteuerungs
signalisierung zur Verwendung in der Durchführung
einer Verbindungsschichtsteuerung definieren. Zum
Beispiel kann in einer Implementierung die SML
eine spezialisierte Version eines SMI3-Verbindungs
schichtsteuerungs- (LLCTRL) Flits (z.B. 810) definie
ren, der einen Übergang vom SMI3- zurück zum
PCIe-Protokoll anzeigt. Wie beim SMI3 EDS kann
der definierte LLCTRL-Flit (z.B. 810) bewirken, dass
die Steuerung von der SMI3-Logik zur PCIe-Logik
zurückgeht. In einigen Fällen, wie im Beispiel von
Fig. 8 gezeigt, kann der LLCTRL-Flit (z.B. 810) mit
einer vordefinierten Anzahl von LLCTRL-Leerlauf-
(LLCTRL-IDLE) Flits (z.B. 815) ausgestattet werden,
bevor der Übergang zur PCIe vollendet wird. Zum
Beispiel kann die Anzahl von LLCTRL-IDLE Flits
815, die zum Ausstatten des SMI3 LLCTRL-Flits
810 gesendet wird, von der Latenz zum Decodieren
des definierten SMI3 LLCTRL-Flits 810, das den
Übergang signalisiert, abhängen. Nach Vollendung
des Übergangs zurück zur PCIe kann ein STP-
Paket gesendet werden und TLP-Paketdaten kön
nen wieder auf der Verbindung unter der Steuerung
der PCIe beginnen.

[0062] Es sollte klar sein, dass die hier beschriebe
nen Implementierungen als Beispiele vorgesehen
sind, um gewisse Prinzipien und Merkmale zu zei
gen, die in der Patentschrift offenbart sind. Es sollte
klar sein, dass alternative Konfigurationen, Proto
kolle, und Architekturen (neben jenen, die spezifisch
in den Beispielen besprochen sind) solche Prinzipien

und Merkmale verwenden und anwenden können.
Als ein Beispiel für eine Alternative kann ein PCIe-
Speicherlese-/-schreibvorgang (z.B. anstelle eines
SMI3-Protokolls) verwendet werden, der mit Ver
zeichnungsinformationen verstärkt ist. Die Verzeich
nisinformationen können durch Reserve-Bits des
PCIe-Pakets implementiert werden. In einem ande
ren Beispiel kann der CPU-Knoten eine Cache-
Steuerung (z.B. als eine Alternative zu einer Steue
rung des gemeinsam benutzten Speichers) zum
Senden von Speicherlese-/-schreibtransaktionen
auf einer PCIe-Verbindung verwenden, zum Beispiel
auf der Basis einer fernen Adressenbereichsprüfung,
unter anderen möglichen Beispielen und Alternati
ven.

[0063] In Hinblick nun auf Fig. 9A-9D sind Ablauf
diagramme 900a-d dargestellt, die beispielhafte
Techniken zur Kommunikation unter Verwendung
eines MCPL zeigen. Zum Beispiel kann in Fig. 9A
eine Last-/Speicher-Speicherzugangsnachricht von
einem ersten Knoten empfangen werden 905,
wobei die Nachricht bestimmte Daten eines gemein
sam benutzten Speichers anfragt. Ein Zugang zu den
bestimmten Daten kann für den ersten Knoten vorge
sehen werden 910. Eine zweite Last-/Speicher-Spei
cherzugangsnachricht kann von einem zweiten
unabhängigen Knoten empfangen werden 915. Die
zweite Nachricht kann eine Anfrage für einen Zugang
zu denselben bestimmten Daten des gemeinsam
benutzten Speichers sein und ein Zugang zu den
bestimmten Daten kann für den zweiten Knoten vor
gesehen werden 920. Daten im gemeinsam benutz
ten Speicher können somit von mehrfachen ver
schiedenen unabhängigen Knoten gemeinsam
benutzt werden und für diese zugänglich sein.

[0064] In dem Beispiel von Fig. 9B kann eine erste
Sync-Kopfzeile (wie eine PCIe-Sync-Kopfzeile) mit
einer ersten Codierung empfangen werden 925. Die
Codierung kann einen Übergang von einem Zwi
schenverbindungsprotokoll zu einem Speicherzu
gangsprotokoll anzeigen und der Übergang kann
aus der ersten Sync-Kopfzeile identifiziert werden
930. Daten des Speicherzugangsprotokolls können
nach der ersten Sync-Kopfzeile empfangen werden
und die Daten können verarbeitet werden 935 (z.B. in
Übereinstimmung mit dem Speicherzugangsproto
koll). In einigen Beispielen können die Speicherzu
gangsprotokolldaten Transaktionen enthalten, die
einen gemeinsam benutzten Speicher beinhalten,
der von mehreren mehrfacher unabhängigen Knoten
gemeinsam benutzt wird. Eine zweite Sync-Kopfzeile
kann empfangen werden 940, die eine zweite,
andere Codierung enthält, die einen Übergang vom
Zwischenverbindungsprotokoll anzeigt. Der Über
gang vom Speicherzugangsprotokoll zurück zum
Zwischenverbindungsprotokoll kann aus der zweiten
Sync-Kopfzeile identifiziert werden 945.

14/50

DE 11 2013 007 724 B4 2024.01.11

[0065] In Hinblick nun auf Fig. 9C kann in einigen
Fällen ein erster Datenstart-Token (z.B. ein PCIe
STP-Token) empfangen werden 950, der einen oder
mehrere Werte enthält, die zum Identifizieren eines
Übergangs von einem Zwischenverbindungsproto
koll zu einem Speicherzugangsprotokoll codiert
sind. Daten des Speicherzugangsprotokolls können
nach dem ersten Datenstart-Token eintreffen und
können identifiziert werden 955. Die Daten des Spei
cherzugangsprotokolls können verarbeitet werden
960. Ein Längenfeld kann im ersten Datenstart-
Token enthalten sein, das anzeigt, wann Daten zu
Zwischenverbindungsprotokolldaten zurückgehen.
Tatsächlich kann in einigen Implementierungen das
Längenfeld eines Datenstart-Tokens codiert sein,
um eine Länge anzuzeigen, die den Daten des Spei
cherzugangsprotokolls entspricht. Ferner kann ein
zweites, anderes Datenstart-Framing-Token definiert
sein, das so zu interpretieren ist, dass er einem Ein
treffen von Daten des Zwischenverbindungsproto
kolls entspricht. Jeder von dem ersten und zweiten
Datenstart-Framing-Token kann nach dem Zwi
schenverbindungsprotokoll (z.B. PCIe), neben ande
ren Beispielen, definiert sein.

[0066] In dem Beispiel von Fig. 9D kann ein Strom
ende-Token (z.B. ein spezialisierter PCIe EDS-
Token) empfangen werden 965, der zum Anzeigen
eines Übergangs zu Speicherzugangsprotokolldaten
codiert ist. Das empfangene Stromende-Token kann
einen Übergang 970 von der Verbindungsschichtlo
gik zur Verarbeitung von Zwischenverbindungsproto
kolldaten zur Verbindungsschichtlogik zur Verarbei
tung von Speicherzugangsprotokolldaten
veranlassen. Daten des Speicherzugangsprotokolls
können empfangen werden 975 und unter Verwen
dung der Verbindungsschichtlogik des Speicherzu
gangsprotokolls verarbeitet werden. Verbindungs
schichtsteuerungsdaten des
Speicherzugangsprotokolls können empfangen wer
den 980 (z.B. am Ende der Daten des Speicherzu
gangsprotokolls), um einen Übergang zu Daten des
Zwischenverbindungsprotokolls anzuzeigen. Ein
Empfang 980 der Verbindungsschichtsteuerungsda
ten kann einen Übergang 985 von der Verbindungs
schichtlogik des Speicherzugangsprotokolls zur Ver
bindungsschichtlogik des
Zwischenverbindungsprotokolls veranlassen. Daten
des Zwischenverbindungsprotokolls können nach
den Verbindungsschichtsteuerungsdaten empfan
gen werden und können von der Verbindungs
schichtlogik des Zwischenverbindungsprotokolls
nach dem Übergang 985, neben anderen Beispielen,
verarbeitet werden.

[0067] Es sollte festgehalten werden, dass, obwohl
ein Großteil der Prinzipien und Beispiele im Zusam
menhang mit PCIe und insbesondere Überarbeitun
gen der PCIe-Spezifikation beschrieben sind, die
hier beschriebenen Prinzipien, Lösungen und Merk

male gleichermaßen bei anderen Protokollen und
Systemen anwendbar sein können. Zum Beispiel
können analoge Spurfehler in anderen Verbindun
gen, die andere Protokolle verwenden, auf der
Basis analoger Symbole, Datenströme und Token,
wie auch Regeln, die für die Verwendung, Anordnung
und Formatierung solcher Strukturen innerhalb von
Daten spezifiziert sind, die über dies anderen Verbin
dungen gesendet werden, erfasst werden. Ferner
können alternative Mechanismen und Strukturen
(z.B. neben einem PCIe LES Register oder SKP
OS) zum Vorsehen einer Spurfehlererfassung und
Meldefunktionalität in einem System verwendet wer
den. Ferner können Kombinationen der obenge
nannten Lösungen in Systemen angewendet wer
den, einschließlich, neben anderen Beispielen,
Kombinationen logischer und physischer Verstärkun
gen an einer Verbindung und ihrer entsprechenden
Logik wie hier beschrieben.

[0068] Es ist zu beachten, dass die oben beschrie
benen Apparate, Verfahren und Systeme in jeder
elektronischen Vorrichtung oder jedem System, wie
oben erwähnt, implementiert sein können. Als spe
zielle Veranschaulichung sehen die folgenden Figu
ren beispielhafte Systeme zur Nutzung der Erfin
dung, wie hier beschrieben, vor. Da die folgenden
Systeme ausführlicher beschrieben sind, ist eine
Anzahl von verschiedenen Zwischenverbindungen
offenbart, beschrieben und aus der vorangehenden
Besprechung wieder erwähnt. Und es ist sofort offen
sichtlich, dass die oben beschriebenen Weiterent
wicklungen bei jeder dieser Zwischenverbindungen,
Matrizen oder Architekturen angewendet werden
können.

[0069] Unter Bezugnahme auf Fig. 10 ist eine Aus
führungsform eines Blockdiagramms für ein Rech
nersystem, das einen Mehrfachkern-Prozessor ent
hält, dargestellt. Der Prozessor 1000 enthält einen
beliebigen Prozessor oder eine beliebige Verarbei
tungsvorrichtung, wie einen Mikroprozessor, einen
eingebetteten Prozessor, einen Digitalsignalprozes
sor (DSP), einen Netzwerkprozessor, einen in der
Hand gehaltenen Prozessor, einen Anwendungspro
zessor, einen Co-Prozessor, ein System auf einem
Chip (SOC) oder eine andere Vorrichtung zur Aus
führung eines Codes. Der Prozessor 1000 enthält in
einer Ausführungsform zumindest zwei Kerne - Kern
1001 und 1002, die asymmetrische Kerne oder sym
metrische Kerne (die dargestellte Ausführungsform)
enthalten können. Der Prozessor 1000 kann jedoch
eine beliebige Anzahl von Verarbeitungselementen
enthalten, die symmetrisch oder asymmetrisch sein
können.

[0070] In einer Ausführungsform bezieht sich ein
Verarbeitungselement auf eine Hardware oder
Logik zur Unterstützung eines Software-Thread. Bei
spiele von Hardware-Verarbeitungselementen ent

15/50

DE 11 2013 007 724 B4 2024.01.11

halten: eine Thread-Einheit, einen Thread-Slot,
einen Thread, eine Prozesseinheit, einen Kontext,
eine Kontexteinheit, einen logischen Prozessor,
einen Hardware-Thread, einen Kern und/oder jedes
andere Element, das imstande ist, einen Zustand für
einen Prozessor zu halten, wie einen Ausführungs
zustand oder architektonischen Zustand. Mit ande
ren Worten, ein Verarbeitungselement bezieht sich
in einer Ausführungsform auf jede Hardware, die
imstande ist, unabhängig mit einem Code, wie
einem Software-Thread, Betriebssystem, einer
Anwendung oder einem anderen Code verknüpft zu
werden. Ein physischer Prozessor (oder eine Pro
zessorbuchse) bezieht sich typischerweise auf eine
integrierte Schaltung, die möglicherweise eine belie
bige Anzahl anderer Verarbeitungselemente, wie
Kerne oder Hardware-Threads, enthält.

[0071] Ein Kern bezieht sich häufig auf eine Logik,
die sich auf einer integrierten Schaltung befindet, die
imstande ist einen unabhängigen architektonischen
Zustand aufrechtzuerhalten, wobei jeder unabhängig
aufrechterhaltene architektonische Zustand mit
zumindest einigen zweckbestimmten Ausführungs
ressourcen verknüpft ist. Im Gegensatz zu Kernen
bezieht sich ein Hardware-Thread typischerweise
auf jede Logik, die sich auf einer integrierten Schal
tung befindet, die imstande ist einen unabhängigen
architektonischen Zustand aufrechtzuerhalten,
wobei die unabhängig aufrechterhaltenen architekto
nischen Zustände gemeinsam einen Zugang zu Aus
führungsressourcen benutzen. Wie erkennbar ist,
wenn gewisse Ressourcen gemeinsam benutzt wer
den und andere einem architektonischen Zustand
gewidmet sind, überlappt die Linie zwischen der
Nomenklatur eines Hardware-Thread und Kerns.
Dennoch werden häufig ein Kern und ein Hardware-
Thread von einem Betriebssystem als einzelne logi
sche Prozessoren angesehen, wo das Betriebssys
tem imstande ist, einen Betrieb auf jedem logischen
Prozessor individuell zu planen.

[0072] Der physische Prozessor 1000, wie in Fig. 10
dargestellt, enthält zwei Kerne - Kern 1001 und 1002.
Hier werden Kern 1001 und 1002 als symmetrische
Kerne angesehen, d.h., Kerne mit denselben Konfi
gurationen, Funktionseinheiten und/oder derselben
Logik. In einer anderen Ausführungsform enthält
der Kern 1001 einen Out-of-Order-Prozessorkern,
während der Kern 1002 einen In-Order-Prozessor
kern enthält. Die Kerne 1001 und 1002 können
jedoch einzeln aus j eder Art von Kern gewählt wer
den, wie einem nativen Kern, einem softwareverwal
teten Kern, einem Kern, der dazu angepasst ist, eine
native Befehlssatzarchitektur (Instruction Set Archi
tecture, ISA) auszuführen, einem Kern, der dazu
ausgebildet ist, eine übersetzte Befehlssatzarchitek
tur (ISA) auszuführen, einem co-gestalteten Kern
oder einem anderen bekannten Kern. In einer hetero
genen Kernumgebung (d.h., asymmetrische Kerne)

kann eine gewisse Form von Übersetzung, wie eine
binäre Übersetzung, zum Planen oder Ausführen
eines Codes auf einem Kern oder beiden Kernen ver
wendet werden. Für eine nähere Besprechung sind
die in Kern 1001 dargestellten Funktionseinheiten in
der Folge ausführlich beschrieben, da die Einheiten
im Kern 1002 auf ähnliche Weise in der dargestellten
Ausführungsform arbeiten.

[0073] Wie dargestellt, enthält der Kern 1001 zwei
Hardware-Threads 1001a und 1001b, die auch als
Hardware-Thread-Slots 1001a und 1001b bezeich
net werden können. Daher sehen Software-Einhei
ten, wie ein Betriebssystem, in einer Ausführungs
form möglicherweise den Prozessor 1000 als vier
separate Prozessoren, d.h., vier logische Prozess
oren oder Verarbeitungselemente, die imstande
sind, gleichzeitig vier Software-Threads auszufüh
ren. Wie oben angedeutet, ist ein erster Thread mit
Architekturzustandsregistern 1001a verknüpft, ein
zweiter Thread ist mit Architekturzustandsregistern
1001b verknüpft, ein dritter Thread kann mit Architek
turzustandsregistern 1002a verknüpft sein und ein
vierter Thread kann mit Architekturzustandsregistern
1002b verknüpft sein. Hier kann jedes der Architek
turzustandsregister (1001a, 1001b, 1002a, und
1002b) als Verarbeitungselemente, Thread-Slots
oder Thread-Einheiten bezeichnet werden, wie
oben beschrieben. Wie dargestellt, sind die Architek
turzustandsregister 1001a in Architekturzustandsre
gistern 1001b repliziert, so dass einzelne Architektur
zustände/Kontexte für den logischen Prozessor
1001a und logischen Prozessor 1001b gespeichert
werden können. Im Kern 1001 können auch kleinere
Ressourcen, wie Befehlspointer und Renaming-
Logik im Allocator- und Renamer-Block 1030 ebene
für die Threads 1001a und 1001b repliziert sein.
Einige Ressourcen, wie Rückordnungspuffer in der
Rückordnungs-/Retirement-Einheit 1035, ILTB
1020, Last-/Speicher- Puffer und Warteschlangen
können durch Trennung gemeinsam benutzt werden.
Andere Ressourcen, wie interne Allzweckregister,
Seiten-Tabelle-Basisregister, Daten-Cache auf nied
riger Ebene und Daten-TLB 1015, Ausführungsein
heit(en) 1040 und Teile einer Out-of-Order-Einheit
1035 werden möglicherweise zur Gänze gemeinsam
benutzt.

[0074] Der Prozessor 1000 enthält häufig andere
Ressourcen, die zur Gänze gemeinsam benutzt wer
den können, durch Trennung gemeinsam benutzt
werden können oder durch/für Verarbeitungsele
mente zweckbestimmt sind. In Fig. 10 ist eine Aus
führungsform eines rein beispielhaften Prozessors
mit veranschaulichenden logischen Einheiten/Res
sourcen eines Prozessors dargestellt. Es ist zu
beachten, dass ein Prozessor jede dieser Funktions
einheiten enthalten oder auf diese verzichten kann,
wie auch sämtliche andere bekannte Funktionsein
heiten, Logik oder Firmware, nicht dargestellt, ent

16/50

DE 11 2013 007 724 B4 2024.01.11

halten kann. Wie dargestellt, enthält der Kern 1001
einen vereinfachten, repräsentativen Out-of-Order-
Prozessorkern (OOO). Es kann aber auch in ver
schiedenen Ausführungsformen ein In-Order-Pro
zessor verwendet werden. Der OOO-Kern enthält
einen Abzweigungszielpuffer 1020 zur Vorhersage
von Abzweigungen, die ausgeführt/genommen wer
den sollen, und einen Befehlsübersetzungspuffer (I-
TLB) 1020 zum Speichern von Adressenüberset
zungseinträgen für Befehle.

[0075] Der Kern 1001 enthält ferner ein Decodier
modul 1025, das an eine Abrufeinheit 1020 zum
Decodieren abgerufener Elemente gekoppelt ist.
Eine Abruflogik enthält in einer Ausführungsform ein
zelne Sequenzierer, die mit dem Thread-Slot 1001a
bzw. 1001b verknüpft sind. Üblicherweise ist der
Kern 1001 mit einer ersten ISA verknüpft, die Befehle
definiert/spezifiziert, die auf dem Prozessor 1000
ausführbar sind. Andere Maschinencode-Befehle,
die Teil der ersten ISA sind, enthalten einen Teil des
Befehls (als Opcode bezeichnet), der einen auszu
führenden Befehl oder eine auszuführende Opera
tion angibt/spezifiziert. Die Decodierlogik 1025 ent
hält einen Schaltkreis, der diese Befehle aus ihren
Opcodes erkennt und die decodierten Befehle in
der Pipeline zur Verarbeitung weiterleitet, wie von
der ersten ISA definiert. Wie zum Beispiel in der
Folge ausführlicher besprochen ist, enthalten die
Decodierer 1025 in einer Ausführungsform eine
Logik, die zum Erkennen spezieller Befehle gestaltet
oder angepasst ist, wie eines Transaktionsbefehls.
Infolge des Erkennens seitens der Decodierer 1025
ergreift die Architektur oder der Kern 1001 spezielle,
vordefinierte Maßnahmen zur Durchführung von Auf
gaben, die mit dem passenden Befehl verknüpft sind.
Es muss festgehalten werden, dass sämtliche hier
beschriebene Aufgaben, Blöcke, Operationen und
Verfahren als Reaktion auf einen einfachen oder
mehrfachen Befehl durchgeführt werden können;
von welchen einige neue oder alte Befehle sein kön
nen. Es ist zu beachten, dass in einer Ausführungs
form die Decodierer 1026 dieselbe ISA (oder einen
Teilsatz davon) erkennen. Alternativ erkennen die
Decodierer 1026 in einer heterogenen Kernumge
bung eine zweite ISA (entweder einen Teilsatz der
ersten ISA oder eine andere ISA).

[0076] In einem Beispiel enthält der Allocator- und
Renamer-Block 1030 einen Allocator zum Reservie
ren von Ressourcen, wie Registerdateien zum Spei
chern von Befehlsverarbeitungsergebnissen. Die
Threads 1001a und 1001b sind jedoch möglicher
weise zur einer Out-of-Order-Ausführung imstande,
wo der Allocator- und Renamer-Block 1030 auch
andere Ressourcen reserviert, wie Rückordnungs
puffer zum Verfolgen von Befehlsergebnissen. Die
Einheit 1030 kann auch einen Register-Renamer
zum Umbenennen von Programm-Befehlsreferenz
registern in andere Register im Prozessor 1000 ent

halten. Die Rückordnungs-/Retirement-Einheit 1035
enthält Komponenten, wie die obengenannten Rück
ordnungspuffer, Lastpuffer und Speicherpuffer, zur
Unterstützung einer Out-of-Order-Ausführung und
einer späteren In-Order-Verzögerung von Befehlen,
die in einer anderen Reihenfolge ausgeführt werden.

[0077] Der Planer- und Ausführungseinheit(en)-
Block 1040 enthält in einer Ausführungsform eine
Planungseinheit zum Planen von Befehlen/Operatio
nen auf Ausführungseinheiten. Zum Beispiel wird ein
Fließkommabefehl an einem Port einer Ausführungs
einheit geplant, die eine verfügbare Fließpunktaus
führungseinheit hat. Registerdateien, die mit den
Ausführungseinheiten verknüpft sind, sind ebenso
zum Speichern von Informationen von Befehlsverar
beitungsergebnissen enthalten. Beispielhafte Aus
führungseinheitenenthalten eine Fließkommaaus
führungseinheit, eine Ganzzahlausführungseinheit,
eine Sprungausführungseinheit, eine Lastausfüh
rungseinheit, eine Speicherausführungseinheit und
andere bekannte Ausführungseinheiten.

[0078] Ein Daten-Cache auf niederer Ebene und ein
Datenübersetzungspuffer (D-TLB) 1050 sind an
(eine) Ausführungseinheit(en) 1040 gekoppelt. Der
Daten-Cache dient zum Speichern kürzlich verwen
deter/bearbeiteter Elemente, wie Datenoperanden,
die möglicherweise in Speicherkohärenzzuständen
gehalten werden. Der D-TLB dient zum Speichern
kürzlich durchgeführter virtueller/linearer zu physi
schen Adressenübersetzungen. Als ein spezielles
Beispiel kann ein Prozessor eine Seitentabellen
struktur enthalten, um einen physischen Speicher in
mehrere virtuelle Seiten aufzubrechen.

[0079] Hier benutzen die Kerne 1001 und 1002
gemeinsam einen Zugang zu einem Cache höherer
Ebene oder einem weiter außenliegenden Cache,
wie einen Cache zweiter Ebene, der mit einer On-
chip-Schnittstelle 1010 verknüpft ist. Es ist zu beach
ten, dass „höhere Ebene“ oder „weiter außenliegend“
sich auf Cache-Ebenen bezieht, die steigen oder
weiter weg von der (den) Ausführungseinheit(en)
kommen. In einer Ausführungsform ist ein Cache
höherer Ebene ein Daten-Cache letzter Ebene - der
letzte Cache in der Speicherhierarchie auf dem Pro
zessor 1000 - wie ein Daten-Cache zweiter oder drit
ter Ebene. Ein Cache höherer Ebene ist jedoch nicht
darauf beschränkt, da er mit einem Befehls-Cache
verknüpft sein oder diesen enthalten kann. Ein
Trace-Cache - eine Art von Befehls-Cache - kann
stattdessen nach dem Decodierer 1025 gekoppelt
sein, um kürzlich decodierte Verfolgungen zu spei
chern. Hier bezieht sich ein Befehl möglicherweise
auf einen Makrobefehl (d.h., einen allgemeinen
Befehl, der von den Decodierern erkannt wird), der
in einer Anzahl von Mikrobefehlen (Mikrooperatio
nen) decodiert werden kann.

17/50

DE 11 2013 007 724 B4 2024.01.11

[0080] In der dargestellten Konfiguration enthält der
Prozessor 1000 auch ein On-Chip-Schnittstellenmo
dul 1010. Früher war eine Speichersteuerung, die in
der Folge ausführlicher beschrieben ist, in einem
Rechnersystem extern zum Prozessor 1000 enthal
ten. In diesem Szenario soll eine On-Chip-Schnitt
stelle 1010 mit Vorrichtungen extern zum Prozessor
1000 kommunizieren, wie dem Systemspeicher
1075, einem Chipsatz (der häufig einen Memory
Controller-Hub zur Verbindung mit einem Speicher
1075 und einen I/O Controller-Hub zur Verbindung
mit peripheren Vorrichtungen enthält), einem
Memory Controller-Hub, einer Northbridge oder
einer anderen integrierten Schaltung. Und in diesem
Szenario kann der Bus 1005 jede bekannte Zwi
schenverbindung, wie einen Multi-Drop-Bus, eine
Punkt-zu-Punkt-Zwischenverbindung, eine serielle
Zwischenverbindung, einen parallelen Bus, einen
kohärenten (z.B. Cache-kohärenten) Bus, eine
schichtenförmige Protokollarchitektur, einen Diffe
rential-Bus und einen GTL-Bus enthalten.

[0081] Der Speicher 1075 kann dem Prozessor
1000 gewidmet sein oder von anderen Vorrichtungen
in einem System gemeinsam benutzt werden. Allge
meine Beispiele für Arten von Speicher 1075 enthal
ten DRAM, SRAM, nicht flüchtigen Speicher (NV
Speicher) und andere bekannte Speichervorrichtun
gen. Es ist zu beachten, dass die Vorrichtung 1080
einen Grafikbeschleuniger, einen Prozessor oder
eine Karte, die an einen Memory Controller-Hub
gekoppelt ist, einen Datenspeicher, der an einen I/O
Controller-Hub gekoppelt ist, einen drahtlosen Sen
der/Empfänger, eine Flash-Vorrichtung, eine Audio-
Steuerung, eine Netzwerksteuerung oder eine
andere bekannte Vorrichtung enthalten kann.

[0082] Da jedoch kürzlich immer mehr Logik und
Vorrichtungen auf einem einzigen Die, wie SOC,
integriert werden, kann jede dieser Vorrichtungen
auf dem Prozessor 1000 enthalten sein. Zum Bei
spiel ist in einer Ausführungsform ein Memory Con
troller-Hub auf demselben Package und/oder Die wie
der Prozessor 1000. Hier enthält ein Teil des Kerns
(ein Teil auf dem Kern) 1010 eine oder mehrere
Steuerung(en) zur Schnittstellenbildung mit anderen
Vorrichtungen wie dem Speicher 1075 oder einer
Grafikvorrichtung 1080. Die Konfiguration, die eine
Zwischenverbindung und Steuerungen zur Schnitt
stellenbildung mit solchen Vorrichtungen enthält,
wird häufig als „auf dem Kern“ (oder UnCore-Konfi
guration) bezeichnet. Als ein Beispiel enthält eine
On-Chip-Schnittstelle 1010 eine Ringzwischenver
bindung für eine On-Chip-Kommunikation und eine
Hochgeschwindigkeits-, serielle, Punkt-zu-Punkt-
Verbindung 1005 für eine Off-Chip-Kommunikation.
Dennoch können in der SOC-Umgebung noch mehr
Vorrichtungen, wie die Netzwerkschnittstelle, die Co-
Prozessoren, der Speicher 1075, der Grafikprozes
sor 1080 und sämtliche anderen bekannten Compu

tervorrichtungen/Schnittstellen auf einem einzelnen
Die oder einer einzelnen integrierten Schaltung
integriert sein, um einen kleinen Formfaktor mit
hoher Funktionalität und geringem Stromverbrauch
vorzusehen.

[0083] In einer Ausführungsform ist der Prozessor
1000 imstande, einen Compiler, eine Optimierung
und/oder einen Übersetzercode 1077 auszuführen,
um einen Anwendungscode 1076 zu kompilieren,
zu übersetzen und/oder zu optimieren, um den hier
beschriebenen Apparat und das hier beschriebene
Verfahren oder die Schnittstelle mit diesem zu unter
stützen. Ein Compiler enthält häufig ein Programm
oder einen Satz von Programmen zum Übersetzen
von Quelltext/-code in einen Zieltext/-code. Üblicher
weise erfolgt ein Kompilieren eines Programm-
/Anwendungscodes mit einem Compiler in mehrfa
chen Phasen und läuft zur Umwandlung eines Pro
grammiersprachencodes hoher Ebene in einen
Maschinen- Assembly-Sprachcode niederer Ebene.
Einzeldurchgang-Compiler können jedoch noch
immer für ein einfaches Kompilieren verwendet wer
den. Ein Compiler kann sämtliche bekannte Kompi
liertechniken verwenden und sämtliche bekannte
Compiler-Operationen ausführen, wie lexikalische
Analyse, Vorverarbeitung, Syntaxanalyse, semanti
sche Analyse, Codegenerierung, Codeumformung
und Codeoptimierung.

[0084] Größere Compiler enthalten häufig mehrfa
che Phasen, aber besonders häufig sind diese Pha
sen in zwei allgemeinen Phasen enthalten: (1) einem
Front-End, d.h., wo im Allgemeinen eine syntakti
sche Verarbeitung, semantische Verarbeitung und
eine gewisse Umwandlung/Optimierung stattfinden
kann, und (2) einem Back-End, d.h., wo im Allgemei
nen eine Analyse, Umformungen, Optimierungen
und Codegenerierung stattfinden. Einige Compiler
beziehen sich auf eine Mitte, die das Verschwimmen
einer Abgrenzung zwischen einem Front-End und
Back-End eines Compilers veranschaulicht. Infolge
dessen kann eine Bezugnahme auf ein Einsetzen,
Verknüpfen, Generieren oder einen anderen Betrieb
eines Compilers in jeder der obengenannten Phasen
oder jedem der Durchläufen stattfinden, wie auch in
sämtlichen anderen bekannten Phasen oder Durch
läufen eines Compilers. Als ein veranschaulichendes
Beispiel setzt ein Compiler möglicherweise Operatio
nen, Anrufe, Funktionen usw. in einer oder mehreren
Phasen des Kompilierens ein, wie ein Einsetzen von
Anrufen/Operationen in einer Front-EndPhase des
Kompilierens und ein anschließendes Umformen
der Anrufe/Operationen in einen Code tieferer
Ebene während einer Umformungsphase. Es ist zu
beachten, dass während des dynamischen Kompilie
rens der Compilercode oder dynamische Optimie
rungscode solche Operationen/Anrufe einsetzen
kann, wie auch den Code zur Ausführung während
der Laufzeit optimieren kann. Als ein spezielles ver

18/50

DE 11 2013 007 724 B4 2024.01.11

anschaulichendes Beispiel kann der binäre Code
(bereits kompilierte Code) während der Laufzeit
dynamisch optimiert werden. Hier kann der Pro
grammcode den dynamischen Optimierungscode,
den binären Code oder eine Kombination davon ent
halten.

[0085] Ähnlich einem Compiler übersetzt ein Über
setzer, wie ein binärer Übersetzer, den Code entwe
der statisch oder dynamisch, um den Code zu opti
mieren und/oder zu übersetzen. Daher kann sich ein
Verweis auf eine Ausführung eines Codes, eines
Anwendungscodes, eines Programmcodes oder
einer anderen Software-Umgebung auf folgendes
beziehen: (1) Ausführung eines oder mehrerer Com
pilerprogramme, Optimierungscode-Optimierer oder
Übersetzer, entweder dynamisch oder statisch, um
den Programcode zu kompilieren, um die Software-
Strukturen aufrechtzuerhalten, um andere Operatio
nen auszuführen, um den Code zu optimieren oder
den Code zu übersetzen; (2) Ausführung eines
Hauptprogrammcodes, der Operationen/Anrufe ent
hält, wie eines Anwendungscodes der optimiert/kom
piliert wurde; (3) Ausführung eines anderen Pro
grammcodes, wie Bibliotheken, der mit dem
Hauptprogrammcode verknüpft ist, um Software-
Strukturen aufrechtzuerhalten, andere software-
bezogene Operationen auszuführen oder den Code
zu optimieren; oder (4) eine Kombination davon.

[0086] Unter Bezugnahme nun auf Fig. 11 ist ein
Blockdiagramm einer Ausführungsform eines Mehr
fachkern-Prozessors dargestellt. Wie in der Ausfüh
rungsform von Fig. 11 gezeigt, enthält der Prozessor
1100 mehrfache Domäne. Im Speziellen enthält eine
Kerndomäne 1130 mehrere Kerne 1130A-1130N,
eine Grafikdomäne 1160 enthält eine oder mehrere
Grafikmaschinen mit einer Medienmaschine 1165,
und eine Systemagentendomäne 1110.

[0087] In verschiedenen Ausführungsformen
behandelt die Systemagentendomäne 1110 Leis
tungssteuerungsereignisse und Leistungsmanage
ment, so dass einzelne Einheiten von Domänen
1130 und 1160 (z.B. Kerne und/oder Grafikmaschi
nen) unabhängig steuerbar sind, um angesichts der
Aktivität (oder Inaktivität), die in einer bestimmten
Einheit auftritt dynamisch in einem passenden Leis
tungsmodus/auf einer passenden Leistungsebene
zu arbeiten (z.B. im Aktiv-, Turbo-, Schlaf-, Winter
schlaf-, Tiefschlaf- oder einem anderen Advanced
Configuration Power Interface-artigen Zustand).
Jede der Domäne 1130 und 1160 kann bei einer
anderen Spannung und/oder Leistung arbeiten und
ferner arbeiten die einzelnen Einheiten innerhalb
der Domäne möglicherweise jeweils bei einer unab
hängigen Frequenz und Spannung. Es ist zu beach
ten, dass, während nur drei Domänen dargestellt
sind, ein Verständnis des Umfangs der vorliegenden
Erfindung in dieser Hinsicht nicht beschränkt ist und

zusätzliche Domäne in anderen Ausführungsformen
vorhanden sein können.

[0088] Wie dargestellt, enthält jeder Kern 1130 fer
ner Caches tiefer Ebene zusätzlich zu verschiede
nen Ausführungseinheiten und zusätzlichen Verar
beitungselementen. Hier sind die verschiedenen
Kerne aneinander und an einen gemeinsam benutz
ten Cache-Speicher gekoppelt, der aus mehreren
Einheiten oder Slices eines Cache letzter Ebene
(LLC) 1140A-1140N gebildet ist; diese LLCs enthal
ten häufig eine Speicher- und Cache-Steuerungs
funktionalität und werden von den Kernen, wie auch
möglicherweise von der Grafikmaschine gemeinsam
benutzt.

[0089] Wie erkennbar ist, koppelt eine Ringzwi
schenverbindung 1150 die Kerne aneinander und
sieht eine Zwischenverbindung zwischen der Kern
domäne 1130, der Grafikdomäne 1160 und dem Sys
temagentenschaltkreis 1110 über mehrere Rings
topps 1152A-1152N vor, jeden an einer Kopplung
zwischen einem Kern und LLC-Slice. Wie in Fig. 11
erkennbar ist, wird die Zwischenverbindung 1150
zum Befördern verschiedener Informationen verwen
det, einschließlich Adressinformationen, Dateninfor
mationen, Bestätigungsinformationen und Snoop-
/ungültigen Informationen. Obwohl eine Ringzwi
schenverbindung dargestellt ist, kann jede bekannte
On-Die-Zwischenverbindung oder Matrix verwendet
werden. Als ein veranschaulichendes Beispiel kön
nen einige der oben besprochenen Matrizen (z.B.
eine andere On-Die-Zwischenverbindung, eine On-
Chip-Systemmatrix (OSF), eine Advanced Mirocont
roller Bus Architecture- (AMBA) Zwischenverbin
dung, eine multidimensionale Netzmatrix oder eine
andere Zwischenverbindungsarchitektur) auf gleiche
Weise verwendet werden.

[0090] Wie ferner dargestellt ist, enthält die Syste
magentendomäne 1110 eine Anzeigemaschine
1112, die eine Steuerung von einer und eine Schnitt
stelle für eine zugehörige(n) Anzeige bereitstellen
soll. Die Systemagentendomäne 1110 kann andere
Einheiten enthalten, wie: eine integrierte Speicher
steuerung 1120, die eine Schnittstelle für eine Sys
temspeicher- (z.B. einen DRAM, implementiert mit
mehrfachen DIMMs) Kohärenzlogik 1122 zur Durch
führung von Speicherkohärenzoperationen vorsieht.
Mehrere Schnittstellen können vorhanden sein, um
eine Zwischenverbindung zwischen dem Prozessor
und einem anderen Schaltkreis zu ermöglichen.
Zum Beispiel ist in einer Ausführungsform zumindest
eine direkte Medienschnittstelle- (DMI) 1116 Schnitt
stelle vorgesehen, wie auch eine oder mehrere
PCIe™ Schnittstellen 1114. Die Anzeigemaschine
und diese Schnittstellen sind typischerweise über
eine PCIe™ Brücke 1118 an einen Speicher gekop
pelt. Ferner können zum Vorsehen von Kommunika
tionen zwischen anderen Agenten, wie zusätzlichen

19/50

DE 11 2013 007 724 B4 2024.01.11

Prozessoren oder einem anderen Schaltkreis, eine
oder mehrere andere Schnittstelle(n) vorgesehen
sein.

[0091] Unter Bezugnahme nun auf Fig. 12 ist ein
Blockdiagramm eines repräsentativen Kerns darge
stellt; im Speziellen logische Blöcke eines Back-End
eines Kerns, wie des Kerns 1130 von Fig. 11. Im All
gemeinen enthält die in Fig. 12 dargestellte Struktur
einen Out-of-Order-Prozessor, der eine Front-End-
Einheit 1270 hat, die zum Abrufen eintretender
Befehle, Durchführen verschiedener Verarbeitungen
(z.B. Caching, Decodieren, Abzweigungsvorher
sage, usw.) und Weiterleiten von Befehlen/Operatio
nen zu einer Out-of-Order-Maschine (OOO) 1280
verwendet wird. Die OOO-Maschine 1280 führt eine
Weiterverarbeitung an decodierten Befehlen durch.

[0092] Im Speziellen in der Ausführungsform von
Fig. 12 enthält eine Out-of-Order-Maschine 1280
eine Zuordnungseinheit 1282 für den Empfang deco
dierter Befehle, die die Form eines Mikrobefehls oder
mehrerer Mikrobefehle oder uops aufweisen kann,
von der Front-End-Einheit 1270 und zu deren Zuord
nung zu geeigneten Ressourcen wie Register und so
weiter. Anschließend werden die Befehle für eine
Reservierungsstation 1284 vorgesehen, die Res
sourcen reserviert und sie zur Ausführung auf einer
oder mehreren Ausführungseinheit(en)
1286A-1286N plant. Verschiedene Arten von Aus
führungseinheiten können vorhanden sein, ein
schließlich zum Beispiel arithmetischer Logikeinhei
ten (ALUs), Last- und Speichereinheiten,
Vektorverarbeitungseinheiten (VPUs), Fließkom
maausführungseinheiten, unter anderen. Ergebnisse
von diesen verschiedenen Ausführungseinheiten
werden einem Rückordnungspuffer (ROB) 1288
bereitgestellt, der ungereihte Ergebnisse nimmt und
sie in die korrekte Programmreihenfolge bringt.

[0093] Unter weiterer Bezugnahme auf Fig. 12 ist zu
beachten, dass sowohl die Front-End-Einheit 1270
wie auch die Out-of-Order-Maschine 1280 an ver
schiedene Ebenen einer Speicherhierarchie gekop
pelt sind. Im Speziellen ist ein Befehlsebenen-
Cache 1272 dargestellt, der seinerseits an einen Mit
telebenen-Cache 1276 gekoppelt ist, der seinerseits
an einen Cache letzter Ebene 1295 gekoppelt ist. In
einer Ausführungsform ist der Cache letzter Ebene
1295 in einer On-Chip-Einheit 1290 (manchmal als
UnCore bezeichnet) implementiert. Als ein Beispiel
ist die Einheit 1290 dem Systemagenten 1110 von
Fig. 11 ähnlich. Wie oben besprochen, kommuniziert
der UnCore 1290 mit dem Systemspeicher 1299, der
in der dargestellten Ausführungsform durch einen
ED RAM implementiert ist. Es ist auch zu beachten,
dass die verschiedenen Ausführungseinheiten 1286
in einer Out-of-Order-Maschine 1280 mit einem
Cache der ersten Ebene 1274 in Kommunikation ste
hen, der auch mit dem Mittelebenen-Cache 1276 in

Kommunikation steht. Es ist auch zu beachten, dass
zusätzliche Kerne 1230N-2 - 1230N an den LLC
1295 gekoppelt sein können. Obwohl in der Ausfüh
rungsform von Fig. 12 bei dieser hohen Ebene dar
gestellt, ist klar, dass verschiedene Änderungen und
zusätzliche Komponenten vorhanden sein können.

[0094] In Hinblick nun auf Fig. 13 ist ein Blockdia
gramm eines beispielhaften Computersystems
gemäß einer Ausführungsform der vorliegenden
Erfindung dargestellt, das mit einem Prozessor gebil
det ist, der Ausführungseinheiten zur Ausführung
eines Befehls enthält, wo eine oder mehrere der Zwi
schenverbindungen ein oder mehrere Merkmal(e)
implementieren. Das System 1300 enthält eine Kom
ponente, wie einen Prozessor 1302, zur Verwendung
der Ausführungseinheiten, einschließlich einer Logik
zur Durchführung von Algorithmen zur Verarbeitung
von Daten gemäß der vorliegenden Erfindung, wie in
der hier beschriebenen Ausführungsform. Das Sys
tem 1300 ist für Verarbeitungssysteme repräsentativ,
die auf PENTIUM III™, PENTIUM 4™, Xeon™, Ita
nium, XScale™ und/oder StrongARM™ Mikropro
zessoren basieren, obwohl andere Systeme (ein
schließlich PCs mit anderen Mikroprozessoren,
Engineering-Workstations, Set-Top-Boxes und der
gleichen) ebenso verwendet werden können. In
einer Ausführungsform führt ein Sample-System
1300 eine Version des WINDOWS™ Betriebssys
tems durch, die von der Mikrosoft Corporation of
Redmond, Washington, erhältlich ist, obwohl andere
Betriebssysteme (UNIX und Linux zum Beispiel), ein
gebettete Software und/oder grafische Anwender
schnittstellen ebenso verwendet werden können.
Somit sind Ausführungsformen der vorliegenden
Erfindung nicht auf eine spezielle Kombination von
Hardware-Schaltkreis und Software begrenzt.

[0095] Ausführungsformen sind nicht auf Computer
systeme beschränkt. Alternative Ausführungsformen
der vorliegenden Erfindung können in anderen Vor
richtungen, wie in in der Hand gehaltenen Vorrichtun
gen und eingebetteten Anwendungen, verwendet
werden. Einige Beispiele für in der Hand gehaltene
Vorrichtungen enthalten Mobiltelefone, Internetpro
tokollvorrichtungen, Digitalkameras, persönliche
digitale Assistenten (PDAs) und in der Hand gehalt
ene PCs. Eingebettete Anwendungen können eine
Mikrosteuerung, einen Digitalsignalprozessor
(DSP), ein System auf einem Chip, einen Netzwerk
computer (NetPC), Set-Top-Boxes, Netzwerk-Hubs,
Weitverkehrsnetz- (WAN) Schalter oder jedes
andere System enthalten, der einen oder mehrere
Befehl(e) gemäß zumindest einer Ausführungsform
ausführen kann.

[0096] In dieser dargestellten Ausführungsform ent
hält der Prozessor 1302 eine oder mehrere Aus
führungseinheit(en) 1308 zum Implementieren
eines Algorithmus, der zumindest einen Befehl aus

20/50

DE 11 2013 007 724 B4 2024.01.11

führen soll. Eine Ausführungsform kann im Kontext
eines einzigen Prozessor-Desktop- oder Serversys
tems beschrieben sein, aber alternative Ausfüh
rungsformen können in einem Multiprozessorsystem
enthalten sein. Das System 1300 ist ein Beispiel für
eine ’Hub'-Systemarchitektur. Das Computersystem
1300 enthält einen Prozessor 1302 zum Verarbeiten
von Datensignalen. Der Prozessor 1302 enthält, als
ein veranschaulichendes Beispiel, einen Mikropro
zessor eines Rechners mit komplexem Befehlssatz
(Complex Instruction Set Computer, CISC), einen
Mikroprozessor eines Rechners mit reduziertem
Befehlssatz (Reduced Instruction Set Computer,
RISC), einen Mikroprozessor eines sehr langen
Befehlsworts (Very Long Instruction Word, VLIW),
einen Prozessor, der eine Kombination von Befehls
sätzen, implementiert oder jede andere Prozessor
vorrichtung, wie zum Beispiel einen Digitalsignalpro
zessor. Der Prozessor 1302 ist an einen
Prozessorbus 1310 gekoppelt, der Datensignale zwi
schen dem Prozessor 1302 und anderen Komponen
ten im System 1300 sendet. Die Elemente des Sys
tems 1300 (z.B. Grafikbeschleuniger 1312, Memory
Controller-Hub 1316, Speicher 1320, I/O Controller-
Hub 1324, drahtloser Sender/Empfänger 1326,
Flash BIOS 1328, Netzwerksteuerung 1334, Audio
steuerung 1336, serieller Erweiterungsport 1338, I/O
Steuerung 1340, usw.) führen ihre herkömmlichen
Funktionen aus, die jenen, die mit dieser Technik ver
traut sind, allgemein bekannt sind.

[0097] In einer Ausführungsform enthält der Prozes
sor 1302 einen internen Cache-Speicher 1304 der
Ebene 1 (L1). Abhängig von der Architektur kann
der Prozessor 1302 einen einzelnen internen Cache
oder mehrfache Ebenen interner Caches enthalten.
Andere Ausführungsformen enthalten eine Kombina
tion aus sowohl internen wie auch externen Caches,
abhängig von der besonderen Implementierung und
den Bedürfnissen. Die Registerdatei 1306 dient zum
Speichern verschiedener Arten von Daten in ver
schiedenen Registern einschließlich Ganzzahlregis
ter, Fließkommaregister, Vektorregister, Banked-
Register, Schattenregister, Prüfpunktregister, Status
register, und Befehlspointerregister.

[0098] Die Ausführungseinheit 1308, die eine Logik
zur Durchführung von Ganzzahl- und Fließkommao
perationen enthält, befindet sich auch im Prozessor
1302. Der Prozessor 1302 enthält in einer Ausfüh
rungsform einen Mikrocode (ucode) ROM zum Spei
chern eines Mikrocodes, der, wenn er ausgeführt
wird, Algorithmen für gewisse Makrobefehle durch
führt, oder zum Bewältigen komplexer Szenarien.
Hier ist der Mikrocode möglicherweise aktualisierbar,
um Logik-Bugs/Fixes für den Prozessor 1302 zu
handhaben. Für eine Ausführungsform enthält die
Ausführungseinheit 1308 eine Logik zur Behandlung
eines gepackten Befehlssatzes 1309. Durch Auf
nahme des gepackten Befehlssatzes 1309 in den

Befehlssatz eines Allzweckprozessors 1302,
gemeinsam mit dem zugehörigen Schaltkreis zur
Ausführung der Befehle, können die Operationen,
die von vielen Multimedienanwendungen verwendet
werden, unter Verwendung gepackter Daten in
einem Allzweckprozessor 1302 ausgeführt werden.
Somit werden viele Multimedienanwendungen
beschleunigt und effizienter unter Verwendung der
vollen Breite eines Prozessordatenbusses zur
Durchführung von Operationen an gepackten Daten
ausgeführt. Dies behebt möglicherweise die Notwen
digkeit, kleinere Einheiten von Daten über den Pro
zessordatenbus zu transferieren, um eine oder meh
rere Operation(en), jeweils mit einem Datenelement,
auszuführen.

[0099] Es können auch andere Ausführungsformen
einer Ausführungseinheit 1308 in Mikrosteuerungen,
eingebetteten Prozessoren, Grafikvorrichtungen,
DSPs und anderen Arten von Logik Schaltungen ver
wendet werden. Das System 1300 enthält einen
Speicher 1320. Der Speicher 1320 enthält eine dyna
mische Direktzugriffsspeicher- (DRAM) Vorrichtung,
eine statische Direktzugriffsspeicher- (SRAM) Vor
richtung, eine Flash-Speichervorrichtung oder eine
andere Speichervorrichtung. Der Speicher 1320
speichert Befehle und/oder Daten, die durch Daten
signale repräsentiert werden, die vom Prozessor
1302 auszuführen sind.

[0100] Es ist zu beachten, dass jedes der obenge
nannten Merkmale oder jeder der obengenannten
Aspekte der Erfindung auf einer oder mehreren Zwi
schenverbindung(en) benutzt werden kann, die in
Fig. 13 dargestellt sind. Zum Beispiel implementiert
eine On-Die-Zwischenverbindung (ODI), die nicht
dargestellt ist, zum Koppeln interner Einheiten des
Prozessors 1302, einen oder mehrere der oben
beschriebenen Aspekte der Erfindung. Oder die
Erfindung ist mit einem Prozessorbus 1310 (z.B.
einer anderen bekannten, Hochleistungsrechnerzwi
schenverbindung), einem Speicherpfad hoher Band
breite 1318 zum Speicher 1320, einer Punkt-zu-
Punkt-Verbindung zum Grafikbeschleuniger 1312
(z.B. einer Peripheral Component Interconnect
Express (PCIe) konformen Matrix), einer Controller-
Hub-Zwischenverbindung 1322, einem I/O oder
einer anderen Zwischenverbindung (z.B. USB, PCI,
PCIe) zum Koppeln der anderen dargestellten Kom
ponenten verbunden. Einige Beispiele für solche
Komponenten enthalten die Audiosteuerung 1336,
den Firmware-Hub (Flash BIOS) 1328, den drahtlo
sen Sender/Empfänger 1326, den Datenspeicher
1324, die althergebrachte I/O Steuerung 1310, die
Benutzereingabe- und Tastaturschnittstellen 1342
enthält, einen seriellen Erweiterungsport 1338 wie
ein serielles Bussystem (Universal Serial Bus, USB)
und eine Netzwerksteuerung 1334. Die Datenspei
chervorrichtung 1324 kann ein Festplattenlaufwerk,
ein Diskettenlaufwerk, eine CD-ROM-Vorrichtung,

21/50

DE 11 2013 007 724 B4 2024.01.11

eine Flash-Speichervorrichtung oder eine andere
Massenspeichervorrichtung enthalten.

[0101] Unter Bezugnahme nun auf Fig. 14, ist ein
Blockdiagramm eines zweiten Systems 1400
gemäß einer Ausführungsform der vorliegenden
Erfindung dargestellt. Wie in Fig. 14 dargestellt, ist
ein Multiprozessorsystem 1400 ein Punkt-zu-Punkt-
Zwischenverbindungssystem und enthält einen ers
ten Prozessor 1470 und einen zweiten Prozessor
1480, die über eine Punkt-zu-Punkt-Zwischenverbin
dung 1450 gekoppelt sind. Jeder der Prozessoren
1470 und 1480 kann eine Version eines Prozessors
sein. In einer Ausführungsform sind 1452 und 1454
Teil einer seriellen, kohärenten Punkt-zu-Punkt-Zwi
schenverbindungsmatrix, wie einer Hochleistungsar
chitektur. Infolgedessen kann die Erfindung inner
halb der QPI-Architektur implementiert werden.

[0102] Während nur zwei Prozessoren 1470, 1480
dargestellt sind, ist klar, dass der Umfang der vorlie
genden Erfindung nicht darauf beschränkt ist. In
anderen Ausführungsformen kann/können ein oder
mehrere zusätzliche(r) Prozessor(en) in einem
bestimmten Prozessor vorhanden sein.

[0103] Die Prozessoren 1470 und 1480 sind mit
integrierten Speichersteuerungseinheiten 1472 bzw.
1482 dargestellt. Der Prozessor 1470 enthält auch
als Teil seiner Bussteuerungseinheiten Punkt-zu-
Punkt- (P-P) Schnittstellen 1476 und 1478; ebenso
enthält der zweite Prozessor 1480 P-P-Schnittstellen
1486 und 1488. Die Prozessoren 1470, 1480 können
Informationen über eine Punkt-zu-Punkt- (P-P)
Schnittstelle 1450 unter Verwendung von P-P-
Schnittstellenschaltungen 1478, 1488 austauschen.
Wie in Fig. 14 dargestellt, koppeln IMCs 1472 und
1482 die Prozessoren an entsprechende Speicher,
nämlich einen Speicher 1432 und einen Speicher
1434, die Teile des Hauptspeichers sein können,
die lokal an den entsprechenden Prozessoren befes
tigt sind.

[0104] Die Prozessoren 1470, 1480 tauschen
jeweils Informationen mit einem Chipsatz 1490 über
einzelne P-P Schnittstellen 1452, 1454 unter Ver
wendung der Punkt-zu-Punkt-Schnittstellenschaltun
gen 1476, 1494, 1486, 1498 aus. Der Chipsatz 1490
tauscht auch Informationen mit einer Hochleistungs
grafikschaltung 1438 über eine Schnittstellenschal
tung 1492 entlang einer Hochleistungsgrafikzwi
schenverbindung 1439 aus.

[0105] Ein gemeinsam benutzter Cache (nicht dar
gestellt) kann entweder im Prozessor oder außerhalb
beider Prozessoren enthalten sein; aber dennoch mit
den Prozessoren über eine P-P-Zwischenverbin
dung verbunden sein, so dass lokale Cache-Informa
tionen entweder eines Prozessors oder beider Pro
zessoren im gemeinsam benutzten Cache

gespeichert werden können, wenn ein Prozessor in
eine leistungsarme Betriebsart gesetzt wird.

[0106] Der Chipsatz 1490 kann über eine Schnitt
stelle 1496 an einen ersten Bus 1416 gekoppelt
sein. In einer Ausführungsform kann der erste Bus
1416 ein Peripheral Component Interconnect- (PCI)
Bus oder ein Bus wie ein PCI Expressbus oder ein
anderer I/O-Zwischenverbindungsbus der dritten
Generation sein, obwohl der Umfang der vorliegen
den Erfindung nicht darauf beschränkt ist.

[0107] Wie in Fig. 14 dargestellt, sind verschiedene
I/O-Vorrichtungen 1414 an den ersten Bus 1416,
gemeinsam mit einer Bus-Brücke 1418 gekoppelt,
die den ersten Bus 1416 an einen zweiten Bus
1420 koppelt. In einer Ausführungsform enthält der
zweite Bus 1420 einen Low Pin Count (LPC) Bus.
Verschiedene Vorrichtungen sind in einer Ausfüh
rungsform an den zweiten Bus 1420 gekoppelt, ein
schließlich zum Beispiel einer Tastatur und/oder
Maus 1422, Kommunikationsvorrichtungen 1427
und einer Speichereinheit 1428 wie ein Festplatten
laufwerks oder eine andere Massenspeichervorrich
tung, die häufig Befehle/Code und Daten 1430 ent
hält. Ferner ist ein Audio-I/O 1424 an den zweiten
Bus 1420 gekoppelt dargestellt. Es ist zu beachten,
dass andere Architekturen möglich sind, wo die ent
haltenen Komponenten und Zwischenverbindungs
architekturen variieren. Zum Beispiel kann ein Sys
tem anstelle der Punkt-zu-Punkt-Architektur von
Fig. 14 einen Multi-Drop-Bus oder eine andere der
artige Architektur implementieren.

[0108] Unter Bezugnahme nun auf Fig. 15 ist eine
Ausführungsform eines System-on-Chip- (SOC)
Designs gemäß der Erfindung dargestellt. Als ein
spezielles veranschaulichendes Beispiel ist das
SOC 1500 in Benutzergeräten (UE) enthalten. In
einer Ausführungsform bezieht sich UE auf jede Vor
richtung, die von einem Endbenutzer zum Kommuni
zieren verwendet wird, wie ein in der Hand gehalt
enes Telefon, ein Smartphone, ein Tablet, ein
ultradünnes Notebook, ein Notebook mit Breitbanda
dapter oder jede andere ähnliche Kommunikations
vorrichtung. Häufig ist ein UE mit einer Basisstation
oder einem Knoten verbunden, der möglicherweise
in seiner Art einer Mobilstation (MS) in einem GSM-
Netzwerk entspricht.

[0109] Hier enthält das SOC 1500 2 Kerne - 1506
und 1507. Ähnlich wie in der vorangehenden Bespre
chung können die Kerne 1506 und 1507 einer
Befehlssatzarchitektur, wie einem auf einem Intel®
Architecture Core™-basierenden Prozessor, einem
Advanced Mikro Devices, Inc. (AMD) Prozessor,
einem auf MIPS-basierenden Prozessor, einem auf
ARMbasierenden Prozessordesign oder einem Kun
den davon, wie auch deren Lizenznehmern oder
Adoptierenden entsprechen. Die Kerne 1506 und

22/50

DE 11 2013 007 724 B4 2024.01.11

1507 sind an eine Cache-Steuerung 1508 gekoppelt,
die mit der Bus Schnittstelleeinheit 1509 und einem
L2 Cache 1511 verknüpft ist, um mit anderen Teilen
des Systems 1500 zu kommunizieren. Die Zwischen
verbindung 1510 enthält eine On-Chip-Zwischenver
bindung, wie eine IOSF, AMBA oder andere Zwi
schenverbindung, wie oben besprochen, die
möglicherweise einen oder mehrere der hier
beschriebenen Aspekte implementiert.

[0110] Die Schnittstelle 1510 stellt Kommunikations
kanäle zu den anderen Komponenten bereit, wie
einem Subscriber Identity Module (SIM) 1530 für
eine Schnittstelle mit einer SIM-Karte, einem Boot-
ROM 1535, um einen Boot-Code für eine Ausführung
durch die Kerne 1506 und 1507 zu halten, um das
SOC 1500 zu initialisieren und zu booten, einer
SDRAM Steuerung 1540 für eine Schnittstelle mit
dem externen Speicher (z.B. DRAM 1560), einer
Flash-Steuerung 1545 für eine Schnittstelle mit dem
nicht flüchtigen Speicher (z.B. Flash 1565), einer
peripheren Steuerung 1550 (z.B. seriellen periphe
ren Schnittstelle) für eine Schnittstelle mit peripheren
Geräten, Video-Codecs 1520 und einer Video
Schnittstelle 1525 zum Anzeigen und Empfangen
eines Eingangs (z.B. durch Berührung ausgelösten
Eingangs), einer GPU 1515 zur Durchführung grafik
bezogener Berechnungen, usw. Jede dieser Schnitt
stellen kann Aspekte der hier beschriebenen Erfin
dung enthalten.

[0111] Zusätzlich veranschaulicht das System peri
phere Geräte zur Kommunikation, wie ein Bluetooth
Modul 1570, 3G-Modem 1575, GPS 1585 und WiFi
1585. Es ist zu beachten, dass ein UE, wie oben
angegeben, einen Funk zur Kommunikation enthält.
Infolgedessen sind nicht alle diese peripheren Kom
munikationsmodule erforderlich. In einem UE soll
jedoch eine gewisse Form von Funkt zur externen
Kommunikation enthalten sein.

[0112] Während die vorliegende Erfindung in Bezug
auf eine begrenzte Anzahl von Ausführungsformen
beschrieben wurde, sind zahlreiche Modifizierungen
und Variationen daraus für einen Fachmann auf dem
Gebiet offensichtlich. Es ist beabsichtigt, dass die
beiliegenden Ansprüche alle derartigen Modifizierun
gen und Variationen abdecken, die in das wahre
Wesen und den Umfang dieser vorliegenden Erfin
dung fallen.

[0113] Ein Design kann verschiedene Stufen durch
laufen, von der Erstellung bis zur Simulierung bis zur
Herstellung. Daten, die ein Design präsentieren, kön
nen das Design auf zahlreiche Weisen darstellen.
Zunächst kann die Hardware, wie in Simulationen
sinnvoll ist, unter Verwendung einer Hardware-
Beschreibungssprache oder einer anderen Funk
tionsbeschreibungssprache dargestellt werden.
Zusätzlich kann ein Modell der Schaltungsebenen

mit Logik und/oder Transistorgates in einigen Stufen
des Designprozesses erzeugt werden. Ferner errei
chen die meisten Designs, in einer gewissen Stufe,
eine Datenebene, die die physische Anordnung ver
schiedener Vorrichtungen im Hardware-Modell dar
stellt. In dem Fall, wo herkömmliche Halbleiterhers
tellungstechniken verwendet werden, können die
Daten, die das Hardware-Modell darstellen, die
Daten sein, die das Vorhandensein oder Fehlen ver
schiedener Merkmale auf verschiedenen Masken
schichten für Masken präsentieren, die zur Herstel
lung der integrierten Schaltung verwendet werden. In
jeder Darstellung des Designs können die Daten in
jeder Form eines maschinenlesbaren Mediums
gespeichert werden. Ein Speicher oder ein magnet
ischer oder optischer Speicher, wie eine Platte, kann
ein maschinenlesbares Medium zum Speichern von
Informationen sein, die über eine optische oder elekt
rische Welle gesendet werden, die moduliert oder auf
andere Weise generiert ist, um solche Informationen
zu senden. Wenn eine elektrische Trägerwelle, die
den Code anzeigt oder trägt, gesendet wird, wird
eine neue Kopie in dem Ausmaß, in dem ein Kopie
ren, Puffern oder erneutes Senden des elektrischen
Signals durchgeführt wird, erstellt. Somit kann ein
Kommunikationsanbieter oder ein Netzanbieter auf
einem greifbaren, maschinenlesbaren Medium,
zumindest vorübergehend, einen Artikel, wie Infor
mationen, die in eine Trägerwelle codiert sind, spei
chern, was Techniken von Ausführungsformen der
vorliegenden Erfindung verkörpert.

[0114] Ein Modul, wie hier verwendet, bezieht sich
auf jede Kombination von Hardware, Software und/o
der Firmware. Als ein Beispiel enthält ein Modul
Hardware, wie eine Mikrosteuerung, die mit einem
nicht flüchtigen Medium verknüpft ist, um einen
Code zu speichern, der dazu ausgebildet ist, von
der Mikrosteuerung ausgeführt zu werden. Daher
bezieht sich ein Verweis auf ein Modul in einer Aus
führungsform auf die Hardware, die spezifisch konfi
guriert ist, um den Code zu erkennen und/oder aus
zuführen, der auf einem nicht flüchtigen Medium
gehalten wird. Ferner bezieht sich in einer anderen
Ausführungsform die Verwendung eines Moduls auf
das nicht flüchtige Medium, das den Code enthält,
der spezifisch dazu ausgebildet ist, von der Mikro
steuerung ausgeführt zu werden, um vorgegebene
Operationen durchzuführen. Und, wie daraus abge
leitet werden kann, kann sich in einer weiteren Aus
führungsform der Begriff Modul (in diesem Beispiel)
auf die Kombination aus der Mikrosteuerung und
dem nicht flüchtigen Medium beziehen. Häufig vari
ieren allgemein Modulgrenzen, die als getrennt dar
gestellt sind, und überlappen möglicherweise. Zum
Beispiel können ein erstes und ein zweites Modul
gemeinsam Hardware, Software, Firmware oder
eine Kombination davon benutzen, während sie
möglicherweise eine gewisse unabhängige Hard
ware, Software oder Firmware behalten. In einer

23/50

DE 11 2013 007 724 B4 2024.01.11

Ausführungsform, enthält die Verwendung des
Begriffs „Logik“ Hardware, wie Transistoren, Register
oder andere Hardware, wie programmierbare Logik
vorrichtungen.

[0115] Die Verwendung der Phrase `konfiguriert
zum' bezieht sich in einer Ausführungsform auf die
Anordnung, Zusammenstellung, Herstellung, Anbie
tung zum Verkauf, den Import und/oder den Entwurf
eines Apparats, einer Hardware, einer Logik oder
eines Elements, um eine angegebenen oder
bestimmte Aufgabe auszuführen. In diesem Beispiel
ist ein Apparat oder ein Element davon, der bzw. das
nicht in Betrieb ist, weiterhin ‚konfiguriert‘, eine
bestimmte Aufgabe auszuführen, wenn es zur
Durchführung der bestimmten Aufgabe gestaltet,
gekoppelt und/oder verbunden ist. Als ein rein veran
schaulichendes Beispiel kann ein Logik-Gate eine 0
oder eine 1 während des Betriebs bereitstellen. Aber
ein Logik-Gate, das zum Bereitstellen eines Freiga
besignals für einen Takt ‚konfiguriert‘ ist, enthält nicht
jedes mögliche Logik-Gate, das eine 1 oder 0 bereit
stellen kann. Stattdessen ist das Logik-Gate eines,
das auf gewisse Weise gekoppelt ist, so dass wäh
rend des Betriebs die Ausgabe der 1 oder 0 zur Frei
gabe des Takts dient. Es ist erneut zu beachten, dass
die Verwendung des Begriffs ‚konfiguriert zum‘ kei
nen Betrieb erfordert, sondern der Schwerpunkt viel
mehr auf dem latenten Zustand eines Apparats, einer
Hardware und/oder eines Elements liegt, wobei der
Apparat, die Hardware und/oder das Element im
latenten Zustand gestaltet ist, eine besondere Auf
gabe auszuführen, wenn der Apparat, die Hardware,
und/oder das Element arbeitet.

[0116] Ferner bezieht sich die Verwendung der
Phrasen 'zum', 'imstande zu' und/oder 'betriebsbereit
zu' in einer Ausführungsform auf einen gewissen
Apparat, eine Logik, eine Hardware, und/oder ein
Element, der/die/das so gestaltet ist, dass die Ver
wendung des Apparats, der Logik, der Hardware
und/oder des Elements in einer spezifizierten Weise
möglich ist. Es wird wie oben festgehalten, dass die
Verwendung von 'imstande zu' oder 'betriebsbereit
zu' sich in einer Ausführungsform auf den latenten
Zustand eines Apparats, einer Logik, einer Hardware
und/oder eines Elements bezieht, in dem der Appa
rat, die Logik, die Hardware und/oder das Element
nicht in Betrieb sind, sondern derart gestaltet sind,
dass sie die Verwendung eines Apparats in einer
spezifizierten Weise ermöglichen.

[0117] Ein Wert, wie hier verwendet, enthält jede
bekannte Darstellung einer Zahl, eines Zustands,
eines logischen Zustands oder eines binären logi
schen Zustands. Häufig wird die Verwendung von
Logikpegeln, Logikwerten oder logischen Werten
auch als 1 und 0 bezeichnet, die einfach binäre
Logikzustände darstellen. Zum Beispiel bezieht sich
eine 1 auf einen hohen Logikpegel und 0 bezieht sich

auf einen niederen Logikpegel. In einer Ausführungs
form kann eine Speicherzelle, wie ein Transistor oder
eine Flash-Zelle, imstande sein, einen einzelnen
logischen Wert oder mehrfache logische Werte zu
halten. Es wurden jedoch andere Darstellungen von
Werten in Computersystemen verwendet. Zum Bei
spiel kann die Dezimalzahl zehn auch als ein binärer
Wert 1010 und ein Hexadezimalbuchstabe A darge
stellt werden. Daher enthält ein Wert jede Darstel
lung von Informationen, die imstande ist, in einem
Computersystem gehalten zu werden.

[0118] Ferner können Zustände durch Werte oder
Teile von Werten dargestellt werden. Als ein Beispiel
kann ein erster Wert, wie eine logische Eins, einen
vorgegebenen oder anfänglichen Zustand darstellen,
während ein zweiter Wert, wie eine logische Null,
einen nicht vorgegebenen Zustand darstellen kann.
Zusätzlich beziehen sich die Begriffe Zurücksetzen
und Setzen in einer Ausführungsform auf einen vor
gegebenen bzw. aktualisierten Wert oder Zustand.
Zum Beispiel enthält ein vorgegebener Wert mögli
cherweise einen hohen logischen Wert, d.h., Rück
setzen, während ein aktualisierter Wert möglicher
weise einen niederen logischen Wert enthält, d.h.,
Setzen. Es ist zu beachten, dass jede Kombination
von Werten zur Darstellung jeder Anzahl von Zustän
den verwendet werden kann.

[0119] Die Ausführungsformen von Verfahren, Hard
ware, Software, Firmware oder Code, die oben ange
führt sind, können durch Befehle oder einen Code
implementiert sein, die bzw. der auf einem maschi
nenzugänglichen, maschinenlesbaren, computerzu
gänglichen oder computerlesbaren Medium gespei
chert sind bzw. ist, die von einem
Verarbeitungselement ausführbar sind. Ein nicht
flüchtiges maschinenzugängliches/-lesbares
Medium enthält jeden Mechanismus, der Informatio
nen in einer Form vorsieht (d.h., speichert und/oder
sendet), die von einer Maschine, wie einem Compu
ter oder einem elektronischen System lesbar ist. Zum
Beispiel enthält ein nicht flüchtiges maschinenzu
gängliches Medium einen Direktzugriffsspeicher
(RAM), wie einen statischen RAM (SRAM) oder
dynamischen RAM (DRAM); einen ROM; ein mag
netisches oder optisches Speichermedium; Flash-
Speichervorrichtungen; elektrische Speichervorrich
tungen; optische Speichervorrichtungen; akustische
Speichervorrichtungen; eine andere Form von Spei
chervorrichtungen zum Halten von Informationen,
die von flüchtigen (verbreiteten) Signalen empfangen
werden (z.B. Trägerwellen, Infrarotsignale, Digital
signale); usw., die von den nicht flüchtigen Medien
unterschieden werden, die Informationen daraus
empfangen können.

[0120] Befehle, die zum Programmieren einer Logik
verwendet werden, um Ausführungsformen der
Erfindung auszuführen können in einem Speicher

24/50

DE 11 2013 007 724 B4 2024.01.11

im System gespeichert sein, wie in einem DRAM,
Cache, Flash-Speicher oder einem anderen Spei
cher. Ferner können die Befehle über ein Netzwerk
oder durch andere computerlesbare Medien verbrei
tet werden. Somit kann ein maschinenlesbares
Medium jeden Mechanismus zum Speichern oder
Senden von Informationen in einer Form, die von
einer Maschine (z.B. einem Computer) lesbar ist,
enthalten, wie, ohne aber darauf beschränkt zu
sein, Disketten, optische Platten, Compact Disc
Nur-Lese-Speicher (CD-ROMs) und magneto-opti
sche Platten, Nur-Lese-Speicher (ROMs), Direktzu
griffsspeicher (RAM), einen löschbaren, program
mierbaren Nur-Lese-Speicher (EPROM), einen
elektrisch löschbaren, programmierbaren Nur-Lese-
Speicher (EEPROM), Magnet- oder optische Karten,
einen Flash-Speicher oder einen greifbaren, maschi
nenlesbaren Speicher, der zum Senden von Informa
tionen über das Internet in einer elektrischen, opti
schen, akustischen oder anderen Form von
verbreiteten Signalen verwendet wird (z.B. Träger
wellen, Infrarotsignale, digitale Signale, usw.).
Daher enthält das computerlesbare Medium jede
Art von greifbarem, maschinenlesbaren Medium,
das zum Speichern oder Senden elektronischer
Befehle oder Informationen in einer Form geeignet
ist, die von einer Maschine (z.B. einem Computer)
gelesen werden kann.

[0121] Die folgenden Beispiele betreffen Ausfüh
rungsformen gemäß dieser Patentschrift. Eine oder
mehrere Ausführungsform(en) kann (können) einen
Apparat, ein System, einen maschinenlesbaren
Speicher, ein maschinenlesbares Medium, auf Hard
ware- und/oder Software basierende Logik und ein
Verfahren vorsehen, um eine Steuerung eines
gemeinsam benutzten Speichers bereitzustellen,
um Last- und Speicheroperationen von mehreren
unabhängigen Knoten zu bedienen, um einen
Zugang zu einer gemeinsam benutzten Speicherres
source bereitzustellen, wobei jedem der mehreren
unabhängigen Knoten ein Zugang zu einem ent
sprechenden Teil der gemeinsam benutzten Spei
cherressource zu gewähren ist.

[0122] In zumindest einem Beispiel werden die Last-
und Speicheroperationen unter Verwendung eines
Verbindungsprotokolls des gemeinsam benutzten
Speichers kommuniziert.

[0123] In zumindest einem Beispiel enthält das Ver
bindungsprotokoll des gemeinsam benutzten Spei
chers ein Speicherzugangsprotokoll, das eine physi
sche Schichtlogik eines anderen
Zwischenverbindungsprotokolls verwendet.

[0124] In zumindest einem Beispiel stellt das Verbin
dungsprotokoll des gemeinsam benutzten Speichers
ein Multiplexen zwischen einer Sendung von Daten
der Speicherzugangsprotokolldaten und einer Sen

dung von Daten des Zwischenverbindungsprotokolls
bereit.

[0125] In zumindest einem Beispiel weisen die
Daten des Zwischenverbindungsprotokolls zumin
dest eines von Verbindungsschichtdaten und Trans
aktionsschichtdaten auf.

[0126] In zumindest einem Beispiel weist das Spei
cherzugangsprotokoll SMI3 auf und das Zwischen
verbindungsprotokoll weist Peripheral Component
Interconnect (PCI) Express (PCIe) auf.

[0127] In zumindest einem Beispiel werden Über
gänge zwischen Zwischenverbindungsprotokollda
ten und Speicherzugangsprotokolldaten durch eine
Sync-Kopfzeile identifiziert, die zum Identifizieren
der Übergänge codiert ist.

[0128] In zumindest einem Beispiel werden Über
gänge zwischen Zwischenverbindungsprotokollda
ten und Speicherzugangsprotokolldaten durch
einen Datenstart-Framing-Token identifiziert, der
zum Identifizieren der Übergänge codiert ist.

[0129] In zumindest einem Beispiel werden Über
gänge von Zwischenverbindungsprotokolldaten zu
Speicherzugangsprotokolldaten durch einen Daten
stromende-Framing-Token des Zwischenverbin
dungsprotokolls identifiziert, der zum Identifizieren
der Übergänge codiert ist, und Übergänge von Spei
cherzugangsprotokolldaten zu Zwischenverbin
dungsprotokolldaten werden durch Verbindungs
schichtsteuerungs-Flits des
Speicherzugangsprotokolls identifiziert.

[0130] In zumindest einem Beispiel ist das Verbin
dungsprotokoll des gemeinsam benutzten Speichers
über einen Netzwerkprotokollstapel getunnelt.

[0131] In zumindest einem Beispiel weist der Netz
werkprotokollstapel Ethernet auf.

[0132] In zumindest einem Beispiel befindet sich ein
erster der mehreren CPU-Knoten auf einer ersten
Platine und ein zweiter der mehreren CPU-Knoten
befindet sich auf einer zweiten Platine, die von der
ersten Platine getrennt ist.

[0133] In zumindest einem Beispiel befinden sich
zumindest zwei der mehreren CPU-Knoten auf der
selben Vorrichtung.

[0134] In zumindest einem Beispiel dient die Steue
rung des gemeinsam benutzten Speichers ferner
zum Verfolgen von Speichertransaktionen, welche
die Last- und Speicheroperationen beinhalten.

[0135] In zumindest einem Beispiel dient die Steue
rung des gemeinsam benutzten Speichers ferner

25/50

DE 11 2013 007 724 B4 2024.01.11

zum Feststellen, dass ein bestimmter der mehreren
CPU-Knoten versagt, Identifizieren eines Teils der
Speichertransaktionen des bestimmten CPU-Kno
tens, und Fallenlassen des Teils der Speichertran
saktionen des bestimmten CPU-Knotens, während
alle anderen Speichertransaktionen aufrechterhalten
bleiben.

[0136] In zumindest einem Beispiel dient die Steue
rung des gemeinsam benutzten Speichers ferner
zum Verwalten von Genehmigungen für einen
Zugang der mehreren CPU-Knoten zu Daten in der
gemeinsam benutzten Speicherressource.

[0137] In zumindest einem Beispiel ist zumindest
ein bestimmter der mehreren CPU-Knoten von
einem Zugang zu zumindest einem ersten Teil des
gemeinsam benutzten Speichers blockiert und
einem zweiten der mehreren CPU-Knoten ist ein
Zugang zum ersten Teil möglich.

[0138] In zumindest einem Beispiel dient die Steue
rung des gemeinsam benutzten Speichers ferner
zum Verwalten von Verzeichnisinformationen für
Daten in der gemeinsam benutzten Speicherres
source.

[0139] In zumindest einem Beispiel stellt die Ver
zeichnisinformationen für jede von mehreren Daten
ressourcen, die in der gemeinsam benutzten Spei
cherressource gespeichert sind, fest, ob ein Zugang
zur entsprechenden Datenressource ausschließlich
für einen der mehreren CPU-Knoten ist oder von
zwei oder mehr der mehreren CPU-Knoten gemein
sam benutzt wird.

[0140] In zumindest einem Beispiel dient die Steue
rung des gemeinsam benutzten Speichers ferner
zum Verhandeln einer Zugangsänderung für eine
bestimmte der mehreren Datenressourcen, wobei
die Änderung zumindest eine von einer Zugangsän
derung von gemeinsam benutzt zu ausschließlich
oder einer Zugangsänderung von ausschließlich zu
gemeinsam benutzt aufweist.

[0141] In zumindest einem Beispiel ist die Steue
rung des gemeinsam benutzten Speichers an zumin
dest eine andere Steuerung des gemeinsam benutz
ten Speichers gekoppelt, die zumindest eine andere
gemeinsam benutzte Speicherressource verwaltet,
und die teuerung des gemeinsam benutzten Spei
chers dient ferner zum Kommunizieren von Last-
/SpeicherOperationen zur anderen Steuerung des
gemeinsam benutzten Speichers, um den mehreren
CPU-Knoten einen Zugang zu dem anderen gemein
sam benutzten Speicher zu ermöglichen.

[0142] In zumindest einem Beispiel dient die Steue
rung des gemeinsam benutzten Speichers ferner
zum Abbilden von Adressinformationen in den Last-

und Speicheroperationen auf entsprechende Daten
ressourcen, die in der gemeinsam benutzten Spei
cherressource gespeichert sind.

[0143] Eine oder mehrere Ausführungsformen kön
nen einen Apparat, ein System, einen maschinenles
baren Speicher, ein maschinenlesbares Medium,
eine auf Hardware- und/oder Software basierende
Logik und ein Verfahren zum Senden einer Speicher
zugangsanfrage zu einer Steuerung eines gemein
sam benutzten Speichers vorsehen, wobei die Spei
cherzugangsanfrage eine Last-/Speicheroperation
aufweist und zum Identifizieren einer Adresse einer
Datenressource dient, die in einer gemeinsam
benutzten Speicherressource enthalten sein soll,
die der Steuerung des gemeinsam benutzten Spei
chers entspricht, und jedem der mehreren unabhän
gigen Knoten wird ein Zugang zu einem entsprech
enden Teil der gemeinsam benutzten
Speicherressource gewährt.

[0144] In zumindest einem Beispiel weist die Spei
cherzugangsanfrage eine Lastanfrage auf und die
I/O-Logik dient ferner zum Empfangen von Daten
entsprechend der Datenressource als Antwort auf
die Lastanfrage.

[0145] In zumindest einem Beispiel weist die Spei
cherzugangsanfrage eine Speicheranfrage auf.

[0146] In zumindest einem Beispiel wird Speicher
zugangsanfrage unter Verwendung eines Verbin
dungsprotokolls des gemeinsam benutzten Spei
chers gesendet und das des gemeinsam benutzten
Speichers Verbindungsprotokoll des gemeinsam
benutzten Speichers enthält ein Speicherzugang
sprotokoll, das eine physische Schichtlogik eines
anderen Zwischenverbindungsprotokolls benutzt.

[0147] In zumindest einem Beispiel sieht das Ver
bindungsprotokoll des gemeinsam benutzten Spei
chers ein Multiplexen zwischen einer Sendung von
Daten der Speicherzugangsprotokolldaten und
einer Sendung von Daten des Zwischenverbin
dungsprotokolls vor.

[0148] In zumindest einem Beispiel werden Über
gänge zwischen Zwischenverbindungsprotokollda
ten und Speicherzugangsprotokolldaten durch
zumindest eines der folgenden identifiziert: (a) eine
Sync-Kopfzeile, die zum Identifizieren der Über
gänge codiert ist; (b) einen Datenstart-Framing-
Token, der zum Identifizieren der Übergänge codiert
ist; und (c) einen Datenstromende-Framing-Token,
der zum Identifizieren der Übergänge codiert ist.

[0149] In zumindest einem Beispiel weist das Spei
cherzugangsprotokoll ein SMI3 auf und das Zwi
schenverbindungsprotokoll weist ein auf PCIe basie
rendes Protokoll auf.

26/50

DE 11 2013 007 724 B4 2024.01.11

[0150] In zumindest einem Beispiel weist ein
bestimmter der mehreren Knoten mehrfache CPU-
Buchsen und einen lokalen Speicher auf. In zumin
dest einem Beispiel befindet sich die gemeinsam
benutzte Speicherressource auf einer Vorrichtung
getrennt vom bestimmten Knoten.

[0151] Eine oder mehrere Ausführungsform(en)
kann (können) einen Apparat, ein System, einen
maschinenlesbaren Speicher, ein maschinenlesba
res Medium, Auf Hardware- und/oder Software
basierende Logik und ein Verfahren zum Empfangen
einer ersten Last-/Speicher- Nachricht von einem
ersten unabhängigen CPU-Knoten, der bestimmte
Daten in einem gemeinsam benutzten Speicher
identifiziert, Vorsehen eines Zugangs zu den
bestimmten Daten für den ersten CPU-Knoten als
Antwort auf die erste Last-/Speicher-Nachricht, Emp
fangen einer zweiten Last-/Speicher-Nachricht von
einem zweiten unabhängigen CPU-Knoten, der
bestimmte Daten in einem gemeinsam benutzten
Speicher identifiziert, und Vorsehen eines Zugangs
zu den bestimmten Daten für den zweiten CPU-Spei
cher als Antwort auf die zweite Last-/Speicher-Nach
richt vorsehen.

[0152] In zumindest einem Beispiel werden jede der
ersten und zweiten ersten Last-/Speicher-Nachrich
ten über eine Datenverbindung unter Verwendung
eines Verbindungsprotokolls des gemeinsam
benutzten Speichers empfangen.

[0153] Zumindest einige Ausführungsformen kön
nen ein Identifizieren, dass der erste CPU-Knoten
Zugang zu den bestimmten Daten hat, und Identifi
zieren, dass der zweite CPU-Knoten Zugang zu den
bestimmten Daten hat, vorsehen.

[0154] Zumindest einige Ausführungsformen kön
nen ein Verfolgen von Transaktionen, die den
gemeinsam benutzten Speicher beinhalten, für den
ersten wie auch zweiten CPU-Knoten vorsehen.

[0155] Zumindest einige Ausführungsformen kön
nen ein Identifizieren von Verzeichnisinformationen
der bestimmten Daten vorsehen, wobei die Verzeich
nisinformationen identifizieren, ob die es bestimmten
Daten in einem gemeinsam benutzten, ungecachten
oder ausschließlichen Zustand sind.

[0156] In zumindest einem Beispiel identifiziert die
erste Last-/Speicher-Nachricht die bestimmten
Daten durch eine erste Adresse und die zweite
erste Last-/Speicher-Nachricht identifiziert die
bestimmten Daten durch eine zweite, andere
Adresse.

[0157] Zumindest einige Ausführungsformen kön
nen ein Abbilden der ersten Adresse auf die

bestimmten Daten und Abbilden der zweiten
Adresse auf die bestimmten Daten vorsehen.

[0158] Zumindest einige Ausführungsformen kön
nen ein System vorsehen, das einen ersten Knoten
aufweist, der eine oder mehrere Prozessorvorrich
tung(en) aufweist, einen zweiten Knoten, unabhän
gig vom ersten Knoten und der eine oder mehrere
Prozessorvorrichtung(en) aufweist, und einen
gemeinsam benutzten Speicher, der für jeden von
dem ersten und zweiten Knoten durch ein Last-/Spei
cher-Speicherzugangsprotokoll zugänglich ist.

[0159] In zumindest einem Beispiel hat der erste
Knoten eine Fehlerdomäne unabhängig vom zweiten
Knoten.

[0160] In zumindest einem Beispiel wird der erste
Knoten von einem ersten Betriebssystem gesteuert
und der zweite Knoten wird von einem zweiten
Betriebssystem gesteuert.

[0161] In zumindest einem Beispiel ist das Last-
/Speicher-Speicherzugangsprotokoll in einem Ver
bindungsprotokoll des gemeinsam benutzten Spei
chers enthalten und das Verbindungsprotokoll des
gemeinsam benutzten Speichers wechselt zwischen
dem Speicherzugangsprotokoll und einem anderen
Zwischenverbindungsprotokoll.

[0162] In zumindest einem Beispiel kann eine
Steuerung des gemeinsam benutzten Speichers
Last- und Speicheroperationen vom ersten und zwei
ten Knoten bedienen und einen Zugang zum gemein
sam benutzten Speicher vorsehen.

[0163] Eine oder mehrere Ausführungsform(en)
kann (können) einen Apparat, ein System, einen
maschinenlesbaren Speicher, ein maschinenlesba
res Medium, auf Hardware- und/oder Software
basierende Logik und ein Verfahren zum Senden
einer ersten Sync-Kopfzeile auf Spuren einer Daten
verbindung vorsehen, wobei die erste Sync-Kopf
zeile zum Identifizieren eines Übergangs von Daten
eines Zwischenverbindungsprotokolls zu Daten
eines Speicherzugangsprotokolls und Senden einer
zweite Sync-Kopfzeile auf den Spuren der Datenver
bindung codiert ist, wobei die zweite Sync-Kopfzeile
zum Identifizieren eines Übergangs von Daten des
Speicherzugangsprotokolls zu Daten des Zwischen
verbindungsprotokolls codiert ist.

[0164] In zumindest einem Beispiel identifiziert jede
Sync-Kopfzeile eine Art eines Datenblocks, welcher
der Sync-Kopfzeile folgt.

[0165] In zumindest einem Beispiel ist jeder Daten
block eine vordefinierte Länge.

27/50

DE 11 2013 007 724 B4 2024.01.11

[0166] In zumindest einem Beispiel weist das Spei
cherzugangsprotokoll ein Protokoll auf, das auf SMI3
basiert.

[0167] In zumindest einem Beispiel weist das Zwi
schenverbindungsprotokoll ein Protokoll auf, das
auf einem auf PCIe basierenden Protokoll basiert.

[0168] In zumindest einem Beispiel ist jede Sync-
Kopfzeile nach einer 128b/130b Codierung codiert.

[0169] In zumindest einem Beispiel zeigt die zweite
Sync-Kopfzeile einen Datenblock des Zwischenver
bindungsprotokolls an und eine dritte Sync-Kopfzeile
wird auf den Spuren der Datenverbindung gesendet,
um einen gereihten Blocksatz des Zwischenverbin
dungsprotokolls anzuzeigen.

[0170] In zumindest einem Beispiel ist die erste
Sync-Kopfzeile mit abwechselnden Werten auf den
Spuren codiert und die zweite Sync-Kopfzeile ist mit
demselben Wert auf allen der Spuren codiert.

[0171] In zumindest einem Beispiel weisen die
Daten des Speicherzugangsprotokolls Verbindungs
schichtdaten auf und die Daten des Zwischenverbin
dungsprotokolls weisen eines von Transaktions
schicht- und Datenverbindungsschichtpaketen auf.

[0172] In zumindest einem Beispiel sind die Sync-
Kopfzeilen gemäß dem Zwischenverbindungsproto
koll definiert.

[0173] In zumindest einem Beispiel unterstützt das
Speicherzugangsprotokoll eine Last-/Speicher-Spei
cherzugangsnachrichtenübermittlung.

[0174] In zumindest einem Beispiel weisen die Spei
cherzugangsprotokolldaten eine Speicherzugangs
nachrichtenübermittlung für einen Zugang zu einer
gemeinsam benutzten Speicherressource auf,
wobei jedem der mehreren unabhängigen Knoten
Zugang zu einem entsprechenden Teil der gemein
sam benutzten Speicherressource gewährt wird.

[0175] In zumindest einem Beispiel hat jeder der
mehreren unabhängigen Knoten eine unabhängige
Fehlerdomäne.

[0176] In zumindest einem Beispiel weist die Daten
verbindung zumindest vier Spuren auf.

[0177] Eine oder mehrere Ausführungsform(en)
kann (können) einen Apparat, ein System, einen
maschinenlesbaren Speicher, ein maschinenlesba
res Medium, auf Hardware- und/oder Software
basierende Logik und ein Verfahren zum Empfangen
einer ersten Sync-Kopfzeile auf Spuren einer Daten
verbindung, wobei die erste Sync-Kopfzeile mit einer
ersten Codierung codiert ist, Identifizieren, aus der

ersten Codierung der ersten Sync-Kopfzeile, eines
Übergangs von Daten eines Zwischenverbindungs
protokolls zu Daten eines Speicherzugangsproto
kolls, Empfangen einer zweiten Sync-Kopfzeile auf
den Spuren der Datenverbindung, wobei die zweite
Sync-Kopfzeile mit einer zweiten Codierung codiert
ist, und Identifizieren, aus der zweiten Codierung
der zweiten Sync-Kopfzeile, eines Übergangs von
Daten des Speicherzugangsprotokolls zu Daten des
Zwischenverbindungsprotokolls vorsehen.

[0178] In zumindest einem Beispiel identifiziert jede
Sync-Kopfzeile eine Art eines Datenblocks, welcher
der Sync-Kopfzeile folgt.

[0179] In zumindest einem Beispiel weist die Zwi
schenverbindungsprotokoll ein auf PCIe basierendes
Protokoll auf.

[0180] In zumindest einem Beispiel basiert das
Speicherzugangsprotokoll auf SMI3.

[0181] In zumindest einem Beispiel ist die Sync-
Kopfzeile gemäß einer 128b/130b Codierung codiert.

[0182] In zumindest einem Beispiel weist die erste
Codierung Werte von 01b und 10b auf, die auf den
Spuren der Datenverbindung abwechseln.

[0183] In zumindest einem Beispiel weisen die
Daten des Speicherzugangsprotokolls Last-/Spei
cher-Speicherzugangsnachrichten auf.

[0184] In zumindest einem Beispiel weisen die Spei
cherzugangsnachrichten Nachrichten für einen
Zugang zu einer gemeinsam benutzten Speicherres
source auf und jedem der mehreren unabhängigen
Knoten in einem System wird Zugang zu einem ent
sprechenden Teil der gemeinsam benutzten Spei
cherressource gewährt.

[0185] Eine oder mehrere Ausführungsform(en)
kann (können) einen Apparat, ein System, einen
maschinenlesbaren Speicher, ein maschinenlesba
res Medium, auf Hardware- und/oder Software
basierende Logik und ein Verfahren zum empfangen
einer ersten Sync-Kopfzeile auf Spuren einer Daten
verbindung, wobei die erste Sync-Kopfzeile mit einer
ersten Codierung codiert ist, Identifizieren aus der
ersten Codierung der ersten Sync-Kopfzeile eines
Übergangs von Daten eines Zwischenverbindungs
protokolls zu Daten eines Speicherzugangsproto
kolls, Verarbeiten der Daten des Speicherzugang
sprotokolls, Empfangen einer zweiten Sync-
Kopfzeile auf den Spuren der Datenverbindung,
wobei die zweite Sync-Kopfzeile mit einer zweiten
Codierung codiert ist, und Identifizieren, aus der
zweiten Codierung der zweiten Sync-Kopfzeile,
eines Übergangs von Daten des Speicherzugang

28/50

DE 11 2013 007 724 B4 2024.01.11

sprotokolls zu Daten des Zwischenverbindungspro
tokolls vorsehen.

[0186] In zumindest einem Beispiel weist das Zwi
schenverbindungsprotokoll ein auf PCIe basierendes
Protokoll auf und das Speicherzugangsprotokoll
basiert auf SMI3.

[0187] In zumindest einem Beispiel sind die Sync-
Kopfzeilen gemäß PCIe.

[0188] In zumindest einem Beispiel werden die
Daten des Speicherzugangsprotokolls verarbeitet,
um eine Speicherzugangsanfrage zu bedienen, die
in den Daten des Speicherzugangsprotokolls enthal
ten ist.

[0189] In zumindest einem Beispiel ist die Speicher
zugangsanfrage eine Anfrage einer gemeinsam
benutzten Speicherressource, die von mehreren
unabhängigen CPU-Knoten gemeinsam benutzt
wird.

[0190] In zumindest einem Beispiel weist die Spei
cherzugangsanfrage eine Last-/Speicher-Nachricht
auf.

[0191] Eine oder mehrere Ausführungsform(en)
kann (können) einen Apparat, ein System, einen
maschinenlesbaren Speicher, ein maschinenlesba
res Medium, auf Hardware- und/oder Software
basierende Logik und ein Verfahren zum Senden
eines ersten Datenstart-Framing-Tokens auf Spuren
einer Datenverbindung, wobei der erste Datenstart-
Framing-Token zum Identifizieren eines Übergangs
von Daten eines Zwischenverbindungsprotokolls zu
Daten eines Speicherzugangsprotokolls codiert ist,
und Senden eines zweiten Datenstart-Framing-
Tokens auf den Spuren der Datenverbindung, wobei
der zweite Datenstart-Framing-Token zum Identifi
zieren eines Übergangs von Daten des Speicherzu
gangsprotokolls zu Daten des Zwischenverbin
dungsprotokolls codiert ist, vorsehen.

[0192] In zumindest einem Beispiel weist der erste
Datenstart-Framing-Token einen modifizierten PCIe
STP Framing-Token auf und der zweite Datenstart-
Framing-Token weist einen PCIe STP Framing-
Token auf.

[0193] In zumindest einem Beispiel enthält jeder
Datenstart-Framing-Token ein Längenfeld.

[0194] In zumindest einem Beispiel wird der Über
gang von Daten des Zwischenverbindungsprotokolls
zu Daten des Speicherzugangsprotokolls im ersten
Datenstart-Framing-Token durch einen Wert im Län
genfeld des ersten Datenstart-Framing-Tokens
angezeigt.

[0195] In zumindest einem Beispiel sind die Daten
des Speicherzugangsprotokolls in einem Fenster zu
senden, das durch das Längenfeld des ersten Daten
start-Framing-Tokens definiert ist.

[0196] In zumindest einem Beispiel basiert das
Speicherzugangsprotokoll auf SMI3.

[0197] In zumindest einem Beispiel weist das Zwi
schenverbindungsprotokoll ein auf PCIe basierendes
Protokoll auf.

[0198] In zumindest einem Beispiel weisen die
Daten des Speicherzugangsprotokolls Verbindungs
schichtdaten auf und die Daten des Zwischenverbin
dungsprotokolls weisen eines von Transaktions
schicht- und Datenverbindungsschichtpaketen auf.

[0199] In zumindest einem Beispiel dient die physi
sche Schichtlogik ferner zum Senden der Daten des
Speicherzugangsprotokolls und die Daten des Spei
cherzugangsprotokolls weisen Last-/Speicher-Spei
cherzugangsnachrichten auf.

[0200] In zumindest einem Beispiel weisen die Spei
cherzugangsprotokolldaten Speicherzugangsnach
richten für einen Zugang zu einer gemeinsam
benutzten Speicherressource auf, und jedem der
mehreren unabhängigen Knoten wird Zugang zu
einem entsprechenden Teil der gemeinsam benutz
ten Speicherressource gewährt.

[0201] In zumindest einem Beispiel hat jeder der
mehreren unabhängigen Knoten eine unabhängige
Fehlerdomäne.

[0202] In zumindest einem Beispiel weist die Daten
verbindung eine oder mehrere Spuren auf.

[0203] Eine oder mehrere Ausführungsform(en)
kann (können) einen Apparat, ein System, einen
maschinenlesbaren Speicher, ein maschinenlesba
res Medium, auf Hardware- und/oder Software
basierende Logik und ein Verfahren zum Empfangen
eines ersten Datenstart-Framing-Tokens auf Spuren
einer Datenverbindung, Identifizieren, aus dem ers
ten Datenstart-Framing-Token, eines Eintreffens von
Daten eines Speicherzugangsprotokolls, Empfangen
eines zweiten Datenstart-Framing-Tokens auf Spu
ren der Datenverbindung, wobei sich das zweite
Datenstart-Framing-Token vom ersten Datenstart-
Framing-Token unterscheidet, und Identifizieren,
aus dem zweiten Datenstart-Framing-Token, eines
Eintreffens von Daten eines Zwischenverbindungs
protokolls vorsehen.

[0204] In zumindest einem Beispiel weist der erste
Datenstart-Framing-Token ein modifiziertes PCIe
STP Framing-Token auf und das zweite Datenstart-

29/50

DE 11 2013 007 724 B4 2024.01.11

Framing-Token weist einn PCIe STP Framing-Token
auf.

[0205] In zumindest einem Beispiel enthält jeder
Datenstart-Framing-Token ein Längenfeld.

[0206] In zumindest einem Beispiel wird der Über
gang von Daten des Zwischenverbindungsprotokolls
zu Daten des Speicherzugangsprotokolls im ersten
Datenstart-Framing-Token durch einen Wert im Län
genfeld des ersten Datenstart-Framing-Tokens
angezeigt.

[0207] In zumindest einem Beispiel basiert das
Speicherzugangsprotokoll auf SMI3 und das Zwi
schenverbindungsprotokoll weist ein auf PCIe basie
rendes Protokoll auf.

[0208] In zumindest einem Beispiel werden die
Daten des Speicherzugangsprotokolls empfangen
und

[0209] werden die Daten des Zwischenverbindungs
protokolls empfangen.

[0210] Eine oder mehrere Ausführungsform(en)
kann (können) einen Apparat, ein System, einen
maschinenlesbaren Speicher, ein maschinenlesba
res Medium, auf Hardware- und/oder Software
basierende Logik und ein Verfahren zum Senden
eines ersten Datenstromende-Framing-Tokens auf
Spuren einer Datenverbindung, wobei das erste
Datenstromende-Framing-Token zum Identifizieren
eines Übergangs von einem Zwischenverbindungs
protokoll zu einem Speicherzugangsprotokoll codiert
ist, Senden von Speicherzugangsprotokolldaten
nach dem Übergang zum Speicherzugangsprotokoll,
und Senden von Verbindungsschichtsteuerungsda
ten des Speicherzugangsprotokolls, um einen Über
gang vom Speicherzugangsprotokoll zum Zwischen
verbindungsprotokoll zu identifizieren, vorsehen.

[0211] In zumindest einem Beispiel sind die Spei
cherzugangsprotokolldaten auf der Datenverbindung
zu senden, bis die Verbindungsschichtsteuerungsda
ten gesendet werden.

[0212] In zumindest einem Beispiel veranlasst der
Übergang zum Speicherzugangsprotokoll einen
Übergang von der Zwischenverbindungsprotokolllo
gik, die Daten auf der Datenverbindung behandelt,
zur Speicherzugangsprotokolllogik, die Daten auf
der Datenverbindung behandelt.

[0213] In zumindest einem Beispiel weist das Spei
cherzugangsprotokoll ein Protokoll auf, das auf SMI3
basiert.

[0214] In zumindest einem Beispiel weist das Zwi
schenverbindungsprotokoll ein auf PCIe basierendes
Protokoll auf.

[0215] In zumindest einem Beispiel weist das erste
Datenstromende-Framing-Token ein modifiziertes
PCIe EDS Framing-Token auf.

[0216] In zumindest einem Beispiel wird ein PCIe
EDS zum Anzeigen eines Endes eines Satzes von
PCIe-Transaktionsschichtpaketen und eines Eintref
fens eines PCIe gereihten Blocksatzes gesendet.

[0217] In zumindest einem Beispiel weisen die
Daten des Speicherzugangsprotokolls Verbindungs
schichtdaten auf und die Daten des Zwischenverbin
dungsprotokolls weisen eines von Transaktions
schicht- und Datenverbindungsschichtpaketen auf.

[0218] In zumindest einem Beispiel werden die
Daten des Speicherzugangsprotokolls gesendet
und weisen Last-/Speicher-Speicherzugangsnach
richten auf.

[0219] In zumindest einem Beispiel weist das Spei
cherzugangsprotokolldaten Speicherzugangsnach
richten für einen Zugang zu einer gemeinsam
benutzten Speicherressource auf, und jedem der
mehreren unabhängigen Knoten wird Zugang zu
einem entsprechenden Teil der gemeinsam benutz
ten Speicherressource gewährt.

[0220] In zumindest einem Beispiel hat jeder der
mehreren unabhängigen Knoten eine unabhängige
Fehlerdomäne.

[0221] Eine oder mehrere Ausführungsform(en)
kann (können) einen Apparat, ein System, einen
maschinenlesbaren Speicher, ein maschinenlesba
res Medium, auf Hardware- und/oder Software
basierende Logik und ein Verfahren zum Empfangen
eines ersten Datenstromende-Framing-Tokens auf
Spuren einer Datenverbindung, die zum Identifizie
ren eines Übergangs von einem Zwischenverbin
dungsprotokoll zu einem Speicherzugangsprotokoll
codiert ist, Übergehen zu einer Verwendung einer
Verbindungsschichtlogik des Speicherzugangsproto
kolls auf der Basis des ersten Datenstromende-Fra
ming-Tokens, Empfangen von Speicherzugangspro
tokollverbindungsschichtdaten, Empfangen von
Verbindungsschichtsteuerungsdaten des Speicher
zugangsprotokolls zum Identifizieren eines Über
gang vom Speicherzugangsprotokoll zum Zwischen
verbindungsprotokoll, und Übergehen zu einer
Verwendung einer Verbindungsschichtlogik des Zwi
schenverbindungsprotokolls auf der Basis der Ver
bindungsschichtsteuerungsdaten, vorsehen.

[0222] In zumindest einem Beispiel basiert das
Speicherzugangsprotokoll auf SMI3.

30/50

DE 11 2013 007 724 B4 2024.01.11

[0223] In zumindest einem Beispiel weist das Zwi
schenverbindungsprotokoll ein auf PCIe basierendes
Protokoll auf.

[0224] In zumindest einem Beispiel weist das erste
Datenstromende-Framing-Token ein modifiziertes
PCIe EDS Framing-Token auf.

[0225] In zumindest einem Beispiel weisen die
Daten des Speicherzugangsprotokolls Verbindungs
schichtdaten auf und die Daten des Zwischenverbin
dungsprotokolls weisen eines von Transaktions
schicht- und Datenverbindungsschichtpaketen auf.

[0226] In zumindest einem Beispiel weisen die
Daten des Speicherzugangsprotokolls Last-/Spei
cher-Speicherzugangsnachrichten auf.

Patentansprüche

1. Apparat aufweisend:
eine Steuerung (515; 515a, 515b) eines gemeinsam
benutzten Speichers (505; 505a, 505b) zum:
Bedienen von Last- und Speicheroperationen, die
über Datenverbindungen von mehreren unabhängi
gen Knoten (510a,......, 510n; 510a,............, 510e)
empfangen werden, um einen Zugang zu einer
gemeinsam benutzten Speicherressource vorzuse
hen, wobei jedem der mehreren unabhängigen Kno
ten (510a,......,510n; 510a,...........510e) Zugang zu
einem entsprechenden Teil der gemeinsam benutz
ten Speicherressource gewährt wird; und
eine I/O-Logik zum:
Identifizieren von Übergängen zwischen Zwischen
verbindungsprotokolldaten und Speicherzugang
sprotokolldaten, die auf den Datenverbindungen
gesendet werden,
dadurch gekennzeichnet dass Übergänge zwi
schen Zwischenverbindungsprotokolldaten und
Speicherzugangsprotokolldaten durch ein Daten
strom-Framing-Token, das zum Identifizieren der
Übergänge codiert ist, identifziert werden.

2. Apparat nach Anspruch 1, wobei die Last- und
Speicheroperationen unter Verwendung eines Ver
bindungsprotokolls für einen gemeinsam benutzten
Speicher (505; 505a, 505b) kommuniziert werden.

3. Apparat nach Anspruch 2, wobei das Verbin
dungsprotokoll des gemeinsam benutzten Spei
chers (505; 505a, 505b) über einen Netzwerkproto
kollstapel getunnelt wird.

4. Apparat nach Anspruch 3, wobei der Netz
werkprotokollstapel Ethernet aufweist.

5. Apparat nach Anspruch 2, wobei das Verbin
dungsprotokoll des gemeinsam benutzten Spei
chers (505; 505a, 505b) ein Speicherzugangsproto

koll enthält, das eine physische Schichtlogik eines
anderen Zwischenverbindungsprotokolls verwendet.

6. Apparat nach Anspruch 5, wobei das Verbin
dungsprotokoll des gemeinsam benutzten Spei
chers (505; 505a, 505b) ein Multiplexen zwischen
einer Sendung von Daten der Speicherzugangspro
tokolldaten und einer Sendung von Daten des Zwi
schenverbindungsprotokolls vorsieht.

7. Apparat nach Anspruch 1, wobei die Daten
des Zwischenverbindungsprotokolls zumindest
eines von Verbindungsschichtdaten und Transak
tionsschichtdaten aufweisen.

8. Apparat nach Anspruch 1, wobei das Spei
cherzugangsprotokoll SMI3 aufweist und das Zwi
schenverbindungsprotokoll Peripheral Component
Interconnect (PCI) Express (PCIe) aufweist.

9. Apparat nach Anspruch 1, wobei Übergänge
zwischen Zwischenverbindungsprotokolldaten und
Speicherzugangsprotokolldaten durch eine Sync-
Kopfzeile identifiziert sind, die zum Identifizieren
der Übergänge codiert ist.

10. Apparat nach Anspruch 1, wobei Übergänge
zwischen Zwischenverbindungsprotokolldaten und
Speicherzugangsprotokolldaten durch ein Daten
start-Framing-Token identifiziert sind, das zum Iden
tifizieren der Übergänge codiert ist.

11. Apparat nach Anspruch 1, wobei Übergänge
von Zwischenverbindungsprotokolldaten zu Spei
cherzugangsprotokolldaten durch einen Datenstro
mende-Framing-Token des Zwischenverbindungs
protokolls identifiziert sind, der zum Identifizieren
der Übergänge codiert ist, und Übergänge von Spei
cherzugangsprotokolldaten zu Zwischenverbin
dungsprotokolldaten durch Verbindungsschichts
teuerungs-Flits des Speicherzugangsprotokolls
identifiziert sind.

12. Apparat nach Anspruch 1, wobei die Steue
rung (515; 515a, 515b) des gemeinsam benutzten
Speichers (505; 505a, 505b) ferner zum Verfolgen
von Speichertransaktionen dient, welche die Last-
und Speicheroperationen beinhalten.

13. Apparat nach Anspruch 12, wobei die Steue
rung (515; 515a, 515b) des gemeinsam benutzten
Speichers (505; 505a, 505b) ferner dient zum:
Identifizieren, dass ein bestimmter der mehreren
CPU-Knoten (510a,......, 510n; 510a, , 510e) ver
sagt;
Identifizieren eines Teils der Speichertransaktionen
des bestimmten CPU-Knotens (510a,......, 510n;
510a, , 510e); und
Fallenlassen des Teils der Speichertransaktionen
des bestimmten CPU-Knotens (510a,......, 510n;

31/50

DE 11 2013 007 724 B4 2024.01.11

510a, , 510e), während alle anderen Speichertran
saktionen aufrechterhalten bleiben.

14. Apparat nach Anspruch 1, wobei die Steue
rung (515; 515a, 515b) des gemeinsam benutzten
Speichers (505; 505a, 505b) ferner zum Verwalten
von Genehmigungen für einen Zugang der mehre
ren CPU-Knoten (510a,, 510n; 510a,..........,
510e) zu Daten in der gemeinsam benutzten Spei
cherressource dient.

15. Apparat nach Anspruch 14, wobei zumindest
ein bestimmter der mehreren CPU-Knoten
(510a,......, 510n; 510a,.........., 510e) von einem
Zugang zu zumindest einem ersten Teil des gemein
sam benutzten Speichers (505; 505a, 505b) blo
ckiert ist und einem zweiten der mehreren CPU-
Knoten (S 10a,, 510n; 510a,......., 510e) ein
Zugang zum ersten Teil gewährt ist.

16. Apparat nach Anspruch 1, wobei die Steue
rung (515; 515a, 515b) des gemeinsam benutzten
Speichers (505; 505a, 505b) ferner zum Verwalten
von Verzeichnisinformationen für Daten in der
gemeinsam benutzten Speicherressource dient.

17. Apparat nach Anspruch 16, wobei die Ver
zeichnisinformationen für jede von mehreren Daten
ressourcen, die in der gemeinsam benutzten Spei
cherressource gespeichert sind, identifizieren, ob
ein Zugang zur entsprechenden Datenressource
ausschließlich für einen der mehreren CPU-Knoten
(510a, , 510n; 510a,.........., 510e) ist oder von zwei
oder mehr der mehreren CPU-Knoten (510a, , 510n;
510a,.........., 510e) gemeinsam benutzt wird.

18. Apparat nach Anspruch 17, wobei die Steue
rung (515; 515a, 515b) des gemeinsam benutzten
Speichers (505; 505a, 505b) ferner zum Verhandeln
einer Zugangsänderung für eine bestimmte der
mehreren Datenressourcen dient, wobei die Ände
rung zumindest eine von einer Zugangsänderung
von gemeinsam benutzt zu ausschließlich oder
einer Zugangsänderung von ausschließlich zu
gemeinsam benutzt aufweist.

19. Apparat nach Anspruch 1, wobei die Steue
rung (515; 515a, 515b) des gemeinsam benutzten
Speichers (505; 505a, 505b) an zumindest eine
andere Steuerung des gemeinsam benutzten Spei
chers (505; 505a, 505b) gekoppelt ist, die zumindest
eine andere gemeinsam benutzte Speicherres
source verwaltet, und die Steuerung (515; 515a,
515b) des gemeinsam benutzten Speichers (505;
505a, 505b) ferner zum Kommunizieren von Last-
/Speicheroperationen zur anderen Steuerung des
gemeinsam benutzten Speichers (505; 505a, 505b)
dient, um den mehreren CPU-Knoten (510a,......,
510n; 510a,.........., 510e) einen Zugang zu dem

anderen gemeinsam benutzten Speicher zu ermögli
chen.

20. Apparat nach Anspruch 1, wobei die Steue
rung (515; 515a, 515b) des gemeinsam benutzten
Speichers (505; 505a, 505b) ferner zum Abbilden
von Adressinformationen in den Last- und Speicher
operationen auf entsprechende Datenressourcen
dient, die in der gemeinsam benutzten Speicherres
source gespeichert sind.

21. Apparat aufweisend:
eine I/O-Logik zum:
Senden einer Speicherzugangsanfrage zu einer
Steuerung (515; 515a, 515b) eines gemeinsam
benutzten Speichers (505; 505a, 505b), wobei die
Speicherzugangsanfrage eine Last-/Speicheropera
tion aufweist und zum Identifizieren einer Adresse
einer Datenressource dient, die in einer gemeinsam
benutzten Speicherressource enthalten ist, die der
Steuerung (515; 515a, 515b) des gemeinsam
benutzten Speichers (505; 505a, 505b) entspricht,
und jedem von mehreren unabhängigen Knoten
(510a,......, 510n; 510a,..........., 510e) Zugang zu
einem entsprechenden Teil der gemeinsam benutz
ten Speicherressource gewährt wird, wobei die
Speicherzugangsanfrage unter Verwendung eines
Verbindungsprotokolls des gemeinsam benutzten
Speichers (505; 505a, 505b) gesendet wird, wobei
das Verbindungsprotokoll des gemeinsam benutz
ten Speichers (505; 505a, 505b) ein Speicherzu
gangsprotokoll enthält, das eine physische Schicht
logik eines anderen Zwischenverbindungsprotokolls
benutzt, und das Verbindungsprotokoll des gemein
sam benutzten Speichers (505; 505a, 505b) ein Mul
tiplexen zwischen einer Sendung von Daten der
Speicherzugangsprotokolldaten und einer Sendung
von Daten des Zwischenverbindungsprotokolls vor
sieht,
dadurch gekennzeichnet dass Übergänge zwi
schen Zwischenverbindungsprotokolldaten und
Speicherzugangsprotokolldaten durch ein Daten
strom-Framing-Token, das zum Identifizieren der
Übergänge codiert ist, identifziert werden.

22. Apparat nach Anspruch 21, wobei die Spei
cherzugangsanfrage eine Lastanfrage aufweist und
die I/O-Logik ferner zum Empfangen von Daten, die
der Datenressource entsprechen, als Antwort auf
die Lastanfrage dient.

23. Apparat nach Anspruch 21, wobei die Spei
cherzugangsanfrage eine Speicheranfrage aufweist.

24. Apparat nach Anspruch 23, wobei Über
gänge zwischen Zwischenverbindungsprotokollda
ten und Speicherzugangsprotokolldaten durch
zumindest eines der folgenden identifiziert werden:
(a) eine Sync-Kopfzeile, die zum Identifizieren der
Übergänge codiert ist;

32/50

DE 11 2013 007 724 B4 2024.01.11

(b) einen Datenstart-Framing-Token, das zum Iden
tifizieren der Übergänge codiert ist; und
(c) einen Datenstromende-Framing-Token, das zum
Identifizieren der Übergänge codiert ist.

25. Verfahren aufweisend:
Empfangen einer ersten Last-/Speicher-Nachricht
von einem ersten unabhängigen CPU-Knoten
(510a,......, 510n; 510a,.........., 510e), wobei die
erste Last-/Speicher-Nachricht bestimmte Daten in
einem gemeinsam benutzten Speicher (505; 505a,
505b) identifiziert,
Vorsehen eines Zugangs zu den bestimmten Daten
für den ersten CPU-Knoten (510a,......, 510n;
510a,.........., 510e) als Antwort auf die erste Last-
/Speicher-Nachricht;
Empfangen einer zweiten Last-/Speicher-Nachricht
von einem zweiten unabhängigen CPU-Knoten
(510a,......, 510n; 510a,.........., 510e), wobei die
zweite Last-/Speicher-Nachricht bestimmte Daten
in einem gemeinsam benutzten Speicher (505;
505a, 505b) identifiziert, und
Vorsehen eines Zugangs zu den bestimmten Daten
für den zweiten CPU-Speicher als Antwort auf die
zweite Last-/Speicher-Nachricht,
dadurch gekennzeichnet dass Übergänge zwi
schen Zwischenverbindungsprotokolldaten und
Speicherzugangsprotokolldaten durch ein Daten
strom-Framing-Token, das zum Identifizieren der
Übergänge codiert ist, identifziert werden.

Es folgen 17 Seiten Zeichnungen

33/50

DE 11 2013 007 724 B4 2024.01.11

Anhängende Zeichnungen

34/50

DE 11 2013 007 724 B4 2024.01.11

35/50

DE 11 2013 007 724 B4 2024.01.11

36/50

DE 11 2013 007 724 B4 2024.01.11

37/50

DE 11 2013 007 724 B4 2024.01.11

38/50

DE 11 2013 007 724 B4 2024.01.11

39/50

DE 11 2013 007 724 B4 2024.01.11

40/50

DE 11 2013 007 724 B4 2024.01.11

41/50

DE 11 2013 007 724 B4 2024.01.11

42/50

DE 11 2013 007 724 B4 2024.01.11

43/50

DE 11 2013 007 724 B4 2024.01.11

44/50

DE 11 2013 007 724 B4 2024.01.11

45/50

DE 11 2013 007 724 B4 2024.01.11

46/50

DE 11 2013 007 724 B4 2024.01.11

47/50

DE 11 2013 007 724 B4 2024.01.11

48/50

DE 11 2013 007 724 B4 2024.01.11

49/50

DE 11 2013 007 724 B4 2024.01.11

50/50 Das Dokument wurde durch die Firma Luminess hergestellt.

DE 11 2013 007 724 B4 2024.01.11

	Titelseite
	Beschreibung
	Ansprüche
	Anhängende Zeichnungen

