

(19) AUSTRALIAN PATENT OFFICE

(54) Title
Method for inverse multiplexing

(51) 6 International Patent Classification(s)
H04L 5/00 060101BHAU
(2006.01) PCT/NL02/0025
H04L 5/00 3
20060101AFI20

(21) Application No: 2002307631 (22) Application Date: 2002.04.18

(87) WIPO No: WO02/084933

(30) Priority Data

(31) Number (32) Date (33) Country
1017870 2001.04.18 NL

(43) Publication Date: 2002.10.28

(43) Publication Journal Date: 2003.04.17

(71) Applicant(s)
Nonend Inventions N.V.

(72) Inventor(s)
Van Oldenborgh, Marc; Gnjirrep, Martijn

(74) Agent/Attorney
Griffith Hack, GPO Box 1285K, MELBOURNE, VIC, 3001

(56) Related Art
US 6 198 749 B1
MAXEMCHUK: " Dispersity Routing"
INTERNATIONAL CONFERENCE ON
COMMUNICATIONS. SAN FRANCISCO, JUNE 16-18,
1975 ELEVENTH CONF, NEW YORK, IEEE, US,
vol. 1 CONF. 1975,
16 June 1975 (1975-06-16), pages
41-10-41-13, XP002181844

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
24 October 2002 (24.10.2002)

PCT

(10) International Publication Number
WO 02/084933 A3

(51) International Patent Classification⁷: H04L 25/14, 1/02

Amsterdam (NL). GNIRREP, Martijn [NL/NL]; Bernard Shawsingel 282, NL-1102 VE Amsterdam (NL).

(21) International Application Number: PCT/NL02/00253

(74) Agent: DE HOOP, Erie; Octrooibureau Vriesendorp & Gaade, P.O. Box 266, NL-2501 AW The Hague (NL).

(22) International Filing Date: 18 April 2002 (18.04.2002)

(81) Designated States (national): AE, AG, AL, AM, AT; AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CL, CN, CO, CR, CU, CZ (utility model), CZ, DH (utility model), DH, DK (utility model), DK, DM, DZ, EC, EE (utility model), EE, ES, FI (utility model), FI, GB, GD, GH, GM, IIR, IJU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK (utility model), SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW.

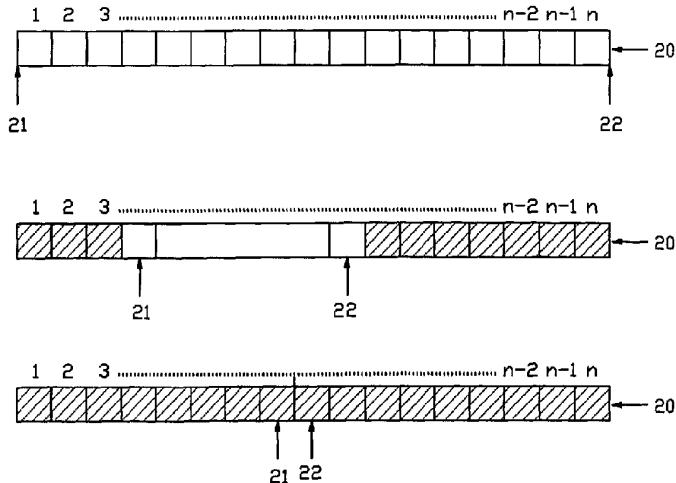
(25) Filing Language: English

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SI, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent

(26) Publication Language: English

[Continued on next page]

(30) Priority Data:
1017870 18 April 2001 (18.04.2001) NL


(71) Applicant (for all designated States except US):
NONEND INVENTIONS N.V. [NL/NL]; Van Hugelweg 23, Curacao (AN).

(72) Inventors; and

(75) Inventors/Applicants (for US only): VAN OLDENBORGH, Marc [NL/NL]; Orival 263, NL-1096 IJR

(54) Title: METHOD FOR INVERSE MULTIPLEXING

WO 02/084933 A3

(57) Abstract: The invention relates to a method for multiplexing digital data, wherein a packet of digital data is simultaneously sent from front to rear and from rear to front. Such a method can be used in cordless telephones, computer networks, such as among others the internet, and other networks of devices wherein digital data are exchanged.

(BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Declaration under Rule 4.17:

— *as to applicant's entitlement to apply for and be granted a patent (Rule 4.17(iii)) for the following designations AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZM, ZW, ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR, OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG)*

Published:

— *with international search report
— before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendment(s)*

(88) Date of publication of the international search report:

9 January 2003

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

Method for inverse multiplexing**Field of the invention**

The invention relates to a method for multiplexing digital data, and software for that purpose.

5 Background

In practice very many methods to send data are known, particularly through a network. An example are digital data that are sent through the internet, but also digital telephone signals, such as for instance in case of 10 cordless GSM telephones.

In practice there are also various methods known for multiplexing digital data.

15 The data are sent via a medium in the form of data packets. This can take place via a physical cabling in for instance copper or glass fibre, or via infrared or radio waves.

20 Because the capacity, often coupled to bandwidth, of the media over which the data are being sent mostly is too small, the data are often compressed. However, this has often appeared not to be sufficient.

Additionally many of these methods are aimed at optimising the data transfer between two computers.

25

Summary of the Invention

The present invention provides a method for multiplexing digital data, wherein a packet of digital data, said
5 packet of digital data having a length, a front end and a rear, is simultaneously sent from front to rear and from rear to front.

Preferably the first device sends the data from front to
10 rear to a third device, and a second device sends the same data from rear to front to the third device.

Preferably the third device places the data in a data buffer the size of the packet, and sends a signal to the
15 first and second device when either the buffer is full, or stops sending confirmations until the buffer is full.

Preferably the first device sends data from front to rear to a second device, and simultaneously backwards to a
20 third device.

Preferably the second device and third device immediately at receipt forward the data they received from the first device to each other.

25 Preferably the second and third device have been provided with a data buffer the size of the packet, wherein the received data are placed in the data buffer and the first and second device send a signal to the first device when
30 the respective data buffer is full.

Preferably a packet of digital data having a length, a beginning and an end, is simultaneously sent from the beginning of the packet towards the end and from the end
35 towards the beginning.

Preferably a first device sends the data from beginning towards the end to a third device, and a second device sends the same data from the end towards the beginning to the third device.

5

Preferably the third device places the data in a data buffer the size of the packet, and sends a signal to the first and second device when either the buffer is full, or stops sending confirmations until the buffer is full.

10

Preferably the first device sends data from the beginning to the end to a second device, and simultaneously backwards to a third device.

15

Preferably the second device and third device immediately at receipt forward the data they received from the first device to each other.

20

Preferably the second and third device have been provided with a data buffer the size of the packet, wherein the received data are placed in the data buffer and the first and second device send a signal to the first device when the respective data buffer is full.

25

Preferably a packet of digital data is sent by electronical or optical means and the same packet of digital data is sent backwards by electronical or optical means.

30

Preferably the first device sends the packet of digital data from front to rear to a third device, and a second device sends the same data backwards to the third device.

35

Preferably the third device places the data in a data buffer the size of the packet of digital data, and sends a signal to the first and second device when either the buffer is full, or stops sending confirmations until the

buffer is full.

Preferably the first device sends data from front to rear to a second device, and simultaneously backwards to a
5 third device.

Preferably the second device and third device immediately at receipt forward the data they received from the first device to each other.

10 Preferably the second and third device have been provided with a data buffer the size of the packet, wherein the received data are placed in the data buffer and the first and second device send a signal to the first device when
15 the respective data buffer is full.

20 The invention also provides a method for sending a data packet to a first device in an ad-hoc data network of devices, wherein the devices have been provided with a data processing unit, a data buffer and software having receiving routines for receiving data packets from at least two transmitting devices in the data network, wherein at least two other devices in the network
25 simultaneously send data sub-packets together making up said data packet, at least one device starting with the front sub-packet and sequentially taking the next sub-packet, and at least one device starting with the last sub-packet and sequentially taking a previous one, to said first device, which first device adds together these data
30 sub-packets to form said data packet.

35 Preferably the software has further been provided with transmission routines for transmitting data packets, received from the transmitting device or devices in the data network to at least one receiving device that is connected to the data network, independent of the transmitting device or devices.

The invention still further provides a method for receiving digital data, wherein a device provided with data storage means creates a data buffer in the data

5 storage means the size of a packet of digital data, and simultaneously received a first stream of digital data and receives a second stream of digital data, wherein the device fills the data buffer from front to rear with the first stream of digital data and fills the data buffer
10 from rear to front with the second stream of digital data, wherein said first and second streams make up a single packet, and said first stream is sent from front to rear, and said second stream is sent from rear to front.

15 Preferably the device informs the source or sources of the streams of digital data when a data buffer is full.

The invention still further provides a method for sending digital data, wherein a device provided with data storage
20 means creates a data buffer in the data storage means, stores digital data in the data buffer, and from the front of the data buffer and the rear of the data buffer sends the digital data in two streams, wherein a first stream is sent from front to rear, and a second stream is sent from
25 rear to front.

Preferably the device stops sending after receipt of a signal.

30 The invention still further provides a software for sending a packet of digital data, comprising a first transmission routine for sending a first stream of digital data starting from the front of the packet of digital data and a second transmission routine for sending a second
35 stream of digital data starting from the end of the packet of digital data, wherein said first stream and said second stream are included in said packet.

The invention still further provides a software for receiving a packet of digital data, comprising a first receiving routine for receiving a first stream of digital data and a second receiving routine for simultaneously receiving a second stream of digital data, and a first storing routine for storing the first stream of digital data in a memory starting at the front of the memory and filling the memory towards the end, and a second storing routine for storing the second stream of digital data starting at the end of the memory and filling the memory towards the front, and a stop routine for ending the receiving of digital data when the memory is full, wherein said first and second streams make up a single packet, and said first stream is sent from front to rear, and said second stream is sent from rear to front.

The invention still further provides an apparatus for sending a packet of digital data, comprising memory means for storing the packet of digital data, first sending means for sending a first stream of digital data, starting at the front of the memory means and second sending means for sending a second stream of digital data, starting at the end of the memory means.

The invention still further provides an apparatus for receiving a packet of digital data, comprising memory means for storing the packet of digital data, first receiving means for receiving a first stream of digital data, and storing it in said memory means, starting from the front of the memory means, and second receiving means for receiving a second stream of digital data, and storing it in said memory means, starting from the back of the memory means, wherein said first and second streams make up a single packet, and said first stream is sent from front to rear, and said second stream is sent from rear to front.

The invention also provides a data carrier, provided with the above software.

5 The invention also provides a device provided with the above software.

The invention still further provides a method for multiplexing digital data, including a packet of digital
10 data having a length, a front and a rear, said packet having a first stream and a second stream, comprising:
15 sending said first and second streams simultaneously, said first stream sent from said front to rear and said second stream sent from said rear to front, where one of said first stream and said second stream is continued to be sent if one of said first and second streams fails or is stalled,
20 sending a second packet,
using said second packet to validate said first packet.

In a specific embodiment of the invention, packets of digital data are sent in the form of bitstreams. In another embodiment, the packets are divided into smaller sub-packets, for instance numbered 1..n. In this case,

5 the sub-packets are sent 1, 2 etc in the first stream, i.e. sequentially, starting with the first sub-packet, and the sub-packets are sent n, n-1, ... etc in the second stream i.e. sequentially, starting with the last sub-packet. In a further embodiment, these two streams are

10 sent almost simultaneous. The two streams can be sent over the same carrier, for instance using conventional multiplexing techniques, or they can be sent over entirely different carriers, for instance cable modem and telephone line. The digital data can also be another form instead

15 of the now-used binary data.

Brief description of the drawings

The invention is further elucidated on the basis of the

20 figures that are exemplary embodiments of the invention. However, the invention is not limited to said exemplary embodiments. Shown in the figures is:

Figure 1 the splitting of one signal into two signals and

25 the adding together at the receiver;

Figure 2 the receipt of a split signal by a receiver from

two physically

- 7 -

separated sources,

Figure 3 the provision of two receivers with one signal,

5 Figure 4 the provision of three receivers with one signal,

Figure 5 an alternative for the situation of figure 4,

10 Figure 6 an example of the relation between bandwidth and the quantity of
signal,

Figure 7 a second example of the relation between bandwidth and quantity
of signal,

15 Figure 8A-8C a receiving device,

Figure 9A-9C a sending device,

20 Figure 10A-10D a device which receives and almost simultaneously sends,
and

Figure 11 the process of sending and receiving.

Description of preferred embodiments

25 Figure 1 shows a situation in which a signal 5 in a conventional manner
enters a receiver 3. The receiver 3 splits the signal, or each data packet
from which the signal has been built up, into two streams 1 and 2 to
forward it to receiver 4. Stream 1 is the signal sent from the front, that
30 means the first bit of the data packet or the signal is sent first, then the
second, etc. Stream 2 is the signal 5 or a data packet thereof, but then
backwards, that means first the last bit is sent then the last but one, etc.

- 8 -

Therefore, as both streams make up the entire stream, the two streams may be considered as complementary streams.

5 Receiver 4 simultaneously fills its data buffer from the front with signal 1 and from the rear with signal 2. This can take place by means of a computer program, but can also be implemented hardware-wise. When the buffer is full, that means the complete signal or data packet has been received, receiver 4 sends a signal to receiver/transmitter 3 that the buffer is full, that means that the signal has been received. It is of course also
10 possible that the receiver 4 keeps sending a signal to receiver/transmitter 3 until the buffer is full, or just closes down the connection when the buffer is full, or sets the port at high or low.

15 The principle depicted in figure 1, can also be used in figure 2 with 2 sources 3, 3' that transmit to a receiver 4. In that case the sources 3, 3' receive the entire (or already split) signal or data packet 5, and each send a partial signal 1 or 2, respectively, to receiver 4. This offers advantages when the transmission capacity of sources 3 and 3' is lower than the receiving capacity of receiver 4. The receiver 4 may even forward the
20 reconstructed signal or data packet 6 in its entirety again.

25 Figure 3 shows an example of the method according to the present invention, wherein one source 3 splits a signal or data packet 5 into two complementary streams 1 and 2. The one stream is sent to receiver 4, the other stream to receiver 4'. Both receivers 4 and 4' send what is received to each other, so that both obtain a complete signal or data packet again. This offers advantages when the transmission capacity/bandwidth of 3 is limited, but/and the capacity between 4 and 4' is sufficient for exchange of data.

30 Figure 4 shows an example wherein a source 3 splits a signal or data packet 5 into two streams, wherein stream 1 is sent to receivers 4, 4",

- 9 -

and stream 2 to receiver 4'. Receiver 4' forwards its part of the signal or data packet to 4 and 4", whereas 4 forwards its part to 4'. In the optimal case all receivers 4, 4' and 4" will receive the entire signal or data packet in less time than usually needed in conventional point-to-point connections,
5 or while using less bandwidth.

Figure 5 shows an example of the use of the method according to the invention, wherein a source 3 having limited data transfer capacity splits a signal or data packet 5 into two streams 1 and 2. Stream 1 is sent to receiver 4, stream 2 to receiver 4", and receivers 4 and 4" forward their part to receiver 4'. As a result three receivers have received the entire signal or data packet within less time usually needed to send the packet in its entirety to all three receivers, and the bandwidth used is smaller.
10

15 Figures 6 and 7 show calculation examples wherein in case of figure 6 the available bandwidth from transmitter 3 to receivers 4 and 4' is almost the same. In that case receivers 4 and 4' will have received the data in 50% of the usually necessary time, and this is also the load for transmitter 3, seen in bandwidth, only 2 times 50% in total instead of 2 times 100%. Thus,
20 digital data is sent without any overhead (transmitter 3 may stop sending when all data is sent) and very fast.

In the calculation example of figure 7 the connection is a-synchronous. Receiver 4' receives 91% of the total data packet, and receiver 4 receives 11% of the total data packet. The nett result is that transmitter 3 in the end only needs to send the total data packet once. Additionally there will be a small gain of speed in this unfavourable case. In this case, the sending capacity from transmitter 3 to receiver 4, as well as the sending capacity from receiver 4 to receiver 4'. Due to very low transmission capacity from receiver 4 to receiver 4' (or delays) only 9 % instead of 11 % could be transmitted from receiver 4 to receiver 4'.
25
30

- 10 -

In figure 8A-8C, the process of receiving a digital data packet split into two streams according to the present invention is shown. In figure 8A, two streams 21 and 22 are received and put into data buffer 20. The first part of the received data from stream 21 is put in place 1, the first part of 5 received data from stream 22 is put in place n. In figure 8B, an intermediate step is shown. In this case, via stream 21 the 4th data part is received and is put into buffer at location 4, while via stream 22 also another (n-i th) data part is received. Despite the fact that the two streams are not equally fast, no overhead is needed.. In figure 8C, the two streams meet, the 10 buffer is full. This will trigger the device to stop receiving, or send a signal that the digital data packet is complete.

In figures 9A-9C, the sending side is shown. In figure 9A, data buffer 23 is 15 full of data. The device starts taking data from data buffer, starting at the front of the data buffer 23, and starts sending the data. At the same time, the device starts taking data from the back of databuffer 23, position n, and sends this data. In figure 9B, taken some time later, it can be seen that 20 the device takes data part 3 from data buffer 23 and sends it. At the same time, from the rear end of the data buffer the fifth data part is taken and send. The device sequentially takes the next, etc, so the next data parts would be number 4 and the 6th from the back. In figure 9C, the last data parts are taken. Again, it can be seen that sending is swift, and without complex overhead.

25 Figures 10A-10D show the situation where there is a device which both sends and receives according to the present invention. This time, data buffer 26 is empty, The devive starts receiving data parts via streams 28 and 29, stream 28 is put at the first place, and stream 28 will subsequently fill data buffer 26 from the front to the back. The first data 30 part received from stream 29 will be put into the last position, n, of the data buffer 26. Subsequently, stream 29 will fill data buffer 26 from the back to the front, until the buffer is full.

- 11 -

At the same time, the device starts sending data parts via streams 30 and 31. Stream 30 starts from the front of the data buffer and stream 31 starts from the back of the data buffer.

5 In figure 10C, it can be seen that in this case, the device receives data parts faster than it sends them. In figure 10C, all the data parts are received: the two streams 28 and 29 meet. The device keeps sending via streams 30 and 31. In figure 10D, the streams 30 and 31 meet, and the device can stop sending. This is all possible with a minimum on overhead.

10

In figure 11, The process of sending and receiving are depicted in one figure. Apparatus 40 having data buffer 24 sends two streams of data 44 and 45. Apparatus 41 receives these two streams as streams 46 and 47, and puts the data in data buffer 43. Again, the sending apparatus 40 has 15 two streams 44 and 45, one starting at the front and one at the back of data buffer 42. Receiving apparatus 41 receives two streams, and places one stream in the front, and one in the back of data buffer 43.

For that matter the method according to the invention can for instance be 20 used in GSM or other cordless telephony. A conversation or a data stream can then be divided into packets which, in accordance with the method according to the invention, can be sent. Use can then also be made of the available bandwidth: each data stream can be sent over another band, so that optimal use is made of the available bandwidth.

25

It is to be understood that the above description is included to illustrate the operation of the preferred embodiments and is not meant to limit the scope of the invention. The scope of the invention is to be limited only by the following claims. From the above discussion, many variations will be 30 apparent to one skilled in the art that would yet be encompassed by the spirit and scope of the present invention.

- 11a -

In the claims which follow and in the preceding description, except where the context requires otherwise due to express language or necessary implication, the word "comprise", or variations such as "comprises" or 5 "comprising", is used in an inclusive sense, ie. to specify the presence of the stated features but not to preclude the presence or addition of further features in various embodiments of the invention,

10 It is to be understood that, if any prior art publication is referred to herein, such reference does not constitute an admission that the publication forms a part of the common general knowledge in the art, in Australia or any other country.

THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:

1. A method for multiplexing digital data, wherein a packet of digital data, said packet of digital data having a length, a front end and a rear, is simultaneously sent from front to rear and from rear to front.
5
2. The method according to claim 1, wherein a first device sends the data from front to rear to a third device, and a second device sends the same data from rear to front to the third device.
10
3. The method according to claim 2, wherein the third device places the data in a data buffer the size of the packet, and sends a signal to the first and second device when either the buffer is full, or stops sending confirmations until the buffer is full.
15
4. The method according to claim 1, wherein a first device sends data from front to rear to a second device, and simultaneously backwards to a third device.
20
5. The method according to claim 4, wherein the second device and third device immediately at receipt forward the data they received from the first device to each other.
25
6. The method according to claim 5, wherein the second and third device have been provided with a data buffer the size of the packet, wherein the received data are placed in the data buffer and the first and second device send a signal to the first device when the respective data buffer is full.
30
7. A method for multiplexing digital data, wherein a packet of digital data having a length, a beginning and an end, is simultaneously sent from the beginning of the packet towards the end and from the end towards the
35

beginning.

8. The method according to claim 7, wherein a first device sends the data from beginning towards the end to a
5 third device, and a second device sends the same data from the end towards the beginning to the third device.

9. The method according to claim 8, wherein the third device places the data in a data buffer the size of the
10 packet, and sends a signal to the first and second device when either the buffer is full, or stops sending confirmations until the buffer is full.

10. The method according to claim 7, wherein a first device sends data from the beginning to the end to a
15 second device, and simultaneously backwards to a third device.

11. The method according to claim 10, wherein the second device and third device immediately at receipt forward the data they received from the first device to each other.

12. The method according to claim 11, wherein the second and third device have been provided with a data buffer the
25 size of the packet, wherein the received data are placed in the data buffer and the first and second device send a signal to the first device when the respective data buffer is full.

30 13. A method for multiplexing digital data, wherein simultaneously a packet of digital data is sent by electronical or optical means and the same packet of digital data is sent backwards by electronical or optical means.

35 14. The method according to claim 13, wherein a first device sends the packet of digital data from front to rear

to a third device, and a second device sends the same data backwards to the third device.

15. The method according to claim 14, wherein the third
5 device places the data in a data buffer the size of the
packet of digital data, and sends a signal to the first
and second device when either the buffer is full, or stops
sending confirmations until the buffer is full.

10 16. The method according to claim 13, wherein a first
device sends data from front to rear to a second device,
and simultaneously backwards to a third device.

15 17. The method according to claim 16, wherein the second
device and third device immediately at receipt forward the
data they received from the first device to each other.

18. The method according to claim 17, wherein the second
and third device have been provided with a data buffer the
20 size of the packet, wherein the received data are placed
in the data buffer and the first and second device send a
signal to the first device when the respective data buffer
is full.

25 19. A method for sending a data packet to a first device
in an ad-hoc data network of devices, wherein the devices
have been provided with a data processing unit, a data
buffer and software having receiving routines for
receiving data packets from at least two transmitting
30 devices in the data network, wherein at least two other
devices in the network simultaneously send data sub-
packets together making up said data packet, at least one
device starting with the front sub-packet and sequentially
taking the next sub-packet, and at least one device
35 starting with the last sub-packet and sequentially taking
a previous one, to said first device, which first device
adds together these data sub-packets to form said data

packet.

20. The method according to claim 19, wherein the software has further been provided with transmission
5 routines for transmitting data packets, received from the transmitting device or devices in the data network to at least one receiving device that is connected to the data network, independent of the transmitting device or devices.

10

21. A method for receiving digital data, wherein a device provided with data storage means creates a data buffer in the data storage means the size of a packet of digital data, and simultaneously receives a first stream of digital data and receives a second stream of digital data, wherein the device fills the data buffer from front to rear with the first stream of digital data and fills the data buffer from rear to front with the second stream of digital data, wherein said first and second streams make up a single packet, and said first stream is sent from front to rear, and said second stream is sent from rear to front.

22. The method according to claim 21, wherein the device informs the source or sources of the streams of digital data when a data buffer is full.

23. A method for sending digital data, wherein a device provided with data storage means creates a data buffer in the data storage means, stores digital data in the data buffer, and from the front of the data buffer and the rear of the data buffer sends the digital data in two streams, wherein a first stream is sent from front to rear, and a second stream is sent from rear to front.

35

24. The method according to claim 23, wherein the device stops sending after receipt of a signal.

25. Software for sending a packet of digital data,
comprising a first transmission routine for sending a
first stream of digital data starting from the front of
5 the packet of digital data and a second transmission
routine for sending a second stream of digital data
starting from the end of the packet of digital data,
wherein said first stream and said second stream are
included in said packet.

10 26. Software for receiving a packet of digital data,
comprising a first receiving routine for receiving a first
stream of digital data and a second receiving routine for
simultaneously receiving a second stream of digital data,
15 and a first storing routine for storing the first stream
of digital data in a memory starting at the front of the
memory and filling the memory towards the end, and a
second storing routine for storing the second stream of
digital data starting at the end of the memory and filling
20 the memory towards the front, and a stop routine for
ending the receiving of digital data when the memory is
full, wherein said first and second streams make up a
single packet, and said first stream is sent from front to
rear, and said second stream is sent from rear to front.

25 27. An apparatus for sending a packet of digital data,
comprising memory means for storing the packet of digital
data, first sending means for sending a first stream of
digital data, starting at the front of the memory means
30 and second sending means for sending a second stream of
digital data, starting at the end of the memory means.

28. An apparatus for receiving a packet of digital data,
comprising memory means for storing the packet of digital
35 data, first receiving means for receiving a first stream
of digital data, and storing it in said memory means,
starting from the front of the memory means, and second

receiving means for receiving a second stream of digital data, and storing it in said memory means, starting from the back of the memory means, wherein said first and second streams make up a single packet, and said first stream is sent from front to rear, and said second stream is sent from rear to front.

29. Data carrier, provided with software according to any one of claims 25 or 26.

10 30. Device provided with software according to claim 25 or 26.

15 31. A method for multiplexing digital data, including a packet of digital data having a length, a front and a rear, said packet having a first stream and a second stream, comprising:

20 sending said first and second streams simultaneously, said first stream sent from said front to rear and said second stream sent from said rear to front, where one of said first stream and said second stream is continued to be sent if one of said first and second streams fails or is stalled,

25 sending a second packet,
using said second packet to validate said first packet.

30 32. A method as claimed in any one of claims 1 to 24 or claim 31, and substantially as herein described with reference to the accompanying drawings.

33. Software as claimed in claims 25 or 26, and substantially as herein described with reference to the accompanying drawings.

2002307631 31 Jan 2006

- 18 -

34. An apparatus as claimed in claim 27 or 28, and substantially as herein described with reference to the accompanying drawings.

5

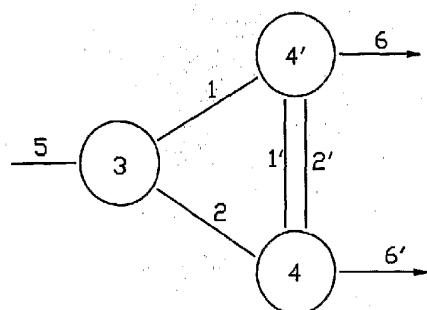
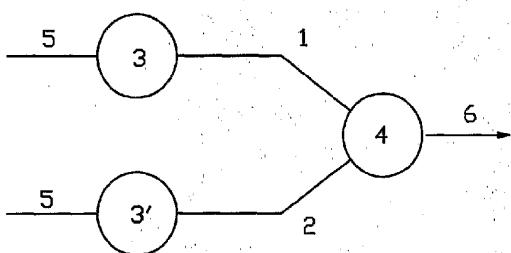
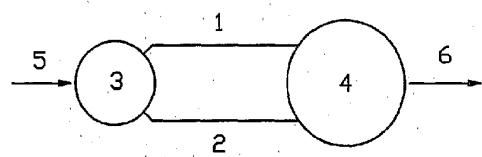
35. A data carrier as claimed in claim 29, and substantially as herein described with reference to the accompanying drawings.

10 36. A device as claimed in claim 30, and substantially as herein described with reference to the accompanying drawings.

Dated this 31st day of January 2006

15 NONEND INVENTIONS N.V.

By their Patent Attorneys




GRIFFITH HACK

Fellows Institute of Patent and
Trade Mark Attorneys of Australia

20

H:\Priyanka\Keep\speci\2002307631 - Amended Pages.doc 31/01/06

1/5

2/5

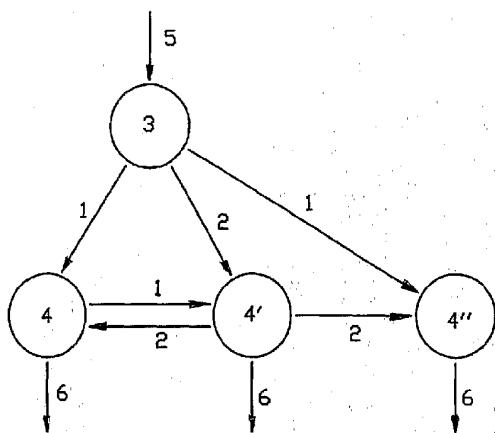


FIG. 4

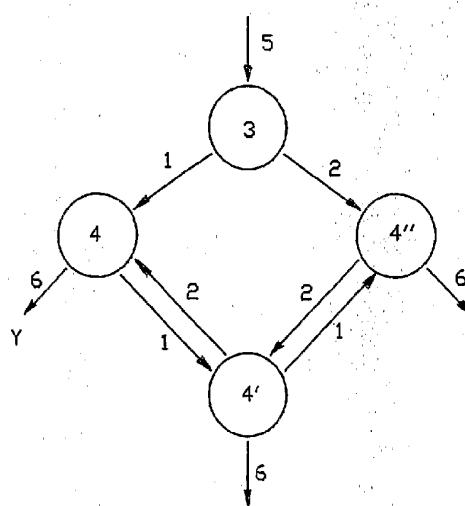


FIG. 5

3/5

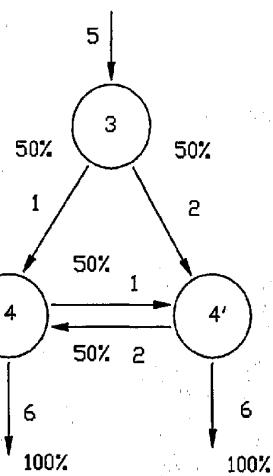


FIG. 6

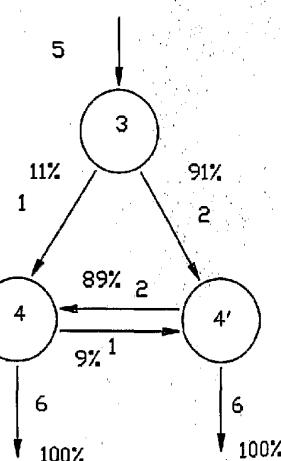
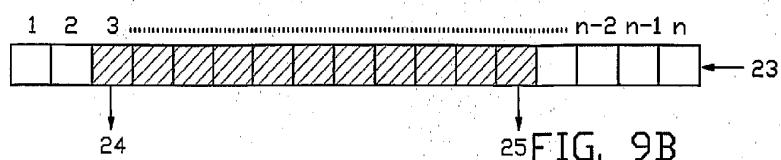
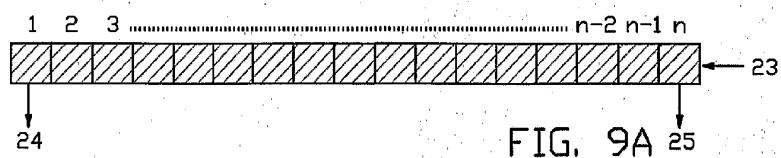
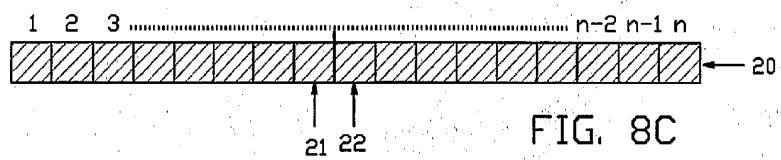
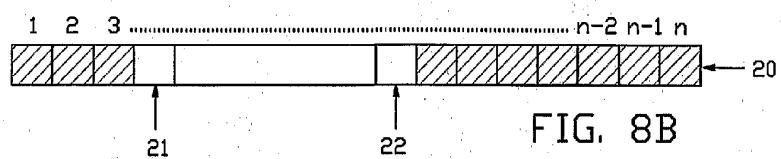
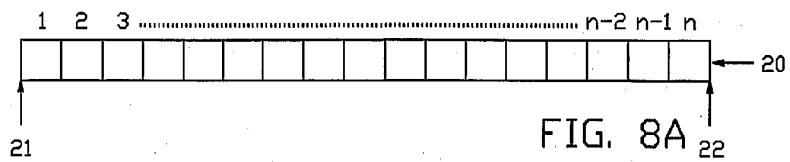







FIG. 7

4/5

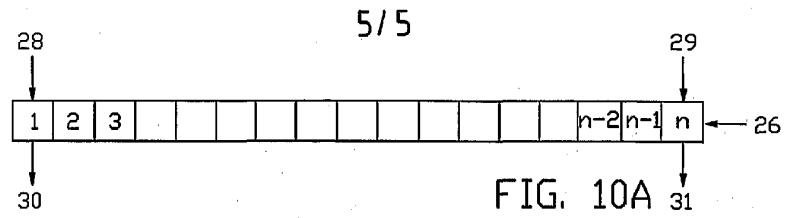


FIG. 10A 31

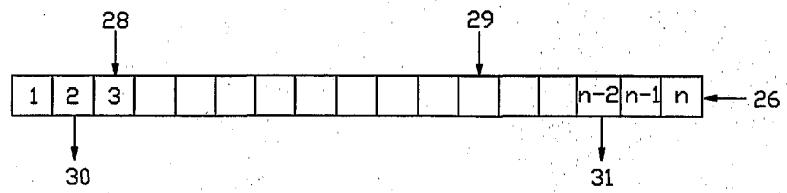


FIG. 10B

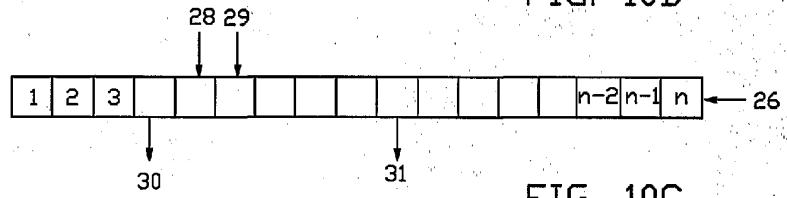


FIG. 10C

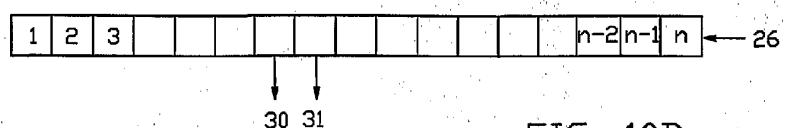


FIG. 10D

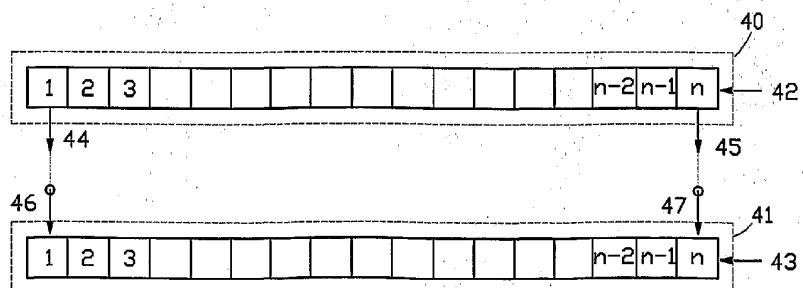


FIG. 11