BICYCLE FRAME FOR CONCEALING DERRAILLEUR WIRE

Inventor: Tsang-Ping Chen, Taichung Hsien

Correspondence Address:
ROSENBERG, KLEIN & LEE
3458 ELICOTT CENTER DRIVE-SUITE 101
ELICOTT CITY, MD 21043 (US)

ABSTRACT

A bicycle frame includes two first through holes respectively defined in two opposed points in a periphery of the head tube to communicate with the down tube so as to allow extension of a first derailleur cable for a front derailleur and a second derailleur cable for a rear derailleur. The bottom bracket has a down tube hole for communication with an interior of the down tube, two chain stay holes for communication with each of the two chain stays and two bellow tube holes for extension of two a first bellow tube and a second bellow tube respectively received in the bottom bracket. The derailleur cables extend to the first bellow tubes and the second bellow tubes respectively, which in turn extend out of the bottom bracket and toward the extension holes of the inner tubes for connection to the front and rear derailleurs.
BICYCLE FRAME FOR CONCEALING DERRAILEUR WIRE

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to a bicycle frame, and more particularly to a bicycle frame being so configured that a derailleur wire is concealed.

2. Description of Related Art

A bicycle having a derailleur mounted at the rear of the bicycle normally has at least one derailleur wire extending from the handlebars to the derailleur so that the rider is able to use the derailleur wire to control movement of the derailleur. After the derailleur is moved, the transmission chain is shifted to a different gear such that different output torque is generated if the applied force to the pedal of the bicycle remains the same. Normally the derailleur wire is exposed outside the bicycle frame such that the wire is easily corroded or does harm to the rider. Thus, it is preferable to conceal the derailleur wire inside the bicycle frame. However, none of the bicycle frames available on the market is able to provide such a capability.

To overcome the shortcomings, the present invention tends to provide an improved bicycle frame to mitigate the aforementioned problems.

SUMMARY OF THE INVENTION

The primary objective of the present invention is to provide a bicycle frame for concealing derailleur wires. The bicycle frame is composed of a head tube, a crossbar extending from the head tube, a down tube extending from the head tube, a seat tube connecting to the crossbar and the down tube, a seat stay extending from the seat tube, two chain stays and a bottom bracket interconnecting the down tube, the seat tube and the two chain stays, as well as providing a passage for an axle.

In one aspect of the present invention, the head tube has two first through holes respectively defined in two opposed points in a periphery of the head tube to communicate with the down tube so as to allow extension of a first derailleur cable for a front derailleur and a second derailleur cable for a rear derailleur.

In yet another aspect of the present invention, the down tube of the present invention has two cable tubes received therein to communicate with the head tube and extending toward the bottom bracket.

A further aspect of the present invention is that the bottom bracket has an axle hole, a down tube hole for communication with an interior of the down tube, two chain stay holes for communication with each of the two chain stays and two bellow tube holes for extension of two bellow tubes received in the bottom bracket.

Still a further objective of the present invention is that a rear end of the chain stay is provided with a rear wheel axle connector for connection to the rear wheel axle and the rear derailleur and having two inner tubes respectively received in the two chain stays, wherein each inner tube has an extension hole in communication with each of the chain stays and the ambient air. The inner tube has a trumpet-like opening inside the corresponding chain stay so that the derailleur cable is able to be guided by the trumpet-like opening and extends out of the rear wheel axle connector for connection with the rear derailleur.

Other objects, advantages and novel features of the invention will become more apparent from the following detailed description when taken in conjunction with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows a top plan view and a side view of the bicycle frame of the present invention;

FIG. 2 is a top plan view of the head tube in section;

FIG. 3 is a schematic perspective view showing the connection among the bottom bracket, the down tube, the seat tube and the chain stays;

FIG. 4 is an exploded perspective view showing that cable tubes inside the down tube are extended out of the down tube for connection with two bellow tubes;

FIG. 5 is a partial cross sectional view of the bottom bracket; and

FIG. 6 is a perspective view showing the rear axle connector connected to the rear end of the chain stay.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

With reference to FIG. 1, it is noted that the bicycle frame (10) in accordance with the present invention includes a head tube (11), a crossbar (12), a down tube (13), a seat tube (14), two seat stays (16), two chain stays (17) and a bottom bracket (15) interconnecting with the down tube (13), the seat tube (14) and the two chain stays (17).

With reference to FIG. 2 and still using FIG. 1 for reference, the head tube (11) has two first through holes (110) respectively defined in two opposed points in a periphery of the head tube (11) to communicate with an interior of the down tube (13) so as to allow extension of a first derailleur cable (50) for a front derailleur and a second derailleur cable (51) for a rear derailleur. It is to be noted that the position of the first through holes (110) is at the periphery away from the stem (A).

The down tube (13) of the present invention has two cable tubes (20) received therein to communicate with the head tube (11) and extending toward the bottom bracket (15). In a preferred embodiment, two connecting tubes (21) are firmly and respectively received in the two first through holes (110) of the head tube (11) to connect to and communicate with the two cable tubes (20). It is noted that a front derailleur (18) is mounted on the seat tube (14) and a rear derailleur (19) is mounted at the rear end of the chain stays (17).

With reference to FIGS. 3-5, the bottom bracket (15) has an axle hole (150), a down tube hole (151) for communication with an interior of the down tube (13), two chain stay holes (152) for respective communication with the two chain stays (17), a first bellow tube (30) and a second bellow tube (31), and two bellow tube holes (153) for respective extension of the two bellow tubes (30, 31), respec-
the head tube has two first through holes respectively defined in two opposed points in a periphery of the head tube to communicate with the down tube so as to allow extension of a first derailleur cable for a rear derailleur and a second derailleur cable for a front derailleur.

the down tube has two cable tubes received therein to communicate with the head tube and extending toward the bottom bracket, the two cable tubes are connected to and communicate with two connecting tubes firmly and respectively received in the two first through holes of the head tube,

the bottom bracket has an axle hole, a down tube hole for communication with an interior of the down tube, two chain stay holes for communication with each of the two chain stays and two bellow tube holes for extension of a first bellow tube and a second bellow tube respectively received in the bottom bracket, and

a rear end of the chain stay is provided with a rear wheel axle connector for connection to a rear wheel axle and the rear derailleur and having an inner tube received in one of the two chain stays, the corresponding chain stay and ambient air such that the first derailleur cable and the second derailleur cable are received in the cable tubes and extend to the first bellow tubes and the second bellow tubes respectively, the first derailleur cable in turn extends out of the bottom bracket and toward the extension hole of the inner tube for connection to the rear derailleur.

2. The bicycle frame as claimed in claim 1, wherein the bottom bracket has a positioning plate received inside the bottom bracket to position the first bellow tube and the second bellow tube.

3. The bicycle frame as claimed in claim 1, wherein the inner tube has a flared opening inside a corresponding chain stay so that the first derailleur cable is guided by the flared opening and extends out of the rear wheel axle connector from the extension hole for connection with the rear derailleur.

4. The bicycle frame as claimed in claim 2, wherein the inner tube has a flared opening inside a corresponding chain stay so that the first derailleur cable is guided by the flared opening and extends out of the rear wheel axle connector from the extension hole for connection with the rear derailleur.

* * * * *