This invention relates to the surfacing of exterior walls of building structures, and, in particular, to wall surfacing in which shingles or shakes, or imitation shakes, are to be employed.

When shingles or shakes are used for the exterior wall surface they are arranged in horizontal rows with a certain number of inches “to the weather.” When ordinary shingles in single courses are employed it is usual for such shingles to be laid 5” to 10” “to the weather,” but when shingles or shakes or imitation shake shingles are used for such exterior surface in double courses, it is customary to lay them with much greater surface (for example, 15” to 14” or more) “to the weather.” In such a case, in order to constitute a sufficient weather-tight surfacing, it is also customary to place an inner or second row of shingles (generally a row of lower grade ordinary shingles), behind each row of shingles or imitation shake shingles.

In the laying of shingles in general, and in the laying of shakes or imitation shake shingles in particular, the labor required is a very considerable item. Since each shingle in each row has to be individually nailed in place, there is not only the necessity of arranging the shingles of each row properly, so that the cracks between adjacent shingles in one row do not coincide with those of the lower or underneath row, but it is also necessary to attach a temporary guide, such as a horizontal strip of wood, on each successive row of shingles as laid, in order to serve as a guide against which the “butt” ends of the shingles of the next row are to be placed so as to keep the rows of shingles absolutely parallel.

An object of this invention is to reduce the amount of time and labor required in such exterior wall surfacing by making a prefabricated shingle panel of uniform size, formed of a plurality of shingles or shakes, in which the arranging and fastening of the individual shingles or shakes in place in the panel will be done in the mill and largely by machine, so that the panel can be nailed in place on the outside wall of the building with a minimum expenditure of labor and time.

A further object of this invention is to provide a prefabricated shingle panel of the type above indicated which even an unskilled workman can properly attach to the building wall without difficulty, and which will contain means for ensuring the proper alinement of successive rows of such panels without requiring that any special attention be given to such alining of the rows.

In ordinary building walls, where shingles are individually nailed to sheathing, and where the sheathing is nailed to the stud, the sheathing may sometimes be so thin or otherwise of such quality that it will not properly hold the nails of the shingles, with the result that the shingles become loose and in time drop off.

Another object of this invention is to prevent the occurrence of such condition by making the prefabricated shingle panel of proper width, with respect to the standard spacing of studs, so that the nails by which the panel is attached to the wall may be driven into the stud itself, thus securing the panel firmly to the wall, regardless of the nature or condition of the underlying sheathing.

A still further object of this invention is to provide a prefabricated wall surfacing panel, made entirely of shingles but sufficiently reinforced to enable the panel to stand up under ordinary handling and shipping without danger of splitting.

These and other objects I accomplish by forming my panel of a double layer of shingles, by providing a transverse guide and reinforcing strip, and by otherwise making and employing the panel as hereinafter briefly described with reference to the accompanying drawings.

In the drawings:
Fig. 1 is a front face view of the finished panel showing the relative positions of the individual shingles or shakes of both inner and outer layers;
Fig. 2 is a bottom end view of the panel of Fig. 1;
Fig. 3 is a side end view of the same panel;
and
Fig. 4 illustrates a portion of an outside wall surfaced with such prefabricated shingle panels and showing how the panels are arranged and applied on the wall surface.

Referring first to Figs. 1, 2 and 3, the panel, as shown, is composed of two layers of shingling material. In this particular panel I have chosen to use imitation shakes for the outer or exposed layer and cheaper lower grade shingles for the inner layer. The outer shingles or shakes have been given the reference character 2, and the inner shingles are indicated by 3.

The inner and outer layers 2 and 3 are arranged in staggered formation in the panel, as shown in Figures 1 and 2, so that the adjoining edges of the shingles of one layer will not coincide with those of the other layer. The outer layer 2 extends beyond the inner layer 3 at one side, for example, the right-hand side as viewed in Figs. 1 and 2, while the inner layer 3, extends...
beyond the outside layer 2 at the other side. As will be obvious, the purpose of this is to form ship-lap edges for the panels when they are secured by side by side in a row on the wall surface.

The bottom or "butt" ends of the outer layer or shakes 2 extend a short distance beyond the ends of the inner layer 3, as shown in Figs. 1 and 3. Due to the fact that the shingles or shakes 2 constituting the outer layer will, in most cases, probably be considerably longer than the lower grade shingles constituting the inner layer, the top edges of the outer layer are shown in Figs. 2 and 4 as extending above the tops of the inner layer. However this is immaterial, since longer shingles could be used for the inner layer. In any event, it is essential that the "butt" ends of the outer layer extend beyond the "butt" ends of the inner layer, for the reason to be presently explained.

A narrow strip of wood (Figs. 1 and 3) extends transversely across the outer face of the panel parallel to the bottom edge. This strip is placed at a distance from the bottom edge or "butt" ends of the outer layer 2 equal to the distance which it is desired to have the surfacing shingles or shakes laid "to the weather." The width of the strip 1 is slightly less than the amount by which the "butt" ends of the outer layer 2 extend beyond the "butt" ends of the inner layer 3, and the thickness of the strip 1 does not exceed the thickness of the "butt" ends of the lower layer of shingles 3.

While my panel may be made in any width small enough to be convenient and practical for packing and shipment, I believe it most satisfactory to have the width made equal to twice the standard spacing between wall stud- ding, for a reason to be explained later.

In forming the panel, a sufficient number of shingles 3 to constitute the inner layer are arranged side by side, and similarly a sufficient number of the outer shingles or shakes are arranged to form an outer layer of the same width. Should a layer be too wide one of the component shingles is trimmed at one side. The outer and inner layers are then arranged, one above the other, with edges extending in the manner previously described. The two layers are then fastened together by two rows of nails or staples 4 and 5, the nails of the latter row also extending through the strip 1, as shown in Figs. 1 and 3.

When the panels are to be applied to the wall surface a bottom or horizontal row of the panels is first fastened in place by nailing adjacent panels to the wall through their ship-lap or overlying edges. Preferably these ship-lap or overlying edges should be arranged so as to coincide with the studding so that, in the event the wall sheathing 1 is too thin to afford a proper anchorage for the nails, the nailing will extend through the sheathing and into the stud 12. When the first row of panels has been secured to the wall surface the second row is then nailed in place in a similar manner. The "butt" ends of the inner layer of shingles or panels of the second row are placed in engagement with the strips 1 of the first row, and the "butt" ends of the outer layer 2 of the second row will then extend over and completely cover the strips 1, as shown in Fig. 4. The panels of the second row and of the first row are preferably staggered, in the manner illustrated in Fig. 4, although this is not absolutely necessary, and when the width of the panels is exactly twice the spacing of the stud- ding, as previously suggested, it will be possible to stagger the panels in the rows and still have the panels nailed securely to the stud- ding. Due to the fact that the strips 1 of each row serve as guides or positioning strips for the panels of the next row above, no means for keeping the rows in proper parallel horizontal alignment is required.

It will now be clear that the nailing of the panels in place is much simpler operation than ordinary shingling of a wall and requires much less time and skill. On the other hand the fabricating of the panel is done at the mill where labor-saving devices, such as nailing machines, are available, and where labor costs are possible, so that the ultimate cost of such wall surfacing to the consumer, in view of the greatly reduced amount of time and labor required in attaching the panels to the wall, will be considerably reduced.

A further important purpose served by the strip 1 is in the adding of a reinforcement to the panel. Such reinforcement I consider quite necessary, since without this, due to the tendency of shingles and shakes to split lengthwise, when subjected to any bending or transverse strain, a panel of any size, composed merely of two layers of shingles might easily become broken when subjected to any successive strain in handling or shipping.

It would be possible to make minor changes and modifications in my panel without departing from the principle of this invention. The method in which I have described and illustrated the shingle panel I believe however will be the most practical, particularly for shake shingle exteriors. However it is not my intention to limit my invention otherwise than as set forth in the attached claims.

I claim:
1. A fabricated shingle panel of the character described, said panel constructed of an outer layer of shingles and an underlying layer of shingles, the "butt" ends of said outer layer of shingles extending a short distance beyond the corresponding edge of said outer layer of shingles, said outer layer of shingles at one edge of the panel extending beyond the corresponding edge of the underlying layer of shingles and the underlying layer of shingles extending beyond the corresponding edge of said outer layer at the opposite side of the panel, whereby to form ship-lap edges for said panel, a reinforcing and guiding strip extending transversely across the outer surface of said panel parallel to the "butt" ends of said outer layer of shingles, and spaced from said "butt" ends a distance equal to the extent said outer layer of shingles are desired to be placed "to the weather," the width of said guide strip not exceeding the distance of said outer layer of shingles extend beyond the "butt" ends of said underlying shingles, said outer and underlying layers of shingles secured together and both layers secured to said guide strip.
2. A fabricated panel comprising an outer layer of surfacing shingles and an underlying layer of second grade shingles constituting a backing for said outer layer of shingles, the "butt" ends of said layer of surfacing shingles extending a short distance beyond the "butt" ends of said underlying layer of shingles, said outer layer of surfacing shingles at one edge of the panel extending beyond the corresponding edge of the
underlying layer of shingles and the underlying layer of shingles extending beyond the corresponding edge of said outer layer at the opposite side of the panel, whereby to form ship-lap edges for said panel, a reinforcing and guiding strip extending transversely across the outer surface of said surfacing shingles parallel to the "butt" ends of said shingles, and spaced from said "butt" ends of said surfacing shingles a distance equal to the extent said surfacing shingles are desired to be placed "to the weather," said surfacing and underlying shingles secured to said guide strip, the width of said guide strip not exceeding the distance the "butt" ends of said surfacing shingles extend beyond the "butt" ends of said underlying layer of shingles, whereby said strip will be entirely concealed by the surfacing shingles of the next row of panels.

3. A fabricated shingle panel comprising two layers of shingles, an outer layer of shingles, and an underlying layer of shingles, the "butt" ends of said outer layer of shingles extending a short distance beyond the "butt" ends of said underlying layer of shingles, a reinforcing and guiding strip extending transversely across the outer surface of said panel parallel to the "butt" ends of said outer layer of shingles and spaced from said "butt" ends a distance equal to the extent said outer layer of shingles are desired to be placed "to the weather," said layers secured to said strip, the width of said guide strip not exceeding the distance the "butt" ends of said outer layer of shingles extend beyond the "butt" ends of said underlying shingles, the width of said panel arranged to correspond to the spacing of the studs of the building wall to which the panel is to be applied, so that said panel may be secured by nails to the studs and not merely to the sheathing on the studding.

4. In a fabricated shingle panel of the character described, an outer layer of surfacing shingles and an underlying layer of shingles, the "butt" ends of said outer layer of surfacing shingles extending a short distance beyond the "butt" ends of said underlying layer of shingles, a reinforcing and guiding strip extending transversely across the outer surface of said panel parallel to the "butt" ends of said outer layer of surfacing shingles, and spaced from said outer "butt" ends a distance equal to the extent said surfacing shingles are desired to be placed "to the weather," said outer and inner shingles secured to said strip, the width of said strip not exceeding the distance the "butt" ends of said outer layer of surfacing shingles extend beyond the "butt" ends of said underlying shingles.

RAYMOND A. WILDE.