A method employs a connected framework of helically arranged pre-electrodes that are separated during manufacture. Yet another method employs a mold to generate a planar carrier over the segmented electrodes, a step followed by rolling the carrier into a cylinder. A further method includes forming an electrode assembly by alternating segmented electrodes with nonconducting spacers.
ELECTRICAL STIMULATION LEADS WITH HELICALLY ARRANGED ELECTRODES AND METHODS FOR THEIR MANUFACTURE

CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit under 35 U.S.C. § 119(e) of U.S. Provisional Patent Application Serial No. 61/910,678, filed December 2, 2013, which is incorporated herein by reference.

FIELD

The invention is directed to the area of electrical stimulation systems and methods of making and using the systems. The present invention is also directed to electrical stimulation leads with segmented electrodes that can be used for directed electrical stimulation, as well as methods of making and using the segmented electrodes, leads, and electrical stimulation systems.

BACKGROUND

Electrical stimulation can be useful for treating a variety of conditions. Deep brain stimulation can be useful for treating, for example, Parkinson's disease, dystonia, essential tremor, chronic pain, Huntington's Disease, levodopa-induced dyskinesias and rigidity, bradykinesia, epilepsy and seizures, eating disorders, and mood disorders. Typically, a lead with a stimulating electrode at or near a tip of the lead provides the stimulation to target neurons in the brain. Magnetic resonance imaging ("MRI") or computerized tomography ("CT") scans can provide a starting point for determining where the stimulating electrode should be positioned to provide the desired stimulus to the target neurons.

After the lead is implanted into a patient's brain, electrical stimulus current can be delivered through selected electrodes on the lead to stimulate target neurons in the brain. Typically, the electrodes are formed into rings disposed on a distal portion of the lead. The stimulus current projects from the ring electrodes equally in every direction. Because of the ring shape of these electrodes, the stimulus current cannot be directed to one or more specific positions around the ring electrode (e.g., on one or more sides, or points, around the lead). Consequently, undirected stimulation may result in unwanted stimulation of neighboring neural tissue, potentially resulting in undesired side effects.
BRIEF SUMMARY

One embodiment is a stimulation lead including a lead body having a longitudinal length, a distal portion, and a proximal portion; terminals disposed along the proximal portion of the lead body; a non-conductive electrode carrier coupled to, or disposed along, the distal portion of the lead body and defining segmented electrode receiving openings arranged in a single helix or a double helix or other helical arrangement; segmented electrodes extending around no more than 75% of a circumference of the lead with each of the segmented electrodes disposed in a different one of the segmented electrode receiving openings of the electrode carrier; and conductors extending along the lead body and coupling the electrodes to the terminals.

Another embodiment is a method of making a stimulation lead. The method includes forming a rib framework with a plurality of pre-electrodes attached together in a single or a double helix or other helical arrangement; attaching a conductor to each of the pre-electrodes; disposing the rib framework into a mold and forming a lead body between the pre-electrodes; and removing a portion of the lead body and the pre-electrodes to generate separated segmented electrodes arranged in the single helix or the double helix.

Yet another embodiment is a method of making a stimulation lead. The method includes disposing segmented electrodes and conductors in a first mold; attaching each of the conductors to one of the segmented electrodes; molding a carrier over the segmented electrodes using the first mold; and rolling the carrier with the segmented electrodes into a cylinder. The segmented electrodes are arranged in the first mold so that when rolled into a cylinder with the carrier, the segmented electrodes are arranged in a single helix or a double helix or other helical arrangement. The method also includes placing the cylinder into a second mold; and molding a lead body between the segmented electrodes using the second mold.

A further embodiment is a method of making a stimulation lead. The method includes forming an electrode assembly by alternating segmented electrodes with non-conductive spacers shaped to receive the segmented electrodes. The segmented electrodes are positioned in the electrode assembly in a single helix or a double helix or other helical arrangement. The method further includes placing the electrode assembly into a mold; and molding a lead body between the segmented electrodes using the mold.
BRIEF DESCRIPTION OF THE DRAWINGS

Non-limiting and non-exhaustive embodiments of the present invention are described with reference to the following drawings. In the drawings, like reference numerals refer to like parts throughout the various figures unless otherwise specified.

For a better understanding of the present invention, reference will be made to the following Detailed Description, which is to be read in association with the accompanying drawings, wherein:

FIG. 1 is a schematic side view of one embodiment of a device for brain stimulation, according to the invention;

FIG. 2 is a schematic diagram of radial current steering along various electrode levels along the length of a lead, according to the invention;

FIG. 3A is a perspective view of one embodiment of a portion of a lead having a plurality of segmented electrodes, according to the invention;

FIG. 3B is a perspective view of another embodiment of a portion of a lead having a plurality of segmented electrodes, according to the invention;

FIG. 4A is a schematic perspective view of one embodiment of an electrode carrier, according to the invention;

FIG. 4B is a schematic side view of one embodiment of the electrode carrier of FIG. 4A with segmented electrodes and associated conductors, according to the invention;

FIG. 4C is a schematic perspective view of one embodiment of the electrode carrier of FIG. 4A with segmented electrodes, associated conductors, and a multi-lumen tube, according to the invention;

FIG. 5A is a schematic perspective view of one embodiment of a segmented electrode with a channel, according to the invention;

FIG. 5B is a schematic perspective view of one embodiment of a segmented electrode with multiple channels, according to the invention;
FIG. 5C is a schematic perspective view of another embodiment of a segmented electrode with multiple channels, according to the invention;

FIG. 5D is a schematic perspective view of yet another embodiment of a segmented electrode with multiple channels, according to the invention;

FIG. 6A is a schematic side view of one embodiment of a rib framework of pre-electrodes, according to the invention;

FIG. 6B is a schematic side view of a rib assembly formed using two rib frameworks of FIG. 6A, according to the invention;

FIG. 6C is a schematic perspective view of the rib assembly of FIG. 6B and a mold for receiving the assembly, according to the invention;

FIG. 6D is a schematic side view of segmented electrodes formed from the rib assembly of FIG. 6B with the lead body removed for clarity of illustration, according to the invention;

FIG. 7A is a schematic side view of one embodiment of a rib framework of pre-electrodes on a ribbon, according to the invention;

FIG. 7B is a schematic perspective view of a rib assembly formed using two rib frameworks of FIG. 7A, according to the invention;

FIG. 7C is a schematic side view of the rib assembly of FIG. 7B, according to the invention;

FIG. 7D is a schematic side view of segmented electrodes formed from the rib assembly of FIG. 7B with the lead body removed for clarity of illustration, according to the invention;

FIG. 8A is a schematic side view of one embodiment of a rib framework of pre-electrodes in a half-cylinder, according to the invention;

FIG. 8B is a schematic side view of a rib assembly formed using two rib frameworks of FIG. 8A, according to the invention;
FIG. 8C is a schematic perspective view of the rib assembly of FIG. 8B and a mold for receiving the assembly, according to the invention;

FIG. 9A is a schematic perspective view of one embodiment of a segmented electrode with a circumferential channel, according to the invention;

FIG. 9B is a schematic perspective view of one embodiment of a segmented electrode with a stepped edge, according to the invention;

FIG. 9C is a schematic perspective view of one embodiment of a segmented electrode with multiple longitudinal channels, according to the invention;

FIG. 10A is a schematic perspective view of one embodiment of a mold for receiving segmented electrodes and conductors, according to the invention;

FIG. 10B is a schematic perspective view of the mold of FIG. 10A with a molded carrier, the segmented electrodes, and conductors, according to the invention;

FIG. 10C is a schematic perspective view of one embodiment of a molded carrier with segmented electrodes and conductors, according to the invention;

FIG. 10D is a schematic cross-sectional view of the molded carrier, segmented electrodes, and conductors of FIG. 10C, according to the invention;

FIG. 10E is a schematic side view of the molded carrier, segmented electrodes, and conductors of FIG. 10C rolled into a cylinder, according to the invention;

FIG. 10F is a schematic side view of the cylindrical molded carrier, segmented electrodes, and conductors of FIG. 10D with an over tube and multi-lumen tube, according to the invention;

FIG. 10G is a schematic perspective view of the arrangement of FIG. 10F disposed in a mold, according to the invention;

FIG. 11A is a schematic exploded perspective view of an electrode assembly of segmented electrodes and spacers, according to the invention;
FIG. 1B is a schematic perspective view of the electrode assembly of FIG. 11A, according to the invention;

FIG. 11C is a schematic perspective view of the electrode assembly of FIG. 11B with a multi-lumen tube, according to the invention;

FIG. 12A is a schematic perspective view of one embodiment of a segmented electrode of the electrode assembly of FIG. 11A, according to the invention;

FIG. 12B is a schematic perspective view of one embodiment of a spacer of the electrode assembly of FIG. 11A, according to the invention;

FIG. 12C is a schematic perspective view of another embodiment of a segmented electrode for use in an electrode assembly, according to the invention;

FIG. 13A is a schematic side view of circular or oval segmented electrodes arranged in a single or double helix with the lead body removed for clarity of illustration, according to the invention;

FIG. 13B is a schematic side view of rectangular segmented electrodes arranged in a single or double helix with the lead body removed for clarity of illustration, according to the invention;

FIG. 13C is a schematic side view of triangular segmented electrodes arranged in a single or double helix with the lead body removed for clarity of illustration, according to the invention;

FIG. 13D is a schematic side view of hexagonal segmented electrodes arranged in a single or double helix with the lead body removed for clarity of illustration, according to the invention;

FIG. 13E is a schematic side view of square segmented electrodes arranged in a single or double helix with the lead body removed for clarity of illustration, according to the invention;
FIG. 13F is a schematic side view of octagonal segmented electrodes arranged in a single or double helix with the lead body removed for clarity of illustration, according to the invention; and

FIG. 13G is a schematic side view of decagonal segmented electrodes arranged in a single or double helix with the lead body removed for clarity of illustration, according to the invention.

DETAILED DESCRIPTION

The invention is directed to the area of electrical stimulation systems and methods of making and using the systems. The present invention is also directed to electrical stimulation leads with segmented electrodes that can be used for directed electrical stimulation, as well as methods of making and using the segmented electrodes, leads, and electrical stimulation systems.

A lead for deep brain stimulation can include stimulation electrodes, recording electrodes, or a combination of both. At least some of the stimulation electrodes, recording electrodes, or both are provided in the form of segmented electrodes that extend only partially around the circumference of the lead. For illustrative purposes, the leads are described herein relative to use for deep brain stimulation, but it will be understood that any of the leads can be used for applications other than deep brain stimulation, including spinal cord stimulation, peripheral nerve stimulation, or stimulation of other nerves and tissues.

Suitable implantable electrical stimulation systems include, but are not limited to, at least one lead with one or more electrodes disposed on a distal end of the lead and one or more terminals disposed on one or more proximal ends of the lead. Leads include, for example, percutaneous leads. Examples of electrical stimulation systems with leads are found in, for example, U.S. Patents Nos. 6,181,969; 6,516,227; 6,609,029; 6,609,032; 6,741,892; 7,244,150; 7,450,997; 7,672,734; 7,761,165; 7,783,359; 7,792,590; 7,809,446; 7,949,395; 7,974,706; 8,175,710; 8,224,450; 8,271,094; 8,295,944; 8,364,278; and 8,391,985; U.S. Patent Applications Publication Nos. 2007/0150036; 2009/0187222; 2009/0276021; 2010/0076535; 2010/0268298; 2011/0005069; 2011/0004267; 2011/0078900; 2011/0130817; 2011/0130818; 2011/0238129; 2011/0313500; 2012/0016378; 2012/0046710; 2012/0071949; 2012/0165911; 2012/0197375;
In at least some embodiments, a practitioner may determine the position of the target neurons using recording electrode(s) and then position the stimulation electrode(s) accordingly. In some embodiments, the same electrodes can be used for both recording and stimulation. In some embodiments, separate leads can be used; one with recording electrodes which identify target neurons, and a second lead with stimulation electrodes that replaces the first after target neuron identification. In some embodiments, the same lead can include both recording electrodes and stimulation electrodes or electrodes can be used for both recording and stimulation.

Figure 1 illustrates one embodiment of a device for brain stimulation. The device includes a lead, a plurality of electrodes disposed at least partially about a circumference of the lead, a plurality of terminals, a connector for connection of the electrodes to a control unit, and a stylet for assisting in insertion and positioning of the lead in the patient's brain. The stylet can be made of a rigid material. Examples of suitable materials for the stylet include, but are not limited to, tungsten, stainless steel, and plastic. The stylet may have a handle to assist insertion into the lead, as well as rotation of the stylet and lead. The connector fits over a proximal end of the lead, preferably after removal of the stylet.

The control unit (not shown) is typically an implantable pulse generator that can be implanted into a patient's body, for example, below the patient's clavicle area. The pulse generator can have eight stimulation channels which may be independently programmable to control the magnitude of the current stimulus from each channel. In some cases the pulse generator can have more or fewer than eight stimulation channels (e.g., 4-, 6-, 16-, 32-, or more stimulation channels). The control unit can have one, two, three, four, or more connector ports, for receiving the plurality of terminals at the proximal end of the lead.

In one example of operation, access to the desired position in the brain can be accomplished by drilling a hole in the patient's skull or cranium with a cranial drill...
(commonly referred to as a burr), and coagulating and incising the dura mater, or brain covering. The lead 110 can be inserted into the cranium and brain tissue with the assistance of the stylet 140. The lead 110 can be guided to the target location within the brain using, for example, a stereotactic frame and a microdrive motor system. In some embodiments, the microdrive motor system can be fully or partially automatic. The microdrive motor system may be configured to perform one or more of the following actions (alone or in combination): insert the lead 110, retract the lead 110, or rotate the lead 110.

In some embodiments, measurement devices coupled to the muscles or other tissues stimulated by the target neurons, or a unit responsive to the patient or clinician, can be coupled to the control unit or microdrive motor system. The measurement device, user, or clinician can indicate a response by the target muscles or other tissues to the stimulation or recording electrode(s) to further identify the target neurons and facilitate positioning of the stimulation electrode(s). For example, if the target neurons are directed to a muscle experiencing tremors, a measurement device can be used to observe the muscle and indicate changes in tremor frequency or amplitude in response to stimulation of neurons. Alternatively, the patient or clinician can observe the muscle and provide feedback.

The lead 110 for deep brain stimulation can include stimulation electrodes, recording electrodes, or both. In at least some embodiments, the lead 110 is rotatable so that the stimulation electrodes can be aligned with the target neurons after the neurons have been located using the recording electrodes.

Stimulation electrodes may be disposed on the circumference of the lead 110 to stimulate the target neurons. Stimulation electrodes may be ring-shaped so that current projects from each electrode equally in every direction from the position of the electrode along a length of the lead 110. Ring electrodes typically do not enable stimulus current to be directed from only a limited angular range around of the lead. Segmented electrodes, however, can be used to direct stimulus current to a selected angular range around the lead. When segmented electrodes are used in conjunction with an implantable pulse generator that delivers constant current stimulus, current steering can be achieved to more precisely deliver the stimulus to a position around an axis of the lead (i.e., radial positioning around the axis of the lead).
To achieve current steering, segmented electrodes can be utilized in addition to, or as an alternative to, ring electrodes. Though the following description discusses stimulation electrodes, it will be understood that all configurations of the stimulation electrodes discussed may be utilized in arranging recording electrodes as well.

The lead 100 includes a lead body 110, one or more optional ring electrodes 120, and a plurality of segmented electrodes 130. The lead body 110 can be formed of a biocompatible, non-conducting material such as, for example, a polymeric material. Suitable polymeric materials include, but are not limited to, silicone, polyurethane, polyurea, polyurethane-urea, polyethylene, or the like. Once implanted in the body, the lead 100 may be in contact with body tissue for extended periods of time. In at least some embodiments, the lead 100 has a cross-sectional diameter of no more than 1.5 mm and may be in the range of 0.5 to 1.5 mm. In at least some embodiments, the lead 100 has a length of at least 10 cm and the length of the lead 100 may be in the range of 10 to 70 cm.

The electrodes can be made using a metal, alloy, conductive oxide, or any other suitable conductive biocompatible material. Examples of suitable materials include, but are not limited to, platinum, platinum iridium alloy, iridium, titanium, tungsten, palladium, palladium rhodium, or the like. Preferably, the electrodes are made of a material that is biocompatible and does not substantially corrode under expected operating conditions in the operating environment for the expected duration of use.

Each of the electrodes can either be used or unused (OFF). When the electrode is used, the electrode can be used as an anode or cathode and carry anodic or cathodic current. In some instances, an electrode might be an anode for a period of time and a cathode for a period of time.

Stimulation electrodes in the form of ring electrodes 120 can be disposed on any part of the lead body 110, usually near a distal end of the lead 100. In Figure 1, the lead 100 includes two ring electrodes 120. Any number of ring electrodes 120 can be disposed along the length of the lead body 110 including, for example, one, two three, four, five, six, seven, eight, nine, ten, eleven, twelve, thirteen, fourteen, fifteen, sixteen or more ring electrodes 120. It will be understood that any number of ring electrodes can be disposed along the length of the lead body 110. In some embodiments, the ring electrodes 120 are
substantially cylindrical and wrap around the entire circumference of the lead body 110. In some embodiments, the outer diameters of the ring electrodes 120 are substantially equal to the outer diameter of the lead body 110. The length of the ring electrodes 120 may vary according to the desired treatment and the location of the target neurons. In some embodiments the length of the ring electrodes 120 are less than or equal to the diameters of the ring electrodes 120. In other embodiments, the lengths of the ring electrodes 120 are greater than the diameters of the ring electrodes 120. The distal-most ring electrode 120 may be a tip electrode (see, e.g., tip electrode 320a of Figure 3E) which covers most, or all, of the distal tip of the lead.

Deep brain stimulation leads may include one or more sets of segmented electrodes. Segmented electrodes may provide for superior current steering than ring electrodes because target structures in deep brain stimulation are not typically symmetric about the axis of the distal electrode array. Instead, a target may be located on one side of a plane running through the axis of the lead. Through the use of a radially segmented electrode array ("RSEA"), current steering can be performed not only along a length of the lead but also around a circumference of the lead. This provides precise three-dimensional targeting and delivery of the current stimulus to neural target tissue, while potentially avoiding stimulation of other tissue. Examples of leads with segmented electrodes include U.S. Patent Application Publication Nos. 2010/0268298; 2011/0005069; 2011/0130803; 2011/0130816; 2011/0130817; 2011/0130818; 2011/0078900; 2011/0238129; 2012/0016378; 2012/0046710; 2012/0071949; 2012/0165911; 2012/197375; 2012/0203316; 2012/0203320; 2012/0203321, all of which are incorporated herein by reference.

The lead 100 is shown having a plurality of segmented electrodes 130. Any number of segmented electrodes 130 may be disposed on the lead body 110 including, for example, one, two three, four, five, six, seven, eight, nine, ten, eleven, twelve, thirteen, fourteen, fifteen, sixteen or more segmented electrodes 130. It will be understood that any number of segmented electrodes 130 may be disposed along the length of the lead body 110. A segmented electrode 130 typically extends only 75%, 67%, 60%, 50%, 40%, 33%, 25%, 20%, 17%, 15%, or less around the circumference of the lead.
The segmented electrodes 130 may vary in size and shape. In some embodiments, the segmented electrodes 130 are all of the same size, shape, diameter, width or area or any combination thereof. For example, in some embodiments, the segmented electrodes all have a uniform surface area (for example, 1.5 mm²). As will be described below, the segmented electrodes can be arranged in a single or double helix or any other helical arrangement.

The spacing between neighboring electrodes may be the same or different. In at least some embodiments, equal spaces, gaps or cutouts are disposed between each segmented electrode 130. In other embodiments, the spaces, gaps or cutouts between the segmented electrodes 130 may differ in size or shape.

Conductor wires that attach to the ring electrodes 120 or segmented electrodes 130 extend along the lead body 110. These conductor wires may extend through the material of the lead 100 or along one or more lumens defined by the lead 100, or both. The conductor wires are presented at a connector (via terminals) for coupling of the electrodes 120, 130 to a control unit (not shown).

When the lead 100 includes both ring electrodes 120 and segmented electrodes 130, the ring electrodes 120 and the segmented electrodes 130 may be arranged in any suitable configuration. For example, when the lead 100 includes two ring electrodes 120 and segmented electrodes 130, the ring electrodes 120 can flank the segmented electrodes 130 (see e.g., Figures 1 and 3A). Alternately, the ring electrodes 120 can be disposed proximal to the segmented electrodes 130 or the ring electrodes 120 can be disposed distal to the segmented electrodes 130 or any other suitable arrangement. One of the ring electrodes can be a tip electrode (see, tip electrode 320a of Figure 3G). It will be understood that other configurations are possible as well (e.g., alternating ring and segmented electrodes, or the like). By varying the location of the segmented electrodes 130, different coverage of the target neurons may be selected.

Figure 2 is a schematic diagram to illustrate radial current steering along various electrode levels along the length of the lead 200. While conventional lead configurations with ring electrodes are only able to steer current along the length of the lead (the z-axis), the segmented electrode configuration is capable of steering current in the x-axis, j-axis as well as the z-axis. Thus, the centroid of stimulation may be steered in any direction in
the three-dimensional space surrounding the lead 200. In some embodiments, the radial
distance, \(r \), and the angle \(\Theta \) around the circumference of the lead 200 may be dictated by
the percentage of anodic current (recognizing that stimulation predominantly occurs near
the cathode, although strong anodes may cause stimulation as well) introduced to each
electrode. In at least some embodiments, the configuration of anodes and cathodes along
the segmented electrodes allows the centroid of stimulation to be shifted to a variety of
different locations along the lead 200.

As can be appreciated from Figure 2, the centroid of stimulation can be shifted at
each level along the length of the lead 200. The use of multiple segmented electrodes at
different levels along the length of the lead allows for three-dimensional current steering.
In some embodiments, the segmented electrodes are shifted collectively \(\text{i.e.,} \) the centroid
of stimulation is similar at each level along the length of the lead). In at least some other
embodiments, each segmented electrode is controlled independently. It will be
understood that different stimulation profiles may be produced by varying the number of
segmented electrodes at each level.

As previously indicated, the foregoing configurations may also be used while
utilizing recording electrodes. In some embodiments, measurement devices coupled to
the muscles or other tissues stimulated by the target neurons or a unit responsive to the
patient or clinician can be coupled to the control unit or microdrive motor system. The
measurement device, user, or clinician can indicate a response by the target muscles or
other tissues to the stimulation or recording electrodes to further identify the target
neurons and facilitate positioning of the stimulation electrodes. For example, if the target
neurons are directed to a muscle experiencing tremors, a measurement device can be used
to observe the muscle and indicate changes in tremor frequency or amplitude in response
to stimulation of neurons. Alternatively, the patient or clinician may observe the muscle
and provide feedback.

The reliability and durability of the lead will depend heavily on the design and
method of manufacture. Fabrication techniques discussed below provide methods that
can produce manufacturable and reliable leads.

Segmented electrodes can be used to tailor the stimulation region so that, instead
of stimulating tissue around the circumference of the lead as would be achieved using a
ring electrode, the stimulation region can be directionally targeted. In some instances, it is desirable to target a parallelepiped (or slab) region 206 that contains the electrodes of the lead 200, as illustrated in Figure 2. One arrangement for directing a stimulation field into a parallelepiped region uses segmented electrodes disposed on opposite sides of a lead.

One challenge to making leads with segmented electrodes is the correct placement of the electrodes, and retention of the desired electrode placement, during the manufacturing process. This can be particularly challenging when the electrodes are to be arranged in a single or double helix or other helical arrangement. An electrode carrier can be utilized to hold the electrodes in the desired single or double helix arrangement during the manufacture of the lead. The electrode carrier is made of a non-conductive material to electrically isolate the segmented electrodes from each other and include openings to receive the segmented electrodes. The openings are arranged in a single or double helix.

Figure 4A illustrates one embodiment of an electrode carrier 450. The electrode carrier 450 defines segmented electrode receiving openings 454 which can be arranged in a single or double helix or any other helical arrangement. The segmented electrode receiving openings 454 are arranged to receive the segmented electrodes 456 (see, for example, Figure 4B). The electrode carrier 450 also has a central lumen 458 through which conductors 460 (see, Figure 4B and 4C) attached to the segmented electrodes can pass on the way to the remainder of the lead. The central lumen 458 may be open at both ends of the electrode carrier 450 or may be closed at the distal end of the electrode carrier. It will be recognized that ring electrodes can be incorporated in a lead distal or proximal to the electrode carrier 450 and that a tip electrode can be incorporated in a lead distal to the electrode carrier.

The electrode carrier 450 is formed of a non-conductive material which may be the same material as the lead body, for example, silicone, polyurethane (e.g., TECOTHANE™ or ISOPLAST™), polyetheretherketone, other rigid plastics or any other suitable biocompatible material. In some embodiments, the electrode carrier 450 may be made of a material that is stiffer or harder than the material of the lead body. For example, the material of the electrode carrier 450 may have a higher durometer than that of the lead body. In some embodiments, the electrode carrier 450 is made of the same
type of polymer material (e.g., polyurethane or silicone) as the lead body, but with a higher durometer than the lead body. A stiffer or harder material for the electrode carrier may facilitate manufacturing. The electrode carrier can be made by any suitable manufacturing method including, but not limited to, molding, casting, laser cutting, chemical etching, or 3D printing. Additional examples of materials, manufacturing methods, and designs for electrode carriers can be found in U.S. Patent Application Serial No. 13/951,057, incorporated herein by reference.

Figure 4B illustrates the segmented electrodes 456 inserted into the electrode receiving openings 454. Optionally, the electrode carrier 450 includes steps 452 (see, Figure 4A) in the electrode receiving openings 454 to locate and set electrode depth in the carrier. In some embodiments, the segmented electrodes 456 protrude radially out of the electrode receiving openings 454, as illustrated in Figure 4C. In some embodiments, the segmented electrodes 456 form a friction fit with, or snap into, the electrode receiving openings 454 of the electrode carrier 450. In other embodiments, the segmented electrodes 456 may be held within the openings 454 merely by applying tension to conductors 460 attached to the segmented electrodes. In some embodiments, adhesive or other fastening mechanisms may be used to hold the segmented electrodes in place once positioned.

In some embodiments, a non-conductive multi-lumen tube 462 can be positioned near or adjacent the proximal end of the electrode carrier 450, as illustrated in Figure 4C. The multi-lumen tube 462 includes a set of conductor lumens 464 arranged concentrically around a central lumen 466. Each conductor lumen 464 receives one or more of the conductors 460. The central lumen 466 may be configured and arranged to receive a stylet during implantation of the lead or for delivery of fluids to the stimulation site. In some embodiments, the multi-lumen tube 462 is attached to the electrode carrier 450 by, for example, adhesive, polymeric reflow, or the like. The multi-lumen tube can be made of any suitable biocompatible material including, but not limited to, polyurethane, silicone, polyetheretherketone, or the like.

In at least some embodiments, a conductor 460 can be attached to a segmented electrode 456 prior to placement of the segmented electrode in the electrode carrier 450. The conductor 460 can be fed through the corresponding segmented electrode receiving
opening 454, down the lumen 458, and through a conductor lumen 464 of the multi-lumen tube 462. Alternatively, the conductor 460 can be threaded through the multi-lumen tube 462 and electrode carrier 450 prior to attachment to the segmented electrode 456.

In some embodiments, an over tube (e.g. a silicone tube) may be placed over the electrode carrier 450 then the over tube can be backfilled with epoxy, silicone, polyurethane, or other polymeric material to form an outer lead body (not shown) between the segmented electrodes 456 and optionally over the multi-lumen tube 462 (or a portion thereof). The backfill material may also completely or partially fill the central lumen 458 of the electrode carrier 450. The over tube can then be removed and any excess backfill material can be removed (by, for example, grinding, cutting, trimming, ablating, or the like) to leave a stimulation surface of the segmented electrodes 456 exposed.

Figures 5A-5D illustrate different embodiments of the segmented electrode 456. The segmented electrode 456 can include a channel 470 for receiving and attachment (by, for example, welding, soldering, crimping, adhesive, or the like) of a conductor 460 (see, Figures 4B and 4C). The segmented electrode 456 may include one or more additional channels 472. The channel 470 or additional channels 472 (or any combination thereof) may be sized or shaped to fit partially around or attach to one or more of the steps 452 (see, Figure 4A) to facilitate positioning of the segmented electrode 456 in the electrode carrier 450. Alternatively or additionally, polymer may be flowed into the channel 470 or additional channels 472 (or any combination thereof) after placement of the segmented electrode 456 in the electrode carrier 450 to lock the segmented electrode within the electrode carrier. Figure 5A illustrates a segmented electrode 456 with a single channel 470. Figure 5B illustrates a segmented electrode 456 with a channel 470 flanked by two additional channels 472 that are spaced apart from side edges of the segmented electrode. Figure 5C illustrates a segmented electrode 456 with a channel 470 flanked by two additional channels 472 that are extend to, and are open at, the side edges of the segmented electrode. Figure 5D illustrates a segmented electrode 456 with a channel 470 with two additional channels 472 that open into channel 470. The channel 470 or additional channels 472 can be added to any of the other segmented electrodes described herein.
Figures 6A-6D illustrate steps in another method of forming a lead with segmented electrodes arranged in a single helix, double helix, or other helical arrangement. A set of pre-electrodes 657 are attached together at corners 659 of the pre-electrodes to form a rib framework 661. Optionally, additional connecting material 655 can be provided to couple together the pre-electrode 657. One or more of the pre-electrodes 657 includes an alignment tab 663. In the illustrated example of Figure 6A, the rib framework 661 includes four pre-electrodes 657 arranged in a single helix with an alignment tab 663 on each of the second and fourth pre-electrodes counting from the top of the framework. The pre-electrodes 657, alignment tabs 663, and optional connecting material 655 are typically formed of the metallic material of the final segmented electrodes. The entire rib framework 661 can be formed by any suitable methods including, but not limited to, molding, sintering, die casting, cutting and shaping, and the like.

Figure 6B illustrates two rib frameworks 661a, 661b formed into a single rib assembly 665 with a double helix of pre-electrodes 657. The two rib frameworks 661 are optionally attached to each other. Conductors (not shown for clarity of illustration) are individually attached to the pre-electrodes by, for example, welding, soldering, adhesive, or the like.

The rib assembly 665 with attached conductors (not shown) is inserted into a channel 669 in a mold 667, as illustrated in Figure 6C. Only one half of the mold 667 is shown in Figure 6C and it will be understood that the other half fits over the illustrated half and includes a similar channel. The channel 669 includes slots 671 which receive the alignment tabs 663 of the rib assembly 665. The alignment tabs 663 and slots 671 orient the rib assembly 665 within the channel 669 and maintain that orientation during the molding process.

After placement of the rib assembly 665 in the mold 667, the mold is closed and a non-conductive lead body material is introduced into the channel to form a portion of a lead body (see, lead body 110 of Figure 1) around the rib assembly 665. The lead body and rib assembly 665 are removed from the mold and then portions of the lead body and rib assembly (including at least the alignment tabs, corners, and optional connective material) are removed to separate the pre-electrodes 657 (see, Figure 6A) into the
segmented electrodes 656, as illustrated in Figure 6D (for clarity of illustration, the lead body is not shown in Figure 6D so that the arrangement of the segmented electrodes can be viewed.) The removal of portions of the lead body and rib assembly can be accomplished by any suitable method including, but not limited to, grinding (for example, centerless grinding), etching, ablation, and the like. The pre-electrodes 657 can have a thickness that is greater (or have a portion that extends further radially inward) for the portion of the pre-electrode that will form the segmented electrode 656 and thinner (or disposed further radially outward) at the corners 659 and optional connecting material 655 so that the removal step leaves the desired segmented electrode.

Figures 7A-7D illustrate an alternative arrangement of pre-electrodes formed in a rib framework. A set of pre-electrodes 757 are attached to an inner surface of a ribbon 769 to form a rib framework 761, as illustrated in Figure 7A. One or more alignment tabs 763 are also attached to an outer surface of the ribbon 769. In some embodiments, the pre-electrodes 757, alignment tabs 763, or both are formed integrally with ribbon 769 and made of the same conductive material. In other embodiments, the pre-electrodes 757, alignment tabs 763, or both are mechanically attached to the ribbon 769 by, for example, welding, soldering, adhesive, or the like and may be made of the same or different materials compared to the ribbon. In the illustrated example of Figure 7A, the rib framework 761 includes four pre-electrodes 757 arranged in a single helix with two alignment tabs 763 located opposite the second and fourth pre-electrodes counting from the top of the framework.

Figure 7B illustrates two rib frameworks 761a, 761b formed into a single rib assembly 765 with a double helix of pre-electrodes 757. The two rib frameworks 761 are optionally attached to each other. Conductors (not shown for clarity of illustration) are individually attached to the pre-electrodes by, for example, welding, soldering, adhesive, or the like. Figure 7C is another view of the rib assembly 765 with the alignment tabs 763 arranged on the right and left sides of the rib assembly in the view.

Similar to the embodiment of Figures 6A-6D, the rib assembly 765 with attached conductors (not shown) is inserted into a channel (not shown) in a mold (not shown). The channel includes slots which receive the alignment tabs 763 of the rib assembly 765. The
alignment tabs 763 and slots orient the rib assembly 765 within the channel and maintain that orientation during the molding process.

After placement of the rib assembly 765 in the mold, the mold is closed and a non-conductive lead body material is introduced into the channel to form a portion of a lead body around the rib assembly 765. The lead body and rib assembly 765 are removed from the mold and then portions of the lead body and rib assembly (including at least the alignment tabs 763 and ribbon 769) are removed to separate the pre-electrodes 757 (see, Figure 7A) into the segmented electrodes 756, as illustrated in Figure 7D (for clarity of illustration, the lead body is not shown in Figure 7D so that the arrangement of the segmented electrodes can be viewed.) The removal of portions of the lead body and rib assembly can be accomplished by any suitable method including, but not limited to, grinding (for example, centerless grinding), etching, ablation, and the like.

Figures 8A-8C illustrate another arrangement of pre-electrodes formed in a rib framework. A set of pre-electrodes 857 are formed in a half-cylinder 873 to produce a rib framework 861, as illustrated in Figure 8A. The pre-electrodes 857 are thicker than adjacent portions of the half-cylinder 873 and extend further into the interior of the half-cylinder, as illustrated in Figure 8A. The half-cylinder 873 may include divots 871 that receive the curved portion of a pre-electrode from an opposing half-cylinder (see, Figure 8B).

As illustrated in Figure 8B, one or more alignment tabs 863 are attached to the half-cylinder 873. In some embodiments, the pre-electrodes 857, alignment tabs 863, or both are formed integrally with the half-cylinder 873 and made of the same conductive material. In other embodiments, the pre-electrodes 857, alignment tabs 863, or both are mechanically attached to the half-cylinder 873 by, for example, welding, soldering, adhesive, or the like and may be made of the same or different materials compared to the other portions of the half-cylinder. In the illustrated example of Figures 8A and 8B, the rib framework 861 includes four pre-electrodes 857 arranged in a single helix with an alignment tab 863 extending along the length of the rib framework 861.

Figure 8B illustrates two rib frameworks 861a, 861b forming a cylinder of a single rib assembly 865 with a double helix of pre-electrodes 857. The two rib frameworks 861 are attached to each other. In some embodiments, this attachment may be by friction fit,
adhesive, welding, soldering, or any suitable mechanism. Conductors (not shown for clarity of illustration) are individually attached to the pre-electrodes by, for example, welding, soldering, adhesive, or the like.

The rib assembly 865 with attached conductors (not shown) is inserted into a channel 869 in a mold 867, as illustrated in Figure 8C. Only one half of the mold 867 is shown in Figure 8C and it will be understood that the other half fits over the illustrated half and includes a similar channel. The channel 869 includes slots (not shown) which receive the alignment tabs 863 (see, Figure 8B) of the rib assembly 865. The alignment tabs and slots orient the rib assembly 865 within the channel 869 and maintain that orientation during the molding process.

After placement of the rib assembly 865 in the mold 867, the mold is closed and a non-conductive lead material is introduced into the channel to form a lead body (see, lead body 110 of Figure 1) around the rib assembly 865. The lead body and rib assembly 865 are removed from the mold and then portions of the lead body and rib assembly (including at least the alignment tabs 863 and material of the half-cylinder 873 between the pre-electrodes 857) are removed to separate the pre-electrodes 857 (see, Figure 8A) into the segmented electrodes (which can appear similar to segmented electrodes 756, as illustrated in Figure 7D.) The removal of portions of the lead body and rib assembly can be accomplished by any suitable method including, but not limited to, grinding (for example, centerless grinding), etching, ablation, and the like.

Figures 9A-9C illustrate different embodiments of the segmented electrode 956. These segmented electrodes may be used, for example, in the embodiments described with respect to Figures 6A-6D, 7A-7D, and 8A-8D. The segmented electrode can include, for example, one or more circumferential channels 980 as illustrated in Figure 9A or one or more longitudinal channels 994 as illustrated in Figure 9C. The segmented electrode 456 may a stepped edge 982 as illustrated in Figure 9B. Molding material (e.g., epoxy, silicon, polyurethane, or the like) may be flowed into the circumferential channel(s) 980 or longitudinal channel(s) 984 or around the stepped edge 982 to facilitate holding the segmented electrode within the lead body after molding. The circumferential channel 980, longitudinal channel 984, or stepped edge 982 can be added to any of the other electrodes described herein.
Figures 10A-10G illustrate another method of forming a lead with electrodes arranged in a single or double helix or in any other helical pattern. Figure 10A illustrates a bottom portion of a mold 1067 that has electrode cavities 1086 for placement of the segmented electrodes and conductor cavities 1088 for placement of the conductors. The segmented electrodes 1056 (see, Figure 10C) are placed in the electrode cavities 1086, a portion of each of the conductors 1060 is placed in the conductor cavities 1088, and each conductor is attached to a corresponding segmented electrode. The mold is then closed with a top portion and molding material is introduced around at least the segmented electrodes. Examples of suitable molding materials include any flexible, biocompatible, non-conductive polymer material includes, but not limited to, silicone, polyurethane, or the like.

Figure 10B illustrates the result of the molding procedure with mold 1067. A molded carrier 1050 is formed from the molding material around the segmented electrodes. Figure 10C illustrates the molded carrier 1050, segmented electrodes 1056, and conductors removed from the mold. The molded carrier 1050 may include indentations 1051 or tabs that can be matched when the carrier is rolled up as described below.

In some embodiments, the molded carrier 1050 can include longitudinal notches 1053 formed in the surface of the carrier opposite the segmented electrodes 1056, as illustrated in Figure 10D. The notches 1053 preferably extend the entire length of the carrier 1050 and are preferably parallel to the conductors 1060. These notches 1053 can be formed using an appropriately shaped mold 1067 or can be added after molding by ablation, cutting, or the like. The notches can have any suitable shape including, but not limited to, triangular, hemispherical, rectangular, or the like. The notches 1053 may facilitate rolling of the carrier 1050 into a cylinder as describe below. In at least some embodiments, the notches 1053 can be placed in an alternative arrangement with the conductors 1060, as illustrated in Figure 10D.

The carrier 1050 is rolled into a cylinder with the segmented electrodes 1056 disposed on the outside of the cylinder, as illustrated in Figure 10E. In at least some embodiments, the carrier 1050 is rolled around a mandrel 1089. In at least some embodiments, a multi-lumen tube 1062 is positioned adjacent the carrier with the
conductors 1060 disposed within the lumens of the multi-lumen tube, as illustrated in Figure 10F. The multi-lumen tube 1062 can be similar to the multi-lumen tube 462 illustrated in Figure 4C and discussed above. In addition, an over tube 1090 can be placed over the carrier 1050 and segmented electrodes 1056, as illustrated in Figure 10F. The over tube 1090 is temporary and is preferably easily removed. For example, the over tube 1090 may be formed of silicone.

Once the carrier 1050 (see, Figure 10E) rolled into a cylinder with the over tube 1090 positioned over the carrier and segmented electrodes 1056, the arrangement is disposed in a channel of a second mold 1092, as illustrated in Figure 10G (only the bottom portion of the second mold is illustrated, but the top portion can be similar.) The second mold 1092 is closed and a molding material such as, for example, epoxy, silicone, polyurethane, or the like, is introduced around the carrier, multi-lumen tube 1062, and conductors 1060 to form a lead body. Optionally, the mandrel 1089 remains with the arrangement. If not, the molding material may also flow into the lumen resulting from the removal of the mandrel. The arrangement is removed from the second mold 1092 and the over tube 1090 is removed to expose the stimulation surfaces of the segmented electrodes. In some embodiments, a portion of the lead body and segmented electrodes might be removed by grinding, trimming, cutting, or any other suitable method to expose the stimulation surfaces of the segmented electrodes.

Figures 11A-1C illustrate another method of forming a lead with electrodes arranged in a single or double helix or in any other helical pattern. In this arrangement, an electrode assembly 1145 is formed from alternating segmented electrodes 1156 and non-conducting spacers 1147, as illustrated in Figures 11A and 11B. The spacers 1147 locate and align the segmented electrodes 1156. In at least some embodiments, the spacers 1147 are each unique. In the illustrated embodiment of Figure 11A, there are eight electrodes 1156 arranged in a double helix with nine unique spacers 1147. Optionally, one or more (or each) of the spacers 1147 include an aligning rib 1163 that aids in assembling the spacers and segmented electrodes 1156 in the correct orientation with the aligning ribs of the spacers aligned with each other, as illustrated in Figure 11B.

In at least some embodiments, each segmented electrode 1156 has one or more alignment tabs 1143 and each of the spacers 1147 has one or more notches 1141. The
notches 1141 each receive an alignment tab 1143 of one of the segmented electrodes. In some embodiments, the alignment tabs 1143 have a frictional fit with the notches 1141 or adhesive is used to hold the alignment tabs in the notches. It will be understood that in other embodiments, the alignment tabs may be positioned on the spacers with the notches on the segmented electrodes. In some embodiments, the alignment tabs 1143 are thinner than the segmented electrodes 1156 and positioned radially at the outer surface of the segmented electrodes. In such embodiments, the alignment tabs 1143 may be removed during manufacture by grinding down the segmented electrodes and lead body as described below.

One example of a spacer 1147 is provided in Figure 12A. One example of a segmented electrode 1156 is provided in Figure 12B. An alternative segmented electrode 1156a is illustrated in Figure 12C and includes an alignment ring 1143a instead of an alignment tab.

Conductors (not shown) are attached to each of the segmented electrodes prior to or during formation of the electrode assembly 1145. The conductors extend through the central lumen 1148 of the electrode assembly 1145. The segmented electrodes 1156 and spacers 1147 may be coupled together by a friction fit or an adhesive may be used to hold the assembly 1145 together or the assembly 1145 may be built up around a mandrel (not shown) or any combination of these methods. In some embodiments, a multi-lumen tube 1162 (which is similar to the multi-lumen tube 462 illustrated in Figure 4C) is positioned adjacent to or near the electrode assembly 1145, as illustrated in Figure 11C. In some embodiments, the multi-lumen tube 1162 can extend into the lumen 1148 of the electrode assembly 1145, as illustrated in Figure 11C. The outer part of the portion of the multi-lumen tube 1162 residing in the lumen 1148 may be removed (e.g., ablated) to facilitate coupling of the conductors extending along the multi-lumen tube to the segmented electrodes 1156.

The electrode assembly 1145 is disposed in a channel of a mold and a molding material such as, for example, epoxy, silicone, polyurethane, or the like, is introduced around the electrode assembly 1145, multi-lumen tube 1162, and conductors (not shown) to form a portion of a lead body. Optionally, the mandrel remains with the electrode assembly. If not, the molding material may also flow into the lumen 1148. The
arrangement is removed from the mold. The resulting arrangement is optionally ground (e.g., by centerless grinding) to remove the alignment tabs 1143 and part of the lead body resulting in the lead with exposed stimulation surfaces of the segmented electrodes.

Figures 13A-13G illustrate alternative segmented electrode shapes arranged in a double helix with the lead body removed for clarity of illustration. It will be understood that the segmented electrode can have a variety of shapes. For example, the segmented electrodes 1356a of Figure 13A can be circular or oval in shape. (It will be understood that the shape of the segmented electrodes of Figures 13A-13G is described ignoring the curvature of the segmented electrodes around the circumference of the lead for ease of description.) In Figure 13B, the segmented electrodes 1356b are rectangular in shape. In Figure 13C, the segmented electrodes 1356c are triangular in shape. In Figure 13D, the segmented electrodes 1356d are hexagonal in shape, although it will be recognized that the segmented electrodes could also be formed with hexagonal sides that are equal in length or formed as a diamond. In Figure 13E, the segmented electrodes 1356e are square in shape. In Figure 13F, the segmented electrodes 1356f are octagonal in shape. In Figure 13G, the segmented electrodes 1356g have decagonal in shape. It will be recognized that many of shapes, both regular and irregular, are possible. Any of these electrodes can be used in the leads and methods described herein. Moreover, it will be understood that ring electrodes or a tip electrode can be added to any of the electrode arrangements described herein. For example, ring electrodes can be included distal to or proximal to any of the helical segmented electrode arrangements described herein and a tip electrode can be included distal to any of the helical segmented electrode arrangements described herein.

The above specification, examples, and data provide a description of the manufacture and use of the composition of the invention. Since many embodiments of the invention can be made without departing from the spirit and scope of the invention, the invention also resides in the claims hereinafter appended.
CLAIMS

What is claimed as new and desired to be protected by Letters Patent of the United States is:

1. A stimulation lead, comprising:
 a lead body comprising a longitudinal length, a distal portion, and a proximal portion;
 a plurality of terminals disposed along the proximal portion of the lead body;
 a non-conductive electrode carrier coupled to, or disposed along, the distal portion of the lead body, the electrode carrier comprising defining a plurality of segmented electrode receiving openings arranged in a single helix or a double helix;
 a plurality of segmented electrodes, each of the segmented electrodes extending around no more than 75% of a circumference of the lead, each of the segmented electrodes disposed in a different one of the segmented electrode receiving openings of the electrode carrier; and
 a plurality of conductors extending along the lead body and coupling the plurality of electrodes to the plurality of terminals.

2. The stimulation lead of claim 1, wherein the electrode carrier comprises at least one step within each of the segmented electrode receiving openings to locate and set a depth of the segmented electrode within the electrode carrier.

3. The stimulation lead of claim 2, wherein each of the segmented electrodes comprises at least one channel sized and shaped to fit around a one of the at least one step.

4. A method of making a stimulation lead, the method comprising:
 forming a rib framework comprising a plurality of pre-electrodes attached together in a single or a double helix;
 attaching a conductor to each of the pre-electrodes;
disposing the rib framework into a mold and forming a lead body between the pre-electrodes; and
removing a portion of the lead body and the pre-electrodes to generate a plurality of separated segmented electrodes arranged in the single helix or the double helix.

5. The method of claim 4, wherein forming a rib framework comprises forming the rib framework with the pre-electrodes attached to each other at corners of the pre-electrodes.

6. The method of claim 4, wherein forming a rib framework comprises forming the rib framework with the pre-electrodes attached to a helically wound ribbon.

7. The method of claim 4, wherein forming a rib framework comprises forming the rib framework with the pre-electrodes attached to a half-cylinder.

8. The method of claim 7, further comprising forming a cylindrical rib assembly from two of the rib frameworks, wherein disposing the rib framework into the mold comprises disposing the rib assembly into the mold.

9. The method of claim 4, further comprising forming a rib assembly from two of the rib frameworks arranged to provide a double helix of the pre-electrodes, wherein disposing the rib framework into the mold comprises disposing the rib assembly into the mold.

10. The method of claim 4, wherein the rib framework comprises at least one alignment tab and wherein disposing the rib framework into the mold comprises disposing the rib framework into the mold with the at least one alignment tab of the rib framework disposed in a corresponding slot of the mold.

11. A method of making the stimulation lead of claim 1, the method comprising:
disposing a plurality of segmented electrodes and conductors in a first mold;
attaching each of the conductors to one of the segmented electrodes;
molding a carrier over the segmented electrodes using the first mold;
rolling the carrier with the segmented electrodes into a cylinder, wherein the segmented electrodes are arranged in the first mold so that when rolled into a cylinder with the carrier, the segmented electrodes are arranged in a single helix or a double helix;
placing the cylinder into a second mold; and
molding a lead body between the segmented electrodes using the second mold.

12. The method of claim 11, wherein molding the carrier comprises forming a plurality of notches on a surface of the carrier opposite the segmented electrodes.

13. The method of claim 12, wherein each of the notches extends an entire longitudinal length of the carrier and is parallel to the conductors.

14. The method of claim 12, wherein the notches and conductors are arranged in an alternating pattern.

15. The method of claim 11, further comprising placing an over tube over the cylinder prior to placing the cylinder into the second mold.

16. A method of making a stimulation lead, the method comprising:
forming an electrode assembly by alternating segmented electrodes with non-conductive spacers shaped to receive the segmented electrodes, wherein the segmented electrodes are positioned in the electrode assembly in a single helix or a double helix;
placing the electrode assembly into a mold; and
molding a lead body between the segmented electrodes using the mold.

17. The method of claim 16, wherein each of the spacers is shaped differently from the other spacers.
18. The method of claim 16, wherein each of the spacers comprises an aligning rib and wherein forming an electrode assembly comprises alternating the segmented electrodes with the non-conductive spacers with the aligning rib of each spacer aligned with the aligning ribs of the other spacers.

19. The method of claim 16, wherein each of the segmented electrode comprises at least one alignment tab and each of the spacers comprises at least one notch, wherein forming an electrode assembly comprises alternating the segmented electrodes with the non-conductive spacers with each of the at least one alignment tab of each of the segmented electrodes disposed in one of the at least one notch of the spacers.

20. The method of claim 19, further comprising removing the at least one alignment tab from each of the segmented electrodes after molding the lead body.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

INV. A61N1/05
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols):
A61N

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>US 2012/197375 AI (PIANCA ANNE MARGARET [US] ET AL) 2 August 2012 (2012-08-02) cited in the application paragraph [0039] - paragraph [0042], paragraph [0052], paragraph [0062] - paragraph [0083], paragraph [0087] - paragraph [0096]; figures 1, 3A, 3D, 4A, 5E</td>
<td>1,4-9, 16</td>
</tr>
</tbody>
</table>

[X] Further documents are listed in the continuation of Box C.

[X] See patent family annex.

* Special categories of cited documents:
 "A" document defining the general state of the art which is not considered to be of particular relevance
 "E" earlier application or patent but published on or after the international filing date
 "L" document which may throw doubts on priority claims(s) or one which is cited to establish the publication date of another citation or other special reason (as specified)
 "O" document referring to an oral disclosure, use, exhibition or other means
 "P" document published prior to the international filing date but later than the priority date claimed

*"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

*"X" document of particular relevance: the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

*"Y" document of particular relevance: the claimed invention cannot be considered to involve an inventive step when the document is taken in combination with one or more other such documents, such combination being obvious to a person skilled in the art

*"A" document member of the same patent family

Date of the actual completion of the international search
20 February 2015

Date of mailing of the international search report
03/03/2015

Name and mailing address of the ISA
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040,
Fax: (+31-70) 340-3016

Authorized officer
Sigrud, Kari

Form PCT/ISA/210 (second sheet) (April 2005)
DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>--</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>US 2012197375 Al</td>
<td>02-08-2012</td>
<td>AU 20122212286 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2825341 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2670475 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2014506500 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2012197375 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2014180375 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wo 2012106399 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2767248 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 102665818 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2451524 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2012532674 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2011005069 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2013160287 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wo 2011005716 A2</td>
</tr>
<tr>
<td>US 2011313500 Al</td>
<td>22-12-2011</td>
<td>CA 2798165 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2582425 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2013528471 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2011313500 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2015000124 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wo 2011159631 A2</td>
</tr>
<tr>
<td>US 2011130803 Al</td>
<td>02-06-2011</td>
<td>US 2011130803 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2013166008 Al</td>
</tr>
<tr>
<td>US 2011047795 Al</td>
<td>03-03-2011</td>
<td>US 2011047795 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wo 2011028809 Al</td>
</tr>
<tr>
<td>US 2011078900 Al</td>
<td>07-04-2011</td>
<td>AU 2011341668 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2819631 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2651498 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2014500105 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2011078900 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2015018921 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wo 2012082240 Al</td>
</tr>
</tbody>
</table>