(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltausorganisation für geistiges Eigentum
Internationales Büro

(43) Internationales Veröffentlichungsdatum

(10) Internationale Veröffentlichungsnummer
WO 2009/143992 A1

(51) Internationale Patentklassifikation:
C07D 213/70 (2006.01) C07D 417/14 (2006.01)
C07D 413/12 (2006.01) A61K 31/33 (2006.01)
C07D 417/12 (2006.01) A61P 9/00 (2006.01)

(21) Internationales Aktenzeichen:
PCT/EP2009/003652

(22) Internationales Anmeldedatum:
22. Mai 2009 (22.05.2009)

(25) Einreichungssprache:
Deutsch

(26) Veröffentlichungssprache:
Deutsch

(30) Angaben zur Priorität:
10 2008 025 841.5 29. Mai 2008 (29.05.2008) DE

(72) Erfinder und

(74) Gemeinsamer Vertreter: BAYER SCHERING PHARMA AKTIENGESELLSCHAFT; Law & Patents, 51368 Leverkusen (DE).

Veröffentlicht:
mit internationalem Rechenbericht (Artikel 21 Absatz 3)

(54) Titel: 2-ALKOXY-SUBSTITUIERT DICYANOPYRIDINES AND USE THEREOF

(54) Bezeichnung: 2-ALKOXY-SUBSTITUIERTE DICYANOPYRIDINE UND IHRE VERWENDUNG

(57) Abstract: The present application relates to novel 2-alkoxy-substituted dicyanopyridines, to processes for preparation thereof, to the use thereof for treatment and/or prevention of disorders and to the use thereof for producing medicaments for treatment and/or prevention of disorders, preferably for treatment and/or prevention of cardiovascular disorders.

2-Alkoxy-substituierte Dicyanopyridine und ihre Verwendung

Unter normoxischen Bedingungen ist die Konzentration des freien Adenosin im Extrazellulärraum sehr niedrig. Die extrazelluläre Konzentration von Adenosin erhöht sich in den betroffenen Organen jedoch dramatisch unter ischämischem bzw. hypoxischen Bedingungen. So ist beispielsweise bekannt, dass Adenosin die Thrombozyten-Aggregation hemmt und die Durchblutung der Herzkrankgefäße steigert. Weiterhin wirkt es auf den Blutdruck, die Herzfrequenz, auf die Ausschüttung von Neurotransmittern und auf die Lymphozytendifferenzierung. In Adipozyten ist Adenosin in der Lage, die Lipolyse zu hemmen und somit die Konzentration an freien Fettsäuren und Triglyzeriden im Blut zu senken.

Diese Wirkungen von Adenosin zielen darauf ab, das Sauerstoffangebot der betroffenen Organe zu erhöhen bzw. den Stoffwechsel dieser Organe zu drosseln, um damit unter ischämischem oder hypoxischem Bedingungen eine Anpassung des Organstoffwechsels an die Organdurchblutung zu erreichen.

Die Wirkungen dieser Adenosin-Rezeptoren werden intrazellulär durch den Botenstoff cAMP vermittelt. Im Falle der Bindung von Adenosin an die A2a- oder A2b-Rezeptoren kommt es über eine Aktivierung der membranständigen Adenylatzyklase zu einem Anstieg des intrazellulären
cAMP, während die Bindung des Adenosin an die A1- oder A3-Rezeptoren über eine Hemmung der Adenylatzyklase eine Abnahme des intrazellulären cAMP-Gehalts bewirkt.

Lipide wiederum führt bei Patienten mit Metabolischem Syndrom und bei Diabetikern zur Verringerung der Insulinresistenz und zur Verbesserung der Symptomatik.

In WO 01/25210, WO 02/070484 und WO 02/070485 werden substituierte 2-Thio- bzw. 2-Oxy-3,5-dicyano-phenyl-6-aminopyridine als Adenosinrezeptor-Liganden für die Behandlung von kardiovaskulären Erkrankungen offenbart. In WO 03/053441 werden spezifisch substituierte 2-

Gegenstand der vorliegenden Erfindung sind Verbindungen der Formel (I)

![Chemical Structure](image)

(I),

in welcher

\(X \) für O oder S steht,

\(R^1 \) für (C₆-C₁₀)-Aryl oder 5- bis 10-gliedriges Heteroaryl steht,
wobei (C₀-C₁₀)-Aryl und 5- bis 10-gliedriges Heteroaryl mit 1 oder 2 Substituenten unabhängig voneinander ausgewählt aus der Gruppe Halogen, Nitro, Cyano, (C₁-C₉)-Alkyl, Trifluormethyl, Hydroxy, (C₁-C₉)-Alkoxy, Amino, Mono-(C₁-C₉)-alkylamino, Di-(C₁-C₉)-alkylamino, Hydroxy carbonyl, (C₁-C₉)-Alkoxy carbonyl, Aminocarbonyl, Mono-(C₁-C₉)-alkylaminocarbonyl, Di-(C₁-C₉)-alkylaminocarbonyl, (C₃-C₇)-Cycloalkylaminocarbonyl, Aminosulfonyl, Mono-(C₁-C₉)-alkylaminsulfonyl, Di-(C₁-C₉)-alkylaminsulfonyl, (C₁-C₉)-Alkylsulfonylamino, Pyrrolidino, Piperidino, Morpholino, Piperazino, N²-(C₁-C₄)-Alkylpiperazino, Pyrrolidinocarbonyl, Piperidinocarbonyl, Morpholinocarbonyl, Piperazinocarbonyl, N²-(C₁-C₄)-Alkylpiperazinocarbonyl und -L-R³ substituiert sein können,

worin

L für eine Bindung, NH oder O steht,

R³ für Phenyl oder 5- oder 6-gliedriges Heteroaryl steht,

worin Phenyl und 5- oder 6-gliedriges Heteroaryl ihrerseits mit 1 bis 3 Substituenten unabhängig voneinander ausgewählt aus der Gruppe Halogen, Nitro, Cyano, (C₁-C₉)-Alkyl, Trifluormethyl, Hydroxy, (C₁-C₉)-Alkoxy, Difluormethoxy, Trifluormethoxy, Amino, Mono-(C₁-C₉)-alkylamino, Di-(C₁-C₉)-alkylamino, Hydroxy carbonyl und (C₁-C₉)-Alkoxy carbonyl sein können,

R² für Wasserstoff oder (C₁-C₄)-Alkyl steht,

R³ für Phenyl oder 5- oder 6-gliedriges Heteroaryl steht,

wobei Phenyl und 5- oder 6-gliedriges Heteroaryl mit 1 bis 3 Substituenten unabhängig voneinander ausgewählt aus der Gruppe Halogen, Cyano, Hydroxy, (C₁-C₉)-Alkyl, (C₁-C₉)-Alkoxy, (C₃-C₇)-Cycloalkoxy, Tetrahydrofuran oxy, Pyrrolidin oxy und -NR²R³ substituiert sein können,

worin (C₁-C₉)-Alkyl und (C₁-C₉)-Alkoxy mit 1 bis 3 Substituenten unabhängig voneinander ausgewählt aus der Gruppe Fluor, Trifluormethyl, (C₃-C₇)-Cycloalkyl, Hydroxy, (C₁-C₉)-Alkoxy, Hydroxy carbonyl, (C₁-C₉)-alkoxycarbonyl, Amino, Aminocarbonyl, Mono-(C₁-C₉)-alkylamino und Di-(C₁-C₉)-alkylamino substituiert sein können,

und
worin (C₃-C₇)-Cycloalkoxy, Tetrahydrofuranyloxy und Pyrrolidinyloxy mit 1 oder 2 Substituenten unabhängig voneinander ausgewählt aus der Gruppe (C₁-C₄)-Alkyl, Hydroxy, Oxo und (C₁-C₄)-Alkoxy substituiert sein können,

und

worin

R⁰ für Wasserstoff oder (C₁-C₆)-Alkyl steht,

worin (C₁-C₆)-Alkyl seinerseits mit 1 bis 3 Substituenten Fluor substituiert sein kann,

und

worin (C₁-C₆)-Alkyl seinerseits mit einem Substituenten ausgewählt aus der Gruppe Hydroxy und (C₁-C₄)-Alkoxy substituiert sein kann,

R⁰ für Wasserstoff, (C₁-C₆)-Alkyl, (C₃-C₇)-Cycloalkyl, (C₁-C₆)-Alkylcarbonyl, (C₁-C₄)-Alkylsulfonyl oder (C₃-C₇)-Cycloalkylsulfonyl steht,

worin (C₁-C₆)-Alkyl seinerseits mit 1 oder 2 Substituenten unabhängig voneinander ausgewählt aus der Gruppe Fluor, Trifluormethyl, (C₃-C₇)-Cycloalkyl, Hydroxy, (C₁-C₄)-Alkoxy, Hydroxycarbonyl, (C₁-C₄)-Alkoxy carbonyl, Amino, Mono-(C₁-C₄)-alkylamino und Di-(C₁-C₄)-alkylamino substituiert sein kann,

und

worin (C₃-C₇)-Cycloalkyl seinerseits mit 1 oder 2 Substituenten unabhängig voneinander ausgewählt aus der Gruppe (C₁-C₄)-Alkyl, Hydroxy, Oxo und (C₁-C₄)-Alkoxy substituiert sein kann,

oder

R⁰ und R⁰ zusammen mit dem Stickstoffatom, an das sie gebunden sind, einen 4- bis 7-gliedrigen Heterocyclus bilden, der ein weiteres Ring-Heteroatom aus der Reihe N, O oder S enthält und mit 1 oder 2 Substituenten unabhängig voneinander ausgewählt aus der Gruppe (C₁-C₄)-Alkyl, Hydroxy, Oxo und (C₁-C₄)-Alkoxy substituiert sein kann,
oder

worin zwei benachbarte Substituenten am Phenyl zusammen mit den Kohlenstoffatomen, an die sie gebunden sind, ein 1,3-Dioxolan, 1,3-Dioxan oder 2,2-Difluor-1,3-dioxolan bilden können,

\[R^4 \]

für \((C_1-C_6)\)-Alkyl, \((C_3-C_7)\)-Cycloalkyl oder 4- bis 6-gliedriges Heterocyclyl steht,

wobei \((C_1-C_6)\)-Alkyl mit 1 oder 2 Substituenten unabhängig voneinander ausgewählt aus der Gruppe Fluor, Trifluormethyl, \((C_3-C_7)\)-Cycloalkyl, Hydroxy, \((C_1-C_4)\)-Alkoxy, Hydroxycarbonyl, \((C_1-C_4)\)-Alkoxy carbonyl, Amino, Mono-\((C_1-C_4)\)-alkylamino, Di-\((C_1-C_4)\)-alkylamino, Aminocarbonyl, Mono-\((C_1-C_4)\)-alkylaminocarbonyl, Di-\((C_1-C_4)\)-alkylaminocarbonyl und 5- oder 6-gliedriges Heterocyclyl substituiert sein kann,

worin \((C_1-C_4)\)-Alkoxy mit 1 oder 2 Substituenten unabhängig voneinander ausgewählt aus der Gruppe Hydroxy und \((C_1-C_4)\)-Alkoxy substituiert sein kann

und

worin 5- oder 6-gliedriges Heterocyclyl mit einem Substituenten ausgewählt aus der Gruppe Oxo und \((C_1-C_4)\)-Alkyl substituiert sein kann

und

wobei \((C_3-C_7)\)-Cycloalkyl und 4- bis 6-gliedriges Heterocyclyl mit 1 oder 2 Substituenten unabhängig voneinander ausgewählt aus der Gruppe \((C_1-C_4)\)-Alkyl, Hydroxy, \((C_1-C_4)\)-Alkoxy, Hydroxycarbonyl, \((C_1-C_4)\)-Alkoxy carbonyl, Amino, Mono-\((C_1-C_4)\)-alkylamino und Di-\((C_1-C_4)\)-alkylamino substituiert sein kann,

sowie ihre N-Oxide, Salze, Solvate, Salze der N-Oxide und Solvate der N-Oxide und Salze.

Erfindungsgemäße Verbindungen sind die Verbindungen der Formel (I) und deren N-Oxide, Salze, Solvate, Salze der N-Oxide und Solvate der Salze und N-Oxide, die von Formel (I) umfassenden Verbindungen der nachfolgend genannten Formeln und deren Salze, Solvate und Solvate der Salze sowie die von Formel (I) umfassenden, nachfolgend als Ausführungsbeispiele genannten Verbindungen und deren Salze, Solvate und Solvate der Salze, soweit es sich bei den von Formel (I) umfasssten, nachfolgend genannten Verbindungen nicht bereits um Salze, Solvate und Solvate der Salze handelt.

Die erfindungsgemäßen Verbindungen können in Abhängigkeit von ihrer Struktur in stereoisomeren Formen (Enantiomere, Diastereomere) existieren. Die Erfindung umfasst deshalb die

Sofern die erfindungsgemäßen Verbindungen in tautomeren Formen vorkommen können, umfasst die vorliegende Erfindung sämtliche tautomere Formen.

Als Salze sind im Rahmen der vorliegenden Erfindung physiologisch unbedenkliche Salze der erfindungsgemäßen Verbindungen bevorzugt. Umfasst sind auch Salze, die für pharmazeutische Anwendungen selbst nicht geeignet sind, jedoch beispielsweise für die Isolierung oder Reinigung der erfindungsgemäßen Verbindungen verwendet werden können.

Als Solvate werden im Rahmen der Erfindung solche Formen der erfindungsgemäßen Verbindungen bezeichnet, welche in festem oder flüssigem Zustand durch Koordination mit Lösungsmittelmolekülen einen Komplex bilden. Hydrate sind eine spezielle Form der Solvate, bei denen die Koordination mit Wasser erfolgt. Als Solvate sind im Rahmen der vorliegenden Erfindung Hydrate bevorzugt.

Außerdem umfasst die vorliegende Erfindung auch Prodrugs der erfindungsgemäßen Verbindungen. Der Begriff "Prodrugs" umfasst Verbindungen, welche selbst biologisch aktiv oder inaktiv sein können, jedoch während ihrer Verweilzeit im Körper zu erfindungsgemäßen Verbindungen umgesetzt werden (beispielsweise metabolisch oder hydrolytisch).
Im Rahmen der vorliegenden Erfindung haben die Substituenten, soweit nicht anders spezifiziert, die folgende Bedeutung:

Alkyl steht im Rahmen der Erfindung für einen linearen oder verzweigten Alkylrest mit 1 bis 6 bzw. 1 bis 4 Kohlenstoffatomen. Bevorzugt ist ein linearer oder verzweigter Alkylrest mit 1 bis 4 Kohlenstoffatomen. Beispielhaft und vorzugsweise seien genannt: Methyl, Ethyl, n-Propyl, Isopropyl, n-Butyl, iso-Butyl, sec.-Butyl, tert.-Butyl, 1-Ethylpropyl, n-Pentyl und n-Hexyl.

Cycloalkyl steht im Rahmen der Erfindung für einen monocyclischen, gesättigten Carbocyclus mit 3 bis 7 bzw. 5 bis 6 Ring-Kohlenstoffatomen. Beispielhaft und vorzugsweise seien genannt: Cyclopropyl, Cyclobutyl, Cyclopentyl, Cyclohexyl und Cycloheptyl.

Alkylcarbonyl steht im Rahmen der Erfindung für einen linearen oder verzweigten Alkylrest mit 1 bis 6 bzw. 1 bis 4 Kohlenstoffatomen und einer in 1-Position angebundenen Carbonylgruppe. Beispielhaft und vorzugsweise seien genannt: Methylcarbonyl, Ethylcarbonyl, n-Propylcarbonyl, iso-Propylcarbonyl, n-Butylcarbonyl, iso-Butylcarbonyl und tert.-Butylcarbonyl.

Alkoxy steht im Rahmen der Erfindung für einen linearen oder verzweigten Alkoxyrest mit 1 bis 6 bzw. 1 bis 4 Kohlenstoffatomen. Bevorzugt ist ein linearer oder verzweigter Alkoxyrest mit 1 bis 4 bzw. 2 bis 4 Kohlenstoffatomen. Beispielhaft und vorzugsweise seien genannt: Methoxy, Ethoxy, n-Propoxy, Isopropoxy, n-Butoxy, tert.-Butoxy, n-Pentoxy und n-Hexaoxy.

Cycloalkoxy steht im Rahmen der Erfindung für einen monocyclischen, gesättigten Carbocyclus mit 3 bis 7 Kohlenstoffatomen, der über ein Sauerstoffatom gebunden ist. Beispielhaft und vorzugsweise seien genannt: Cyclopropoxy, Cyclobutoxy, Cyclopentoxy, Cyclohexyloxy und Cycloheptyloxy.

Alkoxy carbonyl stehen im Rahmen der Erfindung für einen linearen oder verzweigten Alkoxyrest mit 1 bis 6 bzw. 1 bis 4 Kohlenstoffatomen und einer am Sauerstoff gebundenen Carbonylgruppe. Bevorzugt ist ein linearer oder verzweigter Alkoxy carbonylrest mit 1 bis 4 Kohlenstoffatomen in der Alkoxy-Gruppe. Beispielhaft und vorzugsweise seien genannt: Methoxycarbonyl, Ethoxycarbonyl, n-Propoxycarbonyl, Isopropoxycarbonyl und tert.-Butoxy-carbonyl.

Mono-alkyl amino steht im Rahmen der Erfindung für eine Amino-Gruppe mit einem linearen oder verzweigten Alkylsubstituenten, der 1 bis 6 bzw. 1 bis 4 Kohlenstoffatome aufweist. Bevorzugt ist ein linearer oder verzweigter Monoalkylamino-Rest mit 1 bis 4 Kohlenstoffatomen. Beispielhaft
und vorzugsweise seien genannt: Methylamino, Ethylamino, n-Propylamino, Isopropylamino, n-Butylamino, tert.-Butylamino, n-Pentylamino und n-Hexylamino.

Cycloalkylamino steht im Rahmen der Erfindung für eine Amino-Gruppe mit einem monocyclischen, gesättigten Carbocyclus mit 3 bis 7 Kohlenstoffatomen. Beispielhaft und vorzugsweise seien genannt: Cyclopropylamino, Cyclobutylamino, Cyclopentylamino, Cyclohexylamino und Cycloheptylamino.

Mono-alkylaminocarbonyl steht im Rahmen der Erfindung für eine Amino-Gruppe, die über eine Carbonylgruppe verknüpft ist und die einen linearen oder verzweigten Alkylsubstituenten mit 1 bis 6 bzw. 1 bis 4 Kohlenstoffatomen aufweist. Bevorzugt ist ein Mono-alkylaminocarbonyl-Rest mit 1 bis 4 Kohlenstoffatomen in der Alkylgruppe. Beispielhaft und vorzugsweise seien genannt: Methylaminocarbonyl, Ethylaminocarbonyl, n-Propylaminocarbonyl, Isopropylaminocarbonyl, n-Butylaminocarbonyl, tert.-Butylaminocarbonyl, n-Pentylaminocarbonyl und n-Hexylaminocarbonyl.

Cycloalkylaminocarbonyl steht im Rahmen der Erfindung für eine Amino-Gruppe, die über eine Carbonylgruppe verknüpft ist und die einen monocyclischen, gesättigten Carbocyclus mit 3 bis 7 Kohlenstoffatomen aufweist. Beispielhaft und vorzugsweise seien genannt: Cyclopropylaminocarbonyl, Cyclobutylaminocarbonyl, Cyclopentylaminocarbonyl, Cyclohexylaminocarbonyl und Cycloheptylaminoacarbonyl.
Mono-alkylaminosulfonyl steht im Rahmen der Erfindung für eine Amino-Gruppe, die über eine Sulfonylgruppe verknüpft ist und die einen linearen oder verzweigten Alkylsubstituenten mit 1 bis 6 Kohlenstoffatomen aufweist. Beispielhaft und vorzugsweise seien genannt: Methylaminosulfonyl, Ethylaminosulfonyl, n-Propylaminosulfonyl, Isopropylaminosulfonyl, n-Butylaminosulfonyl und tert.-Butylaminosulfonyl.

Alkylsulfonyl steht in Rahmen der Erfindung für einen linearen oder verzweigten Alkylrest mit 1 bis 4 Kohlenstoffatomen, der über eine Sulfonylgruppe gebunden ist. Beispielhaft und vorzugsweise seinen genannt: Methylsulfonyl, Ethylsulfonyl, n-Propylsulfonyl, iso-Propylsulfonyl, n-Butylsulfonyl und tert.-Butylsulfonyl.

Cycloalkylsulfonyl steht in Rahmen der Erfindung für einen monocyclischen, gesättigten Carbocyclus mit 3 bis 7 Kohlenstoffatomen, der über eine Sulfonylgruppe gebunden ist. Beispielhaft und vorzugsweise seinen genannt: Cyclopropylsulfonyl, Cyclobutylsulfonyl, Cyclopentylsulfonyl, Cyclohexylsulfonyl und Cycloheptylsulfonyl.

Heteroaryl steht im Rahmen der Erfindung für einen monocyclischen oder gegebenenfalls bicyclischen aromatischen Heterocyclos (Heteroaromaten) mit insgesamt 5 bis 10 Ringatomen, der bis zu drei gleiche oder verschiedene Ring-Heteroatome aus der Reihe N, O und/oder S enthält und über ein Ring-Kohlenstoffatom oder gegebenenfalls über ein Ring-Stickstoffatom verknüpft ist.

Halogen schließt im Rahmen der Erfindung Fluor, Chlor, Brom und Iod ein. Bevorzugt sind Chlor oder Fluor.

Eine Oxo-Gruppe steht im Rahmen der Erfindung für ein Sauerstoffatom, das über eine Doppelbindung an ein Kohlenstoffatom gebunden ist.

Wenn Reste in den erfindungsgemäßen Verbindungen substituiert sind, können die Reste, soweit nicht anders spezifiziert, ein- oder mehrfach substituiert sein. Im Rahmen der vorliegenden Erfindung gilt, dass für alle Reste, die mehrfach auftreten, deren Bedeutung unabhängig voneinander ist. Eine Substitution mit ein, zwei oder drei gleichen oder verschiedenen Substituenten ist bevorzugt. Ganz besonders bevorzugt ist die Substitution mit einem oder zwei gleichen oder verschiedenen Substituenten.

Bevorzugt sind im Rahmen der vorliegenden Erfindung Verbindungen der Formel (I), in welcher

\[X \text{ für } S \text{ steht,} \]

\[R^1 \text{ für Phenyl oder 5- oder 6-gliedriges Heteroaryl steht,} \]

wobei Phenyl und 5- oder 6-gliedriges Heteroaryl mit 1 oder 2 Substituenten unabhängig voneinander ausgewählt aus der Gruppe Fluor, Chlor, Cyano, \((C_1-C_4)-Alkyl, \) Trifluormethyl, \((C_1-C_4)-Alkoxyl, \) Amino, Mono-(C_1-C_4)-alkylamino, Di-(C_1-C_4)-alkylamino, Hydroxycarbonyl, \((C_1-C_4)-Alkoxycarbonyl, \) Aminocarbonyl, Mono-(C_1-C_4)-alkylaminocarbonyl, Di-(C_1-C_4)-alkylaminocarbonyl, \((C_3-C_6)-Cycloalkylaminocarbonyl, \) \((C_1-C_4)-Alkylsulfonylamino, \) Morpholino, Piperazino, \(N'-(C_1-C_4)-Alkylpiperazino und \(-L-R^5 \) substituiert sein können,
worin

\[L \] für eine Bindung oder NH steht,

\[R^3 \] für Phenyl oder 5- oder 6-gliedriges Heteroaryl steht,

worin Phenyl und 5- oder 6-gliedriges Heteroaryl ihrerseits mit 1 oder 2 Substituenten unabhängig voneinander ausgewählt aus der Gruppe Fluor, Chlor, Cyano, \((C_1-C_4)-Alkyl\), Trifluormethyl, \((C_1-C_4)-Alkoxy\), Trifluormethoxy, Amino, Hydroxycarbonyl und \((C_1-C_4)-Alkoxy carbonyl\) sein können,

\[R^2 \] für Wasserstoff oder Methyl steht,

\[R^3 \] für Phenyl, Pyrrol, Oxazol, Thiazol, Isoxazol, Pyrazol, Imidazol und Pyridyl steht,

wobei Phenyl, Pyrrol, Oxazol, Thiazol, Isoxazol, Pyrazol, Imidazol und Pyridyl mit 1 oder 2 Substituenten unabhängig voneinander ausgewählt aus der Gruppe Fluor, \((C_1-C_6)-Alkyl\), Hydroxy, \((C_1-C_4)-Alkoxy\) und \(-NR^A R^B\) substituiert sein können,

worin \((C_1-C_6)-Alkyl\) und \((C_1-C_4)-Alkoxy\) mit 1 bis 3 Substituenten unabhängig voneinander ausgewählt aus der Gruppe Fluor, Trifluormethyl, Hydroxy, Methoxy, Ethoxy, Hydroxycarbonyl, Amino, Methylamino, Ethylamino, \(N,N\)-Dimethylamino und \(N,N\)-Diethylamino substituiert sein können,

und

worin

\[R^A \] für Wasserstoff oder \((C_1-C_4)-Alkyl\) steht,

worin \((C_1-C_4)-Alkyl\) seinerseits mit einem Substituenten ausgewählt aus der Gruppe Hydroxy und \((C_1-C_4)-Alkoxy\) substituiert sein kann,

\[R^B \] für Wasserstoff oder \((C_1-C_4)-Alkyl\) steht,

worin \((C_1-C_4)-Alkyl\) seinerseits mit 1 oder 2 Substituenten unabhängig voneinander ausgewählt aus der Gruppe Hydroxy, \((C_1-C_4)-Alkoxy\) und Hydroxycarbonyl substituiert sein kann,

\[R^4 \] für \((C_1-C_6)-Alkyl\), \((C_4-C_6)-Cycloalkyl\) oder 5- oder 6-gliedriges Heterocyclen steht,
wobei (C₁-C₆)-Alkyl mit 1 oder 2 Substituenten unabhängig voneinander ausgewählt aus der Gruppe Fluor, Trifluormethyl, (C₃-C₇)-Cycloalkyl, Hydroxy, Methoxy, Ethoxy, Hydroxy carbonyl, Methoxycarbonyl, Ethoxycarbonyl, Amino, Methylamino, Ethlamino, N,N-Dimethylamino, N,N-Diethylamino und 5- oder 6-gliedriges Heterocyclen substituiert sein kann,

worin 5- oder 6-gliedriges Heterocyclen seinerseits mit einem Substituenten ausgewählt aus der Gruppe Oxo und Methyl substituiert sein kann,

und

wobei (C₄-C₆)-Cycloalkyl und 5- oder 6-gliedriges Heterocyclen mit 1 oder 2 Substituenten unabhängig voneinander ausgewählt aus der Gruppe Methyl, Hydroxy, Methoxy, Hydroxy carbonyl, Methoxycarbonyl, Ethoxycarbonyl, Amino, Methylamino und N,N-Dimethylamino substituiert sein können,

sowie ihre Salze, Solvate und Solvate der Salze.

Bevorzugt sind im Rahmen der vorliegenden Erfindung auch Verbindungen der Formel (I), in welcher

\[X \quad \text{für O oder S steht,} \]

\[R^1 \quad \text{für Phenyl, Thiazolyl, Oxazolyl oder Pyridyl steht,} \]

wobei Phenyl und Pyridyl mit 1 oder 2 Substituenten unabhängig voneinander ausgewählt aus der Gruppe Fluor, Chlor, Cyano, Methyl, Trifluormethyl, Methoxy, Hydroxycarbonyl, Methoxycarbonyl, Ethoxycarbonyl, Aminocarbonyl, Methylaminocarbonyl, Ethylaminocarbonyl, N,N-Dimethylaminocarbonyl und N,N-Diethylaminocarbonyl substituiert sind,

und

wobei Thiazolyl und Oxazolyl mit einem Substituenten \(-L-R^5\) substituiert sind,

worin

\[L \quad \text{für eine Bindung oder NH steht,} \]

\[R^5 \quad \text{für Phenyl steht,} \]

worin Phenyl seinerseits mit 1 oder 2 Substituenten unabhängig voneinander ausgewählt aus der Gruppe Fluor, Chlor, Methyl, Methoxy,
Ethoxy, Hydroxycarbonyl, Methoxycarbonyl und Ethoxycarbonyl sein kann,

und

wobei Thiazolyl und Oxazolyl mit einem Substituenten ausgewählt aus der Gruppe Fluor, Methyl, Ethyl, Methoxy, Hydroxycarbonyl und Methoxycarbonyl substituiert sein können,

R² für Wasserstoff oder Methyl steht,

R³ für Phenyl, Pyrrolyl, Oxazolyl, Thiazolyl, Isoxazolyl, Pyrazolyl, Imidazolyl und Pyridyl steht,

wobei Phenyl, Pyrrolyl, Oxazolyl, Thiazolyl, Isoxazolyl, Pyrazolyl, Imidazolyl und Pyridyl mit 1 oder 2 Substituenten unabhängig voneinander ausgewählt aus der Gruppe Fluor, (C₁-C₆)-Alkyl, Hydroxy, (C₁-C₄)-Alkoxy und –NR³R⁴ substituiert sein können,

worin (C₁-C₆)-Alkyl und (C₁-C₄)-Alkoxy mit 1 bis 3 Substituenten unabhängig voneinander ausgewählt aus der Gruppe Fluor, Trifluormethyl, Hydroxy, Methoxy, Ethoxy, Hydroxycarbonyl, Amino, Methylamino, Ethylamino, N,N-Dimethylamino und N,N-Diethylamino substituiert sein können,

und

worin

R⁴ für Wasserstoff oder (C₁-C₄)-Alkyl steht,

worin (C₁-C₆)-Alkyl seinerseits mit einem Substituenten ausgewählt aus der Gruppe Hydroxy und (C₁-C₄)-Alkoxy substituiert sein kann,

R⁵ für Wasserstoff oder (C₁-C₄)-Alkyl steht,

worin (C₁-C₆)-Alkyl seinerseits mit 1 oder 2 Substituenten unabhängig voneinander ausgewählt aus der Gruppe Hydroxy, (C₁-C₄)-Alkoxy und Hydroxycarbonyl substituiert sein kann,

25 R⁴ für (C₁-C₆)-Alkyl oder (C₄-C₆)-Cycloalkyl steht,

wobei (C₁-C₆)-Alkyl mit 1 oder 2 Substituenten unabhängig voneinander ausgewählt aus der Gruppe Fluor, Trifluormethyl, (C₃-C₇)-Cycloalkyl, Hydroxy, Methoxy und Ethoxy substituiert sein kann,
und

wobei (C₄-C₈)-Cycloalkyl mit 1 oder 2 Substituenten unabhängig voneinander ausgewählt aus der Gruppe Methyl, Hydroxy und Methoxy substituiert sein kann,

sowie ihre Salze, Solvate und Solvate der Salze.

Besonders bevorzugt sind im Rahmen der vorliegenden Erfindung Verbindungen der Formel (I), in welcher

X für S steht,

R¹ für Phenyl, Thiazolyl, Oxazolyl oder Pyridyl steht,

wobei Phenyl und Pyridyl mit 1 oder 2 Substituenten unabhängig voneinander ausgewählt aus der Gruppe Fluor, Chlor, Cyano, Methyl, Trifluormethyl, Methoxy, Hydroxycarbonyl, Methoxycarbonyl, Ethoxycarbonyl, Aminocarbonyl, Methylaminocarbonyl, Ethylaminocarbonyl, N,N-Dimethylaminocarbonyl und N,N-Diethylaminocarbonyl substituiert sind,

und

wobei Thiazolyl und Oxazolyl mit einem Substituenten −L−R² substituiert sind,

worin

L für eine Bindung oder NH steht,

R² für Phenyl steht,

worin Phenyl seinerseits mit 1 oder 2 Substituenten unabhängig voneinander ausgewählt aus der Gruppe Fluor, Chlor, Methyl, Methoxy, Ethoxy, Hydroxycarbonyl, Methoxycarbonyl und Ethoxycarbonyl sein kann,

und

wobei Thiazolyl und Oxazolyl mit einem Substituenten ausgewählt aus der Gruppe Fluor, Methyl, Ethyl, Methoxy, Hydroxycarbonyl und Methoxycarbonyl substituiert sein können,

R² für Wasserstoff steht,

R³ für Phenyl oder Thiazolyl steht,
wobei Phenyl mit 1 oder 2 Substituenten unabhängig voneinander ausgewählt aus der Gruppe (C₁-C₆)-Alkyl, Hydroxy und (C₁-C₄)-Alkoxy substituiert sein kann,

worin (C₁-C₆)-Alkyl und (C₂-C₄)-Alkoxy mit 1 oder 2 Substituenten unabhängig voneinander ausgewählt aus der Gruppe Hydroxy und Methoxy substituiert sein können,

und

wobei Thiazolyl mit einem Substituenten (C₁-C₆)-Alkyl substituiert sein kann,

worin (C₁-C₆)-Alkyl mit 1 oder 2 Substituenten unabhängig voneinander ausgewählt aus der Gruppe Hydroxy und Methoxy substituiert sein kann,

\[R^4 \] für (C₁-C₆)-Alkyl steht,

wobei Alkyl mit 1 oder 2 Substituenten Hydroxy substituiert sein kann,

sowie ihre Salze, Solvate und Solvate der Salze.

Bevorzugt sind im Rahmen der vorliegenden Erfindung auch Verbindungen der Formel (I), in welcher

\[R^1 \] für Phenyl oder Pyridyl steht,

wobei Phenyl und Pyridyl mit 1 oder 2 Substituenten unabhängig voneinander ausgewählt aus der Gruppe Fluor, Chlor, Cyano, Methyl, Trifluormethyl, Methoxy, Hydroxycarbonyl, Methoxycarbonyl, Ethoxycarbonyl, Aminocarbonyl, Methylaminocarbonyl, Ethylaminocarbonyl, Cyclopropylaminocarbonyl, \(N,N \)-Dimethylaminocarbonyl und \(N,N \)-Diethylaminocarbonyl substituiert sind.

Bevorzugt sind im Rahmen der vorliegenden Erfindung auch Verbindungen der Formel (I), in welcher

\[R^1 \] für Thiazolyl oder Oxazolyl steht,

wobei Thiazolyl und Oxazolyl mit einem Substituenten \(-L-R^5\) substituiert sind,

worin

\[L \] für eine Bindung oder NH steht,

\[R^5 \] für Phenyl steht,
worin Phenyl seinerseits mit 1 oder 2 Substituenten unabhängig voneinander ausgewählt aus der Gruppe Fluor, Chlor, Methyl, Methoxy, Ethoxy, Hydroxycarbonyl, Methoxycarbonyl und Ethoxycarbonyl sein kann,

und

wobei Thiazolyl und Oxazolyl mit einem Substituenten ausgewählt aus der Gruppe Fluor, Methyl, Methoxy, Hydroxycarbonyl und Methoxycarbonyl substituiert sein können.

Bevorzugt sind im Rahmen der vorliegenden Erfindung auch Verbindungen der Formel (I), in welcher

\[R^3 \]

für Phenyl steht,

wobei Phenyl mit 1 oder 2 Substituenten unabhängig voneinander ausgewählt aus der Gruppe Hydroxy, \((C_1-C_6)\)-Alkyl und \((C_1-C_4)\)-Alkoxy substituiert sein kann,

worin \((C_1-C_6)\)-Alkyl und \((C_2-C_4)\)-Alkoxy mit 1 oder 2 Substituenten unabhängig voneinander ausgewählt aus der Gruppe Hydroxy und Methoxy substituiert sein können.

Bevorzugt sind im Rahmen der vorliegenden Erfindung auch Verbindungen der Formel (I), in welcher

\[R^3 \]

für eine Gruppe der Formel

\[\begin{array}{c}
R^7 \\
\\
\end{array} \]

steht, wobei

\[# \]

für die Anknüpfstelle an die 4-Position des Pyridins steht,

\[R^7 \]

für Hydroxy, \((C_1-C_6)\)-Alkyl oder \((C_1-C_4)\)-Alkoxy steht,
worin \((C_1-C_6)\)-Alkyl und \((C_2-C_4)\)-Alkoxy mit 1 oder 2 Substituenten unabhängig voneinander ausgewählt aus der Gruppe Hydroxy und Methoxy substituiert sein können.

Bevorzugs sind im Rahmen der vorliegenden Erfindung auch Verbindungen der Formel (I), in welcher

\[R^4 \] für \((C_1-C_6)\)-Alkyl, \((C_2-C_6)\)-Cycloalkyl oder 5- oder 6-gliedriges Heterocyclyl steht,

wobei \((C_1-C_6)\)-Alkyl mit 1 oder 2 Substituenten unabhängig voneinander ausgewählt aus der Gruppe Fluor, Trifluormethyl, \((C_3-C_7)\)-Cycloalkyl, Hydroxy, Methoxy, Ethoxy, Hydroxycarbonyl, Methoxycarbonyl, Ethoxycarbonyl, Amino, Methylamino, Ethylamino, \(N,N\)-Dimethylamino, \(N,N\)-Diethylamino und 5- oder 6-gliedriges Heterocyclyl substituiert sein kann,

worin Ethoxy seinerseits mit einem Substituenten ausgewählt aus der Gruppe Hydroxy und Methoxy substituiert sein kann,

und

wobei \((C_3-C_7)\)-Cycloalkyl und 5- oder 6-gliedriges Heterocyclyl mit 1 oder 2 Substituenten unabhängig voneinander ausgewählt aus der Gruppe Methyl, Hydroxy, Methoxy, Hydroxycarbonyl, Methoxycarbonyl, Ethoxycarbonyl, Amino, Methylamino und \(N,N\)-Dimethylamino substituiert sein können.

Bevorzugt sind im Rahmen der vorliegenden Erfindung auch Verbindungen der Formel (I), in welcher \(X\) für O oder S steht.

Bevorzugt sind im Rahmen der vorliegenden Erfindung auch Verbindungen der Formel (I), in welcher \(X\) für S steht.

Bevorzugt sind im Rahmen der vorliegenden Erfindung auch Verbindungen der Formel (I), in welcher \(X\) für O steht.

Bevorzugt sind im Rahmen der vorliegenden Erfindung auch Verbindungen der Formel (I), in welcher \(R^2\) für Wasserstoff steht.

Bevorzugt sind im Rahmen der vorliegenden Erfindung auch Verbindungen der Formel (I), in welcher \(R^2\) für Methyl steht.
Bevorzugs sind im Rahmen der vorliegenden Erfindung auch Verbindungen der Formel (I), in welcher

\[R^4 \quad \text{für (C}_1\text{-C}_4\text{-Alkyl steht,} \]

wobei Alkyl mit 1 oder 2 Substituenten Hydroxy substituiert sein kann.

5 Weiterer Gegenstand der vorliegenden Erfindung ist ein Verfahren zur Herstellung der erfindungsgemäßen Verbindungen der Formel (I), dadurch gekennzeichnet, dass man

[A] eine Verbindung der Formel (II-A)

\[\text{in welcher } X, R^1, R^2 \text{ und } R^3 \text{ jeweils die oben angegebenen Bedeutungen haben,} \]

zunächst mit Kupfer(II)chlorid und Isoamylnitrit in einem geeigneten Lösungsmittel in eine Verbindung der Formel (III-A)

\[\text{in welcher } X, R^1, R^2 \text{ und } R^3 \text{ jeweils die oben angegebenen Bedeutungen haben,} \]

überführt, und diese anschliessend in einem inerten Lösungsmittel in Gegenwart einer geeigneten Base mit einer Verbindung der Formel (IV)

\[R^4OH \quad \text{(IV),} \]

in welcher \(R^4 \) die oben angegebene Bedeutung hat,

umsetzt,

oder

20 [B] im Fall, dass X für S steht, eine Verbindung der Formel (II-B)
in welcher R^3 und R^4 jeweils die oben angegebenen Bedeutungen haben,

in einem inerten Lösungsmittel mit einem Alkalisulfid zu einer Verbindung der Formel (III-B)

in welcher R^3 und R^4 jeweils die oben angegebenen Bedeutungen haben,

umgesetzt, und diese anschliessend in einem inerten Lösungsmittel in Gegenwart einer Base mit einer Verbindung der Formel (V)

in welcher R^1 und R^2 die oben angegebenen Bedeutungen haben und

Q für eine geeignete Abgangsgruppe, vorzugsweise für Halogen, insbesondere Chlor, Brom oder Iod, oder für Mesylat, Tosylat oder Triflat steht,

umgesetzt,

anschließend gegebenenfalls vorhandene Schutzgruppen abspaltet und die resultierenden Verbindungen der Formel (I) gegebenenfalls mit den entsprechenden (i) Lösungsmitteln und/oder (ii) Basen oder Säuren in ihre Solvate, Salze und/oder Solvate der Salze überführt.

In den Verbindungen der Formeln (II-A) und (II-B) bzw. in den Resten R^3 und/oder R^4 gegebenenfalls vorhandene funktionelle Gruppen - wie insbesondere Amino-, Hydroxy- und Carboxylgruppen - können bei diesem Verfahren, falls zweckmäßig oder erforderlich, auch in temporär geschützter Form vorliegen. Die Einführung und Entfernung solcher Schutzgruppen erfolgt hierbei nach üblichen, dem Fachmann bekannten Methoden [siehe z.B. T.W. Greene und P.G.M. Wuts,
Als Amino-Schutzgruppe wird bevorzugt tert.-Butoxycarbonyl (Boc) oder Benzylloxycarbonyl (Z) verwendet. Zum Schutz von Carboxylgruppen eignen sich insbesondere die entsprechenden Methyl-, Ethyl- oder tert.-Butylester. Für eine Hydroxy-Funktion wird als Schutzgruppe vorzugsweise Benzyl oder eine Silylgruppe wie Trimethylsilyl, tert.-Butyldimethylsilyl oder Dimethylphenylsilyl eingesetzt. Bei Vorliegen einer 1,2- oder 1,3-Diol-Gruppierung wird bevorzugt ein von symmetrischen Ketonen wie Aceton oder Cyclohexanon abgeleitetes Ketal (1,3-Dioxolan bzw. 1,3-Dioxan) als gemeinsame Schutzgruppe verwendet.

Das zuvor beschriebene Verfahren kann durch die folgenden Reaktionsschemata 1 und 2 beispielhaft erläutert werden:

Schema 1

Als Basen für diese Umsetzung eignen sich die üblichen anorganischen oder organischen Basen. Hierzu gehören bevorzugt Alkalihydride wie Natriumhydrid, Alkalihydroxide wie beispielsweise

Die Base kann hierbei in einer Menge von 1 bis 10 Mol, bevorzugt von 1 bis 5 Mol, insbesondere von 1 bis 3 Mol, bezogen auf 1 Mol der Verbindung der Formel (IV), eingesetzt werden.

Die Reaktion (III-A) + (IV) erfolgt im Allgemeinen in einem Temperaturbereich von -78°C bis +140°C, bevorzugt im Bereich von -20°C bis +100°C, insbesondere bei 0°C bis +60°C, gegebenenfalls in einer Mikrowelle. Die Umsetzung kann bei normalem, erhöhtem oder erniedrigtem Druck durchgeführt werden (z.B. im Bereich von 0.5 bis 5 bar). Im Allgemeinen arbeitet man bei Normaldruck.

Der Verfahrensschritt (II-A) → (III-A) erfolgt im Allgemeinen mit einem Molverhältnis von 2 bis 12 Mol Kupfer(II)chlorid und 2 bis 12 Mol IsoamylNitrit bezogen auf 1 Mol der Verbindung der Formel (II-A).

Die Reaktion erfolgt im Allgemeinen in einem Temperaturbereich von -78°C bis +180°C, bevorzugt im Bereich von +20°C bis +100°C, insbesondere bei +20°C bis +60°C, gegebenenfalls in einer Mikrowelle. Die Umsetzung kann bei normalem, erhöhtem oder erniedrigtem Druck durchgeführt werden (z.B. im Bereich von 0.5 bis 5 bar). Im Allgemeinen arbeitet man bei Normaldruck.

Als Lösungsmittel für die Reaktion (III-B) + (V) eignen sich alle organischen Lösungsmittel, die unter den Reaktionsbedingungen inert sind. Hierzu gehören Ketone wie Aceton und Methylenehel-
keton, acyclische und cyclische Ether wie Diethylether, Methyl-tert.-butylether, 1,2-Dimethoxy-ethan, Tetrahydrofuran und Dioxan, Ester wie Essigsäureethylester oder Essigsäurebutylester, Kohlenwasserstoffe wie Benzol, Toluol, Xylo1, Hexan und Cyclohexan, chlorierte Kohlenwasser-
stoffe wie Dichlormethan, Trichlormethan und Chlorbenzol, oder andere Lösungsmittel wie Di-
methylformamid (DMF), Dimethylsulfoxid (DMSO), N-Methylpyrrolidinon (NMP), Acetonitril
oder Pyridin. Ebenso ist es möglich, Gemische der zuvor genannten Lösungsmittel einzusetzen.
Bevorzogen wird Dimethylformamid verwendet.

Als Basen für diese Umsetzung eignen sich die üblichen anorganischen oder organischen Basen.
Hierzu gehören bevorzugt Alkalihydride wie Natriumhydryd, Alkalihydroxide wie beispielsweise
Lithium-, Natrium- oder Kaliumhydroxid, Alkalicarbonate wie Lithium-, Natrium-, Kalium- oder
Cäsiumcarbonat, Alkalihydrogencarbonate wie Natrium- oder Kaliumhydrogencarbonat, Alkali-
alkoholate wie Natrium- oder Kaliummethanolat, Natrium- oder Kaliumethanolat oder Kalium-
tert.-butylat, Amide wie Natriumamid, Lithium-, Natrium- oder Kalium-bis-(trimethylsilyl)amid
oder Lithiumdiisopropylamid, metallorganische Verbindungen wie Butyllithium oder
Phenyllithium, oder organische Amine wie Triethylamin, Diisopropylethylamin, Pyridin, 1,8-
Diazabicyclo[5.4.0]undec-7-en (DBU) oder 1,5-Diazabicyclo[4.3.0]non-5-en (DBN). Bevorzugt
wird Natriumhydrogencarbonat verwendet.

Die Base wird hierbei in der Regel in einer Menge von 1 bis 1.25 Mol, bevorzugt in äquimolarer
Menge, bezogen auf 1 Mol der Verbindung der Formel (V), eingesetzt.

Die Reaktion (II-B) + (V) erfolgt im Allgemeinen in einem Temperaturbereich von -20°C bis
+120°C, bevorzugt bei +20°C bis +100°C, gegebenenfalls in einer Mikrowelle. Die Umsetzung
cann bei normalem, erhöhtem oder erniedrigtem Druck durchgeführt werden (z.B. im Bereich von
0.5 bis 5 bar). Im Allgemeinen arbeitet man bei Normaldruck.

Bei der Umsetzung (II-B) \(\rightarrow\) (III-B) wird als Alkalisulfid vorzugsweise Natriumsulfid in einer
Menge von 1 bis 10 Mol, bevorzugt von 1 bis 8 Mol, insbesondere von 1 bis 5 Mol, bezogen auf 1
Mol der Verbindung der Formel (II-B), eingesetzt.

Als Lösungsmittel für diesen Verfahrensschritt eignen sich alle organischen Lösungsmittel, die
unter den Reaktionsbedingungen inert sind. Hierzu gehören Alkohole wie Methanol, Ethanol, n-
Propanol, Isopropanol, n-Butanol und tert.-Butanol, Ketone wie Aceton und Methylalketon,
acyclische und cyclische Ether wie Diethylether, 1,2-Dimethoxyethan, Tetrahydrofuran und
Dioxan, Ester wie Essigsäureethylester oder Essigsäurebutylester, Kohlenwasserstoffe wie Benzol,
Toluol, Xylo1, Hexan und Cyclohexan, chlorierte Kohlenwasserstoffe wie Dichlormethan, 1,2-Di-
chlorethan und Chlorbenzol, oder dipolare Lösungsmittel wie Acetonitril, Pyridin, Dimethylform-

Die Reaktion erfolgt im Allgemeinen in einem Temperaturbereich von 0°C bis +180°C, bevorzugt im Bereich von +20°C bis +120°C, insbesondere bei +40°C bis +100°C, gegebenenfalls in einer Mikrowelle. Die Umsetzung kann bei normalem, erhöhtem oder erniedrigtem Druck durchgeführt werden (z.B. im Bereich von 0.5 bis 5 bar). Im Allgemeinen arbeitet man bei Normaldruck.

Alternativ können Verbindungen der Formel (I), in welcher X für O steht, ausgehend von Verbindungen der Formel (II-B) durch Umsetzung mit Verbindungen der Formel (VI)

\[
\text{HO-R}^1\text{R}^2
\]

(VI),

in welcher R^1 und R^2 die oben angegebenen Bedeutungen haben,

erhalten werden.

Als inerte Lösungsmittel für die Reaktion (II-B) + (VI) → (I) eignen sich insbesondere acyclische und cyclische Ether wie Diethylether, Methyl-tert.-butylether, 1,2-Dimethoxyethan, Tetrahydrofuran und Dioxan, Kohlenwasserstoffe wie Benzol, Toluol, XyloI, Hexan und Cyclohexan, oder andere Lösungsmittel wie Dimethylformamid (DMF), Dimethylsulfoxid (DMSO), N-Methylpyrrolidinon (NMP) und Pyridin. Ebenso ist es möglich, Gemische dieser Lösungsmittel einzusetzen. Bevorzugt wird Dimethylformamid verwendet.

Die Base wird hierbei in der Regel in einer Menge von 1 bis 1.25 Mol, bevorzugt in äquimolarer Menge, bezogen auf 1 Mol der Verbindung der Formel (VI), eingesetzt.

Die Reaktionen (II-B) + (VI) → (I) erfolgt im Allgemeinen in einem Temperaturbereich von -20°C bis +120°C, bevorzugt bei +20°C bis +100°C, gegebenenfalls in der Mikrowelle. Die
Umsetzungen können bei normalem, erhöhtem oder erniedrigtem Druck durchgeführt werden (z.B. im Bereich von 0.5 bis 5 bar). Im Allgemeinen arbeitet man bei Normaldruck.

Die Verbindungen der Formel (IV) und (VI) sind kommerziell erhältlich, literaturbekannt oder nach literaturbekannten Methoden herstellbar.

Die Verbindungen der Formel (V) sind kommerziell erhältlich, literaturbekannt oder nach literaturbekannten Methoden herstellbar. So können beispielsweise durch Reaktion von Amid, Thioamiden bzw. Thioharnstoff-Derivaten mit einem 1,3-Dihalogenacetan 2-substituierte Oxazol- und Thiazol-Derivate der Formel (V-A), (V-B) bzw. (V-C) erhalten werden (siehe Schema 3):

Schema 3

![Schema 3](image)

Im Falle der Verbindungen (V-C) können diese entweder analog zur Literatur hergestellt und isoliert werden [vgl. z.B. I. Simiti et al., *Chem. Ber.* 95, 2672-2679 (1962)], oder sie können *in situ* erzeugt und direkt weiter umgesetzt werden. Bevorzugt ist die *in situ*-Erzeugung unter Verwendung von 1,3-Dichloracetan in Dimethylformamid oder Ethanol als Lösungsmittel. Die Darstellung erfolgt im Allgemeinen in einem Temperaturbereich von 0°C bis +140°C, bevorzugt im Bereich von +20°C bis +120°C, insbesondere bei +60°C bis +100°C.

Verbindungen der Formel (II-A), worin X für S steht, können in Analogie zu literaturbekannten Methoden beispielsweise dadurch hergestellt werden, dass man Aldehyde der Formel (VII)
in welcher

R^{3A} für Phenyl oder C-gebundenes 5- oder 6-gliedriges Heteroaryl steht

wobei Phenyl und C-gebundenes 5- oder 6-gliedriges Heteroaryl im oben angegebenen Bedeutungsumfang substituiert sein kann,

in Gegenwart einer Base mit zwei Äquivalenten Cyanothioacetamid zu Verbindungen der Formel (VIII)

![Diagramme](image)

(VIII),

in welcher R^{3A} die oben angegebene Bedeutung hat,

umgesetzt,

Die Verbindungen der Formel (VII) sind kommerziell erhältlich, literaturbekannt oder nach literaturbekannten Methoden herstellbar.

Für die Umsetzung \((VIII) \rightarrow (II-A)\) kommen die für den Verfahrensschritt \((III-B) + (V) \rightarrow (I)\) genannten Bedingungen zum Einsatz.

Verbindungen der Formel \((II-A)\), worin \(X\) für \(O\) steht, können ausgehend von Verbindungen der Formel \((IX)\)

in welcher \(R^3\) die oben angegebene Bedeutung hat,

durch Umsetzung in einem inerten Lösungsmittel in Gegenwart einer geeigneten Base mit einer Verbindung der Formel \((VI)\) erhalten werden.

Für diesen Verfahrensschritt kommen die für die Reaktion \((II-B) + (VI) \rightarrow (I)\) genannten Bedingungen zum Einsatz.

Diese Herstellungsmethode wird durch das folgende Reaktionsschema erläutert:

Verbindungen der Formel (II-B) können hergestellt werden, indem man Verbindungen der Formel (VII) in einem geeigneten Lösungsmittel in Gegenwart einer geeigneten Base mit 2 Äquivalenten Malonsäuredinitril und Verbindungen der Formel (X)

\[R^4 \rightarrow O^- M^+ \quad (X) \]

in welcher \(R^4 \) die oben angegebene Bedeutung hat und

\(M^+ \) für ein Alkaliion, vorzugsweise Natrium- oder Kaliumion, steht,

in Verbindungen der Formel (XI)

\[\begin{array}{c}
\text{NC} \\
\text{R}^3 \\
\text{CN} \\
\text{R}^4 \\
\text{O} \\
\text{NH}_2
\end{array} \quad (XI), \]

in welcher \(R^{3A} \) und \(R^4 \) jeweils die oben angegebenen Bedeutungen haben,

überführt und diese anschliessend mit Kupfer(II)chlorid und Isoamylnitrit in einem geeigneten Lösungsmittel umsetzt.

Das beschriebene Verfahren wird durch das folgende Reaktionsschema beispielhaft erläutert:
Weitere Verbindungen der Formel (II-A), in welcher X für S und steht, können hergestellt werden, indem man die Verbindung der Formel (XII)

\[
\begin{align*}
\text{(XII),}
\end{align*}
\]

in einem inerten Lösungsmittel in Gegenwart einer Base mit einer Verbindung der Formel (V) in eine Verbindung der Formel (XIII)

\[
\begin{align*}
\text{(XIII),}
\end{align*}
\]

in welcher \(R^1 \) und \(R^2 \) die oben angegebenen Bedeutungen haben,

überführt und diese dann in einem inerten Lösungsmittel oder ohne Lösungsmittel mit einer Verbindung der Formel (XIV)

\[
\begin{align*}
R^{3B} - \text{H} \quad \text{(XIV),}
\end{align*}
\]

in welcher

\(R^{3B} \) für N-gebundenes 5- oder 6-gliedriges Heteroaryl steht,

wobei N-gebundenes 5- oder 6-gliedriges Heteroaryl in dem für \(R^3 \) angegebenen Bedeutungsumfang substituiert sein kann,
umsetzt.

Die Umsetzung (XII) + (V) → (XIII) erfolgt unter den für den Verfahrensschritt (III-B) + (V) → (I) genannten Bedingungen.

Der Verfahrensschritt (XIII) + (XIV) erfolgt im Allgemeinen in einem Temperaturbereich von 0°C bis +180°C, bevorzugt im Bereich von +20°C bis +100°C, insbesondere bei +60°C bis +100°C, gegebenenfalls in der Mikrowelle. Die Umsetzung kann bei normalem, erhöhtem oder erniedrigtem Druck durchgeführt werden (z.B. im Bereich von 0.5 bis 5 bar). Im Allgemeinen arbeitet man bei Normaldruck.

Die Verbindungen der Formel (XIV) sind kommerziell erhältlich, literaturbekannt oder können in Analogie zu literaturbekannten Verfahren hergestellt werden.

Die Verbindung der Formel (XII) lässt sich auf einfache Weise durch Umsetzung von [Bis(methylthio)methylen]malononitril mit Cyanthioacetamid in Gegenwart einer Base wie Triethylamin erhalten.

Weitere Verbindungen der Formel (II-A), in welcher X für O steht, können hergestellt werden, indem man die Verbindung der Formel (XV)
in welcher

R\(^6\) für (C\(_1\)-C\(_4\))-Alkyl oder Phenyl steht,

in einem inerten Lösungsmittel in Gegenwart einer Base mit einer Verbindung der Formel (VI) in

eine Verbindung der Formel (XVI)

in welcher R\(^1\) und R\(^2\) die oben angegebenen Bedeutungen haben,

überführt und diese dann in einem inerten Lösungsmittel oder ohne Lösungsmittel mit einer

Verbindung der Formel (XIV) umsetzt, oder

alternativ eine Verbindung der Formel (XV) zuerst in einem inerten Lösungsmittel oder ohne

Lösungsmittel mit einer Verbindung der Formel (XIV) zu Verbindungen der Formel (XVII)

in welcher R\(^{38}\) und R\(^6\) jeweils die oben angegebenen Bedeutungen haben,

umsetzt, und diese anschliessend in einem inerten Lösungsmittel in Gegenwart einer geeigneten

Base mit einer Verbindung der Formel (VI) umsetzt.

Die Verbindungen der Formel (XV), in welcher R\(^6\) für Phenyl steht, lassen sich aus der

Verbindung der Formel (XII) in Analogie zu dem in Fujiwara, H. et al., Heterocycles 1993, 36 (5),

1105-1113 beschriebenen Verfahren herstellen.
Die Verbindungen der Formel (XV), in welcher R^6 für (C$_1$-C$_4$)-Alkyl steht, lassen sich aus der Verbindung der Formel (XII) in Analogie zu dem in Su et al., *J. Med Chem.* 1988, 31, 1209-1215 beschriebenen Verfahren herstellen.

Die Reaktion (XV) + (VI) wird unter den für den Verfahrensschritt (II-B) + (VI) \rightarrow (I) genannten Bedingungen durchgeführt.

Die Verfahrensschritte (XV) bzw. (XVI) + (XIV) erfolgen im Allgemeinen in einem Temperaturbereich von 0°C bis +180°C, bevorzugt im Bereich von +20°C bis +100°C, insbesondere bei +60°C bis +100°C, gegebenenfalls in der Mikrowelle. Die Umsetzung kann bei normalem, erhöhtem oder erniedrigtem Druck durchgeführt werden (z.B. im Bereich von 0.5 bis 5 bar). Im Allgemeinen arbeitet man bei Normaldruck.

Die zuvor beschriebenen Verfahren werden in den folgenden Schemata erläutert:
5 Weitere erfindungsgemäße Verbindungen können gegebenenfalls auch hergestellt werden durch Umwandlungen von funktionellen Gruppen einzelner Substituenten, insbesondere den unter R^1, R^2, R^3, R^4, R^5 und R^7 aufgeführten, ausgehend von den nach obigen Verfahren erhaltenen

Gegenüber den aus dem Stand der Technik bekannten Substanzen weisen die erfindungsgemäßen Verbindungen ein verbessertes Eigenschaftsprofil auf, wie beispielsweise eine erhöhte Löslichkeit in wässrig-organischen, für die Formulierung relevanten Lösungsmittelsystemen, eine längere pharmakokinetische Halbwertszeit nach oraler Gabe und/oder eine erhöhte metabolische Stabilität.

Als "selective Liganden an Adenosin A1- und/oder A2b-Rezeptoren" werden im Rahmen der vorliegenden Erfindung solche Adenosin-Receptorliganden bezeichnet, bei denen einerseits eine deutliche Wirkung an A1- und/oder A2b-Adenosinrezeptor-Subtypen und andererseits keine oder eine deutliche schwächere Wirkung (Faktor 10 oder höher) an A2a- und A3-Adenosinrezeptor-Subtypen zu beobachten ist, wobei bezüglich der Testmethoden für die Wirk-Selektivität Bezug genommen wird auf die im Abschnitt B-1. beschriebenen Tests.

Überraschenderweise zeigen die erfindungsgemäßen Verbindungen ein nicht vorhersehbares, wertvolles pharmakologisches Wirkspektrum und sind daher insbesondere zur Prävention und/oder Behandlung von Erkrankungen geeignet.

Als "selective Liganden an Adenosin A1- und/oder A2b-Rezeptoren" werden im Rahmen der vorliegenden Erfindung solche Adenosin-Receptorliganden bezeichnet, bei denen einerseits eine deutliche Wirkung am A1- und/oder A2b-Adenosinrezeptor-Subtypen und andererseits keine oder eine deutliche schwächere Wirkung (Faktor 10 oder höher) an A2a- und A3-Adenosinrezeptor-Subtypen zu beobachten ist, wobei bezüglich der Testmethoden für die Wirk-Selektivität Bezug genommen wird auf die im Abschnitt B-1. und B-5. beschriebenen Tests.

Die erfindungsgemäßen Verbindungen können in Abhängigkeit von ihrer jeweiligen Struktur als volle, als partielle Adenosinrezeptor-Agonisten oder als Adenosinrezeptor-Antagonisten fungieren.
Partielle Adenosinrezeptor-Agonisten sind hierbei definiert als Rezeptorliganden, die eine funktionelle Antwort an Adenosinrezeptoren auslösen, welche geringer ist als bei vollen Agonisten (wie beispielsweise Adenosin selbst). Partielle Agonisten weisen infolgedessen eine geringere Wirksamkeit bezüglich der Rezeptoraktivierung auf als volle Agonisten.

Im Sinne der vorliegenden Erfindung umfasst der Begriff Herzensuffizienz sowohl akute als auch chronische Erscheinungsformen der Herzensuffizienz, wie auch spezifischere oder verwandte Krankheitsformen wie akute dekompensierte Herzensuffizienz, Rechtsherzensuffizienz, Links-herzensuffizienz, Globalinsuffizienz, ischämische Kardiomyopathie, dilatative Kardiomyopathie, angeborene Herzfehler, Herzklappenfehler, Herzensuffizienz bei Herzklappenfehlern, Mitralklappenstenose, Mitralklappeninsuffizienz, Aortenklappenstenose, Aortenklappeninsuffizienz, Trikuspidalstenose, Trikuspidalinsuffizienz, Pulmonalklappenstenose, Pulmonalklappeninsuffizienz, kombinierte Herzklappenfehler, Herzmuskelentzündung (Myokarditis), chronische Myokarditis, akute Myokarditis, virale Myokarditis, diabetische Herzensuffizienz, alkoholtoxische Kardiomyopathie, kardiale Speichererkrankungen, diastolische sowie systolische Herzensuffizienz.
Weiterhin eignen sich die erfindungsgemäßen Verbindungen auch zur Reduktion des von einem Infarkt betroffenen Myokardbereichs sowie zur Prävention von Sekundärinfarkten.

Des weiteren sind die erfindungsgemäßen Verbindungen zur Prävention und/oder Behandlung von thromboembolischen Erkrankungen, Reperfusionsschäden nach Ischämie, mikro- und makrovaskulären Schädigungen (Vaskulitis), arteriellen sowie venösen Thrombosen, Ödemen, Ischämien wie Myokardinfarkt, Hirnschlag und transitorischen ischämischen Attacken, zur Kardioprotektion bei Koronararterien Bypass Operationen (CABG), primären PTCAs, PTCAs nach Thrombolyse, Rescue-PTCA, Herztransplantationen und Operationen am offenen Herzen, sowie zur Organprotektion bei Transplantationen, Bypass Operationen, Herzkatheteruntersuchungen und anderen operativen Eingriffen geeignet.

Weitere Indikationsgebiete, für die die erfindungsgemäßen Verbindungen eingesetzt werden können, sind beispielsweise die Prävention und/oder Behandlung von Erkrankungen des Urogenitalbereiches, wie z.B. Reizblase, erektile Dysfunktion und weibliche sexuelle Dysfunktion, daneben aber auch die Prävention und/oder Behandlung von inflammatorischen Erkrankungen, wie z.B. entzündliche Dermatosen (Psoriasis, Akne, Ekzeme, Neurodermitis, Dermatitis, Keratitis, Narbenbildung, Warzenbildung, Frostbeulen), von Erkrankungen des Zentralen Nervensystems und neurodegenerativen Störungen (Schlaganfall, Alzheimer'sche Krankheit, Parkinson'sche Krankheit,

Weitere Indikationsgebiete sind beispielsweise die Prävention und/oder Behandlung von Entzündungs- und Immunerkrankungen (Morbus Crohn, Colitis ulcerosa, Lupus erythematosides, rheumatoide Arthritis) und von Erkrankungen der Atemwege, wie beispielsweise chronisch-obstruktive Atemwegserkrankungen (chronische Bronchitis, COPD), Asthma, Lungenemphysem, Bronchicktasien, zystische Fibrose (Mukoviszidose) und pulmonale Hypertonie, insbesondere pulmonale arterielle Hypertonie.

Darüber hinaus können die erfindungsgemäßen Verbindungen auch zur Behandlung und/oder Prävention von Schlüdbrüsenerkrankungen (Hyperthyreose), Erkrankungen der Bauchspeekeldrüse (Pankreatitis), Leberfibrose, viralen Erkrankungen (HPV, HCMV, HIV), Kachexie, Osteoporose, Gicht, Inkontinenz sowie zur Wundheilung und Angiogenese eingesetzt werden.

Weiterer Gegenstand der vorliegenden Erfindung ist die Verwendung der erfindungsgemäßen Verbindungen zur Behandlung und/oder Prävention von Erkrankungen, insbesondere der zuvor genannten Erkrankungen.

Weiterer Gegenstand der vorliegenden Erfindung ist die Verwendung der erfindungsgemäßen Verbindungen zur Herstellung eines Arzneimittels zur Behandlung und/oder Prävention von Erkrankungen, insbesondere der zuvor genannten Erkrankungen.

Weiterer Gegenstand der vorliegenden Erfindung ist ein Verfahren zur Behandlung und/oder Prävention von Erkrankungen, insbesondere der zuvor genannten Erkrankungen, unter Verwendung einer wirksamen Menge von mindestens einer der erfindungsgemäßen Verbindungen.
Weiterer Gegenstand der vorliegenden Erfindung sind die erfindungsgemäßen Verbindungen zur Verwendung in einem Verfahren zur Behandlung und/oder Prophylaxe von koronarer Herzkrankung, akutem Koronarsyndrom, Angina pectoris, Herzensuffizienz, Myokardinfarkt und Vorhofflimmern.

Weiterer Gegenstand der vorliegenden Erfindung sind die erfindungsgemäßen Verbindungen zur Verfahren zur Behandlung und/oder Prophylaxe von Diabetes, Metabolischem Syndrom und Dyslipidämien.

Die erfindungsgemäßen Verbindungen können allein oder bei Bedarf in Kombination mit anderen Wirkstoffen eingesetzt werden. Weiterer Gegenstand der vorliegenden Erfindung sind Arzneimittel, enthaltend mindestens eine der erfindungsgemäßen Verbindungen und einen oder mehrere weitere Wirkstoffe, insbesondere zur Behandlung und/oder Prävention der zuvor genannten Erkrankungen.

Gegenstand der vorliegenden Erfindung sind insbesondere Kombinationen mindestens einer der erfindungsgemäßen Verbindungen mit mindestens einem den Fettstoffwechsel verändernden Wirkstoff, einem Antidiabetikum, einem blutdrucksenkenden Wirkstoff und/oder einem antithrombotisch wirksenden Mittel.

Die erfindungsgemäßen Verbindungen können vorzugsweise mit einem oder mehreren

• den Blutdruck senkenden Wirkstoffen, beispielhaft und vorzugsweise aus der Gruppe der Calcium-Antagonisten, Angiotensin All-Antagonisten, ACE-Hemmer, Renin-Inhibitoren, beta-Rezeptoren-Blocker, alpha-Rezeptoren-Blocker, Aldosteron-Antagonisten, Mineralocorticoid-Rezeptor-Antagonisten, ECE-Inhibitoren, ACE/NEP Inhibitoren sowie der Vasopeptidase-Inhibitoren; und/oder

• antithrombotisch wirkenden Mitteln, beispielhaft und vorzugsweise aus der Gruppe der Thrombozytenaggregationshemmer oder der Antikoagulantien

• Diuretika;

• Vasopressin-Rezeptor-Antagonisten;

• organischen Nitraten und NO-Donatoren;

• positiv-inotrop wirksamen Verbindungen;

• Verbindungen, die den Abbau von cyclischem Guanosinmonophosphat (cGMP) und/oder cyclischem Adenosinmonophosphat (cAMP) inhibieren, wie beispielsweise Inhibitoren der Phosphodiesterasen (PDE) 1, 2, 3, 4 und/oder 5, insbesondere PDE 5-Inhibitoren wie Sildenafil, Vardenafil und Tadalafl sowie PDE 3-Inhibitoren wie Milrinone;

• natriuretischen Peptiden, wie z.B. "atrial natriuretic peptide" (ANP, Anaritide), "B-type natriuretic peptide" oder "brain natriuretic peptide" (BNP, Nesiritide), "C-type natriuretic peptide" (CNP) sowie Urodilatin;

• Agonisten des Prostacyclin-Rezeptors (IP-Rezeptoren), wie beispielsweise Iloprost, Beraprost, Cicaprost;

• Hemmer des I_{f} (funny channel) Kanals, wie beispielsweise Ivabradine;
- Calcium-Sensitizern, wie beispielsweise Levosimendan;

- Kalium-Supplements;

- NO- und Häm-unabhängige Aktivatoren der Guanylatcyclase, wie insbesondere Cinaciguat sowie die in WO 01/19355, WO 01/19776, WO 01/19778, WO 01/19780, WO 02/070462 und WO 02/070510 beschriebenen Verbindungen;

- NO-unabhängige, jedoch Häm-abhängige Stimulatoren der Guanylatcyclase, wie insbesondere Riociguat sowie die in WO 00/06568, WO 00/06569, WO 02/42301 und WO 03/095451 beschriebenen Verbindungen;

- Inhibitoren der humanen neutrophilen Elastase (HNE), wie beispielsweise Sivelestat und DX-890 (Reltran);

- die Signaltransduktionskaskade inhibierenden Verbindungen, wie beispielsweise Tyrosinkinase-Inhibitoren, insbesondere Sorafenib, Imatinib, Gefitinib und Erlotinib; und/oder

- den Energiestoffwechsel des Herzens beeinflussenden Verbindungen, wie beispielweise Eto
doxir, Dichloracetat, Ranolazine und Trimetazidine

kombiniert werden.

Bei einer bevorzugten Ausführungsform der Erfindung werden die erfindungsgemäßen Verbindungen in Kombination mit einem HMG-CoA-Reduktase-Inhibitor aus der Klasse der Statine, wie beispielhaft und vorzugsweise Lovastatin, Simvastatin, Pravastatin, Fluvastatin, Atorvastatin, Rosuvastatin oder Pitavastatin, verabreicht.

Bei einer bevorzugten Ausführungsform der Erfindung werden die erfindungsgemäßen Verbindungen in Kombination mit einem Squalensynthese-Inhibitor, wie beispielhaft und vorzugsweise BMS-188494 oder TAK-475, verabreicht.
Bei einer bevorzugten Ausführungsform der Erfindung werden die erfindungsgemäßen Verbindungen in Kombination mit einem ACAT-Inhibitor, wie beispielhaft und vorzugsweise Avasimibe, Melinamide, Pactimibe, Eflucimibe oder SMP-797, verabreicht.

Bei einer bevorzugten Ausführungsform der Erfindung werden die erfindungsgemäßen Verbindungen in Kombination mit einem Cholesterin-Absorptionshemmer, wie beispielhaft und vorzugsweise Ezetimibe, Tiqueside oder Pamaquiseide, verabreicht.

Bei einer bevorzugten Ausführungsform der Erfindung werden die erfindungsgemäßen Verbindungen in Kombination mit einem MTP-Inhibitor, wie beispielhaft und vorzugsweise Implitatapide, BMS-201038, R-103757 oder JTT-130, verabreicht.

Bei einer bevorzugten Ausführungsform der Erfindung werden die erfindungsgemäßen Verbindungen in Kombination mit einem Lipase-Inhibitor, wie beispielhaft und vorzugsweise Orlistat, verabreicht.

Bei einer bevorzugten Ausführungsform der Erfindung werden die erfindungsgemäßen Verbindungen in Kombination mit einem Thyroidhormon und/oder Thyroidmimetikum, wie beispielhaft und vorzugsweise D-Thyroxin oder 3,5,3'-Triiodothyronin (T3), verabreicht.

Bei einer bevorzugten Ausführungsform der Erfindung werden die erfindungsgemäßen Verbindungen in Kombination mit einem CETP-Inhibitor, wie beispielhaft und vorzugsweise Dalcatrapib, BAY 60-5521, Anacetrapib oder CETP-vaccine (CETi-1), verabreicht.

Bei einer bevorzugten Ausführungsform der Erfindung werden die erfindungsgemäßen Verbindungen in Kombination mit einem PPAR-γ-Agonisten beispielsweise aus der Klasse der Thiazolidindione, wie beispielhaft und vorzugsweise Pioglitazone oder Rosiglitazone, verabreicht.

Bei einer bevorzugten Ausführungsform der Erfindung werden die erfindungsgemäßen Verbindungen in Kombination mit einem PPAR-δ-Agonisten, wie beispielhaft und vorzugsweise GW-501516 oder BAY 68-5042, verabreicht.

Bei einer bevorzugten Ausführungsform der Erfindung werden die erfindungsgemäßen Verbindungen in Kombination mit einem polymeren Gallensäureadsorber, wie beispielhaft und vorzugsweise Cholestyramin, Colestipol, Colesolvam, CholestaGel oder Colestimid, verabreicht.

Bei einer bevorzugten Ausführungsform der Erfindung werden die erfindungsgemäßen Verbindungen in Kombination mit einem Cannabinoid-Rezeptor 1-Antagonisten, wie beispielhaft und vorzugsweise Rimonabant oder SR-147778, verabreicht.

Unter Antidiabetikaa werden vorzugsweise Insulin und Insulinderivate sowie oral wirksame hypoglykämische Wirkstoffe verstanden. Insulin und Insulinderivate umfasst hierbei sowohl Insuline tierischen, menschlichen oder biotechnologischen Ursprungs als auch Gemische hieraus. Die oral wirksamen hypoglykämischen Wirkstoffe umfassen vorzugsweise Sulphonylharnstoffe, Biguanide, Meglitinid-Derivate, Glukosidase-Inhibitoren und PPAR-gamma-Agonisten.

Bei einer bevorzugten Ausführungsform der Erfindung werden die erfindungsgemäßen Verbindungen in Kombination mit Insulin verabreicht.

Bei einer bevorzugten Ausführungsform der Erfindung werden die erfindungsgemäßen Verbindungen in Kombination mit einem Sulphonylharnstoff, wie beispielhaft und vorzugsweise Tolbutamid, Glibenclamid, Glimepirid, Glipizid oder Gliclazid, verabreicht.

Bei einer bevorzugten Ausführungsform der Erfindung werden die erfindungsgemäßen Verbindungen in Kombination mit einem Biguanid, wie beispielhaft und vorzugsweise Metformin, verabreicht.

Bei einer bevorzugten Ausführungsform der Erfindung werden die erfindungsgemäßen Verbindungen in Kombination mit einem Meglitinid-Derivat, wie beispielhaft und vorzugsweise Repaglinid oder Nateglinid, verabreicht.

Bei einer bevorzugten Ausführungsform der Erfindung werden die erfindungsgemäßen Verbindungen in Kombination mit einem Glukosidase-Inhibitor, wie beispielhaft und vorzugsweise Miglitol oder Acarbose, verabreicht.
Bei einer bevorzugten Ausführungsform der Erfindung werden die erfindungsgemäßen Verbindungen in Kombination mit einem DPP-IV-Inhibitor, wie beispielhaft und vorzugsweise Sitagliptin und Vildagliptin, verabreicht.

Bei einer bevorzugten Ausführungsform der Erfindung werden die erfindungsgemäßen Verbindungen in Kombination mit einem Calcium-Antagonisten, wie beispielhaft und vorzugsweise Nifedipin, Amlodipin, Verapamil oder Diltiazem, verabreicht.

Bei einer bevorzugten Ausführungsform der Erfindung werden die erfindungsgemäßen Verbindungen in Kombination mit einem Angiotensin AI-Antagonisten, wie beispielhaft und vorzugsweise Losartan, Valsartan, Candesartan, Embusartan, Olmesartan oder Telmisartan, verabreicht.

Bei einer bevorzugten Ausführungsform der Erfindung werden die erfindungsgemäßen Verbindungen in Kombination mit einem ACE-Hemmer, wie beispielhaft und vorzugsweise Enalapril, Captopril, Lisinopril, Ramipril, Delapril, Fosinopril, Quinopril, Perindopril oder Trandopril, verabreicht.

Bei einer bevorzugten Ausführungsform der Erfindung werden die erfindungsgemäßen Verbindungen in Kombination mit einem alpha-Rezeptoren-Blocker, wie beispielhaft und vorzugsweise Prazosin, verabreicht.

Bei einer bevorzugten Ausführungsform der Erfindung werden die erfindungsgemäßen Verbindungen in Kombination mit einem Diuretikum, wie beispielhaft und vorzugsweise Furosemid, Bumetanid, Torsemid, Bendroflumethiazid, Chlorthiazid, Hydrochlothiazid, Hydroflumethiazid, Methylthiazid, Polythiazid, Trichlormethiazid, Chlorthalidon, Indapamid, Metolazon, Quinethazone, Acetazolamid, Dichlorphenamid, Methazolamid, Glycerin, Isosorbid, Mannitol, Amilorid oder Triamteren, verabreicht.
Bei einer bevorzugten Ausführungsform der Erfindung werden die erfindungsgemäßen Verbindungen in Kombination mit einem Aldosteron- oder Mineralokortikoid-Rezeptor-Antagonisten, wie beispielsweise Spironolacton oder Eplerenon, verabreicht.

Bei einer bevorzugten Ausführungsform der Erfindung werden die erfindungsgemäßen Verbindungen in Kombination mit einem Vasopressin-Rezeptor-Antagonisten, wie beispielsweise Conivaptan, Tolvaptan, Lixivaptan oder SR-121463, verabreicht.

Bei einer bevorzugten Ausführungsform der Erfindung werden die erfindungsgemäßen Verbindungen in Kombination mit einem organischen Nitrat oder NO-Donator, wie beispielsweise Natriumnitroprussid, Nitroglycerin, Isosorbidmononitrat, Isosorbidinitrat, Molsidomine oder SIN-1, oder in Kombination mit inhalativem NO verabreicht.

Bei einer bevorzugten Ausführungsform der Erfindung werden die erfindungsgemäßen Verbindungen in Kombination mit einer positiv-inotrop wirksamen Verbindung, wie beispielsweise Herzglycosiden (Digoxin), beta-adrenergen und dopaminergen Agonisten wie Isoproterenol, Adrenalin, Noradrenalin, Dopamin oder Dobutamin, verabreicht.

Bei einer bevorzugten Ausführungsform der Erfindung werden die erfindungsgemäßen Verbindungen in Kombination mit Antisympathotonika wie Reserpine, Clonidin oder alpha-Methyl-Dopa, mit Kaliumkanal-Agonisten wie Minoxidil, Diazoxid, Dihydralazin oder Hydralazin, oder mit Stickoxid freisetzenden Stoffen wie Glycerininitrat oder Nitroprussidnatrium verabreicht.

Unter antithrombotisch wirksenden Mitteln werden vorzugsweise Verbindungen aus der Gruppe der Thrombozytenaggregationshemmer oder der Antikoagulantien verstanden.

Bei einer bevorzugten Ausführungsform der Erfindung werden die erfindungsgemäßen Verbindungen in Kombination mit einem Thrombozytenaggregationshemmer, wie beispielsweise vorzugsweise Aspirin, Clopidogrel, Ticlopidin oder Dipyridamol, verabreicht.

Bei einer bevorzugten Ausführungsform der Erfindung werden die erfindungsgemäßen Verbindungen in Kombination mit einem Thrombin-Inhibitor, wie beispielsweise vorzugsweise Ximelagatran, Melagatran, Dabigatran, Bivalirudin oder Clexane, verabreicht.

Bei einer bevorzugten Ausführungsform der Erfindung werden die erfindungsgemäßen Verbindungen in Kombination mit einem GPIIb/IIIa-Antagonisten, wie beispielsweise vorzugsweise Tirofiban oder Abciximab, verabreicht.

Bei einer bevorzugten Ausführungsform der Erfindung werden die erfindungsgemäßen Verbindungen in Kombination mit einem Faktor Xa-Inhibitor, wie beispielsweise vorzugsweise Riva-

Bei einer bevorzugten Ausführungsform der Erfindung werden die erfindungsgemäßen Verbindungen in Kombination mit Heparin oder einem low molecular weight (LMW)-Heparin-Derivat verabreicht.

Bei einer bevorzugten Ausführungsform der Erfindung werden die erfindungsgemäßen Verbindungen in Kombination mit einem Vitamin K-Antagonisten, wie beispielsweise Coumarin, verabreicht.

Weiterer Gegenstand der vorliegenden Erfindung sind Arzneimittel, die mindestens eine erfindungsgemäße Verbindung, üblicherweise zusammen mit einem oder mehreren inerten, nichttoxischen, pharmazeutisch geeigneten Hilfsstoffen enthalten, sowie deren Verwendung zu den zuvor genannten Zwecken.

Für diese Applikationswege können die erfindungsgemäßen Verbindungen in geeigneten Applikationsformen verabreicht werden.

Für die orale Applikation eignen sich nach dem Stand der Technik funktionierende, die erfindungsgemäßen Verbindungen schnell und/oder modifiziert abgebende Applikationsformen, die die erfindungsgemäßen Verbindungen in kristalliner und/oder amorphen und/oder gelöster Form enthalten, wie z.B. Tabletten (nicht-überzogene oder überzogene Tabletten, beispielsweise mit magensaftresistenten oder sich verzögert auflösenden oder unlöslichen Überzügen, die die Freisetzung der erfindungsgemäßen Verbindung kontrollieren), in der Mundhöhle schnell zerafflende
Tabletten oder Filme/Oblaten, Filme/Lyophylisate, Kapseln (beispielsweise Hart- oder Weichgelatinekapseln), Dragees, Granulate, Pellets, Pulver, Emulsionen, Suspensionen, Aerosole oder Lösungen.

Für die sonstigen Applikationswege eignen sich z.B. Inhalationsarzneiformen (u.a. Pulverinhaltare, Nebulizer), Nasentropfen, -lösungen oder -sprays, lingual, sublingual oder buccal zu applizierende Tabletten, Filme/Oblaten oder Kapseln, Suppositorien, Ohren- oder Augenpräparationen, Vaginalkapseln, wäfigre Suspensionen (Lotionen, Schüttelmixturen), lipophile Suspensionen, Salben, Cremes, transdermale therapeutische Systeme (z.B. Pflaster), Milch, Pasten, Schäume, Streupuder, Implantate oder Stents.

Bevorzugt sind die orale oder parenterale Applikation, insbesondere die orale und die intravenöse Applikation.

Im Allgemeinen hat es sich als vorteilhaft erwiesen, bei parenteraler Applikation Mengen von etwa 0.001 bis 1 mg/kg, vorzugsweise etwa 0.01 bis 0.5 mg/kg Körpergewicht zur Erzielung wirksamer Ergebnisse zu verabreichen. Bei oraler Applikation beträgt die Dosierung etwa 0.01 bis 100 mg/kg, vorzugsweise etwa 0.01 bis 20 mg/kg und ganz besonders bevorzugt 0.1 bis 10 mg/kg Körpergewicht.

Trotzdem kann es gegebenenfalls erforderlich sein, von den genannten Mengen abzuweichen, und zwar in Abhängigkeit von Körpergewicht, Applikationsweg, individuellem Verhalten gegenüber dem Wirkstoff, Art der Zubereitung und Zeitpunkt bzw. Intervall, zu welchem die Applikation
erfolgt. So kann es in einigen Fällen ausreichend sein, mit weniger als der vorgenannten Mindestmenge auszukommen, während in anderen Fällen die genannte obere Grenze überschritten werden muss. Im Falle der Applikation größerer Mengen kann es empfehlenswert sein, diese in mehreren Einzelgaben über den Tag zu verteilen.

5 Die nachfolgenden Ausführungsbeispiele erläutern die Erfindung. Die Erfindung ist nicht auf die Beispiele beschränkt.

Die Prozentangaben in den folgenden Tests und Beispielen sind, sofern nicht anders angegeben, Gewichtsprozente; Teile sind Gewichtsteile. Lösungsmittelverhältnisse, Verdünnungsverhältnisse und Konzentrationsangaben von flüssig/flüssig-Lösungen beziehen sich jeweils auf das Volumen.
A. **Beispiele**

Verwendete Abkürzungen:

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>aq.</td>
<td>wässrig</td>
</tr>
<tr>
<td>Bsp.</td>
<td>Beispiel</td>
</tr>
<tr>
<td>c</td>
<td>Konzentration</td>
</tr>
<tr>
<td>d</td>
<td>Dublett (bei NMR)</td>
</tr>
<tr>
<td>dd</td>
<td>Dublett von Dublett (bei NMR)</td>
</tr>
<tr>
<td>DBU</td>
<td>1,8-Diazabicyclo[5.4.0]undec-7-en</td>
</tr>
<tr>
<td>DC</td>
<td>Dünnschichtchromatographie</td>
</tr>
<tr>
<td>DCI</td>
<td>direkte chemische Ionisation (bei MS)</td>
</tr>
<tr>
<td>DMF</td>
<td>(N,N)-Dimethylformamid</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethylsulfoxid</td>
</tr>
<tr>
<td>d. Th.</td>
<td>der Theorie (bei Ausbeute)</td>
</tr>
<tr>
<td>ee</td>
<td>Enantiomerenüberschuss</td>
</tr>
<tr>
<td>EI</td>
<td>Elektronenstoß-Ionisation (bei MS)</td>
</tr>
<tr>
<td>ESI</td>
<td>Elektrospray-Ionisation (bei MS)</td>
</tr>
<tr>
<td>Et</td>
<td>Ethyl</td>
</tr>
<tr>
<td>Fp.</td>
<td>Schmelzpunkt</td>
</tr>
<tr>
<td>h</td>
<td>Stunde(n)</td>
</tr>
<tr>
<td>HPLC</td>
<td>Hochdruck-, Hochleistungsflüssigchromatographie</td>
</tr>
<tr>
<td>kat.</td>
<td>katalytisch</td>
</tr>
<tr>
<td>konz.</td>
<td>konzentriert</td>
</tr>
<tr>
<td>LC-MS</td>
<td>Flüssigchromatographie-gekoppelte Massenspektrometrie</td>
</tr>
<tr>
<td>Lit.</td>
<td>Literatur(stelle)</td>
</tr>
<tr>
<td>Me</td>
<td>Methyl</td>
</tr>
<tr>
<td>MeCN</td>
<td>Acetonitril</td>
</tr>
<tr>
<td>min</td>
<td>Minute(n)</td>
</tr>
<tr>
<td>MS</td>
<td>Massenspektrometrie</td>
</tr>
<tr>
<td>NMM</td>
<td>(N)-Methylmorpholin</td>
</tr>
<tr>
<td>NMR</td>
<td>Kernresonanzspektrometrie</td>
</tr>
<tr>
<td>q</td>
<td>Quartett (bei NMR)</td>
</tr>
<tr>
<td>rac.</td>
<td>racemisch</td>
</tr>
<tr>
<td>RP-HPLC</td>
<td>reverse phase HPLC</td>
</tr>
<tr>
<td>RT</td>
<td>Raumtemperatur</td>
</tr>
<tr>
<td>(R_t)</td>
<td>Retentionszeit (bei HPLC)</td>
</tr>
</tbody>
</table>
s Singulett (bei NMR)
s br breites Singulett (bei NMR)
t Triplett (bei NMR)
t-Bu tert.-Butyl
TFA Trifluoreessigsäure
THF Tetrahydrofuran
verd. verdünnt

HPLC-, LC-MS- und GC-MS-Methoden:

Methode 1 (LC-MS): Geräteotyp MS: Waters (Micromass) Quattro Micro; Geräteotyp HPLC: Agilent 1100 Serie; Säule: Thermo Hypersil GOLD 3µ 20 x 4 mm; Eluent A: 1 l Wasser + 0.5 ml 50%-ige Ameisensäure; Eluent B: 1 l Acetonitril + 0.5 ml 50%-ige Ameisensäure; Gradient: 0.0 min 100% A → 3.0 min 10% A → 4.0 min 10% A → 4.01 min 100% A (Flow 2.5ml) → 5.00 min 100% A; Ofen: 50°C; Fluss: 2 ml/min; UV-Detektion: 210nm.

Methode 2 (LC-MS): Geräteotyp MS: Micromass ZQ; Geräteotyp HPLC: HP 1100 Series; UV DAD; Säule: Phenomenex Gemini 3µ 30 mm x 3.00 mm; Eluent A: 1 l Wasser + 0.5 ml 50%-ige Ameisensäure; Eluent B: 1 l Acetonitril + 0.5 ml 50%-ige Ameisensäure; Gradient: 0.0 min 90% A → 2.5 min 30% A → 3.0 min 5% A → 4.5 min 5% A; Fluss: 0.0 min 1 ml/min, 2.5 min 3.0 min/4.5 min 2 ml/min; Ofen: 50°C; UV-Detektion: 210 nm.

Methode 3 (LC-MS): Geräteotyp MS: Micromass ZQ; Geräteotyp HPLC: Waters Alliance 2795; Säule: Phenomenex Synergi 2.5 µ MAX-RP 100A Mercury 20 mm x 4mm; Eluent A: 1 l Wasser + 0.5 ml 50%-ige Ameisensäure; Eluent B: 1 l Acetonitril + 0.5 ml 50%-ige Ameisensäure; Gradient: 0.0 min 90% A → 0.1 min 90% A → 3.0 min 5% A → 4.0 min 5% A → 4.01 min 90% A; Fluss: 2 ml/min; Ofen: 50°C; UV-Detektion: 210 nm.

Methode 4 (LC-MS): Instrument: Micromass Quattro Premier mit Waters UPLC Acquity ; Säule: Thermo Hypersil GOLD 1,9µ 50 x 1mm; Eluent A: 1 l Wasser + 0.5ml 50%-ige Ameisensäure, Eluent B: 1 l Acetonitril + 0.5ml 50%-ige Ameisensäure; Gradient: 0.0 min 90% A → 0.1 min 90% A → 1.5 min 10% A → 2.2 min 10% A; Ofen:50°C; Fluss: 0.33 ml/min; UV-Detektion: 210 nm.

Methode 5 (LC-MS): Geräteotyp MS: Micromass ZQ; Geräteotyp HPLC: Waters Alliance 2795; Säule: Phenomenex Synergi 2µ Hydro-RP Mercury 20 mm x 4mm; Eluent A: 1 l Wasser + 0.5 ml 50%-ige Ameisensäure; Eluent B: 1 l Acetonitril + 0.5 ml 50%-ige Ameisensäure; Gradient: 0.0 min
90% A → 2.5 min 30% A → 3.0 min 5% A → 4.5 min 5% A; Fluss: 0.0 min 1 ml/min, 2.5 min/3.0 min/4.5 min 2 ml/min; Ofen: 50°C; UV-Detektion: 210 nm.

Methode 6 (LC-MS): Geräteotyp MS: Micromass ZQ; Geräteotyp HPLC: Waters Alliance 2795; Säule: Merck Chromolith SpeedROD RP-18e 100 x 4.6 mm; Eluent A: 1 l Wasser + 0.5 ml 50%ige Ameisensäure; Eluent B: 1 l Acetonitril + 0.5 ml 50%ige Ameisensäure; Gradient: 0.0 min 10% B → 7.0 min 95% B → 9.0 min 95% B; Ofen: 35°C; Fluss: 0.0 min 1.0 ml/min → 7.0 min 2.0 ml/min → 9.0 min 2.0 ml/min; UV-Detektion: 210 nm.

Methode 7 (präparative HPLC): Säule: Grom-Sil C18, 10 µm, 250 mm x 30 mm. Eluent A: Wasser + 0.1% Ameisensäure, Eluent B: Acetonitril. Fluß: 50 ml/min. Programm: 0-5 min: 10% B; 5-38 min: Gradient bis 95% B, UV-Detektion: 210 nm.

Methode 8 (LC-MS): Instrument: Micromass Quattro LCZ mit HPLC Agilent Serie 1100; Säule: Phenomenex Syngeri 2µ Hydro-RP Mercury 20 mm x 4 mm; Eluent A: 1 l Wasser + 0.5 ml 50%ige Ameisensäure, Eluent B: 1 l Acetonitril + 0.5 ml 50%ige Ameisensäure; Gradient: 0.0 min 90% A → 2.5 min 30% A → 3.0 min 5% A → 4.5 min 5% A; Fluss: 0.0 min 1 ml/min, 2.5 min/3.0 min/4.5 min 2 ml/min; Ofen: 50°C; UV-Detektion: 208-400 nm.

Methode 9 (LC-MS): Instrument: Micromass Quattro LCZ mit HPLC Agilent Serie 1100; Säule: Phenomenex Onyx Monolithic C18, 100 mm x 3 mm. Eluent A: 1 l Wasser + 0.5 ml 50%ige Ameisensäure, Eluent B: 1 l Acetonitril + 0.5 ml 50%ige Ameisensäure; Gradient: 0.0 min 90% A → 2 min 65% A → 4.5 min 5% A → 6 min 5% A; Fluss: 2 ml/min; Ofen: 40°C; UV-Detektion: 208-400 nm.

Methode 10 (LC-MS): Geräteotyp MS: Waters ZQ; Geräteotyp HPLC: Waters Alliance 2795; Säule: Phenomenex Onyx Monolithic C18, 100 mm x 3 mm; Eluent A: 1 l Wasser + 0.5 ml 50%ige Ameisensäure, Eluent B: 1 l Acetonitril + 0.5 ml 50%ige Ameisensäure; Gradient: 0.0 min 90% A → 2 min 65% A → 4.5 min 5% A → 6 min 5% A; Fluss: 2 ml/min; Ofen: 40°C; UV-Detektion: 210 nm.

Methode 11 (LC-MS): MHZ-Q-GEM-IGerättyp MS: Micromass Quattro LCZ; Geräteotyp HPLC: HP 1100 Series; UV DAD; Säule: Phenomenex Gemini 3µ 30 mm x 3.00 mm; Eluent A: 1 l Wasser + 0.5 ml 50%ige Ameisensäure, Eluent B: 1 l Acetonitril + 0.5 ml 50%ige Ameisensäure; Gradient: 0.0 min 90% A → 2.5 min 30% A → 3.0 min 5% A → 4.5 min 5% A; Fluss: 0.0 min 1 ml/min, 2.5 min/3.0 min/4.5 min 2 ml/min; Ofen: 50°C; UV-Detektion: 210 nm.
Ausgangsverbindungen und Intermediate:

Beispiel 1A

2-Amino-4-phenyl-6-sulfanylpirdin-3,5-dicarbonitril

5 Die Darstellung erfolgte wie in WO 03/053441 für Beispiel 6 beschrieben.

MS (ESIpos): m/z = 253 [M+H]^+

Beispiel 2A

2-Amino-6-({[2-(4-chlorphenyl)-1,3-thiazol-4-yl]methyl}sulfanyl)-4-phenylpyridin-3,5-
dicarbonitril

10 2 g (7.927 mmol) 2-Amino-4-phenyl-6-sulfanylpirdin-3,5-dicarbonitril wurden in 15 ml DMF
vorgelegt, mit 2.13 g (8.720 mmol) 4-(Chlormethyl)-2-(4-chlorphenyl)-1,3-thiazol und 1.99 g
(23.781 mmol) Natriumhydrogencarbonat versetzt und über Nacht bei Raumtemperatur gerührt.
Das Reaktionsgemisch wurde mit Wasser versetzt, der ausgefallene Feststoff abfiltriert, mit MTBE
gewaschen und am Hochvakuum getrocknet. Man erhielt 3.87 g (100 % d. Th.) der
Zielverbindung.

^1H-NMR (400 MHz, DMSO-d_6): δ = 8.14 (s br, 2H), 7.97-7.92 (m, 3H), 7.59-7.50 (m, 7H), 4.64 (s,
2H).
LC-MS (Methode 4): $R_t = 1.49$ min; MS (ESIpos): $m/z = 460\ [M+H]^+$.

Beispiel 3A

2-Chlor-6-({[2-(4-chlorphenyl)-1,3-thiazol-4-yl]methyl}sulfanyl)-4-phenylpyridin-3,5-dicarbonitril

9g (19.762 mmol) 2-Amino-6-({[2-(4-chlorphenyl)-1,3-thiazol-4-yl]methyl}sulfanyl)-4-phenylpyridin-3,5-dicarbonitril wurden in 200 ml Acetonitril vorgelegt, mit 7.98 ml (59.285 mmol) Isoamylnitrit und 7.97 g (59.285 mmol) Kupfer(II)chlorid versetzt und 4 Stunden bei 60°C gerührt. Der Ansatz wurde mit 1N Salzsäure versetzt und der ausgefallene Feststoff abfiltriert. Dieser wurde über eine Kieselgelsäule (Eluent: Toluol) gereinigt. Man erhält 5.98 g (63 % d. Th.) der Zielverbindung.

1H-NMR (400 MHz, DMSO-d_6): $\delta = 7.96$ (d, 2H), 7.76 (s, 1H), 7.66-7.62 (m, 5H), 7.57 (d, 2H), 4.78 (s, 2H).

LC-MS (Methode 3): $R_t = 2.82$ min; MS (ESIpos): $m/z = 479\ [M+H]^+$.

Beispiel 4A

2-Chlor-6-({[2-(4-chlorphenyl)-1,3-thiazol-4-yl]methyl}sulfanyl)-4-[4-(2-hydroxyethoxy)phenyl]pyridin-3,5-dicarbonitril
Die Darstellung erfolgte in Analogie zu Beispiel 3A aus den entsprechenden Ausgangsverbindungen.

LC-MS (Methode 2): \(R_t = 2.93 \text{ min} \); MS (ESIpos): \(m/z = 539 \ [\text{M+H}]^+ \).

Beispiel 5A

5 2-Amino-6-sulfanyl-4-(1,3-thiazol-5-yl)pyridin-3,5-dicarbonitril

\[
\text{\[
\begin{array}{c}
\text{N} \\
\text{S} \\
\text{NC} \\
\text{H}_2\text{N} \\
\text{SH} \\
\end{array}
\text{CN} \\
\end{array}
\text{CN}
\]
\]

\(^1\text{H}-\text{NMR} (400 \text{ MHz, DMSO-}\text{d}_6): \delta = 9.31 \ (s, 1\text{H}), 8.16 \ (s, 1\text{H}), 7.50-6.99 \ (s \text{ br}, 2\text{H}).

LC-MS (Methode 2): \(R_t = 1.29 \text{ min} \); MS (ESIpos): \(m/z = 260 \ [\text{M+H}]^+ \).

Beispiel 6A

2-Amino-6-\{[2-(4-chlorphenyl)-1,3-thiazol-4-yl]methyl\}sulfanyl)-4-(1,3-thiazol-5-yl)pyridin-3,5-dicarbonitril

\[
\text{\[
\begin{array}{c}
\text{N} \\
\text{S} \\
\text{NC} \\
\text{H}_2\text{N} \\
\text{S} \\
\end{array}
\text{CN} \\
\end{array}
\text{CN}
\]
\]
370 mg (1.427 mmol) 2-Amino-6-sulfanyl-4-(1,3-thiazol-5-yl)pyridin-3,5-dicarbonitril wurden mit 383 mg (1.570 mmol) 4-(Chlormethyl)-2-(4-chlorphenyl)-1,3-thiazol und 359 mg Natriumhydrogencarbonat 1 Stunde in 7 ml DMF gerührt. Das Reaktionsgemisch wurde mit 150 ml Acetonitril und 100 ml Wasser versetzt, der ausgefallene Feststoff abfiltriert und am Hochvakuum getrocknet. Man erhält 569 mg (85 % d. Th.) der Zielverbindung.

1H-NMR (400 MHz, DMSO- d_6): δ = 9.38 (s, 1H), 8.27 (s, 1H), 8.19-8.03 (s br, 2H), 7.94 (d, 2H), 7.89 (s, 1H), 7.57 (d, 2H), 4.62 (s, 2H).

LC-MS (Methode 2): $R_t = 2.67$ min; MS (ESIpos): $m/z = 467$ [M+H]$^+$.

Beispiel 7A

2-Chlor-6-({[2-(4-chlorphenyl)-1,3-thiazol-4-yl]methyl}sulfanyl)-4-(1,3-thiazol-5-yl)pyridin-3,5-dicarbonitril

![Chemical Structure]

569 mg (1.218 mmol) 2-Amino-6-({[2-(4-chlorphenyl)-1,3-thiazol-4-yl]methyl}sulfanyl)-4-(1,3-thiazol-5-yl)pyridin-3,5-dicarbonitril wurden in 20 ml konzentrierter Salzsäure gelöst, auf 0°C gekühlt und bei dieser Temperatur mit 252 mg (3.655 mmol) Natriumnitrit versetzt. Es wurde 1h bei 0°C gerührt, dann auf Raumtemperatur erwärmt und über Nacht bei Raumtemperatur gerührt. Das Reaktionsgemisch wurde mittels präparativer HPLC (Acetonitril/Wasser: 10:90 → 95:5) gereinigt. Man erhält 445 mg (68 % d. Th.) der Zielverbindung.

1H-NMR (400 MHz, DMSO- d_6): δ = 9.49 (s, 1H), 8.42 (s, 1H), 7.95 (d, 2H), 7.75 (s, 1H), 7.58 (d, 2H), 4.78 (s, 2H).

LC-MS (Methode 2): $R_t = 2.99$ min; MS (ESIpos): $m/z = 486$ [M+H]$^+$.

Beispiel 8A

2-Amino-4-[4-(2-hydroxyethoxy)phenyl]-6-methoxypyridin-3,5-dicarbonitril
Unter Argon wurden 10 g (60.176 mmol) 4-(2-Hydroxyethoxy)benzaldehyd in 125 ml Methanol gelöst, mit 8.15 g (123.362 mmol) Malonsäuredinitril und 19.506 g (361.058 mmol) Natriummethyllat versetzt und 3 Stunden bei Raumtemperatur gerührt. Anschließend wurde das Reaktionsgemisch eingeengt, der Rückstand in Essigsäureethylester aufgenommen, mit gesättigter wässriger Ammoniumchlorid-Lösung gewaschen. Die organische Phase wurde über Natriumsulfat getrocknet und eingeengt. Der Rückstand wurde mit Methanol ausgerührt, der ausgefallene Feststoff abfiltriert und am Hochvakuum getrocknet. Man erhielt 5.2 g (22% d. Th.) der Zielverbindung.

1H-NMR (400 MHz, DMSO-d_6): $\delta = 8.14$-7.80 (s br, 2H), 7.46 (d, 2H), 7.10 (d, 2H), 4.92 (t, 1H), 4.08 (t, 2H), 3.97 (s, 3H), 3.75 (q, 2H).

LC-MS (Methode 4): $R_t = 0.86$ min; MS (ESIpos): m/z = 311 [M+H]+.

Beispiel 9A

2-Chlor-4-[4-(2-hydroxyethoxy)phenyl]-6-methoxypyridin-3,5-dicarbonitril

3.3 g (10.634 mmol) 2-Amino-4-[4-(2-hydroxyethoxy)phenyl]-6-methoxypyridin-3,5-dicarbonitril wurden in 300 ml Acetonitril vorgelegt, mit 8.578 g (63.806 mmol) Kupfer(II)chlorid und 8.59 ml (63.806 mmol) Isoamyltnitrit versetzt und über Nacht bei Raumtemperatur gerührt. Das

1H-NMR (400 MHz, DMSO-d$_6$): $\delta = 7.60$ (d, 2H), 7.19 (d, 2H), 4.13 (s, 3H), 4.11 (t, 2H), 3.75 (t, 2H).

LC-MS (Methode 2): $R_t = 2.13$ min; MS (ESIpos): m/z = 330 [M+H]$^+$.

Beispiel 10A

4-[(4-(2-Hydroxyethoxy)phenyl]-2-methoxy-6-sulfanylpyridin-3,5-dicarbonitril

4.0 g (12.1 mmol) 2-Chlor-4-[(4-(2-hydroxyethoxy)phenyl]-6-methoxypyridin-3,5-dicarbonitril wurden in 16 ml wasserfreiem DMF gelöst, mit 1,42g (18.2 mmol) wasserfreiem Natriumsulfid versetzt und 2h bei Raumtemperatur gerührt. Es wurde mit 36 ml Wasser versetzt und die Lösung unter Rühren langsam zu einer 50°C warmen Mischung von 61 ml 1M Salzsäure und 20 ml Methanol getroff. Die gelbe Suspension wurde 1h bei RT gerührt, abgesaugt, der Niederschlag mit Wasser gewaschen, und über Nacht bei 45°C im Vakuum getrocknet.

Ausbeute: 3.27 g (82 % d. Th., Reinheit 29 %)

LC-MS (Methode 6): $R_t = 3.27$ min (29.4 Fl%); MS (ESIpos): m/z = 328 [M+H]$^+$

Das Produkt wurde ohne weitere Reinigung weiter umgesetzt. Zu analytischen Zwecken wurde eine kleine Probe mittels präparativer HPLC (Methode 7) gereinigt:

1H-NMR (500 MHz, DMSO-d$_6$): $\delta = 7.59-7.48$ (m, 2H), 7.20- 7.10 (m, 2H), 4.75-4.35 (br), 4.10 (t, 2H), 3.93 (s, 3H), 3.65 (t, 2H).
Beispiel 11A

2-Mercapto-6-methoxy-4-phenylpyridin-3,5-dicarbonitril

Die Darstellung erfolgt in Analogie zu Beispiel 10A aus den entsprechenden Ausgangsverbindungen.

LC-MS (Methode 6): \(R_t = 5.72 \text{ min} \); MS (ESIneg): \(m/z = 266 \ [M-H]^+ \).

Beispiel 12A

2-Amino-6-ethoxy-4-[4-(2-hydroxyethoxy)phenyl]pyridin-3,5-dicarbonitril

1H-NMR (400 MHz, DMSO-d$_6$): δ = 8.05-7.72 (s br, 2H), 7.46 (d, 2H), 7.10 (d, 2H), 4.94 (t, 1H), 4.44 (q, 2H), 4.08 (t, 2H), 3.75 (q, 2H), 1.34 (t, 3H).

LC-MS (Methode 2): R$_t$ = 2.02 min; MS (ESIpos): m/z = 325 [M+H]$^+$.

Beispiel 13A

2-Chlor-6-ethoxy-4-[4-(2-hydroxyethoxy)phenyl]pyridin-3,5-dicarbonitril

![Chemical Structure](image)

14.8 g (45.631 mmol) 2-Amino-6-ethoxy-4-[4-(2-hydroxyethoxy)phenyl]pyridin-3,5-dicarbonitril wurden in 830 ml Acetonitril vorgelegt, mit 32.07 g (273.785 mmol) Isoamylnitril und 36.81 g (273.785 mmol) Kupfer(II)chlorid versetzt und 3 Stunden bei 60°C gerührt. Das Reaktionsgemisch wurde mit 800 ml 1N Salzsäure versezt und mit Essigsäureethylester extrahiert. Die organische Phase wurde mit gesättigter wässriger Natriumhydrogencarbonat-Lösung und gesättigter wässriger Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und eingeengt. Der Rückstand wurde mit Ethanol ausgerührt, der Feststoff abfiltriert, mit Ethanol gewaschen und am Hochvakuum getrocknet. Da in der Mutterlauge noch Produkt enthalten ist, wurde diese auf 35 g Kieselgel aufgezogen und an einer Kieselgelsäule (Eluent: Cyclohexan/ Essigsäureethylester 2:1 → 1:1) gereinigt. Insgesamt wurden 11.9 g (72 % d. Th.) der Zielverbindung erhalten.

1H-NMR (400 MHz, DMSO-d$_6$): δ = 7.59 (d, 2H), 7.18 (d, 2H), 4.94 (s br, 1H), 4.57 (q, 2H), 4.10 (t, 2H), 3.76 (t, 2H), 1.41 (t, 3H).

LC-MS (Methode 8): R$_t$ = 2.30 min; MS (ESIpos): m/z = 344 [M+H]$^+$.

Beispiel 14A

2-Ethoxy-4-[4-(2-hydroxyethoxy)phenyl]-6-sulfanylpyridin-3,5-dicarbonitril
1 g (2.909 mmol) 2-Chlor-6-ethoxy-4-[4-(2-hydroxyethoxy)phenyl]pyridin-3,5-dicarbonitril wurden in 7.5 ml DMF vorgelegt, mit 454 mg (5.818 mmol) Natriumsulfid versetzt und über Nacht bei Raumtemperatur gerührt. Der Ansatz wurde eingeengt, der Rückstand mit Acetonitril ausgerührt, der Feststoff abfiltriert und am Hochvakuum getrocknet. Man erhielt 230 mg (24% d. Th.) der Zielverbindung.

LC-MS (Methode 4): $R_t = 0.79$ min; MS (ESIpos): $m/z = 342$ [M+H]$^+$. **Beispiel 15A**

2-Amino-4-(4-hydroxyphenyl)-6-methoxypyrin-3,5-dicarbonitril

500 mg (4.094 mmol) 4-Hydroxybenzaldehyd und 554 mg (8.393 mmol) Malonsäuredinitril wurden in 5 ml Methanol vorgelegt und mit 4.42 g (24.565 mmol) Natriummethylat, 30%ig in Methanol, versetzt. Anschließend wurde 2 Stunden bei Raumtemperatur gerührt. Der ausgefallene Feststoff wurde abfiltriert, mit Methanol gewaschen und am Hochvakuum getrocknet. Man erhielt 613 mg (76 % d. Th.) der Zielverbindung.

LC-MS (Methode 3): $R_t = 1.33$ min; MS (ESIpos): $m/z = 267$ [M+H]$^+$. **Beispiel 16A**

2-Chlor-4-(4-hydroxyphenyl)-6-methoxypyrin-3,5-dicarbonitril

\(^1H\text{-NMR (400 MHz, DMSO-\text{d}_6): } \delta = 10.29 \text{ (s, 1H), 7.49 \text{ (d, 2H), 6.98 \text{ (d, 2H), 4.12 \text{ (s, 3H).}} \)

LC-MS (Methode 1): \(R_t = 2.04 \text{ min; MS (ESIpos): } m/z = 286 \text{ [M+H]}^+ \).

Beispiel 17A

4-(4-Hydroxyphenyl)-2-methoxy-6-sulfanylpuridin-3,5-dicarbonitril

1.3 g (4.550 mmol) 2-Chlor-4-(4-hydroxyphenyl)-6-methoxypyridin-3,5-dicarbonitril wurden in 10 ml DMF vorgelegt, mit 426 mg (5.460 mmol) Natriumsulfid versetzt und über Nacht bei Raumtemperatur gerührt. Das Reaktionsgemisch wurde ohne weitere Aufreinigung weiter umgesetzt.

LC-MS (Methode 4): \(R_t = 0.74 \text{ min; MS (ESIpos): } m/z = 284 \text{ [M+H]}^+ \).
Beispiel 18A

4-(Chlormethyl)-N-(4-fluorphenyl)-1,3-thiazol-2-amin

Methode A: Zu einer Suspension von 202 g (1.19 mol) 4-Fluorphenyl-thio-harnstoff in 660 ml Aceton dosierte man innerhalb 1.5h eine warme Lösung von 160 g (1.26 mol) 1,3-Dichloraceteton in 480 ml Aceton und rührt 4.5h bei 40°C und über Nacht bei RT nach. Die Kristalle wurden abgesaugt, mit Aceton gewaschen und im Vakuum bei 50°C getrocknet.

Ausb.: 328 g farblose Kristalle (93% d. Th.)

Nach NMR bestand das erhaltene Produkt zu ca. 22% aus der gewünschten Titelverbindung im Gemisch mit ca. 78% der nicht-dehydratisierten Zwischenstufe 4-(Chlormethyl)-2-[(4-fluorphenyl)amino]-4,5-dihydro-1,3-thiazol-4-ol. Dieses Produkt wurde ohne weitere Trennung als solches weiter eingesetzt.

Methode B: 600 mg (4,7 mmol) 1,3-Dichloraceteton und 768 mg (4.5 mmol) 4-Fluorphenyl-thioharnstoff wurden in 10 ml DMF gelöst und 4h bei 80°C gerührt. Es wurde mit 200 ml Wasser versetzt und dreimal mit Essigsäureethylster extrahiert. Die vereinigten organischen Phasen wurden mit Wasser und gesättigter wässriger Natriumchlorid-Lösung gewaschen über Natriumsulfat getrocknet und zu einem dunklen Öl eingeengt. Dieser Rückstand wurde an 150g Kieselgel mit i-Hexan → i-Hexan / Essigsäureethylster (10:1) chromatographiert. Das Produkt wurde direkt weiter eingesetzt.

Ausb.: 714 mg (60% d.Th.)

LC-MS (Methode 5): R_t = 2.14 min; MS (ESIpos): m/z = 243 [M+H]^+

^1H-NMR (400 MHz, DMSO-d_6): δ = 10.28 (s, 1H); 7.69-7.62 (m, 2H); 7.20-7.12 (m, 2H); 6.94 (s, 1H); 4.67 (s, 2H).

Beispiel 19A

4-(Chlormethyl)-2-(4-chlorphenyl)-1,3-thiazol
Die Darstellung erfolgte wie in WO 03/053441 für Beispiel 6 beschrieben.

Beispiel 20A

4-(Chlormethyl)-2-(4-chlorphenyl)-1,3-oxazol

1 g (6.43 mmol) 4-Chlorbenzamid wurde zusammen mit 816 mg 1,3-Dichloraceton (6.43 mmol) 1 h auf 135°C erhitzt. Man lässt auf RT abkühlen, gibt 1 ml konz. Schwefelsäure hinzu und rührt die Mischung 5 min. Dann wurde auf Eis gegossen und der Niederschlag abgesaugt (946 mg). Dieser Niederschlag wurde an 100 g Kieselgel durch Säulenchromatographie mit einem Gradienten aus Cyclohexan/Ethylacetat 20:1 bis 5:1 gereinigt.

Ausbeute: 532 mg (36% d. Th.)

LC-MS (Methode 5): R_t = 2.35 min; MS (ESIpos): m/z = 228 [M+H]^+

^1H-NMR (400 MHz, DMSO-d_6): δ = 8.31(s, 1H), 8.0 (d, 2H), 7.62 (d, 2H), 4.75 (s, 2H).

Beispiel 21A

4-(Chlormethyl)-2-(3,4-difluorphenyl)-1,3-thiazol

3.3 g (26 mmol) 1,3-Dichloraceton und 4.5 g mg (26 mmol) 3,4-Difluorphenyl-thioharnstoff wurden in 45 ml Ethanol über Nacht am Rückfluss gekocht. Das Lösungsmittel wurde im Vakuum verdampft und der Rückstand durch zweimalige Kieselgelchromatographie (Cyclohexan/Essigsäureethylester 4:1 und i-Hexan/ Essigsäureethylester 10:1) gereinigt.

Ausbeute: 1.94 g (30% d.Th.)
LC-MS (Methode 8): $R_t = 3.26$ min; MS (ESIpos): keine Ionisierung

1H-NMR (400 MHz, DMSO-d$_6$): $\delta = 8.03-7.94$ (m, 1H), 7.88 (s, 1H), 7.84-7.80 (m, 1H), 7.63-7.54 (m, 1H), 4.89 (s, 2H).

Beispiel 22A

4-(Hydroxymethyl)-N-methylpyridin-2-carboxamid

Beispiel 23A

4-(Chlormethyl)-N-methylpyridin-2-carboxamid-Hydrochlorid

10 g (45.32 mmol) der Verbindung aus Beispiel 22A wurden in 160 ml Dichlormethan suspendiert und auf 0°C abgekühlt. Nach Zugabe von 16.18 g (135.96 mmol) Thionylchlorid wurde das Reaktionsgemisch auf RT erwärmt und über Nacht bei RT gerührt. Der Ansatz wurde danach eingedampft und der Rückstand im Hochvakuum getrocknet.

Ausbeute: 10 g (quant.)

LC-MS (Methode 4): $R_t = 0.71$ min; MS (ESIpos): $m/z = 185$ [M+H]$^+$

1H-NMR (400 MHz, DMSO-d$_6$): $\delta = 8.85-8.78$ (m, 1H), 8.65 (d, 1H), 8.10 (s, 1H), 7.64 (d, 1H), 4.90 (s, 2H), 2.83 (d, 3H).

Beispiel 24A

4-{$\{$(6-Amino-3,5-dicyano-4-phenylpyridin-2-yl)sulfanyl)methyl$\}$-N-methylpyridin-2-carboxamid
1 g (3.96 mmol) 2-Amino-4-phenyl-6-sulfanylpyridin-3,5-dicarbonitril, 0.96 g (4.36 mmol) 4-(Chlormethyl)-N-methylpyridin-2-carboxamid-Hydrochlorid und 1.33 g (15.84 mmol) Natriumhydrogencarbonat wurden in 20 ml DMF gelöst und für 2h bei RT gerührt. Das Reaktionsgemisch wurde mit 500 ml Wasser versetzt. Der Niederschlag wurde abfiltriert und mit Wasser gewaschen.

Ausbeute: 1.42 g (90% d. Th.)

LC-MS (Methode 3): R_t = 1.74 min; MS (ESIpos): m/z = 401 [M+H]^+.

^1H-NMR (400 MHz, DMSO-d_6): δ (400 MHz) = 8.74 (s, 1H), 8.55 (d, 1H), 8.30-7.96 (s br, 2H), 8.15 (s, 1H), 7.80-7.75 (m, 1H), 7.58-7.50 (m, 5H), 4.60 (s, 2H), 2.81 (d, 3H).

Beispiel 25A

4-{{(6-Chlor-3,5-dicyano-phenylpyridin-2-ylthio)methyl}-N-methylpyridin-2-carboxamid

1.42 g (3.55 mmol) der Verbindung aus Beispiel 24A wurden in 30 ml Acetonitril vorgelegt, mit 0.96 ml (7.10 mmol) Isopentylnitrit und 0.95 g (7.10 mmol) Kupfer(II)chlorid versetzt und 5 Stunden bei 60°C gerührt. Anschließend wurde nochmals dieselbe Menge Kupfer(II)chlorid hinzugegeben und über Nacht bei 60°C gerührt. Der Ansatz wurde mit 7 ml 1N Salzsäure versetzt, dreimal mit Essigsäureethylester extrahiert und die vereinten organischen Phasen wurden mit
gesättigter wässriger Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und eingeeengt. Der Rückstand wurde mittels preparativer HPLC (Zusatz 0.1 % TFA) gereinigt.

Ausbeute: 1.31 g (87 % d. Th.)

LC-MS (Methode 2): Rₜ = 2.46 min; MS (ESIpos): m/z = 420 [M+H]⁺.

Beispiel 26A

4-{{[(4R)-2,2-Dimethyl-1,3-dioxolan-4-yl]methoxy}benzolcarbaldehyd

![Chemical Structure](image)

2 g (16.38 mmol) p-Methoxybenzaldehyd wurden gemeinsam mit 3.7 g (24.57 mmol) (4S)-4-(Chlormethyl)-2,2-dimethyl-1,3-dioxolan und 15.8 g (114.64 mmol) Kaliumcarbonat über Nacht bei 130°C in 10 ml DMF gerührt. Anschließend wurde der Ansatz auf Wasser gegeben und mit Methylenchlorid extrahiert. Die organische Phase wurde mit gesättigter wässriger Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und eingeeengt. Der Rückstand wurde an einer Kieselgelsäule (Eluent: Cyclohexan/ Essigester 5:1) gereinigt. Es wurden 2.42 g (61 % d. Th.) der Zielverbindung erhalten.

¹H-NMR (400 MHz, DMSO-d₆): δ = 9.87 (s, 1H), 7.87 (d, 2H), 7.15 (d, 2H), 4.47-4.41 (m, 1H), 4.19-4.15 (m, 1H), 4.13-4.08 (m, 2H), 3.79-3.75 (m, 1H), 1.36 (s, 3H), 1.31 (s, 3H).

LC-MS (Methode 4): Rₜ = 1.00 min; MS (ESIpos): m/z = 237 [M+H]⁺.

Beispiel 27A

2-Amino-4-{{[(4R)-2,2-dimethyl-1,3-dioxolan-4-yl]methoxy}phenyl}-6-methoxypyridin-3,5-dicarbonitril
1.2 g (5.08 mmol) 4-{{(4R)-2,2-Dimethyl-1,3-dioxolan-4-yl)methoxy}benzolcarbaldehyd und 688 mg (10.41 mmol) Malonsäuredinitril wurden in 10 ml Methanol vorgelegt, mit 1.65 g (30.47 mmol) Natriummethyldithionit (30 %ig in Methanol gelöst) versetzt und 2 Stunden bei Raumtemperatur gerührt. Der ausgefallene Feststoff wurde abfiltriert, mit Methanol gewaschen und im Hochvakuum getrocknet. Es wurden 451 mg (23 % d. Th.) der Zielverbindung erhalten.

1H-NMR (400 MHz, DMSO-d_6): δ = 7.92 (s, 2H), 7.47 (d, 2H), 7.13 (d, 2H), 4.47-4.41 (m, 1H), 4.14-4.05 (m, 3H), 3.96 (s, 3H), 3.80-3.75 (m, 1H), 1.37 (s, 3H), 1.32 (s, 3H).

LC-MS (Methode 2): R_t = 2.19 min; MS (ESIpos): m/z = 381 [M+H]$^+$.

Beispiel 28A

2-Chlor-4-{{(2S)-2,3-dihydroxypropyl}oxy}phenyl)-6-methoxypyridin-3,5-dicarbonitril

450 mg (1.18 mmol) 2-Amino-4-{{(4R)-2,2-dimethyl-1,3-dioxolan-4-yl)methoxy}phenyl)-6-methoxypyridin-3,5-dicarbonitril wurden gemeinsam mit 478 µl (3.55 mmol) Isoamylinitrit und 477 mg (3.55 mmol) Kupfer(II)chlorid 4 Stunden bei 65°C in 10 ml Acetonitril gerührt. Das Reaktionsgemisch wurde mittels präparativer HPLC (Acetonitril/Wasser: 10:90 → 95:5) gereinigt. Es wurden 202 mg (44 % d. Th.) der Zielverbindung erhalten.
\(^1\)H-NMR (400 MHz, DMSO-d\(_6\)): \(\delta = 7.59\) (d, 2H), 7.18 (d, 2H), 4.13 (s, 3H), 4.09 (d, 1H), 4.01-3.92 (m, 1H), 3.85-3.80 (m, 1H), 3.47 (d, 2H).

LC-MS (Methode 4): \(R_t = 1.02\) min; MS (ESIneg): \(m/z = 340\) [M-H-H\(_2\)O]\(^+\).

\textbf{Beispiel 29A}

5 4-(4-\{[(2S)-2,3-Dihydroxypropyl]oxy\}phenyl)-2-methoxy-6-sulfanylpuridin-3,5-dicarbonitril

100 mg (0.278 mmol) 2-Chlor-4-(4-\{[(2S)-2,3-dihydroxypropyl]oxy\}phenyl)-6-methoxypyridin-3,5-dicarbonitril wurden in 5 ml DMF vorgelegt, mit 26 mg (0.334 mmol) Natriumsulfid versetzt und 4 Stunden bei Raumtemperatur gerührt. Das Reaktionsgemisch wurde ohne weitere Aufreinigung weiter umgesetzt.

LC-MS (Methode 4): \(R_t = 0.69\) min; MS (ESIpos): \(m/z = 358\) [M+H]\(^+\).

\textbf{Beispiel 30A}

[2-(4-Chlorphenyl)-1,3-oxazol-4-yl]methanol

6 g (26.307 mmol) 4-(Chlormethyl)-2-(4-chlorphenyl)-1,3-oxazol wurden 3 h in 526 ml (52.613 mmol) 0.1 N Natronlauge unter Rückfluss erhitzen. Anschließend wurde auf Raumtemperatur abgekühlt, der ausgefallene Feststoff abfiltriert, mit 0.1N Natronlauge gewaschen und im Hochvakuum getrocknet. Man erhielt 4.79 g (85 \% d. Th.) der Zielverbindung.

LC-MS (Methode 4): \(R_t = 0.94\) min; MS (ESIpos): \(m/z = 210\) [M+H]\(^+\).
Ausführungsbeispiele:

Beispiel 1

2-(((2-(4-Chlorphenyl)-1,3-thiazol-4-yl)methyl)sulfanyl)-4-phenyl-6-propoxypyridin-3,5-dicarbonitril

\[
\text{\includegraphics{image}}
\]

37 µl (0.501 mmol) 1-Propanol wurden in 2 ml DMF vorgelegt, mit 20 mg (0.184 mmol) Kalium-tert.-butylat versetzt und 15 Minuten gerührt, bevor 100 mg (0.167 mmol) 2-Chlor-6-(((2-(4-chlorphenyl)-1,3-thiazol-4-yl)methyl)sulfanyl)-4-phenylpyridin-3,5-dicarbonitril, in 2 ml DMF gelöst, zugegeben wurden. Das Reaktionsgemisch wurde eine Stunde bei Raumtemperatur gerührt und anschließend mittels präparativer HPLC (Acetonitril/Wasser: 10:90 → 95:5, Zusatz von 0.1 % TFA) gereinigt. Es wurden 13 mg (15 % d. Th.) der Zielverbindung erhalten.

\[1H-NMR\ (400\ MHz, DMSO-d_6): \delta = 7.95\ (d, 2H), 7.74\ (s, 1H), 7.62-7.57\ (m, 7H), 4.79\ (s, 2H), 4.53\ (t, 2H), 1.79-1.70\ (m, 2H), 0.93\ (t, 3H).\]

LC-MS (Methode 1): R_t = 3.07 min; MS (ESIpos): m/z = 503 [M+H]^+.

Beispiel 2

2-(((2-(4-Chlorphenyl)-1,3-thiazol-4-yl)methyl)sulfanyl)-6-(3-hydroxypropoxy)-4-phenylpyridin-3,5-dicarbonitril

\[
\text{\includegraphics{image}}
\]
68 µl (0.939 mmol) 1,3-Propanediol wurden in 2 ml DMF vorgelegt, mit 38 mg (0.344 mmol) Kalium-tert.-butylat versetzt und 15 Minuten gerührt, bevor 150 mg (0.313 mmol) 2-Chlor-6-({[2-(4-chlorphenyl)-1,3-thiazol-4-yl]methyl}sulfanyl)-4-phenylpyridin-3,5-dicarbonitril, in 2 ml DMF gelöst, zugegeben wurden. Das Reaktionsgemisch wurde 1 Stunde bei Raumtemperatur gerührt und anschließend mittels präparativer HPLC (Acetonitril/Wasser: 10:90 → 95:5, Zusatz von 0.1 % TFA) gereinigt. Es wurden 98 mg (59 % d. Th.) der Zielverbindung erhalten.

\[^1\text{H-NMR (400 MHz, DMSO-d}_6\text{): } \delta = 7.96 (d, 2H), 7.75 (s, 1H), 7.62-7.57 (m, 7H), 4.78 (s, 2H), 4.68 (t, 2H), 3.55 (t, 2H), 1.94-1.87 (m, 2H). \]

LC-MS (Methode 2): \(R_f = 2.90 \text{ min} \); MS (ESIpos): \(m/z = 519 [M+H]^+. \)

Beispiel 3

2-{[2-(4-Chlorphenyl)-1,3-thiazol-4-yl]methyl}sulfanyl}-{4-(2-hydroxyethoxy)phenyl}-6-(3-hydroxypropoxy)pyridin-3,5-dicarbonitril

Die Darstellung erfolgt in Analogie zu Beispiel 2 aus Beispiel 4A.

\[^1\text{H-NMR (400 MHz, DMSO-d}_6\text{): } \delta = 7.97 (d, 2H), 7.74 (s, 1H), 7.60-7.52 (m, 4H), 7.15 (d, 2H), 4.91 (br s, 1H), 4.80 (s, 2H), 4.70-4.58 (m, 3H), 4.09 (t, 2H), 3.74 (t, 2H), 3.54 (t, 2H), 1.90 (Quintett, 2H). \]

LC-MS (Methode 4): \(R_f = 1.36 \text{ min} \); MS (ESIpos): \(m/z = 579 [M+H]^+. \)

Beispiel 4

2-{[2-(4-Chlorphenyl)-1,3-thiazol-4-yl]methyl}sulfanyl}-{4-(2-hydroxyethoxy)phenyl}-6-(2-methylpropoxy)pyridin-3,5-dicarbonitril
Die Darstellung erfolgt in Analogie zu Beispiel 2 aus Beispiel 4A.

\[^1\text{H-NMR} \ (400 \text{ MHz, DMSO-}d_6) : \delta = 7.97 \ (d, 2\text{H}), 7.71 \ (s, 1\text{H}), 7.61-7.53 \ (m, 4\text{H}), 7.15 \ (d, 2\text{H}), 4.92 \ (t, 1\text{H}), 4.79 \ (s, 2\text{H}), 4.30 \ (d, 2\text{H}), 4.09 \ (t, 2\text{H}), 3.74 \ (q, 2\text{H}), 2.05 \ (Septett, 1\text{H}), 0.91 \ (d, 6\text{H}). \]

LC-MS (Methode 3): \(R_t = 2.76 \text{ min; MS (ESIpos): m/z = 577 [M+H]^+}.\)

Beispiel 5

2-\{\{2-(4-Chlorphenyl)-1,3-thiazol-4-yl\}methyl\}sulfanyl)-6-\{\{1-methylpyrrolidin-3-yl\}oxy\}4-phenylpyridin-3,5-dicarbonitril

25 \(\mu\text{l} \ (0.229 \text{ mmol})\) 3-Hydroxy-N-methylpyrrolidin wurden in 0.5 ml THF vorgelegt, auf 0°C abgekühlt und mit 249 \(\mu\text{l} \ (0.249 \text{ mmol})\) Phosphazen-Base P(4)-t-Bu (1M in THF) versetzt und 10 Minuten bei dieser Temperatur gerührt. Anschließend wurden 120 mg (0.208 mmol) der Verbindung aus Beispiel 3A zugegeben und über Nacht bei RT gerührt. Das Reaktionsgemisch wurde anschließend mittels präparativer HPLC (Zusatz von 0.15% Salzsäure) gereinigt. Es wurden 38 mg der verunreinigten Zielverbindung erhalten. Dies wurde mit Dichlormethan gelöst, zweimal mit 1N Salzsäure, einmal mit Wasser und einmal mit gesättigter wässriger Natriumchlorid-Lösung gewaschen. Nach Trocknen über Natriumsulfat wurde die organische Phase einrotiert und das Rohprodukt nochmals über präparativer HPLC (Zusatz von 0.15 % Salzsäure) gereinigt.
Ausbeute: 7 mg (6 % d. Th.)

1H-NMR (400 MHz, DMSO-d_6): $\delta = 10.40$ (br s, 1H), 7.98 (d, 2H), 7.80 (d, 1H), 7.65-7.58 (m, 7H), 5.96-5.87 (m, 1H), 4.82 (s, 2H), 4.10-3.83 (m, 1H), 3.78-3.68 (m, 1H), 3.58-3.42 (m, 1H), 3.30-3.09 (m, 1H), 2.89 (d, 3H), 2.44-2.18 (m, 2H).

LC-MS (Methode 2): $R_t = 2.00$ min; MS (ESIpos): $m/z = 544$ [M+H]$^+$.

Beispiel 6

2-((2-(4-Chlorphenyl)-1,3-thiazol-4-yl)methyl)sulfanyl)-6-(3-hydroxypropoxy)-4-(1,3-thiazol-5-yl)pyridin-3,5-dicarbonitril

![Chemical Structure]

30 µl (0.419 mmol) 1,3-Propanediol wurden in 2 ml DMF vorgelegt, mit 18 mg (0.154 mmol) Kalium-tert.-butylat versetzt und 15 Minuten gerührt, bevor 75 mg (0.14 mmol) 2-Chlor-6-((2-(4-chlorphenyl)-1,3-thiazol-4-yl)methyl)sulfanyl)-4-(1,3-thiazol-5-yl)pyridin-3,5-dicarbonitril, in 2 ml DMF gelöst, zugegeben wurden. Das Reaktionsgemisch wurde 30 Minuten bei Raumtemperatur gerührt und anschließend mittels préparativer HPLC (Acetonitril/Wasser: 10:90 \rightarrow 95:5) gereinigt.

Es wurden 11 mg (15 % d. Th.) der Zielverbindung erhalten.

1H-NMR (400 MHz, DMSO-d_6): $\delta = 9.45$ (d, 1H), 8.38 (d, 1H), 7.95 (d, 2H), 7.74 (s, 1H), 7.58 (d, 2H), 4.81 (s, 2H), 4.68 (t, 2H), 4.64 (t, 1H), 3.53 (q, 2H), 1.93-1.87 (m, 2H).

LC-MS (Methode 3): $R_t = 2.22$ min; MS (ESIpos): $m/z = 526$ [M+H]$^+$.

Beispiel 7

2-((2-(4-Chlorphenyl)-1,3-oxazol-4-yl)methyl)sulfanyl)-4-(2-hydroxyethoxy)phenyl]-6-methoxypyridin-3,5-dicarbonitril

20
400 mg (1.222 mmol) 4-[4-(2-Hydroxyethoxy)phenyl]-2-methoxy-6-sulfanylpuridin-3,5-dicarbonitril wurden gemeinsam mit 306 mg (1.344 mmol) 4-(Chlormethyl)-2-(4-chlorphenyl)-1,3-oxazol und 410 mg (4.888 mmol) Natriumhydrogencarbonat in 8 ml DMF über Nacht bei Raumtemperatur gerührt. Die Reaktionsmischung wurde mittels präparativer HPLC (Acetonitril/Wasser: 10:90 → 95:5) gereinigt. Es wurden 10.4 mg (1.6 % d. Th.) der Zielverbindung erhalten.

\(^1\)H-NMR (400 MHz, DMSO-\(d_6\)): \(\delta = 8.21\) (s, 1H), 7.97 (d, 2H), 7.61 (d, 2H), 7.54 (d, 2H), 7.14 (d, 2H), 4.87 (t, 1H), 4.63 (s, 2H), 4.21 (s, 3H), 4.09 (t, 2H), 3.75 (m, 2H).

LC-MS (Methode 4): \(R_t = 1.39\) min; MS (ESIpos): \(m/z = 519\) [M+H]*.

Beispiel 8

2-\(((2-(4-Chlorphenyl)-1,3-thiazol-4-yl)methyl)sulfanyl)-4-[4-(2-hydroxyethoxy)phenyl]-6-methoxypyridin-3,5-dicarbonitril

2.095 g (6.399 mmol) 4-[4-(2-Hydroxyethoxy)phenyl]-2-methoxy-6-sulfanylpuridin-3,5-dicarbonitril wurden gemeinsam mit 1.875 g (7.679 mmol) 4-(Chlormethyl)-2-(4-chlorphenyl)-1,3-thiazol und 1.613 g (19.197 mmol) Natriumhydrogencarbonat in 50 ml DMF über Nacht bei
Raumtemperatur gerührt. Die Reaktionsmischung wurde mit Wasser und Methanol versetzt und 2 Minuten ins Ultraschallbad gestellt. Es fiel ein weißer Feststoff aus, welcher abfiltriert, mit Methanol gewaschen und am Hochvakuum getrocknet wurde. Die Mutterlauge wurde auf die Hälfte eingeeignet und 30 Minuten in den Kühlschrank gegeben. Der ausgefallene Feststoff wurde abfiltriert, mit Methanol gewaschen und am Hochvakuum getrocknet. Die beiden ausgefallenen Feststoffe wurden vereinigt, so dass insgesamt 2.98 g (85 % d. Th.) der Zielverbindung erhalten wurden.

1H-NMR (400 MHz, DMSO-d_6): $\delta = 7.95$ (d, 2H), 7.76 (s, 1H), 7.63-7.53 (m, 4H), 7.15 (d, 2H), 4.93 (s, 1H), 4.82 (s, 2H), 4.18 (s, 3H), 4.09 (t, 2H), 3.75 (t, 2H).

LC-MS (Methode 3): $R_t = 2.45$ min; MS (ESIpos): $m/z = 535$ [M+H]$^+$.

Beispiel 9

3-[[{3,5-Dicyano-4-[4-(2-hydroxyethoxy)phenyl]-6-methoxypyridin-2-yl}thiomethyl]benzoësäure

50 mg (0.153 mmol) der Verbindung aus Beispiel 10A wurden gemeinsam mit 29 mg (0.168 mmol) 3-(Chlormethyl)-benzoësäure und 38.5 mg (0.458 mmol) Natriumhydrogencarbonat in 0.6 ml DMF 2 h bei Raumtemperatur gerührt. Die Reaktionsmischung wurde mit Wasser versetzt und mittels präparativer HPLC (Zusatz von 0.15 % Salzsäure) gereinigt.

Ausbeute: 28 mg (39% d. Th.)

1H-NMR (400 MHz, DMSO-d_6): $\delta = 13.05$ (s, 1H), 8.11 (s, 1H), 7.84 (d, 1H), 7.76 (d, 1H), 7.56 (d, 2H), 7.50 (t, 1H), 7.13 (d, 2H), 4.73 (s, 2H), 4.18 (s, 3H), 4.09 (t, 2H), 3.80 (br s, 1H), 3.74 (t, 2H).

LC-MS (Methode 9): $R_t = 3.28$ min; MS (ESIpos): $m/z = 462$ [M+H]$^+$.

![Chemical Structure](image-url)
Beispiel 10

3-{{(3,5-Dicyano-6-methoxy-4-phenylpyridin-2-yl)thiol}methyl}benzoësäure

75 mg (0.177 mmol) der Verbindung aus Beispiel 11A wurden gemeinsam mit 33 mg (0.194 mmol) 3-(Chlormethyl)-benzoësäure und 44.5 mg (0.530 mmol) Natriumhydrogencarbonat in 1.0 ml DMF über Nacht bei Raumtemperatur gerührt. Die Reaktionsmischung wurde mit Wasser versetzt und mittels préparativer HPLC (Zusatz von 0.15 % Salzsäure) gereinigt.

Ausbeute: 67 mg (94% d. Th.)

1H-NMR (400 MHz, DMSO-d$_6$): $\delta = 13.08$ (s br, 1H), 8.12 (s, 1H), 7.86 (d, 1H), 7.76 (d, 1H), 7.62-7.56 (m, 5H), 7.50 (t, 1H), 4.75 (s, 2H), 4.19 (s, 3H).

LC-MS (Methode 10): $R_s = 3.50$ min; MS (ESIpos): m/z = 402 [M+H]+.

Beispiel 11

4-[4-(2-Hydroxyethoxy)phenyl]-2-methoxy-6-[(3-methoxybenzyl)sulfanyl]pyridin-3,5-dicarbonitril

75 mg (0.229 mmol) 4-[4-(2-Hydroxyethoxy)phenyl]-2-methoxy-6-sulfanylpyridin-3,5-dicarbonitril wurden gemeinsam mit 36 µl (0.253 mmol) 3-Methoxybenzylbromid und 52 mg
(0.380 mmol) Kaliumcarbonat in 1 ml DMF über Nacht bei Raumtemperatur gerührt. Die Reaktionsmischung wurde mittels präparativer HPLC (Acetonitril/ Wasser: 10:90 → 95:5, Zusatz von 0.1 % Ameisensäure) gereinigt. Es wurden 16 mg (56 % d. Th.) der Zielverbindung erhalten.

^1^H-NMR (400 MHz, DMSO-d6): δ = 7.56 (d, 2H), 7.28 (t, 1H), 7.15 (d, 2H), 7.07-7.06 (m, 2H), 6.88 (m, 1H), 4.95 (t, 1H), 4.65 (s, 2H), 4.17 (s, 3H), 4.10 (t, 2H), 3.75 (m, 2H).

LC-MS (Methode 5): R_t = 2.39 min; MS (ESIpos): m/z = 448 [M+H]^+.

Beispiel 12

4-[4-(2-Hydroxyethoxy)phenyl]-2-methoxy-6-[(pyridin-3-ylmethyl)sulfanyl]pyridin-3,5-dicarbonitril

\[
\begin{align*}
\text{O} & \quad \text{OH} \\
\text{NC} & \quad \text{CN} \\
\text{H}_5\text{C} & \quad \text{O} \\
\text{N} & \quad \text{S} \\
\end{align*}
\]

494 mg (1.5 mmol) 2-Chlor-4-[4-(2-hydroxyethoxy)phenyl]-6-methoxypyridin-3,5-dicarbonitril wurden in 5 ml DMF vorgelegt, mit 140 mg (1.8 mmol) Natriumsulfid versetzt und 3 Stunden bei Raumtemperatur gerührt. Anschließend wurden 311 mg (2.25 mmol) Kaliumcarbonat und 307 mg (1.8 mmol) 3-Picolylechlorid-Hydrochlorid zugegeben. Das Reaktionsgemisch wurde über Nacht bei 45°C gerührt und anschließend mittels präparativer HPLC (Acetonitril/ Wasser: 10:90 → 95:5, Zusatz von 0.1 % Ameisensäure) gereinigt. Es wurden 255 mg (40 % d. Th.) der Zielverbindung erhalten.

^1^H-NMR (400 MHz, DMSO-d6): δ = 8.71 (s, 1H), 8.50 (d, 1H), 7.90 (d, 1H), 7.54 (d, 2H), 7.40 (dd, 1H), 7.14 (d, 2H), 4.70 (s, 2H), 4.13 (s, 3H), 4.10 (t, 2H), 3.75 (m, 2H).

LC-MS (Methode 5): R_t = 1.63 min; MS (ESIpos): m/z = 419 [M+H]^+.
Beispiel 13

2-[(2-[(4-Fluorphenyl)amino]-1,3-thiazol-4-yl)methyl)sulfanyl]-4-[4-(2-hydroxyethoxy)phenyl]-6-methoxypyridin-3,5-dicarbonitril

![Chemical Structure](image)

122 mg (0.371 mmol) 4-[4-(2-Hydroxyethoxy)phenyl]-2-methoxy-6-sulfanylpyridin-3,5-dicarbonitril wurden in 3 ml DMF und 1 ml Ethanol gelöst, mit 118 mg (0.397 mmol) der Verbindung aus Beispiel 18A (Methode A), 130 mg (0.94 mmol) Kaliumcarbonat und 20 mg (0.53 mmol) Natriumborhydrid versetzt und über Nacht bei 50°C gerührt. Nach Zugabe von 0.4 ml 5N Essigsäure wurde mittels préparativer HPLC (Acetonitril/ Wasser: 10:90 → 95:5, Zusatz von 0.1% Ameisensäure) gereinigt. Es wurden 59 mg (30% d. Th.) der Zielverbindung erhalten.

1H-NMR (400 MHz, DMSO-d_6): δ = 10.27 (s, 1H), 7.61-7.59 (m, 1H), 7.55 (d, 2H), 7.15 (d, 2H), 7.12 (t, 2H), 6.86 (s, 1H), 4.93 (t, 1H), 4.61 (s, 2H), 4.19 (s, 3H), 4.09 (t, 2H), 3.74 (q, 2H).

LC-MS (Methode 5): $R_t = 2.42$ min; MS (ESIpos): m/z = 534[M+H]$^+$.

Beispiel 14

2-((2-(3,4-Difluorphenyl)-1,3-thiazol-4-yl)methyl)sulfanyl)-4-[4-(2-hydroxyethoxy)phenyl]-6-methoxypyridin-3,5-dicarbonitril
36 mg (0.111 mmol) 2-Chlor-4-[4-(2-hydroxyethoxy)phenyl]-6-methoxypyridin-3,5-
dicarbonitril wurden in 1 ml DMF vorgelegt, mit 34 mg (0.138 mmol) 4-(Chlormethyl)-2-(3,4-
difluorphenyl)-1,3-thiazol und 28 mg (0.332 mmol) Natriumhydrogencarbonat versetzt und über
Nacht bei Raumtemperatur gerührt. Das Reaktionsgemisch wurde mittels préparativer HPLC
(Acetonitril/Wasser: 10:90 → 95:5, Zusatz von 0.1 % Ameisensäure) gereinigt. Es wurden 33 mg
(48 % d. Th.) der Zielverbindung erhalten.

¹H-NMR (400 MHz, DMSO-d₆): δ = 7.99-7.95 (m, 1H), 7.80-7.77 (m, 2H), 7.61-7.57 (m, 1H),
7.15 (d, 2H), 4.93 (t, 1H), 4.81 (s, 2H), 4.18 (s, 3H), 4.09 (t, 2H), 3.75 (q, 2H).

LC-MS (Methode 11): Rₓ = 2.80 min; MS (ESIpos): m/z = 537 [M+H]⁺.

Beispiel 15

2-((2-(4-Chlorphenyl)-1,3-oxazol-4-yl)methyl)sulfanyl)-6-ethoxy-4-[4-(2-
hydroxyethoxy)phenyl]pyridin-3,5-dicarbonitril

100 mg (0.293 mmol) 2-Ethoxy-4-[4-(2-hydroxyethoxy)phenyl]-6-sulfanylpyridin-3,5-dicarbonitril
wurden gemeinsam mit 73 mg (0.322 mmol) 4-(Chlormethyl)-2-(4-chlorphenyl)-1,3-oxazol und 98
mg (1.172 mmol) Natriumhydrogencarbonat in 2 ml DMF über Nacht bei Raumtemperatur gerührt. Die Reaktionsmischung wurde mittels préparativer HPLC (Acetonitril/ Wasser: 10:90 → 95:5) gereinigt. Es wurden 41.5 mg (26 % d. Th.) der Zielverbindung erhalten.

1H-NMR (400 MHz, DMSO-d_6): $\delta = 8.23$ (s, 1H), 7.96 (d, 2H), 7.62 (d, 2H), 7.56 (d, 2H), 7.16 (d, 2H), 4.92 (s, 1H), 4.66 (m, 2H), 4.60 (s, 2H), 4.09 (m, 2H), 3.75 (m, 2H), 1.38 (m, 3H).

LC-MS (Methode 4): $R_t = 1.45$ min; MS (ESIpos): $m/z = 533$ [M+H]$^+$.

Beispiel 16

2-((2-(4-Chlorphenyl)-1,3-thiazol-4-yl)methyl)sulfanyl)-6-ethoxy-4-(2-hydroxyethoxy)phenyl]pyridin-3,5-dicarbonitril

100 mg (0.293 mmol) 2-Ethoxy-4-[4-(2-hydroxyethoxy)phenyl]-6-sulfanylpyridin-3,5-dicarbonitril wurden gemeinsam mit 78 mg (0.322 mmol) 4-(Chlormethyl)-2-(4-chlorphenyl)-1,3-thiazol und 98 mg (1.172 mmol) Natriumhydrogencarbonat in 2 ml DMF über Nacht bei Raumtemperatur gerührt. Die Reaktionsmischung wurde mittels préparativer HPLC (Acetonitril/ Wasser: 10:90 → 95:5) gereinigt. Es wurden 77 mg (47 % d. Th.) der Zielverbindung erhalten.

1H-NMR (400 MHz, DMSO-d_6): $\delta = 7.95$ (d, 2H), 7.74 (s, 1H), 7.58 (d, 2H), 7.55 (d, 2H), 7.14 (d, 2H), 4.92 (t, 1H), 4.78 (s, 2H), 4.63 (q, 2H), 4.09 (t, 2H), 3.75 (q, 2H), 1.34 (t, 3H).

LC-MS (Methode 4): $R_t = 1.51$ min; MS (ESIpos): $m/z = 549$ [M+H]$^+$.

Beispiel 17

2-((2-(4-Chlorphenyl)-1,3-oxazol-4-yl)methyl)sulfanyl)-4-(4-hydroxyphenyl)-6-methoxypyridin-3,5-dicarbonitril
64 mg (0.224 mmol) 4-(4-Hydroxyphenyl)-2-methoxy-6-sulfanylpyridin-3,5-dicarbonitril wurden gemeinsam mit 88 mg (0.269 mmol) 4-(Chlormethyl)-2-(4-chlorphenyl)-1,3-oxazol und 57 mg (0.672 mmol) Natriumhydrogencarbonat in 2 ml DMF über Nacht bei Raumtemperatur gerührt. Die Reaktionsmischung wurde mittels préparativer HPLC (Acetonitril/ Wasser: 10:90 → 95:5, Zusatz von 0.1 % TFA) gereinigt. Es wurden 44 mg (41 % d. Th.) der Zielverbindung erhalten.

\(^1\)H-NMR (400 MHz, DMSO-d\(_6\)): δ = 10.2 (s, 1H), 8.23 (s, 1H), 7.97 (d, 2H), 7.61 (d, 2H), 7.44 (d, 2H), 6.95 (d, 2H), 4.62 (s, 2H), 4.20 (s, 3H).

LC-MS (Methode 4): R\(_t\) = 1.43 min; MS (ESIpos): m/z = 475 [M+H]\(^+\).

Beispiel 18

4-([(3,5-Dicyan-6-(2-hydroxyethoxy)-4-phenylpyridin-2-ylthio)methyl]-N-methylpyridin-2-carboxamid

22 mg (0.357 mmol) 1,2-Ethandiol wurden in 0.5 ml DMF vorgelegt und mit 4.8 mg (0.179 mmol) Natriumhydrid versetzt. Nach 15 min bei RT wurden 50 mg (0.119 mmol) der Verbindung aus Beispiel 25A hinzugegeben und der Reaktionsansatz wurde über Nacht bei 115°C gerührt. Nach dem Abkühlen wurde die Reaktionslösung mittels prép. HPLC gereinigt.

Ausbeute: 19 mg (28 % d. Th.)
\(^1\)H-NMR (400 MHz, DMSO-\(d_6\)): \(\delta = 8.79\) (q, 1H), 8.58 (d, 1H), 8.10 (d, 1H), 7.70-7.58 (m, 6H), 4.69 (br s, 1H), 4.56 (t, 2H), 3.80 (t, 2H), 2.82 (d, 3H).

LC-MS (Methode 1): \(R_s = 1.95\) min; MS (ESIpos): \(m/z = 446\) [M+H]\(^+\).

Die in Tabelle 1 aufgeführten Beispiele wurden aus den entsprechenden Ausgangsverbindungen analog zu Beispiel 18 mit anschließender Aufreinigung hergestellt:

Tabelle 1:

<table>
<thead>
<tr>
<th>Beispiels Nr.</th>
<th>Struktur (Ausbeute)</th>
<th>LC-MS: (R_s) [min] (Methode); MS (ESI): (m/z) [M+H](^+)</th>
<th>(^1)H-NMR (DMSO-(d_6)): (\delta) (400 MHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td></td>
<td>2.12 min (Method e 3); (m/z = 565)</td>
<td>(\delta = 7.97) (d, 2H), 7.74 (s, 1H), 7.59-7.52 (m, 4H), 7.15 (d, 2H), 4.98 (t, 1H), 4.91 (t, 1H), 4.79 (s, 2H), 4.63 (t, 2H), 4.09 (t, 2H), 3.78-3.70 (m, 4H).</td>
</tr>
</tbody>
</table>

(12% d. Th.)
Beispiel 21

Ameisensäure-4-[4-(2-Hydroxyethoxy)phenyl]-2-[(1H-imidazol-4-ylmethyl)sulfanyl]-6-methoxypyridin-3,5-dicarbonitril(1:1)

\[
\begin{align*}
\text{Struktur (Ausbeute)} & \\
\text{LC-MS:} & \text{R, [min]} \text{ (Method e); MS (ESI):} \\
\text{m/z} & \text{[M+H]⁺} \\
\text{1H-NMR (DMSO-d₆):} & \delta (400 MHz) = 7.98 (d, 2H), 7.74 (s, 1H), 7.61-7.53 (m, 4H), 7.14 (d, 2H), 5.37 (quintett, 1H), 4.79 (s, 2H), 4.09 (t, 2H), 3.73 (t, 2H), 2.44-2.32 (m, 2H), 2.23-2.10 (m, 2H), 1.85-1.75 (m, 1H), 1.68-1.53 (m, 1H).
\end{align*}
\]
Die Verbindung wurde analog der Vorschrift für Beispiel 14 aus 2-Chlor-4-[4-(2-hydroxyethoxy)phenyl]-6-methoxypyridin-3,5-dicarbonitril und 4-Chlormethylimidazol hergestellt.

Ausb. 3.8 mg (7% d. Th)

1H-NMR (500 MHz, DMSO-d6): δ = 8.12 (s, 1H) 7.61 (s, 1H), 7.54 (d, 2H), 7.18-7.00 (m, 3H), 4.92 (t, 1H), 4.58 (s, 2H), 4.18 (s, 3H), 4.20 (s, 3H) 4.10 (t, 2H), 3.73 (q, 2H).

LC-MS (Methode 11): R₁ = 2.24 min; MS (ESIpos): m/z = 408 [M+H]+.

Beispiel 22

2-([{2-(4-Chlorphenyl)-1,3-thiazol-4-yl}methyl]sulfanyl)-4-([{(2S)-2,3-dihydroxypropyl}oxy]phenyl)-6-methoxypyridin-3,5-dicarbonitril

![Chemical Structure](image)

Die Lösung aus Beispiel 29A wurde gemeinsam mit 75 mg (0.306 mmol) 4-(Chlormethyl)-2-(4-chlorphenyl)-1,3-thiazol und 93 mg (1.112 mmol) Natriumhydrogencarbonat über Nacht bei Raumtemperatur gerührt. Die Reaktionsmischung wurde mittels präparativer HPLC (Acetonitril/Wasser: 10:90 → 95:5, Zusatz von 0.1% TFA) gereinigt. Es wurden 33 mg (20% d. Th. über zwei Stufen) der Zielverbindung erhalten.

1H-NMR (400 MHz, DMSO-d6): δ = 7.95 (d, 2H), 7.76 (s, 1H), 7.57 (dd, 4H), 7.14 (d, 2H), 5.05 (d, 1H), 4.82 (s, 2H), 4.70 (t, 1H), 4.18 (s, 3H), 4.12-4.08 (m, 1H), 4.00-3.95 (m, 1H), 3.85-3.79 (m, 1H), 3.46 (t, 2H).

LC-MS (Methode 4): R₁ = 1.41 min; MS (ESIpos): m/z = 565 [M+H]+.
Beispiel 23

2-[(2-(4-Chlorphenyl)-1,3-oxazol-4-yl)methoxy]-4-[4-(2-hydroxyethoxy)phenyl]-6-methoxypyridin-3,5-dicarbonitril

190 mg (0.910 mmol) [2-(4-Chlorphenyl)-1,3-oxazol-4-yl]methanol wurden in 2 ml DMF vorgelegt, mit 37 mg (0,334 mmol) Kalium-2-methylpropan-2-olat versetzt und 20 min bei Raumtemperatur gerührt. Anschließend wurden 100 mg (0.303 mmol) 2-Chlor-4-[4-(2-hydroxyethoxy)phenyl]-6-methoxypyridin-3,5-dicarbonitril, in 1 ml DMF gelöst, zugegeben. Nachdem über Nacht bei Raumtemperatur gerührt wurde, wurde das Produkt mittels präparativer HPLC (Acetonitril/Wasser: 10:90 → 95:5, Zusatz von 0.1 % TFA) isoliert. Man erhielt 31 mg (20 % d. Th.) der Zielverbindung.

^1H-NMR (400 MHz, DMSO-d_6): δ = 8.44 (s, 1H), 8.01 (d, 2H), 7.63 (d, 2H), 7.54 (d, 2H), 7.15 (d, 2H), 5.62 (s, 2H), 4.19 (s, 3H), 4.09 (t, 2H), 3.75 (t, 2H).

LC-MS (Methode 3): R_t = 2.23 min; MS (ESIpos): m/z = 503 [M+H]^+.
B. Bewertung der pharmakologischen und physiologischen Wirksamkeit

Die pharmakologische und physiologische Wirkung der erfindungsgemäßen Verbindungen kann in folgenden Assays gezeigt werden:

B-1. Indirekte Bestimmung des Adenosin-Agonismus über Genexpression

Die Stammkulturen werden in DMEM/F12-Medium mit 10% FCS (fötales Kälberserum) bei 37°C unter 5% CO\textsubscript{2} gezüchtet und jeweils nach 2-3 Tagen 1:10 gesplittet. Testkulturen werden mit 2000 Zellen pro Napf in 384-well-Platten ausgesät und ca. 48 Stunden bei 37°C angezogen. Dann wird das Medium durch eine physiologische Kochsalzlösung (130 mM Natriumchlorid, 5 mM Kaliumchlorid, 2 mM Calciumchlorid, 20 mM HEPES, 1 mM Magnesiumchlorid-Hexahydrat, 5 mM Natriumhydrogencarbonat, pH 7.4) ersetzt. Die in DMSO gelösten zu testenden Substanzen werden in einer Verdünnungsreihe von 5 \times 10^{-11} M bis 3 \times 10^{-6} M (Endkonzentration) zu den Testkulturen pipettiert (maximale DMSO-Endkonzentration im Testansatz: 0.5%). 10 Minuten später wird Forskolin zu den A1-Zellen zugegeben und anschließend werden alle Kulturen für vier Stunden bei 37°C inkubiert. Danach wird zu den Testkulturen 35 µl einer Lösung, bestehend zu 50% aus Lyse-Reagenz (30 mM Dinatriumhydrogenphosphat, 10% Glycerin, 3% TritonX100, 25 mM TrisHCl, 2 mM Dithiotreitol (DTT), pH 7.8) und zu 50% aus Luciferase-Substrat-Lösung (2.5 mM ATP, 0.5 mM Luciferin, 0.1 mM Coenzym A, 10 mM Tricin, 1.35 mM Magnesiumsulfat, 15 mM DTT, pH 7.8) zugegeben, ca. 1 Minute geschüttelt und die Luciferase-Aktivität mit einem Kamerasytem gemessen. Bestimmt werden die EC\textsubscript{50}-Werte, d.h. die Konzentrationen, bei denen bei der A1-Zelle 50% der Luciferase-Antwort inhibiert bzw. bei den A2b- und A2a-Zellen 50% der maximalen Stimulierung und der entsprechenden Substanz erreicht sind. Als Referenzverbindung dient in diesen Experimenten die Adenosin-analoge Verbindung NECA (5-N-Ethylcarboxamido-adenosin), die mit hoher Affinität an alle Adenosin-Rezeptor-Subtypen bindet und eine

In der folgenden Tabelle 1 sind die EC₅₀-Werte repräsentativer Ausführungsbeispiele für die Rezeptorstimulation an Adenosin A1-, A2a- und A2b-Rezeptor-Subtypen aufgeführt:

Tabelle 6

<table>
<thead>
<tr>
<th>Beispiel Nr.</th>
<th>EC<sub>50</sub> A1 [nM] (1 μM Forskolin)</th>
<th>EC<sub>50</sub> A2a [nM]</th>
<th>EC<sub>50</sub> A2b [nM]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.3</td>
<td>3000</td>
<td>3000</td>
</tr>
<tr>
<td>2</td>
<td>0.7</td>
<td>3000</td>
<td>534</td>
</tr>
<tr>
<td>3</td>
<td>0.6</td>
<td>689</td>
<td>263</td>
</tr>
<tr>
<td>6</td>
<td>5.7</td>
<td>3000</td>
<td>3000</td>
</tr>
<tr>
<td>8</td>
<td>0.3</td>
<td>1220</td>
<td>105</td>
</tr>
<tr>
<td>11</td>
<td>0.8</td>
<td>1110</td>
<td>3000</td>
</tr>
<tr>
<td>12</td>
<td>1.2</td>
<td>547</td>
<td>3000</td>
</tr>
<tr>
<td>15</td>
<td>4.8</td>
<td>3000</td>
<td>3000</td>
</tr>
<tr>
<td>16</td>
<td>0.8</td>
<td>527</td>
<td>3000</td>
</tr>
<tr>
<td>18</td>
<td>0.3</td>
<td>1740</td>
<td>3000</td>
</tr>
<tr>
<td>19</td>
<td>0.5</td>
<td>685</td>
<td>177</td>
</tr>
<tr>
<td>21</td>
<td>73.2</td>
<td>3000</td>
<td>28.6</td>
</tr>
<tr>
<td>22</td>
<td>2.1</td>
<td>1260</td>
<td>142</td>
</tr>
</tbody>
</table>
B-2. **Untersuchung an isolierten Gefäßen**

B-3. **Blutdruck- und Herzfrequenz-Messungen an wachen Ratten**

B-4. **Blutdruck- und Herzfrequenz-Messungen an wachen Krallenaffen**

B-5. **Indirekte Bestimmung des Adenosin-Antagonismus über Genexpression**

Die permanenten Zelllinien werden in DMEM/F12 (Cat.-No BE04-687Q; BioWhittaker) mit 10% FCS (Fetales Kälberserum) und diversen Zusätzen (20 ml/Liter 1M HEPES (Cat.-No 15630; Gibco), 20 ml/Liter GlutaMAX (Cat.-No 35050-038; Gibco), 14 ml/Liter MEM Natriumpyruvat (Cat.-No 11360-039; Gibco), 10 ml/Liter PenStrep (Cat.-No 15070-063; Gibco)) bei 37°C unter 5% Kohlendioxid kultiviert und zweimal pro Woche gespült.

Für die Testung im 384-well Plattenformat werden die Zellen mit 2000 Zellen/Well in 25µl/Well Aussaatmedium ausgesät und bis zur Substanztestung bei 37°C unter 5% Kohlendioxid kultiviert. Die A2a- und A2b-Zellen werden 24 h vor der Substanztestung in Medium mit Zusätzen und 5% FCS ausgesät, wobei für die A2a-Zellen als Basismedium DMEM/F12 und für die A2b-Zellen OptiMEM (Cat.-No 31985-047; Gibco) verwendet wird. Die A1-Ga16-Zellen werden 48 h vor Substanztestung in OptiMEM mit 2.5% dialysiertem FCS und Zusätzen ausgesät. Am Testtag wird vor der Substanzzusatz das Medium durch 25 µl Cafty-Puffer (Cat.-No T21-154; PAA) mit 2 mM Calciumchlorid und 0.1% BSA (Rinderserumalbumin) ersetzt. Von den zu testenden, in DMSO gelösten Substanzen werden Verdünnungsreihen in Cafty-Puffer mit 2 mM Calciumchlorid und 0.1% BSA (Rinderserumalbumin) und einer geeigneten Konzentration des Agonisten angesetzt. Die Substanzen werden in einer Endkonzentration von 5 x 10^{-5} M bis 2.56 x 10^{-11} M zu den Testkulturen pipettiert, wobei der DMSO-Gehalt auf den Zellen 0.5% nicht überschreiten darf. Als Agonist wird für die A2a- und A2b-Zellen NECA (5-N-Ethylcarboxamido-adenosin) in einer Endkonzentration von 30 nM, was etwa der EC_{50}^-Konzentration entspricht, eingesetzt. Für die A1-Ga16-Zellen wird 25 nM CPA (N6-cyclopentyl-adenosine) als Agonist eingesetzt, was etwa der EC_{50}^-Konzentration entspricht. Nach der Substanzzusatz werden die Zellplatten 3-4 h bei 37°C unter 5% Kohlendioxid inkubiert. Anschließend werden die Zellen direkt vor der Messung mit 25 µl einer Lösung, bestehend zu 50% aus Lyse-Reagenz (30 mM Dinatriumhydrogenphosphat, 10% Glycerin, 3% Triton X-100, 25 mM TrisHCl, 2 mM Dithiotreitol (DTT), pH 7.8) und zu 50% aus Luciferase-Substrat-Lösung (2.5 mM ATP, 0.5 mM Luciferin, 0.1 mM Coenzym A, 10 mM Tricin, 1.35 mM Magnesiumsulfat, 15 mM DTT, pH 7.8) versetzt. Die Luciferase-Aktivität wird mit einem Lumineszenz-Reader detektiert. Bestimmt werden die IC_{50}^-Werte, d.h. die Konzentration, bei denen die Luciferase-Antwort, hervorgerufen durch den jeweiligen Agonisten zu 50% inhibiert wird. Als Referenz-Antagonist wird für die A2a- und A2b-Zellen ZM241385 und für die A1-Ga16-Zellen DPCPX (1,3-dipropyl-8-cyclopentylxanthine) verwendet.

B-6. Bestimmung pharmakokinetischer Kenngrößen nach intravenöser und oraler Gabe

Plasma über LC/MS-MS analytisch quantifiziert. Aus den so ermittelten Plasmakonzentrations-Zeit-Verläufen werden die pharmakokinetischen Kenngrößen wie AUC (Fläche unter der Konzentration-Zeit-Kurve), C_{max} (maximale Plasmakonzentration), T_{1/2} (Halbwertszeit) und CL (Clearance) mittels eines validierten pharmakokinetischen Rechenprogramms berechnet.

5 B-7. Bestimmung der Löslichkeit

Benötigte Reagenzien:

- PBS-Puffer pH 6.5: 90.00 g NaCl p.a. (z.B. Fa. Merck, Art.-Nr. 1.06404.1000), 13.61 g KH_{2}PO_{4} p.a. (z.B. Fa. Merck, Art.-Nr. 1.04873.1000) und 83.35 g 1 N Natronlauge (z.B. Fa. Bernd Kraft GmbH, Art.-Nr. 01030.4000) werden in einen 1 Liter-Messkolben eingewogen, mit destilliertem Wasser auf 1 Liter aufgefüllt und für 1 Stunde gerührt. Danach wird mit 1 N Salzsäure (z.B. Fa. Merck, Art.-Nr. 1.09057.1000) der pH-Wert auf 6.5 eingestellt.

- Dimethylsulfoxid (z.B. Fa. Baker, Art.-Nr. 7157.2500)

- destilliertes Wasser.

20 Herstellung der Ausgangslösung (Urlösung):

Mindestens 4 mg der Testsubstanz werden in ein Weithals-10 mm Screw V-Vial (Fa. Glastechnik Gräfenroda GmbH, Art.-Nr. 8004-WM-H/V15μ) mit passender Schraubkappe und Septum genau eingewogen, in einem Pipettierroboter mit DMSO bis zu einer Konzentration von 50 mg/ml versetzt und 10 Minuten geschüttelt.

25 Herstellung der Kalibrierlösungen:

Herstellung der Ausgangslösung für Kalibrierlösungen (Stammlösung): In eine Mikrotiterplatte werden 10 μl der Urlösung mit Hilfe eines Pipettierroboters überführt und mit DMSO bis zu einer Konzentration von 600 μg/ml aufgefüllt. Die Probe wird bis zu ihrer vollständigen Lösung geschüttelt.
Kalibrierlösung 1 (20 µg/ml): 34.4 µl der Stammlösung werden mit 1000 µl DMSO versetzt und homogenisiert.

Kalibrierlösung 2 (2.5 µg/ml): 100 µl der Kalibrierlösung 1 werden mit 700 µl DMSO versetzt und homogenisiert.

Herstellung der Probenlösungen:

Probenlösung für Löslichkeit bis 5 g/Liter in PBS-Puffer pH 6.5: In eine Mikrotiterplatte werden 10 µl URLösung transferiert und mit 1000 µl PBS-Puffer pH 6.5 versetzt.

Probenlösung für Löslichkeit bis 5 g/Liter in PEG/Wasser (70:30): In eine Mikrotiterplatte werden 10 µl URLösung transferiert und mit 1000 µl PEG/Wasser (70:30) versetzt.

Probenlösung für Löslichkeit bis 5 g/Liter in PEG/PBS-Puffer pH 6.5 (20:80): In eine Mikrotiterplatte werden 10 µl URLösung transferiert und mit 1000 µl PEG/PBS-Puffer pH 6.5 (20:80) versetzt.

Durchführung:

Die so hergestellten Probenlösungen werden 24 Stunden bei 1400 rpm mittels eines temperierbaren Schüttlers (z.B. Fa. Eppendorf Thermomixer comfort Art.-Nr. 5355 000.011 mit Wechselblock Art.-Nr. 5362.000.019) bei 20°C geschüttelt. Von diesen Lösungen werden jeweils 180 µl abgenommen und in Beckman Polyallomer Centrifuge Tubes (Art.-Nr. 343621) überführt. Diese Lösungen werden 1 Stunde mit ca. 223.000 x g zentrifugiert (z.B. Fa. Beckman Optima L-90K Ultracentrifuge mit Type 42.2 Ti Rotor bei 42.000 rpm). Von jeder Probenlösung werden 100 µl des Überstandes abgenommen und mit DMSO zu 1:5 und 1:100 verdünnt. Es wird von jeder Verdünnung eine Abfüllung in ein geeignetes Gefäß für die HPLC-Analytik vorgenommen.

Analytik:

Die Proben werden mittels RP-HPLC analysiert. Quantifiziert wird über eine Zwei-Punkt-Kalibrationskurve der Testverbindung in DMSO. Die Löslichkeit wird in mg/Liter ausgedrückt. Analysessequenz: 1) Kalibrierlösung 2.5 mg/ml; 2) Kalibrierlösung 20 µg/ml; 3) Probenlösung 1:5; 4) Probenlösung 1:100.

HPLC-Methode für Säuren:

Agilent 1100 mit DAD (G1315A), quat. Pumpe (G1311A), Autosampler CTC HTS PAL, Degaser (G1322A) und Säulenthermostat (G1316A); Säule: Phenomenex Gemini C18, 50 mm x 2 mm, 5 µ;

Temperatur: 40°C; Eluent A: Wasser/Phosphorsäure pH 2; Eluent B: Acetonitril; Flussrate:
0.7 ml/min; Gradient: 0-0.5 min 85% A, 15% B; Rampe: 0.5-3 min 10% A, 90% B; 3-3.5 min 10% A, 90% B; Rampe: 3.5-4 min 85% A, 15% B; 4-5 min 85% A, 15% B.

HPLC-Methode für Basen:

Agilent 1100 mit DAD (G1315A), quat. Pumpe (G1311A), Autosampler CTC HTS PAL, Degaser (G1322A) und Säulenthermostat (G1316A); Säule: VDSoptilab Kromasil 100 C18, 60 mm x 2.1 mm, 3.5 μ; Temperatur: 30°C; Eluent A: Wasser + 5 ml Perchlorsäure/Liter; Eluent B: Acetonitril; Flussrate: 0.75 ml/min; Gradient: 0-0.5 min 98% A, 2% B; Rampe: 0.5-4.5 min 10% A, 90% B; 4.5-6 min 10% A, 90% B; Rampe: 6.5-6.7 min 98% A, 2% B; 6.7-7.5 min 98% A, 2% B.

B-8. Bestimmung der metabolischen Stabilität

Die Testverbindungen werden mit einer Konzentration von 10-20 μM inkubiert. Dazu werden Stammlösungen der Substanzen mit einer Konzentration von 1-2 mM in Acetonitril hergestellt und dann mit einer 1:100-Verdünnung in den Inkubationsansatz pipettiert. Die Lebermikrosomen werden in 50 mM Kaliumphosphat-Puffer (pH 7.4) mit und ohne NADPH-generierendem System, bestehend aus 1 mM NADP⁺, 10 mM Glucose-6-phoshat und 1 Einheit Glucose-6-phosphat-Dehydrogenase, bei 37°C inkubiert. Primäre Hepatozyten werden in Suspension in Williams E-Medium ebenfalls bei 37°C inkubiert. Nach einer Inkubationszeit von 0-4 Stunden werden die Inkubationsansätze mit Acetonitril abgestoppt (Endkonzentration ca. 30%) und das Protein bei ca. 15000 x g abzentrifugiert. Die so abgestoppten Proben werden entweder direkt analysiert oder bis zur Analyse bei -20°C gelagert.

Die Analyse erfolgt mittels Hochleistungsflüssigkeits-Chromatographie mit Ultraviolett- und massenspektrometrischer Detektion (HPLC-UV-MS/MS). Dazu werden die Überstände der Inkubationsproben mit geeigneten C18-reversed-phase-Säulen und variablen Eluenten-Gemischen aus Acetonitril und 10 mM wässriger Ammoniumformiat-Lösung chromatographiert. Die UV-Chromatogramme in Verbindung mit massenspektrometrischen MS/MS-Daten dienen zur Identifizierung und Strukturaufklärung der Metabolite.
C. Ausführungsbeispiele für pharmazeutische Zusammensetzungen

Die erfindungsgemäßen Verbindungen können folgendermaßen in pharmazeutische Zubereitungen überführt werden:

Tablette:

5 Zusammensetzung:

100 mg der erfindungsgemäßen Verbindung, 50 mg Lactose (Monohydrat), 50 mg Maisstärke (nativ), 10 mg Polyvinylpyrrolidon (PVP 25) (Fa. BASF, Ludwigshafen, Deutschland) und 2 mg Magnesiumstearat.

Tablettengewicht 212 mg. Durchmesser 8 mm, Wölbungsradius 12 mm.

10 Herstellung:

Die Mischung aus erfindungsgemäßer Verbindung, Lactose und Stärke wird mit einer 5%igen Lösung (m/m) des PVPs in Wasser granuliert. Das Granulat wird nach dem Trocknen mit dem Magnesiumstearat 5 Minuten gemischt. Diese Mischung wird mit einer üblichen Tablettenpresse verpresst (Format der Tablette siehe oben). Als Richtwert für die Verpressung wird eine Presskraft von 15 kN verwendet.

Oral applizierbare Suspension:

Zusammensetzung:

1000 mg der erfindungsgemäßen Verbindung, 1000 mg Ethanol (96%), 400 mg Rhodigel® (Xanthan gum der Firma FMC, Pennsylvania, USA) und 99 g Wasser.

20 Einer Einzeldosis von 100 mg der erfindungsgemäßen Verbindung entsprechen 10 ml orale Suspension.

Herstellung:

Das Rhodigel wird in Ethanol suspendiert, die erfindungsgemäße Verbindung wird der Suspension zugefügt. Unter Rühren erfolgt die Zugabe des Wassers. Bis zum Abschluß der Quellung des Rhodigels wird ca. 6 h gerührt.

Oral applizierbare Lösung:

Zusammensetzung:
500 mg der erfindungsgemäßen Verbindung, 2.5 g Polysorbat und 97 g Polyethylenglycol 400. Einer Einzeldosis von 100 mg der erfindungsgemäßen Verbindung entsprechen 20 g orale Lösung.

Herstellung:

Die erfindungsgemäße Verbindung wird in der Mischung aus Polyethylenglycol und Polysorbat unter Rühren suspendiert. Der Rührvorgang wird bis zur vollständigen Auflösung der erfindungsgemäßen Verbindung fortgesetzt.

i.v.-Lösung:

Die erfindungsgemäße Verbindung wird in einer Konzentration unterhalb der Sättigungslöslichkeit in einem physiologisch verträglichen Lösungsmittel (z.B. isotonische Kochsalzlösung, Glucoselösung 5% und/oder PEG 400-Lösung 30%) gelöst. Die Lösung wird steril filtriert und in sterile und pyrogenfreie Injektionsbehältnisse abgefüllt.
Patentansprüche

1. Verbindung der Formel (I)

\[
\text{(I),}
\]

in welcher

5 \(X \) für O oder S steht,

\(R^1 \) für \((C_6-C_{10})\)-Aryl oder 5- bis 10-gliedriges Heteroaryl steht,

wobei \((C_6-C_{10})\)-Aryl und 5- bis 10-gliedriges Heteroaryl mit 1 oder 2 Substituenten unabhängig voneinander ausgewählt aus der Gruppe Halogen, Nitro, Cyano, \((C_1-C_6)\)-Alkyl, Trifluormethyl, Hydroxy, \((C_1-C_6)\)-Alkoxy, Amino, Mono-(\(C_1-C_6\))-amylamin, Di-(\(C_1-C_6\))-amylamin, Hydroxycarbonyl, \((C_1-C_6)\)-Alkoxykohlenstoff, Aminocarbonyl, Mono-(\(C_1-C_6\))-amylaminocarbonyl, Di-(\(C_1-C_6\))-amylaminocarbonyl, \((C_3-C_7)\)-Cycloalkylaminocarbonyl, Aminosulfonyle, Mono-(\(C_1-C_6\))-amylaminosulfonyle, Di-(\(C_1-C_6\))-amylaminosulfonyle, \((C_1-C_6)\)-Alkylsulfonyle, Pyrrolidino, Piperidino, Morpholino, Piperazino, \(N^\prime\)-(\(C_1-C_4\))-Alkylpiperazin, Pyrrolidinocarbonyl, Piperidinocarbonyl, Morpholinocarbonyl, Piperazinocarbonyl, \(N^\prime\)-(\(C_1-C_4\))-Alkylpiperazinocarbonyl und \(-L-R^5\) substituiert sein können,

worin

\(L \) für eine Bindung, NH oder O steht,

\(R^5 \) für Phenyl oder 5- oder 6-gliedriges Heteroaryl steht,

worin Phenyl und 5- oder 6-gliedriges Heteroaryl ihrerseits mit 1 bis 3 Substituenten unabhängig voneinander ausgewählt aus der Gruppe Halogen, Nitro, Cyano, \((C_1-C_6)\)-Alkyl, Trifluormethyl, Hydroxy, \((C_1-C_6)\)-Alkoxy, Di trifluormethoxy, Trifluormethoxy, Amino, Mono-(\(C_1-C_6\))-amylamin, Di-(\(C_1-C_6\))-amylamin, Hydroxycarbonyl und \((C_1-C_6)\)-Alkoxykohlenstoff sein können,
\(R^2 \) für Wasserstoff oder \((C_1-C_4)\)-Alkyl steht,

\(R^3 \) für Phenyl oder 5- oder 6-gliedriges Heteroaryl steht,

wobei Phenyl und 5- oder 6-gliedriges Heteroaryl mit 1 bis 3 Substituenten unabhängig voneinander ausgewählt aus der Gruppe Halogen, Cyano, Hydroxy, \((C_1-C_6)\)-Alkyl, \((C_1-C_6)\)-Alkoxy, \((C_2-C_7)\)-Cycloalkoxy, Tetrahydrofuran, Pyrrolidinyloxy und \(-NR^A R^B\) substituiert sein können,

worin \((C_1-C_6)\)-Alkyl und \((C_1-C_6)\)-Alkoxy mit 1 bis 3 Substituenten unabhängig voneinander ausgewählt aus der Gruppe Fluor, Trifluormethyl, \((C_2-C_7)\)-Cycloalkyl, Hydroxy, \((C_1-C_4)\)-Alkoxycarbonyl, \((C_1-C_4)\)-Alkoxy carbonyl, Amino, Aminocarbonyl, Mono-\((C_1-C_4)\)-alkylamino und Di-\((C_1-C_4)\)-alkylamino substituiert sein können,

und

worin \((C_2-C_7)\)-Cycloalkoxy, Tetrahydrofuran, Pyrrolidinyloxy mit 1 oder 2 Substituenten unabhängig voneinander ausgewählt aus der Gruppe \((C_1-C_4)\)-Alkyl, Hydroxy, Oxo und \((C_1-C_6)\)-Alkoxy substituiert sein können,

und

worin

\(R^A \) für Wasserstoff oder \((C_1-C_6)\)-Alkyl steht,

worin \((C_1-C_6)\)-Alkyl seinerseits mit 1 bis 3 Substituenten Fluor substituiert sein kann,

und

worin \((C_1-C_6)\)-Alkyl seinerseits mit einem Substituenten ausgewählt aus der Gruppe Hydroxy und \((C_1-C_4)\)-Alkoxy substituiert sein kann,

\(R^B \) für Wasserstoff, \((C_1-C_6)\)-Alkyl, \((C_3-C_7)\)-Cycloalkyl, \((C_1-C_6)\)-Alkylcarbonyl, \((C_1-C_4)\)-Alkyl sulfonat oder \((C_2-C_7)\)-Cycloalkylsulfonat steht,
worin (C₁⁻C₆)-Alkyl seinerseits mit 1 oder 2 Substituenten unabhängig voneinander ausgewählt aus der Gruppe Fluor, Trifluormethyl, (C₃⁻C₇)-Cycloalkyl, Hydroxy, (C₁⁻C₄)-Alkoxo, Hydroxycarbonyl, (C₁⁻C₄)-Alkoxy carbonyl, Amino, Mono-(C₁⁻C₄)-alkylamino und Di-(C₁⁻C₄)-alkylamino substituiert sein kann,

und

worin (C₃⁻C₇)-Cycloalkyl seinerseits mit 1 oder 2 Substituenten unabhängig voneinander ausgewählt aus der Gruppe (C₁⁻C₄)-Alkyl, Hydroxy, Oxo und (C₁⁻C₄)-Alkoxy substituiert sein kann,

oder

R⁴ und R⁰ zusammen mit dem Stickstoffatom, an das sie gebunden sind, einen 4- bis 7-gliedrigen Heterocyclus bilden, der ein weiteres Ring-Heteroatom aus der Reihe N, O oder S enthalten und mit 1 oder 2 Substituenten unabhängig voneinander ausgewählt aus der Gruppe (C₁⁻C₄)-Alkyl, Hydroxy, Oxo und (C₁⁻C₄)-Alkoxy substituiert sein kann,

oder

worin zwei benachbarte Substituenten am Phenyl zusammen mit den Kohlenstoffatomen, an die sie gebunden sind, ein 1,3-Dioxolan, 1,3-Dioxan oder 2,2-Difluor-1,3-dioxolan bilden können,

worin (C₁⁻C₆)-Alkyl, (C₃⁻C₇)-Cycloalkyl oder 4- bis 6-gliedriges Heterocyclik steht, wobei (C₁⁻C₆)-Alkyl mit 1 oder 2 Substituenten unabhängig voneinander ausgewählt aus der Gruppe Fluor, Trifluormethyl, (C₃⁻C₇)-Cycloalkyl, Hydroxy, (C₁⁻C₄)-Alkoxy, Hydroxycarbonyl, (C₁⁻C₄)-Alkoxy carbonyl, Amino, Mono-(C₁⁻C₄)-alkylamino, Di-(C₁⁻C₄)-alkylamino, Aminocarbonyl, Mono-(C₁⁻C₄)-alkylaminocarbonyl, Di-(C₁⁻C₄)-alkylaminocarbonyl und 5- oder 6-gliedriges Heterocyclik substituiert sein kann,

worin (C₁⁻C₄)-Alkoxy mit 1 oder 2 Substituenten unabhängig voneinander ausgewählt aus der Gruppe Hydroxy und (C₁⁻C₄)-Alkoxy substituiert sein kann

und
worin 5- oder 6-gliedriges Heterocyclyl mit einem Substituenten ausgewählt aus der Gruppe Oxo und (C₁-C₄)-Alkyl substituiert sein kann und

wobei (C₃-C₇)-Cycloalkyl und 4- bis 6-gliedriges Heterocyclyl mit 1 oder 2 Substituenten unabhängig voneinander ausgewählt aus der Gruppe (C₁-C₄)-Alkyl, Hydroxy, (C₁-C₄)-Alkoxy, Hydroxycarbonyl, (C₁-C₄)-Alkoxy carbonyl, Amino, Mono-(C₁-C₄)-alkylamino und Di-(C₁-C₄)-alkylamino substituiert sein können,

sowie ihre N-Oxide, Salze, Solvate, Salze der N-Oxide und Solvate der N-Oxide und Salze.

Verbindung der Formel (I) nach Anspruch 1, in welcher

X für S steht,

R¹ für Phenyl oder 5- oder 6-gliedriges Heteroaryl steht,

worin

L für eine Bindung oder NH steht,

R² für Phenyl oder 5- oder 6-gliedriges Heteroaryl steht,

worin Phenyl und 5- oder 6-gliedriges Heteroaryl ihrerseits mit 1 oder 2 Substituenten unabhängig voneinander ausgewählt aus der Gruppe Fluor, Chlor, Cyano, (C₁-C₄)-Alkyl, Trifluormethyl, (C₁-C₄)-Alkoxy, Trifluormethoxy, Amino, Hydroxycarbonyl und (C₁-C₄)-Alkoxy carbonyl sein können,

R² für Wasserstoff oder Methyl steht,
für Phenyl, Pyrrolyl, Oxazolyl, Thiazolyl, Isoxazolyl, Pyrazolyl, Imidazolyl und Pyridyl steht,

wobei Phenyl, Pyrrolyl, Oxazolyl, Thiazolyl, Isoxazolyl, Pyrazolyl, Imidazolyl und Pyridyl mit 1 oder 2 Substituenten unabhängig voneinander ausgewählt aus der Gruppe Fluor, (C₁-C₆)-Alky1, Hydroxy, (C₁-C₄)-Alkoxy und –NRᴬᴿᴮ substituiert sein können,

worin (C₁-C₆)-Alky1 und (C₁-C₄)-Alkoxy mit 1 bis 3 Substituenten unabhängig voneinander ausgewählt aus der Gruppe Fluor, Trifluormethyl, Hydroxy, Methoxy, Ethoxy, Hydroxycarbonyl, Amino, Methylamino, Ethylamino, N,N-Dimethylamino und N,N-Diethylamino substituiert sein können,

und

worin

Rᴬ für Wasserstoff oder (C₁-C₄)-Alky1 steht,

worin (C₁-C₄)-Alky1 seinerseits mit einem Substituenten ausgewählt aus der Gruppe Hydroxy und (C₁-C₄)-Alkoxy substituiert sein kann,

Rᴮ für Wasserstoff oder (C₁-C₄)-Alky1 steht,

worin (C₁-C₆)-Alky1 seinerseits mit 1 oder 2 Substituenten unabhängig voneinander ausgewählt aus der Gruppe Hydroxy, (C₁-C₄)-Alkoxy und Hydroxycarbonyl substituiert sein kann,

Rᴰ für (C₁-C₆)-Alky1, (C₅-C₆)-Cycloalkyl oder 5- oder 6-gliedriges Heterocyclyl steht,

wobei (C₁-C₆)-Alky1 mit 1 oder 2 Substituenten unabhängig voneinander ausgewählt aus der Gruppe Fluor, Trifluormethyl, (C₃-C₇)-Cycloalkyl, Hydroxy, Methoxy, Ethoxy, Hydroxycarbonyl, Methoxycarbonyl, Ethoxycarbonyl, Amino, Methylamino, Ethylamino, N,N-Dimethylamino, N,N-Diethylamino und 5- oder 6-gliedriges Heterocyclyl substituiert sein kann,

worin 5- oder 6-gliedriges Heterocyclyl seinerseits mit einem Substituenten ausgewählt aus der Gruppe Oxo und Methyl substituiert sein kann,
und

wobei (C₃-C₇)-Cycloalkyl und 5- oder 6-gliedriges Heterocyclyl mit 1 oder 2 Substituenten unabhängig voneinander ausgewählt aus der Gruppe Methyl, Hydroxy, Methoxy, Hydroxycarbonyl, Methoxycarbonyl, Ethoxycarbonyl, Amino, Methylamino und N,N-Dimethylamino substituiert sein können,

sowie ihre Salze, Solvate und Solvate der Salze.

3. Verbindung der Formel (I) nach Anspruch 1, in welcher

\[X \quad \text{für O oder S steht,} \]

\[R^1 \quad \text{für Phenyl, Thiazolyl, Oxazolyl oder Pyridyl steht,} \]

wobei Phenyl und Pyridyl mit 1 oder 2 Substituenten unabhängig voneinander ausgewählt aus der Gruppe Fluor, Chlor, Cyano, Methyl, Trifluormethyl, Methoxy, Hydroxycarbonyl, Methoxycarbonyl, Ethoxycarbonyl, Aminocarbonyl, Methylaminocarbonyl, Ethylaminocarbonyl, N,N-Dimethylaminocarbonyl und N,N-Diethylaminocarbonyl substituiert sind,

und

wobei Thiazolyl und Oxazolyl mit einem Substituenten \(-L-R^5\) substituiert sind,

worin

\[L \quad \text{für eine Bindung oder NH steht,} \]

\[R^5 \quad \text{für Phenyl steht,} \]

worin Phenyl seinerseits mit 1 oder 2 Substituenten unabhängig voneinander ausgewählt aus der Gruppe Fluor, Chlor, Methyl, Methoxy, Ethoxy, Hydroxycarbonyl, Methoxycarbonyl und Ethoxycarbonyl sein kann,

und

wobei Thiazolyl und Oxazolyl mit einem Substituenten ausgewählt aus der Gruppe Fluor, Methyl, Ethyl, Methoxy, Hydroxycarbonyl und Methoxycarbonyl substituiert sein können,
\(R^2 \) für Wasserstoff oder Methyl steht,

\(R^3 \) für Phenyl, Pyrrolyl, Oxazolyl, Thiazolyl, Isoxazolyl, Pyrazolyl, Imidazolyl und Pyridyl steht,

wobei Phenyl, Pyrrolyl, Oxazolyl, Thiazolyl, Isoxazolyl, Pyrazolyl, Imidazolyl und Pyridyl mit 1 oder 2 Substituenten unabhängig voneinander ausgewählt aus der Gruppe Fluor, \((C_1-C_6)\)-Alkyl, Hydroxy, \((C_1-C_4)\)-Alkoxy und \(-NR^AR^B\) substituiert sein können,

worin \((C_1-C_6)\)-Alkyl und \((C_1-C_4)\)-Alkoxy mit 1 bis 3 Substituenten unabhängig voneinander ausgewählt aus der Gruppe Fluor, Trifluormethyl, Hydroxy, Methoxy, Ethoxy, Hydroxycarbonyl, Amino, Methylamino, Ethylamino, \(N,N\)-Dimethylamino und \(N,N\)-Diethylamino substituiert sein können,

und

worin

\(R^A \) für Wasserstoff oder \((C_1-C_4)\)-Alkyl steht,

worin \((C_1-C_4)\)-Alkyl seinerseits mit einem Substituenten ausgewählt aus der Gruppe Hydroxy und \((C_1-C_4)\)-Alkoxy substituiert sein kann,

\(R^B \) für Wasserstoff oder \((C_1-C_4)\)-Alkyl steht,

worin \((C_1-C_4)\)-Alkyl seinerseits mit 1 oder 2 Substituenten unabhängig voneinander ausgewählt aus der Gruppe Hydroxy, \((C_1-C_4)\)-Alkoxy und Hydroxycarbonyl substituiert sein kann,

\(R^4 \) für \((C_1-C_6)\)-Alkyl oder \((C_4-C_6)\)-Cycloalkyl steht,

wobei \((C_1-C_6)\)-Alkyl mit 1 oder 2 Substituenten unabhängig voneinander ausgewählt aus der Gruppe Fluor, Trifluormethyl, \((C_3-C_7)\)-Cycloalkyl, Hydroxy, Methoxy und Ethoxy substituiert sein kann,

und
wobei \((C_4-C_6)\)-Cycloalkyl mit 1 oder 2 Substituenten unabhängig voneinander ausgewählt aus der Gruppe Methyl, Hydroxy und Methoxy substituiert sein kann,

sowie ihre Salze, Solvate und Solvate der Salze.

4. Verbindung der Formel (I) nach Anspruch 1, 2 oder 3, in welcher

\[
X \quad \text{für } S \text{ steht,}
\]

\[
R^1 \quad \text{für Phenyl, Thiazolyl, Oxazolyl oder Pyridyl steht,}
\]

wobei Phenyl und Pyridyl mit 1 oder 2 Substituenten unabhängig voneinander ausgewählt aus der Gruppe Fluor, Chlor, Cyano, Methyl, Trifluormethyl, Methoxy, Hydroxycarbonyl, Methoxycarbonyl, Ethoxycarbonyl, Aminocarbonyl, Methylaminocarbonyl, Ethylaminocarbonyl, \(N,N\)-Dimethylaminocarbonyl und \(N,N\)-Diethylaminocarbonyl substituiert sind,

und

wobei Thiazolyl und Oxazolyl mit einem Substituenten \(-L-R^2\) substituiert sind,

worin

\[
L \quad \text{für eine Bindung oder NH steht,}
\]

\[
R^2 \quad \text{für Phenyl steht,}
\]

worin Phenyl seinerseits mit 1 oder 2 Substituenten unabhängig voneinander ausgewählt aus der Gruppe Fluor, Chlor, Methyl, Methoxy, Ethoxy, Hydroxycarbonyl, Methoxycarbonyl und Ethoxycarbonyl sein kann,

und

wobei Thiazolyl und Oxazolyl mit einem Substituenten ausgewählt aus der Gruppe Fluor, Methyl, Ethyl, Methoxy, Hydroxycarbonyl und Methoxycarbonyl substituiert sein können,

\[
R^2 \quad \text{für Wasserstoff steht,}
\]

\[
R^3 \quad \text{für Phenyl oder Thiazolyl steht,}
\]
wobei Phenyl mit 1 oder 2 Substituenten unabhängig voneinander ausgewählt aus der Gruppe (C₁-C₆)-Alkyl, Hydroxy und (C₁-C₄)-Alkoxy substituiert sein kann,

worin (C₁-C₆)-Alkyl und (C₂-C₄)-Alkoxy mit 1 oder 2 Substituenten unabhängig voneinander ausgewählt aus der Gruppe Hydroxy und Methoxy substituiert sein können,

und

wobei Thiazolyl mit einem Substituenten (C₁-C₆)-Alkyl substituiert sein kann,

worin (C₁-C₆)-Alkyl mit 1 oder 2 Substituenten unabhängig voneinander ausgewählt aus der Gruppe Hydroxy und Methoxy substituiert sein kann,

$$R^4$$ für (C₁-C₄)-Alkyl steht,

wobei Alkyl mit 1 oder 2 Substituenten Hydroxy substituiert sein kann,

sowie ihre Salze, Solvate und Solvate der Salze.

5. Verfahren zur Herstellung von Verbindungen der Formel (I), wie in den Ansprüchen 1 bis 4 definiert, dadurch gekennzeichnet, dass man

[A] eine Verbindung der Formel (II-A)

in welcher X, $$R^1$$, $$R^2$$ und $$R^3$$ jeweils die in den Ansprüchen 1 bis 4 angegebenen Bedeutungen haben,

zunächst mit Kupfer(II)chlorid und Isoamylnitrit in einem geeigneten Lösungsmittel in eine Verbindung der Formel (III-A)

![Diagram](image-url)
in welcher X, R^1, R^2 und R^3 jeweils die in den Ansprüchen 1 bis 4 angegebenen Bedeutungen haben,

überführt, und diese anschliessend in einem inerten Lösungsmittel in Gegenwart einer geeigneten Base mit einer Verbindung der Formel (IV)

$$R^4\text{-OH} \quad \text{(IV)},$$

in welcher R^4 die die in den Ansprüchen 1 bis 4 angegebene Bedeutung hat,

umgesetzt,

oder

[B] im Fall, dass X für S steht, eine Verbindung der Formel (II-B)

$$\begin{align*}
\text{NC} & \quad \text{Cl} \\
\text{CN} & \\
\text{R}^4 & \\
\text{O} & \\
\text{R}^3 & \end{align*} \quad \text{(II-B)},$$

in welcher R^3 und R^4 jeweils die die in den Ansprüchen 1 bis 4 angegebenen Bedeutungen haben,

in einem inerten Lösungsmittel mit einem Alkalisulfid zu einer Verbindung der Formel (III-B)

$$\begin{align*}
\text{NC} & \quad \text{SH} \\
\text{CN} & \\
\text{R}^4 & \\
\text{O} & \\
\text{R}^3 & \end{align*} \quad \text{(III-B)},$$

in welcher R^3 und R^4 jeweils die die in den Ansprüchen 1 bis 4 angegebenen Bedeutungen haben,

umgesetzt, und diese anschliessend in einem inerten Lösungsmittel in Gegenwart einer Base mit einer Verbindung der Formel (V)
\[
\begin{align*}
R^2 \quad (V), \\
\end{align*}
\]

in welcher R\(^1\) und R\(^2\) die die in den Ansprüchen 1 bis 4 angegebenen Bedeutungen haben und

Q für eine geeignete Abgangsgruppe, vorzugsweise für Halogen, insbesondere Chlor, Brom oder Iod, oder für Mesylat, Tosylat oder Triflat steht,

umsetzt,

anschließend gegebenenfalls vorhandene Schutzgruppen abspaltet und die resultierenden Verbindungen der Formel (I) gegebenenfalls mit den entsprechenden (i) Lösungsmitteln und/oder (ii) Basen oder Säuren in ihre Solvate, Salze und/oder Solvate der Salze überführt.

Verbindung der Formel (I), wie in einem der Ansprüche 1 bis 4 definiert, zur Behandlung und/oder Prävention von Krankheiten.

Verbindung der Formel (I), wie in einem der Ansprüche 1 bis 4 definiert, zur Verwendung in einem Verfahren zur Behandlung und/oder Prophylaxe von Hypertonie, koronarer Herzerkrankung, akutem Koronarsyndrom, Angina pectoris, Herzinsuffizienz, Myokardinfarkt und Vorhofflimmern.

Verbindung der Formel (I), wie in einem der Ansprüche 1 bis 4 definiert, zur Verwendung in einem Verfahren zur Behandlung und/oder Prophylaxe von Diabetes, Metabolischem Syndrom und Dyslipidämien.

Verwendung einer Verbindung der Formel (I), wie in einem der Ansprüche 1 bis 4 definiert, zur Herstellung eines Arzneimittels zur Behandlung und/oder Prävention von Hypertonie, koronarer Herzerkrankung, akutem Koronarsyndrom, Angina pectoris, Herzinsuffizienz, Myokardinfarkt und Vorhofflimmern.

Arzneimittel enthaltend eine Verbindung der Formel (I), wie in einem der Ansprüche 1 bis 4 definiert, in Kombination mit einem inerten, nicht-toxischen, pharmazeutisch geeigneten Hilfsstoff.
11. Arzneimittel enthaltend eine Verbindung der Formel (I), wie in einem der Ansprüche 1 bis 4 definiert, in Kombination mit einem oder mehreren weiteren Wirkstoffen ausgewählt aus der Gruppe bestehend aus den Fettstoffwechsel verändernden Wirkstoffen, Antidiabetika, blutdrucksenkenden Wirkstoffen und antithrombotisch wirkenden Mitteln.

15. Verfahren zur Behandlung und/oder Prävention von Diabetes, Metabolischem Syndrom und Dyslipidämien in Menschen und Tieren unter Verwendung einer wirksamen Menge mindestens einer Verbindung der Formel (I), wie in einem der Ansprüche 1 bis 4 definiert, oder eines Arzneimittels, wie in einem der Ansprüche 10,11 und 13 definiert.
INTERNATIONAL SEARCH REPORT

International application No:
PCT/EP2009/003652

A. CLASSIFICATION OF SUBJECT MATTER

<table>
<thead>
<tr>
<th>INV.</th>
<th>C07D013/70</th>
<th>C07D013/12</th>
<th>C07D017/12</th>
<th>C07D017/14</th>
<th>A61K31/33</th>
</tr>
</thead>
<tbody>
<tr>
<td>A6IP9/00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

According to International Patent Classification (IPC) or to both national classification and IPC.

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols): C07D, A61K, A61P

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched.

Electronic database consulted during the international search (name of database and, where practical, search terms used).
EPO-Internal, CHEM ABS Data, WPI Data, BEILSTEIN Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>WO 2006/027142 A (BAYER HEALTHCARE AG [DE]; ERGUEDEN JENS-KERIM [DE]; KARIG GUNTER [DE];) 16 March 2006 (2006-03-16) abstract; claims; examples</td>
<td>1.5-11, 14,15</td>
</tr>
</tbody>
</table>

* Special categories of cited documents:

A document defining the general state of the art which is not considered to be of particular relevance

E earlier document but published on or after the international filing date

L document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)

O document referring to an oral disclosure, use, exhibition or other means

P document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

X document of particular relevance: the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance: the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"J" document member of the same patent family

Date of the actual completion of the international search: 27 July 2009

Data of mailing of the international search report: 04/08/2009

Name and mailing address of the ISA/ European Patent Office, P.B. 5619 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Fax (+31-70) 340-3016

Authorized officer: van Laren, Martijn
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>WO 2006027142 A</td>
<td>16-03-2006</td>
<td>AR 050551 A1</td>
<td>01-11-2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AT 428710 T</td>
<td>15-05-2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2005281941 A1</td>
<td>16-03-2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR P10514833 A</td>
<td>24-06-2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2578596 A1</td>
<td>16-03-2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 101056875 A</td>
<td>17-10-2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 102004042607 A1</td>
<td>09-03-2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EC SP077296 A</td>
<td>26-04-2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1812430 A1</td>
<td>01-08-2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GT 200500238 A</td>
<td>10-04-2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2008511614 T</td>
<td>17-04-2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20070057235 A</td>
<td>04-06-2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SV 2006002218 A</td>
<td>04-10-2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2008269300 A1</td>
<td>30-10-2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>UY 29099 A1</td>
<td>29-04-2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ZA 200701820 A</td>
<td>27-08-2008</td>
</tr>
</tbody>
</table>
INTERNATIONALER RECHERCHENBERICHT

A. KLASSENRUNGEN DES ANMELDUNGS/GEGENSTANDES

INV. C07D0213/70 C07D0413/12 C07D417/12 C07D417/14 A61P9/00
Nach der Internationalen Patentklassifikation (IPC) oder nach der nationalen Klassifikation und der IPC

B. RECHERCHIERTEN GEBIETE

Rechercheiter: Mindestpräzisier (Klassifikationssystem und Klassifikationsnummern)
C07D A61K A61P

Rechercheiter, aber nicht zum Mindestpräzisier gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der Internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)
EPO-Internal, CHEM ABS Data, WPI Data, BEILSTEIN Data

C. ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie* Bezeichnung der Veröffentlichung, soweit erfordernicht unter Angabe der in Betracht kommenden Teile Refr. Anspruch Nr.

Zusammenfassung; Ansprüche; Beispiele

1,5-11, 14,15

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

* Besondere Kategorien von angegebenen Veröffentlichungen

** Veröffentlichung, die den allgemeinen Stand der Technik definiert

*** älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist

**** Veröffentlichung, die gezielt eine Prioritätsverwechslung verhindern oder durch die das Veröffentlichungsdatum einer anderen im Recherchebericht genannten Veröffentlichung behoben werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)

***** Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benachrichtigung, eine Ausstellung oder andere Maßnahmen bezieht, die vor dem internationalen Anmeldedatum, aber nach dem beantragten Prioritätsdatum veröffentlicht worden ist

****** Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrunde liegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist

******* Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erforderlicher Tätigkeit beruhend betrachtet werden

******** Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erforderlicher Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann nahelegend ist

********* Veröffentlichung, die Mitglied derselben Patentschlahe ist

Datum des Abschlusses der internationalen Recherche

27. Juli 2009

Abschlußdatum des internationalen Recherchenberichts

04/08/2009

Name und Postanschrift der internationalen Recherchebehörde

Europäisches Patentamt, P.B. 5818 Patentanw 2
Nl. - 2280 MV Rwijwijk
Tel. (+31-70) 340-2040,
Fax. (+31-70) 340-3016

Bewilligungsheber der Recherche

van Laren, Martijn

Formular PCT/DA/210 (Bild 2) (April 2006)
<table>
<thead>
<tr>
<th>Im Recherchenbericht angeführtes Patentdokument</th>
<th>Datum der Veröffentlichung</th>
<th>Mitglied(e) der Patentfamilie</th>
<th>Datum der Veröffentlichung</th>
</tr>
</thead>
<tbody>
<tr>
<td>WO 2006027142 A</td>
<td>16-03-2006</td>
<td>AR 050551 A1</td>
<td>01-11-2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AT 428710 T</td>
<td>15-05-2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2005281941 A</td>
<td>16-03-2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR PI0514833 A</td>
<td>24-06-2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2578596 A1</td>
<td>16-03-2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 101056875 A</td>
<td>17-10-2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 102004042607 A</td>
<td>09-03-2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EC SP077296 A</td>
<td>26-04-2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1812430 A1</td>
<td>01-08-2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GT 200500238 A</td>
<td>10-04-2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2008511614 T</td>
<td>17-04-2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20070057235 A</td>
<td>04-06-2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SV 2006002218 A</td>
<td>04-10-2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2008269300 A1</td>
<td>30-10-2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>UY 29099 A1</td>
<td>28-04-2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ZA 200701820 A</td>
<td>27-08-2008</td>
</tr>
</tbody>
</table>