发明名称
一种自定义电子终端的虚拟键盘的方法及系统

摘要
本发明公开了一种自定义电子终端的虚拟键盘的方法及系统，所述方法包括：接收用户对虚拟键盘的触摸操作，并判断触摸操作时间；如果触摸操作时间超过预定时间，则开启对虚拟键盘的编辑状态，读取本地的虚拟键盘方案，或从网络中获取虚拟键盘方案，或对虚拟键盘进行自定义编辑并保存自定义编辑后的虚拟键盘方案。本发明能够通过对虚拟键盘中单个按键的输出符号和外观以及整个键盘的透明度等进行自定义编辑，使电子设备增加对虚拟键盘进行自定义的新功能，能够实现虚拟键盘的个性化设置，满足用户的不同需求，不仅方便了用户使用，而且还增强了用户体验。
1. 一种自定义电子终端的虚拟键盘的方法，其特征在于，包括步骤：
 A. 接收用户对虚拟键盘的触摸操作，并判断触摸操作时间；
 B. 如果触摸操作时间超过预定时间，则开启对虚拟键盘的编辑状态，执行步骤C；
 C. 对虚拟键盘进行自定义编辑并保存自定义编辑后的虚拟键盘方案；

其中，所述对虚拟键盘进行自定义编辑包括当自定义编辑虚拟键盘单个按键的输出符号时，提示用户将按键移动到当前界面，拍照图片或者本体图片上，将电子终端获取的图片进行解析并解析后的图形作为所述单个按键的输出符号。

2. 根据权利要求1所述的方法，其特征在于，所述步骤C中对虚拟键盘进行自定义编辑的步骤还包括：
 C12. 当自定义编辑虚拟键盘中单个按键的按键外观时，根据用户操作控制改变单个按键的形状和大小。

3. 根据权利要求1所述的方法，其特征在于，将电子终端获取的图片进行解析并解析后的图形作为所述单个按键的输出符号的步骤具体为：

 电子终端发出将所述单个按键移动到电子终端获取的图片上的指令，根据用户操作对所述单个按键覆盖的图片内容进行解析，并将解析后的图形作为所述单个按键的输出符号。

4. 根据权利要求1所述的方法，其特征在于，所述步骤C虚拟键盘进行自定义编辑的步骤还包括：
 C2. 当所自定义编辑整个虚拟键盘时根据用户操作修改所有按键的形状、按键底板透明度和/或颜色。

5. 根据权利要求1所述的方法，其特征在于，所述步骤C2还包括：
 C21. 所述电子终端接收到自定义编辑整个虚拟键盘的操作指令时，增加或删除虚拟键盘中的按键以改变虚拟键盘中按键的数量，和/或移动所述虚拟键盘中按键以改变按键在所述虚拟键盘中的位置。

6. 一种自定义电子终端的虚拟键盘的系统，其特征在于，所述系统包括：
 判断模块，用于判断用户对虚拟键盘的触摸操作时间；
 开启模块，用于所述判断模块判断出触摸操作时间超过预定时间时开启对虚拟键盘的编辑状态；
 编辑模块，用于所述开启模块开启对虚拟键盘的编辑状态后对虚拟键盘进行自定义编辑并保存自定义编辑后的虚拟键盘方案；

所述编辑模块具体用于当自定义编辑虚拟键盘单个按键的输出符号时，提示用户将按键移动到当前界面，拍照图片或者本体图片上，将电子终端获取的图片进行解析并解析后的图形作为所述单个按键的输出符号。

7. 根据权利要求6所述的系统，其特征在于，所述编辑模块包括：
 单按键编辑模块，用于开启模块开启对单按键的编辑状态时对所述单个按键进行按键输出符号和按键外观的编辑；
 全键盘编辑模块，用于开启模块开启对整个虚拟键盘的编辑状态时编辑所有按键的外观，或修改按键的数量及布局，或设置按键底板透明度及颜色。

8. 根据权利要求7所述的系统，其特征在于，所述单按键编辑模块还包括：
输出符号编辑模块，用于将电子终端获取的图片进行解析并将解析后的图形作为所述单个按键的输出符号；
按键外观编辑模块，用于根据用户操作控制改变单个按键的形状和大小。
9. 根据权利要求7所述的系统，其特征在于，所述全键盘编辑模块还包括：
按键修改模块，用于通过用户操作增加或删除虚拟键盘中的按键以改变虚拟键盘中按键的数量，以及移动所述虚拟键盘中按键以改变按键在所述虚拟键盘中的位置。
一种自定义电子终端的虚拟键盘的方法及系统

技术领域
[0001] 本发明涉及电子终端中虚拟键盘的设置，尤其涉及的是一种自定义电子终端的虚拟键盘的方法及系统。

背景技术
[0002] 随着各种无键盘的智能电子设备不断普及，如何方便、快捷、有效的进行信息输入成为一个难题。目前比较主流的解决方法是在界面上叠加虚拟键盘，通过触摸或是鼠标点击的方式控制虚拟键盘输入符号，这种方案可以一定程度解决物理键盘不方便携带、不易操作的难题。但是从实际体验的情况来看，虚拟键盘的实现还不是特别的令人满意，比如苹果IPAD虚拟键盘就特别招人诟病，究其原因，除了力感反馈不佳外，其形式呆板、键符设置不够人性化也是原因之一。
[0003] 每个使用该设备的用户都有自己的按键操作习惯，对按键的分布、排列方式有自己的独特需求，单调死板的虚拟键盘是不足以满足所有用户个性化需求的，让用户根据自己的操作习惯进行自定义十分有必要。
[0004] 因此，现有技术还有待于改进和发展。

发明内容
[0005] 本发明要解决的技术问题在于，针对现有技术的上述缺陷，提供一种自定义电子终端的虚拟键盘的方法及系统，使电子设备增加了新功能，具有虚拟键盘自定义，方便用户根据自己的需要对虚拟键盘进行个性化设置，提高了用户的输入速度。
[0006] 本发明解决技术问题所采用的技术方案如下；
[0007] 一种自定义电子终端的虚拟键盘的方法，其特征在于，包括步骤：
[0008] A、接收用户对虚拟键盘的触摸操作，并判断触摸操作时间；
[0009] B、如果触摸操作时间超过预定时间，则开启对虚拟键盘的编辑状态，执行步骤C；
[0010] C、读取本地的虚拟键盘方案或从网络中获取虚拟键盘方案，替换现有的虚拟键盘方案；或对虚拟键盘进行自定义编辑并保存自定义编辑后的虚拟键盘方案。
[0011] 所述的方法，其中，所述步骤C中对虚拟键盘进行自定义编辑的步骤还包括：
[0012] C11、当自定义编辑虚拟键盘中单个按键的输出符号时，电子终端从本地符号库读取符号作为所述单个按键的输出符号，或者将电子终端获取的图片进行解析并将解析后的图形作为所述单个按键的输出符号。
[0013] 所述的方法，其中，所述步骤C中对虚拟键盘进行自定义编辑的步骤还包括：
[0014] C12、当自定义编辑虚拟键盘中单个按键的按键外观时，根据用户操作控制改变单个按键的形状和大小。
[0015] 所述的方法，其中，将电子终端获取的图片进行解析并将解析后的图形作为所述单个按键的输出符号的步骤具体为：
[0016] 电子终端发出将所述单个按键移动到电子终端获取的图片上的指令，根据用户操
作对所述单个按键覆盖的图片内容进行解析，并将解析后的图形作为所述单个按键的输出符号。

[0017] 所述的方法，其中，所述步骤C虚拟键盘进行自定义编辑的步骤还包括：
[0018] C2、当所自定义编辑整个虚拟键盘时根据用户操作修改所有按键的形状、按键底板透明度和/或颜色。
[0019] 所述的方法，其中，所述步骤C2还包括：
[0020] C21、所述电子终端接收到自定义编辑整个虚拟键盘的操作指令时，增加或删除虚拟键盘中的按键以改变虚拟键盘中按键的数量，和/或移动所述虚拟键盘中按键以改变按键在所述虚拟键盘中的位置。
[0021] 一种自定义电子终端的虚拟键盘的系统，其中，所述系统包括：
[0022] 判断模块，用于判断用户对虚拟键盘的触摸操作时间；
[0023] 开启模块，用于所述判断模块判断出触摸操作时间超过预定时间时开启对虚拟键盘的编辑状态；
[0024] 编辑模块，用于所述开启模块开启对虚拟键盘的编辑状态后读取本地的虚拟键盘方案，或从网络中获取虚拟键盘方案，或对虚拟键盘进行自定义编辑并保存自定义编辑后的虚拟键盘方案。
[0025] 所述的系统，其中，所述编辑模块包括：
[0026] 单按键编辑模块，用于开启模块开启对单按键的编辑状态时对所述单个按键进行按键输出符号和按键外观的编辑；
[0027] 全键盘编辑模块，用于开启模块开启对整个虚拟键盘的编辑状态时编辑所有按键的外观，或修改按键的数量及布局，或设置按键底板透明度及颜色。
[0028] 所述的系统，其中，所述单按键编辑模块还包括：
[0029] 输出符号编辑模块，用于从本地符号库读取符号作为所述单个按键的输出符号；或者将电子终端获取的图片进行解析并将解析后的图形作为所述单个按键的输出符号。
[0030] 按键外观编辑模块，用于根据用户操作控制改变单个按键的形状和大小。
[0031] 所述的系统，其中，所述全键盘编辑模块还包括：
[0032] 按键修改模块，用于通过用户操作增加或删除虚拟键盘中的按键以改变虚拟键盘中按键的数量，以及移动所述虚拟键盘中按键以改变按键在所述虚拟键盘中的位置。
[0033] 本发明提供的自定义电子终端的虚拟键盘的方法及系统，主要方法包括：接收用户对虚拟键盘的触摸操作，并判断触摸操作时间，如果触摸操作时间超过预定时间，则开启对虚拟键盘的编辑状态；读取本地的虚拟键盘方案，或从网络中获取虚拟键盘方案，或对虚拟键盘进行自定义编辑并保存自定义编辑后的虚拟键盘方案。本发明能够通过对虚拟键盘中单个按键的输出符号和外观以及整个键盘的透明度等进行自定义编辑，使电子设备增加对虚拟键盘进行自定义的新功能，能够实现虚拟键盘的个性化设置，满足用户的不同需求，不仅方便了用户使用，而且还增强了用户体验。

附图说明
[0034] 图1是本发明提供的自定义电子终端的虚拟键盘的方法流程图。
[0035] 图2是本发明提供的自定义电子终端的虚拟键盘的方法中定义方式的示意图。
具体实施方式

[0040] 为使本发明的目的、技术方案及优点更加清楚、明确，以下参照附图并举实施例对本发明进一步详细说明。应当理解，此处所描述的具体实施例仅仅用于解释本发明，并不用于限定本发明。

[0041] 本发明的主要思想是，对电子终端的虚拟键盘中单个按键的输出符号和外观以及全键盘的透明度和按键数量等等进行自定义的设置，根据用户的不同需求，设置出不同类型的虚拟键盘，实现虚拟键盘的个性化，以改变单一枯燥的外观，使虚拟键盘更加个性美观，满足不同用户的个性化需求，同时增强虚拟键盘的可操作性以及体验性。

[0042] 参见图1，图1是本发明提供的自定义电子终端的虚拟键盘的方法流程图，主要包括以下步骤：

[0043] 步骤S100，接收用户对虚拟键盘的触摸操作，并判断触摸操作时间；

[0044] 步骤S200，如果触摸操作时间超过预定时间，则开启对虚拟键盘的编辑状态，执行步骤S300；

[0045] 步骤S300，读取本地的虚拟键盘方案或从网络中获取虚拟键盘方案，替换现有的虚拟键盘方案；或对虚拟键盘进行自定义编辑并保存自定义编辑后的虚拟键盘方案。

[0046] 下面针对具体的实施例对上述步骤进行具体的描述和说明。

[0047] 如图2所示，本发明对虚拟键盘的设置不仅包括对读取本地保存的虚拟键盘方案或者从网络中获取虚拟键盘方案，还包括对虚拟键盘的自定义编辑，而对虚拟键盘的自定义编辑还包括对单个按键的设置或自定义编辑以及对全键盘的设置或自定义编辑。

[0048] 电子终端接收用户对虚拟键盘的触摸操作，开启对虚拟键盘的编辑状态，其中，编辑状态的开启或者触发是通过用户对虚拟键盘的一定时间内的触摸操作，系统设置一触发的预定时间，可以为3秒或其他时间，当用户的触摸操作时间超过该预定时间时，虚拟键盘的编辑状态就开启，当然虚拟键盘的编辑状态的开启并不限于用户对虚拟键盘的触摸操作。

[0049] 在虚拟键盘的编辑状态开启后，电子终端的用户界面上会出现一编辑选项，该编辑选项包括有读取本地保存虚拟键盘方案、从网络获取虚拟键盘方案以及自定义编辑等等几个选项，其中在自定义编辑选项中还包括对虚拟键盘中单个按键进行自定义编辑和对虚拟键盘的全键盘进行自定义编辑，根据用户需求，进行虚拟键盘设置类型的选择，方便用户更加直观便捷的操作。

[0050] 当自定义编辑单个按键时，如图3所示，具体步骤如下：

[0051] 步骤S310，进入单按键编辑状态；

[0052] 步骤S320，选择编辑方式，如果用户选择编辑单按键的输出符号，则执行步骤
S330; 如果用户选择编辑单按键的外观，则执行步骤S340；

[0053] 步骤S330、自定义编辑单个按键的输出符号；在自定义编辑单个按键的输出符号时，用户可以有多中选择，从本地符号中读取或者从其他介质读取；

[0054] 步骤S331、从本地符号库中读取，即电子终端从本地符号库存储的符号中直接读取符号作为该按键的输出符号；

[0055] 步骤S332、从其他介质中读取输出符号；这里的其他介质包括当前界面、拍照图片以及本地图片等等，而若从其他介质中读取输出符号，则执行步骤S333；

[0056] 步骤S333、将按键移动到当前界面、拍照图片或者本地图片上；在从其他介质中获取输出符号时可以通过提示用户将按键移动到当前界面、拍照图片或者本地图片上的某个位置一段时间；此时系统会执行步骤S334；

[0057] 步骤S334，解析被按键覆盖的界面内容，解析过程是由系统自动进行的，从中解析出图形和颜色等等；

[0058] 步骤S335，将解析出的图形或者颜色作为该按键的输出符号；执行完步骤S335后，执行步骤S336；

[0059] 步骤S336、设置成功，退出编辑状态；

[0060] 步骤S340、自定义编辑单个按键的外观；

[0061] 步骤S341、自定义按键的形状和颜色；

[0062] 步骤S343，拖延操作；通过接收用户对按键的拖拽操作，改变按键的长和宽，根据用户的需求调整到合适的小，进而定义键的形状和大小。当然还可以当电子终端接收到重新定义按键外观的操作指令时，生成一个按键变控件，通过按键变控件的形状和大小，例如将方形按键改为圆形按键或者椭圆形按键等等，操作方式并不限于此，还可以有其他的设置方式，设置完成后执行步骤S336，退出编辑状态。

[0063] 通过对接解析图表的方式自定义单个按键的输出符号，可以使用用户在编辑时随时拖拽按键到指定的界面上，方便定义其界面的元素为按键输出符号，只要是能够显现出来的图表符号等等都可以被用户通过解析作为按键的输出符号，增强了按键的输出能力，以及按键的个性化设置。

[0064] 在对整个虚拟键盘（全键盘）进行自定义编辑时，对全键盘进行统一的编辑，主要是为了方便用户获取统一视觉的效果。可以通过长时间触摸点击虚拟键盘的底板或者其他途径触发。

[0065] 如图4所示，对虚拟键盘的全键盘进行的自定义编辑包括以下步骤：

[0066] 步骤S410、自定义编辑全键盘；对全键盘的自定义编辑分为两种，一种是对按键物理属性的编辑，此时，由用户选择执行步骤S420，一种是对虚拟键盘透明度和颜色等的设置，此时执行步骤S430；

[0067] 步骤S420，改变按键物理属性；按键物理属性包括按键的外观、按键数量以及按键位置等等，所以对按键物理属性进行编辑时通过用户选择执行下面步骤S421、S422和S423；

[0068] 步骤S421，统一更换所有按键的外观；统一更换所有按键的外观主要是统一数按键的颜色，也可以是改变皮肤功能；

[0069] 步骤S422，增减按键数量；在增减按键数量时，可以在虚拟键盘中设置增减控件，通过用户操作所述增减控件产生的增减信号，增加或删除虚拟键盘中按键的数量，增减控
件包括删除控件和增加按键控件，通过用户点击操作这些控件实现对按键的删除和增加，按键增加的数量根据用户使用情况而定。

步骤S423、改变按键位置；电子终端会生成一位置控件，用于根据用户操作移动虚拟键盘中按键以改变其位置，对按键位置的改变可以是单个按键，也可以是一个区域内的按键，依用户习惯而定，增加用户设置的自由度。

步骤S430、设置按键底板透明度和颜色；对底板透明度和颜色的设置时，可以将透明度分为几个等级，比如设置透明度从0%~100%，颜色包括全色彩，具体设置可根据环境或者用户习惯由用户自定义设置。

优选地，通过本发明的上述步骤对虚拟键盘进行自定义编辑或设置后，为了便于后续使用，将自定义编辑或设置后的方案以文件数据包的形式存储在电子终端中，形成不同的方案，电子终端可以根据用户操作调取本地存储的虚拟键盘方案替换现有的虚拟键盘方案，实现虚拟键盘方案的切换，免去了每次使用都要重新设置的麻烦，而且这些方案数据包可以通过网络供他人使用，另外这些对虚拟键盘的自定义方案也可以从网络中下载，替换现有的虚拟键盘方案，使虚拟键盘的方案不仅可以自己使用还可以与他人分享，利于虚拟键盘方案的推广，提高市场竞争力。

基于上述自定义电子终端的虚拟键盘的方法，本发明还提供了一种自定义电子终端的虚拟键盘的系统，如图5所示，包括

判断模块10，用于判断用户对虚拟键盘的触摸操作时间；

开启模块20，用于所述判断模块10判断出触摸操作时间超过预定时间时开启对虚拟键盘的编辑状态；

编辑模块30，用于所述开启模块20开启对虚拟键盘的编辑状态后读取本地的虚拟键盘方案，或从网络中获取虚拟键盘方案，或对虚拟键盘进行自定义编辑并保存自定义编辑后的虚拟键盘方案。

进一步地，如图6所示，所述编辑模块30还包括：

单按键编辑模块31，用于开启模块20开启对单按键的编辑状态时对所述单个按键进行按键输出符号和按键外观的编辑；

全键盘编辑模块32，用于开启模块20开启对整个虚拟键盘的编辑状态时编辑所有按键的外观，或修改按键的数量及布局，或设置按键底板透明度及颜色。

进一步地，所述单按键编辑模块31还包括：

输出符号编辑模块311，用于从本地符号库读取符号作为所述单个按键的输出符号；或者将电子终端获取的图片进行解析并将解析后的图形作为所述单个按键的输出符号。

按键外观编辑模块312，用于根据用户操作控制改变单个按键的形状和大小。

所述全键盘编辑模块32还包括：

按键修改模块321，用于通过用户操作增加或删除虚拟键盘中的按键以改变虚拟键盘中按键的数量，以及移动所述虚拟键盘中按键以改变按键在所述虚拟键盘中的位置。

本发明所提供的自定义电子终端的虚拟键盘的方法及系统，主要方法包括：接收用户对虚拟键盘的触摸操作，并判断触摸操作时间；如果触摸操作时间超过预定时间，则开启对虚拟键盘的编辑状态；读取本地的虚拟键盘方案，或从网络中获取虚拟键盘方案，或对
虚拟键盘进行自定义编辑并保存自定义编辑后的虚拟键盘方案。本发明能够通过对虚拟键盘中单个按键的输出符号和外观以及整个键盘的透明度等进行自定义编辑，使电子设备增加对虚拟键盘进行自定义的新功能，能够实现虚拟键盘的个性化设置，满足用户的不同需求，不仅方便了用户使用，而且还增强了用户体验。

【0086】应当理解的是，本发明的应用不限于上述的举例，对本领域普通技术人员来说，可以根据上述说明加以改进或变换，所有这些改进和变换都应属于本发明所附权利要求的保护范围。
接收用户对虚拟键盘的触摸操作，并判断触摸操作时间

如果触摸操作时间超过预定时间，则开启对虚拟键盘的编辑状态，执行步骤S300

读取本地的虚拟键盘方案或从网络中获取虚拟键盘方案，替换现有的虚拟键盘方案；或对虚拟键盘进行自定义编辑并保存自定义编辑后的虚拟键盘方案

图1

虚拟键盘设置

自定义编辑

单个按键设置

设置成功，退出编辑状态

图2
图3
图6