A 0 0 OO

02/088975 Al

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date

(10) International Publication Number

7 November 2002 (07.11.2002) PCT WO 02/088975 Al
(51) International Patent Classification’: GOG6F 13/42, (81) Designated States (national): AE, AG, AL, AM, AT, AU,
13/40 AZ,BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,
CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
(21) International Application Number: PCT/CA02/00634 GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC,
LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
. . . MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG,
(22) International Filing Date: 24 April 2002 (24.04.2002) SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ,
VN, YU, ZA, ZM, ZW.
(25) Filing Language: English
(84) Designated States (regional): ARIPO patent (GH, GM,
(26) Publication Language: English KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),

(30) Priority Data:

2,345,596 27 April 2001 (27.04.2001) CA

(71) Applicant (for all designated States except US): ICRON
TECHNOLOGIES CORP. [CA/CA]; Suite 402, 4370
Dominion Street, Burnaby, British Columbia V5G 41.7
(CA).

(72) Inventor; and

(75) Inventor/Applicant (for US only): MCLEOD, John,
Alexander [CA/CA]; 13180 - 20A Avenue, Surrey, British
Columbia V4A 8Z1 (CA).

(74) Agents: GOWAN, Gerald, A. et al.; Marks & Clerk, Suite
402, 350 Burnhamthorpe Road West, Mississauga, Ontario
L5B 3J1 (CA).

Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR,
GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent
(BE, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR,
NE, SN, TD, TG).

Published:
with international search report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Titlee METHOD AND APPARATUS FOR EXTENDING THE RANGE OF THE UNIVERSAL SERIAL BUS PROTOCOL

A1

r3a

3b
_/f- Jf 3¢ Jf 3d

_J/
Hub/Host PC

Device

Device Device Device

~
N
[

N

9

/6

LEX

Y

REX-FPGAT

REX-Hub 7}

REX

(57) Abstract: The present invention provides a method and apparatus to be used to extend the range of standard USB devices, and
in particular, USB devices operating in accordance with Revision 2.0 of the USB Specification. An extended range hub is provided
which comprises a Local Expander (LEX) and a Remote Expander (REX) which can be separated by up to, for example 100 meters.
The LEX and REX operate in accordance with an enhanced high-speed USB Extended Range Protocol (USB-ERP) which permits
USB devices to be more conveniently located and used, and is in compliance with Revision 2.0 of the USB Specification.

10

15

20

25

30

35

WO 02/088975 PCT/CA02/00634

Method and Apparatus for Extending the Range of the Universal Serial Bus Protocol

Fieid of Invention

This method and apparatus relates to transmitting‘signals between devices using Universal
Serial Bus ports, and in particular, to allowing communications between devices using such ports
over an extended range.

Description of the Related Art

Universal Serial Bus (USB) is a peripheral interface for attaching personal computers to a
wide variety of devices, such as, for example, digital telephone lines, monitors, modems, mice,
printers, scanners, game controllers, keyboards, and the like. The creation of USB is a
collaborative effort of seven of the largest companies in the computer and communication industry:
namely Intel, Compaq, Microsoft, NorTel, NEC, Digital and IBM. The specifications defining USB
(e.9. Intel et al., Universal Serial Bus Specification, Revision 1.0, January 1996; and updated as
Revision 1.1 in September 1998, and further updated as Revision 2.0 in April 2000, and
subsequent updates and modifications — hereinafter collectively referred to as the "USB
Specification”, which term can include future modifications and revisions) are non-proprietary and
are managed by an open industry organization known as the USB Forum. The USB Specification
establishes the basic criteria that must be met in order to comply with USB standards. The USB
Specification also defines a number of terms and their definitions. These terms and definitions are
to be used for the purposes of this specification, unless otherwise stated.

As an example, it is a requirement of Revision 1.0 of the USB Specification that a single
USB domain shall support up to 127 devices operating over a shared medium providing a
maximum bandwidth of 12 Mbps. Revision 2.0 increases the maximum bandwidth to 480 Mbps
while maintaining compatibility with devices manufactured under the criteria of Revision 1.1; - thus
demonstrating ongoing modification of the USB Specification. Under the USB Specification, a Host
Controller that supports only a maximum signalling rate of 12 Mbps is referred to as a full-speed
host and the transmission of signals from such a host controller is restricted to a full-speed bus. A
Host Controller that supports a signalling rate of 480 Mbps is referred'to as a high-speed host and
said host controller transmits its signals on a high-speed bus. A full-speed Host Controlier under
the USB Specifications supports two classes of devices, namely, low-speed and full-speed devices.
A high-speed Host Controller conforming to the USB Specifications supports three classes of
devices, namely, low-speed, full-speed, and high speed devices. Low-speed devices have a

10

15

20

25

30

35

40

WO 02/088975 PCT/CA02/00634

-2-

maximum signalling rate of 1.5 Mbps, full-speed devices have a maximum signalling rate of 12
Mbps, and high-speed devices have a maximum signalling rate of 480 Mbps.

Under the current USB Specifications, including Revision 2.0, the distance that a device
can be separated from its host PC is limited to 5 meters. By using a series of USB Hubs — devices
that are intended to support increased populations rather than increased distances ~ this distance
limitation can be increased, in theory, to 30 meters. Using five hubs and six 5-meter cables, placed
between the hubs, to support a single device at a range of 30 meters is an expensive and clumsy
solution since hubs are currently priced at about $50 US each and at least two of the five hubs
must be provided with electrical power under this extension method. In addition, using standard 5-
meter cables between hubs would mean that some hubs might have to be placed in insecure and
inconvenient locations.

There is therefore a need for methods and apparatus to allow USB devices to be
positioned at greater distances from the host PC. For example, an uninterrupted distance of at
least 100 meters is required for compatibility with the standards governing the cabling of
commercial buildings (see, for example, TIA-568-A, Commercial Building Telecommunication
Cabling Sténdard, Telecommunications Industry Association, October 1995). Providing for an
extended range capability would also create new applications for USB devices as well as faclilitating
existing ones. For example, a simple residential or SOHO (small office, home office) surveillance
system could be constructed by connecting consumer quality cameras to a central PC. An
overhead mounted monitor could be monitored from any office in a commercial building. Many
other applications are possible.

Currently, the USB Specifications do not permit the use of extended ranges.

It also is a further requirement of the USB Specification that the access of each device to
the shared communications bus is controlled by a single Host Controller. It is also specified that
when a full-speed Host Controller instructs a particular device to place its information on to the
shared bus, the requested information must be received by the Host Controller within 16 full-speed
bit-times of said Host Controller issuing said instruction. Similarly, when a high-speed Host
Controller instructs a particular device to place its information on to the shared bus, the requested
information must be received by the Host Controller within 736 high-speed bit-times of said Host
Controller issuing said instruction. Restriction on the response time ensures that the USB
Specification provides for a high efficiency of bandwidth utilization by limiting the period during
which no'information is being transmitted. However, these requirements also limit the physical
range of USB devices since one bit-time at 12 Mbps, which is one full-speed bit-time, is equivalent
to the time taken for an electronic signal to traverse approximately 17 meters of copper cable. One
bit-time at 480 Mbps, which is one high-speed bit-time, is equivalent to the time taken for an
electronic signal to traverse approximately 440 millimeters of cable.

Further, although the USB device must respond to a request from the full-speed Host
Controller within 16 full-speed bit-times, 7.5 full-speed bit-times is allocated for delay within a full or
low-speed USB device and its associated 5 meter cable. This allocation retains only 8.5 full-speed
bit-times at 12 Mbps for additional cable delay. The time represented by 8.5 full-speed bit-times is

WO 02/088975 PCT/CA02/00634

10

15

20

25

30

35

40

-3

equivalent to the delay incurred by electronic signals in traversing approximately 144 meters of
cable. The distance travelled within the allowed time span for full-speed is insufficient to satisfy the
round trip cable length of 200 meters required by the premise cabling specification.

For the high-speed Host Controller, a device must respond to the Host Controlier within
736 high-speed bit-times and 217 high-speed bit-times of the restricted response time of 736 high-
speed bit-times is allocated for delay within a high-speed USB device and its 5 meter cable. This
allocation, thus, retains 519 full-speed bit-times at 480 Mbps for additional cable delay. The time
represented by 519 high-speed bit-times represents a distance of 227 meters of cable. However,
according to the USB Specifications, a high-speed hast must also support full and low-speed
devices which operate under the full-speed bus. The time allocated for delay within a full or low-
speed USB device and its associated 5 meter cable is 7.5 full-speed bit-times which is equivalent
to 300 high-speed bit-times. Therefore, in the case where data is transferred between a high-
speed host and a full or low-speed USB devicé, only 436 bit-times is retained for additional cable
delay. The time represented by 436 bit-times at 480 Mbps is equivalent to a cable distance of 190
meters. in order to maintain compatibility with full and low-speed devices, the maximum cable
length for high speed is then restricted to 190 meters which does not meet the specified round trip
cable length of 200 meters.

Itis a further feature of the USB Specification that the USB Specification (or protocol)
partitions access to the shared bus into discrete units known as “frames”, for a full-speed host, and
“microframes”, for a high-speed host. The duration of a frame is 1ms while that of a microframe is
125,s. Eight microframes are equivalent to one frame.

Further, the USB Specification also requires that at least four separate types of data
streams or “traffic” are recognized, namely isochronous transfers, control transfers, interrupt
transfers, and bulk transfers.

Isochronous data transfer is characterized as being a data transfer wherein data flows
essentially continuously, and at a steady rate, in close timing with the ability of the receiving
mechanism to receive and use the incoming data. Thus, isochronous transfers are considered to
be “time-relevant”.

This type of data transfer is distinguished from asynchronous data transfer, which pertains
to processes that proceed independently of each other until a dependent process has to “interrupt’
the other process, and synchronous data transfer, which pertains to processes in which one
process has to wait on the completion of an event in another process before continuing. These
data transfer methods are said to be non-time-relevant. Instead, a correct response to any request
is required. |

In our co~pending PCT patent application No. PCT/CA00/00157 (published as
WO00/49507 on August 24, 2000), herein incorporated by reference, a system for extending the
range of the USB protocol is described which allows for cable distances of over 100 meters to be
achieved for connecting USB devices.

For the purposes of the present invention, this previous method will hereinafter be referred
to, in general, as the "USB Extended Range Protoco!”". This USB Extended Range Protocol (USB-

10

15

20

25

30

35

40

WO 02/088975 PCT/CA02/00634

-4

ERP) provides a method for extending the distance between USB devices to distances over 100m,
and which is in compliance with all sections of Revision 1.0 of the USB Specifications, and any
earlier versions, with the exception of distances between devices.

Using this method, in one feature, the data stream was an isochronous data stream, and in
more general terms, was a time relevant data siream, wherein the first or the subsequent original,
outgoing digital signal was a request for time-relevant data, and preferably, for an isochronous data
stream.

Also, it was stated that the digital signal is stored. This storage period, and any other
storage period referred to in the present specification, may be a very short time period. For
example, in the case where the reply signal is received in time to respond to the original digital, the
reply signal may be immediately forwarded with minimal storage time.

Further, it was stated that the digital signals might be converted to signals which are more
suitable for transmission, and the transmission signals can be converted back to digital signals, on
both the outgoing and incoming signals. This optional conversion step is only necessary if the
digital signals are converted, for some reason, for transmission purposes. Otherwise, the digital _
signals can be sent in their original form. For the purposes of the present specification, it should be
understood, however, that the digital signals may be converted for transmission purposes, but they
will preferably be converted back to the same, or a similar digital signal, when required.

Devices operating using the USB-ERP have met with commercial success. However, while
the methods and devices described according to the USB-ERP have been useful, modifications to
the USB Specification have made enhancement of the USB-ERP desirable. Thus, the improved or
modified features of the current USB Specifications, namely USB 2.0, require some enhancement
of the previously described system in order to achieve optimum performance. In view of these
modifications, the system previously described in PCT application No. PCT/CA00/00157, while
providing acceptable performance, could benefit from providing additional enhancements to
improve performance when high-speed devices are being used.

For example, in the current USB Specifications, the host controller may inquire about the
availability of space at a high-speed device endpoint using a PING special token. This mechanism
allows the host to wait until there is enough space at the device endpoint before transmitting
subsequent data packets. The PING protocol reduces the amount of wasted bandwidth that is
associated with downstream transfers of control and bulk data when the endpoint is not capable of
accepting data. The PING protocol is only valid for bulk and control data transfers between a high-
speed host and a high-speed device wherein data flows from the host to the device. PING special
tokens are transmitted in the same manner as a normal token packet. Also, the current revision of
the USB Specification requires compatibility between hosts and devices which were manufactured
in accordance with the different USB Specification Revisions. For example, a high speed host must
still be able to operate when using a full speed or low speed device.

Thus, it would still be desirable to provide further improvements to the technology by
providing a method and apparatus for enabling data transmission equipment, and in particular, time
relevant or non-time-relevant data transmission equipment utilizing the USB Specification, to be

WO 02/088975 PCT/CA02/00634

10

15

20

25

30

35

40

-5-

used over an extended range. Accordingly, the current invention therefore again uses the
fundamental characteristics of isochronous and asynchronous data transfer, and more generally
any time relevant or non-time-relevant data transmission, and the existence of regular protocol
frames and microframes in order to provide methods and apparatus to enable data transmission
over extended distances.

Itis, therefore, an object of the present invention to provide methods and apparatus to
enable devices, hubs and controllers and other devices that conform to the USB Specification to
communicate over distances greater than that currently permitted under said USB Specification.

It is a further object of the present invention that the extended range be achieved without
the need for intermediate hubs, repeaters or other methods of electronic signal regeneration.

It is a further object of the present invention that no hardware or software changes need to
be made to the existing devices, hubs, and controllers supported by the system, and in particular,
to either the isochronous or asynchronous systems operating under the USB Specification. The
invention, thereby, may be incorporated into networks composed of both conventional range and
extended range devices. '

Itis a further object of the present invention that the apparatus be very cost effective,
consistent with the broadest population of devices targeted by the USB industry.

These and other objects of the invention, which will become apparent herein, are fully, or at
least partially attained by the present invention as described hereinbelow.

Summary of the Invention

Enhancement of the USB-ERP, previously disclosed is therefore desired. Accordingly, the
present invention provides an enhanced high-speed method for transmitting a data stream
between a host controller and a peripheral device over an extended distance in accordance with
the USB Extended Range Protocol (hereinafter the “USB-ERP”), wherein said method additionally
comprises modifications to allow for compliance with Revision 2.0 of the USB Specifications.
Preferably, these enhancements include, in general: providing range extension between high
speed devices, while maintaining compatibility between High-Speed devices and Full Speed or Low
Speed devices; providing improved ability to handle interrupt, control, bulk and isochronous
transfers according to Revision 2.0; and/or providing the ability to handie PING protocols.

Accordingly, the present invention provides an enhanced high-speed method of
transmitting a data stream, with modifications to allow for compliance with Revision 2.0 of the USB
Specification, wherein said enhanced high-speed USB-ERP comprises:

a. feeding a first original, outgoing digital signal from a host controller to a local expander unit;

b. optionally converting said outgoing digital signal into a converted outgoing signal having a
format suitable for transmission over extended distances; ‘

c. transmitting either said outgoing digital signal or said converted outgoing signal, as an
outgoing transmission signal, over a signal distribution system;

d. receiving said outgoing transmission signal at a remote expander unit;

WO 02/088975 PCT/CA02/00634

10

15

20

25

30

35

-6 -

e. optionally converting said outgoing transmission signal to said first original outgoing digital
signal;

f. delivering said first original outgoing digital signal from said remote expander to at least
one peripheral device;

g. receiving, at said remote expander, a reply digital signal from said peripheral device;

h. optionally converting said reply digital signal into a converted reply signal having a format
suitable for transmission over extended distances;

I. transmitting said reply digital signal or said converted reply signal as a reply transmission
signal over said signal distribution system;

j- receiving said reply transmission signal at said local expander;

k. optionally converting said reply transmission signal to said original reply digital signal;

. storing said reply digital signal as a stored reply digital signal until the receipt of a
subsequent original, outgoing digital signal from said host controller, which subsequent
signal’is the same as, or similar to, said first original outgoing digital signal; and

m. forwarding said stored reply digital signal to said host controller in response to said
subsequent original outgoing digital signal.

The phrase "enhanced high-speed” is preferably to be used to state that the USB-ERP
operates in accordance with Revision 2.0 of the USB Specification (other than for separation
distances between devices). This method can, therefore, allow for the speed advantages of high
speed host controllers and/or high speed devices to be utilized.

With respect to isochronous transfers, or more generally, time relevant data streams, the
enhanced high-speed USB-ERP method of the present invention allows for the transfer of
isochronous data from vboth hosts and devices at the higher transfer rates allowed under Revision
2.0, and thus permits the high transfer rates of high speed devices and host controllers to be
utilized.

Thus, the present invention also provides an enhanced high-speed method as described
hereinabove, which method provides for the transmission of isochronous data according to
Revision 2.0 of the USB Specification wherein isochronous data is transmitted from a peripheral
device and is received by a host controller, said method comprising:

a. transmitting a request for isochronous data from a host controller to a local expander;

b. forwarding said request for isochronous data from said local expander to a remote
expander over a signal distribution system;

c. delivering said forwarded request for isochronous data to at least one peripheral
device;

d. transmitting the requested isochronous data from said peripheral device to said

remote expander;

e. forwarding said requested isochronous data from said remote expander to said local
expander over said signal distribution system;

f. storing said requested isochronous data in a packet buffer at said local expander;

10

15

20

25

30

35

40

WO 02/088975 PCT/CA02/00634

-7 -
g. transmitting a subsequent request for isochronous data from said host controller to
said local éxpander;
h. receiving said subsequent request for isochronous data at said local expander; and

[. retrieving the stored isochronous data from said local expander;

Il. delivering said stored isochronous data to said host controller;

1. forwarding said subsequent request for isochronous data from said local expander to
said remote expander over said signal distribution system; and _

IV. repeating steps (c) through (h) for said subsequent request and any further
subsequent requests for isochronous data.

Additionally, the method of the present invention also provide a method as described
hereinabove, wherein said method provides a method for transmission of isochronous data
according to the USB Specification wherein isochronous data is transmitted from a host controller
and is received by a peripheral device, said method comprising:

a) receiving, at a local expander, an original notification of isochronous a host controller;

b) forwarding said original notification of isochronous data from said local expander to a
remote expander over signal distribution system;

c) receiving, at a remote expander, said forwarded original notification of isochronous
data;

d) delivering said forwarded notification of asynchronous data to at least one peripheral
device;

e) receiving, at a local expander, an original isochronous data packet from a host
controller;

f) forwarding said original isochronous data packet from said local expander to a remote
expander over a signal distribution system;

g) receiving, at a remote expander, said forwarded original isochronous data packet;
and

h) delivering said forwarded original isochronous data packet to at least one peripheral
device.

Yet still further, the present invention also provides a method as described hereinabove
wherein additionally comprising the following steps after step (b), namely:
i, Determining whether said local expander already possesses said requested
isochronous data;
ii. Generating a synthetic data packet if no such requested isochronous data is
present; and
ii. Delivering said synthetic isochronous data to said host controller.

Also, the method of the present invention provides a method as described hereinabove
additionally comprising the following steps after step (b), uniquely for data transfers conforming to

WO 02/088975 PCT/CA02/00634

10

15

20

25

30

35

40

-8-

the USB Specifications wherein data is transmitted from a high-speed host and is received by a
full-speed device, namely:
i) Determining whether said local expander already possesses said requested
isochronous data;
i) Generating a synthetic not-yet packet if no such requested isochronous data is
present; and
i) Delivering said not-yet packet to said host cdntroller.

With respect to non-time-relevant data streams, and in particular, asynchronous data
streams, the present invention provides an enhanced high-speed method for transmission of
asynchronous data according to the USB Specification wherein asynchronous data is transmitted
from a peripheral device and is received by a host controller, said method comprising:

a) receiving, at a local expander, an original request for asynchronous data from a host
controller;

b) forwarding said original request for asynchronous data from said local expander to a
remote expander over a signal distribution system;

c) - receiving, at a remote expander, said forwarded original request for asynchronous
data;

d) delivering said forwarded original request for asynchronous data from said peripheral
device; . '

e) receiving, at said remote expander, the requested asynchronous data from said
peripheral device;

f) forwarding said requested asynchronous data from said remote expander to said
local expander over said signal distribution system;

g) storing, in a packet buffer at said local expander, said requested asynchronous data;

h) receiving, at said local expander, a subsequent request for asynchronous data from
said host controller; and

i) retrieving the stored asynchronous data from said packet buffer;

ii) ' delivering said retrieved asynchronous data to said host controller;

i) receiving, at said local expander, an outgoing acknowledgment signal from said host
controller;

j) absorbing, at said local expander, said outgoing acknowledgement signal.

Further, the present invention also provides a method as described hereinabove
additionally comprising the following steps after step (b), namely:

i) Determining whether said local expander already possesses said requested
asynchronous data;

if) Generating a negative acknowledgement packet if no such requested
asynchronous data is present; and

iif) Delivering said negative acknowledgement packet to said host controller.

WO 02/088975 PCT/CA02/00634

Still further, the present invention provides a method as described hereinabove additionally
comprising the following steps after step (b), generally for high bandwidth data transfers
conforming to the USB Specifications wherein data is transmitted from a high-speed host and is

5 received by a high-speed device, namely:
a. Determining whether said local expander already possesses said requested
asynchronous data;
b. Generating a synthetic data packet if no such requested asynchronous data is
present; and
10 c. Delivering said synthetic asynchronous data to said host controller.

When data is transmitted from a high-speed host, and is received by a low-speed or full-
speed device, the method of the present invention also provides the following steps after step (b),
uniquely for data transfers conforming to the USB Specifications wherein data is transmitted from a
15 high-speed host and is received by a low-speed or full-speed device, namely:
a. Determining whether said local expander already possesses said requested
asynchronous data;
b. Generating a synthetic not-yet packet if no such requested asynchronous data is
present; and '
20 C. Delivering said synthetic not-yet packet to said host controller.

Further, the method can also comprise the following steps after step (e), namely:
i) generating an acknowledgement packet at said remote expander; and
ii) delivering said acknowledgement packet to said peripheral device.
25 ‘

Interrupt transfers, control transfers, and bulk transfers are all categorized by the USB
Specifications as types of asynchronous data transfer, and are all non-time-relevant data streams
However, the main characteristic that distinguishes interrupt transfers from control transfers and
bulk transfers is periodicity. For example, in accordance with the USB Specification, Revision 2.0,

30 interrupt transfers have guaranteed bandwidth on the shared bus and therefore can occur at
regular time intervals. However, control transfers and bulk transfers can occur any time and can
take place when the shared bus has unoccupied bandwidth. Control transfers have very little
guaranteed bandwidth on the shared bus. Bulk transfers have no guaranteed bandwidth.
Therefore, bulk transfers have the lowest priority on the shared bus and only take place when there

35 is available bandwidth after the bandwidth required by all the other transfers has been accounted
for.

Control transfers are characterized by having three transfer phases for transmitting each
set of inbound or outbound data and said transfer phases are: the set-up phase, the data phase,
and the status phase.

WO 02/088975 PCT/CA02/00634

10

15

20

25

30

35

40

-10-

With respect to control and bulk transfers, which are treated as two special cases of
asynchronous transfers wherein data requests from the host controller are generated non-
periodically or on an as-needed basis, the invention provides a enhanced high-speed USB-ERP
additionally comprising the following step after determining whether the local expander already
possesses said requested asynchronous data, namely:

a. Absorbing at said local expander said subsequent request for asynchronous data.

For the purposes of the present invention, the term “absorbing” is used to describe a
process wherein the software recognizes that the information stored is not essential, or is no longer
essential, and therefore simply removes the information from storage without passing it on to any
further devices.

For interrupt transfers, which are a special case of asynchronous transfers wherein data
requests from the host controller are generated periodically, the present invention also provides a
method according to an enhanced high-speed USB-ERP additionally comprising the following
steps after step (h) above, uniquely for interrupt data transfers wherein asynchronous data is
transmitted from a peripheral device and is received by a host controller, namely,

a. Forwarding said subsequent request for asynchronous data from said local
expander to a remote expander over a signal distribution system;

b. Delivering said forwarded subsequent request for asynchronous data from said
remote expander to said peripheral device; and

c. Receiving, at said remote expander, the requested asynchronous data from said
peripheral device.

In a preferred embodiment, the present invention also provides a method as described
hereinabove with respect to the present invention, which provides an enhanced high-speed USB-
ERP method for transmission of asynchronous data according to the USB Specification, wherein
asynchronous data is transmitted from a host controller and is received by a peripheral device, said
method comprising: 4

a) receiving, at a local expander, an original notification of asynchronous data from a

host-controller;

b) forwarding said original notification of asynchronous data from said local expander

to a remote expander over a signal distribution system;

c) receiving, at a remote expander, said forwarded original notification of

asynchronous data;

d) delivering said forwarded notification of asynchronous data to at least one

peripheral device;

e) receiving, at a local expander, an original asynchronous data packet from a host

controller;

f) forwarding said original asynchronous data packet from said local expander to a

remote expander over a signal distribution system;

10

15

20

25

30

35

WO 02/088975 PCT/CA02/00634

-11 -
) receiving, at a remote expander, said forwarded original asynchronous data
packet;
h) delivering said forwarded original asynchronous data packet to at least one
peripheral device;
i) receiving, at said remote expander, an inbound acknowledgment packet from said
peripheral device;
i forwarding said inbound acknowledgment packet from said remote expander to

said local expander over said signal distribution system,;

K) storing, in a packet buffer at said local expander, said inbound acknowledgment
packet;
l) receiving, at said local expander, a subsequent notification of asynchronous data

from said host controller;
m) receiving, at said local expander, a subsequent asynchronous data packet from
said host controller; and
i) retrieving said stored inbound acknowledgment packet from said packet
buffer; and
ii) delivering said retrieved inbound acknowledgment packet to said host
controller.

In a further preferred embodiment, the method described hereinabove additionally
comprises the following steps, namely:

i) Determining whether said local expander already possesses said inbound
acknowledgment packet;

ii) Generating a negative acknowledgment packet if no such inbound
acknowledgment packet is present; and

iii) Delivering said negative acknowledgment packet to said host controller.

For interrupt transfers, the invention provides the following steps after steps I) aﬁd m)
described hereinabove, namely:

a. Forwarding said subsequent notification of asynchronous data and asynchronous data
packet from said local expander to a remote expander over a signal distribution system;

b. Delivering said forwarded subsequent notification of asynchronous data and asynchronous
data packet to said peripheral device; u

c. Receiving, at said remote expander, the inbound acknowledgement packet from said
peripheral device,

d. Repeating steps (j) through (m) for said subsequent notification and data packet and any
further subséquent notifications of asynchronous data and asynchrpnous data packets.

For control and bulk transfers, the invention provides the following steps after steps) and

40 m) described hereinabove, namely:

WO 02/088975 PCT/CA02/00634

10

15

20

25

30

35

40

-12 -

a. Absorbing at said local expander said subsequent notification of asynchronous data and
said subsequent asynchronous data packet.

With respect to both time-relevant and non-time relevant data streams, a guard time can
be imposed after a data packet is transmitted from a remote expander to a USB device, which
guard time is set to a value that is dependent upon the transfer type of said transmitted data
packet, said method comprising:

(a) Receiving, at a remote expander, an outbound data packet,

(b) Determining, at a remote expander, the transfer type of said outbound data packet,

(c) Forwarding said outbound data packet from said remote expander to a USB
device, ‘

(d) Setting the value of a transmission guard timer to a value that is dependent upon

said determined transfer type; and
(e) Inhibiting further outbound transmissions until said guard timer has expired.

In an additional feature, the present invention also provides a method as described
hereinabove with respect to the present invention, wherein said method provides an enhanced
high-speed USB-ERP method for handling the PING flow control protocol, which is used uniquely
for control and bulk data transfers wherein asynchronous data ié transmitted from a high-speed
host to a high-speed device, said method comprising:

a) receiving, at a local expander, a PING flow control probe from a host controller;

b) forwarding said flow control probe from said local expander to a remote expander over

a signal distribution system;

c) receiving, at a remote expander, said forwarded flow control probe;

d) delivering said forwarded flow control probe to at least one high-speed peripheral

device;

e) receiving, at remote expander, the requested reply from said peripheral device;

f) receiving, at local expander, said requested reply;

g) storing, in a packet buffer at said local expander, said requested reply;

h) receiving, at said local expander, a subsequent PING flow control pfobe from said host

controller; and
i) retrieving said stored reply from said packet buffer;
ii) delivering said retrieved reply to host controller,
i) absorbing, at said local expander, said subsequent flow control probe.

In a preferred feature, the method also provides the following additional steps after step (b)
described hereinabove, namely:

i) Determining whether said local expander already possesses said requested reply;

ii) Generating a negative acknowledgement packet if no such requested reply is
present;

WO 02/088975 PCT/CA02/00634

-13 -

iii) Delivering said negative acknowledgement packet to said host controller.

Additionally, the present invention provides apparatus which are capable of providing the

- processing logic described hereinabove.

10

15

20

25

30

35

Description of the Preferred Embodiments

Although a number of signal distribution systems may be used, as described hereinabove,
preferably the signals are transmitted over a signal distribution system that utilizes fibre optic
cabling. Using this method of device connection provides a low cost and effective means for data
transmission. However, in another embodiment of the system, signals can be transmitted over
coaxial cable, Unshielded Twisted Pair (UTP) cable or wire, shielded cable, or wifeless
transmission methods.

While the methods and apparatus of the present invention have general utility in a variety
of applications, it is of priméry importance that the data transmission methods and apparatus of the
present invention allow for compliance with the USB Specification (with the exception of the
distance requirements). In one embodiment, the original signal from the host controller is a
request for data from a peripheral device. The peripheral devices can include devices selected
from cameras, keyboards, mice, monitors, speakers, and the like.

For time relevant (isochronous) data streams, and in particular, during operations utilizing
the methods and apparatus of the present invention in applications involving extended range
transmissions, it is preferred that the apparatus be capable of recognizing isochronous transfers,
when they are received. The data contained within the isochronous transfer is then stored within
the system for a period of time.

Preferably, the data that is receive& during a particular time period may be stored and then
transmitted in a following time period. Additionally, a further preferred embodiment of the present
invention is that isochronous transfers originating from a plurality of sources may be stored, and
retransmitted.

In the operation of a preferred embodiment of the current invention, a host controller
(which preferably is a PC) may issue a request to a device for the transfer of isochronous data.
The request is received by the apparatus of the present invention, and retransmitted to the target
device. When the requested isochronous transfer response is received by the apparatus from the
target device, the isochronous data is stored within the internal memory of the apparatus. During a
subsequent time period, the host controller will again issue a request to the target device for the
transfer of isochronous data. The apparatus will again retransmit this request to the target device.
In addition, however, the apparatus recognizes that it currently has isochronous data from the
target device stored in its internal memory. The apparatus sends this data to the host controller
within the 16 full-speed bit-time margin in the case of a full-speed bus (or within the 736 high-speed
bit-time margin in the case of a high-speed bus) relevant to the current request within the time

WO 02/088975 PCT/CA02/00634

10

15

20

25

30

35

40

-14-

period. In this manner, the apparatus uses data collected in a previous time period to satisfy the
response time requirement of a current time period.

For time relevant data streams, the term “time period” preferably refers to a single “frame”
(1ms) in the case of a full-speed bus or “microframe” (125,s) in the case of a high-speed bus, as
defined in the USB Specification.

When a packet is received from the target device, and no further request for data is
received from the host controller, the last data packet or packets received and stored (hereinafter
the “vestigial® packets) are preferably removed from the system so that they are not transmitted
when and if a further request is received from the host controller. Preferably, this is achieved by
modification of the method described hereinabove by additionally comprising the following stages,
namely:

i) Detecting when a new time period has begun;

i) Examining the properties of each packet buffer;

iiiy Determining whether the data packet contained in said examined packet buffer has

been stored for at least the duration of one complete time period;

iv) Discarding said contained data packet if said contained data packet has been stored

for the duration of at least one complete time period; and

v) Repeating steps i) tHrough iv) for each packet buffer in the system.

In an alternative embodiment of the invention, the apparatus handles the first request for
the inbound transfer of isochronous data in a unique manner. This unique manner requires the
apparatus to generate its own synthetic inbound data packet.

It is possible that packets sent from the Remote Expander may not arrive at the Local
Expander in the order expected by the Local Expander. In order to avoid difficulties that might be
caused by this occurrence, the method of the present invention also preferably comprises the
following stages, namely:

1) Storing the address of the requested peripheral device at said remote expander
after the local expander has delivered the forwarded request for isochronous data;
and further comprising the following steps after transmitting the requested
isochronous data from the peripheral device to the remote expander, namely:

' a) Retrieving the address of said requested peripheral device at said remote
expander unit; and
b) Adding said retrieved address to said requested isochronous data.

With respect to non-time relevant data streams, and in particular, asynchronous data
signals, streams or transfers, it is preferred, during practice of the method, or during use of the
apparatus of the present invention, that the system be preferably capable of recognizing
asynchronous transfers, when they are received. The data contained within the asynchronous
transfer is then stored within the system for a period of time. Accordingly, the data that is received
during a particular time period may be stored and then transmitted in a following time period.

WO 02/088975 PCT/CA02/00634

10

15

20

25

30

35

40

-15 -

Additionally, a further preferred embodiment of the present invention is that asynchronous transfers
originating from a plurality of sources may be stored, and retransmitted.

In the operation of a preferred embodiment of the current invention with respect to a non-
time relevant data stream, and an asynchronous data stream in particular, a host controller may
issue a request to a device for the transfer of asynchronous data. The host controller must receive
a response to corresponding to the issued request within 16 full-speed bit-times in the case of a
full-speed bus (or 736 high-speed bit-times in the case of a high-speed bus) according to the USB
Specification. The request is received by the apparatus of the present invention, and retransmitted
to the target device. On receipt of an initial request, the apparatus generates and transmits a
synthetic data packet to the host in order to satisfy the response time restriction. When the
requested asynchronous transfer response is received by the apparatus from the target device, the
asynchronous data is stored within the internal memory of the apparatus. In the case where data
flows from the device to the host, the apparatus generates and transmits a synthetic
acknowledgment to the device on receipt of the response from the device. During a subsequent
time period, the host controller will again issue a request to the target device for the transfer of
asynchronous data. In addition, however, the apparatus recognizes that it currently has
asynchronous data from the target device stored in its internal memory. The apparatus sends this
data to the host controller within the amount of time specified by the USB Specification relevant to
the current request within the current time period. In the case where data flows from the device to
the host, the host generates an acknowledgment on receipt of the requested data and the
acknowledgment is absorbed by the apparatus. In this manner, the apparatus uses data collected
in a previous time period to satisfy the response time requirement of a current time period.

For interrupt data streams or transfers, a special case of asynchronous data streams or
transfers, the term “time period” preferably refers to a single “frame” (1ms) in the case of a full-
speed bus or “microframe” (125,s) in the case ofa high-speed bus, as defined in the USB
Specification. However, the term “time period” may also apply to a portion of a frame or
microframe, or a plurality of frames or microframes.

Furthermore, for interrupt data streams or transfers, subsequent requests for the transfer
of data generated by the host are retransmitted to the device by the apparatus.

For bulk or control data streams or transfers, two épecial cases of asynchronous data
streams or transfers, the term “time period” can refer to a portion of a frame or microframe, a
single frame or microframe, a plurality of frames or microframes, or the like. Said frame and
microframe are as defined in the USB Specification.

Furthermore, for bulk or control data streams or transfers, subsequent requests for the
transfer of data generated by the host are absorbed by the apparatus.

In the operation of a preferred embodiment of the current invention, a high-speed host
controiler may issue a PING control flow probe to a high-speed device, with control or bulk
endpoints, inquiring ébout the availability of space within the device for asynchronous data. The
control flow probe is received by the apparatus of the present invention, and retransmitted to the
target device. When the requested response is received by the apparatus from the target device,

10

15

20

25

30

35

WO 02/088975 PCT/CA02/00634

-16 -

the response is stored within the internal memory of the apparatus. During a subsequent time
period, the host controlier will again issue a PING to the target device inquiring about the availability
of space for asynchronous data. The apparatus will again retransmit this flow control probe to.the
target device. In addition, however, the apparatus recognizes that it currently has a response from
the target device stored in its internal memory. The apparatus sends this response to the host
controller within the 736 high-speed bit-time margin relevant to the current request within the time
period. In this manner, the apparatus uses data collected in a previous time period to satisfy the
response time requirement of a current time period.

In a preferred embodiment of either a time relevant or non-time relevant data transmission,
the extended distance exceeds 5 meters, more preferably, exceeds 30 meters, and still more
preferably, equals or exceeds 100 meters. In particular, the distance between the local expander
and the remote expander exceeds 5 meters, more preferably, exceeds 30 meters, and still more
preferably, equals or exceeds 100 meters.

AS with the prior art, the method of the present invention can be used in a system wherein
said host controller is a PC, and said peripheral device is, for example, a camera, a mouse, a
keyboard, a monitor or a speaker or speakers. The “host controller” is preferably a PC, as has
been previously stated. However, the host controller may also be part of a computer system, and
in particular, part of a networked computer system.

By utilizing the method and apparatus of the present invention, it is possible to have
transfer of time relevant data or non-time relevant data, and isochronous data or asynchronous
data in particular, over extended distances, and in particular over distances greater than specified
in the USB Specification.

However, other features of the present invention, as well as other objects and advantages
attendant thereto, are set forth in the following description and the accompanying drawings in which
like reference numerals depict like elements.

Brief Description of the Drawings

The invention, and various aspects thereof, will be described by reference to the attached
drawings wherein:

Figure 1 is a visual representation of a PC equipped with Extended Range Hub and USB
Devices;

Figure 2 is a schematic drawing of an embodiment of the invention designed to operate
using fibre optic cabling as a signal distribution system;

Figure 3 is a timing diagram showing isochronous transfers according to the USB protocol;

Figure 4 is a timing diagram showing isochronous transfers according to the current
invention;

Figure 5 is a schematic drawing of one embodiment of a Local Expander according to the
invention;

10

15

20

25

30

35

WO 02/088975 PCT/CA02/00634

-17-

Figure 6 is a schematic drawing of one embodiment of a REX-FPGA according to the
invention;

Figﬁre 7 is a sequence diagram showing an isochronous input transfer between a full-
speed host and a full-speed device according to the invention;

Figure 8 is a sequence diagram showing an isochronous output transfer between a full-
speed host and a full-speed device according to the invention;

Figure 9 is an algorithm for implementing isochronous input transfers between a full-speed
host and a full-speed device, at the Local Expander and Remote Expander, according to the
invention;

Figure 10 is an algorithm for implementing isochronous output transfers between a full- .
speed host and a full-speed device, at the Local Expander and Remote Expander, according to the
invention;

Figure 11 is a sequence diagram showing an isochronous input transfer between a high-
speed host and a full-speed device according to the invention;

Figure 12 is a sequence diagram showing an isochronous output transfer between a high-
speed host and a full-speed device according to the invention;

Figure 13 is a sequence diagram showing an isochronous input transfer between a high-
speed host and a high-speed device according to the invention;

Figure 14 is a sequence diagram showing an isochronous output transfer between a high-
speed host and a high-speed device according to the invention;

Figure 15 is a sequence diagram showing a high bandwidth isochronous input transfer
between a high-speed host and a high-speed device according to the invention;

Figure 16 is a sequence diagram showing a high bandwidth isochronous output transfer
between a high-speed host and a high-speed device according to the invention;

Figure 17 is a timing diagram showing interrupt transfers according to the USB protocol;

Figure 18 is a timing diagram showing interrupt transfers according to the current .
invention;

Figure 19 is a sequence diagram showing an interrupt input transfer betweeh a high-speed
host and a low-speed device according to the invention;

Figure 20 is a sequence diagram showing an interrupt output transfer between a high-
speed host and a low-speed device according to the invention;

Figure 21 is a sequence diagram showing an interrupt input transfer between a high-speed
host and a high-speed device according to the invention;

Figure 22 is a sequence diagram showing an interrupt output transfer between a high-
speed host and a high-speed device according to the invention;

Figure 23 is a sequence diagram showing a high bandwidth interrupt input transfer
between a high-speed host and a high-speed device according to the invention;

Figure 24 is a sequence diagram showing a high bandwidth interrupt output transfer
between a high-speed host and a high-speed device according to the invention;

WO 02/088975 PCT/CA02/00634

10

15

20

25

30

35

40

-18 -

Figure 25 is a timing diagram showing control and bulk data transfers according to the
USB protocol;

Figure 26 is a timing diagram showing control and bulk data transfers according to the
current invention;

Figure 27 is a sequence diagram showing a control input transfer between a high-speed
host and a low-speed device according to the invention;

Figure 28 is a sequence diagram showing a control output transfer between a high-speed
host and a low-speed device according to the invention;

Figure 29 is a sequence diagram showing a control input transfer between a high-speed
host and a high-speed device according to the invention;

Figure 30 is a sequence diagram showing a control output transfer between a high-speed
host and a high-speed device according to the invention;

Figure 31 is a sequence diagram showing a bulk input transfer between a high-speed host
and a full-speed device according to the invention;

Figure 32 is a sequence diagram showing a bulk output transfer between a high-speed
host and a full-speed device according to the invention;

Figure 33 is a sequence diagram showing a PING protocol according to the invention.

Description of the Drawings

In the drawings, Figure 1 shows a PC (1) connected to four standard USB Devices (3a, 3b,
3¢ & 3d). While the length of cable between the two hubs cannot normally exceed 5 meters
according to the current USB Specification, the PC (1) is also equipped with an apparatus
according to the present invention, which is termed as an “Extended Range Hub” (7). The
Extended Range Hub (7) is composed of two separate units, a “Local Expander” (4) or (LEX) and a
“Remote Expander” (5) (or REX) which are connected by cable (6). In one embodiment of the
invention, units 4 and 5 are separated by, for example, 200 meters of fibre optic cable (6) (although
Category 5 UTP wiring or wireless transmission could also be used). This arrangement of devices
is identical to the arrangement described earlier in PCT application No. PCT/CA00/00157.

Figure 2 illustrates a more schematic diagram of the arrangement described in Figure 1.
The functions normally provided by a standard USB 2.0 Hub are provided by two separate units (4
& 5) connected by a length of fibre optic cable(6). In this representation, the REX unit (5) consists
of two main components - the REX-FPGA (8) and a standard USB 2.0 Hub (9). The REX-FPGA
(8) component represents a Field Programmable Gate Array (FPGA) as well as other hardware
components. The standard USB 2.0 Hub is hereinafter referred to as the REX-Hub(9). The REX-
FPGA (8) is connected to the LEX by a fibre optic cable (6), but might also be connected by UTP
(Unshielded Twisted Pair) cable or wiring. The REX-Hub (9) is connected to the REX-FPGA (8)
within the REX unit (5) and said REX-Hub (9) would operate in the same manner whether
connected to the REX-FPGA (8) or directly to the Host PC (1) (which might also be a standard USB
hub). The REX-Hub (9) is connected to a plurality of USB devices. In this embodiment said

10

15

20

25

30

35

WO 02/088975 PCT/CA02/00634

-19-

plurality is chosen to be four, but it will be clear to those skilled in the art that other choices may be
made within the scope of the invention.

Operation over extended distances is preferably achieved by placing said LEX unit (4)
close to said host PC (1), placing said REX unit (5) close to said plurality of USB (3a, 3b, 3¢ and/or
3d) devices, and connecting LEX unit (4) and REX unit (5) by the required extended length of fibre
optic cabling (6).

Figure 3 provides a prior art timing diagram showing isochronous transfers according to
the USB protocol. The diagram is constructed from the point of view of a USB Host Controller (1),
normally included on a PC motherboard (Host PC). The USB protocol divides time allocation on
the shared bus into regular intervals. The duration in time of each interval is represented by “t” in
Figure 3 and the duration of each interval will be represented by “t" hereinafter. The start of each
transaction interval is identified on the diagram as I1, 12, 13, 14. For a full-speed host, the time
allotted for each interval is 1 ms and such intervals are hereinafter referred to as frames. For a
high-speed host, the time allotted for each interval is 125 .s and such intervals are hereinafter
referred to as microframes. Eight microframes are equivalent to one frame.

When a Host Controller (1) is engaged upon an isochronous transfer with a device (3), the
Host Controller (1) issues regular requests for data transfer to said device(3). These requests are
identified as packets R1, R2, and R3 (10, 12, & 14). Under the USB protocol, a USB device (3)
must respond to the request from a full-speed host within 16 full-speed bit-times. In response to
requests from a high-speed host, a USB device must respond within 736 high-speed bit-times.
The responses are shown in the diagram as packets Is1, Is2, and Is3 (11, 13, & 15). ltis
commonly expected that transfer Is1 (11) will be delivered in response to request R1 (10) within the
same interval, fransfer Is2 (13) will be delivered in response to request R2 (12) within the same
interval, and so on until the requests are terminated.

Figure 4 provides a timing diagram showing isochronous transfers according to the present
invention, which is, however, essentially identical to the isochronous transfer described in
PCT/CA00/00157 for full-speed transfers. The diagram shows the progression of packets through
the various subsystems comprising the invention. Timelines are presented for the Host PC (1),
Local Expander (4) and Remote Expander FPGA (8) components that are shown in Figure 1.

An isochronous transfer is initiated from a Host.PC (1) by emitting a request for input data
R1 (20) to a particular USB address and end-point. Said request R1 (20) is received by the LEX
(4) and retransmitted as R1 (25) over the external cabling to the REX-FPGA (8). Said
retransmitted packet R1 (31) is received by the REX-FPGA and forwarded to the REX-Hub (9).

The target device generates an input data packet Is1 (32). According to the USB protocol
for low-speed and full-speed isochronous transfers, a device with a detachable cable must
generate a response within 6.5 bit-times of the end of the corresponding request. For high-speed
isochronous transfers, a device must generate a response wifhin 192 high-speed bit times. Said
input data packet Is1 (32) is received by the REX-Hub (9) and the REX-FPGA subsystem (8) and
retransmitted as Is1 (26), over the external wiring, to the LEX. Said retransmitted response Is1

10

15

20

25

30

35

40

WO 02/088975 PCT/CA02/00634
-20 -

(26) is not immediately forwarded to the Host PC, but is stored within the memory of the LEX
subsystem.

The Host PC (1) notices that it did not receive a response to its input data request R1 (20)
and retries the transaction by generating a further request R2 (21) to the same USB address and
end-point. Upon receiving request R2 (21), the LEX subsystem retrieves response Is1 (26) from its
memory buffers and forwards it to the Host PC as response Is1 (22).

Said second request R2 (21) is repeated as R2 (27) through the LEX and forwarded as R2
(33) to the device. The target device generates a second response Is2 (34) which'is retransmitted
as Is2 (28) by the REX-FPGA to the LEX. Response Is2 (28) is again stored within the memory of
the LEX subsystem, from where it is sent to the Host PC (1) as response Is2 (24) to a third request
R3 (23). The process is repeated as necessary with request R3 (23), R3 (29) and R3 (35) and
response 1s3 (36) and Is3 (30).

Figure 5 is a block diagram of an embodiment of a LEX (Local Expander) (4) according to
the invention. In this embodiment, the USB 2.0 Transceiver (50) is connected to a USB host by
conventional means, signified by the standard USB signals D+ and D-.

Data signals from the USB host are received by Link Transceiver (50) and stored in the
Dual FIFO (53). The Microprocessor (51) is alerted through the control channel from the
transceiver that new data has arrived and is available in the FIFO. The Microprocessor (51)
instructs the Router (54) to route the data according to predefined routing tables. The Router then
copies the data from the Dual FIFO (53) to the appropriate destination, either Dual FIFO (55) or
Buffer (56). In the situation where the data is required to be absorbed, then the Router removes the
data from dual FIFO (53) and discards said data. When datais copied to Dual FIFO (55), said data
is transmitted over the extended range link by Link Transceiver (52) as Dy and D,.

If the freatment of the received data is not already defined by the routing tables, the Router
(54) passes said received data to the Microprocessor (51) for analysis. After inspecting said data,
the Microprocessor (51) updates the routing tables and returns control to the Router (54).

A similar process occurs in the reverse direction when data is received from the extended
range link by Link Transceiver (52). Said received data is automatically copied to Dual FIFO (55)
from where it is transferred to Buffer (56) or Dual FIFO (53) by Router (54) under the control of
Microprocessor (51). Data so transferred to Dual FIFO (53) is transmitted to the USB host by USB
2.0 Transceiver (50). ,

Figure 6 is a block diagram of an embodiment of a REX-FPGA according to the invention.
The REX-FPGA (8) is connected to the extended range link (6) by Link Transceiver (60). The REX-
FPGA is connected to REX-Hub (9) by USB 2.0 Transceiver (62) using conventional USB signals
D+ and D-.

Data signals as Dy and D, are received from extended range link (8) by Link Transceiver
(60) and stored in Dual FIFO (63). The Microprocessor (61) is alerted through the control channel
from the transceiver that new data has arrived and is available in the FIFO. The Microprocessor
instructs the Router (64) to route the data according to predefined routing tables. The Router then
copies the data from the Dual FIFO (63) to the appropriate destination, either Dual FIFO (65) or

WO 02/088975 PCT/CA02/00634

10

15

20

25

30

35

-21 -

Buffer (66). If the data is required to be absorbed, then the Router removes the data from Dual
FIFO (63) and discards said data. When data is copied to Dual FIFO (65), said data is transmitted
to the Rex-Hub by USB 2.0 Transceiver (62)

If the treatment of the received data is not already defined by the routing tables, the Router
passes said received data to the Microprocessor for analysis. After inspecting said data, the
Microprocessor updates the routing tables and returns control to the Router.

A similar process occurs in the reverse direction when data is received from the Rex-Hub
by USB 2.0 Transceiver (62). Said received data is automatically copied to Dual FIFO (65) from
where it is transferred to Buffer (66) or Dual FIFO (63) by Router (64) under the control of
Microprocessor (61). Data so transferred to Dual FIFO (63) is transmitted to the extended range
link by Link Transceiver (60).

Figure 7 provides a sequence diagram showing an isochronous input transfer, between a
full-speed host and a full-speed device. In Frame 1, a request for input data is transmitted from the
Host control logic (100) and said request is received by the LEX subsystem as an IN packet. The
control logic (101) within the LEX subsystem forwards the IN packet to the REX-FPGA subsystem.
The control logic (102) within the REX-FPGA subsystem forwards the IN packet to the REX-Hub.
The control logic (103) within the REX-Hub forwards the IN packet to the Device.

The control logic (104) within the device assembles the requested isochronous data and
transmits said data as a Result packet to the REX-Hub. The control logic (103) within the REX-
Hub forwards the Result packet to the REX-FPGA subsystem. The control logic (102) within the
REX-FPGA subsystem forwards the Result packet to the LEX subsystem. The control logic (101)
in the LEX subsystem stores the Result packet in its buffer memory.

In Frame 2, the control logic (105) within the Host recognizes that it has'not received a
response fo its previous request for input data and it automatically retries the transaction by
generating a further request addressed to the same USB function as in Frame 1. Said further
request is transmitted to the LEX subsystem as a second ‘IN packet. On receipt of the second IN
packet, the control logic (106) within the LEX subsystem recognizes that it has a Result packet
stored in memory from the same function identified by the further IN packet and transmits said
Result packet to the host. Said control logic (106) also forwards the further IN packet to the REX-
FPGA subsystem. The control logic (107) within the REX-FPGA subsystem forwards said IN
packet to the REX-Hub. The control logic (108) within the REX-Hub forwards the IN packet to the
Device.

The control logic (109) within the device assembles the requested isochronous data and
transmits it as a Result packet to the REX-Hub. The control logic (108) within the REX-Hub
forwards the Result packet to the REX-FPGA subsystem. The control logic (107) within the REX-
FPGA subsystem forwards said Result packet to the LEX subsystem. The control logic (106) in the
LEX subsystem stores the Result packet in its buffer memory.

The above-described process is repeated for subsequent frames by the distributed control
logic (e.g. 105, 106, 107, 108, 109).

10

15

20

25

30

35

40

WO 02/088975 PCT/CA02/00634
-0 -

Figure 8 provides a sequence diagram showing an isochronous output transfer, between a
full-speed host and a full-speed device. In Frame 1, the contro! logic (100) within the Host
generates a notification of output data, addressed to a particular USB function. Said notification is
transmitted to the LEX subsystem as an OUT packet. The control logic (101) within the LEX
subsystem forwards said OUT packet to the REX-FPGA subsystem. The control logic (102) within
the REX-FPGA subsystem forwards said OUT packet to the REX-Hub. The control logic (103)
within the REX-Hub forwards said OUT packet to the Device. The information is received by the
control logic within the device.

The control logic (100) within the Host assembles the notified isochronous data and
transmits it as a Data0 packet to the LEX subsystem. The control logic (101) within the LEX
subsystem forwards the Data0 packet to the REX-FPGA subsystem. The control logic (102) within
the REX-FPGA subsystem forwards said Data0 packet to the REX-Hub. The control logic (103)
within the REX-Hub forwards said Data0 packet to the device. The information is received by the
control logic (104) within the device.

The above-described process is repeated for subsequent frames by the distributed control
logic (e.g.100, 101, 102, 103, 104).

Figure 9 provides an algorithm for implementing isochronous input transfers, between a
full-speed host and a full-speed device, at the Local Expander and Remote Expander. Said
algorithm is implemented in hardware by the LEX and REX-FPGA Controllers. According to the
invention, the algorithm of LEX controller is required to implement the processing functions
represented by processing blocks (101) and (106) of Figure 7. The algorithm of REX controller is
required to implement the processing functions represented by processing blocks (102) and (107)
of Figure 7. » 4

According to said algorithm programmed in the LEX controller, if the received packet is of
type IN then an identical packet is transmitted to the REX-FPGA controller. The LEX controller
then examines its buffer memory to determine whether a stored Result packet from the device
addressed by the IN request is already present in memory. If no such stored Result packet is
present in memory, the system then becomes idle. If said stored Result packet is present in
memory, the system retrieves said stored packet from memory and sends said packet to the host
asa packet of type Result. If the received packet is of type Result then the packet is stored in the
buffer memory.

According to said algorithm programmed in the REX-FPGA controller, if the received
packet is of type IN then an identical packet is forwarded to the REX hub. If the received packet is
of type Result, then the packet is transmitted to the LEX controller.

Figure 10 provides an algorithm for implementing isochronous output transfers, between a
full-speed host and a full-speed device, at the Local Expander and the Remote Expander.
According to the invention, the algorithm of the LEX controller is required to implement the
processing functions represented by processing block (101) of Figure 8. The algorithm of the
REX-FPGA controller is required to implement the processing functions represented by the
processing block (102) of Figure 8.

10

15

20

25

30

35

40

WO 02/088975 PCT/CA02/00634
-23 -

According to the said algorithm, if the received packet at the LEX controller is of type OUT
or DATAQO, then said packet is forwarded to the REX-FPGA controller. If the received packet at the
REX-FPGA controller is of type OUT or-DATAO then said packet is transmitted to the REX hub.

The production of the algorithms shown in Figures 9 and 10 are considered to be easily
prepared by the skilled artisan once the sequence diagram is understood. Accordingly, the
algorithms for the remaining sequence drawings will not be produced.

Figure 11 provides a sequence diagram showing an isochronous input transfer, between a
high-speed host and a full-speed device. In the last microframe of the previous frame, (Y — 1), a
start split-transaction and a request for input data are transmitted from the Host control logic (120).
Said start split-transaction and the request for input data are received by the LEX subsystem as a
SSPLIT packet and an IN packet (SSPLIT/IN packets). The control logic (121) within the LEX
subsystem forwards the SSPLIT/IN packets to the REX-FPGA subsystem. The control logic (122)
within the REX-FPGA subsystem forwards said SSPLIT/IN packets to the REX-Hub.

In the first microframe of the current frame, Yy, the control logic (128) within the REX-Hub
absorbs said SSPLIT packet and forwards said IN packet to the Device. The control logic (129)
within the device assembles the requested isochronous data packet and transmits the same to the
REX-Hub as a continuous stream of data. The size of said isochronous data packet may range
from 0 to 1023 bytes, as defined by the USB Specification. The control logic (133) within the REX-
Hub stores up to the first 188 bytes of data as a Result packet in its buffer memory.

In the next microframe, Y4, the control logic (131) within the LEX subsystem receives the
complete split-transaction and the request for input data from the Host control logic (130) as a
CSPLIT packet and an IN packet. With no Result packet stored in its buffer memory, the control

" logic (131) within the LEX subsystem then generates a synthetic data packet and transmits it as a
NYET packet to the Host PC in response to the request for input data. The control logic (131)
within the LEX subsystem forwards said CSPLIT/IN packets to the REX-FPGA subsystem. The
control logic (132) within the REX-FPGA subsystem forwards said CSPLIT/IN packets to the REX-
Hub. On receipt of said CSPLIT/IN packets, the control logic (133) within the REX-Hub recognizes
that it contains in its buffer memory the first portion of the data packet from the device. Said
control logic retrieves said stored packet and forwards the same to the REX-FPGA as a Result
packet. Said control logic (133) also absorbs said CSPLIT/IN packets. The control logic (132)
within the REX-FPGA subsystem forwards the Result packet to the LEX subsystem. The control
logic (131) in the LEX subsystem stores the Result packet in its buffer memory.

The control logic (138) within the REX-Hub stores up to the next 188 bytes of the
remaining data from the device as a Result packet in its buffer memory.

In the subsequent microframe, Y, the control logic (136) within the LEX subsystem ﬁ
receives the subsequent CSPLIT/IN packets from the control logic (135) within the Host. The
control logic (136) within the LEX subsystem forwards the stored Result packet, received in the
previous microframe, to the Host and forwards said CSPLIT/IN packets to the REX-FPGA
subsystem. The control logic (137) within the REX-FPGA subsystem forwards the CSPLIT/IN
packets to the REX-Hub. On receipt of said CSPLIT/IN packets, the control logic (138) within the

10

15

20

25

30

35

40

WO 02/088975 PCT/CA02/00634
-4 -

REX-Hub recognizes that it contains the second portion of the data packet from the device stored
in its buffer memory. Said control logic retrieves said stored packet and forwards the same to the
REX-FPGA as a Result packet. Said control logic (138) also recognizes that said CSPLIT/IN
packets are merely a repetition of the previous CSPLIT/IN packet and absorbs said packets. The
control logic (138) within the REX-Hub forwards the Result packet to the REX-FPGA subsystem.
The control logic (137) within the REX-FPGA subsystem forwards the Result packet to the LEX
subsystem. The control logic (136) in the LEX subsystems stores the Result packet in its buffer
memory.

The above-described process is repeated until all the data generated by the device is
transmitted to the host by the distributed control logic (e.g. 135, 136, 137, 138, 139). The process
described by the distributed control logic (120) to (139) is also repeated for subsequent frames.

In Figure 11, a dotted line is also shown between the device and the REX-Hub. This dotted
line is used to represent the total data flow from the device to the REX-Hub, even though in this
case, the REX-Hub interprets the receipt of data as being three data transmissions. In subsequent
figures, this dotted line will be used to represent the total data transmission even though the
various devices or hubs may treat the transmission as a series of data transmissions.

Figure 12 provides a sequence diagram showing an isochronous output transfer, between
a high-speed host and a full-speed device. In the last microframe of the previous frame,
Microframe (Y — 1)y, the control logic (120) within the Host generates a start split-transaction
(begin), a notification of output data, and a data packet to the LEX subsystem. Said data packet
may contain a maximum of 188 bytes of data. Said start split-transaction, notification of output
data, and data packet are transmitted to the LEX subsystem as an SSPLIT-begin packet, an OUT
packet, and a DATAQ packet, respectively. The control logic (121) within the LEX subsystem
forwards said SSPLIT-begin/OUT/DATAO packets to the REX-FGPA subsystem. The control logic
(122) within the REX-FPGA subsystem forwards said SSPLIT-begin/OUT/DATAO packets to the
REX-Hub. On receipt of said SSPLIT-begin/OUT/DATAO packets, the control logic (123) within the
REX-Hub absorbs said SSPLIT-begin/OUT packets and stores said DATAO packet in its buffer
memory. ‘

In the first microframe of the current frame, Microframe Yy, the control logic (128) within
the REX-Hub generates a notification of output data and forwards the same to the Device as an
OUT packet. At the same time, the control logic (125) within the host generates a start split-
transaction (mid), a notification of output data, and a data packet and transmits the same to the
LEX subsystem as SSPLIT-mid/OUT/DATAO packets. Said data packet may contain a maximum
of 188 bytes of data. The control logic (126) within the LEX subsystem forwards said SSPLIT-
mid/OUT/DATAOQ packets to the REX-FPGA subsystem. The control logic (127) within the REX-
FPGA subsystem forwards said SSPLIT-mid/OUT/DATAOQ packets to the REX-Hub. On receipt of
said SSPLIT-mid/OUT/DATAQ packets, the control logic (128) within the REX-Hub begins
forwarding the stored data packet received in the previous microframe to the device. Said control

logic also absorbs said SSPLIT-mid/OUT packets and stores the further data packet in its buffer
memory.

WO 02/088975 PCT/CA02/00634

10

15

20

25

30

35

40

-25-

In the subsequent microframe, Microframe Y, the control logic (130) within the host
generates a start split-transaction, a notification of output data, and a data packet and transmits the
same to the LEX subsystem as SSPLIT-mid/OUT/DATAOQ packets. Said data packet may contain
a maximum of 188 bytes of data. The control logic (131) within the LEX subsystem forwards said
SSPLIT-mid/OUT/DATAOQ packets to the REX-FPGA subsystem. The control logic (132) within the
REX-FPGA subsystem forwards said SSPLIT-mid/OUT/DATAO packets to the REX-Hub. On

- receipt of said SSPLIT-mid/OUT/DATAOQ packets, the control logic (133) within the REX-Hub

begins forwarding the stored data packet received in the previous microframe to the device. The
control logic (134) within the device receives the first byte of said stored data packet immediately
after receiving the last byte of the data packet sent from the previous frame. The control logic
within the REX-Hub transmits data packets to the device in such a manner that the device receives
a continuous data stream. The control logic (133) within the REX-Hub also absorbs said SSPLIT-
mid/OUT packets and stores said further data packet.

The above-described process is repeated until the host controller transmits the last output
data packet by the distributed control logic (e.g. 130, 131, 132, 133, 134). The process described
by the distributed control logic (120) to (134) is also repeated for subsequent frames.

Figure 13 provides a sequence diagram showing an isochronous input transfer, between a
high-speed host and a high-speed device. In Microframe Y,, a request for input data is transmitted
from the Host control logic (150) and said request is received by the LEX subsystem as an IN
packet. The control logic (151) within the LEX subsystem forwards the IN packet to the REX-
FPGA subsystem. The control logic (152) within the REX-FPGA subsystem forwards said IN
packet to the REX-Hub. The control logic (153) within the REX-Hub forwards said IN packet to the
Device.

The control logic (154) within the device assembles the requested isochronous data and
transmits it as a Result packet to the REX-Hub. The control logic (153) within the REX-Hub
forwards the Result packet to the REX-FPGA subsystem. The control logic (152) within the REX-
FPGA subsystem forwards the Result packet to the LEX subsystem. The control logic (151) in the
LEX subsystem stores the Result packet in its buffer memory.

In Microframe Y4, the control logic (155) within the Host recognizes that it has not received
a response to its previous request for input data and it automatically retries the transaction by
generating a further request addressed to the same USB function as in Microframe Y,. Said
further request is transmitted to the LEX subsystem as a second IN packet. On receipt of the
second IN packet, the control logic (156) within the LEX subsystem recognizes that it has a Result
packet stored in memory from the same function identified by the further IN packet and transmits
said packet to the host. Said control logic (156) also forwards the further IN packet to the REX-
FPGA subsystem. The control logic (157) within the REX-FPGA subsystem forwards said IN
packet to the REX-Hub. The control logic (158) within the REX-Hub forwards said IN packet to the
Device.

The control logic (159) within the device assembles the requested isochronous data and
transmits it as a Result packet to the REX-Hub. The control logic (158) within the REX-Hub

WO 02/088975 PCT/CA02/00634

10

15

20

25

30

35

226 -

forwards said Result packet to the REX-FPGA subsystem. The control logic (157) within the REX-
FPGA subsystem forwards said Result packet to the LEX subsystem. The control logic (156) in the
LEX subsystem stores said Result packet in its buffer memory. -

The above-described process is repeated for subsequent microframes by the distributed
control logic (e.g. 155, 156, 157, 158, 159).

Figure 14 provides a sequence diagram showing an isochronous output transfer, between
a high-speed host and a high-speed device. In Microframe Yy, the control logic (150) within the
Host generates a notification of output data, addressed to a particular USB function. Said
notification is transmitted to the LEX subsystem as an OUT packet. The control logic (151) within
the LEX subsystem forwards said OUT packet to the REX-FPGA subsystem. The control logic
(152) within the REX-FPGA subsystem forwards said OUT packet to the REX-Hub. The control
logic (153) within the REX-Hub forwards said OUT packet to the Device. The information is
received by the control logic within the device.

The control logic (150) within the Host assembles the notified isochronous data and
transmits it as a DATAOQ packet to the LEX subsystem. The control logic (151) within the LEX
subsystem forwards said DATAQ packet to the REX-FPGA subsystem. The control logic (152)
within the REX-FPGA subsystem forwards said DATAO packet to the REX-Hub. The control logic
(153) within the REX-Hub forwards said DATAQ packet to the device. The information is received
by the control logic (154) within the device.

The above-described process is repeated for subsequent microframes by the distributed
control logic (e.g. 150, 151, 152, 153, 154).

Figure 15 provides a sequence diagram showing a high-bandwidth isochronous input
transfer, between a high-speed host and a high-speed device. In Microframe Y, the control logic
(170) in the Host PC generates a request for input data. Said request for input data is transmitted
to the LEX subsystem as an IN packet. The control logic (171) within the LEX subsystem
generates a synthetic data packet and transmits it as a NULL packet to the Host in response to the
input data request. The control logic (171) within the LEX subsystem forwards the IN packet to the
REX-FPGA subsystem. The control logic (172) within the REX-FPGA subsystem forwards said IN
packet to the REX-Hub. The control logic (173) within the REX-Hub forwards said IN packet to the
Device.

The control logic (174) within the device assembles the requested isochronous data and
transmits it as a Result_1_1 packet to the REX-Hub. The control logic (173) within the REX-Hub
forwards the Result_1_1 packet to the REX-FPGA subsystem. The control logic (172) within the
REX-FPGA subsystem forwards the Result_1_1 packet to the LEX subsystem. The control logic
(171) in the LEX subsystem stores the Result_1_1 packet in its buffer memory.

On receipt of the first NULL packet generated by the LEX subsystem, the control logic
(170) within the Host generates a second request for input data within the same microframe, Yo.
Said request for input data is transmitted to the LEX subsystem as an IN packet. The control logic
(171) within the LEX subsystem generates a second synthetic data packet and transmits it as a

WO 02/088975 PCT/CA02/00634

10

15

20

25

30

35

40

-27-

NULL packet to the Host. The second IN packet is forwarded to the device in the same manner as
the first IN packet.

On receipt of the second IN packet, the control logic (174) within the device assembles the
requested isochronous data and transmits it as a Result_1_2 packet to the REX-Hub. The
Result_1_2 packet is transmitted to the LEX subsystem in the same manner as the Result_1_1
packet and it is also stored in the buffer memory of the LEX subsystem.

On receipt of the second NULL packet generated by the LEX subsystem, the control logic
(170) within the Host generates a third request for input data within the same microframe, Y,. Said
request for input data is transmitted to the LEX subsystem as an IN packet. The control logic (171)
within the LEX subsystem generates a third synthetic data packet and transmits it as a NULL
packet to the Host. The third IN packet is forwarded to the device in the same manner as the first
and second IN packet.

On receipt of the third IN packet, the control logic (174) within the device assembles the
requested isochronous data and transmits it as a Result_1_3 packet to the REX-Hub. The
Result_1_3 packet is transmitted to the LEX subsystem in the same manner as the Result_1_1
and Result_1_2 packets and it is also stored in the buffer memory of the LEX subsystem.

In Microframe Y, the control logic (175) within the Host generates a request for input data
and transmits said request as an IN packet to the LEX subsystem. The control logic (176) within
the LEX subsystem forwards the first stored result packet, Result_1_1, to the Host in response to
the input data request. The control logic (176) within the LEX subsystem forwards said IN packet
to the REX-FPGA subsystem. The control logic (177) within the REX-FPGA subsystem forwards
said IN packet to the REX-Hub. The control logic (178) within the REX-Hub forwards said IN
packet to the Device.

On receipt of said IN packet, the control logic (179) within the device assembles the
requested isochronous data and transmits it as a Result_2_1 packet to the REX-Hub. The control
logic (178) within the REX-Hub forwards the Result_2_1 packet to the REX-FPGA subsystem. The
control logic (177) within the REX-FPGA subsystem forwards the Result_2_1 packet to the LEX
subsystem. The control logic (176) within the LEX subsystem stores the Result_2_1 packet in its
buffer memory. '

Within the same microframe, Y4, the control logic (175) within the Host generates a second
request for input data and transmits said request as an IN packet to the LEX subsystem. The
control logic (176) within the LEX subsystem forwards the second stored result packet, Result_1_2,
to the Host in response to the input data request. Said IN packet is forwarded to the device in the
same manner as the previous IN packet.

On receipt of the second IN packet, the control logic (179) within the device assembles the
requested isochronous data and transmits it as a Result_2_2 packet to the REX-Hub. The
Result_2_2 packet is transmitted to the LEX subsystem in the same manner as the Result_2_1
packet and it is stored in the buffer memory of the LEX subsystem.

Within the same microframe, Y3, the control logic (175) within the Host generates a third
request for input data and transmits said request as an IN packet to the LEX subsystem. The

WO 02/088975 PCT/CA02/00634

10

15

20

25

30

35

40

-28-

control logic (176) within the LEX subsystem forwards the third stored result packet, Result_1_3, to
the Host in response to the input data request. Said IN packet is forwarded to the device in the
same manner as the previous IN packet.

On receipt of the third IN packet, the control logic (179) within the device assembles the
requested isochronous data and transmits it as a Result_2_3 packet to the REX-Hub. The
Result_2_3 packet is transmitted to the LEX subsystem in the same manner as the Result_2_1
and Result_2_2 and it is stored in the buffer memory of the LEX subsystem.

The above-described process is repeated for subsequent microframes by the distributed
control logic (e.g.175, 176, 177, 178, 179).

Figure 16 provides a sequence diagram showing a high-bandwidth isochronous output
transfer, between a high-speed host and a high-speed device. In Microframe Y, the control logic
(170) within the Host generates a notification of output data addressed to a particular USB function.
Said notification is transmitted to the LEX subsystem as an OUT packet. The control logic (171)
within the LEX subsystem forwards said OUT packet to the REX-FPGA subsystem. The control
logic (172) within the REX-FPGA subsystem forwards said OUT packet to the REX-Hub. The
control logic (173) within the REX-Hub forwards said OUT packet to the Device. The information is
received by the control logic within the device.

The control logic (170) within the Host assembles the notified isochronous data and
transmits it as an MData packet to the LEX subsystem. The control logic (171) within the LEX
subsystem forwards said MData packet to the REX-FPGA subsystem. The control logic (172)
within the REX-FPGA subsystem forwards said MDATA packet to the REX-Hub. The control logic
(173) within the REX-Hub forwards said MDATA packet to the device. The information is received
by the control logic (174) within the device.

Within the same microframe, Yo, the control logic (170) within the Host generates a second
notification of output data. Said notification is transmitted to the LEX subsystem as an OUT packet
and is transmitted to the device in the same manner as the previous OUT packet. The control logic
(170) within the Host then assembles the notified isochronous data and transmits it as a second
MDATA packet to the LEX subsystem. Said MDATA packet is transmitted to the device in the
same manner as the previous MDATA packet.

In the same microframe, Y,, the control logic (170) within the Host generates a third
notification of output data. Said notification is transmitted to the LEX subsystem as an OUT packet
and is transmitted to the device in the same manner as the previous OUT packet. The control logic
(170) within the Host then assembles the notified isochronous data and transmits the same as a
DATAQ packet to the LEX subsystem. The control logic (171) within the LEX subsystem forwards
said DATAO packet to the REX-FPGA subsystem. The control logic (172) within the REX-FPGA
subsystem forwards said DATAOQ packet to the REX-Hub. The control logic (173) within the REX-
Hub forwards said DATAQ packet to the device. The information is received by the control logic
(174) within the device.

Figure 17 provides a simplified timing diagram showing interrupt transfers, a special case
of asynchronous transfers, according to the prior art USB protocol. The diagram is constructed

10

15

20

25

30

35

40

WO 02/088975 PCT/CA02/00634

-29-

from the point of view of a USB Host Controller, normally included on a PC motherboard (Host PC).
The USB protocol divides time allocation on the shared bus into regular intervals. The start of each
interval is again identified on the diagram as 11, 12, 13, 14. For a full-speed host, each interval is 1
ms in duration and is again referred to as a frame. For a high-speed host, each interval is 125 ,s in
duration and is referred to as a microframe. ,

When a Host Controller is engaged upon an interrupt transfer with a device, the Host
Controller issues regular requests for data transfer to said device. These requests aré identified as
packets R1, R2, and R3 (10, 13, & 17). Under the USB protocol, a USB device must respond to
the request from a full-speed host within 16 full-speed bit-times. In response to requests from a
high-speed host, a USB device must respond within 736 high-speed bit-times. The responses are
shown in the diagram as packets In1, In2, and In3 (11, 14, & 18). On receipt of a response packet,
the Host Controller also emits an acknowledgement and these acknowledgements are identified as
packets K1, K2, K3 (12, 15, & 19). It is commonly expected that transfer In1 (11) will be delivered
in response to request R1 (10) and acknowledgement K1 (12) will be emitted on receipt of In1 (11)
within the same interval, transfer In2 (14) will be delivered in response to request R2 (13) and
acknowledgement K2 (15) will be emitted on receipt of In2 (14) within the same interval, and so on
until the requests are terminated.

Figure 18 provides a simplified timing diagram showing interrupt transfers, a special case
of asynchronous transfers, which is essentially identical to the system described in
PCT/CAQ0/00157, for full-speed hosts and/or devices.. The diagram shows the progression of
packets through the various subsystems comprising the invention. Time lines are presented for
the Host PC (1), Local Expander (4) and Remote Expander FPGA (8) subsystems as shown in
Figure 2.

An interrupt transfer is initiated from a Host PC (1) by emitting a request for input data R1
(20) to a particular USB address and end-point. Said’request R1 (20) is received by the LEX and
retransmitted as R1 (25) over the external cabling to the REX-FPGA (8). Said retransmitted packet
R1(25) is received by the REX-FPGA and forwarded as R1 (32) to the REX-Hub (9). A synthetic
negative acknowledgement packet is generated by the LEX (4) and transmitted as N1 (26) to the
host.

The target device generates an input data packet In1 (33). According to the USB protocol
for low-speed and full-speed isochronous transfers, a device with a detachable cable must
generate a response within 6.5 full-speed bit-times of the end of the corresponding request. For
high-speed isochronous transfers, a device must generate a response within 192 high-speed bit
times. Said input data packet In1 (33) is received by the REX-Hub (9) and the REX-FPGA (8)
subsystem and retransmitted as In1 (27) over the external wiring to the LEX (4). Said
retransmitted response In1 (27) is not immediately forwarded to the Host PC (1), but is stored
within the memory of the LEX subsystem (4). A synthetic acknowledgement packet K1 (34) is -
generated by the REX-FGPA subsystem (8) and transmitted as K1 (34) to the REX-Hub (9).

The Host PC (1) notices that it did not receive data in response to its request R1 (20), and
retries the transaction by generating a further request R2 (22) to the same USB address and end-

10

15

20

25

30

35

WO 02/088975 PCT/CA02/00634

-30-

point. Upon receiving request R2 (28), the LEX subsystem retrieves response In1 (27) from its
memory buffers and forwards it to the Host PC (1) as response In1 (29). Said response is received
by the Host as response In1 (23). Upon receiving said response In1 (23), the Host generates an
acknowledgement packet and transmits the packet as packet K1 (24) to the LEX subsystem (4).
Said acknowledgement packet K1 (30) is received and absorbed by LEX.

Said second request R2 (22) is repeated as R2 (28) through the LEX and forwarded as R2
(35) to the device. The target device generates a second response In2 (36) which is transmitted as
In2 (31) to the LEX. Said retransmitted response In2 (31) is stored in the memory of the LEX
subsystem. A synthetic acknowledgement packet is generated by the REX-FPGA subsystem and
transmitted to the REX-Hub. The protocol sequence is repeated as necessary.

Figure 19 provides a sequence diagram showing an interrupt input transfer, between a
high-speed host and a full-speed or low-speed device. In the microframe before the current frame,
Microframe (Y — 1)7, the control logic (240) within the Host generates a start split-transaction
followed by a request for input data, addressed to a particular USB function. Said split-transaction
and request are transmitted to the LEX subsystem as an SSPLIT packet and an IN packet
(SSPLIT/IN packets). The control logic (241) within the LEX subsystem forwards the SSPLIT/IN
packets to the REX-FPGA subsystem. The control logic (242) within the REX-FPGA subsystem
forwards said SSPLIT/IN packets to the REX-Hub. The control logic (243) within the REX-Hub
absorbs said SSPLIT packet. In the first microframe of the current frame, Microframe Yo, the
control logic (248) within the REX-Hub forwards said IN packet to the Device. The control logic
(249) within the device assembles the requested interrupt data and transmits the same as a Result
packet to the REX-Hub.

In the next microframe, Microframe Y, the control logic (250) in the Host recognizes that it
has not received a response to its previous request for input data. Said control logic automatically
retries the transaction by generating a complete split-transaction followed by a further request
addressed to the same USB function as in Microframe (Y — 1);. Said split-transaction and further
request are transmitted to the LEX subsystem as a CSPLIT packet and an IN packet (CSPLIT/IN
packets). On receipt of said CSPLIT/IN packets, the control logic (251) within the LEX subsystem
recognizes the lack of data that corresponds to the input request in its buffer memory. Said control
logic (251) then generates a NYET packet to the Host. Said NYET packet warns the Host that the
LEX subsystem has not yet received a response from the device and enables said Host to
progress to the next transaction. Said control logic (251) also forwards the CSPLIT/IN packets to
the REX-FPGA subsystem. The control logic (252) within the REX-FPGA subsystem forwards said
CSPLIT/IN packets to the REX-Hub. -

The control logic (253) within the REX-Hub receives the Result packet from the device and
forwards said Result packet to the REX-FPGA subsystem. On receipt of said Result packet, the
control logic (252) within the REX-FPGA subsystem generates a synthetic acknowledgement
packet which is transmitted as an ACK packet to the REX-Hub. The control logic (253) within the
REX-Hub forwards said ACK packet to the Device. The control logic (252) within the REX-FPGA

10

15

20

25

30

35

40

WO 02/088975 PCT/CA02/00634

=31 -

subsystem forwards said Result packet to the LEX subsystem and the control logic (251) within the
LEX subsystem stores said result packet in its buffer memory.

In the next microframe, Microframe Y, the control logic (255) in the Host recognizes that it
has not received the requested data and automatically retries the transaction by generating a
further complete split-transaction and a further request addressed to the same USB function as in
Microframe Y,. The complete split-transaction and request for input data are transmitted to the
LEX subsystem as CSPLIT/IN packets. On receipt of the CSPLIT/IN packets, the control logic
(256) within the LEX subsystem recognizes that it has a Result packet stored in memory from the
same function identified by thé further CSPLIT/IN packets. Said control logic retrieves said stored
Result packet from memory and transmits said stored packet to the Host. Said control logic also
recognizes that said CSPLIT/IN packets are merely a repetition of the previous CSPLIT/IN packets
and absorbs said packets. When the control logic (255) of the Host receives the requested Result
packet from the LEX, said control logic generates an ACK packet to acknowledge a successful
transmission. Upon receipt of the ACK packet from the host, the control logic (256) within the LEX
subsystem absorbs said ACK packet.

Figure 20 provides a sequence diagram showing an interrupt output transfer, between a
high-speed host and a full speed or low-speed device. In Microframe Y,, the control logic (240)
generates a start split-transaction, a notification of output data, and output data, addressed to a
particular USB function. Said start split-transaction, notification of output data, and output data are
transmitted to the LEX subsystem as an SSPLIT packet, an OUT packet, and a DATAX packet,
respectively. Said DATAX packet represents either a DATAO packet or a DATA1 packet. The
control logic (241) within the LEX subsystem forwards said SSPLIT/QUT/DATAX packets to the
REX-FPGA subsystem. The control logic (242) within the REX-FPGA subsystem forwards said
SSPLIT/OUT/DATAX packets to the REX-Hub.

In Microframe Y4, the control logic (248) within the REX-Hub forwards the OUT packet and
DATAX packet to the device. The information is received by the control logic (249) within the
device. On receipt of said DATAX packet, the control logic (249) within the device generates an
acknowledgement and transmits the same to the REX-Hub as a Result packet. The control logic
(248) within the REX-Hub stores said Result packet in its buffer memory.

In Microframe Y, the control logic (250) within the Host generates a complete split-
transaction followed by a notification of output data, addressed to the same USB function as in

" Microframe Yo. Said complete split transaction and notification of output data are transmitted to the

LEX subsystem as @ CSPLIT packet and an OUT packet (CSPLIT/OUT packets). On receipt of
said CSPLIT/OUT packets, the control logic (251) within the LEX subsystem recognizes the lack of
data that corresponds to the CSPLIT/OUT packets in its buffer memory. Said control logic (251)
then generates a NYET packet to the Host. Said NYET packet warns the Host that the LEX
subsystem has not yet received a response from the device and enables said Host to progress to
the next transaction. The control logic (251) within the LEX subsystem forwards said CSPLIT/OUT
packets to the REX-FPGA subsystem. The control logic (252) within the REX-FPGA subsystem
forwards said CSPLIT/OUT packets to the REX-Hub.

10

15

20

25

30

35

40

WO 02/088975 PCT/CA02/00634
-32-

On receipt of the CSPLIT/OUT packets, the control logic (253) within the REX-Hub
recognizes that it has a Result packet stored in memory from the function identified by the
SSPLIT/OUT/DATAX packets from Microframe Y,. Said control logic retrieves said stored Result
packet from memory and transmits the same to the REX-FPGA subsystem. The control logic
(252) within the REX-FPGA subsystem forwards said Result packet to the LEX subsystem. The
control logic (251) within the LEX subsystem stores said Result packet in its buffer memory. -

In Microframe Y3, the control logic (255) within the host recognizes that it has not yet
received an acknowledgement from the device. Said control logic generates a further complete
split-transaction and a further notification of output data, addressed to the same USB function as in
the previous microframe. Said complete split-transaction and notification of output data are
transmitted to the LEX subsystem as further CSPLIT/OUT packets. On receipt of the CSPLIT/OUT
packets, the control logic (256) within the LEX subsystem recognizes that it has a Result packet
stored in the memory from the function identified by the further CSPLIT/OUT packets. Said control
logic retrieves said stored Result packet from memory and transmits the same to the Host. Said
control logic also recognizes that said CSPLIT/OUT packets are merely a repetition of the previous
CSPLIT/OUT packets and absorbs said packets.

Figure 21 provides a sequence diagram showing an interrupt input transfer, between a
high-speed host and a high-speed device. In Microframe Yy, the control logic (260) within the Host
generates a request for input data, addressed to a particular USB function. Said request is '
transmitted to the LEX subsystem as an IN packet. On receipt of said IN packet, the control logic
(261) within the LEX subsystem recognizes the lack of data that corresponds to the input request in
its buffer memory. Said control logic (261) then generates a synthetic negative acknowledgement
packet and transmits the same as a NAK packet to the Host. Said NAK packet warns the Host that
it will not receive a response to its request and enables said Host to progress to the next
transaction. The control logic (261) within the LEX subsystem forwards the IN packet to the REX-
FPGA subsystem. The control logic (262) within the REX-FPGA subsystem forwards said IN
packet to the REX-Hub. The control logic (263) within the REX-Hub forwards said request for input
data as an IN packet to the Device. The control logic (264) within the device assembles the
requested interrupt data and transmits the same as a Result packet to the REX-Hub. The control
logic (263) within the REX-Hub forwards the Result packet to the REX-FPGA subsystem. On
receipt of said Result packet, the control logic (262) within the REX-FPGA subsystem generates a
synthetic acknowledgement packet that is transmitted as an ACK packet to the REX-Hub.

* The control logic (263) within the REX-Hub forwards said ACK packet to the Device. The
control logic (262) within the REX-FPGA subsystem forwards said Result packet to the LEX
subsystem and the control logic (261) within the LEX subsystem stores said result packet in its
buffer memory. .

In Microframe Y4, the control logic (265) within the Host recognizes that it has not received
the requested data and automatically retries the transaction by generating a further request
addressed to the same USB function as in Microframe Y,. Said further request is transmitted to

10

15

20

25

30

35

WO 02/088975 PCT/CA02/00634

-33-

the LEX subsystem as a second IN packet. On receipt of the second IN packet, the control logic
(266) within the LEX subsystem recognizes that it has a Result packet stored in memory from the
same function identified by the further IN packet. Said control logic retrieves said stored Resuit
packet from memory and transmits the same packet to the Host. When the control logic (265) of
the Host receives the requested Result packet from the LEX, said control logic generates an ACK
packet to acknowledge a successful transmission. Upon receipt of the ACK packet from the host
the control logic (266) within the LEX subsystem absorbs said packet. Said control logic (2686)
forwards the further IN packet to the REX-FPGA subsystem. The control logic (267) within the
REX-FPGA forwards said IN packet to the REX-Hub. The control logic (268) within the REX-Hub
forwards said request for input data as an IN pécket to the Device.

The control logic (269) within the device assembles the requested interrupt data and
transmits the same as a Result packet to the REX-Hub. The control logic (268) within the REX-~
Hub forwards the Result packet to the FPGA subsystem. On receipt of said Result packet, the
control logic (267) within the REX-FPGA subsystem generates a synthetic acknowledgement
packet that is transmitted as an ACK packet to the REX-Hub. The control logic (268) within the
REX-Hub forwards said ACK packet to the Device. The control logic (267) within the REX-FPGA
subsystem forwards said Result packet to the LEX subsystem and the control logic (266) within the
LEX subsystem stores said result packet in its buffer memory.

The above-described process is repeated for subsequent input data requests from the
Host by the distributed control logic (e.g. 265, 266, 267, 268, 269).

Figure 22 provides a sequence diagram showing an interrupt output transfer, between a
high-speed host and a high-speed device. In Microframe Y, the control logic (260) within the Host
generates a notification of output data followed by output data, addressed to a particular USB
function. Said notification and output data are transmitted to the LEX subsystem as an OUT
packet and a DATAX packet (OUT/DATAX packets). Said DATAX packet represents either a
DATAQ packet or a DATA1 packet. On receipt of the OUT/DATAX packets, the control logic (261)
within the LEX subsystem generates a synthetic negative acknowledgement packet and transmits
the same to the Host as a NAK packet. Said NAK packet warns the Host that it will not receive a
response to its request and enables said Host to progress to the next transaction. The control logic
(261) within the LEX subsystem forwards said OUT/DATAX packets to the REX-FPGA subsystem.
The control logic (262) within the REX-FPGA subsystem forwards said OUT/DATAX packets to the
REX-Hub. The control logic (263) within the REX-Hub forwards said OUT/DATAX packets to the
Device. The information is received by the control logic within the device.

On receipt of the OUT/DATAX packets, the control logic (264) within the device generates
an acknowledgement and transmits the same as a Result packet to the REX-Hub. The control
logic (263) within the REX-Hub forwards said Result packet to the REX-FPGA subsystem. The
control logic (262) within the REX-FPGA subsystem forwards said Result packet to the LEX

subsystem. The control logic (261) within the LEX subsystem stores said Result packet in its
buffer memory.

WO 02/088975 PCT/CA02/00634

10

15

20

25

30

35

40

-34 -

In Microframe Y, the control logic (265) within the Host recognizes that it has not received
an acknowledgement from the device. Said control logic generates a second notification of output
data and output data, addressed to the same USB function. Said notification and output data are
transmitted to the LEX subsystem as OUT/DATAX packets. On receipt of said OUT/DATAX
packets, the control logic (266) within the LEX subsystem recognizes that it has a Result packet
stored in memory from the same function identified by the further OUT/DATAX packets. Said
control logic retrieves said stored Result packet from memory and transmits the same to the Host.
Said further OUT/DATAX packets are transmitted to the device in the same manner as the
previous OUT/DATAX packets. The information is then received by the control logic (269) within
the device. ‘

On receipt of the OUT/DATAX packets, the control logic (269) within the device generates
an acknowledgement and transmits the same as a Result packet to the REX-Hub. Said Result
packet is then transmitted to and stored in the LEX subsystem in the same manner as the previous
Result packet.

The above-described process is repeated for subsequent notifications of output data and output
data from the Host by the distributed control logic (e.g. 265, 266, 267, 268, 269).

Figure 23 provides a sequence diagram showing a high bandwidth interrupt input transfer,
between a high-speed host and a high-speed device, according to the invention. In Microframe Y,
the control logic (280) within the Host generates a request for input data, addressed to a particular
USB function. Said request is transmitted to the LEX subsystem as an IN packet. On receipt of
said IN packet, the control logic (281) within the LEX subsystem recognizes the lack of data that
corresponds to the input request in its buffer memory. Said control logic (281) then generates a
synthetic data packet and transmits the same as a NULL packet to the Host. Said synthetic data
packet is a data packet containing a zero length data payload and is used to satisfy the timing
requirements of the USB protocol while causing no disturbance to the actual information being
carried by the protocol. The control logic (281) within the LEX subsystem forwards the IN packet to
the REX-FPGA subsystem. The control logic (282) within the REX-FPGA subsystem forwards said
IN packet to the REX-Hub. The control logic (283) within the REX-Hub forwards said request for
input data as an IN packet to the Device. The control logic (284) within the device assembles the
requested interrupt data and transmits the same as a Result packet to the REX-Hub. The control
logic (283) within the REX-Hub forwards the Result packet to the REX-FPGA subsystem. On
receipt of said Result packet, the control logic (282) within the REX-FPGA subsystem generates a
synthetic acknowledgement packet that is transmitted as an ACK packet to the REX-Hub. The
control logic (283) within the REX-Hub forwards said ACK packet to the Device. The control logic
(282) within the REX-FPGA subsystem forwards said Result packet to the LEX subsystem and the
control logic (281) within the LEX subsystem stores said result packet in its buffer memory.

In the same microframe, Microframe Y, the control logic (280) within the Host generates a
second request for input data, addressed to the same USB function. Said request is transmitted to
the LEX subsystem as an IN packet. On receipt of said IN packet, the control logic (281) within the
LEX subsystem recognizes the lack of data that corresponds to the input request in its buffer

10

15

20

25

30

35

40

WO 02/088975 PCT/CA02/00634
-35-

memory. Said control logic (281) then generates a synthetic data packet and transmits the same
as a NULL packet to the Host. The second IN packet is then transmitted to the Device in the same
manner as the previous IN packet. .

i On receipt of the second request for input data, the control logic (284) within the device
assembles the requested interrupt data and transmits the same as a second Result packet to the
REX-Hub. The control logic (283) within the REX-Hub forwards said Result packet to the REX-
FPGA subsystem. On receipt of said Result packet, the control logic (282) within the REX-FPGA
subsystem generates a synthetic acknowledgement packet that is transmitted as an ACK packet to
the REX-Hub. The control logic (283) within the REX-Hub forwards said ACK packet to the device.
The control logic (282) within the REX-FPGA subsystem forwards said Result packet to the LEX
subsystem and the control logic (281) within the LEX subsystem stores said result packet in its
buffer memory.

In the same microframe, Microframe Yj, the control logic (280) within the Host generates a
third request for input data, addressed to the same USB function. Said request is transmitted to
the LEX subsystem as an IN packet. On receipt of said IN packet, the control logic (281) within the
LEX subsystem recognizes the lack of data that corresponds to the input request in its buffer
memory. Said control logic (281) then generates a synthetic negative acknowledgement packet
and transmits the same as a NAK packet to the Host. Said NAK packet warns the Host that it.will
not receive a response to its request and enables said Host to progress to the next transaction.
The third IN packet is then transmitted to the Device in the same manner as the first and second IN
packets.

On receipt of the third request for input data, the control logic (284) within the device
assembles the requested interrupt data and transmits the same as a third Result packet to the
REX-Hub. The control logic (283) within the REX-Hub forwards said Result packet to the REX-
FPGA subsystem. On receipt of said Result packet, the control logic (282) within the REX-FPGA
subsystem generates a synthetic acknowledgement packet that is transmitted as an ACK packet to
the REX-Hub. The control logic (283) within the REX-Hub forwards said ACK packet to the device.
The control logic (282) within the REX-FPGA subsystem forwards said Result packet to the LEX
subsystem and the control logic (281) within the LEX subsystem stores said Result packet in its
buffer memory.

In the next microframe, Microframe Y;, the control logic (285) within the Host recognizes
that it has not received the requested data and automatically retries the transaction by generating a
further request addressed to the same USB function as in Microframe Y,. Said further request is
transmitted to the LEX subsystem as an IN packet. On receipt of said IN packet, the control logic
(286) within the LEX subsystem recognizes that it has a Result packet stored in memory from the
same function identified by the further IN packet. Said control logic retrieves said stored Result
packet from memory and transmits the same packet to the Host. When the control logic (285) of
the Host receives the requested Result packet from the LEX, said control logic generates an ACK
packet to acknowledge a successful transmission. Upon receipt of the ACK packet from the host,
the control logic (286) within the LEX subsystem absorbs said packet. Said control logic (286)

10

15

20

25

30

35

40

WO 02/088975 PCT/CA02/00634
-36 -

forwards the further IN packet to the REX-FPGA subsystem. The control logic (287) within the
REX-FPGA forwards said IN packet to the REX-Hub. The control logic (288) within the REX-Hub
forwards said request for inpht data as an IN packet to the Device.

On receipt of the request for input data, the control logic (289) within the device assembles
the requested interrupt data and transmits the same as a Result packet to the REX-Hub. The
control logic (288) within the REX-Hub forwards said Result packet to the REX-FPGA subsystem.
On receipt of said Result packet, the control logic (287) within the REX-FPGA subsystem
generates a synthetic acknowledgement packet that is transmitted as an ACK packet to the REX-
Hub. The control logic (288) within the REX-Hub forwards said ACK packet to the device. The
control logic (287) within the REX-FPGA subsystem forwards said Result packet to the LEX
subsystem and the control logic (286) within the LEX subsystem stores said Result packet in its
buffer memaory,

Within the same microframe, Microframe Y, the control logic (285) within the Host
generates a second request for input data. Said request is transmitted to the LEX subsystem as
an IN packet. The control logic (286) within the LEX subsystem retrieves the second stored Result
packet from the previous microframe and transmits the same packet to the Host. When the control
logic (285) of the Host receives the requested Result packet from the LEX, said control logic
generates an ACK packet to acknowledge a successful transmission. Upon receipt of the ACK
packet from the host, the control logic (286) within the LEX subsystem absorbs said packet. Said
second IN packet is forwarded to the device in the same manner as previous IN packets.

On receipt of the second request for input data, the control logic (289) within the device
assembles the requested interrupt data and transmits the same as a Result packet. Said Result
packet is transmitted to and stored in the LEX subsystem in the same manner as previous Result
packets. On receipt of said result packet, the control logic (287) within the REX-FPGA subsystem
generates a synthetic acknowledgement packet that is transmitted as an ACK packet to the device
in the same manner as previous synthetic ACK packets. ' A

Within the same microframe, Microframe Y4, the control ogic (285) within the host
generates a third request for input data. Said request is transmitted to the LEX subsystem as an
IN packet. The control logic (286) within the LEX subsystem retrieves the third stored Result
packet from the previous microframe and transmits the same packet to the Host. When the control
logic (285) of the Host receives the requested Result packet from the LEX, said control logic
generates an ACK packet to acknowledge a successful transmission. Upon receipt of the ACK
packet from the host, the control logic (286) within the LEX subsystem absorbs said packet. Said
third IN packet is forwarded to the device in the same manner as previous IN packets.

On receipt of the third request for input data, the control logic (289) within the device
assembles the requested interrupt data and transmits the same a Result packet. Said Resuilt
packet is transmitted to and stored in the LEX subsystem in the same manner as previous Result
packets. On receipt of said result packet, the control logic (287) within the REX-FPGA subsystem
generates a synthetic acknowledgement packet that is transmitted as an ACK packet to the device
in the same manner as previous synthetic ACK packets.

10

15

20

25

30

35

WO 02/088975 PCT/CA02/00634

-37 -

The above-described process is repeated for subsequent input data requests from the
Host by the distributed control logic (e.g. 285, 286, 287, 288 & 289).

Figure 24 provides a sequence diagram showing a high bandwidth interrupt output
transfer, between a high-speed host and a high-speed device. In Microframe Y,, the control logic
(280) within the Host generates a notification of outbut data followed by output data, addressed to a
particular USB function. Said notification of output data and output data are transmitted to the LEX
subsystem as an OUT packet and a DATAX packet (OUT/DATAX packets). Said DATAX packet
represents either a DATAO packet or DATA1 packet. On receipt of said OUT/DATAX packets, the
control logic (281) within the LEX subsystem generates a synthetic acknowledgement packet and
transmits the same as an ACK packet to the Host. Said synthetic acknowledgement packet telis
the host that the data transmission is successful and enables said host to progress to the next
transaction. The control logic (281) within the LEX subsystem forwards the OUT/DATAX packets
to the REX-FPGA subsystem. The control logic (282) within the REX-FPGA subsystem forwards
said OUT/DATAX packets to the REX-Hub. The control logic (283) within the REX-Hub forwards
said OUT/DATAX packets to the Device.

The control logic (284) within the device generates a Result packet corresponding to the
OUT/DATAX packets and transmits the same to the REX-Hub. The control logic (283) within the
REX-Hub forwards said Resulit packet to the REX-FPGA subsystem. The control logic (282) within
the REX-FPGA subsystem forwards said Result packet to the LEX subsystem and the control logic
(281) within the LEX subsystem stores said Result packet in its buffer memory.

In the same microframe, Microframe Y, the control logic (280) within the Host generates a
second notification of output data and output data, addressed to the same USB function. Said
notification and output data are transmitted to the LEX subsystem as OUT/DATAX packets. On
receipt of said OUT/DATAX packets, the control logic (281) within the LEX subs;}stem generates a
synthetic acknowledgement packet and transmits the same as an ACK packet to the Host. The
second OUT/DATAX packets are then transmitted to the Device in the same manner as the
previous OUT/DATAX packets. On receipt of the second notification of output data and output
data, the control logic (284) within the device generates a second Result packet and transmits the
same to the REX-Hub. The control logic (283) within the REX-Hub forwards said Result packet to
the REX-FPGA subsystem. The control logic (282) within the REX-FPGA subsystem forwards said
Result packet to the LEX subsystem and the control logic (281) within the LEX subsystem stores
said result packet in its buffer memory.

In the same microframe, Microframe Y,, the control logic (280) within the Host generates a
third notification of output data and output data, addressed to the same USB function. Said
notification and output data are transmitted to the LEX subsystem as OUT/DATAX packets. On
receipt of said OUT/DATAX packets, the control logic (281) within the LEX subsystem generates a
synthetic negative acknowledgement packet and transmits the same as an NAK packet to the
Host. Said NAK packet warns the Host that it will not receive a data transmission status to the
notification of output data and enables said Host to progress to the next transaction. The third

10

15

20

25

30

35

WO 02/088975 PCT/CA02/00634
-38 -

OUT/DATAX packets are then transmitted to the Device in the same manner as the first two
OUT/DATAX packets.

On receipt of the third notification of output data and output data, the control logic (284)
within the device generates a third Result packet and transmits the same to the REX-Hub. The
control logic (283) within the REX-Hub forwards said Result packet to the REX-FPGA subsystem.
The control logic (282) within the REX-FPGA subsystem forwards said Result packet to the LEX
subsystem and the control logic (281) within the LEX subsystem stores said result packet in its
buffer memory.

In Microframe Y;, the control logic (285) within the Host generates a notification of output
data followed by output data, addressed to the same USB function. Said notification and output

" data are transmitted to the LEX subsystem as OUT/DATAX packets. On receipt of said
OUT/DATAX packets, the control logic (286) within the LEX subsystem recognizes that it has a
Result packet stored in memory from the same function identified by the further OUT/DATAX
packets. Said control logic retrieves said stored Result packet from memory and transmits the
same to the Host. Said further OUT/DATAX packets are transmitted to the device in the same
manner as the previous OUT/DATAX packets. The information is received by the control logic
(289) within the device.

On receipt of the OUT/DATAX packets, the control logic (289) within the device generates
a Result packet and transmits the same to the REX-Hub. Said Result packet is then transmitted to
and stored in the LEX subsystem in the same manner as the previous Result packets.

In the same microframe, Microframe Y4, the control logic (285) within the Host generates a
second notification of output data and output data, addressed to the same USB function. Said
notification and output data are transmitted to the LEX subsystem as OUT/DATAX packets. On
receipt of said OUT/DATAX packets, the control logic (286) within the LEX subsystem recognizes
that it has a Result packet stored in memory from the same function identified by the further
OUT/DATAX packets. Said control logic retrieves said stored Result packet from memory and
transmits the same as a Result packet to the Host. Said further OUT/DATAX packets are
transmitted to the device in the same manner as the previous OUT/DATAX packets. The
information is received by the control logic (289) within the device.

On receipt of the OUT/DATAX packets, the control logic (289) within the device generates
a Result packet and transmits the same to the REX-Hub. Said Result packet is then transmitted to
and stored in the LEX subsystem in'the same manner as the previous Result packets.

[n the same microframe, Microframe Y4, the control logic (285) within the Host generates a
third notification of output data and output data, addressed to the same USB function. Said
notification and output data are transmitted to the LEX subsystem as OUT/DATAX packets. On
receipt of said OUT/DATAX packets, the control logic (286) within the LEX subsystem recognizes
that it has a Result packet stored in memory from the same function identified by the further
OUT/DATAX packets. Said control logic retrieves said stored Result packet from memory and
transmits the same as a Result packet to the Host. Said further OUT/DATAX packets are

10

15

20

25

30

35

40

WO 02/088975 PCT/CA02/00634

-39-

transmitted to the device in the same manner as the previous OUT/DATAX packets. The
information is received by the control logic (289) within the device.

On receipt of the OUT/DATAX packets, the control logic (289) within the device generates
a Result packet and transmits the same to the REX-Hub. Said Result packet is then transmitted to
and stored in the LEX subsystem in the same manner as the previous Result packets.

The above-described process is repeated for subsequent notifications of output data and
output data from the Host by the distributed control logic (e.g. 285, 286, 287, 288, & 289).

Figure 25 provides a simplified timing diagram showing control and bulk data transfers,
which are two special cases of asynchronous transfers, according to the USB pfotocol. The
diagram is constructed from the point of view of a USB Host Controller, normally included on a PC
motherboard (Host PC). For a full-speed host, the USB protocol divides time allocation on the
shared bus into regular Frames, each of 1ms in duration. For a high-speed host, time allocation on
the shared bus is divided into regular Microframes, each of 125,s in duration. The start of each
microframe is identified in the diagram as I1, 12,..., |,,..., ln+k €tc., where n and k are positive
integers.

When a Host Controller is engaged upon a contro! or bulk data transfer with a device, the
Host Controller issues requests for data transfer to said device on an as needed basis. These
requests are identified in Figure 25 as packets, R1 & R2 (10 & 13). Under the USB protocol, a
USB device must respond to the request from a full speed host within 16 full-speed bit-times. In
response to requests from a high-speed host, a USB device must respond within 736 high-speed
bit-times. Control and bulk devices are not required to respond to a request within the same
microframe where said request is generated. However, control and bulk devices must respond
within the same frame where a request is generated because control and bulk transactions are not
allowed to span a frame boundary. The responses generated by the device are shown in the
diagrarﬁ as packets A1 & A2 (11 & 14). On receipt of a response packet, the Host Controller also
emits an acknowledgement and these acknowledgements are identified as packets K1 & K2 (12 &
15). Itis commonly expected that transfer A1 (11) will be delivered in response to request R1 (10)
and acknowledgement K1 (12) will be emitted on receipt of R1 (10) within the same frame, transfer
A2 (14) will be delivered in response to request R2 (13) and acknowledgement K2 (15) will be
emitted on receipt of R2 (13) within the same frame, and so on until the requests are terminated.
For control and bulk transfers, data requests are not generated periodically and transfers can take
place anytime when the shared bus has unoccupied bandwidth. Request R2 (13) may be
generated immediately after acknowledgement K1 (12) is received or said request may be
generated several microframes after K1 (12) is received. The time elapsed between K1 (12) and
R2 (13) depends on the bandwidth availability on the shared bus at that particular time and the
same is true for subsequent requests. The time span within which a transaction takes place is not
fixed and is identified by “Time” in Figure 25.

Figure 26 provides a simplified timing diagram showing control and bulk data transfers, two
special cases of asynchronous transfers, according to the present invention. The diagram shows
the progression of packets through the various subsystems comprising the invention. Timelines

10

15

20

WO 02/088975 PCT/CA02/00634
T v Tesm we s WUD D4
-40 -

are presented for the Host PC (1), Local Expander (4) and Remote Expander FPGA (8)
subsystems. Each transaction may take place in the span of one or more microframes but must
be completed before the arrival of the subsequent frame boundary. The elapsed time between
consecutive requests is not fixed and may be less than one microframe, one microframe, or more
than one microframe. The time span within which each transaction takes place is identified by
“Time" in Figure 26.

An asynchronous transfer is initiated from a Host PC by emitting a request for input data
R1 (20) to a particular USB address and end-point. Said request R1 (20) is received by the LEX
and retransmitted as R1 (25) over the external cabling to the REX-FPGA. Said retransmitted
packet R1 (25) is received by the REX-FGPA and forwarded as R1 (31) to the REX-Hub. A
synthetic negative acknowledgement packet is generated by the LEX and transmitted as N1 (26) to
the host.

The target device génerates an input data packet A1 (32). According to the USB protocol
for low-speed and full-speed isochronous transfers, a device with a detachable cable must
generate a response within 6.5 full-speed bit-times of the end of the corresponding request. For
high-speed isochronous transfers, a device must generate a response within 192 high-speed bit
times. Said input data packet A1 (32) is received by the REX-Hub and the REX-FPGA subsystem
and retransmitted as A1 (27) over the external wiring to the LEX. Said retransmitted response A1
(27) is not immediately forwarded to the Host PC, but is stored within the memory of the LEX
subsystem. A synthetic acknowledgement packet K1 (33) is generated by the REX-FGPA
subsystem and transmitted as K1 (33) to the REX-Hub.

The Host PC (1) notices that it did not receive data in response to its request R1 (20), and
retries the transaction by generating a further request R2 (22) to the same USB address and end-

- point. Upon receiving request R2 (28), the LEX subsystem retrieves response A1 (27) from its

25

30

35

40

memory buffers and forwards it to the Host PC as response A1 (29). Said response is received by
the Host as response A1 (23) and said request R2 (28) is absorbed by the LEX subsystem. Upon
receiving said response A1 (23), the Host generates an acknowledgement packet and transmits
the packet as packet K1 (24) to the LEX subsystem. Said acknowledgement packet K1 (30) is
received and absorbed by LEX.

The above-described protocol sequence is repeated for each initial input data request
generated by the Host Controller.

Figure 27 is a sequence diagram showing a control input transfer, between a high-speed
host and a low-speed device. In the Set-up Phase, the control logic (340) within the Host generates
a start split-transaction, a notification of device set-up, and a data packet addressed to a particular
USB function. Said split-transaction, notification, and data are transmitted to the LEX subsystem
as a SSPLIT packet, a SETUP packet, and a DATAGO packet, respectively. On receipt of said |
SSPLIT/SETUP/DATAO packets, the control logic (341) within the LEX subsystem recognizes it
has not yet received an acknowledgement from the device so said control logic generates a
synthetic negative acknowledgement and transmits the same to the host as a NAK packet. The

10

15

20

25

30

35

40

WO 02/088975 PCT/CA02/00634
-41 -

control logic (341) within the LEX subsystem forwards said SSPLIT/SETUP/DATAO packets to the
REX-FPGA subsystem. The control logic (342) within the REX-FPGA subsystem forwards said
SSPLIT/SETUP/DATAO packets to the REX-Hub. On receipt of said SSPLIT/SETUP/DATAQ
packets, the control logic (343) within the REX-Hub generates an acknowledgement and transmits
the same as an ACK packet to the REX-FPGA subsystem. The control logic (342) within the REX-
FPGA subsystem forwards said ACK packet to the LEX subsystem and the control logic (341)
within the LEX subsystem stores said ACK packet in its buffer memory. The control logic (343)
within the REX-Hub absorbs said SSPLIT packet and forwards said SETUP/DATAQ packets to the
Device.

Upon successful receipt of the SETUP/DATAO packets, the control logic (344) within the
device generates an acknowledgement and transmits the same as a Result packet to the REX-
Hub. The control logic (343) within the REX-Hub stores said Result packet in its buffer memory.

At a later time, the control logic (340) within the host recognizes that it has not received an
acknowledgement from the device and automatically retries the transaction by issuing further
SSPLIT/SETUP/DATAOQ packets addressed to the same USB function. On receipt of said
SSPLIT/SETUP/DATAQ packets, the control logic (341) within the LEX subsystem recognizes that
it has a Result packet stored in memory from the same function identified by the further
SSPLIT/SETUP/DATAO packets. Said control logic retrieves said stored Result packet from
memory and transmits the same packet to the Host. Said control logic (341) also recognizes that
said SSPLIT/SETUP/DATAO packets are merely a repetition of the previous
SSPLIT/SETUP/DATAO packets and absorbs said packets.

At a later time, the control logic (340) within the host generates a complete split-transaction
and a notification of device set-up. Said complete split-transaction and notification of device set-up
are transmitted to the LEX subsystem as a CSPLIT packet and a SETUP packet (CSPLIT/SETUP
packets). On receipt of the CSPLIT/SETUP packets, the control logic (341) within the LEX
subsystem recognizes that it has not received an acknowledgement from the device so said control
logic (341) generates a NYET packet and transmits the same to the host. Said NYET packet
warns the host that the LEX subsystem has not yet received a response from the device and
enables said host to progress to the next transaction. Said control logic (341) forwards said
CSPLIT/SETUP packets to the REX-FPGA subsystem. The control logic (342) within the REX-
FPGA subsystem forwards said CSPLIT/SETUP packets to the REX-Hub.

On receipt of the CSPLIT/SETUP packets, the control logic (343) within the REX-Hub
recognizes that it has an acknowledgement packet stored in memory. Said control logic retrieves
said stored acknowledgement packet from memory and transmits the same packet as a Result
packet to the REX-FPGA subsystem. The control logic (342) within the REX-FPGA subsystem
forwards said Result packet to the LEX subsystem. The control logic (341) within the LEX
subsystem stores said Result packet in its buffer memory.

At a later time, the control logic (340) within the host recognizes that it has not received an
acknowledgement from the device and automatically retries the transaction by issuing a further
complete split-transaction and a nofification of device set-up, addressed to the same USB function.

10

15

20

25

30

35

40

WO 02/088975 PCT/CA02/00634

-42.

Said complete split-transaction and notification of device set-up are transmitted to the LEX
subsystem as further CSPLIT/SETUP packets. On receipt of said further CSPLIT/SETUP packets,
the control logic (341) within the LEX subsystem recognizes that it has an acknowledgement
packet stored in memory from the same function identified by the further CSPLIT/SETUP packets.
Said control logic retrieves said stored acknowledgement packet from memory and transmits the
same as a Result packet to the Host. Said control logic (341) also recognizes that said
CSPLIT/SETUP packets are merely a repetition of the previous CSPLIT/SETUP packets and
absorbs said packets.

In the Data Phase, the control logic (345) within the host generates a start split-transaction
and a request for input data addressed to the same USB function as the Set-up Phase. Said start
split-transaction and request for input data are transmitted to the LEX subsystem as a SSPLIT
packet and an IN packet (SSPLIT/IN packets). On receipt of the SSPLIT/IN packets, the control
logic (346) within the LEX subsystem recognizes that it has not received an acknowledgement from
the device so said control logic generates a synthetic negative acknowledgement and transmits the
same to the host as a NAK packet. Said control logic (346) forwards said SSPLIT/IN packets to
the REX-FPGA subsystem. The control logic (347) within the REX-FPGA subsystem forwards said
SSPLIT/IN packets to the REX-Hub.

On receipt of the SSPLIT/IN packets, the control logic (348) within the REX-Hub generates
an acknowledgement packet and transmits the same to the REX-FPGA subsystem as a Result
packet. The control logic (347) within the REX-FPGA subsystem forwards said Result packet to
the LEX subsystem and the control logic (346) within the LEX subsystem stores said Result packet
in-its buffer memory. The control logic (348) within the REX-Hub forwards the request for input
data as an IN packet to the device. On receipt of said IN packet, the control logic (349) within the
device assembles the requested data and transmits the same as a Result packet to the REX-Hub.
The control logic (348) within the REX-Hub stores said Result packet in its buffer memory. On
receipt of the Result packet, said control logic (348) generates an ACK packet to acknowledge a
successful transmission.

At a later time, the control logic (345) within the host recognizes that it has not received the
requested data from the device and automatically retries the transaction by issuing a further start
split-transaction and a request for input data addressed to the same USB function. Said start split-
transaction and request for input data are transmitted as a SSPLIT/IN packets to the LEX
subsystem. On receipt of the SSPLIT/IN packets, the control logic (346) within the LEX subsystem
recognizes that it has an acknowledgement packet stored in memory from the same function
identified by the further SSPLIT/IN packets. Said control logic retrieves the stored
acknowledgement packet from memory and transmits the same as a Result packet to the Host.
Said control logic (346) also recognizes that said SSPLIT/IN packets are merely a repetition of the
previous SSPLIT/IN packets and absorbs said packets.

At a yet later time, the control logic (345) within the host generates a complete split-
transaction and a request for input data, addressed to the same USB function. Said complete split-
transaction and request for input data are transmitted to the LEX subsystem as a CSPLIT packet

10

15

20

25

30

35

40

WO 02/088975 PCT/CA02/00634

-43 -

and an IN packet (CSPLIT/IN packets). On receipt of the CSPLIT/IN packets, the control logic
(346) within the LEX subsystem recognizes that it has not received an acknowledgment packet
from the device so said control logic generates a synthetic NYET packet and transmits the same to
the host. Said NYET packet informs the host that the LEX subsystem has not yet received a
response from the device and enables said host to progress to the next transaction. The control
logic (346) within the LEX subsystem forwards said CSPLIT/IN packets to the REX-FPGA
subsystem. The control logic (436) within the REX-FPGA subsystem forwards said CSPLIT/IN
packets to the REX-Hub.

On receipt of the CSPLIT/IN packets, the control logic (348) within the REX-Hub
recognizes that it has in its buffer memory a Result packet that corresponds to the input data
request. Said control logic (348) retrieves said stored Result packet and transmits the same to the
REX-FPGA éubsystem. The control logic (347) within the REX-FPGA subsystem forwards said
Result packet to the LEX subsystem and the control logic (346) within the LEX subsystem stores
said Result packet in its buffer memofy.

At a later time, the control logic (345) within the host recognizes that it has not received the
requested data from the device and automatically retries the transaction by issuing a further
complete split-transaction and a request for input data, addressed to the same USB function. Said
complete split-transaction and request for input data are transmitted to the LEX subsystem as
further CSPLIT/IN packets. On receipt of the further CSPLIT/IN packets, the control logic (346)
within the LEX subsystem recognizes that it has a Result packet stored in memory from the same
function identified by the further CSPLIT/IN packets. Said control logic retrieves said stored Result
packet from memory and transmits the same packet to the Host. Said control logic (346) also
recognizes that said CSPLIT/IN packets are merely a repetition of the previous CSPLIT/IN packets
and absorbs said packets.

In the Status Phase, the control logic (350) within the host generates a start split-
transaction, a notification of output data, and a data packet addressed to the same USB function as
the Data Phase. Said start split-transaction, notification of output data, and data packet are
transmitted as SSPLIT/OUT/DATA1 packets to the LEX subsystem. On receipt of the
SSPLIT/OUT/DATA1 packets, the control logic (351) within the LEX subsystem recognizes that it
has not received an acknowledgement from the device so said control logic generates a synthetic
negative acknowledgement and transmits the same to the host as a NAK packet. Said control
logic (351) forwards said SSPLIT/OUT/DATA1 packets to the REX-FPGA subsystern. The control
logic (352) within the REX-FPGA subsystem forwards said SSPLIT/OUT/DATA1 packets to the
REX-Hub.

Upon successful receipt of the SSPLIT/OUT/DATA1 packets, the control logic (353) within
the REX-Hub generates an acknowledgement packet and transmits the same to the REX-FPGA
subsystem as a Result packet. The control logic (352) within the REX-FPGA subsystem forwards
said Result packet to the LEX subsystem and the control logic (351) within the LEX subsystem
stores said Result packet in its buffer memory. The control logic (353) within the REX-Hub
absorbs said SSPLIT packet and forwards said OUT/DATA1 packets to the device. On receipt of

10

15

20

235

30

35

40

WO 02/088975 PCT/CA02/00634

-44 -

said OUT/DATA1 packets, the control logic (354) within the device generates an acknowledgement
and transmits the same as a Result packet to the REX-Hub. The control logic (353) within the
REX-Hub stores said Result packet in its buffer memory.

At a later time, the control logic (350) within the host recognizes that it has not received an
acknowledgement from the device and automatically retries the transaction by issuing further
SSPLIT/OUT/DATA1 packets to the LEX subsystem. On receipt of the SSPLIT/OUT/DATAT
packets, the control logic (351) within the LEX subsystem recognizes that it has an
acknowledgement packet stored in memory from the same function identified by the further
SSPLIT/OUT/DATA1 packets. Said control logic retrieves the stored acknowledgement packet
from memory and transmits the same as a Result packet to the Host. Said control logic (351) also
recognizes that said SSPLIT/OUT/DATA1 packets are merely a repetition of the previous
SSPLIT/OUT/DATA1 packets and absorbs said packets.

At a yet later time, the control logic (350) within the host generates a complete split-
transaction and a notification of output data, addressed to the same USB function. Said complete
split-transaction and notification of oUtput data are transmitted as CSPLIT/OUT packets to the LEX
subsystem. On receipt of the CSPLIT/OUT packets, the control logic (351) within the LEX
subsystem recognizes that it has not received an acknowledgement packet from the device so said
control logic generates a synthetic NYET packet and transmits the same fo the host. Said NYET
packet informs the host that the LEX subsystem has not yet received a response from the device
and enables said host to progress to the next transaction. The control logic (351) within the LEX
subsystem forwards said CSPLIT/OUT packets to the REX-FPGA subsystem. The control logic
(352) within the REX-FPGA subsystem forwards said CSPLIT/OUT packets to the REX-Hub.

On receipt of the CSPLIT/OUT packets, the control logic (353) within the REX-Hub
recognizes that it has in its buffer memory a Resuit packet that corresponds to the further
CSPLIT/OUT packets. Said control logic (353) retrieves said stored Result packet and transmits
the same to the REX-FPGA subsystem. The control logic (352) within the REX-FPGA subsystem
forwards said Result packet to the LEX subsystem and the control logic (351) within the LEX
subsystem stores said Result packet in its buffer memory.

At a later time, the control logic (350) within the host recognizes that it has not received an
acknowledgement from the device and automatically retries the transaction by issuing further
CSPLIT/OUT packets to the LEX subsystem. On receipt of the CSPLIT/OUT packets, the control
logic (351) within the LEX subsystem recognizes that it has an acknowledgement packet stored in
memory from the same function identified by the further CSPLIT/OUT packets. Said control logic
retrieves said stored packet from memory and transmits the same as a Result packet to the Host.
Said control logic (351) also recognizes that said CSPLIT/OUT packets are merely a repetition of
the previous CSPLIT/OUT packets and absorbs said packets.

According to the invention, the protocol handling for control IN transfers between a high-
speed host and a full-speed device is the same as the protocol handling for control IN transfers
between a high-speed host and a low-speed device, as described in Figure 27 by control logics
(340) to (354).

10

15

20

25

30

35

40

WO 02/088975 PCT/CA02/00634
-45 -

Figure 28 is a sequence diagram showing a control output transfer, between a high-speed
host and a low-speed device. In the Set-up Phase, the control logic (340) within the Host generates(
a start sblit—transaction, a notification of device set-up, and a data packet addressed to a particular
USB function. Said split-transaction, notification, and data are transmitted to the LEX subsystem
as SSPLIT/SETUP/DATAO packets. On receipt of the SSPLIT/SETUP/DATAO packets, the control
logic (341) within the LEX subsystem recognizes the lack of Result that corresponds to the
notification of device set-up in its memory so said control logic generates a synthetic negative
acknowledgement and transmits the same to the host as a NAK packet. The control logic (341)
within the LEX subsystem forwards said SSPLIT/SETUP/DATAQ packets to the REX-FPGA
subsystem. The control logic (342) within the REX-FPGA subsystem forwards said
SSPLIT/SETUP/DATAO packets to the REX-Hub. On receipt of said SSPLIT/SETUP/DATAQ
packets, the control logic (343) within the REX-Hub generates an acknowledgement and transmits
the same as an ACK packet to the REX-FPGA subsystem. The control logic (342) within the REX-
FPGA subsystem forwards said ACK packet to the LEX subsystem and the control logic (341)
within the LEX subsystem stores said ACK packet in its buffer memory. The control logic (343)
within the REX-Hub forwards said SETUP/DATAO packets to the Device.

On receipt of the SETUP/DATAO packets, the control logic (344) within the device
assembles the requested Result and transmits the same as a Result packet to the REX-Hub. The
control logic (343) within the REX-Hub stores said Result packet in its buffer memory.

At a later time, the control logic (340) within the host recognizes that it has not received an
acknowledgement from the device and automatically retries the transaction by issuing further
SSPLIT/SETUP/DATAO packets to the LEX subsystem. On receipt of the SSPLIT/SETUP/DATAQ
packets, the control logic (341) within the LEX subsystem.recognizes that it has an '
acknowledgement packet stored in memory from the same function identified by the further
SSPLIT/SETUP/DATAO packets. Said control logic retrieves said stored acknowledgement packet
from memory and transmits the same as a Result packet to the Host. Said control logic (341) also
recognizes that said SSPLIT/SETUP/DATAQ packets are a repetition of the previous
SSPLIT/SETUP/DATAO packets and absorbs said packets.

At a later time, the control logic (340) within the host generates a complete split-transaction
and a notification of device set-up. Said complete split-transaction and notification of device set-up
are transmitted to the LEX subsystem as a CSPLIT packet and a SETUP packet (CSPLIT/SETUP
packets). On receipt of the CSPLIT/SETUP packets, the control logic (341) within the LEX
subsystem recognizes the lack of Result that corresponds to the notification of data set-up in its
memory so said control logic (341) generates a NYET packet and transmits the same to the host.
Said NYET packet warns the host that the LEX subsystem has not yet received a response from
the device and enables said host to progress to the next transaction. Said control logic (341)
forwards said CSPLIT/SETUP packets to the REX-FPGA subsystem. The control logic (342)
within the REX-FPGA subsystem forwards said CSPLIT/SETUP packets to the REX-Hub.

On receipt of the CSPLIT/SETUP packets, thé control logic (343) within the REX-Hub
recognizes that it has a Result packet stored in memory. Said control logic retrieves said stored

WO 02/088975 PCT/CA02/00634

10

15

20

25

30

35

40

- 46 -

Result packet from memory and transmits the same packet as a Result packet to the REX-FPGA
subsystem. The control logic (342) within the REX-FPGA subsystem forwards said Result packet
to the LEX subsystem. The control logic (341) within the LEX subsystem stores said Result packet
in its buffer memory.

At a later time, the control logic (340) within the host recognizes that it has not received a
Result from the device and automatically retries the transaction by issuing further CSPLIT/SETUP
packets to the LEX subsystem. On receipt of the further CSPLIT/SETUP packets, the control logic
(341) within the LEX subsystem recognizes that it has a Result packet stored in memory from the
same function identified by the further CSPLIT/SETUP packet. Said control logic (341) retrieves
said stored Result packet from memory and transmits the same packet to the Host.

In the Data Phase, the control logic (345) within the host generates a start split-transaction,
a notification of output data, and a data packet, addressed to the same USB function as the Set-up
Phase. Said start split-transaction, notification of output data, and data packet are transmitted to
the LEX subsystem as a SSPLIT packet, an OUT packet, and a DATA1 packet, respectively
(SSPLIT/OUT/DATA1 packets). On receipt of the SSPLIT/OUT/DATA1 packets, the control logic
(346) within the LEX subsystem recognizes the lack of Result that corresponds to the input request
in its buffer memory so said control logic generates a synthetic negative acknowledgement and
transmits the same to the host as a NAK packet. Said control logic (346) forwards said

* SSPLIT/OUT/DATA1 packets to the REX-FPGA subsystem. The control logic (347) within the

REX-FPGA subsystem forwards said SSPLIT/OUT/DATA1 packets to the REX-Hub.

On receipt of the SSPLIT/OUT/DATA1 packets, the control logic (348) within the REX-Hub
generates an acknowledgement packet and transmits the same to the REX-FPGA subsystem as a
Result packet. The control logic (347) within the REX-FPGA subsystem forwards said Result
packet to the LEX subsystem and the control logic (346) within the LEX subsystem stores said
Result packet in its buffer memory. The control logic (348) within the REX-Hub absorbs said

- SSPLIT packet and forwards said OUT/DATA1 packets to the device. On receipt of said

OUT/DATA1 packets, the control logic (349) within the device assembles the requested Result and
transmits the same as a Result packet to the REX-Hub. The control logic (348) within the REX-
Hub stores said Result packet in its buffer memory.

At a later time, the control logic (345) within the host recognizes that it has not received the
requested Result and automatically retries the transaction by issuing further SSPLIT/OUT/DATA1
packets to the LEX subsystem. On receipt of the SSPLIT/OUT/DATA1 packets, the control logic
(346) within the LEX subsystem recognizes that it has a Result packet stored in memory from the
same function identified by the further SSPLIT/OUT/DATA1 packets. Said control logic retrieves
said stored Result packet from memory and transmits the same packet to the Host. Said control
logic (346) also recognizes that said SSPLIT/OUT/DATA1 packets are a repetition of the previous
SSPLIT/OUT/DATA1 packets and absorbs said packets.

At a yet [ater time, the control logic (345) within the host generates a complete split-
transaction and a notification of output data. Said complete split-transaction and notification of
output data are transmitted to the LEX subsystem as a CSPLIT packet and an OUT packet

WO 02/088975 PCT/CA02/00634

10

15

20

25

30

35

-47 -

(CSPLIT/OUT packets). On receipt of the CSPLIT/OUT packets, the control logic (346) within the
LEX subsystem recognizes the lack of Result that corresponds to the notification of output data in
its memory so said control logic (346) generates a NYET packet and transmits the same to the
host. Said NYET packet warns the host that the LEX subsystem has not yet received a response
from the device and enables said host to progress to the next transaction. Said control logic (346)
forwards said CSPLIT/SETUP packets to the REX-FPGA subsystem. The control logic (347)
within the REX-FPGA subsystem forwards said CSPLIT/OUT packets to the REX-Hub.

On receipt of the CSPLIT/OUT packets, the control logic (348) within the REX-Hub
recognizes that it has a Result packet stored in memory from the same function identified by the
CSPLIT/OUT packets. Said control logic retrieves said stored Result packet from memory and
transmits the same packet to the REX-FPGA subsystem. The control logic (347) within the REX-
FPGA subsystem forwards said Result packet to the LEX subsystem and the control logic'(346)
within the LEX subsystem stores said Result packet in its buffer memory.

At a later time, the control logic (345) within the host recognizes that it has not received the
requested Result and automatically retries the transaction by issuing a further CSPLIT packet and
a further OUT packet to the LEX subsystem. On receipt of the CSPLIT/OUT packets, the control
logic (346) within the LEX subsystem recognizes that it has a Result packet stored in memory from
the same function identified by the further CSPLIT/OUT packets. Said control logic retrieves said
stored Result packet from memory and transmits the same packet to the Host. Said control logic
(346) also recognizes that said CSPLIT/OUT packets are a repetition of the previous CSPLIT/OUT
packets and absorbs said packets.

In the Status Phase, the control logic (350) within the host generates a start split-
transaction and a request for input data, addressed to the same USB function as the Data Phase.
Said start split-transaction and request for input data are transmitted to the LEX subsystem as a
SSPLIT packet and an IN packet (SSPLIT/IN packets). On receipt of said SSPLIT/IN packets, the
control logic (351) within the LEX subsystem recognizes that the lack of Result in its memory so it
generates a synthetic negative acknowledgement and transmits the same as a NAK packet to the
host. Said control logic forwards the SSPLIT/IN packets to the REX-FPGA subsystem. The
control logic (352) within the REX-FPGA subsystem forwards said SSPLIT/IN packets to the REX-
Hub. On receipt of the SSPLIT/IN packets, the control logic (353) within the REX-Hub generates a
Result and transmits the same as a Result packet to the REX-FPGA subsystem. The control logic
(352) within the REX-FGPA subsystem forwards said Result packet to the LEX subsystem and the
control logic (351) within the LEX subsystem stores said Result packet in its buffer memory. The
control logic (353) within the REX-Hub absorbs said SSPLIT packet and forwards said IN packet to
the device.

On receipt of the IN packet, the control logic (354) within the device assembles the
requested data and transmits the same as a Result packet to the REX-Hub. Upon receipt of the
Result packet, the control logic (353) within the REX-Hub generates an ACK packet to
acknowledge a successful transmission and transmits the sameto the device.

10

15

20

25

30

35

40

WO 02/088975 PCT/CA02/00634

-48 -

At a later time, the control logic (350) within the host recognizes that it has not received an
acknowledgement from the device and automatically retries the transaction by issuing a further
SSPLIT packet and a further IN packet to the LEX subsystem. On receipt of the further SSPLIT/IN
packets, the control logic (351) within the LEX subsystem recognizes that it has an ‘
acknowledgement packet stored in memory from the same function identified by the further
SSPLIT/IN packets. Said control logic retrieves said stored acknowledgement packet from
memory and transmits the same as a Result packet to the Host. Said control logic also recognizes
that said SSPLIT/IN packets are a repetition of the previous SSPLIT/IN packets and absorbs said
packets.

At a yet later time, the control logic (350) within the host generates a complete split-
transaction and a request for input data. Said complete split-transaction and request for input data
are transmitted to the LEX subsystem as a CSPLIT packet and an IN packet (CSPLIT/IN packets).
On receipt of the CSPLIT/IN packets, the control logic (351) within the LEX subsystem recognizes
the lack of data that corresponds to the request in its memory so said control logic (351) generates
a NYET packet and transmits the same to the host. Said NYET packet warns the host that the
LEX subsystem has not yet received a response from the device and enables said host to progress
to the next transaction. Said control logic (351) forwards said CSPLIT/IN packets to the REX-
FPGA subsystem. The control logic (352) within the REX-FPGA subsystem forwards said
CSPLIT/IN packets to the REX-Hub.

At a later time, the control logic (350) within the host recognizes that it has not received a
data packet from the device and automatically retries the transaction by issuing a further CSPLIT
packet and a further IN packet to the LEX subsystem. On receipt of the further CSPLIT/IN
packets, the control logic (351) within the LEX subsystem recognizes that it has a data packet
stored in memory from the same function identified by the further CSPLIT/IN packets. Said control
logic retrieves said stored Result packet from memory and transmits the same packet to the Host.
Said control logic also recognizes that said CSPLIT/IN packets are a repetition of the previous
CSPLIT/IN packets and absorbs said packets.

According to the invention, the protocol handling for control output transfers between a
high-speed host and a full-speed device is the same as the protocol handling for control output
transfers between a high-speed host and a low-speed device, as described in Figure 28 by control
logics (340) to (354).

Figure 29 is a sequence diagram showing a control input transfer, between a high-speed
host and a high-speed device. In the Set-up Phase, the control logic (360) within the Host
generates a notification of device set-up and a data packet, addressed to a particular USB function.
Said notification and data are transmitted to the LEX subsystem as a SETUP packet and a DATAQ
packet (SETUP/DATAOQ packets). On receipt of said packets, the control logic (361) within the LEX
subsystem recognizes that it has not yet received an acknowledgment from the device so said
control logic generates a synthetic acknowledgement packet and transmits the same as an ACK
packet to the host. Said control logic (361) forwards the SETUP/DATAO packets to the REX-FPGA
subsystem. The control logic (362) within the REX-FPGA subsystem forwards said SETUP/DATAQ

10

15

20

25

30

35

WO 02/088975 PCT/CA02/00634

- 49 -

packets to the REX-Hub. The control logic (363) within the REX-Hub forwards said SETUP/DATAO
packets to the Device.

On receipt of said SETUP/DATAO packets, the control logic (364) within the device
assembles the required acknowledgement packet and transmits the same as a Result packet to
the Host. The control logic (363) within the REX-Hub receives said Result packet and forwards the
same packet to the REX-FPGA subsystem. The control logic (362) within the REX-FPGA
subsystem forwards said Result packet to the LEX subsystem. The control logic (361) within the
LEX subsystem recognizes that it has already sent an acknowledgement to the host and absorbs
said Result packet.

In the Data Phase, the control logic (365) within the host generates a request for input data
addressed to the same USB function, after receiving the first Result packet. Said request for input
data are transmitted to the LEX subsystem as an IN packet. On receipt of said IN packet, the
control logic (366) within the LEX subsystem recognizes the lack of data that corresponds to the
input request in its buffer memory so said control logic generates a synthetic negative
acknowledgement packet and transmits the same as a NAK packet to the host. Said control logic
(366) forwards the IN packet to the REX-FPGA subsystem. The control logic (367) within the
REX-FPGA subsystem forwards said IN packet to the REX-Hub. The control logic (368) within the
REX-Hub forwards the request for input data to the Device as an IN packet.

On receipt of the IN packet, the control logic (369) within the device assembles the
requested control data and transmits the same to the REX-Hub as a Result packet. The control
logic (368) within the REX-Hub forwards said Result packet to the REX-FPGA subsystem. On
receipt of said Result packet, the control logic (367) within the REX-FPGA subsystem generates a
synthetic acknowledgement packet. Said acknowledgement packet is transmitted to the REX-Hub
as an ACK packet. The control logic (368) within the REX-Hub forwards said ACK packet to the
device. The control logic (367) within the REX-FPGA subsystem forwards said Result packet to
the LEX subsystem and the control logic (366) within the LEX subsystem stores said Result packet
in its buffer memory.

At a later time, the control logic (365) within the host recognizes that it has not received the
requested input data and automatically retries the transaction by issuing a further request
addressed to the same USB function. Said request is transmitted to the LEX subsystem as an IN
packet. On receipt of the IN packet, the control logic (366) within the LEX subsystem recognizes
that it has a Result packet stored in memory from the same function identified by the further IN
packet. Said control logic retrieves said stored Result packet from memory and transmits the
same packet to the Host. Said control logic (366) also recognizes that said IN packet is a repetition
of the previous IN packet and absorbs said packet. Upon successful receipt of the Result packet,
the control logic (365) within the host generates an ACK packet to acknowledge a successful "
transmission. When the control logic (366) within the LEX subsystem receives the ACK packet
from the host, said control logic absorbs said packet.

10

15

20

25

30

35

WO 02/088975 PCT/CA02/00634

-50 -

The above-described process is repeated for subsequent input data requests from the
Host by the distributed control logic (e.g. 365, 366, 367, 368, 369). The control logic within the host
will continue to generate requests for input data until the last data packet is received.

In the Status Phase, the control logic (370) within the host generates a notification of
output data and a data packet, addressed to the same USB function. Said notification and data are
transmitted to the LEX subsystem as OUT/DATA1 packets. On receipt of said OUT/DATA1
packets, the control logic (371) within the LEX subsystem recognizes it has not received an
acknowledgement from the device so said control logic generates a synthetic negative
acknowledgement packet and transmits the same as a NAK packet to the host. Said control logic
(371) forwards the OUT/DATA1 packets to the REX-FPGA subsystem. The control logic (372)
within the REX-FPGA subsystem forwards said OUT/DATA1 packets to the REX-Hub. The control
logic (373) within the REX-Hub forwards said OUT/DATA1 packets to the Device.

On receipt of the OUT/DATA1 packets, the control logic (374) within the device assembles
the required acknowledgement packet and transmits the same as a Result packet to the REX-Hub.
The control logic (373) within the REX-Hub receives said Result packet and forwards the same
packet to the REX-FPGA subsystem. The control logic (372) within the REX-FPGA subsystem
forwards said Result packet to the LEX subsystem. The control logic (371) within the LEX
subsystem stores said Result packet in its buffer memory.

At a later time, the control logic (370) within the host recognizes that it has not received the
requestéd Result and automatically retries the transaction by generating further OUT/DATA1
packets addressed to the same USB function and transmitting the same to the LEX subsystem.
On receipt of the OUT/DATA1 packets, the control logic (371) within the LEX subsystem
recognizes that it has a Result packet stored in memory from the same function identified by the
further OUT/DATA1 packets. Said control logic retrieves said stored Result packet from memory
and transmits the same packet to the Host. Said control logic (371) also recognizes that said
OUT/DATA1 packets are a repetition of the previous OUT/DATA1 packets and absorbs said
packets. '

The sequence for the Data Phase described above by the distributed control logics 365 —
369 also serves to describe the operation of a bulk input transfer between a high-speed host and a
high-speed device.

Figure 30 is a sequence diagram showing a control output transfer, between a high-speed
host and a high-speed device. In the Set-up Phase, the control logic (360) within the Host
generates a notification of device set-up and a data packet addressed to a particular USB function.
Said notification and data packet are transmitted to the LEX subsystem as a SETUP packet and a
DATAOQ packet (SETUP/DATAO packets). On receipt of the SETUP/DATAOQ packets, the control
logic (361) within the LEX subsystem recognizes that it has not received an acknowledgement from
the device so said control logic generates a synthetic acknowledgement packet and transmits the
same as an ACK packet to the host. Said control logic (361) forwards the SETUP/DATAO packets
to the REX-FPGA subsystem. The control logic (362) within the REX-FPGA subsystem forwards

10

15

20

25

30

35

40

WO 02/088975 PCT/CA02/00634

-51-

said SETUP/DATAQ packets to the REX-Hub. The control logic (363) within the REX-Hub forwards
said SETUP/DATAO packets to the device.

On receipt of the SETUP/DATAO packets, the control logic (364) within the device
assembles the requested Result and transmits the same as a Result packet to the REX-Hub. The
control logic (363) within the REX-Hub forwards said Result packet to the REX-FPGA subsystem.
The control logic (362) within the REX-FPGA subsystem forwards said Result packet to the LEX
subsystem. The control logic (361) within the LEX subsystem recognizes that it has already sent
an acknowledgement to the host and absorbs said Result packet. |

In the Data Phase, the control logic (365) within the host generates a notification of output
data and a data packet, addressed to the same USB function as in the Set-up Phase. Said
notification and data packet are transmitted as OUT/DATA1 packets to the LEX subsystem. On
receipt of the OUT/DATA1 packets, the control logic (366) within the LEX subsystem recognizes
that it has not received an acknowledgement packet from the device so said control logic
generates a synthetic negative acknowledgement and transmits the same as a NAK packet to the
host. Said control logic (366) forwards the OUT/DATA1 packets to the REX-FPGA subsystem.
The control logic (367) within the REX-FPGA subsystem forwards said OUT/DATA1 packets to the
REX-Hub. The control logic (368) within the REX-Hub forwards said OUT/DATA1 packets to the
device.

On receipt of the OUT/DATA1 packets, the control logic (369) within the device assembles
the requested Result and transmits the same to the REX-Hub as a Result packet. The control
logic (368) within the REX-Hub forwards said Result packet to the REX-FPGA subsystem. The
control logic (367) within the REX-FPGA subsystem forwards said Result packet to the LEX
subsystem and the control logic (366) within the LEX subsystem stores said Result packet in its
buffer memory.

At a later time, the control logic (365) within the host recognizes that it has not received an
acknowledgement from the device and automatically retries the transaction by issuing a further
OUT packet and a further DATA1 packet, addressed to the same USB function. Said notification
and data are transmitted as OUT/DATA1 packets to the LEX subsystem. On receipt of the
OUT/DATA1 packets, the control logic (366) within the LEX subsystem recognizes that it has in its
buffer memory an acknowledgement packet that corresponds to the same function as the further
OUT/DATA1 packets. Said control logic (366) retrieves said stored Result packet from its memory
and transmits the same packet to the host. Said control logic also recognizes that said
OUT/DATA1 packets are a repetition of the previous OUT/DATA1 packets and absorbs said
packets.

The above-described process is repeated for subsequent output data notifications from the
Host by the distributed control logic (e.g. 365, 366, 367, 368, 369). The control logic within the host
will continue to generate notifications of output data until the last data packet is delivered.

In the Status Phase, the control logic (370) generates a request for input data and
transmits the same as an IN packet to the LEX subsystem. On receipt of the IN packet, the control
logic (371) within the LEX subsystem recognizes the lack of data that corresponds to the request in

10

15

20

25

30

35

40

WO 02/088975 PCT/CA02/00634

-5

its buffer memory so it generates a synthetic negative acknowledgement and transmits the same
as a NAK packet to the host. Said control logic (371) forwards said IN packet to the REX-FPGA
subsystem. The control logic (372) within the REX-FPGA subsystem forwards said IN packet to
the REX-Hub. The control logic (373) within the REX-Hub forwards said IN packet to the device.

On receipt of the IN packet, the control logic (374) within the device assembles the
requested data and transmits the same as a Result packet to the REX-Hub. The control logic
(373) within the REX-Hub forwards said Result packet to the REX-FPGA subsystem. On receipt of
the Result packet, the control logic (372) within the REX-FPGA subsystem generates a synthetic
acknowledgement packet and transmits the same as an ACK packet to the REX-Hub. The control
logic (373) within the REX-Hub forwards said ACK packet to the device. The control logic (372)
within the REX-FPGA subsystem forwards the Result packet to the LEX subsystem and the control
logic (371) within the LEX subsystem stores said Result packet in its buffer memory.

At a later time, the control logic (370) within the host recognizes that it has not received the
requested data packet and automatically retries the transaction by issuing a further request for
input data, addressed to the same USB function. Said request for input data is transmitted as an
IN packet to the LEX subsystem. On receipt of the IN packet, the control logic (371) within the LEX
subsystem recognizes that it has in its buffer memory a Result packet that corresponds to the
same function as the further input request. Said control logic (371) retrieves said stored Result
packet from its memory and transmits the same packet to the host. Said control logic also
recognizes that said IN packet is a repetition of the previous IN packet and absorbs said packet.
Upon successful receipt of the Result packet, the control logic (370) within the host generates an
ACK packet to acknowledge a successful transmission. When the control logic (371) within the
LEX subsystem receives the ACK packet from the host, said control logic absorbs said packet.

The sequence for the Data Phase described above by the distributed control logics 365 —
369 also serves to describe the operation of a bulk output transfer between a high-speed host and
a high-speed device.)

Figure 31 is a sequence diagram showing a bulk input transfer, between a high-speed host
and a full-speed device. The control logic (410) within the host generates a start split-transaction
and a request for input data addressed to a particular USB function. Said start split-transaction and
request for input data are transmitted to the LEX subsystem as a SSPLIT packet and an IN packet
(SSPLIT/IN packets). On receipt of the SSPLIT/IN packets, the control logic (411) within the LEX
subsystem recognizes that it has not yet received an acknowledgement from the device so said
control logic generates a synthetic negative acknowledgement and transmits the same to the host
as a NAK packet. Said control logic (411) forwards said SSPLIT/IN packets to the REX-FPGA
subsystem. The control logic (412) within the REX-FPGA subsystem forwards said SSPLIT/IN
packets to the REX-Hub.

On receipt of the SSPLIT/IN packets, the control logic (413) within the REX-Hub generates
an acknowledgement packet and transmits the same to the REX-FPGA subsystem as a Result
packet. The control logic (412) within the REX-FPGA subsystem forwards said Result packet to
the LEX subsystem and the control logic (411) within the LEX subsystem stores said Result packet

10

15

20

25

30

35

40

WO 02/088975 PCT/CA02/00634

-53 -

in its buffer memory. The control logic (413) within the REX-Hub absorbs said SSPLIT packet and
forwards said IN packet to the device. On receipt of said IN packet, the control logic (414) within
the device assembles the requested data and transmits the same as a Result packet to the REX-
Hub. The control logic (413) within the REX-Hub stores said Result packet in its buffer memory.
On receipt of the Result packet, said control logic (413) generates an ACK packet to acknowledge
a successful transmission.

At a later time, the control logic (410) within the host recognizes that it has not received the
requested data from the device and automatically retries the transaction by issuing a further start
split-transaction and a request for input data addressed to the same USB function. Said start split-
transaction and request for input data are transmitted as SSPLIT/IN packets to the LEX
subsystem. On receipt of the SSPLIT/IN packets, the control logic (411) within the LEX subsystem
recognizes that it has an acknowledgement packet stored in memory from the same function
identified by the further SSPLIT/IN packets. Said control logic retrieves the stored
acknowledgement packet from memory and transmits the same as a Result packet to the Host.
Said control logic (411) also recognizes that said SSPLIT/IN packets are merely a repetition of the
previous SSPLIT/IN packets and absorbs said packets.

At a later time, the control logic (410) within the host generates a complete split-transaction
and a request for input data, addressed to the same USB function. Said complete split-transaction
and request for input data are transmitted as CSPLIT/IN packets to the LEX subsystem. On
receipt of the CSPLIT/IN packets, the control logic (411) within the LEX subsystem recognizes that
it has not received an acknowledgment packet from the device so said control logic generates a
synthetic NYET packet and transmits the same to the host. Said NYET packet informs the host
that the LEX subsystem has not yet received a response from the device and enables said host to
progress to the néxt transaction. The control logic (411) within the LEX subsystem forwards said
CSPLIT/IN packets to the REX-FPGA subsystem. The control logic (412) within the REX-FPGA
subsystem forwards said CSPLIT/IN packets to the REX-Hub.

On receipt of the CSPLIT/IN packets, the control logic (413) within the REX-Hub
recognizes that it has in its buffer memory a Result packet that corresponds to the input data
request. Said control logic (413) retrieves said stored Result packet and transmits the same to the
REX-FPGA subsystem. The control logic (412) within the REX-FPGA subsystem forwards said
Result packet to the LEX subsystem and the control logic (411) within the LEX subsystem stores
said Result packet in its buffer memory.

At a later time, the control logic (410) within the host recognizes that it has not received the
requested data from the device and automatically retries the transaction by issuing a further
complete split-transaction and a request for input data, addressed to the same USB function. Said
complete split-transaction and request for input data are transmitted to the LEX subsystem as
further CSPLIT/IN packets. On receipt of the further CSPLIT/IN packets, the control logic (411)
within the LEX subsystem recognizes that it has a Result packet stored in memory from the same
function identified by the further CSPLIT/IN packets. Said control logic retrieves said stored Result
packet from memory and transmits the same packet to the Host. Said control logic (411) also

10

15

20

25

30

35

40

WO 02/088975 PCT/CA02/00634

-54 -

recognizes that said CSPLIT/IN packets are merely a repetition of the previous CSPLIT/IN packets
and absorbs said packets.

The above-described process is repeated for subsequent input data requests from the
Host by the distributed control logic (e.g. 410, 411, 412, 413, 414).

Figure 32 is a sequence diagram showing a bulk output transfer, between a high-speed
host and a full-speed device. The control logic (410) within the host generates a start split-
transaction, a notification of output data, and a data packet, addressed to a particular USB
function. Said start split-transaction, notification of output data, and data packet are transmitted to
the LEX subsystem as a SSPLIT packet, an OUT packet and a DATAX packet, respectively. Said
DATAX packet represents a DATAO packet or a DATA1 packet. On réceipt of the
SSPLIT/OUT/DATAX packets, the control logic (411) within the LEX subsystem recognizes the
lack of Result that corresponds to the input request in its buffer memory so said control logic
generates a synthetic negative acknowledgement and transmits the same to the host as a NAK
packet. Said control logic (411) forwards said SSPLIT/OUT/DATAX packets to the REX-FPGA
subsystem. The control logic (412) within the REX-FPGA subsystem forwards said
SSPLIT/OUT/DATA1 packets to the REX-Hub.

On receipt of the SSPLIT/OUT/DATAX packets, the control logic (413) within the REX-Hub
generates an acknowledgement packet and transmits the same to the REX-FPGA subsystem as a
Result packet. The control logic (412) within the REX-FPGA subsystem forwards said Result
packet to the LEX subsystem and the control logic (411) within the LEX subsystem stores said
Result packet in its buffer memory. The control logic (413) within the REX-Hub absorbs said
SSPLIT packet and forwards said OUT/DATAX packets to the device. On receipt of said
OUT/DATAX packets, the control logic (414) within the device assembles the requested Result and
transmits the same as a Result packet to the REX-Hub.

The control logic (413) within the REX-Hub stores said Result packet in its buffer memory.
At a later time, the control logic (410) within the host recognizes that it has not received the
requested Result and automatically retries the transaction by issuing further SSPLIT/OUT/DATAX
packets addressed to the same USB function and transmitting the same to the LEX subsystem.
On receipt of the SSPLIT/OUT/DATAX packets, the control logic (411) within the LEX subsystem
recognizes that it has a Result packet stored in memory from the same function identified by the
further SSPLIT/OUT/DATAX packets. Said control logic retrieves said stored Result packet from
memory and transmits the same packet to the Host. Said control logic (411) also recognizes that
said SSPLIT/OUT/DATAX packets are a repetition of the previous SSPLIT/OUT/DATAX packets
and absorbs said packets.

At a later time, the control logic (410) within the host generates a complete split-transaction
and a notification of output data. Said complete split-transaction and notification of output data are
transmitted to the LEX subsystem as a CSPLIT packet and an OUT packet. On receipt of the
CSPLIT/OUT packets, the control logic (411) within the LEX subsystem recognizes the lack of
Result that corresponds to the notification of output data in its memory so said control logic (411)
generates a NYET packet and transmits the same to the host. Said NYET packet warns the host

10

15

20

25

30

35

40

WO 02/088975 PCT/CA02/00634
-55-

that the LEX subsystem has not yet received a response from the device and enables said host to
progress to the next transaction. Said control logic (411) forwards said CSPLIT/SETUP packets to
the REX-FPGA subsystem. The control logic (412) within the REX-FPGA subsystem forwards said
CSPLIT/OUT packets to the REX-Hub.
On receipt of the CSPLIT/OUT packets, the control logic (413) within the REX-Hub

" recognizes that it has a Result packet stored in memory-from the same function identified by the
further CSPLIT/OUT packets. Said control logic retrieves said stored Result packet from memory
and transmits the same packet to the REX-FPGA subsystem. The control logic (412) within the
REX-FPGA subsystem forwards said Result packet to the LEX subsystem and the control logic
(411) within the LEX subsystem stores said Result packet in its buffer memory.

At a later time, the control logic (410) within the host recognizes that it has not received the
requested Result and automatically retries the transaction by issuing a further CSPLIT packet and
a further OUT packet to the LEX subsystem. On receipt of the CSPLIT/OUT packets, the control
logic (411) within the LEX subsystem recognizes that it has a Result packet stored in memory from
the same function identified by the further CSPLIT/QUT packets. Said control logic retrieves said
stored Result packet from memory and transmits the same packet to the Host. Said control logic
(411) also recognizes that said CSPLIT/OUT packets are a repetition of the previous CSPLIT/OUT
packets and absorbs said packets. '

Figure 33 provides a sequence diagram showing a PING protocol according to the
invention. .

The control logic (500) within the host generates a high-speed flow control probe for a
bulk/control endpoint, addressed to a particular USB function, and transmits the same to the LEX
subsystem as a PING packet. On receipt of said PING packet, the control logic (501) within the
LEX subsystem recognizes that it has not yet received an acknowledgment from the device
corresponding to said PING packet. Said control logic generates a synthetic negative
acknowledgment packet and transmits the same as a NAK packet to the host. Said control logic
(501) forwards said PING packet to the REX-FPGA subsystem. The control logic (502) within the
REX-FPGA subsystem forwards said PING packet to the REX-Hub. The control logic (503) within
the REX-Hub forwards said PING packet to the Device.

Upon successful receipt of said PING packet, the control logic (504) within the device
generates an acknowledgment and transmits the same to the REX-Hub as a Result packet. The
control logic (503) within the REX-Hub forwards said Result packet to the REX-FPGA subsystem.
The control logic (502) within the REX-FPGA subsystem forwards said Result packet to the LEX
subsystem and the control logic (501) within the LEX subsystem stores said Result packet in its
buffer memory.

At a later time, the control logic (500) within the host realizes that it has not received an
acknowledgment from the device and automatically retries the transaction by issuing a further high-
speed flow control probe to the same USB function. Said flow control probé is transmitted to the
LEX subsystem as a PING packet. On receipt of said PING packet, the control logic (501) within
the LEX subsystem recognizes that it has an acknowledgment packet stored in its memory from

10

15

WO 02/088975 PCT/CA02/00634

-56 -

the same function identified by the further PING packet. Said control logic retrieves said
acknowledgment packet from its buffer memory and transmits the same to the host as a Result
packet. Said control logic (501) also recognizes said further PING packet is merely a repetition of
the previous PING packet and absorbs said packet.

The above-described process is repeated for4subsequent high-speed flow control probes
from the Host by the distributed control logic (e.g. 500, 501, 502, 503, 504).

Thus, it is apparent that there have been provided, in accordance with the present.
invention, USB devices which fully, or at least partially, satisfy the means, objects, and advantages
over the prior art as set forth hereinbefore. Therefore, having described specific embodiments of
the’present invention, it will be understood that alternatives, modifications and variations thereof
may be suggested to those skilled in the art, and that it is intended that the present specification
embrace all such alternatives, modifications and variations as fall within the scope of the appended
claims.

Additionally, for clarity and unless otherwise stated, the word “comprise” and variations of
the word such as “comprising” and “comprises”, when used in the description and claims of the
present specification, is not intended to exclude other additives, components, integers or step.

WO 02/088975 PCT/CA02/00634

10

15

20

25

30

35

40

-57 -

We claim

1. An enhanced high-speed method for transmitting a data stream between a host controller
and a peripheral device over an extended distance, on a signal distribution system, in accordance
with the USB-Extended Range Protocol (USB-ERP) wherein said method additionally comprises
modifications to allow for compliance with Revision 2.0 of the USB specification.

2. An enhanced high-speed method of transmitting a data stream as claimed in Claim 1
wherein said enhanced high-speed USB-ERP comprises:

a. feeding a first original, outgoing digital signal from a host controller to a local
expander unit;

b. optionally converting said outgoing digital signals into a converted outgoing signal
having a format suitable for transmission over extended distances;

c. transmitting either said outgoing digital signal or said converted outgoing signal, as
a outgoing transmission signal, over a signal distribution system:;

d. receiving said outgoing transmission signal at a remote expander unit;

e. optionally converting said outgoing transmission signal to said first original
outgoing digital signal;

f. delivering said first originai outgoing digital signal from said remote expander to at -
least one peripheral device;

g. receiving, at said remote expander, a reply digital signal from said péripheral
device;

h. optionally converting said reply digital signal into a converted reply signal having a

format suitable for transmission over extended distances;

i transmitting said reply digital signal or said converted reply signal as a reply
transmission signal over said signal distribution system;

j- receiving said reply transmission signal at said local expander;

k. optionally converting said reply transmission signal to said original reply digital
signal;

l. storing said reply digital signal as a stored reply digital signal until the receipt of a
subsequent original, outgoing digital signal from said host controller, which subsequent signal is the
same as, or similar to, said first original outgoing digital signal; and

m. forwarding said stored reply digital signal to said host controller in response to said
subsequent original outgoing digital signal.
3. A method as claimed in Claim 2 wherein said data stream is a time relevant data stream.
4. A method as in Claim 2 wherein said digital signals conform to the USB Specification and

represent isochronous data.

10

15

20

25

30

35

40

WO 02/088975 PCT/CA02/00634

-58-

5. A method as claimed in Claim 4 wherein said method provides a method for transmission
of isochronous data according to the USB Specification wherein isochronous data is transmitted
from a peripheral device and is received by a host controller, said method comprising:

a. transmitting a request for isochronous data from a host controller to a local
expander;

b.’ forwarding said request for isochronous data from said local expander to a remote
expander over a signal distribution system;

C. delivering said forwarded request for isochronous data to at least one peripheral
device;

d. transmitting the requested isochronous data from said peripheral device to said

remote expander;
e. forwarding said requested isochronous data from said remote expander to said
local expander over said signal distribution system;

f. storing said requested isochronous data in a packet buffer at said local expander;
g. transmitting a subsequent request for isochronous data from said host controller to
said local expander;
h. receiving said subsequent request for isochronous data at said local expander;
and
. retrieving the stored isochronous data from said local expander;
il. delivering said stored isochronous data to said host controller;
I forwarding said subsequent request for isochronous data from said local
expander to said remote expander over said signal distribution system; and
Iv. repeating steps (c) through (h) for said subsequent request and any
further subsequent requests for isochronous data.
6. A method as claimed in Claim 4 wherein said method provides a method for transmission

of isochronous data according to the USB Specification wherein isochronous data is transmitted
from a host controller and is received by a peripheral device, said method comprising:

a) receiving, at a local expander, an original notification of isochronous data from a
host controller; ,

b) forwarding said original notification of isochronous data from said local expander to
a remote expander over a signal distribution system;

c) receiving, at a remote expander, said forwarded original notification of isochronous
data;

d) delivering said forwarded notification of isochronous data to at least one peripheral
device;

e) receiving, at a local expander, an original isochronous data packet from a host
controller;

f) forwarding said original isochronous data packet from said local expander to a

remote expander over a signal distribution system;

WO 02/088975 PCT/CA02/00634

10

15

20

25

30

35

40

-59.
9) receiving, at a remote expander, said forwarded original isochronous data packet;
and
h) delivering said forwarded original isochronous data packet to at least one
peripheral device.
7. A method as claimed in Claim 5 additionally comprising the following steps after step (b) of

Claim 5 namely:

i. Determinihg whether said local expander already possesses said requested
isochronous data;

ii. Generating a synthetic data packet if no such requested isochronous data is
present; and p V

iii. Delivering said synthetic isochronous data to said host controller.

8. A method as claimed in Claim 5 additionally comprising the following steps after step (b) of
Claim 5, uniquely for data transfers conforming to the USB Specification wherein data is
transmitted from a high-speed host and is received by a full-speed device, namely:

i) Determining whether said local expander already possesses said requested
isochronous data;

i) Generating a synthetic not-yet packet if no such requested isochronous data is
present; and
iii) Delivering said not-yet packet to said host controller.
9. A method as claimed in Claim 5 additionally comprising the foliowing step after step (c) of
Claim 5, namely:
i) Storing the address of the requested peripheral device at said remote expander
unit;
a) Retrieving the address of said requested peripheral device at said remote
expander unit; and
b) Adding said retrieved address to said requested isochronous data.
10. A method as claimed in Claim 5 wherein vestigial packets are removed from system, said

method comprising:

i) Detecting when a new frame has begun;
ii) Examining the properties of each packet buffer;
iii) Determining whether the data packet contained in said examined packet buffer

has been stored for at least one complete frame period;

iv) Discarding said contained data packet if said contained data packet has been
stored for at least one complete frame period; and

V) Repeating steps (i) through (iv) for each packet buffer in the system.

10

15

20

25

30

35

WO 02/088975 PCT/CA02/00634

- 60 -

11. An enhanced high-speed method as claimed in Claim 2 wherein said data stream is non-
time-relevant data stream.

12. A method as in Claim 2 wherein said digital signals conform to USB Specification and
represent asynchronous data.

13. A method as claimed in Claim 12 wherein said method provides a method for transmission
of asynchronous data according to the USB Specification wherein asynchronous data is
transmitted from a peripheral device and is received by a host controller, said method comprising:

a) receiving, at a local expander, an original request for asynchronous data from a host
controller;

b) forwarding said original request for asynchronous data from said local expander to a
remote expander over a signal distribution system;

c) receiving, at a remote expander, said forwarded original request for asynchronous
data;

d) delivering said forwarded original request for asynchronous data from said peripheral
device;

e) receiving, at said remote expander, the requested asynchronous data to at least one
peripheral device; 4

f) forwarding said requested asynchronous data from said remote expander to said
local expander over said signal distribution system;

g) storing, in a packet buffer at said local expander, said requested asynchronous data;

h) receiving, at said local expander, a subsequent request for asynchronous data from
said host controller; and

i) retrieving the stored asynchronous data from said packet buffer;
ii) delivering said retrieved asynchronous data to said host controller;

i) receiving, at said local expander, an outgoing acknowledgment signal from said host
cbntroller;

j) absorbing, at said local expander, said outgoing acknowledgement signal.

14, A method as claimed in Claim 13 additionally comprising the following steps after step
(b) of Claim 13, namely:

i) Determining whether said local expander already possesses said requested
asynchronous data;

i) Generating a negative acknowledgement packet if no such requested
asynchronous data is present; and ’

iii) Delivering said negative acknowledgement packet to said host controller.

WO 02/088975 PCT/CA02/00634

10

15

20

25

30

35

40

-61 -

15. A method as claimed in Claim 13 additionally comprising the following steps after step
(b) of Claim 13, generally for high bandwidth data trénsfers conforming to the USB Specifications
wherein data is transmitted from a high-speed host and is received by a high-speed device,
namely:

a. Determining whether said local expander already possesses said requested
asynchronous data;

b. Generating a synthetic data packet if no such requested asynchronous data is
present; and '

C. Delivering said synthetic data packet to said host controller.

16. A method as claimed in Claim 13 additionally comprising following steps after step (b)
of Claim 13, uniquely for data transfers conforming to the USB Specifications wherein data is
transmitted from a high-speed host and is received by a low-speed or full-speed device, namely:

a. Determining whether said local expander already possesses said requested
asynchronous data;

b. Generating a synthetic not-yet packet if no such requested asynchronous data is
present; and

c. Delivering said synthetic not-yet packet to said host controller.

17. A method as claimed in Claim 13 additionally comprising the following steps after step
(e) of Claim 13, namely:

i) generating an acknowledgement packet at said remote expander; and

i) delivering said acknowledgement packet to said peripheral device.

18. A method as claimed in Claim 13 additionally comprising the following steps after step
(h) of Claim 13, uniquely for interrupt data transfers conforming to the USB Specifications wherein
asynchronous data is transmitted from a peripheral device and is received by a host controller,

namely:

a. Forwarding said subsequent request for asynchronous data from said local
expander to a remote expander over a signal distribution system:;

b. Delivering said forwarded subsequent request for asynchronous data to said
peripheral device; and

C. Receiving, at said remote expander, the requested asynchronous data from
said peripheral device.
19. A method as claimed in Claim 13 additionally comprising the followihg step after step

(h) of Claim 13, uniquely for control and bulk data transfers conforming to the USB Specificatioris
wherein asynchronous data is transmitted from a peripheral device and is received by a host
controller, namely:

a. Absorbing at said local expander said subsequent request for asynchronous data.

10

15

20

25

30

35

40

WO 02/088975 PCT/CA02/00634

-62 -

20. A method as claimed in Claim 13 wherein, additionally, a guard time is imposed after a
data packet is transmitted from a remote expander to a USB device, which guard time is setto a
value that is dependent upon the transfer type of said transmitted data packet, said method

comprising:
a) Receiving, at a remote expander, an outbound data packet,
b) Determining, at a remote expander, the transfer type of said outbound data packet,
) Forwarding said outbound data from said remote expander to a USB device,
d) Setting the value of a transmission guard timer to a value that is dependent upon
said determined transfer type; and
. e) Inhibiting further outbound transmissions until said guard timer has éxpired.
21. A method as claimed in Claim 12 wherein said method provides a method for

transmission of asynchronous data according to the USB Specification wherein asynchronous data
is transmitted from a host controller and is received by a peripheral device, said method
comprising:

a)’ receiving, at a local expander, an original notification of asynchronous data from a
host controller; .

b) forwarding said original notification of asynchronous data from said local expander
to a remote expander over a signal distribution system;

c) receiving, at a remote expander, said forwarded original notification of
asynchronous data;

d) delivering said forwarded notification of asynchronous data to at least one
peripheral device; '

e) receiving, at a local expander, an original asynchronous data packet from a host
controller;

f) forwarding said original asynchronoué data packet from said local expander to a
remote expander over a signal distribution system;

9) receiving, at a remote expander, said forwarded original asynchrénous data
packet;

h) delivering said forwarded original asynchronous data packet to at least one
peripheral device; '

i) receiving, at said remote expander, an inbound acknowledgement packet from
said peripheral device;

i) forwarding said inbound acknowledgment packet from said remote expander to
said local expander over said signal distribution system;

k) storing, in a packet buffer at said local expander, said inbound acknowledgement
packet;

) receiving, at said local expander, a subsequent notification of asynchronous data
from said host controller;

WO 02/088975 PCT/CA02/00634

10

15

20

25

30

35

40

-63 -

m) receiving, at said local expander, a subsequent asynchronous data packet from
said host controller; and
i) retrieving said stored inbound acknowledgement packet from said packet buffer; and
i) delivering said retrieved inbound acknowledgement packet to said host controller.

22, A method as claimed in Claim 21 additionally comprising the following steps after step (e)
of Claim 21, namely: .

i) Determining whether said local expander already possesses said inbound
acknowledgement packet;

i) Generating a negative acknowledgment packet if no such inbound
acknowledgement packet is present; and

iii) Delivering said negative acknowledgement packet to said host controller.
23. A method as claimed in Claim 21 additionally comprising the following steps after step

(e) of Claim 21, generally for interrupt data transfers conforming to the USB Specifications wherein
asynchronous data is transmitted from a high-speed host and is received by a high-speed device,
namely:

a. Generating a synthetic acknowledgement packet at said local expander; and
b. Delivering said acknowledgment packet to said host controller
24, A method as claimed in Claim 21 additionally comprising the following steps after step

(e) of Claim 21, uniquely for interrupt data transfers conforming to the USB Specifications wherein
asynchronous data is transmitted from a high-speed host and is received by a low-speed or full-
speed device, namely:

i) Determining whether said local expander already possesses said inbound
acknowledgment packet:

ii) Generating a not-yet packet if no such inbound acknowledgement packet is
present; and

iii) Delivering said not-yet packet to said host controller.

25. A method as claimed in Claim 21 additionally comprising the following steps after
steps (1) and (m) of Claim 21, uniquely for interrupt data transfers conforming to the USB
Specifications wherein asynchronous data is transmitted from a host controller and is received by a
peripheral device, namely: .

i. Forwarding said subsequent notification of asynchronous data and asynchronous
data packet from said local expander to a remote expander a signal distribution system;

ii. Delivering said forwarded subsequent notification of asynchronous data and
asynchronous data packet to said peripheral device; ’ .

iii. Receiving, at said remote expander, the inbound acknowledgement packet from said

peripheral device;

10

15

20

25

30

35

40

WO 02/088975 PCT/CA02/00634
-64 -

iv. Repeating steps (j) through (m) for said subsequent notification and data packet and
any further subsequent notifications of asynchronous data and asynchronous data packets.

26. A method as claimed in Claim 21 additionally comprising the following step after steps (1)
and (m) of Claim 21, uniquely for control and bulk data transfers conforming to the USB
Specifications wherein asynchronous data is transmitted from a host controller and is received by a
peripheral device, namely:

i Absorbing at said local expander said subsequent notification of asynchronous
data and said subsequent asynchronous data packet.

27. A method as claimed in Claim 21 wherein said method provides a method for handling the
PING fiow control protocol, uniquely for control and bulk data transfers wherein asynchronous data
is transmitted from a high-speed host to a high-speed device, said method comprising:

a) receiving, at a local expander, a PING flow control probe from a host controller;

b) forwarding said flow control probe from said local expander to a remote expander
over a signal distribution system;

c) receiving, at a remote expander, said forwarded flow control probe;

d) delivering said forwarded flow control probe to at least one high-speed peripheral
device;

- e) receiving, at said remote expander, the requested reply from said peripheral

device;

f) receiving, at said local expander, said requested reply;

Q) storing, in a packet buffer at said local expander, said requested reply;

h) receiving, at said local expander, a subsequent PING flow control probe from said

host controller; and
I. retrieving said stored, requested reply from said packet buffer;
ii. delivering said retrieved reply to host controlier.

i) absorbing, at said local expander, said subsequent flow control probe.
28. A method as claimed in Claim 27 additionally comprising the following step after step (b) of
Claim 27, namely:
i) Determining whether said local expander already possesses said requested reply;
ii) Generating a negative acknowledgement packet if no such requested reply is
present; '
iii) Delivering said negative acknowledgement packet to said host controller.
29, A method as claimed in Claim 21 wherein, additionally, a guard time is imposed after a

data packet is transmitted from a remote expander to a USB device, which guard time is setto a
value that is dependent upon the transfer type of said transmitted data packet, said method
comprising:

10

15

20

25

30

35

40

WO 02/088975 PCT/CA02/00634

-65 -

€)] Receiving, at a remote expander, an outbound data packet,

(b) Determining, at a remote expander, the transfer type of said outbound data packet,

(c) Forwarding said outbound data packet from said remote expander to a USB
device, ;

(d) Setting the value of a transmission guard timer to a value that is dependent upon
said determined transfer type; and

(e) Inhibiting further outbound transmissions until said guard timer has expired.
30. An enhanced high-speed method as claimed in Claim 1 wherein said host controller is a
PC, and said peripheral device is a camera, a mouse, a keyboard, a monitor or a speaker or
speakers.
31. An enhanced high-speed method as in Claim 1 wherein said extended distance exceeds 5
meters.
32. A method as claimed in Claim 1 wherein said extended distance exceeds 30 meters.
33. A method as claimed in Claim 1 wherein said extended distance is equal to or exceeds
100 meters.
34. An enhanced high-speed method as in Claim 1 wherein said signal distribution system

utilizes fibre optic cabling.

35. An enhanced high-speed method as in Claim 1 wherein said signal distribution system
utilizes unshielded twisted pair (UTP) wiring.

36. An enhanced high-speed method as in Claim 1 wherein said signal distribution system
utilizes wireless transmission.

37. An apparatus for transmission of a digital signal over an extended distance, on a signal
distribution system, between a host controller and a peripheral device, in accordance with an
enhanced high-speed USB-Extended Range Protocol (USB-ERP) wherein said apparatus
comprises an enhanced high speed USB_ERP device comprising means for modification of the
transmission signal to allow for compliance with Revision 2.0 of the USB specification.

38. An apparatus as claimed in Claim 37 wherein said enhanced high-speed USB-ERP device
comprises:

a local expander comprising means for receiving a request for a data signal from a host
controller which host controller is connected to said local expander;

means in said local expander for generating an outgoing transmission signal;

10

15

25

30

35

WO 02/088975 PCT/CA02/00634
- 66 -

means in said local expander for sending said outgoing transmission signal to a remote
expander, which signal is sent over a signal distribution system:;

a remote expander comprising means for receiving said outgoing transmission signal;

means in said remote expander for generating a digital signal from said outgoing
transmission signal;

means in said remote expander for forwarding said digital signal to at least one peripheral
device, which peripheral device is connected to said remote expander;

means in said remote expander for receiving inbound digital signals from said peripheral
devices;

means in said remote expander for converting said inbound digital signals to an inbound
transmission signal;

means in said remote expander for sending said inbound transmission signal to said local
expander, which signals are sent over said signal distribution system;

means in said local expander for receiving said inbound transmission signal;

means in said local expander for generating a digital signal from said inbound
transmission; and

means in said remote expander for forwarding said digital signal to said host controller.

39. An apparatus as claimed in Claim 38 wherein said data signal is a time relevant data
signal.
40. An apparatus as claimed in Claim 39 wherein said time relevant signal is a digital signal

which conforms to the USB Specification; and said time relevant signal represent isochronous
data.

41. An apparatus as claimed in Claim 40 where in said local expander additionally comprises:

means for storing said inbound signal as a stored inbound signal;

means for analyzing said digital signal from said host controller to recognize a subsequent
request for transmission of said time relevant digital signal; and

means for sending said stored inbound signal to said host controller in response to said
subsequent request.

42. An apparatus as claimed in Claim 38 wherein said digital signal is a non time-relevant
signal which conforms to the USB Specification; and said non time-relevant signal represents
asynchronous data.

43, An apparatus as claimed in Claim 42 for transmission of digital signal over an extended
distance comprising:

10

15

20

25

30

35

40

WO 02/088975 PCT/CA02/00634
-67 -

a) a local expander comprising means for receiving a request for a non time-relevant
data signal, wherein said non time-relevant data signal is a digital signal which conforms to the
USB Specification, from a host controller connected to said local expander;

b) means in said local expander for generating an outgoing transmission signal;

c) means in said local expander for sending said outgoing transmission signal to a
remote expander, which signals are sent over a signal distribution system;

d) a remote expander comprising means for receiving said outgoing transmission
signal;

e) means in said remote expander for generating a digital signal from said outgoing

transmission signal;

f) means in said remote expander fof forwarding said digital to at least one
peripheral device, which peripheral device is connected to said remote expander;

Q) means in said remote expander for receiving inbound digital signals from said
peripheral devices;

h) means in said remote expander for converting said inbound digital signals to an
inbound transmission signal;

i) means in said remote expander for sending said inbound fransmission signal to
said local expander, which signals are sent over said signal distribution system;

j) means in said local expander for receiving said inbound transmission signal;

k) means in said local expander for generating a digital signal from said inbound
transmission; and ‘

) means in said local expander for forwarding said digital signal to said host
controller.
44, An apparatus as claimed in Claim 43 wherein séid local expander aaditionally comprises: ’

a) means for storing said inbound signal as a stored inbound signal;

b) means for analyzing said digital signal from said host controller to recognize a

subsequent request for transmission of said non time-relevant digital signal; and
c) means for sending said stored inbound signal to said host controller in response to
said subsequent request.

45, An apparatus as claimed in Claim 37 wherein said extended distance exceeds 5 meters.
46. An apparatus as claimed in Claim 37 wherein said extended distance exceeds 30 meters.

a7. An apparatus as claimed in Claim 37 wherein said extended distance is equal to or
exceeds 100 meters. '

48. An apparatus as claimed in Claim 37 wherein said signal distribution system utilizes fibre
optic cabling.

10

WO 02/088975 PCT/CA02/00634
-68 -

49, An apparatus as claimed in Claim 37 wherein said signal distribution system utilizes
unshielded twisted pair (UTP) wiring.

50. An apparatus as claimed in Claim 37 wherein said signal distribution system utilizes
wireless transmission.

51. An apparatus as claimed in Claim 37 wherein said host controller is a PC, and said

peripheral device.is a camera, a mouse, a keyboard, a monitor or a speaker or speakers.

WO 02/088975

PCT/CA02/00634
122
S
| - /
o ////
N
"
7
Figure 1
3 3b 3 ~3d
/‘1 [‘ a [‘ f— c f
J - e : :
Hub/Host PC Device Device Device Device

™~ f
If4

TR NP o
LEX - f6 f f

» REX-FPGAl«—»{ REX-Hub

[0}

REX
Figure 2
1 12 13 14
A A A A
10 12 14
11 13 / 15
7 l/—— 7 /— U I/>
Host
R1 Is1 R3 |
PC s R2 Is2 s3
I CETET L R CEEEEE T e e EEEEE T >
t t t

Figure 3

WO 02/088975 PCT/CA02/00634

2/22
k! i2 13 14
A 20 A 21 A 23 A
22 / 24
[T //7 [} //—'
R1 R2 Is1 R3 Is2
Host PC
A 25 A 27 A 29 A
26 28 30
7 _\\ 7 _\\ 7 ‘\\
R1 Is1 R2 Is2 R3 Is3
LEX
A 31 A 33 A 35 A
32 34 36
7 7 7 /— l 1/—‘
R1| |Is1 R21 |Is2 R3]} |Is3
REX-FPGA
€ L B L >
t t t

Figure 4

WO 02/088975

PCT/CA02/00634

3/22
50 51 52
<+—7» USB2.0 Micro- : Link
<_D'._> Transceiver 'C—:ontro| processor 'Contro| Transceiver |«
5 ! K
Data Control Data
y %8 y 54 Y %5
Dual Router Dual
FIFO Data Data FIFO
4
Data
Yy 56
Buffer
4
Figure 5
60 61 62
D S J S
d . . D+
D > Link Micro- USB2.0 [
<X Transceiver | Control | processor | Control | Transceiver l«— D-
5 5 I
Data Control Data
v_ 63 v 64 Y 6
Dual Dual
FIFO [*Pata”] R Mpae”™| FIFO
4
Data
Yy %6
Buffer
8

Figure 6

WO 02/088975 PCT/CA02/00634
FS HOST LEX REX-FPGA REX-HUB FS DEVICE
100 r[101 102 FL 103 i 104
N N Vo Ve Ve Vs
- > IN > IN >
% " result_1 (DATAO) < result_1 (DATAQ)
I
— —IN— "] T — — /1 == — = '
~ e > IN > IN >
o | result_1 (DATAQ <
% Tesult_2 (DATAQ) result_2 (DATAQ) result_2 (DATAQ)
E/-105 106 f107 f108 f109
"_____]N__:: _I_N_..____._: ______ e ot 1N
Ny > IN > IN >
o | result_2 (DATAO) 1 |4 <
g reSUIt_3 (DAT. AOD) I‘esult_3 (DATAO) result_3 (DATAO)
(TR

TJ

Figure 7
FS HOST FS HOST FS HOST FS HOST FS HOST
100 101 ‘f102 lf1o3 104
ouT
S Ay ouT ouT . ouT
£ > DATAO . DATAO
E » »

Figure 8

WO 02/088975

5/22

PCT/CA02/00634

LEX:

for (each IN from HOST)

{
send IN to REX-FPGA

switch (result from memory)
{
case (DATAOQ):
case (DATA1):
send result to HOST
break
default;
break

}

for (each result from REX-FPGA)
{

}

save result in memory

REX-FPGA:

for (each IN from LEX)
{

}

for (each result from REX-HUB)
{

}

send IN to REX-HUB

send result to LEX

Figure 9

LEX:

for (each OUT/DATAQ from HOST)

send OUT/DATAO to REX-FPGA
}

REX-FPGA:

for (each OUT/DATAO from LEX)

send OUT/DATAQ to REX-HUB

Figure 10

WO 02/088975 PCT/CA02/00634
HS HOST LEX REX-FPGA REX-HUB 'FS DEVICE
120 l 121 ' l 122 123 l 124

- SSPUT 8 SSPLIT 8 SSPLIT e S
5 > %» N >
> >

[0]

£

s
LL

s §
ff 125 /-126 r 127

E- . 3
C

=3

_Gﬁ'f“m — [L csPuT || cepuT |

> I > %: N

O €

NYET

5 ——Result | Result
i r 130 131 T

. — CSPLIT — -+ = T
o= N CSPLIT CSPLIT

N

g Result oS

Q esu
5 r 135 r 137

T CesPOT — T R T T T - 5
- N CSPLIT | <= TeBbytes
- N >

£ Result <

© Result
T

3

—_CSPLIT — 1 T T T T T T T T T T B

o IN

g Result

g
| T

=3
>_|D

[))

£

©
IC

35
>_(D

@
£
S
L

o }

4|

Figure 11

WO 02/088975 PCT/CA02/00634
HS HOST LEX REX-FPGA REX-HUB FS DEVICE
120 121 122 123 124
,:-f SSPLIT-begin l..f SPLIT-begin l_f . l..f J;f
= ouT i \S\OUTQ\> SSPLIT-begin |
S DATAQ % OUT <
= < DATAD
£
s
L
i
SSPOT-mid | T ssplimmid 1|~ — T our. T
ol our T3 RS | ssplmmid |, >
o q % DATAC |\ 188 bytes
S| -125 126 127 129
Ly U g 108 VT |\ U
S I U I B IR Al
SSPOT-mid | T~ "SSPLITomid | T v
e gy S
» | DATAC— =
g > \k‘ DATAD > <= 188 bytes
©
L | ~ 130 131 132 134
J,f _.f _,.f 133__/ _\A_ ,_/-
SSPOT-8nd .| T~ Sepliteng 1| — 7 ' A N
N — ——SSPLTend | SSPLIT-end |, \
o > :KKTAO\: DATAQ <= 188 bytes
S \
5 \
>_¢"J
(0]
£
©
C
3
>:r
[}
£
g
(TR
=
>-lO
®
£
S
[T
3
>-LD
[0)
£
S
| TR
3

__|

Figure 12

WO 02/088975 PCT/CA02/00634

" HS HOST LEX REX-FPGA REX-HUB HS DEVICE
| 150 J_ 151 _L 152 L 153 _I.f 154
o A" > + IN d IN 7 IN ’
N - > - >
£ "Result_1 (DATAO) | | Result_1 (DATAO)
5
IC
3
—m——t——=——H-———— | |
ol IN - IN .
Result_1 (DATAQ < <
£ 1) Result_2 (DATAO) | | Result_2 (DATAO) | |
—
£l T | s
SR o T_ T
R > IN - IN .
o | Result_2 (DATAOQ < <
£ 2) Result_3 (DATAO) | | Result_3 (DATAO)
IC
3
—m——f————H-————= L .
> <
o | Result_3 (DATAOQ)
§
L
>

__f
—
—
—
T

Figure 13
HS HOST LEX REX-FPGA REX-HUB HS DEVICE
150 151 152 153 154
N N Ve Lr L
o oamae T our___, our |
0 » ——DATA0 | DATAO DATAO
L
35
o
@
£
S
LL
=

__|
—
o
o
—

Figure 14

WO 02/088975

HS HOST

J_/wo N

uFrame Y,

—N— —

A

Resuit_1_1

IN

uFrameY,

Result_1_2

IN

175
g

Result_1_3

— N — —

»

Result_2_1

IN

h 4

uFrame Y,

Result 2 2

IN

Result 2_3

— N — —

A

Result_3_1

IN

A

uFrame Y,

Result_3 2

IN

A 4

A

L—F

Result_3_3

eV

::_\5

Figure 15

9/22

s 171
N

Result_1_1

1 IN
I—

Result_1_2

i IN
\
>

Result_1_3

Result_2_1

L IN
) e e U

Result_2_2
IN

Result_3_1
IN

Result_3_2
1 IN

Result_3_3

REX-FPGA

|

-t

PCT/CA02/00634
REX-HUB HS DEVICE

172 ifws lf”“

IN R IN ,
« Result_1_1 Resuli_1_1

IN R IN R
 Result 1.2 Result_1_2

IN . IN R
“Result_1 3 Result_1_3
T Two W
“ Resuit 21 Result_2_1

IN , IN
4 Result_ 22 Result_2_2 »
f177lN =‘f178|N sf179
“ Resuli 2.3 “Result 2.3
N _; 1 N
“ Result 3_1 “Result_3_1

IN) IN)
" Result_3_2 Result_3_2

IN IN
“Result 3.3 Result_3_3

WO 02/088975 PCT/CA02/00634
HS HOST LEX REX-FPGA REX-HUB HS DEVICE
| 10 | ~1m | 17 | 11 | 14
/~our > ’@\» 7 ouT | - our +
MDATA _, ——MDATA | MDATA MDATA
> Mc;zlA > ouT our | our
g b [——MDATA MDATA MDATA
L
e > ouT ouT ouT
DATAO —DATAO | DATAO DATAO _

T

Figure 16

WO 02/088975

11/22

PCT/CA02/00634

11 2 13 14
4 10 4 13 4 17 4
12 15 19
11 —\ 14—\ \ 18—\ \
r1l (1] [k1l|[R2] [n2] [k2] |[R3] [in3] [k3
Host PC
- : > " > " >
Figure 17
1 12 13
A A A
20 22
21 23
/ / / [24
1 7] / /
R1 N1 R2 In1 | K1
Host PC
A A A
25 28 31
26 29
27— / 30 —
/i 7 Y] 7 \ \
R1 | |N1 In1 R2||In1 K1| |In2
LEX
A A A
32 35
33 36
' 34—\ : / 37_\
R1| [In1 1 21 i y
REX-FPGA n K1 R2| [In2 K2
- >la— >

Figure 18

WO 02/088975 PCT/CA02/00634

12/22

HS HOST LEX REX-FPGA REX-HUB LS-DEVICE

J‘ SSPLIT l : l l
= N —SSPUT | SSPLIT
Q
£
240 241 242 244
g U e S
>_O
[0}
£
[0
u3__ f 245 / 247 f 249
“TSPLT. | B -
- IN q CSPLIT
2 NYET - -
& “Result (DATAOA) [
5 f250 ACK R ACK o] f254
N _CSELIT' > 22 [[\2ss T
>-) =‘
% “Result (DATAO/)
= ACK ‘
3
Thss s T T
Figure 19
HS HOST LTX REX-FPGA REX-HUB LS DEVICE
SSPLIT-all | .
T3 A %@_} SSPLIT-al
£ >
©
L |- 240 24 22 2 o
—— — T — — — — - — — = T — OUT" | —
> >
o DATAO/
= | 245 246 247 248 249
5 I b s g
B T — geere — L —_— - — — 4+ Result (ACK) || __
) v S L CSPLIT
g R N-?-E_T """"" \> QUT »
S | [* Result (ACK)
o Resul
5 |~ 250 esult (ACK) 252 253 25
CsPLf o X o™ — — 1= — ™= —- |
%_‘ Result (ACK) | |
5 \. 255 N\ 256

_[
—
T
—
-7

WO 02/088975 PCT/CA02/00634
HS HOST LEX REX-FPGA REX-HUB HS DEVICE
s N W IN R IN R
< NAK PR > >
2 "~ Result_1 Result_1
® Result_1 " ACK ACK
s 260 > | 264
_ L2 1263 I
— IN. — — et — — —— — | — — — e — e —— pm— — —— frmt | e
o > IN R IN R
Result_1 ! ~
[0 —
Result_2 Result_2
5 ACK | [Result_2 oK ¥y
5 265 -] » | 269
_ |~ 267 1268 g
— ..IN — — et — — — — - | — — — — — e — C— — — —) el T —
oo > IN - IN R
© Result_2
= ACK Result_3 Result_3
= > ACK ACK
- _> »
L >
—N——| T — T — — — = — — — — —
> |
® Result_3
5 ACK
Lt L
3
Figure 21
HS lj(iST LTX REX-FPGA REX-HUB HS DEVICE
- DATAGT—> LN ouT R our |
> ——DRATAUTT DATAUT DATAUT)
£ |« < <
g 260NAK —Res 1 (oK) R2e6s;lt_1 (ACK) ResulL T (ACK) -
5| | 261 I U e
[pATADT—> A TN our | our |
: T DATAO/ > DATAO/ i
E « < <
/ « <«
s Rz;l.;lt_j BCR) [l¢—rzsui 3 (Ao R;g;llt_z (ACK) nglt_z (ACK) -
s |z I r I
o DAALT i N ouT R ouT R
> T T DATAO/T) DATAGT ___”
E 4 3 - i
/ < 4
ng Result_2 (ACK) | Result_3 (ACK) Result_3 (ACK) Result_3 (ACK)
oAt = ([or [our
- T DATAOT DATAOT)
§ [“Resu3(ACK) [*
5

-

Figure 22

WO 02/088975 PCT/CA02/00634
HS HOST LEX REX-FPGA REX-HUB HS DEVICE
280 | 281 | 282 | 283 | 284
Lpm, Lew L L s
» " IN IN R
B .NULL
] Result_1_1 Result_1_1
Result 1.1 || ACR ~_ N ACK R
o IN g IN ------
ol PR IN R IN N
g NULL
® Result_1_2 Result_1_2
T Result 1.2 | [| ACR) ACK .
> IN IN
PR | IN IN N
NAK
L Result 1_3 Result 1_3
Result_1_3 AC > ACK .
=4 _*» f' 287 IN . f 288 IN . f 289
Result_1_1 1 286 T 7 I
ACK »] Result 2_1 Result 2_1
285 - Result_2_1 ACK » ACK ™~ .
-/ IN IN
>t P NT) e LN IN IN »
2 ¥ Resut 12 <
® ACK bl Result 2_2 " Result 2 2
i N M| Result_2_2 ACK R ACK N
YN IN . IN R
Result 1_3 M <
ACK p led Result 2_3 Result 2_3
T Result_2_3 ACK N ACK R
— N — —| - —— — - N L I
"o—N IN . IN .
Result 2_1 N <
ACK o |l Result 3_1 Result 3_1
Result 3_1 ACK ACK B
o IN > IN
oy T, IN IN .
2 Result 2_2
@ ACK > ldr Result_3_2 Result 3_2
i N g Result_3_2 ACK » ACK .
p "N IN IN R
Result 2_3 N
ACK JoR " Result 3.3 " Result 3 3
Result_3_3 ACK~ |l ACK~ |
— W — === —- I 4] I
"~ Result_3_1 h
ACK ~
® IN
>~ >
o ¢
£ Result 3_2
® ACK >
5 IN
“ Resut 33 ¢
ACK

-

F, igure 23

WO 02/088975 PCT/CA02/00634

15/22

HS HOST LEX REX-FPGA REX-HUB HS DEVICE
J_ 280 J_ 281 l 282 l 283 l 284
Y ot T L L
DATAOT > — ouT - OUT R
P 2] m: DATAOM ¢ DATAO/ i
ACK - > >
/ l <
-l ouT p CTER Result_1_1 Result_1_1
DATAO | [ouT . ouT N
2 I <%: DATAO % DATAOA
© ACK P v
S / &
L ouT jH RSfJ ullt_1_2 Result_1_2 Result_1_2
DATAO/ T DATAGH——». ouT . ouT R
P T} DATAOFT | DATAO >
NAK < P >
—/ . l
ﬂ Reea 1.3 Result_1_3 Result_1_3
—our — AT Tour || ~287 . T |T,-288 . — T|,-289
DATAO 2| (1] [“"Tour A" out ;
> [{—DATAO—— | +—paTAT— Vs
Result_1_1 b T 286 o - 1 S i
Al result 2_ N esult_2_
> = OTUT/ fk il il ouT ou
- DATAOT " [IT] R T R
2 [f|—DATAO/t——> DATAOTT) DATAOT)
@ Result_1_2 B D —_, < s -
S -/ Bl
5 D/STLAJ\T 7 M o !-2-2 escl:u_T) Rei';lj_:_
0 » [N R
[]RATAO DATAUT DATAOT >
Result 1.3 [< < =
i 7 3 Result_2_3 < Result 2_3
DA “‘_\D%’Jw\, or |l our |
P | I DATAO/ DATAO/T]
Result2_t ' “Resut_3_1 “ Resuit 3_1 -
o esu B esult
> DATATT L g ouT ouT_
0 I » -
2 b “‘%: DATAOIT 2 DATAGT 2
g Reulzz 1 4 Result_3_2 “ Resul3_2 -
L | esult_3_ h esult_3_.
=] ouT T R&sJullt_S_Z
DATAO T DATAGH— ouT ouT R
ST DATAO __” DATAOT >
Result_2_3 N P) P
. [— ¥ <
g Result 3.3 Result_3_3 Result_3_3
— GU-"’_“ - TT| | —— —— — - =] = — e—— — ——f— — — — — —t e | —
DATAOT >
« Result_3_1 B
o ouT
- DATAOIT)
g " Result_3_2 N
[T
5 out
DATAOIT >
Result 3.3 [

T T i i T

Figure 24

WO 02/088975

PCT/CA02/00634

16/22
l1 lﬂ In-i-k
A
10 13 %
12 15
" 0\
[\ K\ ! \ \
R1 A1l 1 R2 A2 K2
Host PC
> _ >L >
Time Time
Figure 25
l Iy sk
4 A 22 A
20 24
"\ w |
[\ [\ \
R1 N1 R2 A1 | K1
Host PC
A A
27 o8 A
25 30
26 29
[27\ A \
7 \ I / \
R1 N1 A1 R2 | |A1 K1
LEX
A A A
31 33
0\
\ 7/ \
R1| [A1} | K1
REX-FPGA
- Time > Time

Figure 26

WO 02/088975 PCT/CA02/00634

17/22

HS HOST LEX REX-FPGA REX-HUB LS DEVICE
| a0 | o lf 342 [P [P
] 22%’,1 > SSPLIT - SSPLIT —f _f
DATAD | [——SETUP» ST
> [—DATAY DATAO >
X NAK > >
< Result (ACK) SETUP
SSPLIT Result (ACK)
o SETUP___* DATA))
@ DATAO)
T AC
& 7 Result(ACK) | Result (ACK)
3
o CSPLIT
B SETP | [Fp—| | QSPUT
i <& g \ P >
N NYET y
‘ Result (ACK)
CSPLIT | Result (ACK)
SETUP)
Result (ACK) ¢
345 346 347 348 349
SSEUT_ V" sspur s sspLIT g g
- > % o >
) A
—— | [Resuit (ACK) IN >
SSPLIT Result (ACK)
% - > Result d_1
£ [Resutacky | ACK .
[
® CSPLIT | ‘
a IN > % CSPUT
S —————— >
NYET 1 ;
Result_d_1
CSPLIT Result_d_1 =
N <
ResulLd 1 |
350 351 32 || ~3s3 | T35
SSPLIT Y T seruir | s Ila
e S ety S
% DATAT
NAK
| Result (ACK) OUT >
? SSPLIT | Result (ACK)
£ R > DATA1
o DATAT)| >
m -
2 [Result(ACK) [° Result_s_1 (ACK)
2 CSPLIT
> CSPLIT
ouT > %, ch:HT N
NYET ' > >
Result_s_1 (ACK
CSPLIT Result_s_1 (ACK) s (ACK)
ouT >

i Result_s_1 (ACK) 1 T WJ T

Figure 27

WO 02/088975 PCT/CA02/00634
HS HOST LEX REX-FPGA REX-HUB LS DEVICE
340 | 341 | 342 | 343 | 044
Lot e L
SETUP > SSPLIT
SETUP——»
DATAOQ W\} SETUP
A »
PR—— ————DATAD DATAO)
4 Result (ACK) SETUP__)|
SSPLIT Result (ACK)
o SETUP DATAO)|
& DATAQ
£ |g P Result (ACK)
Dc;_ Result (ACK)
=}
2 CSPLIT
B > CSPLIT
& |—SEE) I seroe——) |—GORLT
ETTRYET T >
Result (ACK) |
CSPLIT Result (ACK)
SETUP
“ Resut (AcK) [
345 346 347 348 349
sseut | ' s
Rt l S e '
0
T DATAT——» >
PR— ———RalAT DATAT
Result_d_1 ouT >
SSPLIT Result_d_1 -
@ ouT > DATAT
8 DATAT)
Result_d_1
S [Resu sl o
o
A CSPLIT
> CSPLIT
OUT) | our— | —T—
TTRYET T s >
Resut d 1 |"
CSPLIT Result_d_1
oUT >
Result_d_1 <
35 351 352 353 354
S Tsseut U T st - g g
N T SSPLT
DA V-V — -
| [Result (ACK IN
o SSPLIT Result (ACK) (ACK) < P
_g IN o Result_s_1
3 Result (ACK) ACK >
ke CSPLIT CSPLIT
5] »
iN %, CSPLT__,
TTRYET T g »
Result_s_1 <
CSPLIT Result_s_1
IN
Result_s_1

Figure 28

WO 02/088975 PCT/CA02/00634
HS HOST LEX REX-FPGA REX-HUB HS DEVICE
| 360 l 361 l 362 l 363 l 364
. —f SETUP . "f SETUP "‘f “f "f
o DATAC 3| [—BATAT—> SETUP . SETUP
S DATAD ——» DATAD 2
a. ACK) " o -
o —— | | Result(ACK) " Result (ACK)
2 Result (ACK)
n
3% | |~36 | |~-37 || -38 | |-369
s e I i's
— o — — | T IN . IN .
NAK — —»| =
“Result_a_1 S Resul_d_1
Result_d_1 ACK ACK
— N > S > —
~ Result_d_1 N
[0]
@ ACK g
-D:_ »
o IN . N
- P E———— IN > IN >
) NAK < — >
~ Result_d_2 Result_d_2
Result d_2 ACK
IN S| [S S > ACK q
Resuidz ¢
ACK .
370 ‘s 371 'a 372 r 373 ‘s 374
o our_ 17 ouT I i i
@ DATAT 3! T —BATAT——> ouT o ouT o
S N3\, DATAI > DATAT >
o NAK P > >
9 | |* Result_s_1 Resuli_s_1
5 ouT n Result_s_1
& DATAT __J
< Result_s_1 ‘

-

Figure 29

WO 02/088975
HS HOST LEX REX-FPGA REX-HUB
] - 360 361 FL 362 l 363
3 SETUP [-f _[
@ DATAD SETUP N SETUP__ SETUP___
Tl » LA™ DATAO DATAO
=3 ACK
2 Result (ACK Result (ACK
3 4 Result (ACK) (et ek
385 | |,-36 | |~-367 |]|-38
e i
. —DATAT | DATA(DATA1
NAK Result_d_1 - Result_d
esult esu 1
out R Result_d_1 - o
DATA1
Result_d_1 h
2 U
@ ouT N
£ —uT ouT R ouT
S DATAO DATAO) g e
sz LN DATAQ DATA1 R
a NAK " e >
ouT R Result d_2 Result_d_2 Result_d_2
DATAQ
Resultd 2 |"
I 370 'a 371 la 372 Ia 373
IN
o le —N_ N IN
@ NAK >
< Result_s_1 Result_s_1
o Result_s_1 -
@ ACK ACK R
E IN >
@ Result_s_1 h
ACK R

-

Figure 30

PCT/CA02/00634

|

-1

HS DEVICE

[364

369
f

374
g

WO 02/088975 PCT/CA02/00634

21/22

HS HOST LEX RE_X-FPGA REX-HUB FS DEVICE
~ 410 L 411 L 412 L 413 Jq 414
SSPLIT | S SSPLIT S e e
M ——SSRUT SSPLIT
IN | N >
» — N IN R
4"""""’\]‘/3\‘!{ --------- > - »
1 [“ Result(A&¢K)
SSPUT | [Result(ACK) N
IN > Result_d_1
“Result (ACK) ACK >
CSPLIT
» ——CSPUT csPLT |
IN R N > q
» —IN_ IN R
TTTRYET T ” >
“Resutd 1 ¢
CSPLIT » Result_d_1
IN R
Resul_d_1

T 1 | I I

Figure 31
HS HOST LEX REX-FPGA REX-HUB FS DEVICE
410 l 41 412 413 414
= sseut o SSPLIT l_f- l_ a L Ve
ouT 1T SSPLIT
oATAO L, our___,
M —RATRN | paTAon
) o e (ACK) ouT
SSPLIT Result (ACK) esult (ACK) >
| DATAO/
ouT R >
DATAO/ Result (ACK)
" Result (ACK)
CSPLIT
oUT MR CSPLIT
< = out .
N NYET >
Result (ACK
CSPLIT | [T Result (ACK) (ACK)
out .
" Result (ACK)

T T 1 T
Figure 32

WO 02/088975 PCT/CA02/00634

HS HOST LEX REX-FPGA REX-HUB HS DEVICE
500 501 -~ 502 503 504
FLf PING ;Lf PING %f J;f %f
PR] E— NN PING PING .
NAK ~
_——— | |© Result (ACK) " Result (ACK)
Result (ACK)

PING > 1

Result (ACK)

T 1 T T T

Figure 33

ication No

INTERNATIONAL SEARCH REPORT h iona
PCI/CA 02/00634

CLASSIFICI(\;'BON OF SUBJECT MATTER

A.
IPC 7

6F13/42 GO6F13/40

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7

GO6F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulied during the international search (name of data base and, where practical, search terms used)

EPO-Internal, INSPEC, WPI Data, PAJ

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category ° | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X WO 00 49507 A (ICRON SYSTEMS INC) 1-12,
24 August 2000 (2000-08-24) 21-23,
cited in the application 29-51
claims 1-39
A WO 00 67103 A (JACKSON DANIEL KELVIN) 1-51
9 November 2000 (2000-11-09)
paragraph €03.4! - paragraph ‘4.4.2!
A PATENT ABSTRACTS OF JAPAN 1-51

vol. 2000, no. 09,

13 October 2000 (2000-10-13)

& JP 2000 183920 A (MATSUSHITA ELECTRIC
IND CO LTD), 30 June 2000 (2000-06-30)

abstract

D Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

° Special categories of cited documents :

A document defining the general state of the art which is not
considered to be of particular relevance

E earlier document but published on or after the international
filing date

L document which may throw doubts on priotity claim(s) or
which is cited to establish the publication date of another
citation or other special reason (as specified)

*O" document referring to an oral disclosure, use, exhibition or
other means

P document published prior to the international filing date but
later than the priority date claimed

T later document published after the international filing date
or priority date and not in confiict with the application but
cited to understand the principle or theory underlying the
invention

X document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to
involve an inventive step when the document is taken alone

*Y" document of particular relevance; the claimed invention
cannot be considered to involve an inventive step when the
document is combined with one or more other such docu-
m?tr:ts, such combination being obvious to a person skilled
inthe art.

*&" document member of the same patent family

Date of the actual completion of the international search

23 July 2002

Date of mailing of the international search report

30/07/2002

Name and mailing address of the ISA -
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340~2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Henneman, P

Form PCT/ISA/210 (second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

Inforn|

1 on patent family members

Ir

sation No

Fui/CA 02/00634

Patent document Publication Patent family Publication

cited in search report date member(s) date

WO 0049507 A 24-08-2000 AU 2654200 A 04-09-2000
WO 0049507 Al 24-08-2000
EP 1155370 Al 21-11-2001
us 6381666 Bl 30-04-2002

WO 0067103 A 09-11-2000 AU 4501200 A 17-11-2000
WO 0067103 Al 09-11-2000

JP 2000183920 A 30-06-2000 NONE

Form PCT/ISA/210 (patent family annex) (July 1992)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

