

(19) 日本国特許庁(JP)

(12) 公開特許公報(A)

(11) 特許出願公開番号

特開2007-31172

(P2007-31172A)

(43) 公開日 平成19年2月8日(2007.2.8)

(51) Int.C1.

C01B 33/32 (2006.01)
B01J 20/10 (2006.01)

F 1

C01B 33/32
B01J 20/10

テーマコード(参考)

4 G 0 6 6
4 G 0 7 3

審査請求 未請求 請求項の数 12 O L 外国語出願 (全 25 頁)

(21) 出願番号

特願2005-212787 (P2005-212787)

(22) 出願日

平成17年7月22日 (2005.7.22)

(71) 出願人 591007826

アンスティテュ フランセ デュ ペトロ
ール

INSTITUT FRANCAIS DU PETROL

フランス国 92852 リュエイユ マ
ルメゾン セデックス アヴニュ ド ボ
ワーブレオ 1エ4

(74) 代理人 100083149

弁理士 日比 紀彦

(74) 代理人 100060874

弁理士 岸本 琢之助

(74) 代理人 100079038

弁理士 渡邊 彰

最終頁に続く

(54) 【発明の名称】アミノアルコール型有機構造化剤からラメラ固体を合成する方法

(57) 【要約】 (修正有)

【課題】ケイ酸塩をベースとするラメラ固体の合成方法を提供する。

【解決手段】ケイ酸塩をベースとするラメラ固体の合成方法であって、i) アルカリ性金属、シリカ源、水および有機構造化剤を含む混合物が調製される混合工程と、ii) 結晶固体の形成を可能にする条件下にこの混合物が維持される結晶化工程とを包含する方法。

この方法において用いられる有機構造化剤は、炭化水素鎖によって離間されるアルコール基およびアミン基を含む。

【選択図】なし

【特許請求の範囲】

【請求項 1】

i) アルカリ性金属、シリカ源、水および有機構造化剤を含む混合物が調製される混合工程と、

ii) 結晶固体の形成を可能にする条件下に該混合物が維持される結晶化工程とを包含する、ケイ酸塩をベースとするラメラ固体の合成方法において、

有機構造化剤が、炭化水素鎖によって離間された少なくとも 1 つのアルコール基と少なくとも 1 つのアミン基とを含むことを特徴とする方法。

【請求項 2】

アルコール基が有機構造化剤の末端基である、請求項 1 に記載の合成方法。 10

【請求項 3】

アミン基が有機構造化剤の末端基である、請求項 1 または 2 に記載の合成方法。

【請求項 4】

有機構造化剤は 1 ~ 20 個の炭素原子を含む、請求項 1 ~ 3 のいずれか 1 つに記載の合成方法。

【請求項 5】

有機構造化剤がチラミン、4 - アミノフェノール、trans - アミノシクロヘキサノールおよび 2 - (4 - アミノ - フェニル) - エタノールから形成される群から選択される、請求項 1 ~ 4 のいずれか 1 つに記載の合成方法。

【請求項 6】

混合工程 i) の間に、さらに、非シリカ性の四面体配位の金属 X が混ぜ合わされる、請求項 1 ~ 5 のいずれか 1 つに記載の合成方法。 20

【請求項 7】

金属 X がアルミニウム、ホウ素、クロム、鉄、ガリウム、インジウム、ニッケル、ジルコニウム、コバルト、チタン、銅、ニオブおよびユウロピウムによって形成される群から選択される、請求項 6 に記載の方法。

【請求項 8】

結晶化工程 ii) の間に、工程 i) の間に得られる混合物が 100 ~ 200 の結晶化温度に 1 ~ 20 日の結晶化期間にわたって加熱される、請求項 1 ~ 7 のいずれか 1 つに記載の合成方法。 30

【請求項 9】

結晶化工程 ii) で得られる生成物が、

iii) 固体を結晶化混合物から分離する工程、

iv) このようにして得られた固体を洗浄する工程、および、

v) 乾燥工程

に付される、請求項 1 ~ 8 のいずれか 1 つに記載の合成方法。

【請求項 10】

乾燥工程 v) は、50 ~ 150 の温度で 12 ~ 30 時間にわたって行われる、請求項 9 に記載の合成方法。

【請求項 11】

生成されたラメラ固体が、ケニヤイトおよびマガディイトによって形成された群に属する、請求項 1 ~ 10 のいずれか 1 つに記載の合成方法。 40

【請求項 12】

請求項 1 ~ 11 のいずれか 1 つの方法によるラメラ固体の合成を含み、得られる該固体は、次いで、該固体のラメラ間のスペース内への架橋剤の挿入によって架橋される、架橋されたケイ酸塩をベースとするラメラ固体の合成方法。

【発明の詳細な説明】

【技術分野】

【0001】

本発明は、ケイ酸塩をベースとするラメラ固体の合成方法の分野に関し、最近のものは 50

、フィロケイ酸塩のラメラ固体またはラメラケイ酸型の名称の下でも知られている。ケイ酸塩をベースとするラメラ固体は、四面体配位にスタッキングされたケイ素(Si)層(SiO_4)を含む化合物として規定される。ケイ素Si以外の元素が固体中に存在してもよく、これも四面体位置にある。

【背景技術】

【0002】

ラメラケイ酸塩の中で、マガディアイト、ナトロシライト、ケニヤアイト、マカタイト、ネコアイト、カネマイト、オケナイト、デハイエライト、マクドナルダイトおよびローデサイトを挙げることが可能である。

【0003】

これらの固体は、しばしば、 $A_x Si_y O_z \cdot n H_2 O$ (Aは例えればナトリウムまたはカリウム元素であり得る)等の組成を有する天然の状態で存在する。このようなラメラ固体は、例えれば、マガディアイトについては $Na_2 Si_{1.4} O_{2.9} \cdot 9 H_2 O$ であり、ケニヤアイトについては $Na_2 Si_{2.0} O_{4.1} \cdot 10 H_2 O$ である。このような天然の固体は、合成の固体と同一の組成を有する。これらの固体は、しばしば、葉(leaves)間にファンデルワールス型の相互作用を有する三次元構造および小さい比表面積を有する。

【0004】

これらの固体は、有利な吸着および交換特性を有する。これらの固体は水または有機分子の吸着並びに表面カチオン交換に特に適している。最近になって、ラメラケイ酸塩がプロトン交換によって酸性固体になるそれらの容量により広範に研究されている。さらに、ラメラ間のスペースへの柱状物(column)の導入がメソ多孔度を形成し、比表面積を増大させることを可能にしている。

【0005】

塩化ベンジルトリエチルアンモニウム、塩化ベンジルトリメチルアンモニウム、塩化ジベンジルジメチルアンモニウム、N,N'-ジメチルピペラジン、トリエチルアミンまたは他の第4級化合物または複素環アミンの中から選択された有機構造化剤を用いることによって、架橋されたラメラケイ酸塩を合成マガディアイトからなるラメラケイ酸塩から合成することが特許文献1から知られている。

【0006】

アルキルアミン、トリアルキルアミン、テトラアルキルアンモニウム化合物およびジアミントリメチルヘキサメチレンジアミン化合物(ここで、前記アルキルは1~12個の炭素原子を有する)の中から選択される有機化合物を用いることによってケニヤアイト型の結晶化されたケイ酸塩を合成することも特許文献2から知られている。

【特許文献1】国際公開第88/0091号パンフレット

【特許文献2】国際公開第91/12204号パンフレット

【発明の開示】

【発明が解決しようとする課題】

【0007】

本発明は、炭化水素鎖によって離間されたアルコール基およびアミン基を含む有機構造化剤を用いることによってケイ酸塩をベースとするラメラ固体を合成する方法に関する。

【0008】

本発明の合成方法は、従来技術に示されたものに比較して、より経済的であり、かつ、より効率的であり、それは、より再現性のある方法でのラメラ固体の製造を可能にする。

【課題を解決するための手段】

【0009】

したがって、本発明は、ケイ酸塩をベースとするラメラ固体を合成する方法であって、i) アルカリ性金属M、シリカ源 SiO_2 、水、有機構造化剤(organic structuring agent)Aおよび場合により四面体配位を有する別の金属Xを含む混合物が調製される混合工程と、

ii) 上記混合物が結晶固体の形成を許容する条件下に維持される結晶化工程(ここで

10

20

30

40

50

、有機構造化剤は炭化水素鎖によって離間された少なくとも1つのアルコール基および少なくとも1つのアミン基を含む)とを包含する方法に関する。

【0010】

有利には、有機構造化剤は、単一のアルコール基および単一のアミン基を含む。

【0011】

より好ましくは、アルコール基は、有機構造化剤の末端基である。同様に、アミン基は、好ましくは、有機構造化剤の末端基である。一層より好ましくは、アルコールおよびアミンの2つの基が、有機構造化剤の末端基である。

【0012】

有機構造化剤は、好ましくは1~20個の炭素原子を含む。

【0013】

アミンおよびアルコールの2つの基を離間させる炭化水素鎖は、直鎖、環状または芳香族アルキル基を含み得るが、好ましくは、環状または芳香族である。

【0014】

有機構造化剤は、好ましくは、チラミン、4-アミノフェノール、trans-4-アミノシクロヘキサノールおよび2-(4-アミノ-フェニル)-エタノールによって形成される群から選択される。

【0015】

合成方法は、アルカリ性金属、シリカ源、水および有機構造化剤を含む混合物が調製される混合工程を包含する。

【0016】

混合物を調製するための工程において混合されるアルカリ性金属Mは、リチウム、カリウム、ナトリウムおよび/カルシウムであり得る。アルカリ性金属は好ましくはナトリウムである。

【0017】

混合物を調製するための工程において混合されるシリカ源は、ケイ酸塩、シリカゲル、コロイド状シリカおよび/またはケイ酸であり得る。

【0018】

さらに、非シリカ性の四面体配位を有する金属Xは好ましくは混合工程i)中に混合される。

【0019】

より好ましくは、金属Xはアルミニウム、ホウ素、クロム、鉄、ガリウム、インジウム、ニッケル、ジルコニウム、コバルト、チタン、銅、ニオブおよびユウロピウムによって形成された群から選択される。

【0020】

一層より好ましくは、金属Xはアルミニウムである。

【0021】

金属Xは酸化された形態 XO_n または任意の他の形態(例えば、 Al_2O_3 、 $Al(O_3)_3$ 、 $Co(CH_3COO)_2$ 、 $Ti(ETO)_4$ 、 $Ni(CH_3COO)_2$ 、 $Zn(CH_3COO)_2$ 、 $Cu(CH_3COO)_2$ 、 $Cr(CH_3COO)_2$ 、 $Eu(CH_3COO)_2$ 、 $Zr(OH)_4$ 、 $Na_2B_4O_7$ 、 Nb_2O_5 等)で混合物に混合され得る。

【0022】

工程i)の間に得られる混合物の組成は、下記のように記載され得る。

【0023】

$SiO_2 : xM^+OH^- : yH_2O : zA$ 、ここで、
 - xは0~1、好ましくは0.1~0.6であり、
 - yは10より大きく、
 - zは0.05~3、好ましくは0.2~1である。

10

20

30

40

50

【0024】

本発明による合成方法は、この混合物が結晶固体の形成を許容する条件下に維持される結晶化工程を包含する。

【0025】

結晶化工程は、一般的に、水熱タイプである。この工程は、当業者に知られる任意の方法により行われ得るが、好ましくは、オートクレーブ内にて行われる。反応混合物は、結晶化工程の継続時間の間激しく攪拌されてもされなくてもよい。

【0026】

有利には、結晶化工程 i i) の間、工程 i) の間に得られる混合物は 100 ~ 200 10 の結晶化温度に、1 ~ 20 日間、好ましくは 3 ~ 10 日間の結晶化期間にわたって加熱される。

【0027】

結晶化工程 i i) において得られる生成物は、好ましくは下記工程の少なくとも 1 つに付される：

- i i i) 結晶化混合物から固体を分離するための工程、
- i v) 固体を洗浄するための工程、および
- v) 前記固体を乾燥させるための工程。

【0028】

結晶化された固体は、一般的に、ろ過等の当業者に知られる任意の方法によって混合物から分離される。次いで、固体は、水、好ましくは脱イオン水で洗浄される。

20

【0029】

乾燥工程 v) は、一般的に、50 ~ 150 の温度で 12 ~ 30 時間にわたって行われる。

【0030】

乾燥は、好ましくは大気圧で行われるが、減圧下に行われてもよい。

【0031】

本発明による合成方法は、より詳細には、ケニヤイトおよびマガディイトによって形成された群に属するラメラ固体を生成することを可能にする。

30

【0032】

本発明はまた、ケイ酸塩をベースとする架橋されたラメラ固体の合成方法であって、ラメラ固体の合成を包含し、得られる該固体は次に固体のラメラ間のスペースへの架橋剤の挿入によって架橋される方法に関する。

【0033】

架橋剤の挿入は、当業者に知られる任意の技術によって行われ得る。

【0034】

ケイ酸塩層間への架橋剤の挿入は、架橋剤の柱状物がラメラ固体の層に結合され、かつ、ラメラ固体の構造が維持されるように行われ、これにより、最終的な固体の多孔度は増大される。

【0035】

ラメラ固体から架橋されたラメラ固体を得ることは、下記工程によって行われ得る：

- 好ましくはカチオン交換によって行われる、ラメラ間のスペースの増加を可能にするカチオン性膨張剤をラメラ固体に挿入するための工程、
- 架橋剤を先行工程において得られる固体に挿入するための工程（ここで、架橋剤は好ましくはポリオキシカチオンの中から選択される）、
- 先行工程において得られる固体を洗浄するための工程および
- 洗浄された固体を焼成するための工程。

40

【0036】

膨張剤は、有機または有機金属化学ラジカルまたは無機錯体であり得、好ましくは、強い正電荷を備えている。

【0037】

50

一定の場合には、焼成工程は、架橋されたラメラ固体の多孔度を示すことを可能にする。この焼成工程は、有利には、空气中、300～800の温度で行われ得る。

【0038】

ラメラ固体を乾燥させる工程の後または架橋されたラメラ固体を焼成する工程の後、混合するための工程i)に加えられたアルカリ性金属を水素イオンとカチオン交換することが可能であり、これにより、最終固体が酸性になる。

【発明を実施するための最良の形態】

【0039】

(実施例1：シリカ性のケニヤアイトの合成)

98重量%のチラミンおよびシリカ(Aldrichにより販売される商品名Ludox¹⁰(登録商標)AS-40として知られる)を含む溶液が塩基性のNaOH苛性ソーダ溶液(98重量%)および水中に混ぜ合わされる。

【0040】

混合物が2時間にわたって激しく攪拌される。次いで、混合物は、均質化の後、テフロン(登録商標)ジャケットに移され、その後、オートクレーブ中に置かれる。

【0041】

オートクレーブがオープン中6時間にわたって150に加熱される。合成のために、オートクレーブは連続して攪拌される。

【0042】

得られた結晶化された生成物はろ過され、脱イオン水で洗浄され(中性のpHに達する)、その後、一晩60で乾燥される。²⁰

【0043】

粗い合成サンプルについて行われた回折図が図1に示される。

【0044】

(実施例2：シリカ性マガディアイトの合成)

97重量%のtrans-4-アミノシクロヘキサノールおよびシリカ(Aldrichによって販売されるLudox²⁰(登録商標)AS-40)を含む溶液が塩基性NaOH苛性ソーダ溶液(98重量%)および水中に混ぜ合わされる。

【0045】

混合物が2時間にわたって激しく攪拌される。次いで、混合物は、均質化の後、テフロン(登録商標)ジャケットに移され、その後、オートクレーブ中に置かれる。³⁰

【0046】

オートクレーブがオープン中3時間にわたって150に加熱される。合成のために、オートクレーブは連続して攪拌される。得られた結晶化された生成物はろ過され、脱イオン水で洗浄され(中性のpHに達する)、その後、一晩60で乾燥される。

【0047】

粗い合成サンプルについて行われた回折図が図2に示される。

【0048】

(実施例3：金属Mで置換されたケニヤアイト)

98重量%のチラミンおよびシリカ(Aldrichによって販売されるLudox⁴⁰(登録商標)AS-40)を含む溶液が塩基性NaOH苛性ソーダ溶液(98重量%)および水中で混ぜ合わされる。

【0049】

混合物が15分間にわたって激しく攪拌される。カチオンMを含む水溶液が混合物に加えられ、下記表1に記載されるような組成物が得られる。

【表1】

表1

サンプル	混合物の分子組成	合成期間 (日数)
C o -ケニヤアイト	S i O ₂ : 0.2N a O H : 0.50 チラミン : 15H ₂ O : 1/30 ~1/100C o (CH ₃ COO) ₂	10
T i -ケニヤアイト	S i O ₂ : 0.2N a O H : 0.50 チラミン : 15H ₂ O : 1/50 ~1/100T i (EtO) ₄	9
N i -ケニヤアイト	S i O ₂ : 0.2N a O H : 0.50 チラミン : 15H ₂ O : 1/50 ~1/100N i (CH ₃ COO) ₂	10
Z n -ケニヤアイト	S i O ₂ : 0.2N a O H : 0.50 チラミン : 15H ₂ O : 1/50 ~1/100Z n (CH ₃ COO) ₂	10
C u -ケニヤアイト	S i O ₂ : 0.2N a O H : 0.50 チラミン : 15H ₂ O : 1/30 ~1/100C u (CH ₃ COO) ₂	10
N b -ケニヤアイト	S i O ₂ : 0.2N a O H : 0.50 チラミン : 15H ₂ O : 1/50 ~1/100N b ₂ O ₅	7
B -ケニヤアイト	S i O ₂ : 0.2N a O H : 0.50 チラミン : 15H ₂ O : 1/50 ~1/100N a ₂ B ₄ O ₇	7
Z r -ケニヤアイト	S i O ₂ : 0.2N a O H : 0.50 チラミン : 15H ₂ O : 1/50 ~1/100Z r (OH) ₄	7
C r -ケニヤアイト	S i O ₂ : 0.2N a O H : 0.50 チラミン : 15H ₂ O : 1/50 ~1/100C r (CH ₃ COO) ₂	10
C r / C o -ケニヤ アイト	S i O ₂ : 0.2N a O H : 0.50 チラミン : 15H ₂ O : 1/100 (C r + C o)	10
E u -ケニヤアイト	S i O ₂ : 0.2N a O H : 0.50 チラミン : 15H ₂ O : 1/50 ~1/100E u (CH ₃ COO) ₃	7

【0050】

次いで、混合物は、均一化の後に、テフロン（登録商標）ジャケットに移され、次いで、オートクレーブ内に置かれる。オートクレーブは、数日間にわたってオープン内において150℃に加熱される。合成の間、オートクレーブは連続的に攪拌される。次いで、得られた結晶化された生成物は、ろ過され、脱イオン水で洗浄され（中性のpHに達する）、次いで、60℃で一晩乾燥される。

【0051】

（実施例4：金属Mで置換されたマガディアイト）

97重量%のtrans-4-アミノシクロヘキサノールおよびシリカ（にAldrichによって販売されるLudox（登録商標）AS-40）を含む柱状物が、以下の表2に記載されるモル組成に従って塩基性NaOH苛性ソーダ溶液（98重量%）、水およびカチオンに混ぜ合わされる。

10

20

30

40

【表2】

表2

サンプル	混合物のモル組成	合成期間 (日数)
A 1 - マガディアイト	S i O ₂ : 0.2N a O H : 0.50trans-4-アミノシクロヘキサノール : 15H ₂ O : 1/100A l ₂ O ₃	3
C o - マガディアイト	S i O ₂ : 0.2N a O H : 0.50trans-4-アミノシクロヘキサノール : 15H ₂ O : 1/100~1/50C o (C H ₃ C O O) ₂	3
C u - マガディアイト	S i O ₂ : 0.2N a O H : 0.50trans-4-アミノシクロヘキサノール : 15H ₂ O : 1/100~1/50C u (C H ₃ C O O) ₂	3
T i - マガディアイト	S i O ₂ : 0.2N a O H : 0.50trans-4-アミノシクロヘキサノール : 15H ₂ O : 1/100~1/50T i (E t O) ₄	3
N i - マガディアイト	S i O ₂ : 0.2N a O H : 0.50trans-4-アミノシクロヘキサノール : 15H ₂ O : 1/100~1/50N i (C H ₃ C O O) ₂	3
E u - マガディアイト	S i O ₂ : 0.2N a O H : 0.50trans-4-アミノシクロヘキサノール : 15H ₂ O : 1/100~1/50E u (C H ₃ C O O) ₃	3
Z r - マガディアイト	S i O ₂ : 0.2N a O H : 0.50trans-4-アミノシクロヘキサノール : 15H ₂ O : 1/100~1/50Z r (O H) ₄	3
C r - マガディアイト	S i O ₂ : 0.2N a O H : 0.50trans-4-アミノシクロヘキサノール : 15H ₂ O : 1/100~1/50C r (C H ₃ C O O) ₃	3
C r / C o - マガディアイト	S i O ₂ : 0.2N a O H : 0.50trans-4-アミノシクロヘキサノール : 15H ₂ O : 1/100 (C o + C r)	3

【0052】

30

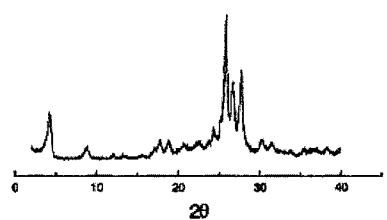
混合物は、5時間にわたって激しく攪拌される。次いで、混合物は、均一化の後に、テフロン（登録商標）ジャケットに移され、次いで、オートクレーブ内に置かれる。

【0053】

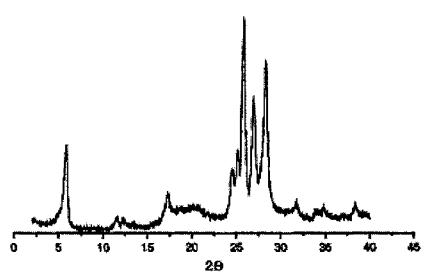
20

オートクレーブは、オープン内において150℃で3日間にわたって加熱される。合成の間、オートクレーブは、連続的に攪拌される。得られた結晶化された生成物は、ろ過され、脱イオン水で洗浄され（中性のpHに達する）、その後、60℃で一晩乾燥される。

【図面の簡単な説明】


【0054】

40


【図1】粗い合成サンプルで行われた回折図を示す。

【図2】粗い合成サンプルで行われた回折図を示す。

【図1】

【図2】

フロントページの続き

(74)代理人 100069338

弁理士 清末 康子

(72)発明者 エヴァ バレア

スペイン国 ヴァレンシア プエルト サグント カリエ ムリリョ 42-5-15

(72)発明者 ヴィセンテ フォルネス

スペイン国 ヴァレンシア カリエ デロチョス 29-1

(72)発明者 アヴェリノ コルマ

スペイン国 ヴァランス ペセタ 46 ダニエル バラシアルト 6

(72)発明者 パトリック プルジュ

フランス国 リヨン アヴニュー ラッカサーニュ 114

(72)発明者 エマニュエル ギュイヨン

フランス国 ヴェルネゾン シュマン ドゥ コルセル 616

F ターム(参考) 4G066 AA30B CA01 CA43 FA33 FA34

4G073 BA04 BA20 BA21 BA25 BA40 BA44 BA48 BA56 BA57 BA58

BA59 BA63 BD30 CB20 FB04 FB11 GA03

【外国語明細書】

1. Title of Invention

Method for synthesis of lamellar solids from an amino-alcohol-type organic structuring agent

2. Detailed Explanation of the Invention

Scope of the Invention

The invention relates to the scope of the preparation processes of lamellar solids based on silicate, whereby the latter are also known under the name of lamellar solid of phyllosilicate or lamellar silicate type. Silicate-based lamellar solids are defined as compounds containing tetrahedrally coordinated stacked silicon (Si) layers (SiO_4). Elements other than silicon Si can be present in the solid that is also in tetrahedral position.

Prior Art

Among the lamellar silicates, it is possible to cite magadiite, natrosilite, kenyaite, makatite, nekoite, kanemite, okenite, dehayelite, macdonalite and rhodesite.

These solids often exist in the natural state with a composition such as $\text{A}_x\text{Si}_y\text{O}_z$, $n\text{H}_2\text{O}$, A that can be, for example, a sodium or potassium element. Such lamellar solids are, for example, $\text{Na}_2\text{Si}_{14}\text{O}_{29}\cdot 9\text{H}_2\text{O}$ for magadiite and $\text{Na}_2\text{Si}_{20}\text{O}_{41}\cdot 10\text{H}_2\text{O}$ for kenyaite. Such natural solids have the same composition as the synthetic solids. These solids often have a three-dimensional structure, with Van der Walls-type interactions between the leaves as well as a small specific surface area.

These solids have absorption and exchange properties that are advantageous. These solids are particularly suitable for the adsorption of water or organic molecules as well as for the surface cation exchange. Recently, lamellar silicates had been extensively studied for their capacity to become an acidic solid by protonic exchange. In addition, the introduction of columns into the interlamellar spaces makes it possible to create a mesoporosity and to increase the specific surface area.

It is known from WO 88/00091 to synthesize a bridged lamellar silicate from a lamellar silicate that consists of the synthesis magadiite by using an organic structuring agent that is selected from among the benzyltriethylammonium chloride, benzyl-trimethylammonium chloride, dibenzylidemethylammonium chloride, N,N'-dimethylpiperazine, triethylamine, or other quaternary compounds or heterocyclic amines.

It is also known from WO 91/12204 to synthesize a Kenyaite-type crystallized silicate by using an organic compound that is selected from among an alkylamine, a trialkylamine, a tetralkylammonium compound, and a diamine trimethylhexamethylene-diamine compound, whereby said alkyl has 1 to 12 carbon atoms.

Summary Description of the Invention

The invention relates to a process for synthesis of lamellar solids based on silicates by using an organic structuring agent that comprises an alcohol group and an amine group that are separated by a hydrocarbon chain.

The process for preparation of the invention is, relative to those exhibited in the prior art, more economical and more effective, and it allows the production of lamellar solids in a more reproducible manner.

Detailed Description of the Invention

This invention therefore relates to a process for synthesis of silicate-based lamellar solids comprising:

- i) a mixing stage, during which a mixture that comprises an alkaline metal M, a silica source SiO_2 , water, an organic structuring agent A, and optionally another metal X with tetrahedral coordination is prepared, and
- ii) a crystallization stage during which this mixture is kept under conditions that allow the formation of a crystalline solid, in which the organic structuring agent comprises at least one alcohol group and at least one amine group that are separated by a hydrocarbon chain.

Advantageously, the organic structuring agent comprises a single alcohol group and a single amine group.

More preferably, the alcohol group is a terminal group of the organic structuring agent. In the same way, the amine group is preferably a terminal group of the organic structuring agent. Even more preferably, the two alcohol and amine groups are terminal groups of the organic structuring agent.

The organic structuring agent preferably comprises 1 to 20 carbon atoms.

The hydrocarbon chain that separates the two amine and alcohol groups can comprise a linear, cyclic or aromatic alkyl group, preferably cyclic or aromatic.

The organic structuring agent is preferably selected from the group that is formed by the tyramine, 4-aminophenol, trans-4-aminocyclohexanol and the 2-(4-amino-phenyl)-ethanol.

The synthesis process comprises a mixing stage, during which a mixture that comprises an alkaline metal, a silica source, water and an organic structuring agent is prepared.

Alkaline metal M that is incorporated in the stage for preparation of the mixture can be lithium, potassium, sodium and/or calcium. The alkaline metal is preferably sodium.

The silica source incorporated in the stage for preparation of the mixture can be silicate, silica gel, colloidal silica and/or silicic acid.

In addition, a metal X with non-silicic tetrahedral coordinance is preferably incorporated during mixing stage i).

More preferably, metal X is selected from the group that is formed by aluminum, boron, chromium, iron, gallium, indium, nickel, zirconium, cobalt, titanium, copper, niobium and europium.

Even more preferably, metal X is aluminum.

Metal X can be incorporated into the mixture in an oxidized form XOn, or in any other form, such as, for example: Al₂O₃, Al(NO₃)₃, Co(CH₃COO)₂, Ti(EtO)₄, Ni(CH₃COO)₂, Zn(CH₃COO)₂, Cu(CH₃COO)₂, Cr(CH₃COO)₂, Eu(CH₃COO)₂, Zr(OH)₄, Na₂B₄O₇, Nb₂O₅.

The composition of the mixture that is obtained during stage i) can be described as follows:

SiO₂ : x M⁺OH⁻ : y H₂O : z A, whereby

- x is between 0 and 1, preferably between 0.1 and 0.6
- y is greater than 10
- z is between 0.05 and 3, preferably between 0.2 and 1

The process for synthesis according to the invention comprises a crystallization

stage during which this mixture is kept under conditions that allow the formation of a crystalline solid.

The crystallization stage is generally of hydrothermal type. This stage can be carried out according to any method that is known to one skilled in the art, preferably in an autoclave. The reaction mixture can be vigorously stirred or not for the duration of the crystallization stage.

Advantageously, during crystallization stage ii), the mixture that is obtained during stage i) is heated to a crystallization temperature of between 100 and 200°C, preferably between 135 and 175°C, for a crystallization period of between 1 and 20 days, preferably between 3 and 10 days.

The product that is obtained in crystallization stage ii) is preferably subjected to at least one of the following stages:

- iii) a stage for separation of the solid from the crystallization mixture,
- iv) a stage for washing the solid, and
- v) a stage for drying said solid.

The crystallized solid is generally separated from the mixture by any method that is known to one skilled in the art, such as filtration. The solid is then washed with water, preferably deionized water.

Drying stage v) is generally carried out at a temperature of between 50 and 150°C for a period of 12 to 30 hours.

The drying is preferably carried out at atmospheric pressure, but can be done under pressure.

The synthesis process according to the invention makes possible, more particularly, the production of a lamellar solid that belongs to the group that is formed by the kenyaita and the magadiite.

The invention also relates to a process for synthesis of bridged lamellar solids based on silicates comprising the synthesis of a lamellar solid, whereby said solid that is obtained is then bridged by intercalation of a bridging agent in the interlamellar space of said solid.

The intercalation of the bridging agent can be carried out by any technique that is known to one skilled in the art.

The insertion of a bridging agent between the silicate layers is carried out such that the columns of the bridging agent are linked to layers of the lamellar solid and the structure of the lamellar solid is maintained, whereby the porosity of the final solid is thereby increased.

Obtaining a bridged lamellar solid from a lamellar solid can be carried out by the following stages:

- a stage for inserting a cationic swelling agent into the lamellar solid that allows the increase of interlamellar space, preferably carried out by cation exchange,
- a stage for inserting a bridging agent into the solid that is obtained in the preceding stage, whereby the bridging agent is preferably selected from among the polyoxocations,
- a stage for washing the solid that is obtained in the preceding stage, and
- a stage for calcination of the washed solid.

The swelling agents can be organic or organometallic chemical radicals or inorganic complexes, preferably provided with a strong positive charge.

In some cases, the calcination stage makes it possible to show the porosity of the bridged lamellar solid. This calcination stage advantageously can be carried out in air, at a temperature of between 300 and 800°C.

After the stage for drying the lamellar solid or after the stage for calcination of the bridged lamellar solid, it is possible to carry out a cation exchange of the alkaline metal that is added to stage i) for mixing with hydrogen ions, which imparts acidity to the final solid.

Example 1: Synthesis of the Silicic Kenyaite

A solution that comprises 98% by weight of tyramine and silica, known under the commercial term © Ludox AS-40 marketed by Aldrich, is incorporated in a basic NaOH soda solution (98% by weight) and water.

The mixture is stirred vigorously for two hours. The mixture is then transferred, after homogenization, into a Teflon jacket that is then placed in an autoclave.

The autoclave is heated for 6 hours to 150°C in an oven. For the synthesis, the autoclave is stirred continuously.

The crystallized product that is obtained is filtered, washed with deionized water (to reach a neutral pH), then dried for one night at 60°C.

The diffractogram that is carried out on the rough synthesis sample is shown in Figure 1.

Example 2: Synthesis of the Silicic Magadiite

A solution that comprises 97% by weight of trans-4-aminocyclohexanol and silica (© Ludox AS-40 marketed by Aldrich) is incorporated in a basic NaOH soda solution (98% by weight) and water.

The mixture is stirred vigorously for two hours. The mixture is then transferred, after homogenization, into a Teflon jacket that is then placed in an autoclave.

The autoclave is heated for 3 hours at 150°C in an oven. For the synthesis, the autoclave is stirred continuously. The crystallized product that is obtained is filtered, washed with deionized water (to reach a neutral pH), then dried for one night at 60°C.

The diffractogram that is carried out on the rough synthesis sample is shown in Figure 2.

Example 3: Kenyaite That is Substituted with a Metal M

A solution that comprises 98% by weight of tyramine and silica (© Ludox AS-40 marketed by Aldrich) is incorporated in a basic NaOH soda solution (98% by weight) and water.

The mixture is stirred vigorously for 15 minutes. An aqueous solution that contains cation M is added to the mixture so as to obtain compositions as described in Table 1 below.

Sample	Molar Composition of the Mixture	Period of Synthesis (in Days)
Co-Kenyaite	SiO ₂ :0.2NaOH:0.50 tyramine:15H ₂ O:1/30- 1/100 Co(CH ₃ COO) ₂	10
Ti-Kenyaite	SiO ₂ :0.2NaOH:0.50Tyramine:15H ₂ O:1/50- 1/100 Ti(EtO) ₄	9
Ni-Kenyaite	SiO ₂ :0.2NaOH:0.50Tyramine:15H ₂ O:1/50- 1/100 Ni(CH ₃ COO) ₂	10
Zn-Kenyaite	SiO ₂ :0.2NaOH:0.50Tyramine:15H ₂ O:1/50- 1/100 Zn(CH ₃ COO) ₂	10
Cu-Kenyaite	SiO ₂ :0.2NaOH:0.50Tyramine:15H ₂ O:1/30- 1/100Cu(CH ₃ COO) ₂	10
Nb-Kenyaite	SiO ₂ :0.2NaOH:0.50Tyramine:15H ₂ O:1/50- 1/100 Nb ₂ O ₅	7
B-Kenyaite	SiO ₂ :0.2NaOH:0.50Tyramine:15H ₂ O:1/50- 1/100 Na ₂ B ₄ O ₇	7
Zr-Kenyaite	SiO ₂ :0.2NaOH:0.50Tyramine:15H ₂ O:1/50- 1/100 Zr(OH) ₄	7
Cr-Kenyaite	SiO ₂ :0.2NaOH:0.50Tyramine:15H ₂ O: 1/50-1/100 Cr(CH ₃ COO) ₂	10
Cr/Co-Kenyaite	SiO ₂ :0.2NaOH:0.50Tyramine:15H ₂ O:1/100 (Cr + Co)	10

Sample	Molar Composition of the Mixture	Period of Synthesis (in Days)
Eu-Kenyaite	SiO ₂ :0.2NaOH:0.50Tyramine:15H ₂ O:1/50- 1/100 Eu(CH ₃ COO) ₃	7

Table 1

The mixtures are then transferred, after homogenization, into a Teflon jacket that is then placed in an autoclave. The autoclave is heated for several days to 150°C in an oven. During the synthesis, the autoclave is stirred continuously. The crystallized product that is obtained is then filtered, washed with deionized water (to reach a neutral pH), and then dried for one night at 60°C.

Example 4: Magadiite That is Substituted with a Metal M

A column that comprises 97% by weight of trans-4-aminocyclohexanol and silica (© Ludox AS-40 marketed by Aldrich) is incorporated in a basic NaOH soda solution (98% by weight), water and cation according to the molar compositions that are described in Table 2 below.

Sample	Molar Composition of the Mixture	Period of Synthesis (in Days)
Al-Magadiite	SiO ₂ :0.2NaOH:0.50Trans-4-aminocyclohexanol; 15H ₂ O:1/100 Al ₂ O ₃	3

Sample	Molar Composition of the Mixture	Period of Synthesis (in Days)
Co-Magadiite	SiO ₂ :0.2NaOH:0.50Trans-4-aminocyclohexanol:15H ₂ O:1/100-1/50 Co(CH ₃ COO) ₂	3
Cu-Magadiite	SiO ₂ :0.2NaOH:0.50Trans-4-aminocyclohexanol:15H ₂ O:1/100-1/50 Cu(CH ₃ COO) ₂	3
Ti-Magadiite	SiO ₂ :0.2NaOH:0.50Trans-4-aminocyclohexanol:15H ₂ O:1/100-1/50 Ti(EtO) ₄	3
Ni-Magadiite	SiO ₂ :0.2NaOH:0.50Trans-4-aminocyclohexanol:15H ₂ O:1/100-1/50 Ni(CH ₃ COO) ₂	3
Eu-Magadiite	SiO ₂ :0.2NaOH:0.50Trans-4-aminocyclohexanol:15H ₂ O:1/100-1/50 Eu(CH ₃ COO) ₃	3
Zr-Magadiite	SiO ₂ :0.2NaOH:0.50Trans-4-aminocyclohexanol:15H ₂ O:1/100-1/50 Zr(OH) ₄	3
Cr-Magadiite	SiO ₂ :0.2NaOH:0.50Trans-4-aminocyclohexanol:15H ₂ O:1/100-1/50 Cr(CH ₃ COO) ₃	3
Cr/Co-Magadiite	SiO ₂ :0.2NaOH:0.50Trans-4-aminocyclohexanol:15H ₂ O:1/100 (Co+Cr)	3

Table 2

The mixture is stirred vigorously for five hours. The mixture is then transferred, after homogenization, into a Teflon jacket that is then placed in an autoclave.

The autoclave is heated for 3 days at 150°C in an oven. During the synthesis, the autoclave is stirred continuously. The crystallized product that is obtained is filtered, washed with deionized water (to reach a neutral pH), and then dried for one night at 60°C.

3. Brief Explanation of the Drawings

The diffractogram that is carried out on the rough synthesis sample is shown in Figure 1.

The diffractogram that is carried out on the rough synthesis sample is shown in Figure 2.

1. Process for synthesis of silicate-based lamellar solids comprising:

- i) a stage for mixing, during which a mixture that comprises an alkaline metal, a silica source, water and an organic structuring agent is prepared, and
- ii) a stage for crystallization during which this mixture is kept under conditions that allow the formation of a crystalline solid,

characterized in that the organic structuring agent comprises at least one alcohol group and at least one amine group that are separated by a hydrocarbon chain.

2. Process for synthesis according to claim 1, wherein the alcohol group is a terminal group of the organic structuring agent.

3. Process for synthesis according to one of claims 1 to 2, wherein the amine group is a terminal group of the organic structuring agent.

4. Process for synthesis according to one of claims 1 to 3, wherein the organic structuring agent comprises 1 to 20 carbon atoms.

5. Process for synthesis according to one of claims 1 to 4, wherein the organic structuring agent is selected from the group that is formed by tyramine, 4-aminophenol, trans-4-aminocyclohexanol and 2-(4-amino-phenyl)-ethanol.

6. Process for synthesis according to one of claims 1 to 5, wherein during mixing stage i), in addition, a metal X with non-silicic tetrahedral coordinance is incorporated.

7. Process according to claim 6, wherein the metal X is selected from the group that is formed by aluminum, boron, chromium, iron, gallium, indium, nickel, zirconium, cobalt, titanium, copper, niobium and europium.

8. Process for synthesis according to one of claims 1 to 7, wherein during crystallization stage ii), the mixture that is obtained during stage i) is heated to a crystallization temperature of between 100 and 200°C for a crystallization period of between 1 and 20 days.

9. Process for synthesis according to one of claims 1 to 8, wherein the product that is obtained in crystallization stage ii) is subjected

- iii) to a stage for separation of the solid from the crystallization mixture,
- iv) the thus obtained solid is subjected to a washing stage, and
- v) to a drying stage.

10. Process for synthesis according to claim 9, wherein drying stage v) is carried out at a temperature of between 50 and 150°C for a period of 12 to 30 hours.

11. Process for synthesis according to one of claims 1 to 10, wherein the lamellar solid that is produced belongs to the group that is formed by Kenyaite and magadiite.

12. Process for synthesis of bridged silicate-based lamellar solids comprising the synthesis of a lamellar solid according to the process of one of claims 1 to 11, whereby said solid that is obtained is then bridged by intercalation of a bridging agent in the interlamellar space of said solid.

1. Abstract

The invention relates to a process for synthesis of lamellar solids based on silicates comprising:

- i) a mixing stage, during which a mixture that comprises an alkaline metal, a silica source, water and an organic structuring agent is prepared, and
- ii) a crystallization stage during which this mixture is kept under conditions allowing the formation of a crystalline solid.

The organic structuring agent that is used in this process comprises an alcohol group and an amine group that are separated by a hydrocarbon chain.

2. Representative Drawing

None.

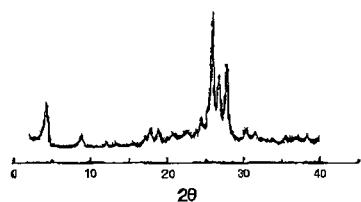


Figure 1

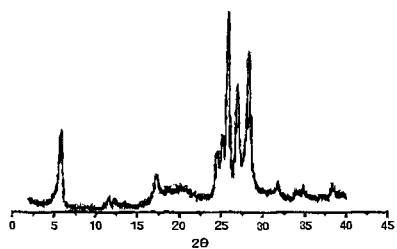


Figure 2