HUMAN RECEPTOR–ASSOCIATED PROTEINS

The invention provides human receptor–associated proteins (HRAP) and polynucleotides which identify and encode HRAP. The invention also provides expression vectors, host cells, antibodies, agonists, and antagonists. The invention also provides methods for diagnosing, treating or preventing disorders associated with expression of HRAP.
FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AL</td>
<td>Albania</td>
<td>ES</td>
<td>Spain</td>
<td>LS</td>
<td>Lesotho</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AM</td>
<td>Armenia</td>
<td>FI</td>
<td>Finland</td>
<td>LT</td>
<td>Lithuania</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AT</td>
<td>Austria</td>
<td>FR</td>
<td>France</td>
<td>LU</td>
<td>Luxembourg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AU</td>
<td>Australia</td>
<td>GA</td>
<td>Gabon</td>
<td>LV</td>
<td>Latvia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AZ</td>
<td>Azerbaijan</td>
<td>GB</td>
<td>United Kingdom</td>
<td>MC</td>
<td>Monaco</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BA</td>
<td>Bosnia and Herzegovina</td>
<td>GE</td>
<td>Georgia</td>
<td>MD</td>
<td>Republic of Moldova</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BB</td>
<td>Barbados</td>
<td>GH</td>
<td>Ghana</td>
<td>MG</td>
<td>Madagascar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BE</td>
<td>Belgium</td>
<td>GN</td>
<td>Guinea</td>
<td>MK</td>
<td>The former Yugoslav</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BF</td>
<td>Burkina Faso</td>
<td>GR</td>
<td>Greece</td>
<td>ML</td>
<td>Mali</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BG</td>
<td>Bulgaria</td>
<td>HU</td>
<td>Hungary</td>
<td>MN</td>
<td>Mongolia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BJ</td>
<td>Benin</td>
<td>IE</td>
<td>Ireland</td>
<td>MR</td>
<td>Mauritania</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BR</td>
<td>Brazil</td>
<td>IL</td>
<td>Israel</td>
<td>MW</td>
<td>Malawi</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BY</td>
<td>Belarus</td>
<td>IS</td>
<td>Iceland</td>
<td>MX</td>
<td>Mexico</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CA</td>
<td>Canada</td>
<td>IT</td>
<td>Italy</td>
<td>NE</td>
<td>Niger</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CF</td>
<td>Central African Republic</td>
<td>JP</td>
<td>Japan</td>
<td>NL</td>
<td>Netherlands</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CG</td>
<td>Congo</td>
<td>KE</td>
<td>Kenya</td>
<td>NO</td>
<td>Norway</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH</td>
<td>Switzerland</td>
<td>KG</td>
<td>Kyrgyzstan</td>
<td>NZ</td>
<td>New Zealand</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CI</td>
<td>Côte d’Ivoire</td>
<td>KP</td>
<td>Democratic People’s</td>
<td>PL</td>
<td>Poland</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CM</td>
<td>Cameroon</td>
<td>KR</td>
<td>Republic of Korea</td>
<td>PT</td>
<td>Portugal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CN</td>
<td>China</td>
<td>KZ</td>
<td>Kazakhstan</td>
<td>RO</td>
<td>Romania</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CU</td>
<td>Cuba</td>
<td>LC</td>
<td>Saint Lucia</td>
<td>RU</td>
<td>Russian Federation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CZ</td>
<td>Czech Republic</td>
<td>LI</td>
<td>Liechtenstein</td>
<td>SD</td>
<td>Sudan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DE</td>
<td>Germany</td>
<td>LK</td>
<td>Sri Lanka</td>
<td>SE</td>
<td>Sweden</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DK</td>
<td>Denmark</td>
<td>LR</td>
<td>Liberia</td>
<td>SG</td>
<td>Singapore</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EE</td>
<td>Estonia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SI</td>
<td>Slovenia</td>
<td>SK</td>
<td>Slovakia</td>
<td>SN</td>
<td>Senegal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SZ</td>
<td>Swaziland</td>
<td>TD</td>
<td>Chad</td>
<td>TG</td>
<td>Togo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TJ</td>
<td>Tajikistan</td>
<td>TM</td>
<td>Turkmenistan</td>
<td>TR</td>
<td>Turkey</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TT</td>
<td>Trinidad and Tobago</td>
<td>UA</td>
<td>Ukraine</td>
<td>UG</td>
<td>Uganda</td>
<td></td>
<td></td>
</tr>
<tr>
<td>US</td>
<td>United States of America</td>
<td></td>
<td></td>
<td>UZ</td>
<td>Uzbekistan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VN</td>
<td>Viet Nam</td>
<td>YU</td>
<td>Yugoslavia</td>
<td>ZW</td>
<td>Zimbabwe</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
HUMAN RECEPTOR-ASSOCIATED PROTEINS

TECHNICAL FIELD

This invention relates to nucleic acid and amino acid sequences of human receptor-associated proteins and to the use of these sequences in the diagnosis, treatment, and prevention of cell proliferative, autoimmune/inflammatory, reproductive, cardiovascular, and gastrointestinal disorders.

BACKGROUND OF THE INVENTION

The term receptor describes proteins that specifically recognize other molecules. The category is broad and includes proteins with a variety of functions. The bulk of the proteins termed receptors are cell surface proteins which, when they bind extracellular ligands, produce cellular responses in the areas of growth, differentiation, endocytosis, and immune response.

Other receptors facilitate the specific transport of proteins out of the endoplasmic reticulum and localize enzymes to a particular compartment of the cell. The term may also be applied to proteins which act as receptors for ligands (with known or unknown chemical composition) which interact with other cellular components. For example, the steroid hormone receptors bind to and regulate transcription of genomic DNA.

Regulation of cell proliferation, differentiation, and migration is important for the formation and function of tissues. Secreted regulatory proteins such as growth factors coordinately control these cellular processes and act as mediators in cell-cell signaling pathways. Growth factors are secreted from the cell, and bind to specific cell-surface receptors on target cells. The bound receptors trigger intracellular signal transduction pathways which activate various downstream effectors. Such processes regulate many cell functions including cell proliferation, differentiation, gene transcription, cell motility, and oncogenic transformation.

Cell surface receptors are typically integral membrane proteins of the plasma membrane. These receptors recognize hormones including the catecholamines, such as epinephrine, norepinephrine, and histamine; peptide hormones such as glucagon, insulin, gastrin, secretin, cholecystokinin, adrenocorticotropic hormone, follicle stimulating hormone, luteinizing hormone, thyroid stimulating hormone, parathyroid hormone, and vasopressin; growth and differentiation factors such as epidermal growth factor, fibroblast growth factor, transforming growth factor, insulin-like growth factor, platelet-derived growth factor, nerve growth factor, colony-stimulating factors, and erythropoietin; cytokines such as chemokines, interleukins, interferons, and tumor
necrosis factor; small peptide factors such as bombesin, oxytocin, endothelin, angiotensin II, vasoactive intestinal peptide, and bradykinin; neurotransmitters such as neuropeptide Y, neotensin, neuromedins, melanocortins, somatostatin, galanin, tachykinins; opioids such as enkephalins, endorphins and dynorphins; and circulatory system-borne signaling molecules such as angiotensin, complement, calcitonin, endothelins, and formyl-methionyl peptides. Cell surface receptors on immune system cells recognize antigens, antibodies, and major histocompatibility complex (MHC)-bound peptide. Other cell surface receptors bind ligands to be internalized by the cell. This receptor-mediated endocytosis functions in the uptake of low density lipoproteins (LDL), transferrin, glucose- or mannose-terminal glycoproteins, galactose-terminal glycoproteins, immunoglobulins, phosphovitelligenins, fibrin, proteinase-inhibitor complexes, plasminogen activators, and thrombospondin (Lodish, H. et al. (1995) Molecular Cell Biology, Scientific American Books, New York, NY, p. 723; Mikhailenko, I. et al. (1997) J. Biol. Chem. 272:6784-6791).

Many growth factor receptors, including epidermal growth factor, platelet-derived growth factor, and fibroblast growth factor, contain intrinsic protein kinase activities. When the polypeptide growth factor binds to the receptor, it triggers the autophosphorylation of a tyrosine residue on the receptor. It is believed that these phosphorylated sites are recognition sites for the binding of other cytoplasmic signaling proteins in the signaling pathway that eventually links the initial receptor activation at the cell surface to the activation of a specific intracellular target molecule. These signaling proteins contain a common domain referred to as a SRC homology 2 (SH2) domain. SH2 domains are found in a variety of signaling molecules and oncogenic proteins such as phospholipase C-γ, Ras GTPase activating protein, and pp60+c-SRC (Lowenstein, E.J. et al. (1992) Cell 70:431-42).

G protein coupled receptors (GPCR) are integral membrane proteins containing seven
transmembrane regions, an extracellular N-terminus that binds ligand, and a cytoplasmic C-terminus that interacts with G proteins (Strosberg, A.D. (1991) Eur. J. Biochem. 196:1-10). The seven hydrophobic transmembrane domains form a bundle of antiparallel alpha helices which account for structural and functional features of the receptor. In most cases, the bundle of helices forms a binding pocket; however, when the binding site must accommodate bulky molecules, the extracellular N-terminal segment or one or more of the three extracellular loops participate in ligand binding which induces a conformational change in intracellular portions of the receptor. The activated receptor interacts with an intracellular heterotrimeric G-protein complex which triggers further intracellular signaling activities. These activities include interactions with guanine nucleotide binding (G) proteins and the production of second messengers such as cyclic AMP (cAMP), phospholipase C, inositol triphosphate, or interactions with ion channel proteins (Baldwin, J.M. (1994) Curr. Opin. Cell Biol. 6:180-190).

The amino-terminus of the GPCR is extracellular, of variable length, and often glycosylated; the carboxy-terminus is cytoplasmic and generally phosphorylated. Extracellular loops of the GPCR alternate with intracellular loops and link the transmembrane domains. The most conserved domains of GPCRs are the transmembrane domains and the first two cytoplasmic loops. GPCRs range in size from under 400 to over 1000 amino acids (Coughlin, S.R. (1994) Curr. Opin. Cell Biol. 6:191-197).

GPCRs respond to a diverse array of ligands including lipid analogs, amino acids and their derivatives, peptides, cytokines, and specialized stimuli such as light, taste, and odor. GPCRs function in physiological processes including vision (the rhodopsins), smell (the olfactory receptors), neurotransmission (muscarinic acetylcholine, dopamine, and adrenergic receptors), and hormonal response (luteinizing hormone and thyroid-stimulating hormone receptors).

GPCR mutations, which may cause loss of function or constitutive activation, have been associated with numerous human diseases (Coughlin, supra). For instance, retinitis pigmentosa may arise from mutations in the rhodopsin gene. Parma, J. et al. (1993, Nature 365:649-651) report that somatic activating mutations in the thyrotropin receptor cause hyperfunctioning thyroid adenomas and suggest that certain G-protein-coupled receptors susceptible to constitutive activation may behave as proto-oncogenes.

The frizzled cell surface receptor, originally identified in Drosophila melanogaster, is important for proper bristle and hair polarity on the wing, leg, thorax, abdomen, and eye of the developing insect (Wang, Y. et al. (1996) J. Biol. Chem. 271:4468-4476). The frizzled gene encodes a 587 amino acid protein which contains an N-terminal signal sequence and seven putative transmembrane regions. The cysteine-rich N-terminus is probably extracellular and the
C-terminus is probably cytosolic. Multiple *frizzled* gene homologs have been found in rat, mouse, and human. The frizzled receptors are not homologous to other seven-transmembrane-region receptors and their ligands are still unknown.

T cells play a dual role in the immune system as effectors and regulators, coupling antigen recognition with the transmission of signals that induce cell death in infected cells and stimulate proliferation of other immune cells. Although a population of T cells can recognize a wide range of different antigens, an individual T cell can only recognize a single antigen and only when it is presented to the T cell receptor (TCR) as a peptide complexed with a major histocompatibility molecule (MHC) on the surface of an antigen presenting cell. The TCR on most T cells consists of immunoglobulin-like integral membrane glycoproteins containing two polypeptide subunits, α and β, of similar molecular weight. The TCR β subunit has an extracellular domain containing both variable and constant regions, a transmembrane domain that traverses the membrane once, and a short intracellular domain (Saito, H. et al. (1984) *Nature* 309:757-762). The genes for the TCR subunits are constructed through somatic rearrangement of different gene segments.

The immunoglobulin E (IgE) receptor is another receptor important in regulating the immune response. The IgE receptor is responsible for initiating the allergic response which begins with the binding of an allergen to receptor-bound IgE. This binding leads to cell activation and the release of mediators such as histamine that are responsible for the manifestations of allergy (Kuester, H. et al. (1992) *J. Biol. Chem.* 267:12782-12787). The high affinity IgE receptor (FceRI) is a tetrameric hetero-oligomer composed of an α chain, a β chain, and two disulfide-linked γ chains. The β chain contains four transmembrane segments and long cytoplasmic domains thought to play an important role in intracellular signaling.

Visual excitation and the phototransmission of light signals is another form of signaling cascade in which receptors play an important role. The process begins in retinal rod cells with the absorption of light by the photoreceptor rhodopsin, a seven-transmembrane containing protein composed of a 40-kDa protein, opsin, and a chromophore, 11-cis-retinal. The photoisomerization of the retinal chromophore initiates a biochemical cascade that leads to a reduction in cyclic-GMP and closure of cyclic-GMP regulated, Ca²⁺-specific channels in the plasma membrane of the rod.
The resultant membrane hyperpolarization generates a nerve signal. Recovery of the dark state of the rod involves another receptor, recoverin. Recoverin is a Ca2+-binding protein that detects the lowering of cytosolic Ca2+ and subsequently binds to and activates guanylate cyclase. Activation of guanylate cyclase leads to increased cyclic-GMP levels and the reopening of Ca2+-specific channels (Stryer, L. (1991) J. Biol. Chem. 266:10711-10714).

Abnormal receptor activity is associated with a variety of diseases and disorders. Abnormal hormonal secretion is linked to disorders including diabetes insipidus, hyper- and hypoglycemia, Grave’s disease and goiter, and Cushing’s and Addison’s diseases. Cancer cells secrete excessive amounts of hormones or other biologically active peptides. Disorders related to excessive secretion of biologically active peptides by tumor cells include fasting hypoglycemia due to increased insulin secretion from insulinoma-islet cell tumors; hypertension due to increased epinephrine and norepinephrine secreted from pheochromocytomas of the adrenal medulla and sympathetic paraganglia; and carcinoid syndrome, which includes abdominal cramps, diarrhea, and valvular heart disease, caused by excessive amounts of vasoactive substances secreted from intestinal tumors. Tumors may exhibit ectopic synthesis and secretion of biologically active peptides, including ACTH and vasopressin in lung and pancreatic cancers; parathyroid hormone in lung and bladder cancers; calcitonin in lung and breast cancers; and thyroid-stimulating hormone in medullary thyroid carcinoma.

Inflammation is a molecular, cellular, and tissue program during which foreign substances and pathogens are destroyed, and injured tissue is repaired through a variety of biochemical, biophysical, and cellular mechanisms. The principal cellular mediators of inflammation are leukocytes, particularly granulocytes and the monocytes/macrophages. Macrophages recognize, internalize, and destroy a variety of foreign (non-self) and endogenous substances and pathogens, including bacteria, parasites, and viruses. The exact recognition mechanism for non-self pathogens is unknown, but it has been proposed that receptors with broad binding specificity are used to discriminate between self and non-self antigens. Macrophages are also thought to play an important role in the immune response by presenting foreign antigens to lymphocytes.

The discovery of new human receptor-associated proteins and the polynucleotides encoding them satisfies a need in the art by providing new compositions which are useful in the diagnosis, prevention, and treatment of cell proliferative, autoimmune/inflammatory, reproductive, cardiovascular, and gastrointestinal disorders.

SUMMARY OF THE INVENTION

The invention features substantially purified polypeptides, human receptor-associated
proteins, referred to collectively as “HRAP”. In one aspect, the invention provides a substantially purified polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-16, and fragments thereof.

The invention further provides a substantially purified variant having at least 90% amino acid identity to at least one of the amino acid sequences selected from the group consisting of SEQ ID NO:1-16, and fragments thereof. The invention also provides an isolated and purified polynucleotide encoding the polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-16, and fragments thereof. The invention also includes an isolated and purified polynucleotide variant having at least 70% polynucleotide sequence identity to the polynucleotide encoding the polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-16, and fragments thereof.

Additionally, the invention provides an isolated and purified polynucleotide which hybridizes under stringent conditions to the polynucleotide encoding the polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-16, and fragments thereof. The invention also provides an isolated and purified polynucleotide having a sequence which is complementary to the polynucleotide encoding the polypeptide comprising the amino acid sequence selected from the group consisting of SEQ ID NO:1-16, and fragments thereof.

The invention also provides an isolated and purified polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ ID NO:17-32, and fragments thereof. The invention further provides an isolated and purified polynucleotide variant having at least 90% polynucleotide sequence identity to the polynucleotide sequence selected from the group consisting of SEQ ID NO:17-32, and fragments thereof. The invention also provides an isolated and purified polynucleotide having a sequence which is complementary to the polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ ID NO:17-32, and fragments thereof.

The invention also provides a method for detecting a polynucleotide in a sample containing nucleic acids, the method comprising the steps of (a) hybridizing the complement of the polynucleotide sequence to at least one of the polynucleotides of the sample, thereby forming a hybridization complex; and (b) detecting the hybridization complex, wherein the presence of the hybridization complex correlates with the presence of a polynucleotide in the sample. In one aspect, the method further comprises amplifying the polynucleotide prior to hybridization.

The invention further provides an expression vector containing at least a fragment of the polynucleotide encoding the polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-16, and fragments thereof. In another aspect, the expression
vector is contained within a host cell.

The invention also provides a method for producing a polypeptide, the method comprising the steps of: (a) culturing the host cell containing an expression vector containing at least a fragment of a polynucleotide under conditions suitable for the expression of the polypeptide; and (b) recovering the polypeptide from the host cell culture.

The invention also provides a pharmaceutical composition comprising a substantially purified polypeptide having the amino acid sequence selected from the group consisting of SEQ ID NO:1-16, and fragments thereof, in conjunction with a suitable pharmaceutical carrier.

The invention further includes a purified antibody which binds to a polypeptide selected from the group consisting of SEQ ID NO:1-16, and fragments thereof. The invention also provides a purified agonist and a purified antagonist to the polypeptide.

The invention also provides a method for treating or preventing a disorder associated with decreased expression or activity of HRAP, the method comprising administering to a subject in need of such treatment an effective amount of a pharmaceutical composition comprising a substantially purified polypeptide having the amino acid sequence selected from the group consisting of SEQ ID NO:1-16, and fragments thereof, in conjunction with a suitable pharmaceutical carrier.

The invention also provides a method for treating or preventing a disorder associated with increased expression or activity of HRAP, the method comprising administering to a subject in need of such treatment an effective amount of an antagonist of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-16, and fragments thereof.

BRIEF DESCRIPTION OF THE TABLES

Table 1 shows nucleotide and polypeptide sequence identification numbers (SEQ ID NO), clone identification numbers (clone ID), cDNA libraries, and cDNA fragments used to assemble full-length sequences encoding HRAP.

Table 2 shows features of each polypeptide sequence including potential motifs, homologous sequences, and methods and algorithms used for identification of HRAP.

Table 3 shows the tissue-specific expression patterns of each nucleic acid sequence as determined by northern analysis, diseases or disorders associated with these tissues, selected fragments of the nucleotide sequences encoding HRAP which are useful as hybridization probes, and the vector into which each cDNA was cloned.

Table 4 describes the tissues used to construct the cDNA libraries from which Incyte cDNA clones encoding HRAP were isolated.

Table 5 shows the programs, their descriptions, references, and threshold parameters used...
to analyze HRAP.

DESCRIPTION OF THE INVENTION

Before the present proteins, nucleotide sequences, and methods are described, it is understood that this invention is not limited to the particular machines, materials and methods described, as these may vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to limit the scope of the present invention which will be limited only by the appended claims.

It must be noted that as used herein and in the appended claims, the singular forms “a,” “an,” and “the” include plural reference unless the context clearly dictates otherwise. Thus, for example, a reference to “a host cell” includes a plurality of such host cells, and a reference to “an antibody” is a reference to one or more antibodies and equivalents thereof known to those skilled in the art, and so forth.

Unless defined otherwise, all technical and scientific terms used herein have the same meanings as commonly understood by one of ordinary skill in the art to which this invention belongs. Although any machines, materials, and methods similar or equivalent to those described herein can be used to practice or test the present invention, the preferred machines, materials and methods are now described. All publications mentioned herein are cited for the purpose of describing and disclosing the cell lines, protocols, reagents and vectors which are reported in the publications and which might be used in connection with the invention. Nothing herein is to be construed as an admission that the invention is not entitled to antedate such disclosure by virtue of prior invention.

DEFINITIONS

“HRAP” refers to the amino acid sequences of substantially purified HRAP obtained from any species, particularly a mammalian species, including bovine, ovine, porcine, murine, equine, and preferably the human species, from any source, whether natural, synthetic, semi-synthetic, or recombinant.

The term “agonist” refers to a molecule which, when bound to HRAP, increases or prolongs the duration of the effect of HRAP. Agonists may include proteins, nucleic acids, carbohydrates, or any other molecules which bind to and modulate the effect of HRAP.

An “allelic variant” is an alternative form of the gene encoding HRAP. Allelic variants may result from at least one mutation in the nucleic acid sequence and may result in altered mRNAs or in polypeptides whose structure or function may or may not be altered. Any given natural or recombinant gene may have none, one, or many allelic forms. Common mutational
changes which give rise to allelic variants are generally ascribed to natural deletions, additions, or substitutions of nucleotides. Each of these types of changes may occur alone, or in combination with the others, one or more times in a given sequence.

"Altered" nucleic acid sequences encoding HRAP include those sequences with deletions, insertions, or substitutions of different nucleotides, resulting in a polynucleotide the same as HRAP or a polypeptide with at least one functional characteristic of HRAP. Included within this definition are polymorphisms which may or may not be readily detectable using a particular oligonucleotide probe of the polynucleotide encoding HRAP, and improper or unexpected hybridization to allelic variants, with a locus other than the normal chromosomal locus for the polynucleotide sequence encoding HRAP. The encoded protein may also be "altered," and may contain deletions, insertions, or substitutions of amino acid residues which produce a silent change and result in a functionally equivalent HRAP. Deliberate amino acid substitutions may be made on the basis of similarity in polarity, charge, solubility, hydrophobicity, hydrophilicity, and/or the amphipathic nature of the residues, as long as the biological or immunological activity of HRAP is retained. For example, negatively charged amino acids may include aspartic acid and glutamic acid, positively charged amino acids may include lysine and arginine, and amino acids with uncharged polar head groups having similar hydrophilicity values may include leucine, isoleucine, and valine; glycine and alanine; asparagine and glutamine; serine and threonine; and phenylalanine and tyrosine.

The terms "amino acid" or "amino acid sequence" refer to an oligopeptide, peptide, polypeptide, or protein sequence, or a fragment of any of these, and to naturally occurring or synthetic molecules. In this context, "fragments," "immunogenic fragments," or "antigenic fragments" refer to fragments of HRAP which are preferably at least 5 to about 15 amino acids in length, most preferably at least 14 amino acids, and which retain some biological activity or immunological activity of HRAP. Where "amino acid sequence" is recited to refer to an amino acid sequence of a naturally occurring protein molecule, "amino acid sequence" and like terms are not meant to limit the amino acid sequence to the complete native amino acid sequence associated with the recited protein molecule.

"Amplification" relates to the production of additional copies of a nucleic acid sequence. Amplification is generally carried out using polymerase chain reaction (PCR) technologies well known in the art.

The term "antagonist" refers to a molecule which, when bound to HRAP, decreases the amount or the duration of the effect of the biological or immunological activity of HRAP. Antagonists may include proteins, nucleic acids, carbohydrates, antibodies, or any other molecules
which decrease the effect of HRAP.

The term "antibody" refers to intact molecules as well as to fragments thereof, such as Fab, F(ab')₂, and Fv fragments, which are capable of binding the epitopic determinant. Antibodies that bind HRAP polypeptides can be prepared using intact polypeptides or using fragments containing small peptides of interest as the immunizing antigen. The polypeptide or oligopeptide used to immunize an animal (e.g., a mouse, a rat, or a rabbit) can be derived from the translation of RNA, or synthesized chemically, and can be conjugated to a carrier protein if desired. Commonly used carriers that are chemically coupled to peptides include bovine serum albumin, thyroglobulin, and keyhole limpet hemocyanin (KLH). The coupled peptide is then used to immunize the animal.

The term "antigenic determinant" refers to that fragment of a molecule (i.e., an epitope) that makes contact with a particular antibody. When a protein or a fragment of a protein is used to immunize a host animal, numerous regions of the protein may induce the production of antibodies which bind specifically to antigenic determinants (given regions or three-dimensional structures on the protein). An antigenic determinant may compete with the intact antigen (i.e., the immunogen used to elicit the immune response) for binding to an antibody.

The term "antisense" refers to any composition containing a nucleic acid sequence which is complementary to the "sense" strand of a specific nucleic acid sequence. Antisense molecules may be produced by any method including synthesis or transcription. Once introduced into a cell, the complementary nucleotides combine with natural sequences produced by the cell to form duplexes and to block either transcription or translation. The designation "negative" can refer to the antisense strand, and the designation "positive" can refer to the sense strand.

The term "biologically active," refers to a protein having structural, regulatory, or biochemical functions of a naturally occurring molecule. Likewise, "immunologically active" refers to the capability of the natural, recombinant, or synthetic HRAP, or of any oligopeptide thereof, to induce a specific immune response in appropriate animals or cells and to bind with specific antibodies.

The terms "complementary" or "complementarity" refer to the natural binding of polynucleotides by base pairing. For example, the sequence "5' A-G-T 3'" bonds to the complementary sequence "3' T-C-A 5'." Complementarity between two single-stranded molecules may be "partial," such that only some of the nucleic acids bind, or it may be "complete," such that total complementarity exists between the single stranded molecules. The degree of complementarity between nucleic acid strands has significant effects on the efficiency and strength of the hybridization between the nucleic acid strands. This is of particular importance in amplification reactions, which depend upon binding between nucleic acids strands, and in the
design and use of peptide nucleic acid (PNA) molecules.

A "composition comprising a given polynucleotide sequence" or a "composition comprising a given amino acid sequence" refer broadly to any composition containing the given polynucleotide or amino acid sequence. The composition may comprise a dry formulation or an aqueous solution. Compositions comprising polynucleotide sequences encoding HRAP or fragments of HRAP may be employed as hybridization probes. The probes may be stored in freeze-dried form and may be associated with a stabilizing agent such as a carbohydrate. In hybridizations, the probe may be deployed in an aqueous solution containing salts (e.g., NaCl), detergents (e.g., sodium dodecyl sulfate; SDS), and other components (e.g., Denhardt's solution, dry milk, salmon sperm DNA, etc.).

"Consensus sequence" refers to a nucleic acid sequence which has been resequenced to resolve uncalled bases, extended using XL-PCR kit (Perkin-Elmer, Norwalk CT) in the 5' and/or the 3' direction, and resequenced, or which has been assembled from the overlapping sequences of more than one Incyte Clone using a computer program for fragment assembly, such as the GELVIEW Fragment Assembly system (GCG, Madison WI). Some sequences have been both extended and assembled to produce the consensus sequence.

The term "correlates with expression of a polynucleotide" indicates that the detection of the presence of nucleic acids, the same or related to a nucleic acid sequence encoding HRAP, by northern analysis is indicative of the presence of nucleic acids encoding HRAP in a sample, and thereby correlates with expression of the transcript from the polynucleotide encoding HRAP.

A "deletion" refers to a change in the amino acid or nucleotide sequence that results in the absence of one or more amino acid residues or nucleotides.

The term "derivative" refers to the chemical modification of a polypeptide sequence, or a polynucleotide sequence. Chemical modifications of a polynucleotide sequence can include, for example, replacement of hydrogen by an alkyl, acyl, or amino group. A derivative polynucleotide encodes a polypeptide which retains at least one biological or immunological function of the natural molecule. A derivative polypeptide is one modified by glycosylation, pegylation, or any similar process that retains at least one biological or immunological function of the polypeptide from which it was derived.

The term "similarity" refers to a degree of complementarity. There may be partial similarity or complete similarity. The word "identity" may substitute for the word "similarity." A partially complementary sequence that at least partially inhibits an identical sequence from hybridizing to a target nucleic acid is referred to as "substantially similar." The inhibition of hybridization of the completely complementary sequence to the target sequence may be examined
using a hybridization assay (Southern or northern blot, solution hybridization, and the like) under conditions of reduced stringency. A substantially similar sequence or hybridization probe will compete for and inhibit the binding of a completely similar (identical) sequence to the target sequence under conditions of reduced stringency. This is not to say that conditions of reduced stringency are such that non-specific binding is permitted, as reduced stringency conditions require that the binding of two sequences to one another be a specific (i.e., a selective) interaction. The absence of non-specific binding may be tested by the use of a second target sequence which lacks even a partial degree of complementarity (e.g., less than about 30% similarity or identity). In the absence of non-specific binding, the substantially similar sequence or probe will not hybridize to the second non-complementary target sequence.

The phrases "percent identity" or "% identity" refer to the percentage of sequence similarity found in a comparison of two or more amino acid or nucleic acid sequences. Percent identity can be determined electronically, e.g., by using the MEGALIGN program (DNASTAR, Madison WI). The MEGALIGN program can create alignments between two or more sequences according to different methods, e.g., the clustal method. (See, e.g., Higgins, D.G. and P.M. Sharp (1988) Gene 73:237-244.) The clustal algorithm groups sequences into clusters by examining the distances between all pairs. The clusters are aligned pairwise and then in groups. The percentage similarity between two amino acid sequences, e.g., sequence A and sequence B, is calculated by dividing the length of sequence A, minus the number of gap residues in sequence A, minus the number of gap residues in sequence B, into the sum of the residue matches between sequence A and sequence B, times one hundred. Gaps of low or of no similarity between the two amino acid sequences are not included in determining percentage similarity. Percent identity between nucleic acid sequences can also be counted or calculated by other methods known in the art, e.g., the Jotun Hein method. (See, e.g., Hein, J. (1990) Methods Enzymol. 183:626-645.) Identity between sequences can also be determined by other methods known in the art, e.g., by varying hybridization conditions.

"Human artificial chromosomes" (HACs) are linear microchromosomes which may contain DNA sequences of about 6 kb to 10 Mb in size, and which contain all of the elements required for stable mitotic chromosome segregation and maintenance.

The term "humanized antibody" refers to antibody molecules in which the amino acid sequence in the non-antigen binding regions has been altered so that the antibody more closely resembles a human antibody, and still retains its original binding ability.

"Hybridization" refers to any process by which a strand of nucleic acid binds with a complementary strand through base pairing.
The term “hybridization complex” refers to a complex formed between two nucleic acid sequences by virtue of the formation of hydrogen bonds between complementary bases. A hybridization complex may be formed in solution (e.g., C_{m} or R_{d} analysis) or formed between one nucleic acid sequence present in solution and another nucleic acid sequence immobilized on a solid support (e.g., paper, membranes, filters, chips, pins or glass slides, or any other appropriate substrate to which cells or their nucleic acids have been fixed).

The words “insertion” or “addition” refer to changes in an amino acid or nucleotide sequence resulting in the addition of one or more amino acid residues or nucleotides, respectively, to the sequence found in the naturally occurring molecule.

“Immune response” can refer to conditions associated with inflammation, trauma, immune disorders, or infectious or genetic disease, etc. These conditions can be characterized by expression of various factors, e.g., cytokines, chemokines, and other signaling molecules, which may affect cellular and systemic defense systems.

The term “microarray” refers to an arrangement of distinct polynucleotides on a substrate.

The terms “element” or “array element” in a microarray context, refer to hybridizable polynucleotides arranged on the surface of a substrate.

The term “modulate” refers to a change in the activity of HRAP. For example, modulation may cause an increase or a decrease in protein activity, binding characteristics, or any other biological, functional, or immunological properties of HRAP.

The phrases “nucleic acid” or “nucleic acid sequence,” as used herein, refer to a nucleotide, oligonucleotide, polynucleotide, or any fragment thereof. These phrases also refer to DNA or RNA of genomic or synthetic origin which may be single-stranded or double-stranded and may represent the sense or the antisense strand, to peptide nucleic acid (PNA), or to any DNA-like or RNA-like material. In this context, “fragments” refers to those nucleic acid sequences which, comprise a region of unique polynucleotide sequence that specifically identifies SEQ ID NO:17-32, for example, as distinct from any other sequence in the same genome. For example, a fragment of SEQ ID NO:17-32 is useful in hybridization and amplification technologies and in analogous methods that distinguish SEQ ID NO:17-32 from related polynucleotide sequences. A fragment of SEQ ID NO:17-32 is at least about 15-20 nucleotides in length. The precise length of the fragment of SEQ ID NO:17-32 and the region of SEQ ID NO:17-32 to which the fragment corresponds are routinely determinable by one of ordinary skill in the art based on the intended purpose for the fragment. In some cases, a fragment, when translated, would produce polypeptides retaining some functional characteristic, e.g., antigenicity, or structural domain characteristic, e.g., ATP-binding site, of the full-length polypeptide.
The terms “operably associated” or “operably linked” refer to functionally related nucleic acid sequences. A promoter is operably associated or operably linked with a coding sequence if the promoter controls the translation of the encoded polypeptide. While operably associated or operably linked nucleic acid sequences can be contiguous and in the same reading frame, certain genetic elements, e.g., repressor genes, are not contiguously linked to the sequence encoding the polypeptide but still bind to operator sequences that control expression of the polypeptide.

The term “oligonucleotide” refers to a nucleic acid sequence of at least about 6 nucleotides to 60 nucleotides, preferably about 15 to 30 nucleotides, and most preferably about 20 to 25 nucleotides, which can be used in PCR amplification or in a hybridization assay or microarray. “Oligonucleotide” is substantially equivalent to the terms "amplimer," "primer," "oligomer," and "probe," as these terms are commonly defined in the art.

“Peptide nucleic acid” (PNA) refers to an antisense molecule or anti-gene agent which comprises an oligonucleotide of at least about 5 nucleotides in length linked to a peptide backbone of amino acid residues ending in lysine. The terminal lysine confers solubility to the composition. PNAs preferentially bind complementary single stranded DNA or RNA and stop transcript elongation, and may be pegylated to extend their lifespan in the cell.

The term “sample” is used in its broadest sense. A sample suspected of containing nucleic acids encoding HRAP, or fragments thereof, or HRAP itself, may comprise a bodily fluid; an extract from a cell, chromosome, organelle, or membrane isolated from a cell; a cell; genomic DNA, RNA, or cDNA, in solution or bound to a substrate; a tissue; a tissue print; etc.

The terms “specific binding” or “specifically binding” refer to that interaction between a protein or peptide and an agonist, an antibody, or an antagonist. The interaction is dependent upon the presence of a particular structure of the protein, e.g., the antigenic determinant or epitope, recognized by the binding molecule. For example, if an antibody is specific for epitope “A,” the presence of a polypeptide containing the epitope A, or the presence of free unlabeled A, in a reaction containing free labeled A and the antibody will reduce the amount of labeled A that binds to the antibody.

The term “stringent conditions” refers to conditions which permit hybridization between polynucleotides and the claimed polynucleotides. Stringent conditions can be defined by salt concentration, the concentration of organic solvent, e.g., formamide, temperature, and other conditions well known in the art. In particular, stringency can be increased by reducing the concentration of salt, increasing the concentration of formamide, or raising the hybridization temperature.

The term “substantially purified” refers to nucleic acid or amino acid sequences that are
removed from their natural environment and are isolated or separated, and are at least about 60% free, preferably about 75% free, and most preferably about 90% free from other components with which they are naturally associated.

A "substitution" refers to the replacement of one or more amino acids or nucleotides by different amino acids or nucleotides, respectively.

"Substrate" refers to any suitable rigid or semi-rigid support including membranes, filters, chips, slides, wafers, fibers, magnetic or nonmagnetic beads, gels, tubing, plates, polymers, microparticles and capillaries. The substrate can have a variety of surface forms, such as wells, trenches, pins, channels and pores, to which polynucleotides or polypeptides are bound.

"Transformation" describes a process by which exogenous DNA enters and changes a recipient cell. Transformation may occur under natural or artificial conditions according to various methods well known in the art, and may rely on any known method for the insertion of foreign nucleic acid sequences into a prokaryotic or eukaryotic host cell. The method for transformation is selected based on the type of host cell being transformed and may include, but is not limited to, viral infection, electroporation, heat shock, lipofection, and particle bombardment. The term "transformed" cells includes stably transformed cells in which the inserted DNA is capable of replication either as an autonomously replicating plasmid or as part of the host chromosome, as well as transiently transformed cells which express the inserted DNA or RNA for limited periods of time.

A "variant" of HRAP polypeptides refers to an amino acid sequence that is altered by one or more amino acid residues. The variant may have "conservative" changes, wherein a substituted amino acid has similar structural or chemical properties (e.g., replacement of leucine with isoleucine). More rarely, a variant may have "nonconservative" changes (e.g., replacement of glycine with tryptophan). Analogous minor variations may also include amino acid deletions or insertions, or both. Guidance in determining which amino acid residues may be substituted, inserted, or deleted without abolishing biological or immunological activity may be found using computer programs well known in the art, for example, LASERGENE software (DNASTAR).

The term "variant," when used in the context of a polynucleotide sequence, may encompass a polynucleotide sequence related to HRAP. This definition may also include, for example, "allelic" (as defined above), "splice," "species," or "polymorphic" variants. A splice variant may have significant identity to a reference molecule, but will generally have a greater or lesser number of polynucleotides due to alternate splicing of exons during mRNA processing. The corresponding polypeptide may possess additional functional domains or an absence of domains. Species variants are polynucleotide sequences that vary from one species to another. The resulting
polypeptides generally will have significant amino acid identity relative to each other. A polymorphic variant is a variation in the polynucleotide sequence of a particular gene between individuals of a given species. Polymorphic variants also may encompass "single nucleotide polymorphisms" (SNPs) in which the polynucleotide sequence varies by one base. The presence of SNPs may be indicative of, for example, a certain population, a disease state, or a propensity for a disease state.

THE INVENTION

The invention is based on the discovery of new human receptor-associated proteins (HRAP), the polynucleotides encoding HRAP, and the use of these compositions for the diagnosis, treatment, or prevention of cell proliferative, autoimmune/inflammatory, reproductive, cardiovascular, and gastrointestinal disorders.

Table 1 lists the Incyte Clones used to derive full length nucleotide sequences encoding HRAP. Columns 1 and 2 show the sequence identification numbers (SEQ ID NO) of the amino acid and nucleic acid sequences, respectively. Column 3 shows the Clone ID of the Incyte Clone in which nucleic acids encoding each HRAP were identified, and column 4, the cDNA libraries from which these clones were isolated. Column 5 shows Incyte clones, their corresponding cDNA libraries, and shotgun sequences useful as fragments in hybridization technologies, and which are part of the consensus nucleotide sequence of each HRAP.

The columns of Table 2 show various properties of the polypeptides of the invention: column 1 references the SEQ ID NO; column 2 shows the number of amino acid residues in each polypeptide; column 3, potential phosphorylation sites; column 4, potential glycosylation sites; column 5, the amino acid residues comprising signature sequences and motifs; column 6, the identity of each protein; and column 7, analytical methods used to identify each protein through sequence homology and protein motifs.

The columns of Table 3 show the tissue-specificity and disease-association of nucleotide sequences encoding HRAP. The first column of Table 3 lists the polynucleotide sequence identifiers. The second column lists unique fragments of the nucleotide sequences encoding HRAP which are useful as hybridization probes. The third column lists tissue categories which express HRAP as a fraction of total tissue categories expressing HRAP. The fourth column lists the disease classes associated with those tissues expressing HRAP. The fifth column lists the vectors used to subclone the cDNA library.

The invention also encompasses HRAP variants. A preferred HRAP variant is one which has at least about 80%, more preferably at least about 90%, and most preferably at least about 95% amino acid sequence identity to the HRAP amino acid sequence, and which contains at least one
functional or structural characteristic of HRAP.

The invention also encompasses polynucleotides which encode HRAP. In a particular embodiment, the invention encompasses a polynucleotide sequence comprising a sequence selected from the group consisting of SEQ ID NO:17-32, which encodes HRAP.

The invention also encompasses a variant of a polynucleotide sequence encoding HRAP. In particular, such a variant polynucleotide sequence will have at least about 70%, more preferably at least about 85%, and most preferably at least about 95% polynucleotide sequence identity to the polynucleotide sequence encoding HRAP. A particular aspect of the invention encompasses a variant of a polynucleotide sequence comprising a sequence selected from the group consisting of SEQ ID NO:17-32 which has at least about 70%, more preferably at least about 85%, and most preferably at least about 95% polynucleotide sequence identity to a nucleic acid sequence selected from the group consisting of SEQ ID NO:17-32. Any one of the polynucleotide variants described above can encode an amino acid sequence which contains at least one functional or structural characteristic of HRAP.

It will be appreciated by those skilled in the art that as a result of the degeneracy of the genetic code, a multitude of polynucleotide sequences encoding HRAP, some bearing minimal similarity to the polynucleotide sequences of any known and naturally occurring gene, may be produced. Thus, the invention contemplates each and every possible variation of polynucleotide sequence that could be made by selecting combinations based on possible codon choices. These combinations are made in accordance with the standard triplet genetic code as applied to the polynucleotide sequence of naturally occurring HRAP, and all such variations are to be considered as being specifically disclosed.

Although nucleotide sequences which encode HRAP and its variants are preferably capable of hybridizing to the nucleotide sequence of the naturally occurring HRAP under appropriately selected conditions of stringency, it may be advantageous to produce nucleotide sequences encoding HRAP or its derivatives possessing a substantially different codon usage, e.g., inclusion of non-naturally occurring codons. Codons may be selected to increase the rate at which expression of the peptide occurs in a particular prokaryotic or eukaryotic host in accordance with the frequency with which particular codons are utilized by the host. Other reasons for substantially altering the nucleotide sequence encoding HRAP and its derivatives without altering the encoded amino acid sequences include the production of RNA transcripts having more desirable properties, such as a greater half-life, than transcripts produced from the naturally occurring sequence.

The invention also encompasses production of DNA sequences which encode HRAP and
HRAP derivatives, or fragments thereof, entirely by synthetic chemistry. After production, the
synthetic sequence may be inserted into any of the many available expression vectors and cell
systems using reagents well known in the art. Moreover, synthetic chemistry may be used to
introduce mutations into a sequence encoding HRAP or any fragment thereof.

Also encompassed by the invention are polynucleotide sequences that are capable of
hybridizing to the claimed polynucleotide sequences, and, in particular, to those shown in SEQ ID
NO:17-32 and fragments thereof under various conditions of stringency. (See, e.g., Wahl, G.M.
152:507-511.) For example, stringent salt concentration will ordinarily be less than about 750 mM
NaCl and 75 mM trisodium citrate, preferably less than about 500 mM NaCl and 50 mM trisodium
citrate, and most preferably less than about 250 mM NaCl and 25 mM trisodium citrate. Low
stringency hybridization can be obtained in the absence of organic solvent, e.g., formamide, while
high stringency hybridization can be obtained in the presence of at least about 35% formamide,
and most preferably at least about 50% formamide. Stringent temperature conditions will
ordinarily include temperatures of at least about 30°C, more preferably of at least about 37°C, and
most preferably of at least about 42°C. Varying additional parameters, such as hybridization time,
the concentration of detergent, e.g., sodium dodecyl sulfate (SDS), and the inclusion or exclusion
of carrier DNA, are well known to those skilled in the art. Various levels of stringency are
accomplished by combining these various conditions as needed. In a preferred embodiment,
hybridization will occur at 30°C in 750 mM NaCl, 75 mM trisodium citrate, and 1% SDS. In a
more preferred embodiment, hybridization will occur at 37°C in 500 mM NaCl, 50 mM trisodium
citrate, 1% SDS, 35% formamide, and 100 μg/ml denatured salmon sperm DNA (ssDNA). In a
most preferred embodiment, hybridization will occur at 42°C in 250 mM NaCl, 25 mM trisodium
citrate, 1% SDS, 50% formamide, and 200 μg/ml ssDNA. Useful variations on these conditions
will be readily apparent to those skilled in the art.

The washing steps which follow hybridization can also vary in stringency. Wash
stringency conditions can be defined by salt concentration and by temperature. As above, wash
stringency can be increased by decreasing salt concentration or by increasing temperature. For
example, stringent salt concentration for the wash steps will preferably be less than about 30 mM
NaCl and 3 mM trisodium citrate, and most preferably less than about 15 mM NaCl and 1.5 mM
trisodium citrate. Stringent temperature conditions for the wash steps will ordinarily include
temperature of at least about 25°C, more preferably of at least about 42°C, and most preferably of
at least about 68°C. In a preferred embodiment, wash steps will occur at 25°C in 30 mM NaCl, 3
mM trisodium citrate, and 0.1% SDS. In a more preferred embodiment, wash steps will occur at
42°C in 15 mM NaCl, 1.5 mM trisodium citrate, and 0.1% SDS. In a most preferred embodiment, wash steps will occur at 68°C in 15 mM NaCl, 1.5 mM trisodium citrate, and 0.1% SDS. Additional variations on these conditions will be readily apparent to those skilled in the art.

Methods for DNA sequencing are well known in the art and may be used to practice any of the embodiments of the invention. The methods may employ such enzymes as the Klenow fragment of DNA polymerase I, SEQUENASE (US Biochemical, Cleveland OH), Taq polymerase (Perkin-Elmer), thermostable T7 polymerase (Amersham Pharmacia Biotech, Piscataway NJ), or combinations of polymerases and proofreading exonucleases such as those found in the ELONGASE amplification system (Life Technologies, Gaithersburg MD). Preferably, sequence preparation is automated with machines such as the Hamilton MICROLAB 2200 (Hamilton, Reno NV), Peltier Thermal Cycler 200 (PTC200; MJ Research, Watertown MA) and the ABI CATALYST 800 (Perkin-Elmer). Sequencing is then carried out using either ABI 373 or 377 DNA sequencing systems (Perkin-Elmer) or the MEGABACE 1000 DNA sequencing system (Molecular Dynamics, Sunnyvale CA). The resulting sequences are analyzed using a variety of algorithms which are well known in the art. (See, e.g., Ausubel, F.M. (1997) Short Protocols in Molecular Biology, John Wiley & Sons, New York NY, unit 7.7; Meyers, R.A. (1995) Molecular Biology and Biotechnology, Wiley VCH, New York NY, pp. 856-853.)

The nucleic acid sequences encoding HRAP may be extended utilizing a partial nucleotide sequence and employing various PCR-based methods known in the art to detect upstream sequences, such as promoters and regulatory elements. For example, one method which may be employed, restriction-site PCR, uses universal and nested primers to amplify unknown sequence from genomic DNA within a cloning vector. (See, e.g., Sarkar, G. (1993) PCR Methods Appl. 2:318-322.) Another method, inverse PCR, uses primers that extend in divergent directions to amplify unknown sequence from a circularized template. The template is derived from restriction fragments comprising a known genomic locus and surrounding sequences. (See, e.g., Triglia, T. et al. (1988) Nucleic Acids Res. 16:8186.) A third method, capture PCR, involves PCR amplification of DNA fragments adjacent to known sequences in human and yeast artificial chromosome DNA. (See, e.g., Lagerstrom, M. et al. (1991) PCR Methods Appl. 1:111-119.) In this method, multiple restriction enzyme digestions and ligations may be used to insert an engineered double-stranded sequence into a region of unknown sequence before performing PCR. Other methods which may be used to retrieve unknown sequences are known in the art. (See, e.g., Parker, J.D. et al. (1991) Nucleic Acids Res. 19:3055-306). Additionally, one may use PCR, nested primers, and PROMOTERFINDER libraries (Clontech, Palo Alto CA) to walk genomic DNA. This procedure avoids the need to screen libraries and is useful in finding intron/exon
junctions. For all PCR-based methods, primers may be designed using commercially available software, such as OLIGO 4.06 Primer Analysis software (National Biosciences, Plymouth MN) or another appropriate program, to be about 22 to 30 nucleotides in length, to have a GC content of about 50% or more, and to anneal to the template at temperatures of about 68°C to 72°C.

When screening for full-length cDNAs, it is preferable to use libraries that have been size-selected to include larger cDNAs. In addition, random-primed libraries, which often include sequences containing the 5' regions of genes, are preferable for situations in which an oligo d(T) library does not yield a full-length cDNA. Genomic libraries may be useful for extension of sequence into 5' non-transcribed regulatory regions.

Capillary electrophoresis systems which are commercially available may be used to analyze the size or confirm the nucleotide sequence of sequencing or PCR products. In particular, capillary sequencing may employ flowable polymers for electrophoretic separation, four different nucleotide-specific, laser-stimulated fluorescent dyes, and a charge coupled device camera for detection of the emitted wavelengths. Output/light intensity may be converted to electrical signal using appropriate software (e.g., GENOTYPER and SEQUENCE NAVIGATOR, Perkin-Elmer), and the entire process from loading of samples to computer analysis and electronic data display may be computer controlled. Capillary electrophoresis is especially preferable for sequencing small DNA fragments which may be present in limited amounts in a particular sample.

In another embodiment of the invention, polynucleotide sequences or fragments thereof which encode HRAP may be cloned in recombinant DNA molecules that direct expression of HRAP, or fragments or functional equivalents thereof, in appropriate host cells. Due to the inherent degeneracy of the genetic code, other DNA sequences which encode substantially the same or a functionally equivalent amino acid sequence may be produced and used to express HRAP.

The nucleotide sequences of the present invention can be engineered using methods generally known in the art in order to alter HRAP-encoding sequences for a variety of purposes including, but not limited to, modification of the cloning, processing, and/or expression of the gene product. DNA shuffling by random fragmentation and PCR reassembly of gene fragments and synthetic oligonucleotides may be used to engineer the nucleotide sequences. For example, oligonucleotide-mediated site-directed mutagenesis may be used to introduce mutations that create new restriction sites, alter glycosylation patterns, change codon preference, produce splice variants, and so forth.

In another embodiment, sequences encoding HRAP may be synthesized, in whole or in part, using chemical methods well known in the art. (See, e.g., Caruthers, M.H. et al. (1980) Nucl.
Acids Res. Symp. Ser. 215-223, and Horn, T. et al. (1980) Nucl. Acids Res. Symp. Ser. 225-232.) Alternatively, HRAP itself or a fragment thereof may be synthesized using chemical methods. For example, peptide synthesis can be performed using various solid-phase techniques. (See, e.g., Roberge, J.Y. et al. (1995) Science 269:202-204.) Automated synthesis may be achieved using the ABI 431A Peptide Synthesizer (Perkin-Elmer). Additionally, the amino acid sequence of HRAP, or any part thereof, may be altered during direct synthesis and/or combined with sequences from other proteins, or any part thereof, to produce a variant polypeptide.

In order to express a biologically active HRAP, the nucleotide sequences encoding HRAP or derivatives thereof may be inserted into an appropriate expression vector, i.e., a vector which contains the necessary elements for transcriptional and translational control of the inserted coding sequence in a suitable host. These elements include regulatory sequences, such as enhancers, constitutive and inducible promoters, and 5' and 3' untranslated regions in the vector and in polynucleotide sequences encoding HRAP. Such elements may vary in their strength and specificity. Specific initiation signals may also be used to achieve more efficient translation of sequences encoding HRAP. Such signals include the ATG initiation codon and adjacent sequences, e.g. the Kozak sequence. In cases where sequences encoding HRAP and its initiation codon and upstream regulatory sequences are inserted into the appropriate expression vector, no additional transcriptional or translational control signals may be needed. However, in cases where only coding sequence, or a fragment thereof, is inserted, exogenous translational control signals including an in-frame ATG initiation codon should be provided by the vector. Exogenous translational elements and initiation codons may be of various origins, both natural and synthetic. The efficiency of expression may be enhanced by the inclusion of enhancers appropriate for the particular host cell system used. (See, e.g., Scharf, D. et al. (1994) Results Probl. Cell Differ. 20:125-162.)

Methods which are well known to those skilled in the art may be used to construct expression vectors containing sequences encoding HRAP and appropriate transcriptional and translational control elements. These methods include in vitro recombinant DNA techniques, synthetic techniques, and in vivo genetic recombination. (See, e.g., Sambrook, J. et al. (1989) Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Press, Plainview NY, ch. 4, 8, and
A variety of expression vector/host systems may be utilized to contain and express sequences encoding HRAP. These include, but are not limited to, microorganisms such as bacteria transformed with recombinant bacteriophage, plasmid, or cosmid DNA expression vectors; yeast transformed with yeast expression vectors; insect cell systems infected with viral expression vectors (e.g., baculovirus); plant cell systems transformed with viral expression vectors (e.g., cauliflower mosaic virus, CaMV, or tobacco mosaic virus, TMV) or with bacterial expression vectors (e.g., Ti or pBR322 plasmids); or animal cell systems. The invention is not limited by the host cell employed.

In bacterial systems, a number of cloning and expression vectors may be selected depending upon the use intended for polynucleotide sequences encoding HRAP. For example, routine cloning, subcloning, and propagation of polynucleotide sequences encoding HRAP can be achieved using a multifunctional E. coli vector such as PBLUESCRIPT (Stratagene, La Jolla CA) or PSPORT1 plasmid (Life Technologies). Ligation of sequences encoding HRAP into the vector’s multiple cloning site disrupts the lacZ gene, allowing a colorimetric screening procedure for identification of transformed bacteria containing recombinant molecules. In addition, these vectors may be useful for in vitro transcription, dideoxy sequencing, single strand rescue with helper phage, and creation of nested deletions in the cloned sequence. (See, e.g., Van Hecke, G. and S.M. Schuster (1989) J. Biol. Chem. 264:5503-5509.) When large quantities of HRAP are needed, e.g. for the production of antibodies, vectors which direct high level expression of HRAP may be used. For example, vectors containing the strong, inducible T5 or T7 bacteriophage promoter may be used.

Yeast expression systems may be used for production of HRAP. A number of vectors containing constitutive or inducible promoters, such as alpha factor, alcohol oxidase, and PGH, may be used in the yeast Saccharomyces cerevisiae or Pichia pastoris. In addition, such vectors direct either the secretion or intracellular retention of expressed proteins and enable integration of foreign sequences into the host genome for stable propagation. (See, e.g., Ausubel, 1995, supra; Grant et al. (1987) Methods Enzymol. 153:516-54; and Scorer, C. A. et al. (1994) Bio/Technology 12:181-184.)

Plant systems may also be used for expression of HRAP. Transcription of sequences encoding HRAP may be driven viral promoters, e.g., the 35S and 19S promoters of CaMV used alone or in combination with the omega leader sequence from TMV (Takamatsu, N. (1987) EMBO J. 6:307-311). Alternatively, plant promoters such as the small subunit of RUBISCO or

In mammalian cells, a number of viral-based expression systems may be utilized. In cases where an adenovirus is used as an expression vector, sequences encoding HRAP may be ligated into an adenovirus transcription/translation complex consisting of the late promoter and tripartite leader sequence. Insertion in a non-essential E1 or E3 region of the viral genome may be used to obtain infective virus which expresses HRAP in host cells. (See, e.g., Logan, J. and T. Shenk (1984) Proc. Natl. Acad. Sci. 81:3655-3659.) In addition, transcription enhancers, such as the Rous sarcoma virus (RSV) enhancer, may be used to increase expression in mammalian host cells. SV40 or EBV-based vectors may also be used for high-level protein expression.

Human artificial chromosomes (HACs) may also be employed to deliver larger fragments of DNA than can be contained in and expressed from a plasmid. HACs of about 6 kb to 10 Mb are constructed and delivered via conventional delivery methods (liposomes, polycationic amino polymers, or vesicles) for therapeutic purposes. (See, e.g., Harrington, J.J. et al. (1997) Nat Genet. 15:345-355.)

For long term production of recombinant proteins in mammalian systems, stable expression of HRAP in cell lines is preferred. For example, sequences encoding HRAP can be transformed into cell lines using expression vectors which may contain viral origins of replication and/or endogenous expression elements and a selectable marker gene on the same or on a separate vector. Following the introduction of the vector, cells may be allowed to grow for about 1 to 2 days in enriched media before being switched to selective media. The purpose of the selectable marker is to confer resistance to a selective agent, and its presence allows growth and recovery of cells which successfully express the introduced sequences. Resistant clones of stably transformed cells may be propagated using tissue culture techniques appropriate to the cell type.

Any number of selection systems may be used to recover transformed cell lines. These include, but are not limited to, the herpes simplex virus thymidine kinase and adenine phosphoribosyltransferase genes, for use in tk or apr’ cells, respectively. (See, e.g., Wigler, M. et al. (1977) Cell 11:223-232; Lowy, I. et al. (1980) Cell 22:817-823.) Also, antimetabolite, antibiotic, or herbicide resistance can be used as the basis for selection. For example, dhfr confers resistance to methotrexate; neo confers resistance to the aminoglycosides neomycin and G-418; and als or pat confer resistance to chlorsulfuron and phosphonotricin acetyltransferase.
respectively. (See, e.g., Wigler, M. et al. (1980) Proc. Natl. Acad. Sci. 77:3567-3570; Colbere-Garapin, F. et al. (1981) J. Mol. Biol. 150:1-14.) Additional selectable genes have been described, e.g., *trpB* and *hisD*, which alter cellular requirements for metabolites. (See, e.g., Hartman, S.C. and R.C. Mulligan (1988) Proc. Natl. Acad. Sci. 85:8047-8051.) Visible markers, e.g., anthocyanins, green fluorescent proteins (GFP; Clontech), ß glucuronidase and its substrate ß-glucuronide, or luciferase and its substrate luciferin may be used. These markers can be used not only to identify transformants, but also to quantify the amount of transient or stable protein expression attributable to a specific vector system. (See, e.g., Rhodes, C.A. (1995) Methods Mol. Biol. 55:121-131.)

Although the presence/absence of marker gene expression suggests that the gene of interest is also present, the presence and expression of the gene may need to be confirmed. For example, if the sequence encoding HRAP is inserted within a marker gene sequence, transformed cells containing sequences encoding HRAP can be identified by the absence of marker gene function. Alternatively, a marker gene can be placed in tandem with a sequence encoding HRAP under the control of a single promoter. Expression of the marker gene in response to induction or selection usually indicates expression of the tandem gene as well.

In general, host cells that contain the nucleic acid sequence encoding HRAP and that express HRAP may be identified by a variety of procedures known to those of skill in the art. These procedures include, but are not limited to, DNA-DNA or DNA-RNA hybridizations, PCR amplification, and protein bioassay or immunoassay techniques which include membrane, solution, or chip based technologies for the detection and/or quantification of nucleic acid or protein sequences.

Immunological methods for detecting and measuring the expression of HRAP using either specific polyclonal or monoclonal antibodies are known in the art. Examples of such techniques include enzyme-linked immunsorbent assays (ELISAs), radioimmunoassays (RIAs), and fluorescence activated cell sorting (FACS). A two-site, monoclonal-based immunoassay utilizing monoclonal antibodies reactive to two non-interfering epitopes on HRAP is preferred, but a competitive binding assay may be employed. These and other assays are well known in the art. (See, e.g., Hampton, R. et al. (1990) *Sero logical Methods, a Laboratory Manual*, APS Press, St Paul MN, Sect. IV; Coligan, J. E. et al. (1997) *Current Protocols in Immunology*, Greene Pub. Associates and Wiley-Interscience, New York NY; and Pound, J.D. (1998) *Immunchemical Protocols*, Humana Press, Totowa NJ).

A wide variety of labels and conjugation techniques are known by those skilled in the art and may be used in various nucleic acid and amino acid assays. Means for producing labeled
hybridization or PCR probes for detecting sequences related to polynucleotides encoding HRAP include oligolabeling, nick translation, end-labeling, or PCR amplification using a labeled nucleotide. Alternatively, the sequences encoding HRAP, or any fragments thereof, may be cloned into a vector for the production of an mRNA probe. Such vectors are known in the art, are commercially available, and may be used to synthesize RNA probes in vitro by addition of an appropriate RNA polymerase such as T7, T3, or SP6 and labeled nucleotides. These procedures may be conducted using a variety of commercially available kits, such as those provided by Amersham Pharmacia Biotech, Promega (Madison WI), and US Biochemical. Suitable reporter molecules or labels which may be used for ease of detection include radionuclides, enzymes, fluorescent, chemiluminescent, or chromogenic agents, as well as substrates, cofactors, inhibitors, magnetic particles, and the like.

Host cells transformed with nucleotide sequences encoding HRAP may be cultured under conditions suitable for the expression and recovery of the protein from cell culture. The protein produced by a transformed cell may be secreted or retained intracellularly depending on the sequence and/or the vector used. As will be understood by those of skill in the art, expression vectors containing polynucleotides which encode HRAP may be designed to contain signal sequences which direct secretion of HRAP through a prokaryotic or eukaryotic cell membrane.

In addition, a host cell strain may be chosen for its ability to modulate expression of the inserted sequences or to process the expressed protein in the desired fashion. Such modifications of the polypeptide include, but are not limited to, acetylation, carboxylation, glycosylation, phosphorylation, lipidation, and acylation. Post-translational processing which cleaves a “prepro” form of the protein may also be used to specify protein targeting, folding, and/or activity.

Different host cells which have specific cellular machinery and characteristic mechanisms for post-translational activities (e.g., CHO, HeLa, MDCK, HEK293, and WI38), are available from the American Type Culture Collection (ATCC, Manassas, VA) and may be chosen to ensure the correct modification and processing of the foreign protein.

In another embodiment of the invention, natural, modified, or recombinant nucleic acid sequences encoding HRAP may be ligated to a heterologous sequence resulting in translation of a fusion protein in any of the aforementioned host systems. For example, a chimeric HRAP protein containing a heterologous moiety that can be recognized by a commercially available antibody may facilitate the screening of peptide libraries for inhibitors of HRAP activity. Heterologous protein and peptide moieties may also facilitate purification of fusion proteins using commercially available affinity matrices. Such moieties include, but are not limited to, glutathione S-transferase (GST), maltose binding protein (MBP), thioredoxin (Trx), calmodulin binding peptide (CBP), 6-
His, FLAG, c-myc, and hemagglutinin (HA). GST, MBP, Trx, CBP, and 6-His enable purification of their cognate fusion proteins on immobilized glutathione, maltose, phenylarsine oxide, calmodulin, and metal-chelate resins, respectively. FLAG, c-myc, and hemagglutinin (HA) enable immunoaffinity purification of fusion proteins using commercially available monoclonal and polyclonal antibodies that specifically recognize these epitope tags. A fusion protein may also be engineered to contain a proteolytic cleavage site located between the HRAP encoding sequence and the heterologous protein sequence, so that HRAP may be cleaved away from the heterologous moiety following purification. Methods for fusion protein expression and purification are discussed in Ausubel (1995, supra, ch 10). A variety of commercially available kits may also be used to facilitate expression and purification of fusion proteins.

In a further embodiment of the invention, synthesis of radiolabeled HRAP may be achieved in vitro using the TNT rabbit reticulocyte lysate or wheat germ extract systems (Promega). These systems couple transcription and translation of protein-coding sequences operably associated with the T7, T3, or SP6 promoters. Translation takes place in the presence of a radiolabeled amino acid precursor, preferably 35S-methionine.

Fragments of HRAP may be produced not only by recombinant production, but also by direct peptide synthesis using solid-phase techniques. (See, e.g., Creighton, supra, pp. 55-60.) Protein synthesis may be performed by manual techniques or by automation. Automated synthesis may be achieved, for example, using the ABI 431A Peptide Synthesizer (Perkin-Elmer). Various fragments of HRAP may be synthesized separately and then combined to produce the full length molecule.

THERAPEUTICS

Chemical and structural similarity, e.g., in the context of sequences and motifs, exists between regions of HRAP and human receptor-associated proteins. In addition, the expression of HRAP is closely associated with cell proliferative disorders, such as cancer, and with inflammation and the immune response. HRAP are expressed in libraries from cancerous tissues, hematopoietic tissues, reproductive tissues, cardiovascular tissues, and gastrointestinal tissues (Table 3). Therefore, HRAP appears to play a role in cell proliferative, autoimmune/inflammatory, reproductive, cardiovascular, and gastrointestinal disorders.

Therefore, in the treatment of disorders associated with increased expression or activity of HRAP, it is desirable to decrease the expression or activity of HRAP. In the treatment of disorders associated with decreased expression or activity of HRAP, it is desirable to provide the protein or to increase the expression of HRAP.

Therefore, in one embodiment, HRAP or a fragment or derivative thereof may be
administered to a subject to treat or prevent a disorder associated with decreased expression or activity of HRAP. Examples of such disorders include, but are not limited to, a cell proliferative disorder such as actinic keratosis, atherosclerosis, bursitis, cirrhosis, hepatitis, mixed connective tissue disease (MCTD), myelofibrosis, paroxysmal nocturnal hemoglobinuria, polycythemia vera, psoriasis, primary thrombocytopenia, and cancers including adenocarcinoma, leukemia, lymphoma, melanoma, myeloma, sarcoma, teratocarcinoma, and, in particular, a cancer of the adrenal gland, bladder, bone, bone marrow, brain, breast, cervix, gall bladder, ganglia, gastrointestinal tract, heart, kidney, liver, lung, muscle, ovary, pancreas, parathyroid, penis, prostate, salivary glands, skin, spleen, testis, thymus, thyroid, and uterus; and an autoimmune/inflammatory disorder such as actinic keratosis, acquired immunodeficiency syndrome (AIDS), Addison’s disease, adult respiratory distress syndrome, allergies, ankylosing spondylitis, amyloidosis, anemia, arteriosclerosis, asthma, atherosclerosis, autoimmune hemolytic anemia, autoimmune thyroiditis, bronchitis, bursitis, cholecystitis, cirrhosis, contact dermatitis, Crohn's disease, atopic dermatitis, dermatomyositis, diabetes mellitus, emphysema, erythroblastosis fetalis, erythema nodosum, atrophic gastritis, glomerulonephritis, Goodpasture’s syndrome, gout, Graves’ disease, Hashimoto’s thyroiditis, paroxysmal nocturnal hemoglobinuria, hepatitis, hypereosinophilia, irritable bowel syndrome, episodic lymphopenia with lymphocytotoxins, mixed connective tissue disease (MCTD), multiple sclerosis, myasthenia gravis, myocardial or pericardial inflammation, myelofibrosis, osteoarthritis, osteoporosis, pancreatitis, polycythemia vera, polymyositis, psoriasis, Reiter’s syndrome, rheumatoid arthritis, scleroderma, Sjögren’s syndrome, systemic anaphylaxis, systemic lupus erythematosus, systemic sclerosis, primary thrombocytopenia, thrombocytopenic purpura, ulcerative colitis, uveitis, Werner syndrome, complications of cancer, hemodialysis, and extracorporeal circulation, viral, bacterial, fungal, parasitic, protozoal, and helminthic infections, and trauma.

In another embodiment, a vector capable of expressing HRAP or a fragment or derivative thereof may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of HRAP including, but not limited to, those described above.

In a further embodiment, a pharmaceutical composition comprising a substantially purified HRAP in conjunction with a suitable pharmaceutical carrier may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of HRAP including, but not limited to, those provided above.

In still another embodiment, an agonist which modulates the activity of HRAP may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of HRAP including, but not limited to, those listed above.
In a further embodiment, an antagonist of HRAP may be administered to a subject to treat or prevent a disorder associated with increased expression or activity of HRAP. Examples of such disorders include, but are not limited to, a cell proliferative disorder such as actinic keratosis, atherosclerosis, bursitis, cirrhosis, hepatitis, mixed connective tissue disease (MCTD), myelofibrosis, paroxysmal nocturnal hemoglobinuria, polycythemia vera, psoriasis, primary thrombocythemia, and cancers including adenocarcinoma, leukemia, lymphoma, melanoma, myeloma, sarcoma, teratocarcinoma, and, in particular, a cancer of the adrenal gland, bladder, bone, bone marrow, brain, breast, cervix, gall bladder, ganglia, gastrointestinal tract, heart, kidney, liver, lung, muscle, ovary, pancreas, parathyroid, penis, prostate, salivary glands, skin, spleen, testis, thymus, thyroid, and uterus; an autoimmune/inflammatory disorder such as actinic keratosis, acquired immunodeficiency syndrome (AIDS), Addison’s disease, adult respiratory distress syndrome, allergies, ankylosing spondylitis, amyloidosis, anemia, arteriosclerosis, asthma, atherosclerosis, autoimmune hemolytic anemia, autoimmune thyroiditis, bronchitis, bursitis, cholecystitis, cirrhosis, contact dermatitis, Crohn's disease, atopic dermatitis, dermatomyositis, diabetes mellitus, emphysema, erythroblastosis fetalis, erythema nodosum, atrophic gastritis, glomerulonephritis, Goodpasture’s syndrome, gout, Graves’ disease, Hashimoto’s thyroiditis, paroxysmal nocturnal hemoglobinuria, hepatitis, hyperesinophilia, irritable bowel syndrome, episodic lymphopenia with lymphocytotoxins, mixed connective tissue disease (MCTD), multiple sclerosis, myocardia or myocardial or pericardial inflammation, myelofibrosis, osteoarthritis, osteoporosis, pancreatitis, polycythemia vera, polymyositis, psoriasis, Reiter’s syndrome, rheumatoid arthritis, scleroderma, Sjögren’s syndrome, systemic anaphylaxis, systemic lupus erythematosus, systemic sclerosis, primary thrombocythemia, thrombocytopenic purpura, ulcerative colitis, uveitis, Werner syndrome, complications of cancer, hemodialysis, and extracorporeal circulation, viral, bacterial, fungal, parasitic, protozoal, and helminthic infections, and trauma; a reproductive disorder such as a disorder of prolactin production, infertility, including tubal disease, ovulatory defects, and endometriosis, a disruption of the estrous cycle, a disruption of the menstrual cycle, polycystic ovary syndrome, ovarian hyperstimulation syndrome, an endometrial or ovarian tumor, a uterine fibroid, an autoimmune disorder, an ectopic pregnancy, and teratogenesis, cancer of the breast, fibrocystic breast disease, and galactorrhea, a disruption of spermatogenesis, abnormal sperm physiology, cancer of the testis, cancer of the prostate, benign prostatic hyperplasia, prostatitis, Peyronie’s disease, carcinoma of the male breast, and gynecomastia; a cardiovascular disorder such as arteriovenous fistula, atherosclerosis, hypertension, vasculitis, Raynaud's disease, aneurysms, arterial dissections, varicose veins, thrombophlebitis and phlebothrombosis, and vascular tumors, congestive heart failure, ischemic
heart disease, angina pectoris, myocardial infarction, hypertensive heart disease, degenerative valvular heart disease, calcific aortic valve stenosis, congenitally bicuspid aortic valve, mitral annular calcification, mitral valve prolapse, rheumatic fever and rheumatic heart disease, infective endocarditis, nonbacterial thrombotic endocarditis, endocarditis of systemic lupus erythematosus, carcinoid heart disease, cardiomyopathy, myocarditis, pericarditis, neoplastic heart disease, and congenital heart disease; and a gastrointestinal disorder such as dysphagia, peptic esophagitis, esophageal spasm, esophageal stricture, esophageal carcinoma, dyspepsia, indigestion, gastritis, gastric carcinoma, anorexia, nausea, emesis, gastroparesis, antral or pyloric edema, abdominal angina, pyrosis, gastroenteritis, intestinal obstruction, an infection of the intestinal tract, peptic ulcer, cholelithiasis, cholecystitis, cholestasis, pancreatitis, pancreatic carcinoma, biliary tract disease, hepatitis, hyperbilirubinemia, cirrhosis, passive congestion of the liver, hepatoma, infectious colitis, ulcerative colitis, ulcerative proctitis, Crohn's disease, Whipple's disease, Mallory-Weiss syndrome, colonic carcinoma, colonic obstruction, irritable bowel syndrome, short bowel syndrome, diarrhea, constipation, gastrointestinal hemorrhage, and acquired immunodeficiency syndrome (AIDS) enteropathy. In one aspect, an antibody which specifically binds HRAP may be used directly as an antagonist or indirectly as a targeting or delivery mechanism for bringing a pharmaceutical agent to cells or tissue which express HRAP.

In an additional embodiment, a vector expressing the complement of the polynucleotide encoding HRAP may be administered to a subject to treat or prevent a disorder associated with increased expression or activity of HRAP including, but not limited to, those described above.

In other embodiments, any of the proteins, antagonists, antibodies, agonists, complementary sequences, or vectors of the invention may be administered in combination with other appropriate therapeutic agents. Selection of the appropriate agents for use in combination therapy may be made by one of ordinary skill in the art, according to conventional pharmaceutical principles. The combination of therapeutic agents may act synergistically to effect the treatment or prevention of the various disorders described above. Using this approach, one may be able to achieve therapeutic efficacy with lower dosages of each agent, thus reducing the potential for adverse side effects.

An antagonist of HRAP may be produced using methods which are generally known in the art. In particular, purified HRAP may be used to produce antibodies or to screen libraries of pharmaceutical agents to identify those which specifically bind HRAP. Antibodies to HRAP may also be generated using methods that are well known in the art. Such antibodies may include, but are not limited to, polyclonal, monoclonal, chimeric, and single chain antibodies, Fab fragments, and fragments produced by a Fab expression library. Neutralizing antibodies (i.e., those which
inhibit dimer formation) are especially preferred for therapeutic use.

For the production of antibodies, various hosts including goats, rabbits, rats, mice, humans, and others may be immunized by injection with HRAP or with any fragment or oligopeptide thereof which has immunogenic properties. Depending on the host species, various adjuvants may be used to increase immunological response. Such adjuvants include, but are not limited to, Freund's, mineral gels such as aluminum hydroxide, and surface active substances such as lysolecithin, pluronic polyols, polyanions, peptides, oil emulsions, KLH, and dinitrophenol. Among adjuvants used in humans, BCG (bacilli Calmette-Guerin) and Corynebacterium parvum are especially preferable.

It is preferred that the oligopeptides, peptides, or fragments used to induce antibodies to HRAP have an amino acid sequence consisting of at least about 5 amino acids, and, more preferably, of at least about 10 amino acids. It is also preferable that these oligopeptides, peptides, or fragments are identical to a portion of the amino acid sequence of the natural protein and contain the entire amino acid sequence of a small, naturally occurring molecule. Short stretches of HRAP amino acids may be fused with those of another protein, such as KLH, and antibodies to the chimeric molecule may be produced.

Antibodies may also be produced by inducing in vivo production in the lymphocyte population or by screening immunoglobulin libraries or panels of highly specific binding reagents as disclosed in the literature. (See, e.g., Orlandi, R. et al. (1989) Proc. Natl. Acad. Sci. 86:
Antibody fragments which contain specific binding sites for HRAP may also be generated. For example, such fragments include, but are not limited to, F(ab')2 fragments produced by pepsin digestion of the antibody molecule and Fab fragments generated by reducing the disulfide bridges of the F(ab')2 fragments. Alternatively, Fab expression libraries may be constructed to allow rapid and easy identification of monoclonal Fab fragments with the desired specificity. (See, e.g., Huse, W.D. et al. (1989) Science 246:1275-1281.)

Various immunoassays may be used for screening to identify antibodies having the desired specificity. Numerous protocols for competitive binding or immunoradiometric assays using either polyclonal or monoclonal antibodies with established specificities are well known in the art. Such immunoassays typically involve the measurement of complex formation between HRAP and its specific antibody. A two-site, monoclonal-based immunoassay utilizing monoclonal antibodies reactive to two non-interfering HRAP epitopes is preferred, but a competitive binding assay may also be employed (Pound, supra).

Various methods such as Scatchard analysis in conjunction with radioimmunoassay techniques may be used to assess the affinity of antibodies for HRAP. Affinity is expressed as an association constant, \(K_a \), which is defined as the molar concentration of HRAP-antibody complex divided by the molar concentrations of free antigen and free antibody under equilibrium conditions. The \(K_a \) determined for a preparation of polyclonal antibodies, which are heterogeneous in their affinities for multiple HRAP epitopes, represents the average affinity, or avidity, of the antibodies for HRAP. The \(K_a \) determined for a preparation of monoclonal antibodies, which are monospecific for a particular HRAP epitope, represents a true measure of affinity. High-affinity antibody preparations with \(K_a \) ranging from about \(10^9 \) to \(10^{12} \) L/mole are preferred for use in immunoassays in which the HRAP-antibody complex must withstand rigorous manipulations. Low-affinity antibody preparations with \(K_a \) ranging from about \(10^4 \) to \(10^7 \) L/mole are preferred for use in immunoaffinity and similar procedures which ultimately require dissociation of HRAP, preferably in active form, from the antibody. (Catty, D. (1988) Antibodies. Volume I: A Practical Approach, IRL Press, Washington, DC; Liddell, J. E. and Cryer, A. (1991) A Practical Guide to Monoclonal Antibodies, John Wiley & Sons, New York NY).

The titer and avidity of polyclonal antibody preparations may be further evaluated to determine the quality and suitability of such preparations for certain downstream applications. For example, a polyclonal antibody preparation containing at least 1-2 mg specific antibody/ml, preferably 5-10 mg specific antibody/ml, is preferred for use in procedures requiring precipitation of HRAP-antibody complexes. Procedures for evaluating antibody specificity, titer, and avidity,
and guidelines for antibody quality and usage in various applications, are generally available. (See, e.g., Catty, supra, and Coligan et al. supra.)

In another embodiment of the invention, the polynucleotides encoding HRAP, or any fragment or complement thereof, may be used for therapeutic purposes. In one aspect, the complement of the polynucleotide encoding HRAP may be used in situations in which it would be desirable to block the transcription of the mRNA. In particular, cells may be transformed with sequences complementary to polynucleotides encoding HRAP. Thus, complementary molecules or fragments may be used to modulate HRAP activity, or to achieve regulation of gene function. Such technology is now well known in the art, and sense or antisense oligonucleotides or larger fragments can be designed from various locations along the coding or control regions of sequences encoding HRAP.

Expression vectors derived from retroviruses, adenoviruses, or herpes or vaccinia viruses, or from various bacterial plasmids, may be used for delivery of nucleotide sequences to the targeted organ, tissue, or cell population. Methods which are well known to those skilled in the art can be used to construct vectors to express nucleic acid sequences complementary to the polynucleotides encoding HRAP. (See, e.g., Sambrook, supra; Ausubel, 1995, supra.)

Genes encoding HRAP can be turned off by transforming a cell or tissue with expression vectors which express high levels of a polynucleotide, or fragment thereof, encoding HRAP. Such constructs may be used to introduce untranslatable sense or antisense sequences into a cell. Even in the absence of integration into the DNA, such vectors may continue to transcribe RNA molecules until they are disabled by endogenous nucleases. Transient expression may last for a month or more with a non-replicating vector, and may last even longer if appropriate replication elements are part of the vector system.

As mentioned above, modifications of gene expression can be obtained by designing complementary sequences or antisense molecules (DNA, RNA, or PNA) to the control, 5', or regulatory regions of the gene encoding HRAP. Oligonucleotides derived from the transcription initiation site, e.g., between about positions -10 and +10 from the start site, are preferred. Similarly, inhibition can be achieved using triple helix base-pairing methodology. Triple helix pairing is useful because it causes inhibition of the ability of the double helix to open sufficiently for the binding of polymerases, transcription factors, or regulatory molecules. Recent therapeutic advances using triplex DNA have been described in the literature. (See, e.g., Gee, J.E. et al. (1994) in Huber, B.E. and B.I. Carr, Molecular and Immunologic Approaches, Futura Publishing, Mt. Kisco NY, pp. 163-177.) A complementary sequence or antisense molecule may also be designed to block translation of mRNA by preventing the transcript from binding to ribosomes.
Ribozymes, enzymatic RNA molecules, may also be used to catalyze the specific cleavage of RNA. The mechanism of ribozyme action involves sequence-specific hybridization of the ribozyme molecule to complementary target RNA, followed by endonucleolytic cleavage. For example, engineered hammerhead motif ribozyme molecules may specifically and efficiently catalyze endonucleolytic cleavage of sequences encoding HRAP.

Specific ribozyme cleavage sites within any potential RNA target are initially identified by scanning the target molecule for ribozyme cleavage sites, including the following sequences: GUA, GUU, and GUC. Once identified, short RNA sequences of between 15 and 20 ribonucleotides, corresponding to the region of the target gene containing the cleavage site, may be evaluated for secondary structural features which may render the oligonucleotide inoperable. The suitability of candidate targets may also be evaluated by testing accessibility to hybridization with complementary oligonucleotides using ribonuclease protection assays.

Complementary ribonucleic acid molecules and ribozymes of the invention may be prepared by any method known in the art for the synthesis of nucleic acid molecules. These include techniques for chemically synthesizing oligonucleotides such as solid phase phosphoramidite chemical synthesis. Alternatively, RNA molecules may be generated by in vitro and in vivo transcription of DNA sequences encoding HRAP. Such DNA sequences may be incorporated into a wide variety of vectors with suitable RNA polymerase promoters such as T7 or SP6. Alternatively, these cDNA constructs that synthesize complementary RNA, constitutively or inducibly, can be introduced into cell lines, cells, or tissues.

RNA molecules may be modified to increase intracellular stability and half-life. Possible modifications include, but are not limited to, the addition of flanking sequences at the 5' and/or 3' ends of the molecule, or the use of phosphorothioate or 2'-O-methyl rather than phosphodiesterase linkages within the backbone of the molecule. This concept is inherent in the production of PNAs and can be extended in all of these molecules by the inclusion of nontraditional bases such as inosine, queosine, and wybutosine, as well as acetyl-, methyl-, thio-, and similarly modified forms of adenine, cytidine, guanine, thymine, and uridine which are not as easily recognized by endogenous endonucleases.

Many methods for introducing vectors into cells or tissues are available and equally suitable for use in vivo, in vitro, and ex vivo. For ex vivo therapy, vectors may be introduced into stem cells taken from the patient and clonally propagated for autologous transplant back into that same patient. Delivery by transfection, by liposome injections, or by polycationic amino polymers may be achieved using methods which are well known in the art. (See, e.g., Goldman, C.K. et al. (1997) Nature Biotechnology 15:462-466.)
Any of the therapeutic methods described above may be applied to any subject in need of such therapy, including, for example, mammals such as dogs, cats, cows, horses, rabbits, monkeys, and most preferably, humans.

An additional embodiment of the invention relates to the administration of a pharmaceutical or sterile composition, in conjunction with a pharmaceutically acceptable carrier, for any of the therapeutic effects discussed above. Such pharmaceutical compositions may consist of HRAP, antibodies to HRAP, and mimetics, agonists, antagonists, or inhibitors of HRAP. The compositions may be administered alone or in combination with at least one other agent, such as a stabilizing compound, which may be administered in any sterile, biocompatible pharmaceutical carrier including, but not limited to, saline, buffered saline, dextrose, and water. The compositions may be administered to a patient alone, or in combination with other agents, drugs, or hormones.

The pharmaceutical compositions utilized in this invention may be administered by any number of routes including, but not limited to, oral, intravenous, intramuscular, intra-arterial, intramedullary, intrathecal, intraventricular, transdermal, subcutaneous, intraperitoneal, intranasal, enteral, topical, sublingual, or rectal means.

In addition to the active ingredients, these pharmaceutical compositions may contain suitable pharmaceutically-acceptable carriers comprising excipients and auxiliaries which facilitate processing of the active compounds into preparations which can be used pharmaceutically. Further details on techniques for formulation and administration may be found in the latest edition of Remington’s Pharmaceutical Sciences (Maack Publishing, Easton PA).

Pharmaceutical compositions for oral administration can be formulated using pharmaceutically acceptable carriers well known in the art in dosages suitable for oral administration. Such carriers enable the pharmaceutical compositions to be formulated as tablets, pills, dragees, capsules, liquids, gels, syrups, slurries, suspensions, and the like, for ingestion by the patient.

Pharmaceutical preparations for oral use can be obtained through combining active compounds with solid excipient and processing the resultant mixture of granules (optionally, after grinding) to obtain tablets or dragee cores. Suitable auxiliaries can be added, if desired. Suitable excipients include carbohydrate or protein fillers, such as sugars, including lactose, sucrose, mannitol, and sorbitol; starch from corn, wheat, rice, potato, or other plants; cellulose, such as methyl cellulose, hydroxypropylmethyl-cellulose, or sodium carboxymethylcellulose; gums, including arabic and tragacanth; and proteins, such as gelatin and collagen. If desired, disintegrating or solubilizing agents may be added, such as the cross-linked polyvinyl pyrrolidone, agar, and alginic acid or a salt thereof, such as sodium alginate.
Dragee cores may be used in conjunction with suitable coatings, such as concentrated sugar solutions, which may also contain gum arabic, talc, polyvinylpyrrolidone, carbopol gel, polyethylene glycol, and/or titanium dioxide, lacquer solutions, and suitable organic solvents or solvent mixtures. Dyestuffs or pigments may be added to the tablets or dragee coatings for product identification or to characterize the quantity of active compound, i.e., dosage.

Pharmaceutical preparations which can be used orally include push-fit capsules made of gelatin, as well as soft, sealed capsules made of gelatin and a coating, such as glycerol or sorbitol. Push-fit capsules can contain active ingredients mixed with fillers or binders, such as lactose or starches, lubricants, such as talc or magnesium stearate, and, optionally, stabilizers. In soft capsules, the active compounds may be dissolved or suspended in suitable liquids, such as fatty oils, liquid, or liquid polyethylene glycol with or without stabilizers.

Pharmaceutical formulations suitable for parenteral administration may be formulated in aqueous solutions, preferably in physiologically compatible buffers such as Hanks' solution, Ringer's solution, or physiologically buffered saline. Aqueous injection suspensions may contain substances which increase the viscosity of the suspension, such as sodium carboxymethyl cellulose, sorbitol, or dextran. Additionally, suspensions of the active compounds may be prepared as appropriate oily injection suspensions. Suitable lipophilic solvents or vehicles include fatty oils, such as sesame oil, or synthetic fatty acid esters, such as ethyl oleate, triglycerides, or liposomes. Non-lipid polycationic amino polymers may also be used for delivery. Optionally, the suspension may also contain suitable stabilizers or agents to increase the solubility of the compounds and allow for the preparation of highly concentrated solutions.

For topical or nasal administration, penetrants appropriate to the particular barrier to be permeated are used in the formulation. Such penetrants are generally known in the art.

The pharmaceutical compositions of the present invention may be manufactured in a manner that is known in the art, e.g., by means of conventional mixing, dissolving, granulating, dragee-making, levigating, emulsifying, encapsulating, entrapping, or lyophilizing processes.

The pharmaceutical composition may be provided as a salt and can be formed with many acids, including but not limited to, hydrochloric, sulfuric, acetic, lactic, tartaric, malic, and succinic acid. Salts tend to be more soluble in aqueous or other protonic solvents than are the corresponding free base forms. In other cases, the preferred preparation may be a lyophilized powder which may contain any or all of the following: 1 mM to 50 mM histidine, 0.1% to 2% sucrose, and 2% to 7% mannitol, at a pH range of 4.5 to 5.5, that is combined with buffer prior to use.

After pharmaceutical compositions have been prepared, they can be placed in an
appropriate container and labeled for treatment of an indicated condition. For administration of HRAP, such labeling would include amount, frequency, and method of administration.

Pharmaceutical compositions suitable for use in the invention include compositions wherein the active ingredients are contained in an effective amount to achieve the intended purpose. The determination of an effective dose is well within the capability of those skilled in the art.

For any compound, the therapeutically effective dose can be estimated initially either in cell culture assays, e.g., of neoplastic cells or in animal models such as mice, rats, rabbits, dogs, or pigs. An animal model may also be used to determine the appropriate concentration range and route of administration. Such information can then be used to determine useful doses and routes for administration in humans.

A therapeutically effective dose refers to that amount of active ingredient, for example HRAP or fragments thereof, antibodies of HRAP, and agonists, antagonists or inhibitors of HRAP, which ameliorates the symptoms or condition. Therapeutic efficacy and toxicity may be determined by standard pharmaceutical procedures in cell cultures or with experimental animals, such as by calculating the ED$_{50}$ (the dose therapeutically effective in 50% of the population) or LD$_{50}$ (the dose lethal to 50% of the population) statistics. The dose ratio of therapeutic to toxic effects is the therapeutic index, and it can be expressed as the ED$_{50}$/LD$_{50}$ ratio. Pharmaceutical compositions which exhibit large therapeutic indices are preferred. The data obtained from cell culture assays and animal studies are used to formulate a range of dosage for human use. The dosage contained in such compositions is preferably within a range of circulating concentrations that includes the ED$_{50}$ with little or no toxicity. The dosage varies within this range depending upon the dosage form employed, the sensitivity of the patient, and the route of administration.

The exact dosage will be determined by the practitioner, in light of factors related to the subject requiring treatment. Dosage and administration are adjusted to provide sufficient levels of the active moiety or to maintain the desired effect. Factors which may be taken into account include the severity of the disease state, the general health of the subject, the age, weight, and gender of the subject, time and frequency of administration, drug combination(s), reaction sensitivities, and response to therapy. Long-acting pharmaceutical compositions may be administered every 3 to 4 days, every week, or biweekly depending on the half-life and clearance rate of the particular formulation.

Normal dosage amounts may vary from about 0.1 μg to 100,000 μg, up to a total dose of about 1 gram, depending upon the route of administration. Guidance as to particular dosages and methods of delivery is provided in the literature and generally available to practitioners in the art.
Those skilled in the art will employ different formulations for nucleotides than for proteins or their inhibitors. Similarly, delivery of polynucleotides or polypeptides will be specific to particular cells, conditions, locations, etc.

DIAGNOSTICS

In another embodiment, antibodies which specifically bind HRAP may be used for the diagnosis of disorders characterized by expression of HRAP, or in assays to monitor patients being treated with HRAP or agonists, antagonists, or inhibitors of HRAP. Antibodies useful for diagnostic purposes may be prepared in the same manner as described above for therapeutics. Diagnostic assays for HRAP include methods which utilize the antibody and a label to detect HRAP in human body fluids or in extracts of cells or tissues. The antibodies may be used with or without modification, and may be labeled by covalent or non-covalent attachment of a reporter molecule. A wide variety of reporter molecules, several of which are described above, are known in the art and may be used.

A variety of protocols for measuring HRAP, including ELISAs, RIAs, and FACS, are known in the art and provide a basis for diagnosing altered or abnormal levels of HRAP expression. Normal or standard values for HRAP expression are established by combining body fluids or cell extracts taken from normal mammalian subjects, preferably human, with antibody to HRAP under conditions suitable for complex formation. The amount of standard complex formation may be quantitated by various methods, preferably by photometric means. Quantities of HRAP expressed in subject, control, and disease samples from biopsied tissues are compared with the standard values. Deviation between standard and subject values establishes the parameters for diagnosing disease.

In another embodiment of the invention, the polynucleotides encoding HRAP may be used for diagnostic purposes. The polynucleotides which may be used include oligonucleotide sequences, complementary RNA and DNA molecules, and PNAs. The polynucleotides may be used to detect and quantitate gene expression in biopsied tissues in which expression of HRAP may be correlated with disease. The diagnostic assay may be used to determine absence, presence, and excess expression of HRAP, and to monitor regulation of HRAP levels during therapeutic intervention.

In one aspect, hybridization with PCR probes which are capable of detecting polynucleotide sequences, including genomic sequences, encoding HRAP or closely related molecules may be used to identify nucleic acid sequences which encode HRAP. The specificity of the probe, whether it is made from a highly specific region, e.g., the 5' regulatory region, or from a less specific region, e.g., a conserved motif, and the stringency of the hybridization or
amplification (maximal, high, intermediate, or low), will determine whether the probe identifies only naturally occurring sequences encoding HRAP, allelic variants, or related sequences.

Probes may also be used for the detection of related sequences, and should preferably have at least 50% sequence identity to any of the HRAP encoding sequences. The hybridization probes of the subject invention may be DNA or RNA and may be derived from the sequence of SEQ ID NO:17-32 or from genomic sequences including promoters, enhancers, and introns of the HRAP gene.

Means for producing specific hybridization probes for DNAs encoding HRAP include the cloning of polynucleotide sequences encoding HRAP or HRAP derivatives into vectors for the production of mRNA probes. Such vectors are known in the art, are commercially available, and may be used to synthesize RNA probes in vitro by means of the addition of the appropriate RNA polymerases and the appropriate labeled nucleotides. Hybridization probes may be labeled by a variety of reporter groups, for example, by radionuclides such as 32P or 35S, or by enzymatic labels, such as alkaline phosphatase coupled to the probe via avidin/biotin coupling systems, and the like.

Polynucleotide sequences encoding HRAP may be used for the diagnosis of disorders associated with expression of HRAP. Examples of such disorders include, but are not limited to, a cell proliferative disorder such as actinic keratosis, atherosclerosis, bursitis, cirrhosis, hepatitis, mixed connective tissue disease (MCTD), myelofibrosis, paroxysmal nocturnal hemoglobinuria, polycythemia vera, psoriasis, primary thrombocytopenia, and cancers including adenocarcinoma, leukemia, lymphoma, melanoma, myeloma, sarcoma, teratocarcinoma, and, in particular, a cancer of the adrenal gland, bladder, bone, bone marrow, brain, breast, cervix, gall bladder, ganglia, gastrointestinal tract, heart, kidney, liver, lung, muscle, ovary, pancreas, parathyroid, penis, prostate, salivary glands, skin, spleen, testis, thymus, thyroid, and uterus; an autoimmune/inflammatory disorder such as actinic keratosis, acquired immunodeficiency syndrome (AIDS), Addison’s disease, adult respiratory distress syndrome, allergies, ankylosing spondylitis, amyloidosis, anemia, arteriosclerosis, asthma, atherosclerosis, autoimmune hemolytic anemia, autoimmune thyroiditis, bronchitis, bursitis, cholecystitis, cirrhosis, contact dermatitis, Crohn’s disease, atopic dermatitis, dermatomyositis, diabetes mellitus, emphysema, erythroblastosis fotalis, erythema nodosum, atrophic gastritis, glomerulonephritis, Goodpasture’s syndrome, gout, Graves’ disease, Hashimoto’s thyroiditis, paroxysmal nocturnal hemoglobinuria, hepatitis, hypeerosinophilia, irritable bowel syndrome, episodic lymphopenia with lymphocytotoxins, mixed connective tissue disease (MCTD), multiple sclerosis, myasthenia gravis, myocardial or pericardial inflammation, myelofibrosis, osteoarthritis, osteoporosis, pancreatitis, polycythemia vera, polymyositis, psoriasis, Reiter’s syndrome, rheumatoid arthritis,
scleroderma, Sjögren’s syndrome, systemic anaphylaxis, systemic lupus erythematosus, systemic sclerosis, primary thrombocythemia, thrombocytopenic purpura, ulcerative colitis, uveitis, Werner syndrome, complications of cancer, hemodialysis, and extracorporeal circulation, viral, bacterial, fungal, parasitic, protozoal, and helminthic infections, and trauma; a reproductive disorder such as a disorder of prolactin production, infertility, including tubal disease, ovulatory defects, and endometriosis, a disruption of the estrous cycle, a disruption of the menstrual cycle, polycystic ovary syndrome, ovarian hyperstimulation syndrome, an endometrial or ovarian tumor, a uterine fibroid, an autoimmune disorder, an ectopic pregnancy, and teratogenesis, cancer of the breast, fibrocystic breast disease, and galactorrhea, a disruption of spermatogenesis, abnormal sperm physiology, cancer of the testis, cancer of the prostate, benign prostatic hyperplasia, prostatitis, Peyronie’s disease, carcinoma of the male breast, and gynecomastia; a cardiovascular disorder such as arteriovenous fistula, atherosclerosis, hypertension, vasculitis, Raynaud’s disease, aneurysms, arterial dissections, varicose veins, thrombophlebitis and phlebothrombosis, and vascular tumors, congestive heart failure, ischemic heart disease, angina pectoris, myocardial infarction, hypertensive heart disease, degenerative valvular heart disease, calcific aortic valve stenosis, congenitally bicuspid aortic valve, mitral annular calcification, mitral valve prolapse, rheumatic fever and rheumatic heart disease, infective endocarditis, nonbacterial thrombotic endocarditis, endocarditis of systemic lupus erythematosus, carcinoid heart disease, cardiomyopathy, myocarditis, pericarditis, neoplastic heart disease, and congenital heart disease; and a gastrointestinal disorder such as dysphagia, peptic esophagitis, esophageal spasm, esophageal stricture, esophageal carcinoma, dyspepsia, indigestion, gastritis, gastric carcinoma, anorexia, nausea, emesis, gastroparesis, antral or pyloric edema, abdominal angina, pyrosis, gastroenteritis, intestinal obstruction, an infection of the intestinal tract, peptic ulcer, choledolithiasis, cholecystitis, cholestasis, pancreatitis, pancreatic carcinoma, biliary tract disease, hepatitis, hyperbilirubinemia, cirrhosis, passive congestion of the liver, hepatoma, infectious colitis, ulcerative colitis, ulcerative proctitis, Crohn’s disease, Whipple’s disease, Mallory-Weiss syndrome, colonic carcinoma, colonic obstruction, irritable bowel syndrome, short bowel syndrome, diarrhea, constipation, gastrointestinal hemorrhage, and acquired immunodeficiency syndrome (AIDS) enteropathy. The polynucleotide sequences encoding HRAP may be used in Southern or northern analysis, dot blot, or other membrane-based technologies; in PCR technologies; in dipstick, pin, and ELISA assays; and in microarrays utilizing fluids or tissues from patients to detect altered HRAP expression. Such qualitative or quantitative methods are well known in the art.

In a particular aspect, the nucleotide sequences encoding HRAP may be useful in assays
that detect the presence of associated disorders, particularly those mentioned above. The nucleotide sequences encoding HRAP may be labeled by standard methods and added to a fluid or tissue sample from a patient under conditions suitable for the formation of hybridization complexes. After a suitable incubation period, the sample is washed and the signal is quantitated and compared with a standard value. If the amount of signal in the patient sample is significantly altered in comparison to a control sample then the presence of altered levels of nucleotide sequences encoding HRAP in the sample indicates the presence of the associated disorder. Such assays may also be used to evaluate the efficacy of a particular therapeutic treatment regimen in animal studies, in clinical trials, or to monitor the treatment of an individual patient.

In order to provide a basis for the diagnosis of a disorder associated with expression of HRAP, a normal or standard profile for expression is established. This may be accomplished by combining body fluids or cell extracts taken from normal subjects, either animal or human, with a sequence, or a fragment thereof, encoding HRAP, under conditions suitable for hybridization or amplification. Standard hybridization may be quantified by comparing the values obtained from normal subjects with values from an experiment in which a known amount of a substantially purified polynucleotide is used. Standard values obtained in this manner may be compared with values obtained from samples from patients who are symptomatic for a disorder. Deviation from standard values is used to establish the presence of a disorder.

Once the presence of a disorder is established and a treatment protocol is initiated, hybridization assays may be repeated on a regular basis to determine if the level of expression in the patient begins to approximate that which is observed in the normal subject. The results obtained from successive assays may be used to show the efficacy of treatment over a period ranging from several days to months.

With respect to cancer, the presence of an abnormal amount of transcript (either under- or overexpressed) in biopsied tissue from an individual may indicate a predisposition for the development of the disease, or may provide a means for detecting the disease prior to the appearance of actual clinical symptoms. A more definitive diagnosis of this type may allow health professionals to employ preventative measures or aggressive treatment earlier thereby preventing the development or further progression of the cancer.

Additional diagnostic uses for oligonucleotides designed from the sequences encoding HRAP may involve the use of PCR. These oligomers may be chemically synthesized, generated enzymatically, or produced in vitro. Oligomers will preferably contain a fragment of a polynucleotide encoding HRAP, or a fragment of a polynucleotide complementary to the polynucleotide encoding HRAP, and will be employed under optimized conditions for
identification of a specific gene or condition. Oligomers may also be employed under less stringent conditions for detection or quantitation of closely related DNA or RNA sequences.

Methods which may also be used to quantitate the expression of HRAP include radiolabeling or biotinylating nucleotides, coamplification of a control nucleic acid, and interpolating results from standard curves. (See, e.g., Melby, P.C. et al. (1993) J. Immunol. Methods 159:235-244; Duplaa, C. et al. (1993) Anal. Biochem. 229-236.) The speed of quantitation of multiple samples may be accelerated by running the assay in an ELISA format where the oligomer of interest is presented in various dilutions and a spectrophotometric or colorimetric response gives rapid quantitation.

In further embodiments, oligonucleotides or longer fragments derived from any of the polynucleotide sequences described herein may be used as targets in a microarray. The microarray can be used to monitor the expression level of large numbers of genes simultaneously and to identify genetic variants, mutations, and polymorphisms. This information may be used to determine gene function, to understand the genetic basis of a disorder, to diagnose a disorder, and to develop and monitor the activities of therapeutic agents.

In another embodiment of the invention, nucleic acid sequences encoding HRAP may be used to generate hybridization probes useful in mapping the naturally occurring genomic sequence. The sequences may be mapped to a particular chromosome, to a specific region of a chromosome, or to artificial chromosome constructions, e.g., human artificial chromosomes (HACs), yeast artificial chromosomes (YACs), bacterial artificial chromosomes (BACs), bacterial P1 constructions, or single chromosome cDNA libraries. (See, e.g., Harrington, J.J. et al. (1997) Nat Genet. 15:345-355; Price, C.M. (1993) Blood Rev. 7:127-134; and Trask, B.J. (1991) Trends Genet. 7:149-154.)

Fluorescent in situ hybridization (FISH) may be correlated with other physical chromosome mapping techniques and genetic map data. (See, e.g., Heinz-Ulrich, et al. (1995) in Meyers, supra, pp. 965-968.) Examples of genetic map data can be found in various scientific journals or at the Online Mendelian Inheritance in Man (OMIM) site. Correlation between the location of the gene encoding HRAP on a physical chromosomal map and a specific disorder, or a predisposition to a specific disorder, may help define the region of DNA associated with that
disorder. The nucleotide sequences of the invention may be used to detect differences in gene
sequences among normal, carrier, and affected individuals.

In situ hybridization of chromosomal preparations and physical mapping techniques, such
as linkage analysis using established chromosomal markers, may be used for extending genetic
maps. Often the placement of a gene on the chromosome of another mammalian species, such as
mouse, may reveal associated markers even if the number or arm of a particular human
chromosome is not known. New sequences can be assigned to chromosomal arms by physical
mapping. This provides valuable information to investigators searching for disease genes using
positional cloning or other gene discovery techniques. Once the disease or syndrome has been
cruelly localized by genetic linkage to a particular genomic region, e.g., ataxia-telangiectasia to
11q22-23, any sequences mapping to that area may represent associated or regulatory genes for
further investigation. (See, e.g., Gatti, R.A. et al. (1988) Nature 336:577-580.) The nucleotide
sequence of the subject invention may also be used to detect differences in the chromosomal
location due to translocation, inversion, etc., among normal, carrier, or affected individuals.

In another embodiment of the invention, HRAP, its catalytic or immunogenic fragments,
or oligopeptides thereof can be used for screening libraries of compounds in any of a variety of
drug screening techniques. The fragment employed in such screening may be free in solution,
affixed to a solid support, borne on a cell surface, or located intracellularly. The formation of
binding complexes between HRAP and the agent being tested may be measured.

Another technique for drug screening provides for high throughput screening of
compounds having suitable binding affinity to the protein of interest. (See, e.g., Geysen, et al.
(1984) PCT application WO84/03564.) In this method, large numbers of different small test
compounds are synthesized on a solid substrate. The test compounds are reacted with HRAP, or
fragments thereof, and washed. Bound HRAP is then detected by methods well known in the art.

Purified HRAP can also be coated directly onto plates for use in the aforementioned drug
screening techniques. Alternatively, non-neutralizing antibodies can be used to capture the
peptide and immobilize it on a solid support.

In another embodiment, one may use competitive drug screening assays in which
neutralizing antibodies capable of binding HRAP specifically compete with a test compound for
binding HRAP. In this manner, antibodies can be used to detect the presence of any peptide which
shares one or more antigenic determinants with HRAP.

In additional embodiments, the nucleotide sequences which encode HRAP may be used in
any molecular biology techniques that have yet to be developed, provided the new techniques rely
on properties of nucleotide sequences that are currently known, including, but not limited to, such
properties as the triplet genetic code and specific base pair interactions.

Without further elaboration, it is believed that one skilled in the art can, using the preceding description, utilize the present invention to its fullest extent. The following preferred specific embodiments are, therefore, to be construed as merely illustrative, and not limiting of the remainder of the disclosure in any way whatsoever.

EXAMPLES

I. Construction of cDNA Libraries

RNA was purchased from Clontech or isolated from tissues described in Table 4. Some tissues were homogenized and lysed in guanidinium isothiocyanate, while others were homogenized and lysed in phenol or in a suitable mixture of denaturants, such as TRIZOL (Life Technologies), a monophasic solution of phenol and guanidine isothiocyanate. The resulting lysates were centrifuged over CsCl cushions or extracted with chloroform. RNA was precipitated from the lysates with either isopropanol or sodium acetate and ethanol, or by other routine methods.

Phenol extraction and precipitation of RNA were repeated as necessary to increase RNA purity. In some cases, RNA was treated with DNase. For most libraries, poly(A+) RNA was isolated using oligo d(T)-coupled paramagnetic particles (Promega), OLIGOTEX latex particles (QIAGEN, Valencia CA), or an OLIGOTEX mRNA purification kit (QIAGEN). Alternatively, RNA was isolated directly from tissue lysates using other RNA isolation kits, e.g., the POLY(A)PURE mRNA purification kit (Ambion, Austin TX).

In some cases, Stratagene was provided with RNA and constructed the corresponding cDNA libraries. Otherwise, cDNA was synthesized and cDNA libraries were constructed with the UNIZAP vector system (Stratagene) or SUPERSCRIPT plasmid system (Life Technologies), using the recommended procedures or similar methods known in the art. (See, e.g., Ausubel, 1997, supra, units 5.1-6.6). Reverse transcription was initiated using oligo d(T) or random primers. Synthetic oligonucleotide adapters were ligated to double stranded cDNA, and the cDNA was digested with the appropriate restriction enzyme or enzymes. For most libraries, the cDNA was size-selected (300-1000 bp) using SEPHACRYL S1000, SEPHAROSE CL2B, or SEPHAROSE CL4B column chromatography (Amersham Pharmacia Biotech) or preparative agarose gel electrophoresis. cDNAs were ligated into compatible restriction enzyme sites of the
polylinker of a suitable plasmid, e.g., PBLUESCRIPT plasmid (Stratagene), PSPORT1 plasmid (Life Technologies), or pINCY (Incyte Pharmaceuticals, Palo Alto CA). Recombinant plasmids were transformed into competent E. coli cells including XL1-Blue, XL1-BlueMRF, or SOLR from Stratagene or DH5α, DH10B, or ElectroMAX DH10B from Life Technologies.

II. Isolation of cDNA Clones

Plasmids were recovered from host cells by in vivo excision, using the UNIZAP vector system (Stratagene) or cell lysis. Plasmids were purified using at least one of the following: a Magic or WIZARD Minipreps DNA purification system (Promega); an AGT Miniprep purification kit (Edge Biosystems, Gaithersburg MD); and QIAWELL 8 Plasmid, QIAWELL 8 Plus Plasmid, QIAWELL 8 Ultra Plasmid purification systems or the REAL Prep 96 plasmid kit from QIAGEN. Following precipitation, plasmids were resuspended in 0.1 ml of distilled water and stored, with or without lyophilization, at 4°C.

Alternatively, plasmid DNA was amplified from host cell lysates using direct link PCR in a high-throughput format (Rao, V.B. (1994) Anal. Biochem. 216:1-14). Host cell lysis and thermal cycling steps were carried out in a single reaction mixture. Samples were processed and stored in 384-well plates, and the concentration of amplified plasmid DNA was quantified fluorometrically using PICOGREEN dye (Molecular Probes, Eugene OR) and a Fluoroskan II fluorescence scanner (Labsystems Oy, Helsinki, Finland).

III. Sequencing and Analysis

The cDNAs were prepared for sequencing using the ABI CATALYST 800 (Perkin-Elmer) or the HYDRA microdispenser (Robbins Scientific) or MICROLAB 2200 (Hamilton) systems in combination with the PTC-200 thermal cyclers (MJ Research). The cDNAs were sequenced using the ABI PRISM 373 or 377 sequencing systems (Perkin-Elmer) and standard ABI protocols, base calling software, and kits. In one alternative, cDNAs were sequenced using the MEGABACE 1000 DNA sequencing system (Molecular Dynamics). In another alternative, the cDNAs were amplified and sequenced using the ABI PRISM BIGDYE Terminator cycle sequencing ready reaction kit (Perkin-Elmer). In yet another alternative, cDNAs were sequenced using solutions and dyes from Amersham Pharmacia Biotech. Reading frames for the ESTs were determined using standard methods (reviewed in Ausubel, 1997, supra, unit 7.7). Some of the cDNA sequences were selected for extension using the techniques disclosed in Example V.

The polynucleotide sequences derived from cDNA, extension, and shotgun sequencing were assembled and analyzed using a combination of software programs which utilize algorithms well known to those skilled in the art. Table 5 summarizes the software programs, descriptions, references, and threshold parameters used. The first column of Table 5 shows the tools, programs,
and algorithms used, the second column provides a brief description thereof, the third column presents the references which are incorporated by reference herein, and the fourth column presents, where applicable, the scores, probability values, and other parameters used to evaluate the strength of a match between two sequences (the higher the probability the greater the homology). Sequences were analyzed using MACDNASIS PRO software (Hitachi Software Engineering, S. San Francisco CA) and LASERGENE software (DNASTAR).

The polynucleotide sequences were validated by removing vector, linker, and polyA sequences and by masking ambiguous bases, using algorithms and programs based on BLAST, dynamic programing, and dinucleotide nearest neighbor analysis. The sequences were then queried against a selection of public databases such as GenBank primate, rodent, mammalian, vertebrate, and eukaryote databases, and BLOCKS to acquire annotation, using programs based on BLAST, FASTA, and BLIMPS. The sequences were assembled into full length polynucleotide sequences using programs based on Phred, Phrap, and Consed, and were screened for open reading frames using programs based on GeneMark, BLAST, and FASTA. The full length polynucleotide sequences were translated to derive the corresponding full length amino acid sequences, and these full length sequences were subsequently analyzed by querying against databases such as the GenBank databases (described above), SwissProt, BLOCKS, PRINTS, PFAM, and Prosite.

IV. Northern Analysis

Northern analysis is a laboratory technique used to detect the presence of a transcript of a gene and involves the hybridization of a labeled nucleotide sequence to a membrane on which RNAs from a particular cell type or tissue have been bound. (See, e.g., Sambrook, supra, ch. 7; Ausubel, 1995, supra, ch. 4 and 16.)

Analogous computer techniques applying BLAST were used to search for identical or related molecules in nucleotide databases such as GenBank or LIFSEQ database (Incyte Pharmaceuticals). This analysis is much faster than multiple membrane-based hybridizations. In addition, the sensitivity of the computer search can be modified to determine whether any particular match is categorized as exact or similar. The basis of the search is the product score, which is defined as:

\[
\text{Product score} = \frac{\% \text{ sequence identity} \times \% \text{ maximum BLAST score}}{100}
\]

The product score takes into account both the degree of similarity between two sequences and the length of the sequence match. For example, with a product score of 40, the match will be exact within a 1% to 2% error, and, with a product score of 70, the match will be exact. Similar
molecules are usually identified by selecting those which show product scores between 15 and 40, although lower scores may identify related molecules.

The results of northern analyses are reported as a percentage distribution of libraries in which the transcript encoding HRAP occurred. Analysis involved the categorization of cDNA libraries by organ/tissue and disease. The organ/tissue categories included cardiovascular, dermatologic, developmental, endocrine, gastrointestinal, hematopoietic/immune, musculoskeletal, nervous, reproductive, and urologic. The disease categories included cancer, inflammation/trauma, fetal, neurological, and pooled. For each category, the number of libraries expressing the sequence of interest was counted and divided by the total number of libraries across all categories. Percentage values of tissue-specific and disease expression are reported in Table 3.

V. Extension of HRAP Encoding Polynucleotides

The full length nucleic acid sequences of SEQ ID NO:17-22 were produced by extension of the component fragments described in Table 1, Column 5, using oligonucleotide primers based on those fragments. One primer was synthesized to initiate extension of an antisense polynucleotide, and the other was synthesized to initiate extension of a sense polynucleotide.

Primers were used to facilitate the extension of the known sequence “outward” generating amplicons containing new unknown nucleotide sequence for the region of interest. The initial primers were designed from the cDNA using OLIGO 4.06 software (National Biosciences), or another appropriate program, to be about 22 to 30 nucleotides in length, to have a GC content of about 50% or more, and to anneal to the target sequence at temperatures of about 68°C to about 72°C. Any stretch of nucleotides which would result in hairpin structures and primer-primer dimerizations was avoided.

Selected human cDNA libraries (Life Technologies) were used to extend the sequence. If more than one extension is necessary or desired, additional sets of primers are designed to further extend the known region.

High fidelity amplification was obtained by following the instructions for the XL-PCR kit (Perkin-Elmer Corp.) and thoroughly mixing the enzyme and reaction mix. PCR was performed using the PTC-200 thermal cycler (MJ Research), beginning with 40 pmol of each primer and the recommended concentrations of all other components of the kit, with the following parameters:

<table>
<thead>
<tr>
<th>Step</th>
<th>Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>94°C for 1 min (initial denaturation)</td>
</tr>
<tr>
<td>2</td>
<td>65°C for 1 min</td>
</tr>
<tr>
<td>3</td>
<td>68°C for 6 min</td>
</tr>
<tr>
<td>4</td>
<td>94°C for 15 sec</td>
</tr>
<tr>
<td>5</td>
<td>65°C for 1 min</td>
</tr>
<tr>
<td>6</td>
<td>68°C for 7 min</td>
</tr>
<tr>
<td>7</td>
<td>Repeat steps 4 through 6 for an additional 15 cycles</td>
</tr>
<tr>
<td>8</td>
<td>94°C for 15 sec</td>
</tr>
</tbody>
</table>
Step 9 65°C for 1 min
Step 10 68°C for 7:15 min
Step 11 Repeat steps 8 through 10 for an additional 12 cycles
Step 12 72°C for 8 min
Step 13 4°C (and holding)

A 5 μl to 10 μl aliquot of the reaction mixture was analyzed by electrophoresis on a low concentration (about 0.6% to 0.8%) agarose mini-gel to determine which reactions were successful in extending the sequence. Bands thought to contain the largest products were excised from the gel, purified using QIAQUICK purification kit (QIAGEN Inc.), and trimmed of overhangs using Klenow enzyme to facilitate religation and cloning.

After ethanol precipitation, the products were redissolved in 13 μl of ligation buffer, 1μl T4-DNA ligase (15 units) and 1μl T4 polynucleotide kinase were added, and the mixture was incubated at room temperature for 2 to 3 hours, or overnight at 16°C. Competent E. coli cells (in 40 μl of appropriate media) were transformed with 3 μl of ligation mixture and cultured in 80 μl of SOC medium. (See, e.g., Sambrook, supra, Appendix A, p. 2.) After incubation for one hour at 37°C, the E. coli mixture was plated on Luria Bertani (LB) agar (See, e.g., Sambrook, supra, Appendix A, p. 1) containing carbenicillin (2x carb). The following day, several colonies were randomly picked from each plate and cultured in 150 μl of liquid LB/2x carb medium placed in an individual well of an appropriate commercially-available sterile 96-well microtiter plate. The following day, 5 μl of each overnight culture was transferred into a non-sterile 96-well plate and, after dilution 1:10 with water, 5 μl from each sample was transferred into a PCR array.

For PCR amplification, 18 μl of concentrated PCR reaction mix (3.3x) containing 4 units of rTh DNA polymerase, a vector primer, and one or both of the gene specific primers used for the extension reaction were added to each well. Amplification was performed using the following conditions:

Step 1 94°C for 60 sec
Step 2 94°C for 20 sec
Step 3 55°C for 30 sec
Step 4 72°C for 90 sec
Step 5 Repeat steps 2 through 4 for an additional 29 cycles
Step 6 72°C for 180 sec
Step 7 4°C (and holding)

Aliquots of the PCR reactions were run on agarose gels together with molecular weight markers. The sizes of the PCR products were compared to the original partial cDNAs, and appropriate clones were selected, ligated into plasmid, and sequenced.

In like manner, the nucleotide sequences of SEQ ID NO:17-22 is used to obtain 5′ regulatory sequences using the procedure above, oligonucleotides designed for 5′ extension, and
an appropriate genomic library.

The full length nucleic acid sequences of SEQ ID NO:23-32 were produced by extension of an appropriate fragment of the full length molecule using oligonucleotide primers designed from this fragment. One primer was synthesized to initiate 5' extension of the known fragment, and the other primer, to initiate 3' extension of the known fragment. The initial primers were designed using OLIGO 4.06 software (National Biosciences), or another appropriate program, to be about 22 to 30 nucleotides in length, to have a GC content of about 50% or more, and to anneal to the target sequence at temperatures of about 68°C to about 72°C. Any stretch of nucleotides which would result in hairpin structures and primer-primer dimerizations was avoided.

Selected human cDNA libraries were used to extend the sequence. If more than one extension was necessary or desired, additional or nested sets of primers were designed.

High fidelity amplification was obtained by PCR using methods well known in the art. PCR was performed in 96-well plates using the PTC-200 thermal cycler (MJ Research, Inc.). The reaction mix contained DNA template, 200 nmol of each primer, reaction buffer containing Mg²⁺, (NH₄)₂SO₄, and β-mercaptoethanol, Taq DNA polymerase (Amersham Pharmacia Biotech), ELONGASE enzyme (Life Technologies), and Pfu DNA polymerase (Stratagene), with the following parameters for primer pair PCI A and PCI B: Step 1: 94°C, 3 min; Step 2: 94°C, 15 sec; Step 3: 60°C, 1 min; Step 4: 68°C, 2 min; Step 5: Steps 2, 3, and 4 repeated 20 times; Step 6: 68°C, 5 min; Step 7: storage at 4°C. In the alternative, the parameters for primer pair T7 and SK⁺ were as follows: Step 1: 94°C, 3 min; Step 2: 94°C, 15 sec; Step 3: 57°C, 1 min; Step 4: 68°C, 2 min; Step 5: Steps 2, 3, and 4 repeated 20 times; Step 6: 68°C, 5 min; Step 7: storage at 4°C.

The concentration of DNA in each well was determined by dispensing 100 μl PICOGREEN quantitation reagent (0.25% (v/v) PICOGREEN; Molecular Probes, Eugene OR) dissolved in 1XTE and 0.5 μl of undiluted PCR product into each well of an opaque fluorimeter plate (Corning Costar, Acton MA), allowing the DNA to bind to the reagent. The plate was scanned in a Fluoroskan II (Labsystems Oy, Helsinki, Finland) to measure the fluorescence of the sample and to quantify the concentration of DNA. A 5 μl to 10 μl aliquot of the reaction mixture was analyzed by electrophoresis on a 1 % agarose mini-gel to determine which reactions were successful in extending the sequence.

The extended nucleotides were desalted and concentrated, transferred to 384-well plates, digested with CviII cholera virus endonuclease (Molecular Biology Research, Madison WI), and sonicated or sheared prior to religation into pUC 18 vector (Amersham Pharmacia Biotech). For shotgun sequencing, the digested nucleotides were separated on low concentration (0.6 to 0.8%) agarose gels, fragments were excised, and agar digested with Agar ACE (Promega). Extended
clones were religated using T4 ligase (New England Biolabs, Beverly MA) into pUC 18 vector (Amersham Pharmacia Biotech), treated with Pfu DNA polymerase (Stratagene) to fill-in restriction site overhangs, and transfected into competent E. coli cells. Transformed cells were selected on antibiotic-containing media, individual colonies were picked and cultured overnight at 37°C in 384-well plates in LB/2x carb liquid media.

The cells were lysed, and DNA was amplified by PCR using Taq DNA polymerase (Amersham Pharmacia Biotech) and Pfu DNA polymerase (Stratagene) with the following parameters: Step 1: 94°C, 3 min; Step 2: 94°C, 15 sec; Step 3: 60°C, 1 min; Step 4: 72°C, 2 min; Step 5: steps 2, 3, and 4 repeated 29 times; Step 6: 72°C, 5 min; Step 7: storage at 4°C. DNA was quantified by PICOGREEN reagent (Molecular Probes) as described above. Samples with low DNA recoveries were reamplified using the same conditions as described above. Samples were diluted with 20% dimethylsulphoxide (v/v), and sequenced using DYENAMIC energy transfer sequencing primers and the DYENAMIC DIRECT kit (Amersham Pharmacia Biotech) or the ABI PRISM BIGDYE Terminator cycle sequencing ready reaction kit (Perkin-Elmer).

In like manner, the nucleotide sequence of SEQ ID NO:23-32 is used to obtain 5' regulatory sequences using the procedure above, oligonucleotides designed for such extension, and an appropriate genomic library.

VI. Labeling and Use of Individual Hybridization Probes

Hybridization probes derived from SEQ ID NO:17-32 are employed to screen cDNAs, genomic DNAs, or mRNAs. Although the labeling of oligonucleotides, consisting of about 20 base pairs, is specifically described, essentially the same procedure is used with larger nucleotide fragments. Oligonucleotides are designed using state-of-the-art software such as OLIGO 4.06 software (National Biosciences) and labeled by combining 50 pmol of each oligomer, 250 μCi of [γ-32P] adenosine triphosphate (Amersham Pharmacia Biotech), and T4 polynucleotide kinase (DuPont NEN, Boston MA). The labeled oligonucleotides are substantially purified using a SEPHADEX G-25 superfine size exclusion dextran bead column (Amersham Pharmacia Biotech). An aliquot containing 10^7 counts per minute of the labeled probe is used in a typical membrane-based hybridization analysis of human genomic DNA digested with one of the following endonucleases: Ase I, Bgl II, Eco RI, Pst I, XbaI, or Pvu II (DuPont NEN).

The DNA from each digest is fractionated on a 0.7% agarose gel and transferred to nylon membranes (Nytran Plus, Schleicher & Schuell, Durham NH). Hybridization is carried out for 16 hours at 40°C. To remove nonspecific signals, blots are sequentially washed at room temperature under increasingly stringent conditions up to 0.1 x saline sodium citrate and 0.5% sodium dodecyl sulfate. After XOMAT-AR film (Eastman Kodak, Rochester NY) is exposed to the blots to film
for several hours, hybridization patterns are compared visually.

VII. Microarrays

A chemical coupling procedure and an ink jet device can be used to synthesize array elements on the surface of a substrate. (See, e.g., Baldeschweiler, supra.) An array analogous to a dot or slot blot may also be used to arrange and link elements to the surface of a substrate using thermal, UV, chemical, or mechanical bonding procedures. A typical array may be produced by hand or using available methods and machines and contain any appropriate number of elements. After hybridization, nonhybridized probes are removed and a scanner used to determine the levels and patterns of fluorescence. The degree of complementarity and the relative abundance of each probe which hybridizes to an element on the microarray may be assessed through analysis of the scanned images.

Full-length cDNAs, Expressed Sequence Tags (ESTs), or fragments thereof may comprise the elements of the microarray. Fragments suitable for hybridization can be selected using software well known in the art such as LASERGENE software (DNASTAR). Full-length cDNAs, ESTs, or fragments thereof corresponding to one of the nucleotide sequences of the present invention, or selected at random from a cDNA library relevant to the present invention, are arranged on an appropriate substrate, e.g., a glass slide. The cDNA is fixed to the slide using, e.g., UV cross-linking followed by thermal and chemical treatments and subsequent drying. (See, e.g., Schena, M. et al. (1995) Science 270:467-470; Shalon, D. et al. (1996) Genome Res. 6:639-645.)

Fluorescent probes are prepared and used for hybridization to the elements on the substrate. The substrate is analyzed by procedures described above.

VIII. Complementary Polynucleotides

Sequences complementary to the HRAP-encoding sequences, or any parts thereof, are used to detect, decrease, or inhibit expression of naturally occurring HRAP. Although use of oligonucleotides comprising from about 15 to 30 base pairs is described, essentially the same procedure is used with smaller or with larger sequence fragments. Appropriate oligonucleotides are designed using Oligo 4.06 software (National Biosciences) and the coding sequence of HRAP. To inhibit transcription, a complementary oligonucleotide is designed from the most unique 5' sequence and used to prevent promoter binding to the coding sequence. To inhibit translation, a complementary oligonucleotide is designed to prevent ribosomal binding to the HRAP-encoding transcript.

IX. Expression of HRAP

Expression and purification of HRAP is achieved using bacterial or virus-based expression systems. For expression of HRAP in bacteria, cDNA is subcloned into an appropriate
vector containing an antibiotic resistance gene and an inducible promoter that directs high levels of cDNA transcription. Examples of such promoters include, but are not limited to, the trp-lac (lac) hybrid promoter and the T5 or T7 bacteriophage promoter in conjunction with the lac operator regulatory element. Recombinant vectors are transformed into suitable bacterial hosts, e.g., BL21(DE3). Antibiotic resistant bacteria express HRAP upon induction with isopropyl beta-D-thiogalactopyranoside (IPTG). Expression of HRAP in eukaryotic cells is achieved by infecting insect or mammalian cell lines with recombinant Autographica californica nuclear polyhedrosis virus (AcMNPV), commonly known as baculovirus. The nonessential polyhedrin gene of baculovirus is replaced with cDNA encoding HRAP by either homologous recombination or bacterial-mediated transposition involving transfer plasmid intermediates. Viral infectivity is maintained and the strong polyhedrin promoter drives high levels of cDNA transcription. Recombinant baculovirus is used to infect Spodoptera frugiperda (Sf9) insect cells in most cases, or human hepatocytes, in some cases. Infection of the latter requires additional genetic modifications to baculovirus. (See Engelhard, E. K. et al. (1994) Proc. Natl. Acad. Sci. USA 91:3224-3227; Sandig, V. et al. (1996) Hum. Gene Ther. 7:1937-1945.)

In most expression systems, HRAP is synthesized as a fusion protein with, e.g., glutathione S-transferase (GST) or a peptide epitope tag, such as FLAG or 6-His, permitting rapid, single-step, affinity-based purification of recombinant fusion protein from crude cell lysates. GST, a 26-kilodalton enzyme from Schistosoma japonicum, enables the purification of fusion proteins on immobilized glutathione under conditions that maintain protein activity and antigenicity (Amersham Pharmacia Biotech). Following purification, the GST moiety can be proteolytically cleaved from HRAP at specifically engineered sites. FLAG, an 8-amino acid peptide, enables immunoaffinity purification using commercially available monoclonal and polyclonal anti-FLAG antibodies (Eastman Kodak). 6-His, a stretch of six consecutive histidine residues, enables purification on metal-chelate resins (QIAGEN). Methods for protein expression and purification are discussed in Ausubel (1995, supra, ch 10 and 16). Purified HRAP obtained by these methods can be used directly in the following activity assay.

X. Demonstration of HRAP Activity

Receptor activity of HRAP is determined in a ligand-binding assay using candidate ligand molecules in the presence of 125I-labeled HRAP. HRAP is labeled with 125I Bolton-Hunter reagent. (See, e.g., Bolton et al. (1973) Biochem. J. 133:529.) Candidate ligand molecules previously arrayed in the wells of a multi-well plate are incubated with the labeled HRAP, washed, and any wells with labeled HRAP complex are assayed. Data obtained using different concentrations of HRAP are used to calculate values for the number, affinity, and association of
HRAP with the ligand molecules.

Alternatively, HRAP activity is determined by measuring the stimulation of DNA synthesis in Swiss mouse 3T3 cells. Plasmids containing polynucleotides encoding HRAP are added to quiescent 3T3 cultured cells using transfection methods well known in the art and the transfected cells are then incubated in the presence of $[^{3}H]$thymidine, a radioactive DNA precursor. Varying amounts of HRAP ligand are then added to the cultured cells. Incorporation of $[^{3}H]$thymidine into acid-precipitable DNA is measured over an appropriate time interval using a radioisotope counter, and the amount incorporated is directly proportional to the amount of newly synthesized DNA. A linear dose-response curve over at least a hundred-fold HRAP ligand concentration range is indicative of receptor activity. One unit of activity per milliliter is defined as the concentration of HRAP producing a 50% response level, where 100% represents maximal incorporation of $[^{3}H]$thymidine into acid-precipitable DNA (Mckay, I., and Leigh, I., eds. (1993) Growth Factors: A Practical Approach, Oxford University Press, New York, NY, page 73).

XI. Functional Assays

HRAP function is assessed by expressing the sequences encoding HRAP at physiologically elevated levels in mammalian cell culture systems. cDNA is subcloned into a mammalian expression vector containing a strong promoter that drives high levels of cDNA expression. Vectors of choice include pCMV SPORT (Life Technologies) and pCR3.1 (Invitrogen, Carlsbad CA), both of which contain the cytomegalovirus promoter. 5-10 µg of recombinant vector are transiently transfected into a human cell line, preferably of endothelial or hematopoietic origin, using either liposome formulations or electroporation. 1-2 µg of an additional plasmid containing sequences encoding a marker protein are co-transfected. Expression of a marker protein provides a means to distinguish transfected cells from nontransfected cells and is a reliable predictor of cDNA expression from the recombinant vector. Marker proteins of choice include, e.g., Green Fluorescent Protein (GFP; Clontech), CD64, or a CD64-GFP fusion protein. Flow cytometry (FCM), an automated, laser optics-based technique, is used to identify transfected cells expressing GFP or CD64-GFP, and to evaluate properties, for example, their apoptotic state. FCM detects and quantifies the uptake of fluorescent molecules that diagnose events preceding or coincident with cell death. These events include changes in nuclear DNA content as measured by staining of DNA with propidium iodide; changes in cell size and granularity as measured by forward light scatter and 90 degree side light scatter; down-regulation of DNA synthesis as measured by decrease in bromodeoxyuridine uptake; alterations in expression of cell surface and intracellular proteins as measured by reactivity with specific antibodies; and alterations in plasma membrane composition as measured by the binding of

The influence of HRAP on gene expression can be assessed using highly purified populations of cells transfected with sequences encoding HRAP and either CD64 or CD64-GFP. CD64 and CD64-GFP are expressed on the surface of transfected cells and bind to conserved regions of human immunoglobulin G (IgG). Transfected cells are efficiently separated from nontransfected cells using magnetic beads coated with either human IgG or antibody against CD64 (DYNAL, Lake Success NY). mRNA can be purified from the cells using methods well known by those of skill in the art. Expression of mRNA encoding HRAP and other genes of interest can be analyzed by northern analysis or microarray techniques.

XII. Production of HRAP Specific Antibodies

HRAP substantially purified using polyacrylamide gel electrophoresis (PAGE; see, e.g., Harrington, M.G. (1990) Methods Enzymol. 182:488-495), or other purification techniques, is used to immunize rabbits and to produce antibodies using standard protocols.

Alternatively, the HRAP amino acid sequence is analyzed using LASERGENE software (DNASTAR) to determine regions of high immunogenicity, and a corresponding oligopeptide is synthesized and used to raise antibodies by means known to those of skill in the art. Methods for selection of appropriate epitopes, such as those near the C-terminus or in hydrophilic regions are well described in the art. (See, e.g., Ausubel, 1995, *supra*, ch. 11.)

Typically, oligopeptides 15 residues in length are synthesized using an ABI 431A Peptide Synthesizer (Perkin-Elmer) using fmoc-chemistry and coupled to KLH (Sigma-Aldrich, St. Louis MO) by reaction with N-maleimidobenzoyl-N-hydroxysuccinimide ester (MBS) to increase immunogenicity. (See, e.g., Ausubel, 1995, *supra*.) Rabbits are immunized with the oligopeptide-KLH complex in complete Freund's adjuvant. Resulting antisera are tested for antipeptide activity by, for example, binding the peptide to plastic, blocking with 1% BSA, reacting with rabbit antisera, washing, and reacting with radio-iodinated goat anti-rabbit IgG.

XIII. Purification of Naturally Occurring HRAP Using Specific Antibodies

Naturally occurring or recombinant HRAP is substantially purified by immunoaffinity chromatography using antibodies specific for HRAP. An immunoaffinity column is constructed by covalently coupling anti-HRAP antibody to an activated chromatographic resin, such as CNBr-activated SEPHAROSE (Amersham Pharmacia Biotech). After the coupling, the resin is blocked and washed according to the manufacturer's instructions.

Media containing HRAP are passed over the immunoaffinity column, and the column is washed under conditions that allow the preferential absorbance of HRAP (e.g., high ionic strength
buffers in the presence of detergent). The column is eluted under conditions that disrupt antibody/HRAP binding (e.g., a buffer of pH 2 to pH 3, or a high concentration of a chaotrope, such as urea or thiocyanate ion), and HRAP is collected.

Various modifications and variations of the described methods and systems of the invention will be apparent to those skilled in the art without departing from the scope and spirit of the invention. Although the invention has been described in connection with specific preferred embodiments, it should be understood that the invention as claimed should not be unduly limited to such specific embodiments. Indeed, various modifications of the described modes for carrying out the invention which are obvious to those skilled in molecular biology or related fields are intended to be within the scope of the following claims.
<table>
<thead>
<tr>
<th>Protein ID No.</th>
<th>Nucleotide Seq ID No.</th>
<th>Clone ID</th>
<th>Library</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>17</td>
<td>1877651</td>
<td>LEUKVIEW</td>
</tr>
<tr>
<td>2</td>
<td>18</td>
<td>2906791</td>
<td>THYMIC</td>
</tr>
<tr>
<td>3</td>
<td>19</td>
<td>2907954</td>
<td>OVARIT1</td>
</tr>
<tr>
<td>4</td>
<td>20</td>
<td>3083742</td>
<td>PROSTOS8</td>
</tr>
<tr>
<td>5</td>
<td>21</td>
<td>3407686</td>
<td>LUNGNO27</td>
</tr>
<tr>
<td>6</td>
<td>22</td>
<td>3472455</td>
<td>LUNGNO27</td>
</tr>
<tr>
<td>7</td>
<td>23</td>
<td>3472455</td>
<td>LUNGNO27</td>
</tr>
<tr>
<td>8</td>
<td>24</td>
<td>1203711</td>
<td>NEUTRO1</td>
</tr>
<tr>
<td>9</td>
<td>25</td>
<td>1259785</td>
<td>MENITUV1</td>
</tr>
<tr>
<td>10</td>
<td>26</td>
<td>1361623</td>
<td>LUNGNO12</td>
</tr>
</tbody>
</table>

Table 1
<table>
<thead>
<tr>
<th>Protein SEQ ID NO:</th>
<th>Nucleotide SEQ ID NO:</th>
<th>Clone ID</th>
<th>Library</th>
<th>Fragments</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>27</td>
<td>2132846</td>
<td>OVARNOT03</td>
<td>1268283F6 (BRAINOT09), 1287786F6 (BRAINOT11), 1416687H1 (BRAINOT12), 1800269F6 (COLNNOT27), 2132846H1 (OVARNOT03), 2132846R6 (OVARNOT03), 2180358H1 (SININOT01), 2839252F6 (DRGLNOT01), 3245166F6 (BRAINOT19)</td>
</tr>
<tr>
<td>12</td>
<td>28</td>
<td>2539294</td>
<td>BONRTUT01</td>
<td>000688F1 (U937NOT01), 1266918F1 (BRAINOT09), 1309032F1 (COLNFET02), 1648603F6 (PROSTUT09), 2539294H1 (BONRTUT01), 2888478H1 (LUNGFET04), 4161042H1 (BRSTNOT32)</td>
</tr>
<tr>
<td>13</td>
<td>29</td>
<td>2589371</td>
<td>LUNGNOT22</td>
<td>293369R6 (LIVRNOT04), 1240395H1 (LUNGTUT02), 2589371F6 (LUNGNOT22), 2589371H1 (LUNGNOT22), 2852891F6 (BRSTTUT13)</td>
</tr>
<tr>
<td>14</td>
<td>30</td>
<td>2656082</td>
<td>THYMNOT04</td>
<td>1603501F6 (LUNGNOT15), 1879528T6 (LEUKNOT03), 1909038F6 (CONNTUT01), 2656082F6 (THYMNOT04), 2656082H1 (THYMNOT04)</td>
</tr>
<tr>
<td>15</td>
<td>31</td>
<td>2762182</td>
<td>BRAINOS12</td>
<td>943491R6 (ADREN0TO3), 943491T6 (ADREN0TO3), 1857150F6 (PROSNOT18), 2466534H1 (THYRNTO08), 2762182H1 (BRAINOS12), 2839252F6 (DRGLNOT01)</td>
</tr>
<tr>
<td>16</td>
<td>32</td>
<td>3140659</td>
<td>SMCCNOT02</td>
<td>3140659H1 (SMCCNOT02), 3117812F6 (LUNGTUT13), 264721H1 (HNT2AGT01), 1555673T1 (BLADTUT04), 1987832R6 (LUNGAST01), 3522161H1 (ESOGTUN01), 2506012H1 (CONUTUT01), 2237543H1 (PANCTUT02), 1728672F6 (PROSNOT14), 1478128F1 and 1478128T1 (COPRNOT02)</td>
</tr>
<tr>
<td>Protein SEQ ID NO:</td>
<td>Amino Acid Residues</td>
<td>Potential Phosphorylation Sites</td>
<td>Potential Glycosylation Sites</td>
<td>Signature Sequence</td>
</tr>
<tr>
<td>------------------</td>
<td>----------------------</td>
<td>---------------------------------</td>
<td>-----------------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>1</td>
<td>345</td>
<td>S32 T164 S183 T190 S270 S243 S343</td>
<td></td>
<td>N236</td>
</tr>
<tr>
<td>2</td>
<td>487</td>
<td>S3 S183 T149 S235</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>312</td>
<td>S26 S37 T95 S114 T131 S150 T157 S210 S237 S310 Y109</td>
<td></td>
<td>N203</td>
</tr>
<tr>
<td>4</td>
<td>309</td>
<td>S79 T98 S129 S165 S191 T212 T238 T253 T261</td>
<td></td>
<td>N2</td>
</tr>
<tr>
<td>5</td>
<td>367</td>
<td>T45 T61 T68 S154</td>
<td>N36 N41 N51 N66 N84 N104 N107 N166</td>
<td>N36</td>
</tr>
<tr>
<td>Protein SEQ ID NO:</td>
<td>Amino Acid Residues</td>
<td>Potential Phosphorylation Sites</td>
<td>Potential Glycosylation Sites</td>
<td>Signature Sequence</td>
</tr>
<tr>
<td>-----------------</td>
<td>----------------------</td>
<td>--------------------------------</td>
<td>-----------------------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>7</td>
<td>346</td>
<td>S57 S288 T84 S161</td>
<td>N4</td>
<td>Y223-G243 G135-V153</td>
</tr>
<tr>
<td>8</td>
<td>241</td>
<td>S198 S85 T91 T109 S124 S222 S236 T48 S193</td>
<td>N111 N226</td>
<td>Ig-like domain: H44-I120</td>
</tr>
<tr>
<td>9</td>
<td>450</td>
<td>T146 T55 S167 T218 S239 T284 S416 S6 T136 S234 T245 T314 T436 S446 S447 Y125 Y343 Y389 Y415</td>
<td>N312</td>
<td>A230-T237</td>
</tr>
<tr>
<td>10</td>
<td>269</td>
<td>S19 S31 S43 S72 T154 T176 S221 S18 S78 S89 T125 S146 T173 S194 T263</td>
<td>N41 N82 N161 N195 N206 N242</td>
<td>Signal peptide: M1-S19 Ig-like domain: G35-V111</td>
</tr>
<tr>
<td>11</td>
<td>190</td>
<td>T23 T96 T117 T165 S173 S184 T17 T92</td>
<td>F22-G41 V68-L89 R102-M121 T92-D111 G114-V132</td>
<td>Recoverin</td>
</tr>
<tr>
<td>12</td>
<td>450</td>
<td>T199 T282 S2 S24 S114 T141 T331 T429 S108 T121 S277 Y172</td>
<td>N106 N340</td>
<td>thyroid receptor interacting protein</td>
</tr>
<tr>
<td>Protein SEQ ID NO:</td>
<td>Amino Acid Residues</td>
<td>Potential Phosphorylation Sites</td>
<td>Potential Glycosylation Sites</td>
<td>Signature Sequence</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------------</td>
<td>--------------------------------</td>
<td>------------------------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>13</td>
<td>240</td>
<td>S235 S151 T192 T15 S105 S109</td>
<td></td>
<td>T46-A69 V179-L198</td>
</tr>
<tr>
<td>15</td>
<td>172</td>
<td>T3 T5 T78 T99 T147 S155 S166 T74</td>
<td></td>
<td>I4-G23, L120-F135 V50-L71, L146-S166 T74-D93 G96-V114</td>
</tr>
<tr>
<td>16</td>
<td>364</td>
<td>T11 S87 S156 T218 T225 T255 T256 S294 S313 S342 T143 T143 S210 T265</td>
<td>N253</td>
<td>I231-T243 I37-F55 Y185-V204</td>
</tr>
<tr>
<td>Nucleotide SEQ ID NO:</td>
<td>Selected Fragments of Nucleic Acid Sequence</td>
<td>Tissue Expression (Fraction of Total)</td>
<td>Disease Class (Fraction of Total)</td>
<td>Vector</td>
</tr>
<tr>
<td>----------------------</td>
<td>---</td>
<td>---------------------------------------</td>
<td>-----------------------------------</td>
<td>--------</td>
</tr>
<tr>
<td>17</td>
<td>Hematopoietic/Immune (0.333) Gastrointestinal (0.217) Reproductive (0.130)</td>
<td>Inflammation (0.449) Cancer (0.333) Trauma (0.130)</td>
<td>pINCY</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Reproductive (0.241) Gastrointestinal (0.177) Nervous (0.139)</td>
<td>Cancer (0.481) Inflammation (0.228) Fetal (0.215)</td>
<td>pINCY</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Hematopoietic/Immune (0.314) Gastrointestinal (0.229) Reproductive (0.129)</td>
<td>Inflammation (0.429) Cancer (0.357) Trauma (0.129)</td>
<td>pINCY</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Hematopoietic/Immune (0.333) Reproductive (0.333) Gastrointestinal (0.222)</td>
<td>Cancer (0.333) Inflammation (0.333) Fetal (0.111)</td>
<td>PSORT1</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Reproductive (0.421) Nervous (0.158) Cardiovascular (0.105)</td>
<td>Cancer (0.474) Inflammation (0.263) Fetal (0.105)</td>
<td>PT7T3</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Musculoskeletal (0.500) Cardiovascular (0.250) Urologic (0.250)</td>
<td>Fetal (0.500) Cancer (0.250) Inflammation (0.250)</td>
<td>pINCY</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Reproductive (0.324) Nervous (0.297) Hematopoietic/Immune (0.135)</td>
<td>Cell proliferation (0.676) Inflammation (0.216)</td>
<td>PSORT1</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Hematopoietic/Immune (0.444) Gastrointestinal (0.222) Reproductive (0.111)</td>
<td>Inflammation (0.611) Cell proliferation (0.278)</td>
<td>PSORT</td>
<td></td>
</tr>
<tr>
<td>Nucleotide SEQ ID NO:</td>
<td>Selected Fragments of Nucleic Acid Sequence</td>
<td>Tissue Expression (Fraction of Total)</td>
<td>Disease Class (Fraction of Total)</td>
<td>Vector</td>
</tr>
<tr>
<td>----------------------</td>
<td>--</td>
<td>---------------------------------------</td>
<td>-----------------------------------</td>
<td>--------</td>
</tr>
<tr>
<td>25</td>
<td>575-619</td>
<td>Nervous (0.292) Reproductive (0.292)</td>
<td>Cell proliferation (0.792)</td>
<td>pINCY</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cardiovascular (0.125)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>921-956</td>
<td>Hematopoietic/Immune (0.286) Gastrointestinal (0.224) Reproductive (0.184)</td>
<td>Cell proliferation (0.511) Inflammation (0.367)</td>
<td>pINCY</td>
</tr>
<tr>
<td>27</td>
<td>15-61</td>
<td>Nervous (0.333) Reproductive (0.167)</td>
<td>Cell proliferation (0.500) Inflammation (0.333)</td>
<td>PSPORT1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cardiovascular (0.111)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>389-433</td>
<td>Reproductive (0.237) Nervous (0.186)</td>
<td>Cell proliferation (0.660) Inflammation (0.309)</td>
<td>pINCY</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hematopoietic/Immune (0.124)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>125-172</td>
<td>Hematopoietic/Immune (0.306) Gastrointestinal (0.167) Reproductive (0.167)</td>
<td>Cell proliferation (0.583) Inflammation (0.333)</td>
<td>pINCY</td>
</tr>
<tr>
<td>30</td>
<td>435-479</td>
<td>Hematopoietic/Immune (0.310) Gastrointestinal (0.225) Reproductive (0.127)</td>
<td>Cell proliferation (0.465) Inflammation (0.437)</td>
<td>pINCY</td>
</tr>
<tr>
<td>31</td>
<td>151-194</td>
<td>Nervous (0.357) Endocrine (0.143) Cardiovascular (0.107)</td>
<td>Cell proliferation (0.428) Inflammation (0.393)</td>
<td>PSPORT1</td>
</tr>
<tr>
<td>32</td>
<td>659-703</td>
<td>Nervous (0.207) Cardiovascular (0.195) Reproductive (0.171)</td>
<td>Cell proliferation (0.671) Inflammation (0.220)</td>
<td>pINCY</td>
</tr>
<tr>
<td>Nucleotide SEQ ID NO:</td>
<td>Clone ID</td>
<td>Library</td>
<td>Library Comment</td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td>-----------</td>
<td>----------</td>
<td>-----------------</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>1877651</td>
<td>LEUKNOT03</td>
<td>Library was constructed using RNA isolated from white blood cells of a 27-year-old female with blood type A+. The donor tested negative for cytomegalovirus (CMV).</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>2906971</td>
<td>THYMNOT05</td>
<td>Library was constructed using RNA isolated from thymus tissue removed from a 3-year-old Hispanic male during a thymectomy and closure of a patent ductus arteriosus.</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>2907954</td>
<td>THYMNOT05</td>
<td>Library was constructed using RNA isolated from thymus tissue removed from a 3-year-old Hispanic male during a thymectomy and closure of a patent ductus arteriosus.</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>3083742</td>
<td>OVARTUN01</td>
<td>Normalized library was constructed from 5.36 million independent clones obtained from an ovarian tumor library. RNA was isolated from tumor tissue removed from the left ovary of a 58-year-old Caucasian female during a total abdominal hysterectomy, removal of a single ovary, and inguinal hernia repair. Pathology indicated a metastatic grade 3 adenocarcinoma of colonic origin, forming a partially cystic and necrotic tumor mass in the left ovary, and a nodule in the left mesovarium. Patient history included follicular ovarian cyst. The normalization and hybridization conditions were adapted from Soares et al. (PNAS (1994) 91:9928) and Bonaldo et al. (Genome Research (1996) 6:791).</td>
<td></td>
</tr>
</tbody>
</table>
Table 4 cont.

<table>
<thead>
<tr>
<th>Nucleotide SEQ ID NO:</th>
<th>Clone ID</th>
<th>Library</th>
<th>Library Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>3407686</td>
<td>PROSTUS08</td>
<td>Subtracted prostate tumor library was constructed using 2.36 million clones from a prostate tumor library and was subjected to one round of subtractive hybridization with 448,000 clones from a normal prostate library. The starting library for subtraction was constructed using RNA isolated from a prostate tumor removed from a 59-year-old Caucasian male during a radical prostatectomy with regional lymph node excision. Pathology indicated adenocarcinoma (Gleason grade 3+3) Adenofibromatous hyperplasia was present. The patient presented with elevated prostate-specific antigen (PSA). Patient history included colon diverticuli. Subtractive hybridization conditions were based on the methodologies of Swaroop et al., NAR (1991) 19:1954 and Bonaldo, et al. Genome Research (1996) 6:791.</td>
</tr>
<tr>
<td>22</td>
<td>3472455</td>
<td>LUNGNOT27</td>
<td>Library was constructed using RNA isolated from lung tissue removed from a 17-year-old Hispanic female.</td>
</tr>
<tr>
<td>23</td>
<td>786873</td>
<td>PROSNOT05</td>
<td>Library was constructed using RNA isolated from diseased prostate tissue removed from a 67-year-old Caucasian male during radical prostatectomy and lymph node biopsy. This library, originally prepared as an unaffected section from the diseased prostate, has been determined to contain some tumor cells. Pathology indicated adenofibromatous hyperplasia was present. Pathology for the associated tumor tissue indicated adenocarcinoma Gleason grade 3+3. Patient history included coronary artery disease, stomach ulcer, and osteoarthritis. Family history included congestive heart failure.</td>
</tr>
<tr>
<td>24</td>
<td>1220371</td>
<td>NEUTGMT01</td>
<td>Library was constructed using RNA isolated from peripheral blood granulocytes collected by density gradient centrifugation through Ficoll-Hypaque. The cells were isolated fromuffy coat units obtained from 20 unrelated male and female donors. Cells were cultured in 10 nM GM-CSF for 1 hour before washing and harvesting for total RNA preparation.</td>
</tr>
<tr>
<td>Nucleotide SEQ ID NO:</td>
<td>Clone ID</td>
<td>Library</td>
<td>Library Comment</td>
</tr>
<tr>
<td>----------------------</td>
<td>----------</td>
<td>---------</td>
<td>----------------</td>
</tr>
<tr>
<td>25</td>
<td>1258785</td>
<td>MENITUT03</td>
<td>Library was constructed using RNA isolated from brain meningioma tissue removed from a 35-year-old Caucasian female during excision of a cerebral meningeal lesion. Pathology indicated a benign neoplasm in the right cerebellopontine angle of the brain. Patient history included hypothyroidism. Family history included myocardial infarction and breast cancer.</td>
</tr>
<tr>
<td>26</td>
<td>1361202</td>
<td>LUNGNOT12</td>
<td>Library was constructed using RNA isolated from lung tissue removed from a 78-year-old Caucasian male during a segmental lung resection and regional lymph node resection. Pathology for the associated tumor tissue indicated an invasive pulmonary grade 3 adenocarcinoma. Patient history included cerebrovascular disease, arteriosclerotic coronary artery disease, thrombophlebitis, chronic obstructive pulmonary disease, and asthma. Family history included intracranial hematoma, cerebrovascular disease, arteriosclerotic coronary artery disease, and type I diabetes.</td>
</tr>
<tr>
<td>27</td>
<td>2132846</td>
<td>OVARNOT03</td>
<td>Library was constructed using RNA isolated from ovarian tissue removed from a 43-year-old Caucasian female during removal of the fallopian tubes and ovaries. Pathology for the associated tumor tissue indicated grade 2 mucinous cystadenocarcinoma. Patient history included mitral valve disorder, pneumonia, and viral hepatitis. Family history included atherosclerotic coronary artery disease, pancreatic cancer, stress reaction, cerebrovascular disease, breast cancer, and uterine cancer.</td>
</tr>
<tr>
<td>28</td>
<td>2539294</td>
<td>BONRTUT01</td>
<td>Library was constructed using RNA isolated from rib tumor tissue removed from a 16-year-old Caucasian male during a rib osteotomy and a wedge resection of the lung. Pathology indicated a metastatic grade 3 (of 4) osteosarcoma, forming a mass involving the chest wall.</td>
</tr>
</tbody>
</table>
Table 4 cont.

<table>
<thead>
<tr>
<th>Nucleotide SEQ ID NO</th>
<th>Clone ID</th>
<th>Library</th>
<th>Library Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>29</td>
<td>2589371</td>
<td>LUNGNOT22</td>
<td>Library was constructed using RNA isolated from lung tissue removed from a 58-year-old Caucasian female. The tissue sample used to construct this library was found to have tumor contaminant upon microscopic examination. Pathology for the associated tumor tissue indicated a caseating granuloma. Family history included congestive heart failure, breast cancer, secondary bone cancer, acute myocardial infarction, and atherosclerotic coronary artery disease.</td>
</tr>
<tr>
<td>30</td>
<td>2656082</td>
<td>THYMNOT04</td>
<td>Library was constructed using RNA isolated from thymus tissue removed from a 3-year-old Caucasian male who died from anoxia.</td>
</tr>
<tr>
<td>31</td>
<td>2762182</td>
<td>BRAINOS12</td>
<td>Library was constructed from 4.9 million clones from a brain library by subtraction of abundantly expressed clone pools. RNA was made from brain tissue removed from a 26-year-old Caucasian male during cranioplasty and excision of a cerebral meningeal lesion. Pathology for the associated tumor tissue indicated a grade 4 oligoastrocytoma in the right fronto-parietal part of the brain.</td>
</tr>
<tr>
<td>32</td>
<td>3140659</td>
<td>SMCCNOT02</td>
<td>Library was constructed using RNA isolated from smooth muscle cells removed from the coronary artery of a 3-year-old Caucasian male. The cells were treated with TNF alpha and interleukin-1 beta for 20 hours.</td>
</tr>
<tr>
<td>Program</td>
<td>Description</td>
<td>Reference</td>
<td>Parameter Threshold</td>
</tr>
<tr>
<td>-----------------</td>
<td>--</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>ABI FACTURA</td>
<td>A program that removes vector sequences and masks ambiguous bases in nucleic acid sequences.</td>
<td>Perkin-Elmer Applied Biosystems, Foster City, CA.</td>
<td></td>
</tr>
<tr>
<td>ABI/PARCEL FDF</td>
<td>A Fast Data Finder useful in comparing and annotating amino acid or nucleic acid sequences.</td>
<td>Perkin-Elmer Applied Biosystems, Foster City, CA; Paracel Inc., Pasadena, CA.</td>
<td>Mismatch <50%</td>
</tr>
<tr>
<td>ABI AutoAssembler</td>
<td>A program that assembles nucleic acid sequences.</td>
<td>Perkin-Elmer Applied Biosystems, Foster City, CA.</td>
<td></td>
</tr>
<tr>
<td>Program</td>
<td>Description</td>
<td>Reference</td>
<td>Parameter Threshold</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td>-----------</td>
<td>---------------------</td>
</tr>
<tr>
<td>Motifs</td>
<td>A program that searches amino acid sequences for patterns that matched those defined in Prosite.</td>
<td>Bairoch et al. supra; Wisconsin Package Program Manual, version 9, page M51-59, Genetics Computer Group, Madison, WI.</td>
<td></td>
</tr>
</tbody>
</table>
What is claimed is:

1. A substantially purified polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9, SEQ ID NO:10, SEQ ID NO:11, SEQ ID NO:12, SEQ ID NO:13, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, and fragments thereof.

2. A substantially purified variant having at least 90% amino acid sequence identity to the amino acid sequence of claim 1.

3. An isolated and purified polynucleotide encoding the polypeptide of claim 1.

4. An isolated and purified polynucleotide variant having at least 70% polynucleotide sequence identity to the polynucleotide of claim 3.

5. An isolated and purified polynucleotide which hybridizes under stringent conditions to the polynucleotide of claim 3.

6. An isolated and purified polynucleotide having a sequence which is complementary to the polynucleotide of claim 3.

7. A method for detecting a polynucleotide, the method comprising the steps of:
 (a) hybridizing the polynucleotide of claim 6 to at least one nucleic acid in a sample, thereby forming a hybridization complex; and
 (b) detecting the hybridization complex, wherein the presence of the hybridization complex correlates with the presence of the polynucleotide in the sample.

8. The method of claim 7 further comprising amplifying the polynucleotide prior to hybridization.

9. An isolated and purified polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ ID NO:17-32 and fragments thereof.

10. An isolated and purified polynucleotide variant having at least 90% polynucleotide sequence identity to the polynucleotide of claim 9.

11. An isolated and purified polynucleotide having a sequence which is complementary to the polynucleotide of claim 9.

12. An expression vector comprising at least a fragment of the polynucleotide of claim 3.

13. A host cell comprising the expression vector of claim 12.

14. A method for producing a polypeptide, the method comprising the steps of:
 a) culturing the host cell of claim 13 under conditions suitable for the expression of the polypeptide; and
b) recovering the polypeptide from the host cell culture.

15. A pharmaceutical composition comprising the polypeptide of claim 1 in conjunction with a suitable pharmaceutical carrier.

16. A purified antibody which specifically binds to the polypeptide of claim 1.

17. A purified agonist of the polypeptide of claim 1.

18. A purified antagonist of the polypeptide of claim 1.

19. A method for treating or preventing a disorder associated with decreased expression or activity of HRAP, the method comprising administering to a subject in need of such treatment an effective amount of the pharmaceutical composition of claim 15.

20. A method for treating or preventing a disorder associated with increased expression or activity of HRAP, the method comprising administering to a subject in need of such treatment an effective amount of the antagonist of claim 18.
SEQUENCE LISTING

<110> INCYTE PHARMACEUTICALS, INC.
HILLMAN, Jennifer L.
YUE, Henry
LAL, Preeti
TANG, Y. Tom
GORGONE, Gina A.
GUEGLER, Karl J.
CORLEY, Neil C.
BAUGHN, Mariah R.

<120> HUMAN RECEPTOR-ASSOCIATED PROTEINS

<130> PF-0571 PCT

<140> To Be Assigned

<141> Herewith

<150> 09/130,884; Unassigned; 60/098,703
<151> 1998-08-07; 1998-08-07; 1998-09-01

<160> 32

<170> PERL Program

<210> 1
<211> 345
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte Clone No: 1877651

<400> 1
Met His Leu Val Gly Gly Ser Cys Glu Val Trp Phe Pro Asp Val
 1 5 10 15
Leu Gln Gln Val Pro Leu Pro Cys Leu Trp Ala Pro Ser Met Ala
 20 25 30
Asn Ser Ala Met Asp Thr Arg Val Leu Cys Ala Val Ile Cys
 35 40 45
Leu Leu Gly Ala Gly Leu Ser Asn Ala Gly Val Met Gln Asn Pro
 50 55 60
Arg His Leu Val Arg Arg Gly Gln Glu Ala Arg Leu Arg Cys
 65 70 75
Ser Pro Met Lys Gly His Ser His Val Tyr Trp Tyr Arg Gln Leu
 80 85 90
Pro Glu Glu Gly Leu Lys Phe Met Val Tyr Leu Gln Lys Glu Asn
 95 100 105
Ile Ile Asp Glu Ser Gly Met Pro Lys Glu Arg Phe Ser Ala Glu
 110 115 120
Phe Pro Lys Glu Gly Pro Ser Ile Leu Arg Ile Gln Gln Val Val
 125 130 135
Arg Gly Asp Ser Ala Ala Tyr Phe Cys Ala Ser Ser Pro His Ser
 140 145 150

1/28
<table>
<thead>
<tr>
<th>Lys</th>
<th>Gln</th>
<th>Ala</th>
<th>Glu</th>
<th>Gln</th>
<th>Phe</th>
<th>Phe</th>
<th>Gly</th>
<th>Pro</th>
<th>Gly</th>
<th>Thr</th>
<th>Arg</th>
<th>Leu</th>
<th>Thr</th>
<th>Val</th>
</tr>
</thead>
<tbody>
<tr>
<td>155</td>
<td>160</td>
<td>165</td>
<td></td>
</tr>
<tr>
<td>Leu</td>
<td>Glu</td>
<td>Asp</td>
<td>Leu</td>
<td>Lys</td>
<td>Asn</td>
<td>Val</td>
<td>Phe</td>
<td>Pro</td>
<td>Pro</td>
<td>Glu</td>
<td>Val</td>
<td>Ala</td>
<td>Val</td>
<td>Phe</td>
</tr>
<tr>
<td>170</td>
<td>175</td>
<td>180</td>
<td></td>
</tr>
<tr>
<td>Glu</td>
<td>Pro</td>
<td>Ser</td>
<td>Glu</td>
<td>Ala</td>
<td>Glu</td>
<td>Ile</td>
<td>Ser</td>
<td>His</td>
<td>Thr</td>
<td>Gln</td>
<td>Lys</td>
<td>Ala</td>
<td>Thr</td>
<td>Leu</td>
</tr>
<tr>
<td>185</td>
<td>190</td>
<td>195</td>
<td></td>
</tr>
<tr>
<td>Val</td>
<td>Cys</td>
<td>Leu</td>
<td>Ala</td>
<td>Thr</td>
<td>Gly</td>
<td>Phe</td>
<td>Tyr</td>
<td>Pro</td>
<td>Asp</td>
<td>His</td>
<td>Val</td>
<td>Glu</td>
<td>Leu</td>
<td>Ser</td>
</tr>
<tr>
<td>200</td>
<td>205</td>
<td>210</td>
<td></td>
</tr>
<tr>
<td>Trp</td>
<td>Trp</td>
<td>Val</td>
<td>Asn</td>
<td>Gly</td>
<td>Lys</td>
<td>Glu</td>
<td>Val</td>
<td>His</td>
<td>Ser</td>
<td>Gly</td>
<td>Val</td>
<td>Ser</td>
<td>Thr</td>
<td>Asp</td>
</tr>
<tr>
<td>215</td>
<td>220</td>
<td>225</td>
<td></td>
</tr>
<tr>
<td>Pro</td>
<td>Gln</td>
<td>Pro</td>
<td>Leu</td>
<td>Lys</td>
<td>Glu</td>
<td>Gln</td>
<td>Pro</td>
<td>Ala</td>
<td>Leu</td>
<td>Asn</td>
<td>Asp</td>
<td>Ser</td>
<td>Arg</td>
<td>Tyr</td>
</tr>
<tr>
<td>230</td>
<td>235</td>
<td>240</td>
<td></td>
</tr>
<tr>
<td>Cys</td>
<td>Leu</td>
<td>Ser</td>
<td>Ser</td>
<td>Arg</td>
<td>Leu</td>
<td>Arg</td>
<td>Val</td>
<td>Ser</td>
<td>Ala</td>
<td>Thr</td>
<td>Phe</td>
<td>Trp</td>
<td>Gln</td>
<td>Asn</td>
</tr>
<tr>
<td>245</td>
<td>250</td>
<td>255</td>
<td></td>
</tr>
<tr>
<td>Pro</td>
<td>Arg</td>
<td>Asn</td>
<td>His</td>
<td>Phe</td>
<td>Arg</td>
<td>Cys</td>
<td>Gln</td>
<td>Val</td>
<td>Gln</td>
<td>Phe</td>
<td>Tyr</td>
<td>Gly</td>
<td>Leu</td>
<td>Ser</td>
</tr>
<tr>
<td>260</td>
<td>265</td>
<td>270</td>
<td></td>
</tr>
<tr>
<td>Glu</td>
<td>Asp</td>
<td>Asp</td>
<td>Glu</td>
<td>Trp</td>
<td>Thr</td>
<td>Gln</td>
<td>Asp</td>
<td>Arg</td>
<td>Ala</td>
<td>Lys</td>
<td>Pro</td>
<td>Val</td>
<td>Thr</td>
<td>Gln</td>
</tr>
<tr>
<td>275</td>
<td>280</td>
<td>285</td>
<td></td>
</tr>
<tr>
<td>Ile</td>
<td>Val</td>
<td>Ser</td>
<td>Ala</td>
<td>Glu</td>
<td>Ala</td>
<td>Trp</td>
<td>Gly</td>
<td>Arg</td>
<td>Ala</td>
<td>Asp</td>
<td>Cys</td>
<td>Gly</td>
<td>Phe</td>
<td>Thr</td>
</tr>
<tr>
<td>290</td>
<td>295</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>Ser</td>
<td>Glu</td>
<td>Ser</td>
<td>Tyr</td>
<td>Gln</td>
<td>Gln</td>
<td>Gly</td>
<td>Val</td>
<td>Leu</td>
<td>Ser</td>
<td>Ala</td>
<td>Thr</td>
<td>Ile</td>
<td>Leu</td>
<td>Tyr</td>
</tr>
<tr>
<td>305</td>
<td>310</td>
<td>315</td>
<td></td>
</tr>
<tr>
<td>Glu</td>
<td>Ile</td>
<td>Leu</td>
<td>Leu</td>
<td>Gly</td>
<td>Lys</td>
<td>Ala</td>
<td>Thr</td>
<td>Leu</td>
<td>Tyr</td>
<td>Ala</td>
<td>Val</td>
<td>Leu</td>
<td>Val</td>
<td>Ser</td>
</tr>
<tr>
<td>320</td>
<td>325</td>
<td>330</td>
<td></td>
</tr>
<tr>
<td>Ala</td>
<td>Leu</td>
<td>Val</td>
<td>Leu</td>
<td>Met</td>
<td>Ala</td>
<td>Met</td>
<td>Val</td>
<td>Lys</td>
<td>Arg</td>
<td>Lys</td>
<td>Asp</td>
<td>Ser</td>
<td>Arg</td>
<td>Gly</td>
</tr>
<tr>
<td>335</td>
<td>340</td>
<td>345</td>
<td></td>
</tr>
</tbody>
</table>

(210) 2
(211) 487
(212) PRT
(213) Homo sapiens

(220)
(221) misc_feature
(223) Incyte Clone No: 2906971

(400) 2
Met | Ala | Ser | Ser | Ala | Glu | Gly | Asp | Glu | Gly | Thr | Val | Val | Ala | Leu |
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>10</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Ala</td>
<td>Gly</td>
<td>Val</td>
<td>Leu</td>
<td>Gln</td>
<td>Ser</td>
<td>Gly</td>
<td>Phe</td>
<td>Gln</td>
<td>Glu</td>
<td>Leu</td>
<td>Ser</td>
<td>Leu</td>
<td>Asn</td>
<td>Lys</td>
</tr>
<tr>
<td>20</td>
<td>25</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Leu</td>
<td>Ala</td>
<td>Thr</td>
<td>Ser</td>
<td>Leu</td>
<td>Gly</td>
<td>Ala</td>
<td>Ser</td>
<td>Glu</td>
<td>Gln</td>
<td>Ala</td>
<td>Leu</td>
<td>Arg</td>
<td>Leu</td>
<td>Ile</td>
</tr>
<tr>
<td>35</td>
<td>40</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>Ile</td>
<td>Ser</td>
<td>Ile</td>
<td>Phe</td>
<td>Leu</td>
<td>Gly</td>
<td>Tyr</td>
<td>Pro</td>
<td>Phe</td>
<td>Ala</td>
<td>Leu</td>
<td>Phe</td>
<td>Tyr</td>
<td>Arg</td>
<td>His</td>
</tr>
<tr>
<td>50</td>
<td>55</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>Tyr</td>
<td>Leu</td>
<td>Phe</td>
<td>Tyr</td>
<td>Lys</td>
<td>Glu</td>
<td>Thr</td>
<td>Tyr</td>
<td>Leu</td>
<td>Ile</td>
<td>His</td>
<td>Leu</td>
<td>Phe</td>
<td>His</td>
<td>Thr</td>
</tr>
<tr>
<td>65</td>
<td>70</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>Phe</td>
<td>Thr</td>
<td>Gly</td>
<td>Leu</td>
<td>Ser</td>
<td>Ile</td>
<td>Ala</td>
<td>Tyr</td>
<td>Phe</td>
<td>Asn</td>
<td>Phe</td>
<td>Gly</td>
<td>Asn</td>
<td>Gln</td>
<td>Leu</td>
</tr>
<tr>
<td>80</td>
<td>85</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>Tyr</td>
<td>His</td>
<td>Ser</td>
<td>Leu</td>
<td>Leu</td>
<td>Cys</td>
<td>Ile</td>
<td>Val</td>
<td>Leu</td>
<td>Gln</td>
<td>Phe</td>
<td>Leu</td>
<td>Ile</td>
<td>Leu</td>
<td>Arg</td>
</tr>
<tr>
<td>95</td>
<td>100</td>
<td>105</td>
<td></td>
</tr>
<tr>
<td>Leu</td>
<td>Met</td>
<td>Gly</td>
<td>Arg</td>
<td>Thr</td>
<td>Ile</td>
<td>Thr</td>
<td>Ala</td>
<td>Val</td>
<td>Leu</td>
<td>Thr</td>
<td>Thr</td>
<td>Phe</td>
<td>Cys</td>
<td>Phe</td>
</tr>
<tr>
<td>110</td>
<td>115</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td>Gln</td>
<td>Met</td>
<td>Ala</td>
<td>Tyr</td>
<td>Leu</td>
<td>Leu</td>
<td>Ala</td>
<td>Gly</td>
<td>Tyr</td>
<td>Tyr</td>
<td>Tyr</td>
<td>Thr</td>
<td>Ala</td>
<td>Thr</td>
<td>Gly</td>
</tr>
<tr>
<td>125</td>
<td>130</td>
<td>135</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td></td>
</tr>
<tr>
<td>Asn Tyr Asp Ile Lys Trp Thr Met Pro His Cys Val Leu Thr Leu</td>
<td>140</td>
<td>145</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>Lys Leu Ile Gly Leu Ala Val Asp Tyr Phe Asp Gly Gly Lys Asp</td>
<td>155</td>
<td>160</td>
<td>165</td>
<td></td>
</tr>
<tr>
<td>Glu Asn Ser Leu Ser Ser Glu Gln Gln Lys Tyr Ala Ile Arg Gly</td>
<td>170</td>
<td>175</td>
<td>180</td>
<td></td>
</tr>
<tr>
<td>Val Pro Ser Leu Leu Glu Val Ala Gly Phe Ser Tyr Phe Tyr Gly</td>
<td>185</td>
<td>190</td>
<td>195</td>
<td></td>
</tr>
<tr>
<td>Ala Phe Leu Val Gly Pro Gln Phe Ser Met Asn His Tyr Met Lys</td>
<td>200</td>
<td>205</td>
<td>210</td>
<td></td>
</tr>
<tr>
<td>Leu Val Gln Gly Glu Leu Ile Asp Ile Pro Gly Lys Ile Pro Asn</td>
<td>215</td>
<td>220</td>
<td>225</td>
<td></td>
</tr>
<tr>
<td>Ser Ile Ile Pro Ala Leu Lys Arg Leu Ser Leu Gly Leu Phe Tyr</td>
<td>230</td>
<td>235</td>
<td>240</td>
<td></td>
</tr>
<tr>
<td>Leu Val Gly Tyr Thr Leu Ser Pro His Ile Thr Glu Asp Tyr</td>
<td>245</td>
<td>250</td>
<td>255</td>
<td></td>
</tr>
<tr>
<td>Leu Leu Thr Glu Asp Tyr Asp His Pro Phe Trp Phe Arg Cys</td>
<td>260</td>
<td>265</td>
<td>270</td>
<td></td>
</tr>
<tr>
<td>Met Tyr Met Leu Ile Trp Gly Lys Phe Val Leu Tyr Lys Tyr Val</td>
<td>275</td>
<td>280</td>
<td>285</td>
<td></td>
</tr>
<tr>
<td>Thr Cys Trp Leu Val Thr Glu Val Cys Ile Leu Thr Gly Leu</td>
<td>290</td>
<td>295</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>Gly Phe Asn Gly Phe Glu Gly Lys Gly Lys Ala Lys Trp Asp Ala</td>
<td>305</td>
<td>310</td>
<td>315</td>
<td></td>
</tr>
<tr>
<td>Cys Ala Asn Met Lys Val Trp Leu Phe Glu Thr Asn Pro Arg Phe</td>
<td>320</td>
<td>325</td>
<td>330</td>
<td></td>
</tr>
<tr>
<td>Thr Gly Thr Ile Ala Ser Phe Asn Ile Asn Thr Asn Ala Trp Val</td>
<td>335</td>
<td>340</td>
<td>345</td>
<td></td>
</tr>
<tr>
<td>Ala Arg Tyr Ile Phe Lys Arg Leu Lys Phe Leu Gly Asn Lys Glu</td>
<td>350</td>
<td>355</td>
<td>360</td>
<td></td>
</tr>
<tr>
<td>Leu Ser Gln Gly Leu Ser Leu Leu Phe Leu Ala Leu Trp His Gly</td>
<td>365</td>
<td>370</td>
<td>375</td>
<td></td>
</tr>
<tr>
<td>Leu His Ser Gly Tyr Leu Val Cys Phe Gln Met Glu Phe Leu Ile</td>
<td>380</td>
<td>385</td>
<td>390</td>
<td></td>
</tr>
<tr>
<td>Val Ile Val Glu Arg Gln Ala Ala Arg Leu Ile Gln Glu Ser Pro</td>
<td>395</td>
<td>400</td>
<td>405</td>
<td></td>
</tr>
<tr>
<td>Thr Leu Ser Lys Leu Ala Ala Thr Val Leu Glu Pro Phe Tyr</td>
<td>410</td>
<td>415</td>
<td>420</td>
<td></td>
</tr>
<tr>
<td>Tyr Leu Val Gln Gln Thr Ile His Trp Leu Phe Met Gly Tyr Ser</td>
<td>425</td>
<td>430</td>
<td>435</td>
<td></td>
</tr>
<tr>
<td>Met Thr Ala Phe Cys Leu Phe Thr Trp Asp Lys Trp Leu Lys Val</td>
<td>440</td>
<td>445</td>
<td>450</td>
<td></td>
</tr>
<tr>
<td>Tyr Lys Ser Ile Tyr Phe Leu Gly His Ile Phe Leu Ser Leu</td>
<td>455</td>
<td>460</td>
<td>465</td>
<td></td>
</tr>
<tr>
<td>Leu Phe Ile Leu Pro Tyr Ile His Lys Ala Met Val Pro Arg Lys</td>
<td>470</td>
<td>475</td>
<td>480</td>
<td></td>
</tr>
<tr>
<td>Glu Lys Leu Lys Lys Met Glu</td>
<td>485</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Met Gly Thr Arg Leu Leu Cys Trp Ala Ala Leu Cys Leu Leu Gly</td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>5 10 15</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Ala Glu Leu Thr Glu Ala Gly Val Ala Gln Ser Pro Arg Tyr Lys</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>Ile Ile Glu Lys Arg Gln Ser Val Ala Phe Trp Cys Asn Pro Ile</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>Ser Gly His Ala Thr Leu Tyr Trp Tyr Gln Gln Ile Leu Gly Gln</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>Gly Pro Lys Leu Leu Ile Gln Phe Gln Asn Asn Gly Val Val Asp</td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>Asp Ser Gln Leu Pro Lys Asp Arg Phe Ser Ala Glu Arg Leu Lys</td>
<td></td>
</tr>
<tr>
<td>85</td>
<td>105</td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>Gly Val Asp Ser Thr Leu Lys Ile Gln Pro Ala Lys Leu Glu Asp</td>
<td></td>
</tr>
<tr>
<td>95</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>Ser Ala Val Tyr Leu Cys Ala Ser Ser Phe Leu Asp Arg Asn Asn</td>
<td></td>
</tr>
<tr>
<td>105</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td>110</td>
<td>Glu Gln Phe Phe Gly Pro Gly Thr Arg Leu Thr Val Leu Glu Asp</td>
<td></td>
</tr>
<tr>
<td>115</td>
<td>130</td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>Leu Lys Asn Val Phe Pro Pro Glu Val Ala Val Phe Glu Pro Ser</td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>135</td>
<td></td>
</tr>
<tr>
<td>140</td>
<td>Glu Ala Glu Ile Ser His Thr Gln Lys Ala Thr Leu Val Cys Leu</td>
<td></td>
</tr>
<tr>
<td>145</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>150</td>
<td>Ala Thr Gly Phe Tyr Pro Asp His Val Glu Leu Ser Trp Trp Val</td>
<td></td>
</tr>
<tr>
<td>155</td>
<td>160</td>
<td></td>
</tr>
<tr>
<td>160</td>
<td>Asn Gly Lys Glu Val His Ser Gly Val Ser Thr Asp Pro Gln Pro</td>
<td></td>
</tr>
<tr>
<td>165</td>
<td>170</td>
<td></td>
</tr>
<tr>
<td>170</td>
<td>Leu Lys Glu Gln Pro Ala Leu Asn Asp Ser Arg Tyr Cys Leu Ser</td>
<td></td>
</tr>
<tr>
<td>175</td>
<td>180</td>
<td></td>
</tr>
<tr>
<td>180</td>
<td>Ser Arg Leu Arg Val Ser Ala Thr Phe Trp Gln Asn Pro Arg Asn</td>
<td></td>
</tr>
<tr>
<td>185</td>
<td>190</td>
<td></td>
</tr>
<tr>
<td>190</td>
<td>His Phe Arg Cys Gln Val Gln Phe Tyr Gly Leu Ser Gly Val Asp</td>
<td></td>
</tr>
<tr>
<td>195</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>Glu Trp Thr Gln Asp Arg Ala Lys Pro Val Thr Gln Ile Val Ser</td>
<td></td>
</tr>
<tr>
<td>205</td>
<td>210</td>
<td></td>
</tr>
<tr>
<td>210</td>
<td>Ala Glu Ala Trp Gly Arg Ala Asp Cys Gly Phe Thr Ser Gly Ser</td>
<td></td>
</tr>
<tr>
<td>215</td>
<td>220</td>
<td></td>
</tr>
<tr>
<td>220</td>
<td>Tyr Glu Gln Gly Val Leu Ser Ala Thr Ile Leu Tyr Glu Ile Leu</td>
<td></td>
</tr>
<tr>
<td>225</td>
<td>230</td>
<td></td>
</tr>
<tr>
<td>230</td>
<td>Leu Gly Lys Ala Thr Leu Tyr Ala Val Leu Val Ser Ala Leu Val</td>
<td></td>
</tr>
<tr>
<td>235</td>
<td>240</td>
<td></td>
</tr>
<tr>
<td>240</td>
<td>245</td>
<td></td>
</tr>
<tr>
<td>245</td>
<td>250</td>
<td></td>
</tr>
<tr>
<td>250</td>
<td>255</td>
<td></td>
</tr>
<tr>
<td>255</td>
<td>260</td>
<td></td>
</tr>
<tr>
<td>260</td>
<td>265</td>
<td></td>
</tr>
<tr>
<td>265</td>
<td>270</td>
<td></td>
</tr>
<tr>
<td>270</td>
<td>275</td>
<td></td>
</tr>
<tr>
<td>275</td>
<td>280</td>
<td></td>
</tr>
<tr>
<td>280</td>
<td>285</td>
<td></td>
</tr>
<tr>
<td>285</td>
<td>290</td>
<td></td>
</tr>
<tr>
<td>290</td>
<td>295</td>
<td></td>
</tr>
<tr>
<td>295</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>300</td>
<td>Leu Met Ala Met Val Lys Arg Lys Asp Ser Arg Gly</td>
<td></td>
</tr>
<tr>
<td>305</td>
<td>310</td>
<td></td>
</tr>
</tbody>
</table>

<210> 4
<211> 309
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte Clone No: 3083742

<400> 4
Met Asn Gly Thr Tyr Asn Thr Cys Gly Ser Ser Asp Leu Thr Trp
 1 5 10 15
Pro Pro Ala Ile Lys Leu Gly Phe Tyr Ala Tyr Leu Gly Val Leu
 20 25 30
Leu Val Leu Gly Leu Leu Leu Asn Ser Leu Ala Leu Trp Val Phe
 35 40 45
Cys Cys Arg Met Gln Gln Trp Thr Glu Thr Arg Ile Tyr Met Thr
 50 55 60
Asn Leu Ala Val Ala Asp Leu Cys Leu Leu Cys Thr Leu Pro Phe
 65 70 75
Val Leu His Ser Leu Arg Asp Thr Ser Asp Thr Pro Leu Cys Gln
 80 85 90
Leu Ser Gln Gly Ile Tyr Leu Thr Asn Arg Tyr Met Ser Ile Ser
 95 100 105
Leu Val Thr Ala Ile Ala Val Asp Arg Tyr Val Ala Val Arg His
 110 115 120
Pro Leu Arg Ala Arg Gly Leu Arg Ser Pro Arg Gln Ala Ala Ala
 125 130 135
Val Cys Ala Val Leu Trp Val Leu Val Ile Gly Ser Leu Val Ala
 140 145 150
Arg Trp Leu Leu Gly Ile Gln Gln Gly Gly Phe Cys Phe Arg Ser
 155 160 165
Thr Arg His Asn Phe Asn Ser Met Ala Phe Pro Leu Leu Gly Phe
 170 175 180
Tyr Leu Pro Leu Ala Val Val Val Phe Cys Ser Leu Lys Val Val
 185 190 195
Thr Ala Leu Ala Gln Arg Pro Pro Thr Asp Val Gly Gln Ala Gln
 200 205 210
 Ala Thr Arg Lys Ala Ala Arg Met Val Trp Ala Asn Leu Leu Val
 215 220 225
 Phe Val Val Cys Phe Leu Pro Leu His Val Gly Leu Thr Val Arg
 230 235 240
Leu Ala Val Gly Trp Asn Ala Cys Ala Leu Leu Glu Thr Ile Arg
 245 250 255
Arg Ala Leu Tyr Ile Thr Ser Lys Leu Ser Asp Ala Asn Cys Cys
 260 265 270
Leu Asp Ala Ile Cys Tyr Tyr Tyr Met Ala Lys Glu Phe Gln Gln
 275 280 285
 Ala Ser Ala Leu Ala Val Ala Pro Arg Ala Lys Ala His Lys Ser
 290 295 300
Gln Asp Ser Leu Cys Val Thr Leu Ala
 305

<210> 5
<211> 367
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte Clone No: 3407686

<400> 5
Met Ile Arg Asn Trp Leu Thr Ile Phe Ile Leu Phe Pro Leu Lys
 1 5 10 15
Leu Val Glu Lys Cys Glu Ser Ser Val Ser Leu Thr Val Pro Pro
 20 25 30
Val Val Lys Leu Glu Asn Gly Ser Ser Thr Asn Val Ser Leu Thr
 35 40 45
Leu Arg Pro Pro Leu Asn Ala Thr Leu Val Ile Thr Phe Glu Ile
 50 55 60
Thr Phe Arg Ser Lys Asn Ile Thr Ile Leu Glu Leu Pro Asp Glu
 65 70 75
Val Val Val Pro Pro Gly Val Thr Asn Ser Ser Phe Gln Val Thr
 80 85 90
Ser Gln Asn Val Gly Gln Leu Thr Val Tyr Leu His Gly Asn His
 95 100 105
Ser Asn Gln Thr Gly Pro Arg Ile Arg Phe Leu Val Ile Arg Ser
 110 115 120
Ser Ala Ile Ser Ile Asn Gln Val Ile Gly Trp Ile Tyr Phe
 125 130 135
Val Ala Trp Ser Ile Ser Phe Tyr Pro Gln Val Ile Met Asn Trp
 140 145 150
Arg Arg Lys Ser Val Ile Gly Leu Ser Phe Asp Phe Val Ala Leu
 155 160 165
Asn Leu Thr Gly Phe Val Ala Tyr Ser Val Phe Asn Ile Gly Leu
 170 175 180
Leu Trp Val Pro Tyr Ile Lys Glu Gln Phe Leu Leu Lys Tyr Pro
 185 190 195
Asn Gly Val Asn Pro Val Asn Ser Asn Asp Val Phe Phe Ser Leu
 200 205 210
His Ala Val Val Leu Thr Leu Ile Ile Val Gln Cys Cys Leu
 215 220 225
Tyr Glu Arg Gly Gly Gln Arg Val Ser Trp Pro Ala Ile Gly Phe
 230 235 240
Leu Val Leu Ala Trp Leu Phe Ala Phe Val Thr Met Ile Val Ala
 245 250 255
Ala Val Gly Val Ile Thr Trp Leu Gln Phe Leu Phe Cys Phe Ser
 260 265 270
Tyr Ile Lys Leu Ala Val Thr Leu Val Lys Tyr Phe Pro Gln Ala
 275 280 285
Tyr Met Asn Phe Tyr Tyr Lys Ser Thr Glu Gly Trp Ser Ile Gly
 290 295 300
Asn Val Leu Leu Asp Phe Thr Gly Gly Ser Phe Ser Leu Leu Gln
 305 310 315
Met Phe Leu Gln Ser Tyr Asn Asp Gln Trp Thr Leu Ile Phe
 320 325 330
Gly Asp Pro Thr Lys Phe Gly Leu Gly Val Phe Ser Ile Val Phe
 335 340 345
Asp Val Val Phe Phe Ile Gln His Phe Cys Leu Tyr Arg Lys Arg
 350 355 360
Pro Gly Tyr Asp Gln Leu Asn
 365
<220>
<221> misc_feature
<223> Incyte Clone No: 3472455

<p>| | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>10</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>25</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>40</td>
<td>45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>55</td>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>70</td>
<td>75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>85</td>
<td>90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>95</td>
<td>100</td>
<td>105</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>110</td>
<td>115</td>
<td>120</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>130</td>
<td>135</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>140</td>
<td>145</td>
<td>150</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>155</td>
<td>160</td>
<td>165</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>170</td>
<td>175</td>
<td>180</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>185</td>
<td>190</td>
<td>195</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>205</td>
<td>210</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>215</td>
<td>220</td>
<td>225</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>230</td>
<td>235</td>
<td>240</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>245</td>
<td>250</td>
<td>255</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>260</td>
<td>265</td>
<td>270</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>275</td>
<td>280</td>
<td>285</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>290</td>
<td>295</td>
<td>300</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>305</td>
<td>310</td>
<td>315</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>320</td>
<td>325</td>
<td>330</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>335</td>
<td>340</td>
<td>345</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>340</td>
<td>345</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

7/28
<table>
<thead>
<tr>
<th>Thr</th>
<th>Ile</th>
<th>Gln</th>
<th>Asp</th>
<th>Gln</th>
<th>Leu</th>
<th>Val</th>
<th>Gly</th>
<th>Ser</th>
<th>Gly</th>
<th>Leu</th>
<th>Val</th>
<th>Pro</th>
<th>Ala</th>
<th>Ala</th>
<th>Gly</th>
<th>Leu</th>
<th>Val</th>
</tr>
</thead>
<tbody>
<tr>
<td>350</td>
<td>355</td>
<td></td>
</tr>
<tr>
<td>355</td>
<td></td>
<td>360</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Glu</td>
<td>Asp</td>
<td>Glu</td>
<td>Ala</td>
<td>Gly</td>
<td>Ser</td>
<td>Ala</td>
<td>Thr</td>
<td>Ser</td>
<td>Cys</td>
<td>Leu</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>365</td>
<td>370</td>
<td></td>
<td>375</td>
<td></td>
</tr>
<tr>
<td>380</td>
<td></td>
</tr>
<tr>
<td>385</td>
<td></td>
</tr>
</tbody>
</table>

<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte Clone No: 786873

<400> 7
Met Glu Ser Asn Leu Ser Gly Leu Val Pro Ala Ala Gly Leu Val
1 5 10 15
Pro Ala Leu Pro Pro Ala Val Thr Leu Gly Thr Thr Ala Tyr
20 25 30
Thr Thr Leu Tyr Ala Leu Leu Phe Phe Ser Val Tyr Ala Gln Leu
35 40 45
Trp Leu Val Leu Tyr Gly His Lys Arg Leu Ser Tyr Gln Thr
50 55 60
Val Phe Leu Ala Leu Cys Leu Leu Trp Ala Ala Leu Arg Thr Thr
65 70 75
Leu Phe Ser Phe Tyr Phe Arg Asp Thr Pro Arg Ala Asn Arg Leu
80 85 90
Gly Pro Leu Pro Phe Trp Leu Leu Tyr Cys Cys Pro Val Cys Leu
95 100 105
Gln Phe Phe Thr Leu Thr Leu Met Asn Leu Tyr Phe Ala Gln Val
110 115 120
Val Phe Lys Ala Lys Val Lys Arg Arg Pro Glu Met Ser Arg Gly
125 130 135
Leu Leu Ala Val Arg Gly Ala Phe Val Gly Ala Ser Leu Leu Phe
140 145 150
Leu Leu Val Asn Val Leu Cys Ala Val Leu Ser His Arg Arg Arg
155 160 165
Ala Gln Pro Trp Ala Leu Leu Leu Val Arg Val Leu Val Ser Asp
170 175 180
Ser Leu Phe Val Ile Cys Ala Leu Ser Leu Ala Ala Cys Leu Cys
185 190 195
Leu Val Ala Arg Ala Pro Ser Thr Ser Ile Tyr Leu Glu Ala
200 205 210
Lys Ala Asp Leu Val Asn Asp Leu Gly Asn Lys Gly Tyr Leu Val
215 220 225
Phe Gly Leu Ile Leu Phe Val Trp Glu Leu Leu Pro Thr Thr Leu
230 235 240
Leu Val Gly Phe Phe Arg Val His Arg Pro Glu Asp Leu Ser
245 250 255
Thr Ser His Ile Leu Asn Gly Glu Val Phe Ala Ser Arg Ser Tyr
260 265 270
Phe Phe Asp Arg Ala Gly His Cys Glu Asp Glu Gly Cys Ser Trp
275 280 285
Glu His Ser Arg Gly Glu Ser Thr Ser Met Ser Gly Ser Leu Gly
 290 295 300
Ser Gly Ser Trp Tyr Gly Ala Ile Gly Arg Glu Pro Gly Trp Tyr
 305 310 315
Gly Gly Ser Gln Thr Lys Thr Thr Pro Leu Phe Ser Gln Val
 320 325 330
Pro Gly Pro Gly Gly His His His Ser Leu Tyr Ser Thr Pro Gln
 335 340 345
Thr

<210> 8
<211> 241
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte Clone No: 1220371

<400> 8
Met Gly Thr Ala Ser Arg Ser Asn Ile Ala Arg His Leu Gln Thr
 1 5 10 15
Asn Leu Ile Leu Phe Cys Val Gly Ala Val Gly Ala Cys Thr Leu
 20 25 30
Ser Val Thr Gln Pro Trp Tyr Leu Glu Val Asp Tyr Thr His Glu
 35 40 45
 Ala Val Thr Ile Lys Cys Thr Phe Ser Ala Thr Gln Pro Ser
 50 55 60
Glu Gln Pro Thr Cys Leu Trp Phe Arg Tyr Gly Ala His Gln Pro
 65 70 75
Glu Asn Leu Cys Leu Asp Gly Cys Lys Ser Glu Ala Asp Lys Phe
 80 85 90
Thr Val Arg Glu Ala Leu Lys Glu Asn Gln Val Ser Leu Thr Val
 95 100 105
Asn Arg Val Thr Ser Asn Asp Ser Ala Ile Tyr Ile Cys Gly Ile
 110 115 120
 Ala Phe Pro Ser Val Pro Glu Ala Arg Ala Lys Gln Thr Gly
 125 130 135
Gly Thr Thr Leu Val Arg Val Arg Ile Lys Leu Ser Lys Glu
 140 145 150
Leu Arg Ser Phe Leu Thr Ala Leu Val Ser Leu Ser Val Tyr
 155 160 165
Val Thr Gly Val Cys Val Ala Phe Ile Leu Leu Ser Lys Ser Lys
 170 175 180
Ser Asn Pro Leu Arg Asn Lys Glu Ile Lys Glu Asp Ser Gln Lys
 185 190 195
 Lys Lys Ser Ala Arg Arg Ile Phe Gln Glu Ile Ala Gln Glu Leu
 200 205 210
Tyr His Lys Arg His Val Glu Thr Asn Gln Gln Ser Glu Lys Asp
 215 220 225
Asn Asn Thr Tyr Glu Asn Arg Arg Val Leu Ser Asn Tyr Glu Arg
 230 235 240
Pro
<table>
<thead>
<tr>
<th>Met</th>
<th>Gly</th>
<th>Glu</th>
<th>Thr</th>
<th>Met</th>
<th>Ser</th>
<th>Lys</th>
<th>Arg</th>
<th>Leu</th>
<th>Lys</th>
<th>Leu</th>
<th>His</th>
<th>Leu</th>
<th>Gly</th>
<th>Gly</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>10</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Glu</td>
<td>Ala</td>
<td>Glu</td>
<td>Met</td>
<td>Glu</td>
<td>Arg</td>
<td>Ala</td>
<td>Phe</td>
<td>Val</td>
<td>Asn</td>
<td>Pro</td>
<td>Phe</td>
<td>Pro</td>
<td>Asp</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>20</td>
<td>25</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Tyr</td>
<td>Glu</td>
<td>Ala</td>
<td>Ala</td>
<td>Gly</td>
<td>Ala</td>
<td>Leu</td>
<td>Leu</td>
<td>Ala</td>
<td>Ser</td>
<td>Gly</td>
<td>Ala</td>
<td>Ala</td>
<td>Glu</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>35</td>
<td>40</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>Glu</td>
<td>Thr</td>
<td>Gly</td>
<td>Cys</td>
<td>Val</td>
<td>Arg</td>
<td>Pro</td>
<td>Pro</td>
<td>Ala</td>
<td>Thr</td>
<td>Thr</td>
<td>Asp</td>
<td>Glu</td>
<td>Pro</td>
<td>Gly</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>50</td>
<td>55</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>Leu</td>
<td>Pro</td>
<td>Phe</td>
<td>His</td>
<td>Gln</td>
<td>Asp</td>
<td>Gly</td>
<td>Lys</td>
<td>Ile</td>
<td>Ile</td>
<td>His</td>
<td>Asn</td>
<td>Phe</td>
<td>Ile</td>
<td>Arg</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>65</td>
<td>70</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>Arg</td>
<td>Ile</td>
<td>Gln</td>
<td>Thr</td>
<td>Lys</td>
<td>Ile</td>
<td>Lys</td>
<td>Asp</td>
<td>Leu</td>
<td>Leu</td>
<td>Gln</td>
<td>Gln</td>
<td>Met</td>
<td>Glu</td>
<td>Gly</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>80</td>
<td>85</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>Gly</td>
<td>Leu</td>
<td>Lys</td>
<td>Thr</td>
<td>Ala</td>
<td>Asp</td>
<td>Pro</td>
<td>His</td>
<td>Asp</td>
<td>Cys</td>
<td>Ser</td>
<td>Ala</td>
<td>Tyr</td>
<td>Thr</td>
<td>Thr</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>95</td>
<td>100</td>
<td>105</td>
<td></td>
</tr>
<tr>
<td>Trp</td>
<td>Thr</td>
<td>Gly</td>
<td>Ile</td>
<td>Ala</td>
<td>Leu</td>
<td>Leu</td>
<td>Tyr</td>
<td>Leu</td>
<td>Gln</td>
<td>Leu</td>
<td>Tyr</td>
<td>Arg</td>
<td>Val</td>
<td>Thr</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>110</td>
<td>115</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td>Cys</td>
<td>Asp</td>
<td>Gln</td>
<td>Thr</td>
<td>Tyr</td>
<td>Leu</td>
<td>Leu</td>
<td>Arg</td>
<td>Ser</td>
<td>Leu</td>
<td>Asp</td>
<td>Tyr</td>
<td>Val</td>
<td>Lys</td>
<td>Arg</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>125</td>
<td>130</td>
<td>135</td>
<td></td>
</tr>
<tr>
<td>Thr</td>
<td>Leu</td>
<td>Arg</td>
<td>Asn</td>
<td>Leu</td>
<td>Asn</td>
<td>Gly</td>
<td>Arg</td>
<td>Arg</td>
<td>Val</td>
<td>Thr</td>
<td>Phe</td>
<td>Leu</td>
<td>Cys</td>
<td>Gly</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>140</td>
<td>145</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>Asp</td>
<td>Ala</td>
<td>Gly</td>
<td>Pro</td>
<td>Leu</td>
<td>Ala</td>
<td>Val</td>
<td>Gly</td>
<td>Ala</td>
<td>Val</td>
<td>Ile</td>
<td>Tyr</td>
<td>His</td>
<td>Lys</td>
<td>Leu</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>155</td>
<td>160</td>
<td>165</td>
<td></td>
</tr>
<tr>
<td>Arg</td>
<td>Ser</td>
<td>Asp</td>
<td>Cys</td>
<td>Glu</td>
<td>Ser</td>
<td>Gln</td>
<td>Glu</td>
<td>Cys</td>
<td>Val</td>
<td>Thr</td>
<td>Lys</td>
<td>Leu</td>
<td>Leu</td>
<td>Gln</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>170</td>
<td>175</td>
<td>180</td>
<td></td>
</tr>
<tr>
<td>Leu</td>
<td>Gln</td>
<td>Arg</td>
<td>Ser</td>
<td>Val</td>
<td>Val</td>
<td>Cys</td>
<td>Gln</td>
<td>Glu</td>
<td>Ser</td>
<td>Asp</td>
<td>Leu</td>
<td>Pro</td>
<td>Asp</td>
<td>Glu</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>185</td>
<td>190</td>
<td>195</td>
<td></td>
</tr>
<tr>
<td>Leu</td>
<td>Leu</td>
<td>Tyr</td>
<td>Gly</td>
<td>Arg</td>
<td>Ala</td>
<td>Gly</td>
<td>Tyr</td>
<td>Leu</td>
<td>Tyr</td>
<td>Ala</td>
<td>Leu</td>
<td>Leu</td>
<td>Tyr</td>
<td>Leu</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>200</td>
<td>205</td>
<td>210</td>
<td></td>
</tr>
<tr>
<td>Asn</td>
<td>Thr</td>
<td>Glu</td>
<td>Ile</td>
<td>Gly</td>
<td>Pro</td>
<td>Gly</td>
<td>Thr</td>
<td>Val</td>
<td>Cys</td>
<td>Glu</td>
<td>Ser</td>
<td>Ala</td>
<td>Ile</td>
<td>Lys</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>215</td>
<td>220</td>
<td>225</td>
<td></td>
</tr>
<tr>
<td>Glu</td>
<td>Val</td>
<td>Val</td>
<td>Asn</td>
<td>Ala</td>
<td>Ile</td>
<td>Ile</td>
<td>Glu</td>
<td>Ser</td>
<td>Gly</td>
<td>Lys</td>
<td>Thr</td>
<td>Leu</td>
<td>Ser</td>
<td>Arg</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>230</td>
<td>235</td>
<td>240</td>
<td></td>
</tr>
<tr>
<td>Glu</td>
<td>Glu</td>
<td>Arg</td>
<td>Lys</td>
<td>Thr</td>
<td>Glu</td>
<td>Arg</td>
<td>Cys</td>
<td>Pro</td>
<td>Leu</td>
<td>Leu</td>
<td>Tyr</td>
<td>Gln</td>
<td>Trp</td>
<td>His</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>245</td>
<td>250</td>
<td>255</td>
<td></td>
</tr>
<tr>
<td>Arg</td>
<td>Lys</td>
<td>Gln</td>
<td>Tyr</td>
<td>Val</td>
<td>Gly</td>
<td>Ala</td>
<td>Ala</td>
<td>His</td>
<td>Gly</td>
<td>Met</td>
<td>Ala</td>
<td>Gly</td>
<td>Ile</td>
<td>Tyr</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>260</td>
<td>265</td>
<td>270</td>
<td></td>
</tr>
<tr>
<td>Tyr</td>
<td>Met</td>
<td>Leu</td>
<td>Met</td>
<td>Glu</td>
<td>Pro</td>
<td>Ala</td>
<td>Ala</td>
<td>Lys</td>
<td>Val</td>
<td>Asp</td>
<td>Gln</td>
<td>Glu</td>
<td>Thr</td>
<td>Leu</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>275</td>
<td>280</td>
<td>285</td>
<td></td>
</tr>
<tr>
<td>Thr</td>
<td>Glu</td>
<td>Met</td>
<td>Val</td>
<td>Lys</td>
<td>Pro</td>
<td>Ser</td>
<td>Ile</td>
<td>Asp</td>
<td>Tyr</td>
<td>Val</td>
<td>Arg</td>
<td>His</td>
<td>Lys</td>
<td>Lys</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>290</td>
<td>295</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>Phe</td>
<td>Arg</td>
<td>Ser</td>
<td>Gly</td>
<td>Tyr</td>
<td>Pro</td>
<td>Ser</td>
<td>Ser</td>
<td>Leu</td>
<td>Ser</td>
<td>Asn</td>
<td>Glu</td>
<td>Thr</td>
<td>Asp</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>305</td>
<td>310</td>
<td>315</td>
<td></td>
</tr>
<tr>
<td>Arg</td>
<td>Leu</td>
<td>Val</td>
<td>His</td>
<td>Trp</td>
<td>Cys</td>
<td>His</td>
<td>Gly</td>
<td>Ala</td>
<td>Pro</td>
<td>Gly</td>
<td>Val</td>
<td>Ile</td>
<td>His</td>
<td>Met</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>320</td>
<td>325</td>
<td>330</td>
<td></td>
</tr>
<tr>
<td>Leu</td>
<td>Met</td>
<td>Glu</td>
<td>Ala</td>
<td>Tyr</td>
<td>Lys</td>
<td>Val</td>
<td>Phe</td>
<td>Lys</td>
<td>Glu</td>
<td>Glu</td>
<td>Lys</td>
<td>Tyr</td>
<td>Leu</td>
<td>Lys</td>
</tr>
</tbody>
</table>

10/28
Glu Ala Met Glu Cys Ser Asp Val Ile Trp Gln Arg Gly Leu Leu 335
Arg Lys Gly Tyr Gly Ile Cys His Gly Thr Ala Gly Asn Gly Tyr 365
Ser Phe Leu Ser Leu Tyr Arg Leu Thr Gln Asp Lys Lys Tyr Leu 380
Tyr Arg Ala Cys Lys Phe Ala Glu Trp Cys Leu Asp Tyr Gly Ala 395
His Gly Cys Arg Ile Pro Asp Arg Pro Tyr Ser Leu Phe Gly Gly 410
Met Ala Gly Ala Ile His Phe Leu Ser Asp Val Leu Gly Pro Glu 425
Thr Ser Arg Phe Pro Ala Phe Glu Leu Asp Ser Ser Lys Arg Asp 440

<210> 10
<211> 340
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte Clone No: 1361202

<400> 10
Met Glu Thr Leu Leu Gly Leu Leu Ile Leu Trp Leu Gln Leu Gln
1 5
Trp Val Ser Ser Lys Gln Glu Val Thr Gln Ile Pro Ala Ala Leu
20 25
Ser Val Pro Glu Gly Glu Leu Val Leu Asn Cys Ser Phe Thr
30 35
Asp Ser Ala Ile Tyr Asn Leu Gln Trp Phe Arg Gln Asp Pro Gly
50 55
Lys Gly Leu Thr Ser Leu Leu Ile Gln Ser Ser Glu Arg Gly
65 70
Gln Thr Ser Gly Arg Leu Asn Ala Ser Leu Asp Lys Ser Ser Gly
80 85
Arg Ser Thr Leu Tyr Ile Ala Ala Ser Gly Pro Gly Asp Ser Ala
90 95
Thr Tyr Leu Cys Ala Val Arg Asp Asn Met Arg Phe Gly Ala
110 115
Gly Thr Arg Leu Thr Val Lys Pro Asn Ile Gln Asn Pro Asp Pro
120 125
Ala Val Tyr Gln Leu Arg Asp Ser Lys Ser Ser Asp Lys Ser Val
140 145
Cys Leu Phe Thr Asp Phe Asp Ser Gln Thr Asn Val Ser Gln Ser
150 155
Lys Asp Ser Asp Val Tyr Ile Thr Asp Lys Thr Val Leu Asp Met
170 175
Arg Ser Met Asp Phe Lys Ser Asn Ser Ala Val Ala Trp Ser Asn
180 185
Lys Ser Asp Phe Ala Cys Ala Asn Ala Phe Asn Asn Ser Ile Ile
200 210

11/28
Pro Glu Asp Thr Phe Phe Pro Ser Pro Glu Ser Ser Cys Asp Val
 215 220 225
Lys Leu Val Glu Lys Ser Phe Glu Thr Asp Thr Asn Leu Asn Phe
 230 235 240
Gln Asn Leu Ser Val Ile Gly Phe Arg Ile Leu Leu Leu Lys Val
 245 250 255
Ala Gly Phe Asn Leu Leu Met Thr Leu Arg Leu Trp Ser Ser
 260 265

<210> 11
<211> 190
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte Clone No: 2132846

<400> 11
Met Gly Lys Ser Asn Ser Lys Leu Thr Pro Glu Val Val Glu Glu
 1 5 10 15
Leu Thr Arg Lys Thr Tyr Phe Thr Glu Lys Glu Val Gln Gln Trp
 20 25 30
Tyr Lys Gly Phe Ile Lys Asp Cys Pro Ser Gly Gln Leu Asp Ala
 35 40 45
Ala Gly Phe Gln Lys Ile Tyr Lys Gln Phe Phe Pro Phe Gly Asp
 50 55 60
Pro Thr Lys Phe Ala Thr Phe Val Phe Asn Val Phe Asp Glu Asn
 65 70 75
Lys Asp Gly Arg Ile Glu Phe Ser Glu Phe Ile Gln Ala Leu Ser
 80 85 90
Val Thr Ser Arg Gly Thr Leu Asp Glu Lys Leu Arg Trp Ala Phe
 95 100 105
Lys Leu Tyr Asp Leu Asp Asn Gly Tyr Ile Thr Arg Asn Glu
 110 115 120
Met Leu Asp Ile Val Asp Ala Ile Tyr Gln Met Val Gly Asn Thr
 125 130 135
Val Glu Leu Pro Glu Glu Glu Asn Thr Pro Glu Lys Arg Val Asp
 140 145 150
Arg Ile Phe Ala Met Met Asp Lys Asn Ala Asp Gly Lys Leu Thr
 155 160 165
Leu Gln Glu Phe Gln Glu Gly Ser Lys Ala Asp Pro Ser Ile Val
 170 175 180
Gln Ala Leu Ser Leu Tyr Asp Gly Leu Val
 185 190

<210> 12
<211> 450
<212> PRT
<213> Homo sapiens
<table>
<thead>
<tr>
<th>1</th>
<th>5</th>
<th>10</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Met Ser Asp Met Glu Asp Asp Phe Met Cys Asp Asp Glu Glu Asp</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>25</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Tyr Asp Leu Glu Tyr Ser Glu Asp Ser Asn Ser Glu Pro Asn Val</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>40</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>Asp Leu Glu Asn Gln Tyr Tyr Asn Ser Lys Ala Leu Lys Glu Asp</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>55</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>Asp Pro Lys Ala Ala Leu Ser Ser Phe Gln Lys Val Leu Glu Leu</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>70</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>Glu Gly Glu Lys Gly Glu Trp Gly Phe Lys Ala Leu Lys Gln Met</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>85</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>Ile Lys Ile Asn Phe Lys Leu Thr Asn Phe Pro Glu Met Met Asn</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>95</td>
<td>100</td>
<td>105</td>
<td></td>
</tr>
<tr>
<td>Arg Tyr Lys Gln Leu Leu Thr Tyr Ile Arg Ser Ala Val Thr Arg</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>110</td>
<td>115</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td>Asn Tyr Ser Glu Lys Ser Ile Asn Ser Ile Leu Asp Tyr Ile Ser</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>130</td>
<td>135</td>
<td></td>
</tr>
<tr>
<td>Thr Ser Lys Gln Asn Ser Asp Phe Leu Cys Gln Met Asp Leu Leu</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>140</td>
<td>145</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>Gln Glu Phe Tyr Glu Thr Leu Glu Ala Leu Lys Asp Ala Lys</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>155</td>
<td>160</td>
<td>165</td>
<td></td>
</tr>
<tr>
<td>Asn Asp Arg Leu Trp Phe Lys Thr Asn Thr Lys Leu Gly Lys Leu</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>170</td>
<td>175</td>
<td>180</td>
<td></td>
</tr>
<tr>
<td>Tyr Leu Glu Arg Glu Glu Tyr Gly Leu Glu Gln Ile Leu Arg</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>185</td>
<td>190</td>
<td>195</td>
<td></td>
</tr>
<tr>
<td>Gln Leu His Gln Ser Cys Gln Thr Asp Asp Gly Glu Asp Asp Leu</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>205</td>
<td>210</td>
<td></td>
</tr>
<tr>
<td>Lys Lys Gly Thr Gln Leu Leu Glu Ile Tyr Ala Leu' Glu Ile Gln</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>215</td>
<td>220</td>
<td>225</td>
<td></td>
</tr>
<tr>
<td>Met Tyr Thr Ala Gln Asn Asn Lys Leu Lys Ala Leu Tyr</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>230</td>
<td>235</td>
<td>240</td>
<td></td>
</tr>
<tr>
<td>Glu Gln Ser Leu His Ile Lys Ser Ala Ile Pro His Pro Leu Ile</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>245</td>
<td>250</td>
<td>255</td>
<td></td>
</tr>
<tr>
<td>Met Gly Val Ile Arg Glu Cys Gly Gly Lys Met His Leu Arg Glu</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>260</td>
<td>265</td>
<td>270</td>
<td></td>
</tr>
<tr>
<td>Gly Glu Phe Glu Lys Ala His Thr Asp Phe Phe Glu Ala Phe Lys</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>275</td>
<td>280</td>
<td>285</td>
<td></td>
</tr>
<tr>
<td>Asn Tyr Asp Glu Ser Gly Ser Pro Arg Thr Thr Cys Leu Lys</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>290</td>
<td>295</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>Tyr Leu Val Leu Ala Asn Met Leu Met Lys Ser Gly Ile Asn Pro</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>305</td>
<td>310</td>
<td>315</td>
<td></td>
</tr>
<tr>
<td>Phe Asp Ser Gln Glu Ala Lys Pro Tyr Lys Asp Pro Glu Ile</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>320</td>
<td>325</td>
<td>330</td>
<td></td>
</tr>
<tr>
<td>Leu Ala Met Thr Asn Leu Val Ser Ala Tyr Gln Asn Asp Asp Ile</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>335</td>
<td>340</td>
<td>345</td>
<td></td>
</tr>
<tr>
<td>Thr Glu Phe Glu Lys Ile Leu Lys Thr Asn His Ser Asn Ile Met</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>350</td>
<td>355</td>
<td>360</td>
<td></td>
</tr>
<tr>
<td>Asp Asp Pro Phe Ile Arg Glu His Ile Glu Leu Arg Asn</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>365</td>
<td>370</td>
<td>375</td>
<td></td>
</tr>
<tr>
<td>Ile Arg Thr Gln Val Leu Ile Lys Leu Ile Lys Pro Tyr Thr Arg</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>380</td>
<td>385</td>
<td>390</td>
<td></td>
</tr>
</tbody>
</table>

13/28
<table>
<thead>
<tr>
<th>Residue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asp</td>
</tr>
<tr>
<td>395</td>
</tr>
<tr>
<td>His</td>
</tr>
<tr>
<td>410</td>
</tr>
<tr>
<td>Gln</td>
</tr>
<tr>
<td>425</td>
</tr>
<tr>
<td>Asn</td>
</tr>
<tr>
<td>440</td>
</tr>
</tbody>
</table>

420

13

240

PRT

Homo sapiens

misc_feature

Incyte Clone No: 2589371

13

Met | Leu | Leu | Gln | Ser | Gln | Thr | Met | Gly | Val | Ser | His | Ser | Phe | Thr |
1

5

10

15

Pro | Lys | Gly | Ile | Thr | Ile | Pro | Gln | Arg | Glu | Lys | Pro | Gly | His | Met |
20

25

30

Tyr | Gln | Asn | Glu | Asp | Tyr | Leu | Gln | Asn | Gly | Leu | Pro | Thr | Glu | Thr |
35

40

45

Thr | Val | Leu | Gly | Thr | Val | Gln | Ile | Leu | Cys | Cys | Leu | Leu | Ile | Ser |
50

55

60

Ser | Leu | Gly | Ala | Ile | Leu | Val | Phe | Ala | Pro | Tyr | Pro | Ser | His | Phe |
65

70

75

Asn | Pro | Ala | Ile | Ser | Thr | Thr | Leu | Met | Ser | Gly | Tyr | Pro | Phe | Leu |
80

85

90

Gly | Ala | Leu | Cys | Phe | Gly | Ile | Thr | Gly | Ser | Leu | Ser | Ile | Ile | Ser |
95

100

105

Gly | Lys | Gln | Ser | Thr | Lys | Pro | Phe | Asp | Leu | Ser | Ser | Leu | Thr | Ser |
110

115

120

Asn | Ala | Val | Ser | Ser | Val | Thr | Ala | Gly | Ala | Gly | Leu | Phe | Leu | Leu |
125

130

135

 Ala | Asp | Ser | Met | Val | Ala | Leu | Arg | Thr | Ala | Ser | Gln | His | Cys | Gly |
140

145

150

Ser | Glu | Met | Asp | Tyr | Leu | Ser | Ser | Leu | Pro | Tyr | Ser | Glu | Tyr | Tyr |
155

160

165

Tyr | Pro | Ile | Tyr | Glu | Ile | Lys | Asp | Cys | Leu | Leu | Thr | Ser | Val | Ser |
170

175

180

Leu | Thr | Gly | Val | Leu | Val | Met | Leu | Ile | Phe | Thr | Val | Leu | Glu |
185

190

195

Leu | Leu | Leu | Ala | Tyr | Ser | Ser | Val | Phe | Trp | Trp | Lys | Gln | Leu |
200

205

210

Tyr | Ser | Asn | Asn | Pro | Gly | Ser | Ser | Phe | Ser | Ser | Thr | Gln | Ser | Gln |
215

220

225

Asp | His | Ile | Gln | Gln | Val | Lys | Ser | Ser | Ser | Arg | Ser | Trp | Ile |
230

235

240
<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>10</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>25</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>40</td>
<td>45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>55</td>
<td>60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>70</td>
<td>75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>85</td>
<td>90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95</td>
<td>100</td>
<td>105</td>
<td></td>
<td></td>
</tr>
<tr>
<td>110</td>
<td>115</td>
<td>120</td>
<td></td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>130</td>
<td>135</td>
<td></td>
<td></td>
</tr>
<tr>
<td>140</td>
<td>145</td>
<td>150</td>
<td></td>
<td></td>
</tr>
<tr>
<td>155</td>
<td>160</td>
<td>165</td>
<td></td>
<td></td>
</tr>
<tr>
<td>170</td>
<td>175</td>
<td>180</td>
<td></td>
<td></td>
</tr>
<tr>
<td>185</td>
<td>190</td>
<td>195</td>
<td></td>
<td></td>
</tr>
<tr>
<td>190</td>
<td>200</td>
<td>205</td>
<td>210</td>
<td></td>
</tr>
<tr>
<td>215</td>
<td>220</td>
<td>225</td>
<td></td>
<td></td>
</tr>
<tr>
<td>230</td>
<td>235</td>
<td>240</td>
<td></td>
<td></td>
</tr>
<tr>
<td>245</td>
<td>250</td>
<td>255</td>
<td></td>
<td></td>
</tr>
<tr>
<td>260</td>
<td>265</td>
<td>270</td>
<td></td>
<td></td>
</tr>
<tr>
<td>275</td>
<td>280</td>
<td>285</td>
<td></td>
<td></td>
</tr>
<tr>
<td>290</td>
<td>295</td>
<td>300</td>
<td></td>
<td></td>
</tr>
<tr>
<td>305</td>
<td>310</td>
<td>315</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
<210> 15
<211> 172
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte Clone No: 2762182

<400> 15
Met Ala Thr Ile Thr Glu Lys Glu Val Gln Gln Trp Tyr Lys Gly
 1 5 10 15
Phe Ile Lys Asp Cys Pro Ser Gly Gln Leu Asp Ala Ala Gly Phe
 20 25 30
Gln Lys Ile Tyr Lys Gln Phe Pro Phe Gly Asp Pro Thr Lys
 35 40 45
Phe Ala Thr Phe Val Phe Asn Val Phe Asp Glu Asn Lys Asp Gly
 50 55 60
Arg Ile Glu Phe Ser Glu Phe Ile Gln Ala Leu Ser Val Thr Ser
 65 70 75
Arg Gly Thr Leu Asp Glu Lys Leu Arg Trp Ala Phe Lys Leu Tyr
 80 85 90
Asp Leu Asp Asn Asp Gly Tyr Ile Thr Arg Asn Glu Met Leu Asp
 95 100 105
Ile Val Asp Ala Ile Tyr Glu Met Val Gly Asn Thr Val Glu Leu
 110 115 120
Pro Glu Glu Glu Thr Pro Glu Gly Arg Val Asp Arg Ile Phe
 125 130 135
Ala Met Met Asp Lys Asn Ala Asp Gly Lys Leu Thr Leu Gln Glu
 140 145 150
Phe Glu Gly Ser Lys Ala Asp Pro Ser Ile Val Gln Ala Leu
 155 160 165
Ser Leu Tyr Asp Gly Leu Val
 170

<210> 16
<211> 364
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte Clone No: 3140659

<400> 16
Met Ser Val Met Val Val Arg Lys Lys Val Thr Arg Lys Trp Glu
 1 5 10 15
Lys Leu Pro Gly Arg Asn Thr Phe Cys Asp Gly Arg Val Met
 20 25 30
Met Ala Arg Gln Lys Gly Ile Phe Tyr Leu Thr Leu Phe Leu Ile
 35 40 45
Leu Gly Thr Cys Thr Leu Phe Phe Ala Phe Glu Cys Arg Tyr Leu
 50 55 60
 Ala Val Glu Leu Ser Pro Ala Ile Pro Val Phe Ala Ala Met Leu

16/28
65 70 75
Phe Leu Phe Ser Met Ala Thr Leu Leu Arg Thr Ser Phe Ser Asp
80 85 90
Pro Gly Val Ile Pro Arg Ala Leu Pro Asp Glu Ala Ala Phe Ile
95 100 105
Glu Met Glu Ile Glu Ala Thr Asn Gly Ala Val Pro Gln Gly Gln
110 115 120
Arg Pro Pro Pro Arg Ile Lys Asn Phe Gln Ile Asn Asn Gln Ile
125 130 135
Val Lys Leu Lys Tyr Cys Tyr Thr Cys Lys Ile Phe Arg Pro Pro
140 145 150
Arg Ala Ser His Cys Ser Ile Cys Asp Asn Cys Val Glu Arg Phe
155 160 165
Asp His His Cys Pro Trp Val Gly Asn Cys Val Gly Lys Arg Asn
170 175 180
Tyr Arg Tyr Phe Tyr Leu Phe Ile Leu Ser Leu Ser Leu Thr
185 190 195
Ile Tyr Val Phe Ala Phe Asn Ile Val Tyr Val Ala Leu Lys Ser
200 205 210
Leu Lys Ile Gly Phe Leu Glu Thr Leu Lys Glu Thr Pro Gly Thr
215 220 225
Val Leu Glu Val Leu Ile Cys Phe Thr Leu Trp Ser Val Val
230 235 240
Gly Leu Thr Gly Phe His Thr Phe Leu Val Ala Leu Asn Gln Thr
245 250 255
Thr Asn Glu Asp Ile Lys Gly Ser Trp Thr Gly Lys Arg Asn Val
260 265 270
Gln Asn Pro Tyr Ser His Gly Asn Ile Val Lys Asn Cys Cys Glu
275 280 285
Val Leu Cys Gly Pro Leu Pro Pro Ser Val Leu Asp Arg Arg Gly
290 295 300
Ile Leu Pro Leu Glu Glu Ser Gly Ser Arg Pro Pro Ser Thr Gln
305 310 315
Glu Thr Ser Ser Leu Leu Pro Gln Ser Pro Ala Pro Thr Glu
320 325 330
His Leu Asn Ser Glu Met Pro Glu Asp Ser Ser Thr Pro Glu
335 340 345
Glu Met Pro Pro Pro Glu Pro Pro Glu Pro Pro Gln Glu Ala Ala
350 355 360
Glu Ala Glu Lys

<210> 17
<211> 1270
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte Clone No: 1877651

<400> 17
gacctcag gaagatgcat cttgtaggag gcagctgtga ggtctgtgcc cccgacgtgc 60
tgcaacaagt gctcttgccc tgctgtgag cttcctccat ggccaactct gctatggaca 120
cagagctact ctgctgtgag gtcatctgc tttgagggcc aggtctctca aatgccggcc 180
WO 00/08155

PCT/US99/17777

tcatgcagaa ccaagacac ccggggcggac ctggctcagga gggaggcaaga ctcgtcatgc 240

gcggataa agggacagct catgtttcatc ggtatgcgca gcggggcggac gaaggctgca 300

daatcctagt ggattcgctcc aagaggaata tcaaatagta tctcaagaaag ctcggaaatc 360

gatttctctgc taagacttccc cccgacacgc cagagacctg cagagacctg cagagacctg 420

gaggagatgg tctgtctcag gcgtgacgca gcgaagaccc tctctagcgat gcttgcagct 480

tcctcggggc aggaccaagg ctcacagtgc ttagagacct gaaaaagctgt tcccccccctg 540

gagtgtctgtgc ggttgagcag cagagacctg cagagacctg cagagacctg 600

tctgcctctgc cagtgctcag aagagactcc cccgagccct cccaggccct cccgagccct 660

gaggagatgg ccatgctctgc tccctccttc ctcctcctgc ctcctcctgc ctcctcctgc 720

gagtctctgc cagccatgca aggacccact gcagagagag ctcagacctgc ctcagacctgc 780

tcgagtcctgc ccggaggttc attccttcct gcagagagag ctcagacctgc ctcagacctgc 840

tcctcggggc aggagcaggac tcctcctgct gcagagagag ctcagacctgc ctcagacctgc 900

tcctcggggc aggagcaggac tcctcctgct gcagagagag ctcagacctgc ctcagacctgc 960

tcctcggggc aggagcaggac tcctcctgct gcagagagag ctcagacctgc ctcagacctgc 1020

tcctcggggc aggagcaggac tcctcctgct gcagagagag ctcagacctgc ctcagacctgc 1080

tcctcggggc aggagcaggac tcctcctgct gcagagagag ctcagacctgc ctcagacctgc 1140

tcctcggggc aggagcaggac tcctcctgct gcagagagag ctcagacctgc ctcagacctgc 1200

tcctcggggc aggagcaggac tcctcctgct gcagagagag ctcagacctgc ctcagacctgc 1260

tggtgcatt

<210> 18
<211> 2234
<212> DNA
<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte Clone No: 2906971

<400> 18

aggttttgccc gccttcgctg gggcgccggac tggtgggtccc ctgtttggtct cccggagtta 60

agatggtgtc ctctgcgggag ggggagagag ggactgtgtg tgtctgggtgc ggtgtcctgc 120

agttgggtgct ccaagaggct acgcttttaa cgtgctgggc gcgtggcttc gcgtggcttc 180

agggcgctggct gcgtgatcctc tccttcctcct tcggggtcct cttctctgttg ttttactgcg 240

attaccttct ctacagcgct acgtcttacc ccccatacct ccatacctt ccatacctt 300

cacaggtttta tttaatttta ggaaacacag ccctacacct cctcgctgctg attgtgcctc 360

agttccctcat ccacccctgt gggcgctcca ccctactcgt cgtccctctg actcttttgc 420

tccagatggccc ctacatctctgt gcggctactc attacacgct cccaggggac tacaatcacta 480

agttgcaactc acgttttcgag ttcgggttga cagtctgtat cttctctctct cgggtactc 540

tggtcgtcgtct cctctgccgt gcggctctct cttctctctc cttctctctc cttctctctc 600

ggccagggtt cccatcagctt acgtatctgt gccgtccttg gccgtccttg gccgtccttg 660

caggagttgct gcagttctgcgc gcagttctgcgc gcagttctgcgc gcagttctgcgc gcagttctgcgc 720

caggagttgct gcagttctgcgc gcagttctgcgc gcagttctgcgc gcagttctgcgc gcagttctgcgc 780

caggagttgct gcagttctgcgc gcagttctgcgc gcagttctgcgc gcagttctgcgc gcagttctgcgc 840

caggagttgct gcagttctgcgc gcagttctgcgc gcagttctgcgc gcagttctgcgc gcagttctgcgc 900

caggagttgct gcagttctgcgc gcagttctgcgc gcagttctgcgc gcagttctgcgc gcagttctgcgc 960

caggagttgct gcagttctgcgc gcagttctgcgc gcagttctgcgc gcagttctgcgc gcagttctgcgc 1020

18/28
agaaactacct cgtctcccttt ttcacagcac tcctttggcc cagagcagag aatggaaaaa 1620
ccagggagggt ggaagatcga tgtgctccagc tgtgctccttg tgtgccagcca agtcttttcatt 1680
tgaggggagaa aggagaacat ctttccaggtt cccctccctct ctgagtgtgaa cgtgatttccc 1740
atgaggtgggc ggtatcctag ctacacgcaaa cttacacatc ttcgagctcag tgtgattcagc 1800
tgcctccctcc tcccaaggtgt ctgggaagatc agcagcaagc cccatgccccag cttaatttttgtt 1860
attttttctag agaaagggga tttccacaggt tgtggccagcc tggctctgcag cttcctgcagc 1920
cacaagttgtt cacccctcctgc cttctgacag cgtgactttt cacacacttgct ataggtttttttt 2040
cctccacagtc acatgctctcc ctctctgaac cctattcag ctcagcattgt tgcgggctctc 2100
tggtggacctt acatagcgtt tcacagccca cccctccctct cggaggggttt ccccccctcc 2160
agagagggggc aagccgtcttc ctgctgacat ctcttctcctt tttcagactgt taagatataag 2220
tcactttctgt tgtg 2234

<210> 19
<211> 1552
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte Clone No: 2907954

<400> 19
tgacccctgat tgccacaaagc tcccatcctct cccatggactc gccatggaaga ccaagctctct 60
cctgctagggc gcctcctgtct cctctggagcc acaacactca gcgctggtgac cacttcagcc 120
tccctagatag aagattatag agaagagagca gattgtggtct tttttgtgca atctctatata 180
tgagccatgc gtccctcttc cttaggctgag aagccctaca gctgctgagca gctgctctag 240
tcagtctttag ctaagccgttg tagttggatat ttccacgattg ccatagggag cggactttgc 300
agagaggggtc aagagaggagt actccacctct caaagatcaca cttggcgacac gttttctgt 360
ggcgctgtct cctgcctgca gcagcctcttt gcacgagcag gtaaatctgtc aggtcggcctt 420
agggacacgg ctcacagctgc tagagggact aaaaaagcggt tttccaccccag aggtctgcgtg 480
gtttgacccca tcagacagcg agacttccca ccccaagccc gccacacgctg tgtgccgcgtgg 540
cacaggcttct taacccagcc aagcttctggtc gagcaggtgcc gtagatgctca 600
cagtgggggtt ccaggacccc cagcagccctgt ccagcagcag cccgctccta taagctgtgg 660
atactcctctg aggccgccgct ttaggtttctc ggcacacccct gccagagagc cggccagccca 720
cctcctgctct ctatgctgtct ccagctggttt cagcctgata gacggtttgc ccgccagatg 780
ggcaacacct gcctccagga cttgcagcctg ccagctcctgg ggtagagcag aactggtgctt 840
caacctcgag tttccctagc cagagggtct tgcctgccacc atctcttata gagaagttct 900
agaggggaac aacctgtactt cctgcttggt ttggcctgctg cctttttcag ctaagctgtg 960
gagaaagatgt tgtccagacgc gctcccccct ccctaagccag tcatccctctg ccctcctcctc 1020
ggatcttctt ggtacctgctt ccaactcctgt ttctctttaag tgtacttcttc tctgtctcttc 1080
atctctctct tatcsggatat ttttggtggtt tccagagact ttagctgccca 1140
accccaacgt acaagatagg ctaaaccaca aaaaaaggtg ggttgaggcc tgggtgtctcct 1200
tcagagattgt gctggagatgc cttgctcatac tgcgtgattt gagaagctgc 1260
caacctctg ggctcagagtg ccagagcagc cccctccctcct caccataagtc tccctccttc 1320
tggttctctt gatggagttgc ttcacagctct atttccatca cccgactattc ttgggctcctc 1380
tcggaggggt cttaggtgtag gccttttgagga aaccagcagc atagagagagc 1440
agagaggggg ccagacgagcc ccataaaccc ctacgcagat gcggagaggca cggaggcacg 1500
gaccagagtt cttacaatgtgc ttggtctattt ccacactcaata tattaatagt ta 1552

<210> 20
<211> 1369
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte Clone No: 3083742

<400> 20

ggggtcacaca cttccacccgg aggacccaaag cttgctgcaag cagcataaat gcgcacccaca 60
acaccttggtgc cttcaagcgac cttccactgca cccacagctg ctaa tideggcggt cttaaagg 120
actggggctg ccggcctgctg ccggcctgctg ccggcctgctg ccggcctgctg cttaaagg 180
gtggcgcgcat gcagcagctg gcagcagctg gcagcagctg gcagcagctg gcagcagctg 240
acctgccgcct gtggcgcgcat gcagcagctg gcagcagctg gcagcagctg gcagcagctg 300
gcggcgcggtgg ccacgctccttc cccagcttcct ccagcttccttc cccagcttcct ccagcttcct 360
tttccctgctt ctgcttgccct gcagcctgcct gcagcctgcct gcagcctgcct gcagcctgcct 420
gggcctgctt gtcggccttct gcagcctgcct gcagcctgcct gcagcctgcct gcagcctgcct 480
gctgccctgctt gcagcctgcct gcagcctgcct gcagcctgcct gcagcctgcct gcagcctgcct 540
ccggcgcgac ccacctcagcc cttccctgctg ccagcctgcct gcagcctgcct gcagcctgcct 600
tgacgccgct cttcttgccct gcagcctgcct gcagcctgcct gcagcctgcct gcagcctgcct 660
tggcgcgctt gcacccctgctgc gcagcctgcct gcagcctgcct gcagcctgcct gcagcctgcct 720
gacccctgctgc gcagcctgcct gcagcctgcct gcagcctgcct gcagcctgcct gcagcctgcct 780
tgggctgcctg gcagcctgcct gcagcctgcct gcagcctgcct gcagcctgcct gcagcctgcct 840
atgcacgccgc gcagcctgcct gcagcctgcct gcagcctgcct gcagcctgcct gcagcctgcct 900
tggcgcgctt gcacccctgctgc gcagcctgcct gcagcctgcct gcagcctgcct gcagcctgcct 960
taaccccctgct gcagcctgcct gcagcctgcct gcagcctgcct gcagcctgcct gcagcctgcct 1020
gggcgcggag aggagagggag aggagagggag aggagagggag aggagagggag aggagagggag 1080
tacccctgcct gcagcctgcct gcagcctgcct gcagcctgcct gcagcctgcct gcagcctgcct 1140
gggcgcggag aggagagggag aggagagggag aggagagggag aggagagggag aggagagggag 1200
ttttctcctgc gcagcctgcct gcagcctgcct gcagcctgcct gcagcctgcct gcagcctgcct 1260
gttgggtcttc gcagcctgcct gcagcctgcct gcagcctgcct gcagcctgcct gcagcctgcct 1320
gaatataact cccacccacag aggtaaaacgc aaaaaaagag aaaaaaagag aaaaaaagag 1380

<210> 21
<211> DNA
<212> Homo sapiens

<220>
<221> misc_feature
<223> Incyte Clone No: 3407686

<400> 21

gggcacggcc tctccccaaag ttgcagggcc caaggggaag ctggctgctcgc gcacccgcag 60
ttcacctgcct cttgcggaggg ccggcctttc ccggcctggct ccggcctgagc ccggcctgagc 120
ttttctcctgc gcagcctgctc gcagcctgcct gcagcctgcct gcagcctgcct gcagcctgcct 180
ggcgcgcgct gcagcctgcct gcagcctgcct gcagcctgcct gcagcctgcct gcagcctgcct 240
gtcgctgtcc gcagcctgcct gcagcctgcct gcagcctgcct gcagcctgcct gcagcctgcct 300
gttgggtcttc gcagcctgcct gcagcctgcct gcagcctgcct gcagcctgcct gcagcctgcct 360
ttgctggtgg gcagcctgcct gcagcctgcct gcagcctgcct gcagcctgcct gcagcctgcct 420
gttgggtcttc gcagcctgcct gcagcctgcct gcagcctgcct gcagcctgcct gcagcctgcct 480
ttcacctgcct cttgcaggttc gccttcagtg attcctgcctgcct gcagcctgcct gcagcctgcct 540
atgtctgtgtgc gcagcctgcct gcagcctgcct gcagcctgcct gcagcctgcct gcagcctgcct 600
ttcctctgccgc gcagcctgcct gcagcctgcct gcagcctgcct gcagcctgcct gcagcctgcct 660
tttttctcctgc gcagcctgcct gcagcctgcct gcagcctgcct gcagcctgcct gcagcctgcct 720
ctgctgctgctgcct gcagcctgcct gcagcctgcct gcagcctgcct gcagcctgcct gcagcctgcct 780
gttgggtcttc gcagcctgcct gcagcctgcct gcagcctgcct gcagcctgcct gcagcctgcct 840
ttttctcctgc gcagcctgcct gcagcctgcct gcagcctgcct gcagcctgcct gcagcctgcct 900
atgtctgtgtgc gcagcctgcct gcagcctgcct gcagcctgcct gcagcctgcct gcagcctgcct 960
ttcctctgccgc gcagcctgcct gcagcctgcct gcagcctgcct gcagcctgcct gcagcctgcct 1020
<210> 22
1431
<212> DNA
<213> Homo sapiens

misc_feature

Incyte Clone No: 3472455

<400> 22

gaaccttttgcc aagcgacaaac actaaggggga cgattttctga ttgcaatcag gcgcattcga 60
tccacccccc tccttcctca tgggactttg gggacaagag cttcggcagcg gttcgacgc 120
tcgacagcgg cgcttatccag gacccgagac aagctgtgga aaccagaccc tgcctctcga 180
ccccacagct cttaagttccg tcgtctccat cttgctgctgt cttcggcttg cttgggtgta 240
tctgcgcacc atcccccccgc agaggagact ttccccacag cagttgcccc ccaagcaca 300
gagcgccagg ctcagaggtt cacagtgctc ctactagctt atataactctg 360
aggctgttaa cctgctccag ttcacacact gttggaaccc atatagcccttg tgcacaccggc 420
ccagagcgccc tctggcctcag tggaaaaagg aacgtgtggt tcaaaaaaatccccctatgc 480
gtgcgcagcag tctgtagata aagttgtggct aagttggtggct acttgagcctc 540
ttgacccctag ggtgctccag caggttatcc ctgaggccct acttgagcctc 600
agcgaggtgac atcagctgcag aaatttttctct gcgtcttgaa aaccggaa 660
agcgaggtgac aacagttca ctataccttcatt gcgtggtggct 720
cattatagtg gtatttgcctgc cccgttcttgc actatatttc 780

gaaccttttgcc aagcgacaaac actaaggggga cgattttctga ttgcaatcag gcgcattcga 60
tccacccccc tccttcctca tgggactttg gggacaagag cttcggcagcg gttcgacgc 120
tcgacagcgg cgcttatccag gacccgagac aagctgtgga aaccagaccc tgcctctcga 180
ccccacagct cttaagttccg tcgtctccat cttgctgctgt cttcggcttg cttgggtgta 240
tctgcgcacc atcccccccgc agaggagact ttccccacag cagttgcccc ccaagcaca 300
gagcgccagg ctcagaggtt cacagtgctc ctactagctt atataactctg 360
aggctgttaa cctgctccag ttcacacact gttggaaccc atatagcccttg tgcacaccggc 420
ccagagcgccc tctggcctcag tggaaaaagg aacgtgtggt tcaaaaaaatccccctatgc 480
gtgcgcagcag tctgtagata aagttgtggct aagttggtggct acttgagcctc 540
ttgacccctag ggtgctccag caggttatcc ctgaggccct acttgagcctc 600
agcgaggtgac atcagctgcag aaatttttctct gcgtcttgaa aaccggaa 660
agcgaggtgac aacagttca ctataccttcatt gcgtggtggct 720

<211> 1788
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte Clone No: 786873.

<400> 23
cctacgacga ctatagggaa tttggccttc gagcagcggc attcgagcgc gatggcgcagc 60
tctcccccctc tccccaggac gcatagaagc accaggcgc gggagtcccc tccttggggcc 120
tctgatcccc ctccatctct ggctctgggt ggtccgaggg aggagacacc cccaaacccct 180
attccggttgt tctggaggaaa aagagactgc cctctctcgc ccttggtgta ggggctcggg 240
gccagagcgt tgtctgtctcc ccaagggcga ggtttctctc gtggaggagg aggggccttgt 300
cagcaccaca ctctccctcttg ctgcgggctc cacatccttc tcgctccacct gaaatccca 360
ccccctgcttt tttctcccgt ctcttctctc cccggcctgct cagatccttc cgccttgttt 420
cagggctctcatcctgcgtg tggagaataacc tgggtcttgacc ggtggtctgcg tgtcccgggctg 480
gtctctcgcc gctgcaacgc tggagatgtgg ggggctgccag cgtctgacrg caccctcgat 540
gctctgtcct ctctctctgg ctcggctctgg ggtttgtcgc tcggtgttgta cggggcaaaag 600
cgctctgtgct acgaacccggt tgtctggtgcc tctgtgtcgc tctggggcgc cttgctgtacc 660
accccctctt ccctttccct cccagcagctt cccgcccagca acggctggcg ggcctctgccg 720
tgctggcttc tctactgcctg cctctctgctct cgctgacttc gcagcttgaac gttatgacg 780
tctacctgtt gccaggtggt gcctgaagcc aagtgtaagc gtggcccagga tggagccagc 840
ggctggcgctcg gctgtgtggt cgccttgtgg ggcttttggg ggggagtcttc ggttgtgaaac 900
gtctgtgtgt tttcgtggtct ccattcgccgg gcggctgcaag ccctccgctt gctgctgttc 960
cgctctgctg caggagccgg gcccctccacg gcgtgacttc tggagggcagc gggggccttg 1020
tgctctgtgct cagaccgaggg cgcctctctct acgctcttc cggaggccaa cggggacttt 1080
gtgctctctgg tggggcaccac gcctctgctct gcgtgcgtggc ctgtgtgagag ctaattctct 1140
ctacctgcccc ggcacccgtgc gttggttccc tttggggttc accggcccgc acagacagct 1200
gacccagcagc acattctccgg ggcacctttc tggctcttcct ctctctggcc ctggggcctg 1260
gctgtggtgc ttttggggttc ggggtctcttc gcctgtggtg ggcctggtgt gcctgtgctg 1320
aggtggttgg ggcctgacttc ctcctctctcg ggcctgtggc ggtctgcttc gtttttgggt 1380
ttatggggaag gcagctacgc cttctgctctt cggggctctcg cggggctcag gcctctgctc 1440
ggcctcaccga cacaagttctga cccccccccct cccccccccct ggggggctgg gcggggctgg 1500
ataccacgag caccgctctgc cccctctctg ccctctctgc cccctcctct gcgggggctg 1650
tgcctgcttc tgtgtgctgct cggcctggtgc gcgtggcttgc gcggggcttc gcggggcttc 1800
acaccgacgg cccagcgcacc ctcctctctgc cggcctggtgc gcgtggcttgc gcggggcttc 1960
gttgagtgtg gccctgcgctg cttctctctgc cggcctggtgc gcgtggcttgc gcggggcttc 2120
<210> 24
<211> 1044
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte Clone No: 1220371.

<400> 24
gaaagcggcagc tttctctctc acataccacc cccacccggc cccggcataca cagaaatggg 60
gactcgagc agaaagaccac tttctttgttc ctgctgccca ttcgtcatac tatttttgagc 120
gctgtgctgc ggcctctgct cttctctctgc ctcctctctgc cttctctctgc cttctctctgc 180
caccgctggtgc cttctctctgc ctcctctctgc ctcctctctgc ctcctctctgc ctcctctctgc 240
acaccgacgg cccagcgcacc ctcctctctgc ctcctctctgc ctcctctctgc ctcctctctgc 300
gttgagtgtg gccctgcgctg cttctctctgc ctcctctctgc ctcctctctgc ctcctctctgc 360

22/28
cctcactgtga aacagagtgta cttcaaatga cagtgcaatt tacatcttgt gaatagcatt 420
cccccgttgtg cccgagacgca gacgtaaaca gacagaggag aagaccacac tgggtgtaaag 480
agaaattaag ctgtctcaacg agaacacctgc gcagcctctg acagcctctg tatacagtctg 540
tctctctctat tgtacgcgttg tggcgcgtgc cttcatatatct cttccaaat caaaaatccaa 600
cctctctcag aacaaagagaa taaaagagg ctaccaaaag aagaagagtct ctcggtctat 660
ttttcaggga aatctctcaag gaaagctctct cccggaagct atggcagctt 840
taatgaacat atatcactca ctgcctttttt 900
cctctctat catcacactctc cccgacacac ccctgcttct aatagtattata 960
ctaacacagaa ggtactcgag atgtgaagaa actataacta atatgtctta cccaaatact 1020
aaaaaccacc aacatacctcg tagaataatact 1044
cctcactgtga aacagagtgta cttcaaatga cagtgcaatt tacatcttgt gaatagcatt 25
211> 1605
212> DNA
213> Homo sapiens

220> misc_feature

222> Incyte Clone No: 1258785

400> 25

gtcccccgcccc gcgcgcgcgta gcgcgcgcgg aagggcgaga acacatgtcc caagggcgaa 40
gtctccacct gcgggcggag cagaaatagga ggcgagaagcc tggctgacaa ccctcccccag 120
catccaggggc gcgcgcgag tcggctctcg gcgcgcgaggc cagggcgaga caagagaattgt 180
tctctccccgg gcgcgcagcg tcggctccttc cttctccccg catcggccgg gtagagtcgtct 240
tcatatattttc atagcagcag ctgaggaacc gcgcgcgagtc gttctcctgg aagggcgtgaa 300
agggcggtga agggcggtacgccctcgtcgcgctctcgtgaa atctgcgtgac gcggctcgtg 360
ccctcctgta ctgagattctg tagcctccgacaggcctcttct tctgctcctgg 420
ggatagctct gaaagaaacc gctcggctctt ggtggaattt gatttattcgc aacatgccag 480
ggatagctggc cctccgtcctgg ctctcctcttc ccctcctcttc cccgctcctgg 540
gtctccaggaag tcgcagctcctc accttttgcca gctcggcagag tcgtctccag gcggctcgtg 600
agacccccctt gatcagcgtcg tttatgtacc gcggcgcacgc atgtcaggtc gttctggtgcgc 660
ggatagctct gaaagaaacc gctcggctctt ggtggaattt gatttattcgc aacatgccag 720
tctctcctctc tctgggtaag cttctgctctc ctggctctcc gcggctcgtg 780
ggatagctct gaaagaaacc gctcggctctt ggtggaattt gatttattcgc aacatgccag 840
tctctcctctc tctgggtaag cttctgctctc ctggctctcc gcggctcgtg 900
agacccccctt gatcagcgtcg tttatgtacc gcggcgcacgc atgtcaggtc gttctggtgcgc 960
agacccccctt gatcagcgtcg tttatgtacc gcggcgcacgc atgtcaggtc gttctggtgcgc 1020
ggatagctct gaaagaaacc gctcggctctt ggtggaattt gatttattcgc aacatgccag 1080
tagcgcgatgt atttgtgccgc gcggaggtgc gttcgctgctt tctgggtaag cttctgctctc 1140
tctctcctctc tctgggtaag cttctgctctc ctggctctcc gcggctcgtg 1200
tctctcctctc tctgggtaag cttctgctctc ctggctctcc gcggctcgtg 1260
tctctcctctc tctgggtaag cttctgctctc ctggctctcc gcggctcgtg 1320
tctctcctctc tctgggtaag cttctgctctc ctggctctcc gcggctcgtg 1380
tctctcctctc tctgggtaag cttctgctctc ctggctctcc gcggctcgtg 1440
tctctcctctc tctgggtaag cttctgctctc ctggctctcc gcggctcgtg 1500
tctctcctctc tctgggtaag cttctgctctc ctggctctcc gcggctcgtg 1560
catcaatata aatatatgtct ctctcctccata cagaaaaaa aaaaaa 1605
<220>
<221> misc_feature
<223> Incyte Clone No: 1361202

<400> 26
gagatagccaa agcagagtgt ttatcttttg ttccttttcat ccatttcatc cattatatc cattatatc ttttattatt cagccttcttc agcctttgta ctcagccacc tacctcttgtg 420
tctgtgaggag caatgacagt gccttggag cagggccagc actgacagta aaaccaataa 480
tccagaaccct gccgctttcgc ccgctcagct ctcgacagtc tcacctcagt ccttctaga gctcgctggc tctcttctctg ttttattatt 480

tctgtgaggag caatgacagt gccttggag cagggccagc actgacagta aaaccaataa 480
tccagaaccct gccgctttcgc ccgctcagct ctcgacagtc tcacctcagt ccttctaga gctcgctggc tctcttctctg 80

<210> 27
<211> 960
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte Clone No: 2132846

<400> 27
acgccagagc caagcttaaa ttaacctc caa ctaaaggga ta aggctg cccagcagagc 60
tggtggaat cccacagcag gcgagcag cgggaatcgc cggccagcag 120
taccttcgc cccagcaagc cccacagcag cgggaatcgc cggccagcag 180
gagccagcag gccacagcag cgggaatcgc cggccagcag 240
taccttcgc cccacagcag cgggaatcgc cggccagcag 300
<246> 28
aaccaaggac ttggtgcttcg cgcagcagcagtcgcttcct cccgcttcct tgcgcgtggtg 960

<210> 28
<211> 1990
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte Clone No: 2539294

<400> 28
tctctctcccc tctccccgccca agatgtctga catggaggat gatttcatgt gcggatagta 60
ggaggctac gacctggaat actcctgaaga tagtaactcc cgagccatag tggatttgga 120
aaatcgtac tataacttcc aagcttttaaa agagatctgc ccctaaagctg catcattcag 180
attttcaaaaag ttttggaaac ttgaaggtga aaaaagggaa tggggatatta aagcacgtaa 240
acaaatgtact aagattactt caaagttgac aacatctttt cgaatgtgta atagatataaa 300
gcagctatta ggctgtcagtg ccacaaagat tattcggaaa attccattaa 360
tttactttctt cattatatat ctactctctaa acagaattct tagttttatat gtcagatgga 420
ttcgctacatc ctactcttactt gaaagccactgg ggaagctttcag aagagatgta aagatagta 480
acctggtgta aagcagaaaa caagagtttg gaaattatat ttagaagcag aggaatatgga 540
aaragccatattttt cagggattata ctcgcctttta cagttttctt ctactcttctt cagtttttctt 600
attagggagt gcaagccctca cggccacccag cagcgctctt ctattttttt cagcccttca 660
agtggagacgt ttatattcag ttagttttttt cagcccttca cagctctcctt cagctctcctt 720
agagactttta caccccttcc tttcagtttg aagagccctc gaaatgctgg ctaattctttt 780
agggagacgt gtagttttttt cagcccttca cagctctcctt cagctctcctt cagctctcctt 840
tgaatctgga aagcagaaaa caagagtttg gaaattatat ttagaagcag aggaatatgga 900
agacacagaaa aataaacaac ccctttaaagct cagttttctt cagtttttctt cagtttttctt 960
ttttactttctt cattatatat ctactctctaa acagaattct tagttttatat gtcagatgga 1020
tttactttctt cattatatat ctactctctaa acagaattct tagttttatat gtcagatgga 1080
tttactttctt cattatatat ctactctctaa acagaattct tagttttatat gtcagatgga 1140
tttactttctt cattatatat ctactctctaa acagaattct tagttttatat gtcagatgga 1200
tttactttctt cattatatat ctactctctaa acagaattct tagttttatat gtcagatgga 1260
tttactttctt cattatatat ctactctctaa acagaattct tagttttatat gtcagatgga 1320
tttactttctt cattatatat ctactctctaa acagaattct tagttttatat gtcagatgga 1380
tttactttctt cattatatat ctactctctaa acagaattct tagttttatat gtcagatgga 1440
tttactttctt cattatatat ctactctctaa acagaattct tagttttatat gtcagatgga 1500
tttactttctt cattatatat ctactctctaa acagaattct tagttttatat gtcagatgga 1560
tttactttctt cattatatat ctactctctaa acagaattct tagttttatat gtcagatgga 1620
tttactttctt cattatatat ctactctctaa acagaattct tagttttatat gtcagatgga 1680
tttactttctt cattatatat ctactctctaa acagaattct tagttttatat gtcagatgga 1740
tttactttctt cattatatat ctactctctaa acagaattct tagttttatat gtcagatgga 1800

<400> 29
cataaatgct gctcttacga aaggacggag agtcttacag gctgtgagac gagaccacca 60
gatgcttgtgc gcaggaacag cccctgagac gttcccagagt aggcctccca agaggtaagc 120
tgatcccccac ccacacgca aaggacagc ctcgacgagc agcacatcca gcacatctgc 180
aatcatcaac gcaacattgc ggctttctca cacatttcca caaaggagca tcaatatttc 240
tcaaaagagag aaacactgag acaactgtca aaaacgaaga taccctcaga cagggctgcc 300
aacacagaaa acagctttgc ggtgcgtcga gcattgcgtg tgtgcttgtg tttctaacgt 360
ggggctacat tttgctttgct ctcctcactc ctcctcactc aactcagcag cttgccacac 420	tttgtagtcct ttttgcttgc ttcgcttcttt ctcgacgcca tgcagatatt cttactcttc 480
aatcatcaac cggaaacactc caaactacct ccttgctttc ggcagttagtg tttctttctt 540
agtagtcttc ttttcttcttt ttcagctcttc ttcagctcttc ttgtaggca aatgctctct 600
ggacgtcgc cttcaacctg gttgctcagc aataacattt cattttcctc tgcacctaatc 660
ggtagctttct atataactat tttactttcttt atggatatcc aatgctctttc tttagcatttc 720
agtagtcttct tttactttact cttacttttt ctctttatag ttcagctcttc ttcagctttt 780	tttcttcctt cctgttgcaag ggtggttgac aataccttctc ctcagcaacgc aattggtttc 840
ccagtccaca tatcacttcc aacaggtttca aaaaagttct tcaggtgatt gtagattact 900
aatctttggc ctcagcagag ggaataaccg ctcacacttc atgtgacagt ttcattctgc 960	tttcctgaaat ttttcttttc ttttcttttc gttgacaaca aaaaaaaga aaaaaaaaat 1020
gttttgtaaa aaaaaaaa 1038

<210> 30
<211> 1260
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte Clone No: 2656082

<400> 30
gaaaaaacac caaccaagac ccagagcagc agagcccacg acctacacca caaagaccca 60
gtcagagcgc ccacctccaga cccaggtgta gctggtgcttc acagcgtggc tggctggtgc 120	ttctctgctc cctggagtgc gttcccatgg aacgggagt tgaacagagc ccaacacacc 180
tggtcatggg aagatcatca aagagtttat ctaaaagttca aacaacatcg gtcacatcggc 240
tcagtaggtt gcgcaatagc gaaggtgctca agccctcaga gctgctgctc tgcagctgctt 300	ttgttgacag gtcggtacag aacaagggtt caagctgtgc ctcacagcag cttgccacac 360
gggaggagct ctttaggattc tcagcagact gcagcagact cccacccagc gccagccttc aatgctctct 420
ttttttttttt cttggctgctt cttttctttt cttttttttt ttgtaggca aatgctctct 480
cagggagact gtcctgagct cgctgtgtctc ccagaggttc ggtggtgact gtaggtgact 540
ttgcttcttc ctgacacagc gatagccacac actcatccaa aacagccacgc cctgcgctgg 600
cacacgagct ctactcgccac cagctggttc gtagctgttc tgtggtgac aagaggtgct 660
acatcgaggt gcagcagac gtcgcagcctc cttggctgctc cttgaggttc gtaggtgact 720
ngctgtttgt gcagcagcctc cttggctgctc cttgaggttc gtaggtgact 780
acactgtcag tcaagtcagc tttggtgagc cttgaggttc gtaggtgact 840
gggcggacac cttgcttttc ctttggtgagc cttgaggttc aacagccagca 900
tccttcgagc cttgcttttc cttgaggttc aacagccagca 960
ttaggagagg ctcagctggttc ctcagctggttc ctcagctggttc ctcagctggttc ctcagctggttc 1020
gagaaaaagc cttggagagg gatacagact gcagcagact cttgccacac cttgccacac 1080
agggccccac cttgcttttc cttgaggttc gtagctggtt ctcagctggttc ctcagctggttc 1140
catctccctac tttacagatt cttcccttcctt tttctctttc tctcctctct cttcccttcct 1200
aaccccccag tagcagatac gctaaacccag taaaaattaag tttggtgagc aaaaaaaaatg 1260
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte Clone No: 2762182

<400> 31
agagccggg ctgacacag ccaggggtctg cagggacagg gtggtagtcca 60
cccctttgct gagagctgcc ccttttcagc ctatgctccc ccaccccccc acataggttg 120
ggcccccgag ggctgttggga acgagagggccc ttcctgtaca tccggttccc agggtttggag 180
agatggcaca gattaccgag aaagggctcc agcagtgtga caaaggtttc atcaaggtcct 240
gcccccagg gcagcttggat gccgcaagct tccaaagagat ctctaagcaga tttttttcttg 300
tcggagaccc caccaaatggt ttcttcagct gttctgctgat gacctccagg ggaaccccag 360
gggcagtta gtcttcaggt ttcattcaggg ctggtgtctgct gcctccacgg ggaacccctgg 420
atgagaagct acggtgggggc ttcagcctct acgacttgaag caatgtgtgcag tacataccaca 480
ggatagtatg gcctggacatt gggtatgccca tttaccagat gtttgggaat acggtggagc 540
tccagaggg ggggaaacact ccttgagaaga ggttggtgacc atgtgatgata 600
agaatgcgca gccggaaggt acacctcaggg agtttccaggg gggtctcagac gcgacccgct 660
catattgca gcgcctgcac cttttcaggg ggtctgtata gcgtgatgtag gcgtgatgatg 720
gcttgtggaacc cactcactcct ccctctgcag atgagggcaac ctactcatctgtg aacaccacc 780
cgtagccagcc cccagctctcc ttcctgcatcc aacaccagcc ggtctgtgatc gacccgggag 840
gccgcgcgtc tcttttcccc tggccctgtgc caccttcgac ccttttcccc ggctgatccac 900
tgctccagcaacct tttgcttggct cttgcagaaaa gcacacgctca aatggaattg gctacacctg 960
tcgtcataaaaa ccaagcactcg gcctggtacct tgcctctccttgt cttctctcttg 1020
cgctgttggct tttttttttttt aatattgaaca agcgttttttaa aagaaaaaaa acaacacttcc 1080
ttcgtctctca gcagacacagc aacgtgagat ggggtgaagg cctgggacct tccagaaacat 1140
tcggagcactc cacggtgccca cccctgtggct gcgctgagtc gctgcagctgg ggcggtgggt 1200
gtctggaggg ggtggggttttt ccggctggag ggtgttgggttg ggccgagggg gggggggggt 1260
gtgctgaggtg cagggttggct tttttttttttt tggatactatg gttattttttttttt tggatagtatg 1320
gtttttttgtg aagaaagataag ctattt
ccagggccag cgaccacgcg ctcgtatcaa gaattttcag ataacaaccc agatgttgaa 780
actgaaatac ttggtaacat gcgaagacct cgggccctcccc cggccctcccc atgtcgagct 840
ctgtgacaaac tctgtgggacg gtctgacaca tcaactgcccc tgggtgagga atgtgggttg 900
aagaggaacc ttcgctctct ctactctctct ctactctctct ctactctctct tcaacatc 960
tgctctgccg ttcacaactctg tctatgaggc cctcaaaacct ttgaaatag gccacaattg 1020
gacattgaaa gaaactctctg gaactggtctt aagaagctct ttaactcttc ggtaactct 1080
gtctcctggct gtacagctcttg gtcctatactg gcctcctatac acacacacacac 1140
tgaaagacatc aagagaccttg ggacagagaa gaatcgcgctc cagaaacctct caacacatgg 1200
caatatttgtg aagaactct ggctacggctc tgcgctcgctc tggaaaacatt ccgggggcatc 1260
tccagacggt attttgcacgc ttggaangag tggaaagtcga cctcaccagct ctaagagac 1320
cagtagagcac ctcctgcgcccc agagccaccag cccaccaagag cccacactct caaatagatg 1380
gcggagaggcc agcagactccg cgaagacagat gccacactctc gagccccccag agccacccac 1440
ggaggacagct gaaactgactg atagagcctat ctaggaaga gacattttttt gtgggttaat 1500
tagggtcatag agatatcccttt gccatgaggt taaactctgtg acagaagagac aatagaagct 1560
ccttttttaaac tgggtttttt tcacccagttt gcacacgtcgc atttttttttctgcttcgcttc 1620
tgcagcttttt gcagcttttgc aacagctctg acagctctcg gcacactctc gtctcctctc 1680
tacacttgaaa aatgggtccc tgggggctctg gcacactgctc tccatggctc cagccacagg 1740
gctctctgctg acceccctcc tccccctccag atccacccagct tgcgctgtgg tgcagctctg 1800
tctccctgagt gcagcttctcc gcgctcttcc gcgctcttcc gcgctcttcc gcgctcttcc 1860
tctgagctcag aggccactcg gcagcgctcc gcgggagagtc gcgctcttcc gcgctcttcc 1920
tccctgctatt gcagctgctgg gcagctgttgc gcagcttttt ttcacaacttg gatacttgtt 1980
agctatgcttt ttcatcagtttt cggccagactc gcaggctctc cgcacactct gcacactct 2040
tgcatatgc ttttcagagtat ataaaagagtc atgctctttgt acactgcagt gatactgtgt 2100
aatgacattt tttcgtcttt ccactcttttt cgggacgtcgt cttatggaga atgggccctgac 2160
cccaacctat ctagagctgt gcacccacgt cttccttctt cttacacaacc cgtctctctct 2220
ccctctagct ctcctccctct ctcctccctct ctccttttcctt ttcacaactttt ctcctctcc 2280
ctcacttttt cgcagctctct gcgtctttctc ctttcagcttc ttcctttcctc ctcctctcc 2340
tgcttccttt ctccttcatt aacagccgct gggctgcttt ctccttttctt ctccttttttt 2400
toaggaagtc ctccttcctct ctccttcctct ctccttcctct ctccttcctct ctccttcctct 2460
tacagaagagtc gcacactgtc ctccttcctct ctccttcctct ctccttcctct ctccttcctct 2520
tggttaacagtc gcgctgtctggt gcgctgtctggt gcgctgtctggt gcgctgtctggt gcgctgtctggt 2580
atgaggcgcgtc ctccttttttt ctccttcctct ctccttcctct ctccttcctct ctccttcctct 2640
cggctctcccc acgctctcccc gcgcacgctt cccagccacc ctccttcctct ggggctgcttt 2700
tggggggtcgt gcacgagctc ctccttcttc gcgctgtctggt gcgctgtctggt gcgctgtctggt 2760
taatgctgagtc ctcctctctct ctccttcttc gcgctgtctggt gcgctgtctggt gcgctgtctggt 2820
ttggtggctggt gcgggagagtc gcgctgtctggt gcgctgtctggt gcgctgtctggt gcgctgtctggt 2880
aatgagagtc ctcctttttt ctccttcctct ctccttcctct ctccttcctct ctccttcctct 2889