

MINISTERO DELLO SVILUPPO ECONOMICO DIREZIONE GENERALE PER LA LOTTA ALLA CONTRAFFAZIONE UFFICIO ITALIANO BREVETTI E MARCHI

DOMANDA NUMERO	102007901531672
Data Deposito	13/06/2007
Data Pubblicazione	13/12/2008

Sezione	Classe	Sottoclasse	Gruppo	Sottogruppo
A	61	F		

Titolo

STRUTTURA DI PROTESI FEMORALE A RESEZIONE DELLA TESTA FEMORALE.

~ ?

3

4

S

6 7

8

9

7

12

13

14

16

17 18

19

21

20.

23

22

24

25

Descrizione del Brevetto per Invenzione Industriale avente per titolo:

«STRUTTURA DI PROTESI FEMORALE A RESEZIONE DELLA TESTA FEMORALE»

del Prof.

REINHOLD GANZ

di nazionalità Tedesca, con residenza in 3073 Guemligen (SVIZZERA) - ed elettivamente domiciliato presso l'Ufficio Brevetti Dott. Franco Cicogna, in Via Visconti di Modrone 14/A - Milano.

Depositata il

al N.

DESCRIZIONE

Il presente trovato riguarda una struttura di protesi femorale a resezione della testa femorale.

Sono già note protesi femorali cosiddette a ricostituzione o rivestimento superficiale ("resurfacing prostheses") che consentono di preservare in gran parte la testa del femore del paziente.

Tuttavía, queste protesi note presentano frequentemente il problema costituito dal fatto che, durante l'intervento chirurgico ricostruttivo, l'arteria circonferenziale femorale mediale o MFCA può essere gravemente ed irreparabilmente danneggiata, con la conseguenza che può verificarsi necrosi della testa femorale con cedimento di tutto l'impianto protesico e necessità di un nuovo intervento operatorio. Perciò queste protesi di rivestimento sono controindicate in stadi avanzati di necrosi avascolare della testa

del femore (AVN) o in presenza di cisti particolarmente estese.

Infine l'utilizzo di queste protesi di rivestimento preclude al chirurgo la possibilità di regolare agevolmente la tensione muscolare
e la distanza tra l'osso femorale e l'acetabolo.

S

Ó

AAA.

Ç

Sono pure note protesi femorali a struttura standard o a "preservazione del collo del femore" le quali, seppur eliminando alcuni dei difetti elencati delle protesi di rivestimento (controindicazioni, possibilità di ricostruzione anatomica dell'articolazione) presentano ancora degli inconvenienti fra i quali principalmente la "protezione dal carico", meglio nota come "stress shielding". A causa della conformazione di tali protesi, infatti, i carichi provenienti dall'articolazione vengono trasferiti in maniera non fisiologica, prevalentemente in prossimità della punta della protesi stessa. In questo modo l'osso femorale prossimale non viene stimolato e si riassorbe, portando al fallimento e alla revisione della protesi.

Inoltre tali protesi standard o "a preservazione del collo femorale" richiedono, per funzionare appropriatamente, un'abbondante rimozione della parte prossimale del femore, cioè di tutta la sua testa e di parte o di tutto il collo femorale, per cui una quantità d'osso femorale eccessivamente scarsa, e spesso insufficiente, risulterà disponibile, nel caso in cui dovesse risultare necessario un intervento chirurgico di revisione.

Così, alla luce dei precitati inconvenienti delle strutture di protesi femorali note, in particolare dello stelo femorale di esse,

cioè della parte della protesi prevista per essere impegnata inamovibilmente nell'osso femorale, lo scopo del presente trovato è
quello di fornire una simile protesi il cui stelo femorale sia concepito per consentire un trasferimento ottimale dei carichi provenienti dall'articolazione all'osso femorale, preservando in massima parte la testa femorale, cioè osteotomizzando solamente la
porzione effettivamente patologica della testa femorale stessa.

in the

Á

Nell'ambito di tale compito, uno scopo principale del presente trovato è quello di fornire una struttura di protesi femorale che sia in grado di trasferire i carichi provenienti dall'articolazione al femore prossimale evitando il fenomeno dello stress shielding ed il conseguente riassorbimento osseo.

Un altro scopo del presente trovato è quello di fornire una struttura di protesi femorale il cui stelo possa agevolmente essere applicato, senza cemento, ad esempio ad impatto, ad un osso femorale da cui sia stata rimossa esclusivamente la porzione patologica della testa.

Un altro scopo del presente trovato è quello di realizzare una struttura di protesi femorale, il cui stelo possa essere orientato in modo ottimale rispetto all'andamento delle trabecole dell'osso femorale e che, al tempo stesso, si adatti pure in modo ottimale alla geometria della sezione del collo femorale, sia alla geometria della curva mediale del femore prossimale, così da distribuire in modo corrispondentemente ottimale le forze agenti durante il funzionamento della protesi.

Un altro scopo del presente trovato è quello di fornire una struttura di protesi femorale che abbia un'elevatissima stabilità di impianto, in particolare una stabilità rotazionale, e ciò senza l'impiego, come si è detto, di materiali cementanti.

Ancora uno scopo del presente trovato è quello di realizzare una struttura di protesi femorale suscettibile di minimizzare, in una condizione definitivamente impiantata e/o bloccata nel femore della stessa, qualsiasi rischio di possibili fratture ossee.

Un ulteriore scopo del presente trovato è quello di fornire una struttura di protesi femorale il cui stelo femorale possa essere facilmente adattato ad una pluralità di teste sferiche, specificatamente dedicate, e che, in particolare, siano suscettibili di consentire di regolare agevolmente la tensione muscolare e la distanza tra l'osso femorale e l'acetabolo, per ottenere una ricostruzione ottimale dell'articolazione femorale.

Un altro scopo del presente trovato è quello di realizzare una struttura di protesi femorale che, per la sua applicazione al femore, richieda un'operazione di osteotomia parziale della testa femorale estremamente semplice e rapida, nonché una corrispondente semplice e rapida applicazione ad impatto.

Un ulteriore scopo del presente trovato è quello di fornire una struttura di protesi femorale, che, in corrispondenza della porzione distale dello stelo femorale, possa essere configurata per guidare ed agevolare le manovre di introduzione dello stelo nella sede opportunamente ricavata nell'osso.

1 Ž.

3

4

Ś

S

8

4

10

9

7 12

13

14

15

16 17

18

19

20

21

22

23

24

25

.

Á,

rticolare del suo la Fia. 3 è ur

Un altro scopo del presente trovato quello di realizzare una struttura di protesi femorale che possa essere agevolmente prodotta a partire da convenzionali materiali biocompatibili, in particolare preferibilmente metallici.

Secondo un aspetto del presente trovato, il compito e gli scopi precedentemente menzionati, nonché altri scopi ancora, che risulteranno più chiari in seguito, sono raggiunti da una struttura di protesi a resezione della testa femorale, avente le caratteristiche della rivendicazione principale.

Ulteriori peculiarità della struttura di protesi femorale secondo il trovato sono definite nelle rivendicazioni dipendenti.

Altri dettagli e configurazioni caratteristiche della struttura di protesi a resezione della testa femorale, secondo il presente trovato, risulteranno più chiari in seguito attraverso un esame della seguente descrizione dettagliata di una forma di realizzazione attualmente preferita di essa, con riferimento agli acclusi disegni, in cui:

la Fig. 1 è una vista prospettica parziale, in scala, di una forma di realizzazione attualmente preferita della struttura di protesi femorale secondo il presente trovato, in particolare della porzione a stelo di essa, priva della corrispondente testa sferica;

la Fig. 2 è un'ulteriore vista prospettica parziale, anch'essa in scala, della struttura di protesi femorale del trovato, in particolare del suo stelo femorale;

la Fig. 3 è un'ulteriore vista prospettica in sezione trasver-

sale dello stelo femorale delle figure precedenti;

Year.

Ž

3

4 :

5

É

3

8

Ç

10

1

12

13

14

15

16

17

18

19

20

21

22

23

24

25

la Fig. 4 è un'ulteriore vista in sezione trasversale, illustrante specificatamente le nervature associate integralmente alla periferia dello stelo femorale della protesi secondo il presente trovato; e

la Fig. 5 è una vista schematica illustrante la struttura di protesi femorale, in particolare lo stelo di essa, applicata nel femore di un paziente: le linee tratteggiate illustrano, in tale figura, l'andamento o percorso delle trabecole dell'osso femorale stesso, e

le Fig. 6 e 7 illustrano rispettivamente la testa femorale della protesi femorale secondo il presente trovato.

Facendo ora riferimento alle citate figure, in esse lo stelo protesico della struttura femorale del presente trovato è stata indicato generalmente col numero di riferimento 1, mentre la testa sferica da accoppiare allo stelo 1 è stata indicata generalmente da 100 nelle fig 6 e 7 ed essa sarà una testa sferica, di configurazione generale dedicata, atta ad essere in particolare usata per regolare la tensione muscolare e la distanza tra l'osso femorale e l'acetabolo per ottenere un'ottimale ricostituzione dell'articolazione femorale, come sarà descritto più dettagliatamente in seguito.

In realtà, il cuore del trovato è costituito dallo stelo protesico femorale 1 il quale comprende una porzione prossimale 2, una porzione intermedia 3 ed una porzione distale 4, tutte mu-

á

Ş

tuamente integralmente configurate, ad esempio di un opportuno materiale biocompatibile, preferibilmente metallico.

Tale stelo femorale 1, in particolare, è stato specificatamente previsto per essere impiantato senza cemento, ad esempio ad impatti, nel femore prossimale in cui è stata eseguita una resezione parziale della testa femorale, come si nota specificatamente in Fig. 5.

Lo stelo protesico 1, specificatamente, definisce un asse longitudinale ed un asse trasversale, non rappresentati, con l'asse longitudinale che ha una lunghezza sostanzialmente superiore alla lunghezza dell'asse trasversale.

La prima porzione prossimale 2 dello stelo femorale 1 è sostanzialmente troncoconica, e definisce una superficie periferica, indicata dal numero di riferimento 5, una base minore 6, nonché una base maggiore 7.

La superficie periferica 5 della porzione prossimale 2, in particolare, è impegnabile in modo articolato nella cavità corrispondente della porzione di testa protesica sferica che, come si è detto, non è stata rappresentata.

La seconda porzione intermedia 3 dello stelo femorale 1 è, come si nota, anch'essa sostanzialmente troncoconica, con una base maggior 8 ed una base minore, non numerata, che raccorda integralmente nella base maggiore 9 della porzione distale 4, o terza porzione dello stelo protesico 1.

Tale terza porzione distale 4 è conica e/o rastremata e pre-

Ś

· ·

Ģ.

3 3

senta pure una base minore 10 o porzione di punta sostanzialmente arrotondata, al fine di guidare lo stelo ed agevolarne
l'introduzione nella sede ossea, opportunamente preparata, e definisce una superficie esterna 11, opportunamente superficialmente trattata, ad esempio mediante sabbiatura, plasma spray,
attacco chimico e/o simili per facilitare, secondo un vantaggioso
aspetto del presente trovato, l'osteointegrazione ed il trasferimento delle sollecitazioni al femore prossimale.

A tale proposito, anche tutta la parte rimanente dello stelo potrà essere analogamente trattata.

Vantaggiosamente, come è chiaramente rappresentato nelle Fig. 3 e 4, la porzione intermedia 3 dello stelo femorale 1 presenta una sezione trasversale sostanzialmente ellittica 12, adattabile, secondo un ulteriore aspetto del trovato, alla configurazione geometrica della porzione del collo del femore.

Tale porzione intermedia 3 dello stelo femorale 1 ha una superficie periferica delimitata da due lati, cioè un lato esterno 13 ed un lato interno 14, definenti un profilo avente una curvatura tale da seguire sostanzialmente il percorso trabecolare della porzione di collo femorale e la curvatura mediale del femore prossimale.

Vantaggiosamente, secondo un ulteriore aspetto del presente trovato, lo stelo femorale 1 presenta, sulla superficie periferica della seconda porzione intermedia 3, una pluralità di nervature 15, contigue l'una all'altra, atte ad aumentare la stabilità ro-

tazionale dello stelo protesico nella sua condizione impiantata nel canale femorale, come è chiaramente rappresentato ad esempio in Fig. 5. Le nervature contigue 15 presentano, secondo un altro vantaggioso aspetto del trovato, una curvatura corrispondente alla curvatura dei due lati esterno 13 e interno 14 della porzione intermedia 3 dello stelo femorale 1.

Á,

ALCO .

Ģ

25.

Le medesime nervature hanno vantaggiosamente, come è chiaramente mostrato nelle Fig. 3 e 4, altezze mutuamente differenti, indicativamente comprese tra 0,5 mm e 4 mm, conformemente alla posizione anatomica che esse occuperanno nell'osso femorale, e ciò al fine di minimizzare il rischio di possibili fratture ossee che tali nervature potrebbero provocare nel caso esse fossero eccessivamente invasive.

Secondo un ulteriore aspetto del trovato, la base maggiore della porzione intermedia 3 dello stelo femorale definisce una superficie prossimale sostanzialmente piatta, che è inclinata rispetto all'asse trasversale dello stelo, in modo da ottenere un orientamento desiderato dello stelo, rispetto al percorso trabecolare della porzione di collo femorale, al fine di agevolare la trasmissione delle forze articolari al femore prossimale, evitando la loro scomposizione in componenti non desiderate (forze di taglio) ed evitando il fenomeno dello stress shielding. Tale angolo di inclinazione è compreso tra 40° e 70°.

Per il fissaggio senza cemento nell'osso femorale, lo stelo

1 del trovato sarà applicato mediante un qualsiasi meccanismo di

6

S

9

8

17

13

14

16

18

19 20

21

22 23

24

25

accoppiamento a pressione o ad impatti, dopo aver subito un trattamento superficiale, ad esempio sabbiatura, attacco chimico, spruzzatura al plasma e/o simili; al fine di ottenere una superficie osteointegrante secondo l'arte nota.

Così, secondo un ulteriore aspetto importante del trovato e come si è visto, la sezione trasversale di tutto lo stelo femorale 1 diminuisce dalla estremità prossimale 2 alla estremità distale 4, con configurazione sostanzialmente conica.

Il profilo esterno della porzione intermedia è stato opportunamente curvato così da seguire il percorso trabecolare nel collo femorale e l'andamento della curvatura mediale del femore prossimale, in modo da meglio distribuire le forze agenti a livello dell'articolazione.

L'intervento di osteotomia, specificatamente, sarà eseguito per ottenere l'orientamento corretto dell'impianto rispetto al percorso trasecolare ed alla curvatura mediale del femore prossimale. Così, e come è già stato detto, l'estremità prossimale della protesi ha una superficie orientata con un angolo appropriato, rispetto all'asse traversale dello stelo, per ottenere il desiderato orientamento dello stelo femorale, rispetto al percorso trabecolare, quando è orientato parallelamente alla osteotomia.

La molteplicità di nervature 15 aumentano la stabilità rotazionale, le nervature essendo anch'esse curvate conformemente alla geometria dello stelo e avendo altezze diverse in modo da adeguarsi alla posizione anatomica che esse occuperanno, così

3

4

5

Ó

7

9

12

33

13

14

15

17

18

1*9* 20

21

22

24

23

25

da minimizzare, come si è già accennato, il rischio di fratture ossee che tali nervature potrebbero provocare se fossero troppo invasive.

Tutto l'impianto sarà realizzato, come già accennato, con materiali biocompatibili, preferibilmente metallici.

La rispettiva testa sferica, come si è già detto, sarà impiegata in modo da regolare la tensione muscolare e la distanza tra l'osso femorale e l'acetabolo (non mostrato) per ottenere un'ottimale ricostruzione dell'articolazione femorale.

Con riferimento specifico alle Fig 6 e 7, tale testa sferica, indicata generalmente da 100, presenta una cavità 110 in un lato atta ad essere accoppiata a detta porzione prossimale 2 di detta struttura di stelo femorale 1. Detta cavità 110 ha la forma di un tronco di cono che può essere realizzato in differenti altezze, in modo tale da ottenere differenti posizioni del centro della sfera rispetto alla protesi femorale, al fine di permettere al chirurgo di regolare la tensione muscolare e la distanza tra il femore ed il bacino.

La sfera 100 è tagliata vantaggiosamente, secondo il trovato, con un piano che è parallelo a detta superficie piana di detta base maggiore di detta porzione intermedia 3 di detta struttura di stelo femorale 1.

La porzione di sfera è tagliata con detto piano ad un'altezza, misurata dal suo equatore, tale per cui quando viene accoppiata con lo stelo femorale impiantato nel femore, si ottie-

the Co

and the same of th

Sala

ne la ricostruzione di una sfera perfetta. La rimanente porzione di detta sfera perfetta è data dalla parte di testa femorale che non è stata resecata dal chirurgo durante l'intervento

Da quanto precede si noterà che il trovato raggiunge pienamente il compito e gli scopi proposti.

Benché la struttura di protesi femorale secondo il trovato sia stata descritta facendo specifico riferimento ad una sua forma di realizzazione attualmente preferita, si deve tener presente che la forma di realizzazione descritta è suscettibile di subire numerose modifiche e varianti, tutte rientranti nell'ambito del concetto del trovato, come definito dalle rivendicazioni seguenti.

RIVENDICAZIONI

24

25

1. Struttura di protesi femorale a resezione della testa femorale, detta struttura di protesi comprendendo uno stelo protesico ed una testa protesica sostanzialmente sferica accoppiabile a detto stelo protesico per mezzo di un ingaggio ad esempio conico, detto stelo protesico avendo un asse longitudinale ed un asse traversale, detto asse longitudinale avendo una lunghezza sostanzialmente maggiore della lunghezza di detto asse trasversale, detto stelo protesico includendo una prima porzione prossimale, una seconda porzione intermedia ed una terza porzione distale mutuamente integrali, caratterizzata dal fatto che detta prima porzione prossimale di detto stelo è sostanzialmente troncoconica e definisce una base minore, una superficie periferica esterna ed una base maggiore, detta superficie periferica esterna essendo impegnabile in modo articolato nella cavità corrispondente di detta testa protesica sferica, detta seconda porzione intermedia essendo anch'essa sostanzialmente troncoconica con una base maggiore raccordantesi a detta base maggiore e a detta prima porzione prossimale e con una base minore detta terza porzione distale essendo anch'essa sostanzialmente troncoconica e/o rastremata con la sua base maggiore che si raccorda a detta base minore della seconda porzione intermedia e con la sua base minore che definisce una porzione di punta distale.

Struttura di protesi femorale secondo la rivendicazione
 caratterizzata dal fatto che detta seconda porzione intermedia

S

. Jer

Ş

m 2

1 1

dello	stelo pre	senta	una se	zione tra	isversale	sost	tanzia	lmente e	ellit-
ica,	adattabile	e alla	config	jurazione	geomet	rica	della	porzione	e di
collo e di testa del femore.									

- 3. Struttura di protesi femorale secondo la rivendicazione 1, caratterizzata dal fatto che la seconda porzione intermedia di detto stelo presenta una superficie periferica delimitata da due lati esterno ed interno definenti un profilo avente una curvatura tale da seguire sostanzialmente il percorso trabecolare e la curvatura mediale di detta porzione di collo femorale.
- 4. Struttura di protesi femorale secondo una qualsiasi delle rivendicazioni precedenti, caratterizzata dal fatto che la superficie periferica di detta seconda porzione intermedia presenta una pluralità di nervature contigue atte ad aumentare la stabilità rotazionale di detto stelo protesico.
- 5. Struttura di protesi femorale secondo le rivendicazioni 3 e 4, caratterizzata dal fatto che dette nervature contigue presentano una curvatura sostanzialmente corrispondente alla curvatura di detti due lati esterno ed interno della porzione di stelo intermedia.
- 6. Struttura di protesi femorale secondo le rivendicazioni 4 e 5, caratterizzata dal fatto che dette nervature hanno altezze mutuamente differenti, preferibilmente comprese tra 0,5 mm e 4 mm.
- 7. Struttura di protesi femorale secondo la rivendicazione 1, caratterizzata dal fatto che la terza porzione distale di detto

25.

stelo femorale definisce una superficie periferica trattata superficialmente mediante sabbiatura, plasma spray, attacco chimico o altro, al fine di favorire il processo di osteointegrazione e contribuire alla trasmissione delle sollecitazioni provenienti dalla articolazione, e che detta terza porzione distale è sostanzialmente conica e/o rastremata per agevolare e guidare l'inserimento dello stelo protesico in una cavità opportunamente preparata nell'osso femorale, e che detta porzione di punta distale di detta terza porzione distale di detta terza porzione distale di detto stelo femorale è sostanzialmente arrotondata.

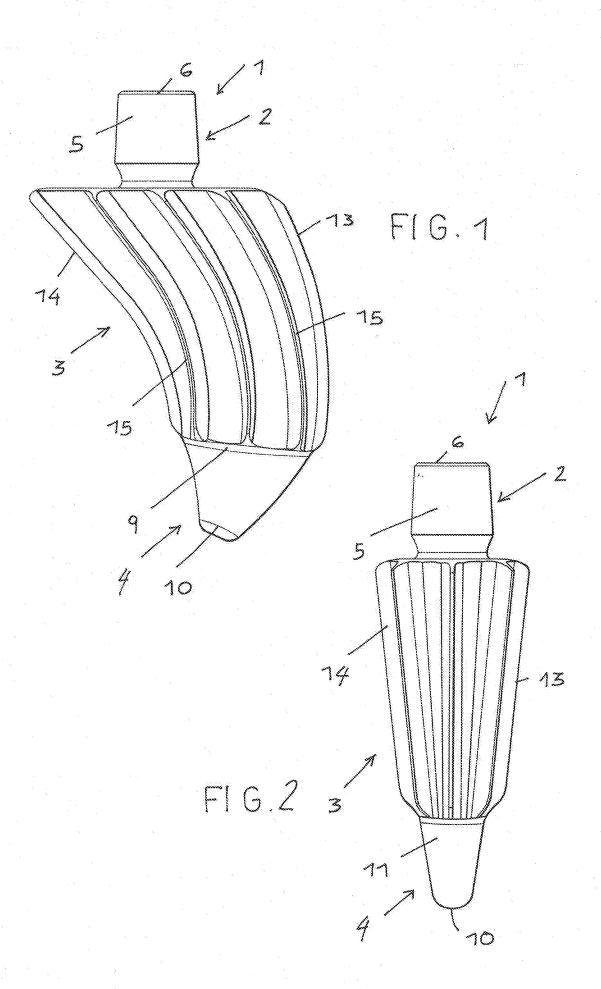
- 8. Struttura di protesi femorale secondo una qualsiasi delle rivendicazioni precedenti, caratterizzata dal fatto che la base maggiore di detta seconda porzione intermedia dello stelo femorale definisce una superficie prossimale sostanzialmente piatta di detto stelo, detta superficie prossimale essendo inclinata rispetto a detto all'asse trasversale di detto stelo secondo un angolo compreso tra sostanzialmente 40° e 70°, in modo da ottenere un orientamento desiderato dello stelo rispetto al percorso trabecolare della porzione di collo femorale, per agevolare la trasmissione delle forze articolari al femore prossimale agevolando la trasmissione di forze articolari a detto femore prossimale ed evitando la loro scomposizione in componenti indesiderabili, in particolare evitando lo stress shielding.
- Struttura di protesi femorale secondo una qualsiasi delle rivendicazioni precedenti, caratterizzata dal fatto che lo stelo è

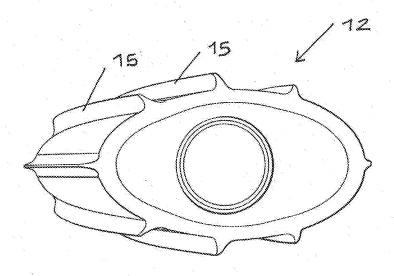
Y.

are.

atto ad essere fissato inamovibilmente in detto femore mediante un meccanismo di accoppiamento a pressione ed è trattato superficialmente, ad esempio mediante sabbiatura, attacco acido, spruzzatura al plasma e/o simili, al fine di agevolare il processo di osteointegrazione.

- 10. Struttura di protesi femorale secondo la rivendicazione


 1, caratterizzata dal fatto che detta testa protesica presenta in
 un lato una cavità sostanzialmente troncoconica atta ad essere
 accoppiata a detta porzione prossimale di detto stelo femorale,
 detta cavità avendo differenti altezze in modo da ottenere differenti posizioni del centro della testa protesica rispetto a detto
 stelo femorale, al fine di consentire ad un chirurgo di regolare la
 tensione muscolare e la distanza tra il femore ed il bacino del paziente.
- 11. Struttura di protesi femorale secondo una qualsiasi delle rivendicazioni precedenti, caratterizzata dal fatto che detta testa protesica è tagliata con un piano sostanzialmente parallelo a
 detta superficie piana di detta base maggiore di detta porzione
 intermedia di detto stelo femorale, ad un'altezza tale, misurata
 da un piano equatoriale di detta testa da definire, in seguito
 all'accoppiamento con detto stelo femorale inpiantato in detto
 femore, con una configurazione perfettamente sferica.
- 12. Struttura di protesi femorale a resezione della testa femorale, caratterizzata dal fatto che lo stelo protesico e la porzione di testa sferica sono costituiti da materiali biocompatibili,


(aura

Ą

Ó

~~. Seeder

FIG,3

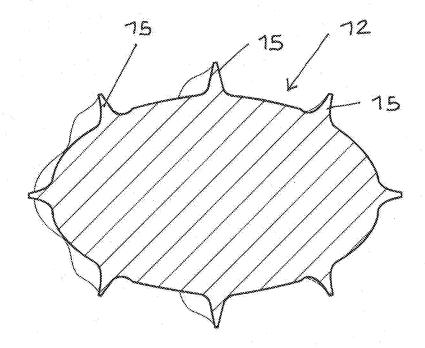
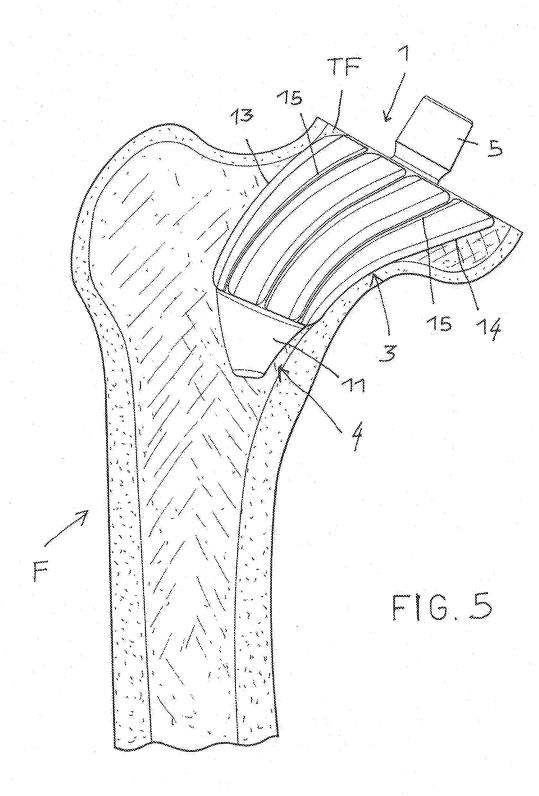
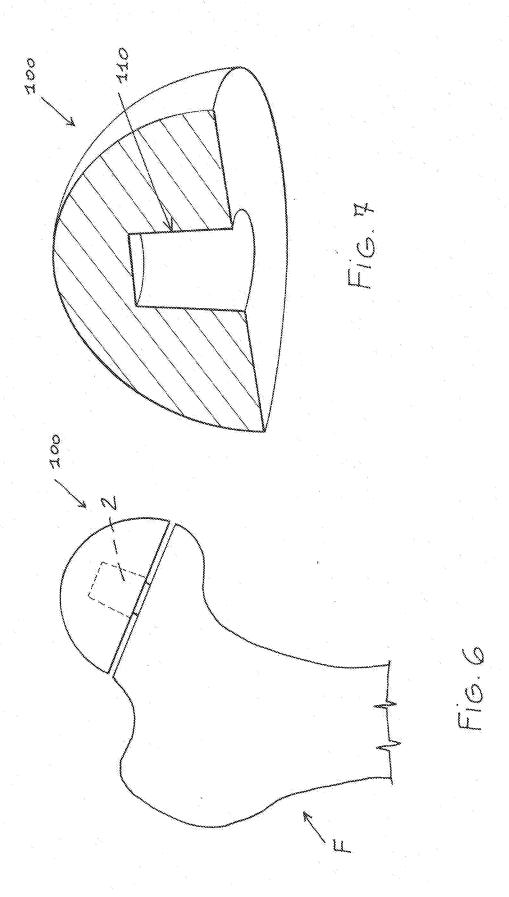




FIG. 4

